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中文摘要 

 

    物聯網是智能設備、車輛、機器還有其他智能物體等互相聯通而形

成的網路。實現複雜物聯網的關鍵因素則在於許多新型通信協定和技

術的整合，它們將使物聯網設備能夠進行協作、溝通並作出決策。物聯

網設備的互相聯通作用可以簡單的資料流說明：諸如無線感應器的物

聯網設備從環境中收集資料，並將資料傳輸到資料伺服器進行信息處

理。爾後伺服器會將處理獲得的信息傳輸分送到諸如用戶設備的物聯

網設備以實現更好的使用者效用。由於物聯網的快速發展，無處不在的

信息收集、處理和分送，均使無線電資源的需求不斷上升，這也使原本

就有限的無線電資源更為稀少。此外，無線傳輸通道會隨著時間波動。

而能量採集技術雖能實現自我維持運作的物聯網設備，但採集的能量

通常是間歇並隨時間變化的。因此，考量到無線電資源的稀少性、無線

通道的時間波動和能量的時間變化，如何有效地在空間和時間上分配

運用無線電資源將是物聯網中極為重要的一項議題。此外，我們也考慮

了物聯網設備的自私特性與物聯網環境的不完整信息。不完整信息意

味著網路環境中如無線通道狀況與設備的能量儲存量等信息通常僅為

設備本身所知。為了最佳化網路效能，網路設計者將需要設備回饋這些

不完整信息。由於整體網路最佳化通常會犧牲部分設備的個別效能，因
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此自私的設備可能會通過虛假的信息回饋來操縱網路最佳化結果，以

使自己的效能表現變得更好。此時整體網路效能表現將可能不是網路

設計者所希望達到的最佳結果。有鑑於此，我們在物聯網中制定了無線

電資源分配問題，並以機制設計的概念提出了創新的物聯網資源分配

機制。透過理論研究，我們證明設計的資源配置機制將可使物聯網設備

回饋真實的信息，並從而實現最佳的均衡資源分配。均衡資源分配實現

了數個效率和公平的度量，包括最大系統吞吐量/環境資料保真度，柏

拉圖效率，最大公平性，與比例公平性。而透過提出的定價方案，我們

證明均由設備付錢給機制。換言之，我們設計的機制將不需要付錢給設

備才能確保真實的反饋（預算平衡）。此外，我們也證明所有設備將加

入設計的機制以獲得比沒有加入時更高的效用（個別理性）。 

 

關鍵詞：物聯網；能量採集；無線電資源分配；機制設計；賽局理論。 
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Abstract

The Internet of Things (IoT) is the inter-networking of smart devices, vehicles, machines,

and other items. The key factor for enabling this sophisticated paradigm is the integra-

tion of novel communication protocols and technologies, which allows IoT devices to

cooperate, communicate, and make decisions. The interconnection of IoT devices can

be explained in simple data flows: Devices such as wireless sensors gather data from

the environment and transmit the data to data servers for information processing. The

processed information is then distributed to devices such as user equipments to achieve

greater user utility. Due to the rapid development of the IoT, ubiquitous information gath-

ering, processing, and distribution have escalated the demand of radio resources, which

makes radio resources even scarcer. In addition, wireless channels are time-fluctuating.

Energy harvesting technology enables self-sustainable IoT devices but harvested energy

is usually intermittent and time-varying. Therefore, taking into account radio resource

scarcity, channel fluctuations, and energy variations, efficient radio resource allocation in

space and time is particularly important in the IoT. Moreover, we also consider selfish-

ness of IoT devices and incomplete information of the network environment. Incomplete

information means that the network environment, such as channel conditions and energy

levels, is only known to devices themselves. To optimize the network performance, feed-

back of the incomplete information from devices is required. Note that overall network

optimization usually sacrifices individual performance of some devices. Selfish devices

can manipulate the network optimization result through untruthful feedback if doing so

increase their own performance. The network performance may not be optimal. In this re-

gard, we formulate radio resource allocation problems in the IoT and adopt a mechanism

v
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design approach to propose novel IoT resource allocation mechanisms. Our theoretic

findings show that the proposed resource allocation mechanisms can induce truthful in-

formation feedback from devices so as to achieve optimal equilibrium resource allocation.

The equilibrium resource allocation achieves several efficiency and fairness metrics, in-

cluding maximum system throughput/data fidelity, Pareto efficiency, max-min fairness,

proportional fairness. With the proposed pricing schemes, the payment is always made

from the devices to the mechanisms. In other words, the mechanisms do not need to pay

to ensure truthful feedback (budget balance). Moreover, all devices will join the proposed

mechanisms to gain higher utility than without joining (individual rationality).

Keywords: The IoT; energy harvesting; radio resource allocation; mechanism design;

game theory.
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Chapter 1

Introduction

The Internet of Things (IoT) is a novel paradigm that is rapidly emerging in modern wire-

less communications. It is the inter-networking of smart devices, vehicles, machines, and

other items. Fig. 1.1 uses simple data flows to show the interconnection of IoT devices.

In the IoT, devices such as wireless sensors and radio-frequency identifiers (RFID) first

sense and gather data from the environment. The gathered data are then transmitted to

data centers or servers for processing and analysis to gain meaningful information. The

information is then distributed to devices such as user vehicles and machines to achieve

greater user utility. Wireless multicast, a promising technology for common information

delivery to multiple devices, can be adopted. The key factor for enabling the sophisticated

paradigm of the IoT is the integration of novel communication protocols and technologies,

which allows IoT devices to cooperate, communicate, and make decisions [1, 2].

Despite the promising future of the IoT, new design challenges are imposed due to

the rapid development of the IoT with a numerous number of devices. In particular, ubiq-

uitous information gathering, processing, and distribution have escalated the demand of

radio resources, which makes radio resources even scarcer. Efficient radio resource al-

location is especially important in the IoT. In addition, wireless channel conditions are

time-fluctuating, which can severely affect the quality of data transmission. On the other

hand, emerging energy harvesting technologies enable wireless devices to scavenge en-

ergy from the ambient environment [3] and to achieve self-sustainable operation. How-

ever, the randomness and intermittence of renewable energy also bring design challenges.
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Figure 1.1: Illustration of the IoT from the viewpoint of data flows.

Therefore, channel fluctuations and energy variations should also be important consider-

ations in radio resource allocation design.

1.1 Selfish Devices and Incomplete Information

Unlike most of the existing works, we also consider selfishness of IoT devices and in-

complete information of the network environment. Incomplete information means that

the network environment, such as channel conditions and energy states, is only known to

devices themselves. To optimize the network performance, feedback of the incomplete

information from devices is required. Note that overall network optimization usually sac-

rifices individual performance of some devices. Therefore, devices may be selfish and

feedback their own incomplete information dishonestly so as to maximize their own per-

formance. Therefore, the overall network operation may not be optimal.

Consider a very simple toy model where there exist a base station (BS) and 3 wireless

devices. Each device requires one data packet. The BS has 2 radio resource blocks where

one radio resource block can be used to transmit one packet. Suppose that devices 1 and

2 both have packet success probability (PSP) 0.9 and device 3 has PSP 0.2. To maximize

2
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the system throughput (expected number of packets received successfully), the BS should

transmit one packet to device 1 and one packet to device 2. The optimal system throughput

is 1.8. However, the throughput of device 3 is 0. If the PSP is only known to the devices

and feedback is required, device 3 can untruthfully feedback PSP 1. In this case, the

BS may transmit one packet to device 1 and one packet to device 3. By such untruthful

feedback, device 3 gets throughput 0.1, higher than that in the optimal resource allocation.

However, the real system throughput becomes 1.1, which is less than the optimal system

throughput 1.8. From this example, we see that selfishness and incomplete information

of devices can cause severe system performance degradation. Traditional solutions that

do not consider selfishness and incomplete information may not work effectively. To

this end, we adopt a mechanism design approach to designing novel resource allocation

mechanisms.

1.2 Problem Overviews and Contributions

In this dissertation, we play the role of the radio resource providers. We aim to design

IoT radio resource allocation mechanisms where IoT devices and servers who use radio

resources are the participants. Selfishness of IoT devices and incomplete information of

the network environment are considered. By using the divide-and-conquer method, we

formulate the resource allocation problems in the IoT scenarios of information gathering

and distribution, as illustrated in Fig. 1.1. Novel resource allocation mechanisms are

proposed to induce truthful information feedback from selfish devices so as to achieve

optimal resource allocation. The problem overviews and contributions for each design

block are given as follows:

1.2.1 Strategy-Proof Resource Allocation Mechanism for Multi-Flow

Wireless Multicast (Chapter 2)

In Chapter 2, we consider downlink multimedia multicast. The BS can send multiple

multicast flows to multiple groups of devices. The channel-quality information (CQI) is

3
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devices’ private information. Resource allocation to multiple multicast flows to achieve

maximum system throughput is the major objective. To solve the problem, we have the

following contributions:

1. We provide the theoretical foundation for the multi-flow multicast communication,

constructing an application-layer error correction framework and designing an on-

demand resource allocation mechanism for the future Multimedia Broadcast Mul-

ticast Services (MBMS).

2. The proposed mechanism performs access control via pricing. The proposed pric-

ing scheme only enables the users with the channel qualities better than the system-

defined threshold to join the mechanism and gain positive utility.

3. The proposed mechanism induces truthful feedback of the CQI in a dominant-

strategy equilibrium (strategy-proofness).

4. The resource allocation in the equilibrium is Pareto efficient. No other resource

allocation can make all the users better off in utility.

5. The resource allocation also achieves flow-level weighted max-min and propor-

tional fairness.

6. There is no net payment from the BS to the devices. In other words, the BS does

not need to pay to ensure truthful feedback (budget balance).

1.2.2 Wireless Multicast over Time-Varying Channels for Energy-

Harvesting Devices (Chapter 3)

Chapter 3 studies the downlink multicast scenario on an infinite time horizon. Common

data multicast, e.g., small data and control signal transmissions, to energy-harvesting de-

vices over time-varying channels is considered. The energy and channel states of the

devices are time-varying and only known to themselves. We aim to decide resource allo-

cation to different multicast flows over time to achieve maximum system throughput. Our

contributions are given as follows:

4
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1. We propose a resource allocation mechanism induces the devices to feedback their

true energy and channel state information in a perfect ex-post equilibrium (perfect

ex-post incentive compatibility).

2. The equilibrium resource allocation maximizes the system throughput.

3. The payment is always made from the devices to the BS The BS does not need to

pay to ensure truthful feedback (budget balance).

4. Moreover, all devices will obtain higher utility when joining the proposed resource

allocation mechanism (individual rationality).

1.2.3 On Maximizing Data Fidelity in Energy-Harvesting IoT: A Me-

chanism Design Approach (Chapter 4)

Chapter 4 focuses on correlated data gathering of energy-harvesting devices. The data

correlations and the energy states are only known to devices. A node activation decision

problem over an infinite time horizon is studied, with spatial-temporal data correlations

and incomplete information on the data statistics and the energy states. Resource alloca-

tion to devices for information gathering and uplink transmissions to achieve maximum

system data fidelity is then the major design goal. Our contributions are given as follows:

1. The proposed node activation mechanism ensures truthful feedback of the true data

statistics and energy states in a perfect ex-post equilibrium (perfect ex-post incen-

tive compatibility).

2. The proposed node activation mechanism maximizes the system data fidelity.

3. The proposed node activation mechanism also ensures that the payment is always

made from the data servers to the BS. In other words, the BS does not need to pay

to guarantee truthful feedback (budget balance).

4. All data servers and their sensor nodes will join the proposed node activation mech-

anism to obtain higher utility than without joining (individual rationality).

5
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1.3 Mechanism Design

A mechanism design approach is adopted in this dissertation to inducing truthful feedback

of incomplete information from selfish devices to achieve desirable resource allocation.

Before going to the design details of following chapters, we provide some basic knowl-

edge of mechanism design.

1.3.1 Basic Knowledge

Mechanism design is a sub-field of economics and game theory that takes an engineer-

ing approach to designing mechanisms or incentives to achieve desirable outcomes in a

strategic setting. Such a strategic design is necessary since players are selfish, act ratio-

nally, and usually have private preferences. In the following, we use resource a allocation

mechanism to shortly explain mechanism design. A mechanism designer first designs an

outcome rule, i.e., a resource allocation rule plus a pricing rule. The game induced by the

mechanism has the following main components:

• Players: Devices are players in the game.

• Types: Channel conditions, energy states, and data correlations are types of players.

Types are usually incomplete information that is known to players themselves, but

not known to each other or the mechanism designer.

• Strategies: Players have strategies that decide how to report types to the mechanism.

• Outcomes: With the reported types received and according to the resource allo-

cation rules and the pricing rules, the mechanism decides resource allocation and

prices charged to devices.

• Utility: Players have different utility with respect to the outcomes.

1.3.2 Equilibrium Concepts

The main objective in mechanism design is to design the resource allocation rule and the

pricing rule such that reporting the true types maximizes players’ utility in an equilibrium.

6
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The most well-known equilibrium concept is a Nash equilibrium, which states that in an

equilibrium each player will select a utility-maximizing strategy given the strategies of

the other players. Although the Nash equilibrium concept is fundamental, it makes very

strong assumptions about players’ information and beliefs: Each player must have perfect

information about the types of the other players.

A stronger solution concept is a dominant-strategy equilibrium. In a dominant-strategy

equilibrium each player has the same utility-maximizing strategy regardless of the strate-

gies of other players. A dominant-strategy equilibrium is very robust, as it makes no as-

sumptions about the information available to players about each other. As will be shown in

Chapter 2, the proposed mechanism will be implemented in a truthful dominant-strategy

equilibrium.

1.3.3 Infinite Time Horizon Mechanisms

Mechanism design for infinite time horizons is required when the types, i.e., channel

conditions, energy states, and data correlations, vary with time and are incomplete infor-

mation. In addition to the basic components in Chapter 1.3.1, we should also consider

Markov type transitions and ex-post utility:

• Markov type transitions: Players have different types in different time slots. We

assume that types have Markov transitions. That is, the types of the players in the

next time slot only depend on the types and the resource allocation in the current

time slot.

• Ex-post utility: Players also have different utility with respect to the outcomes. A

slight refinement from one-shot utility is that we define utility in the ex-post stage.

An ex-post stage is defined as the timing after players report the types in each time

slot. Therefore, ex-post utility represents the utility seen in the ex-post stage of each

time slot.

With the refinement of ex-post utility, the equilibrium concept we will use in infinite

time horizon mechanisms is a perfect ex-post equilibrium. A perfect ex-post equilibrium
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means that each player maximizes the ex-post utility in any subgame by playing a strategy

given the strategies of the other players. The perfect ex-post equilibrium concept is also

strong in infinite time horizon mechanisms as it makes no assumptions about the type

information available to players about each other in each time slot. As will be shown

in Chapters 3 and 4, the proposed mechanisms will be implemented in a truthful perfect

ex-post equilibrium.

To sum up, according to different network scenarios on one-shot or infinite time hori-

zons, different mechanisms will be proposed and different equilibrium concepts will be

applied. Desirable properties of the outcomes will also be analyzed. More design details,

equilibria, and property analysis will be provided in the following chapters.

8



doi:10.6342/NTU201701588

Chapter 2

Strategy-Proof Resource Allocation

Mechanism for Multi-Flow Wireless

Multicast

2.1 Introduction

Wireless multicast/broadcast, also known as one-to-many communication, is a promis-

ing technology for delivering information from a server to a group of wireless users. As

users have become more data hungry and service demanding, multicast/broadcast service

is a solution that can cater this need efficiently. One-to-many communication can be per-

formed via unicast. Employing unicast involves multiple transmissions to a group of users

which results in severe waste of radio resources especially when the group size gets larger.

Therefore, wireless multicast techniques have been extensively studied and widely used

because of the efficient usage of radio resources. However, wireless multicast requires the

network, including the server and routers, to route packets such that each user receives a

copy. Route establishment is then one of the most basic and challenging issues in wireless

multicast. Many multicast protocols come up with solutions to set up and maintain routes.

In addition, on the basis of multicast routing, the issues on network resource utilization,

packet scheduling, adaptive rate control, power control, and throughput maximization,
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have been jointly investigated [4].

Multicast/broadcast service is supported in the 4G communication networks such as

Long Term Evolution Advanced (LTE-A) and Worldwide Interoperability for Microwave

Access (WiMAX) IEEE 802.16m. In 3GPP LTE systems, Multimedia Broadcast Mul-

ticast Services (MBMS) is a mechanism for multicasting video streams [5]. To provide

transmission reliability, application-layer error correction framework is applied. By ap-

plying fountain (rateless erasure) coding techniques [6], application-layer data files are

encoded into source data packets and repair data packets, which provide redundancy for

data delivery [7]. Recently, 3GPP has started working on providing dynamic and on-

demand MBMS [8]. Dynamic radio resource allocation and adaptive error correction

configuration could be applied to ensure efficient resource utilization and user satisfac-

tion for multi-flow multicast video services. As different users may face different wireless

channel qualities, one key issue for multicast configuration is to determine the appropri-

ate application-layer error correction level so that the users are satisfied with the reception

quality. On the other hand, since radio resources are limited, resource allocation among

different multicast streams needs to be carefully considered. Our previous works inves-

tigated adaptive modulation/coding schemes [9], game-theoretic configuration [10], and

optimal pricing [11] for wireless multicast. On the basis of the previous works, a new

research problem of resource allocation for wireless multicast in the next-generation net-

works will be of interest.

In this research work, we provide the theoretical foundation for the multi-flow mul-

ticast communication schemes, which will be an indispensable part of the future MBMS

wireless multimedia delivery. In the proposed scenario, a base station (BS) is capable of

sending multiple data flows to multiple groups of user equipments (UEs). The BS aims

to provide efficient and fair multicast services by sending redundancy for data delivery,

which requires the feedback of the channel-quality information (CQI) from the UEs. The

channel qualities are, in general, time-varying and can only be correctly measured by the

UEs themselves, which means the CQI is the UEs’ private information. Regarding the

CQI feedback, this chapter further considers the rational and selfish user characteristic.

10
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When the UEs have the private CQI, the rational and selfish UEs may intentionally report

the false CQI to manipulate the BS’s multicast configuration if they can benefit from such

untruthful feedback. The multicast service may turn out inefficient and unfair. Hence, it

will be a significant issue to ensure reliable and truthful feedback from the UEs. To elicit

the true CQI and to achieve efficient and fair network operation, we propose a multicast

resource allocation mechanism with the designs of the access-control pricing scheme and

the weighted water-filling resource allocation. Our analysis indicates that the proposed

mechanism can elicit the true CQI from the UEs, avoiding any manipulation of multicast

configuration and thereby guaranteeing efficient and fair network operation. The detailed

contributions are stated as follows:

1. We provide the theoretical foundation for the multi-flow multicast communication,

constructing the application-layer error correction framework and designing the on-

demand resource allocation mechanism for the future MBMS.

2. The proposed mechanism performs access control via pricing. The proposed pric-

ing scheme enables the UEs with the channel qualities better than the system-

defined threshold to join the mechanism and gain positive utility. On the other hand,

the UEs with the channel qualities worse the threshold will not join the mechanism

since they will never gain positive utility.

3. The proposed mechanism is strategy-proof. It induces the selfish UEs to truth-

fully report their private CQI. Therefore, the system operates at the truth-revealing

dominant-strategy equilibrium.

4. The resource allocation at the equilibrium operating point is Pareto efficient. No

other resource allocation can make all the UEs better off in utility. The resource

allocation also achieves flow-level weighted max-min and proportional fairness.

Moreover, there is no net payment from the BS to the UEs. In other words, the BS

does not need to pay the UEs to ensure strategy-proofness of the proposed mecha-

nism (weak budget balance).

11
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2.2 Related Work

Many research papers studied the issues on multicast flow accommodation and resource

allocation. Some papers conducted theoretical analysis on the maximum concurrent flow

problem in wireless networks. Tu studied the efficient utilization of network resources

for increasing the number of concurrent multimedia flows when a channel becomes sat-

urated [12]. Jain et al. worked on maximizing throughput in any given wireless network

with any given traffic workload, using a conflict graph to model wireless interference

[13]. As the throughput maximization problem was shown to be NP-hard, they instead

provided methods to compute the upper and lower bounds for this problem. Kodialam

et al. analyzed the problem of joint flow routing and transmission scheduling to achieve

given throughput [14, 15]. They developed sufficient and necessary conditions and de-

rived upper bounds for the achievable throughput. Wan et al. investigated the maximum

concurrent flow problem in multi-hop wireless networks subject to both bandwidth and

interference constraints [16, 17]. They also developed polynomial-time algorithms to de-

rive approximation bounds. Kumar et al. conducted the study of the maximum throughput

capacity of the network given the collection of source-destination pairs [18]. The algo-

rithmic aspects of the above problem were discussed as well. Ozdaglar and Bertsekas

proposed a method for solving the multi-commodity flow problem, relying on the con-

vexity of the cost function [19].

Some papers focused on designing efficient resource allocation methods that improve

wireless networks’ ability to accommodate more multicast flows. Cruz et al. used a

primal-dual approach to compute joint routing, scheduling, and power control policies

[20]. Middleton et al. developed a framework allowing scheduling, routing, and power

allocation for multiple flows in polynomial-time [21]. Their study was subsequently ex-

tended to allocate resources in networks with streaming-packet data flows [22]. Baghaie

et al. studied multi-flow transmission in delay constrained wireless multi-hop networks

to minimize power consumption for prolonging network life [23]. Tu et al. investigated

video multicasting in large-scale areas using wireless mesh networks. They designed a

set of heuristic-based algorithms to improve network throughput [24]. Some other pa-
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pers also investigated the issue on private information in multicast networks. In [25, 26],

Gopinathan et al. studied the multicast problem in an ad-hoc wireless network. They

designed inter-node cost sharing schemes for the information dissemination to achieve

group strategy-proofness. They also showed that to achieve group strategy-proofness a

compromise in routing optimality and budget balance is inevitable.

Jakubczak and Katabi proposed SoftCast, a novel cross-layer design for video multi-

cast [27, 28]. SoftCast provides a joint source-channel coding scheme linearly transform-

ing a video stream into coded packets such that each packet contains approximately the

same amount of information and is uncorrelated to each other. In this way, each receiver

can decode the received packets into the video whose quality is proportional to its chan-

nel quality. As the authors proposed and demonstrated SoftCast in a single-flow scenario,

SoftCast configuration in a multi-flow scenario will also be of interest. In a multi-flow

scenario, whether the system applies SoftCast or other coding schemes, feedback of the

CQIs from the UEs may be needed to decide the redundancy level of each flow and to

optimize the system performance. Therefore, resource allocation mechanism design with

feedback decisions in a multi-flow scenario will be important and interesting.

In summary, different from the papers of [25, 26] that designed the cost sharing meth-

ods for single-flow multicast, this chapter proposes a resource allocation framework with

feedback decisions for multi-flow multicast. Besides, unlike the other previous works, this

chapter makes the practical assumption that UEs are self-interested, have private CQI, and

make feedback decisions in a distributed way. While the system requires the UEs’ pri-

vate CQI, the UEs that are selfish in improving their own performance may manipulate

the multicast configuration by falsely reporting the CQI. Without the correct CQI, the re-

source allocation may turn out inefficient and unfair. With regard to the issue on UEs’

manipulating the system operation, this chapter is the first applying incentive mechanism

design to propose a resource allocation mechanism in a multi-flow multicast scenario.

The proposed mechanism is shown to induce the selfish UEs to reveal the true CQI and to

achieve efficient and fair system operation.

13



doi:10.6342/NTU201701588

R

Figure 2.1: System model. The BS provides multiple multicast flows to wireless UEs.

2.3 Multicast System Model

We consider a wireless multicast system consisting of a BS and multiple wireless UEs,

as illustrated in Fig. 2.1. Time is divided into periods of equal length and the system

has R resource blocks in each time period. The BS provides a set of multicast flows

G = {1, 2, . . . , G}where each flow g is accessed by a group of UEsNG = {1, 2, . . . , Ng}.

We denote each UE i accessing flow g by UE (i, g), i ∈ NG and g ∈ G. Note that each

UE only accesses one flow, i.e., each UE belongs to only one group. Throughout the rest

of the paper, we will use the terms flow and group interchangeably.

2.3.1 Multicast Flows

The number of packets in flow g is denoted by Mg. For simplicity, we assume that each

packet has equal length and transmission of one packet requires one resource block. Each

flow can be either loss-tolerant or loss-sensitive. a UE that accesses a loss-tolerant flow

obtains a fixed amount of utility from each packet received, and the utility reaches the

maximum once it receives all the packets. In contrast, a UE that accesses a loss-sensitive

flow must receive all the packets to obtain the maximum utility; otherwise, it gains noth-

ing.
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2.3.2 Lossy Channels and Generalized Erasure Coding

Wireless channels are not perfect in general. Transmission through wireless channels may

suffer from packet loss. To accommodate dynamic channel fading scenarios, we assume

that each UE experiences the constant channel quality in a time period, but the channel

quality varies from period to period. In the rest of the paper, we will study a single time

period. Nonetheless, the designs and analysis can be applied to multiple time periods as

well.

We use the binary-symmetric channel model [29]. Each UE (i, g) suffers from con-

stant bit error probability (BEP) bi,g, 0 ≤ bi,g ≤ 1. Since each packet in a flow is as-

sumed to have equal length, UE (i, g) suffers from constant packet error probability (PEP)

ei,g = 1 − (1 − bi,g)L where L is the packet length. Note that each UE’s CQI, i.e., BEP

and PEP, are assumed to be private information. This assumption is reasonable as only

the receiver can correctly measure its channel quality.

Since the channels are lossy and unreliable, we apply the generalized erasure coding

[30, 31] to control error. 1 The generalized erasure coding transforms a flow ofMg packets

into a longer flow of coded packets such that the data contents can be fully recovered from

any Mg out of the coded packets. Thus, if a UE obtains a sufficient number of the coded

packets j ≥ Mg, it obtains the full valuation. However, if a UE obtains an insufficient

number of the coded packets j < Mg, it can recover only the portion j/Mg of the original

packets. We define the UE’s valuation with respect to the number of the received coded

packets j as follows.

Definition 2.1. [UE’s valuation] If flow g is loss-tolerant, UE (i, g)’s valuation function

with respect to the number of the received coded packets j is

vg(j) = min

{

1,
j

Mg

}

(2.1)

1As 3GPP MBMS has attracted a lot of attention in recent year, we follow the specification of 3GPP

MBMS and propose a resource allocation framework that uses the fountain codes for application-layer error

correction. The basic ideas of the proposed resource allocation framework may be applied with specific

designs for different coding schemes.
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If flow g is loss-sensitive, UE (i, g)’s valuation function is

vg(j) =















1, j ≥ Mg

0, otherwise

(2.2)

2.3.3 UEs’ Utility

UEs receive any packet the BS transmits in perfect channels. However, this is not the

case when the channels are lossy. In the lossy binary-symmetric channels, when the BS

transmits Ag (coded) packets in flow g, UE (i, g) with the PEP ei,g will receive j packets,

0 ≤ j ≤ Ag, with probability
(

Ag

j

)

(1 − ei,g)je
Ag−j

i,g . Thus, each UE (i, g)’s valuation on

the flow transmitted, denoted by vg(ei,g, Ag), is derived in Proposition 2.1. In the system

meaning, UE (i, g)’s valuation vg(ei,g, Ag) can be viewed as the expected normalized

throughput.

Proposition 2.1. The BS transmits Ag packets in flow g. If flow g is loss-tolerant, UE

(i, g)’s valuation function is

vg(ei,g, Ag) =

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
je

Ag−j

i,g (2.3)

If flow g is loss-sensitive, UE (i, g)’s valuation function is

vg(ei,g, Ag) =















∑Ag

j=Mg

(

Ag

j

)

(1− ei,g)je
Ag−j

i,g , Ag ≥Mg

0, otherwise

(2.4)

Lemma 2.1 shows that UE (i, g)’s valuation function vg(ei,g, Ag) is strictly decreasing

with respect to the PEP ei,g and strictly increasing with respect to the number of the

transmitted packets Ag. We put the proof for Lemma 2.1 in Appendix A.1.

Lemma 2.1. Whether flow g is loss-tolerant or loss-sensitive, each UE (i, g)’s valuation

function vg(ei,g, Ag) has the following two properties:

1. vg(ei,g, Ag) is strictly decreasing with respect to ei,g.
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Table 2.1: Notation of the multicast system model
R Total resource blocks in the system.

G The set of multicast flows. G = {1, 2, . . . G}.
Mg The number of original packets of flow g.

Ag The number of coded packets of flow g.

NG The group of UEs accessing flow g.

NG = {1, 2, . . . , Ng}.
UE (i, g) UE i accessing flow g.

bi,g The true BEP of UE (i, g). 0 ≤ bi ≤ 1.

ei,g The true PEP of UE (i, g). ei,g = 1− (1− bi,g)
L where L is the packet length.

vg(ei,g, Ag) The valuation function of UE (i, g) defined in Proposition 2.1.

cg(Ag) The price function for flow g.

ui,g(ei,g, Ag) The utility function of UE (i, g) defined in Definition 2.2.

2. vg(ei,g, Ag) is strictly increasing with respect to Ag.

In the next section, we will propose a resource allocation mechanism along with a

pricing scheme. The pricing scheme means that the BS charges a price for each UE’s

accessing a flow. The price function for flow g, denoted by cg(Ag), is a function of the

number of transmitted packets Ag. It will be designed in Chapter 2.4.1. With the price

function, we define UE (i, g)’s utility function, denoted by ui,g(ei,g, Ag), as the valuation

function minus the price function in Definition 2.2. The notation is summarized in Table

2.1.

Definition 2.2. [UE’s utility] UE (i, g)’s utility function ui,g(ei,g, Ag) is defined as the

valuation function vg(ei,g, Ag) minus the price function cg(Ag).

ui,g(ei,g, Ag) = vg(ei,g, Ag)− cg(Ag) (2.5)

2.4 Resource Allocation Problem and Mechanism Design

In the proposed multicast system, the BS has no information on the UEs’ PEPs. The most

direct way is to request the private PEP information from the UEs. However, as the UEs

are self-interested in nature, they may falsely report the PEPs if doing so increases their

own utility. Without the correct PEP feedback, the resource allocation may be suboptimal.

In the following, we design a truth-revealing resource allocation mechanism that can elicit
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Figure 2.2: The flow diagram of the proposed resource allocation mechanism.

the true PEP information from the UEs. Recall that time is divided into periods. Though

the mechanism is proposed for a single time period, it can be run in every time period.

Mathematically, the proposed mechanism (the BS) requires each UE to report the private

PEP information êi,g. With the reported PEP profile ê = (êi,g)i∈NG ,g∈G , the BS decides

the resource allocation profile

A(ê) = (A1(ê), A2(ê), . . . , AG(ê)) , s.t.

G
∑

g=1

Ag(ê) ≤ R (2.6)

where Ag(ê) is the number of the packets transmitted to each group g ∈ G. Note that the

reported PEP profile ê may not be the true PEP profile e = (ei,g)i∈NG ,g∈G . Therefore, our

design goals are (1) to elicit the true PEP information from the UEs ê = e (truth-revelation

in Chapter 2.6) and (2) to achieve efficient and fair resource allocation (efficiency and

fairness properties in Chapter 2.7).

In design of the mechanism, we consider UEs’ group resource demands and priority

(weights). A weighted water-filling method is proposed to allocate resources [32]. The

flow diagram of the proposed mechanism is given in Fig. 2.2, and the detailed designs are

specified as follows.
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2.4.1 Pricing and Access Control

The BS decides the price function cg(Ag) for transmitting the number of the packets Ag

in flow g. We design the price function as the valuation function with respect to some

system-defined PEP value ec,g, 0 ≤ ec,g ≤ 1.

Design 2.1. [Price function] The price function cg(Ag) is the valuation function with

respect to some system-defined PEP value ec,g, 0 ≤ ec,g ≤ 1.

cg(Ag) = vg(ec,g, Ag) (2.7)

The design of the price functions has one major advantage of access control. When

joining the mechanism, the UEs with the PEPs less than ec,g gain positive utility, and the

UEs with the PEPs greater than ec,g gain negative utility. In other words, ec,g is like a

threshold that enables only the UEs with the PEPs less than ec,g to join the mechanism. In

the rest of the paper, we will focus on the UEs joining the mechanism, assuming that all

UEs have the PEPs ei,g < ec,g.

Lemma 2.2. For UE (i, g), the utility function ui,g(ei,g, Ag) is positive if ei,g < ec,g; the

utility function is non-positive if ei,g ≥ ec,g.















ui,g(ei,g, Ag) > 0, ei,g < ec,g

ui,g(ei,g, Ag) ≤ 0, ei,g ≥ ec,g

(2.8)

Proof. Note cg(Ag) = vg(ec,g, Ag). From Lemma 2.1, we know that vg(ei,g, Ag) is strictly

decreasing with respect to ei,g. Thus, if ei,g < ec,g, vg(ei,g, Ag) > vg(ec,g, Ag); otherwise,

vg(ei,g, Ag) ≤ vg(ec,g, Ag). This implies (2.8).

Theorem 2.1. [Access control] UE (i, g) will join the mechanism and obtain positive util-

ity if the PEP ei,g < ec,g; otherwise, the UE will not join the mechanism. In the system

meaning, the proposed mechanism grants access to each UE with the PEP ei,g < ec,g.

Proof. This is the direct result of Lemma 2.2.
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2.4.2 UE Resource Demands and Group Resource Demands

Another advantage of the proposed price functions is that each UE (i, g)’s utility function

ui,g(ei,g, Ag) will be single-peaked over the number of the packets Ag. This is shown in

Lemmas 2.3 and 2.4. For UE (i, g) (with the PEP ei,g < ec,g), we define

∆vg(ei,g, Ag) = vg(ei,g, Ag + 1)− vg(ei,g, Ag) (2.9)

as the gradient of the UE’s valuation function with respect to Ag (valuation gradient func-

tion for short). We also define

∆ui,g(ei,g, Ag) = ui,g(ei,g, Ag + 1)− ui,g(ei,g, Ag)

= ∆vg(ei,g, Ag)−∆vg(ec,g, Ag) (2.10)

as the gradient of the UE’s utility function (utility gradient function for short). These

gradient functions will be used in Lemmas 2.3, 2.4, and 2.5. The proofs for Lemmas 2.3

and 2.4 can be found in Appendices A.2 and A.3.

Lemma 2.3. The valuation gradient function ∆vg(ei,g, Ag) is single-peaked with respect

to ei,g. Denote the point on the ei,g-axis that maximizes ∆vg(ei,g, Ag) by e∗g(Ag). The

function e∗g(Ag) is strictly increasing with respect to Ag.

Lemma 2.4. For UE (i, g) (with the PEP ei,g < ec,g), the utility function ui,g(ei,g, Ag)

is single-peaked. Mathematically, there exists unique di,g such that ui,g(ei,g, Ag) is maxi-

mized at Ag = di,g, and































∆ui,g(ei,g, Ag) > 0, Ag < di,g

∆ui,g(ei,g, Ag) ≥ 0, Ag = di,g

∆ui,g(ei,g, Ag) < 0, Ag > di,g

(2.11)

From Lemma 2.4, each UE (i, g)’s utility is maximized when the number of the trans-

mitted packets is di,g. We call this di,g UE (i, g)’s resource demand. Note that each UE
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(i, g) with different PEP values ei,g may have different amounts of the resource demand

di,g. Therefore, we can define a function dg(ei,g) = di,g as the UE resource demand func-

tion in flow g. The UE resource demand function is an increasing function of ei,g, as

proven in Lemma 2.5. This means the proposed price functions ensure the UEs with the

lower PEPs to demand less, and vice versa.

Lemma 2.5. The UE resource demand function dg(ei,g) is an increasing function of ei,g.

Proof. For UE (i, g), ui,g(ei,g, Ag) is maximized at Ag = dg(ei,g). With (2.10) and the

first and second inequalities of (2.11), we have

∆vg(ei,g, Ag)−∆vg(ec,g, Ag) ≥ 0, Ag ≤ dg(ei,g) (2.12)

Consider another UE (j, g) with the PEP ej,g satisfying ei,g < ej,g < ec,g. Due to

the single-peaked property of the valuation gradient function in Lemma 2.3, (2.12) along

with ei,g < ej,g < ec,g implies

∆vg(ej,g, Ag) > ∆vg(ec,g, Ag), Ag ≤ dg(ei,g) (2.13)

Moreover, from (2.10) and the first inequality of (2.11), for UE (j, g) we have

∆vg(ej,g, Ag)−∆vg(ec,g, Ag) > 0, Ag < dg(ej,g) (2.14)

Checking the conditions of (2.13) and (2.14), we must have dg(ej,g) ≥ dg(ei,g) for

ej,g > ei,g.

In fact, the UE resource demand function is an increasing step (staircase) function.

This is because the resource allocation, as well as the resource demand, only takes integer

values, and different PEP values on a consecutive interval may correspond to the same in-

teger value of the resource demand. Such a step-like property of the UE resource demand

function will result in similar step-like behavior of the UE’s utility function, as will be

seen in Fig. 2.4 in Chapter 2.8.1.
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We can directly use every UE’s resource demand for resource allocation. However, as

each group may have numerous UEs, a resource allocation method that considers every

UE’s resource demand will be complex. A simpler way is to propose a flow-level method

that jointly uses a single UE’s resource demand to represent the group resource demand,

and a group weight to take the number of the UEs in the group into consideration. We

design the group resource demand Dg(eg) as the kg-th minimum resource demand of the

UEs in flow g where kg ∈ NG. According to Lemma 2.5, the group resource demand is

also the resource demand of the UE with the kg-th minimum PEP.

Design 2.2. [Group resource demand] In flow g, the group resource demand Dg(eg) is

defined as the kg-th minimum resource demand of the UEs in the flow. It is also the

resource demand of the UE with the kg-th minimum PEP.

Dg(eg) = min
{

kg; dg(e1,g), dg(e2,g), . . . , dg(eNg,g)
}

= dg(min {kg; eg}) (2.15)

where kg ∈ NG , eg = (e1,g, e2,g, . . . , eNg,g) is the PEP profile of the UEs in flow g, and

min {kg; ·} selects the kg-th minimum input element.

Besides reducing the complexity, the design of the group resource demand has another

good property: In consideration of limited resources, the selection of kg means that we

fulfill the resource demands of the UEs with the first kg minimum PEPs. For the other

UEs with the PEPs greater than the kg-th minimum PEP and less than ec,g, we grant them

access (Theorem 2.1) but do not guarantee to fulfill their resource demands.

2.4.3 Group Weights

As mentioned above, group weights that consider the number of the UEs in each group

are also used for resource allocation. To be specific, the weight wg for each group g is

designed as an increasing and concave function of the number of the UEs N̂g that report

êi,g < ec,g. (We have assumed that each UE has the PEP ei,g < ec,g for simplicity.

Though the UEs may falsely report the PEPs, they may not report the PEPs higher than
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ec,g. Otherwise, they gain nothing. Thus, N̂g = Ng.) This design is desirable in that a

group with more UEs will have a higher weight and thus higher priority to gain resources.

However, the increment of the weight becomes less when the number of UEs increases,

which also balances the resource allocation to each group. One possible design of the

weight is as follows.

Design 2.3. [Group weight] The group weight wg is increasing and concave with respect

to the number of the UEs Ng. One simple candidate is a log function

wg = log(1 +Ng) (2.16)

2.4.4 Weighted Water-Filling Resource Allocation

The core of the proposed mechanism is the weighted water-filling resource allocation. It

has low complexity. With the proposed price functions, group resource demands, and

group weights, the overall procedures for resource allocation are specified as follows.

1. [Pricing] The BS sets the price function cg(Ag) for each group g as in Design 2.1.

2. [Requesting the PEP feedback] The BS requires each UE (i, g) to report the PEP

êi,g. Note that the reported PEP may not be the true PEP.

3. [Computing the group resource demands] Receiving the PEP feedback, the BS com-

putes each UE (i, g)’s ”reported” resource demand dg(êi,g) that maximizes the ”re-

ported” utility function ûi,g(Ag) = vg(êi,g, Ag) − cg(Ag). The BS further decides

the group resource demandDg(êg) as the kg-th minimum reported resource demand

as in Design 2.2 where êg = (ê1,g, ê2,g, . . . , êNg,g) denotes the reported PEP profile

of the UEs in group g.

4. [Computing the weights] The BS sets the weight wg for each group g as an increas-

ing and concave function of the number of UEs Ng. For example, the BS sets

wg = log(1 +Ng).

23



doi:10.6342/NTU201701588

5. [Sorting the groups] The BS sorts all groups in increasing order of the weighted

resource demands {Dg(êg)/wg}g∈G . Without loss of generality, we assume that all

groups satisfy this increasing order of the weighted resource demands

D1(ê1)

w1
≤
D2(ê2)

w2
≤ . . . ≤

DG(êG)

wG

(2.17)

6. [Weighted water-filling resource allocation] The BS allocates the total resources R

to the sorted groups round-by-round: In the r-th round, r = 1, 2, ..., G, we define

a resource allocation base ar(ê) in (2.18). The BS allocates to every sorted group

g, g = r, r + 1, ..., G, the resources wgar(ê) (on the base ar(ê) and proportional

to the weight wg), until either group r’s unsatisfied resource demand, Dr(êr) −

wr

∑r−1
l=1 al(ê), is satisfied or the total unallocated resources,R−

∑r−1
l=1 al(ê)

∑G

h=l wh,

are allocated. According to this procedure, the resource allocation base ar(ê),

r = 1, 2, ..., G, can be expressed iteratively

ar(ê) = min{
Dr(êr)− wr

∑r−1
l=1 al(ê)

wr

,
R−

∑r−1
l=1 al(ê)

∑G

h=l wh
∑G

h=r wh

} (2.18)

The resource allocation to each sorted group g is

Ag(ê) = wg

g
∑

r=1

ar(ê) (2.19)

7. [Charging] The BS charges each UE in each group g the price cg(Ag(ê)).

Instead of the iterative expressions in (2.18) and (2.19), the resource allocation can

also be directly expressed in terms of the group resource demands {Dg(êg)}g∈G . We first

define (G + 1) traffic cases for the group resource demands where the traffic case Cj ,

j = 0, 1, . . . , G, is























Dg(êg)

wg

≤
R −

∑g−1
k=1Dk(êg)

∑G

k=g wk

, g ≤ j

Dg(êg)

wg

>
R−

∑j

k=1Dk(êk)
∑G

k=j+1wk

, otherwise

(2.20)
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Note that the group resource demands must fall in one of (G + 1) traffic cases. In

traffic case Cj , j = 0, 1, . . . , G, groups 1 to j’s resource demands are satisfied and groups

(j + 1) to G’s resource demands are not satisfied. Thus, the resource allocation Ag(ê) in

each traffic case can be derived in Design 2.4.

Design 2.4. [Weighted resource allocation] Without loss of generality, the group resource

demands {Dg(êg)}g∈G satisfy the weighted increasing order. When the group resource

demands fall in traffic case Cj , j = 0, 1, . . . , G, the resource allocation is

Ag(ê) =



















Dg(êg), g ≤ j

wg(R−
∑j

k=1Dk(êk))
∑G

k=j+1wk

, otherwise

(2.21)

Proof. Adding
∑r−1

l=1 al(ê) to both sides of (2.18), we have

r
∑

l=1

al(ê) = min

{

Dr(êr)

wr

,
R−

∑r−1
l=1 al(ê)

∑r−1
h=l wh

∑G

h=r wh

}

(2.22)

Further using (2.19) and the fact that
∑r−1

l=1 al(ê)
∑r−1

h=l wh =
∑r−1

h=1wh

∑h

l=1 al(ê) =
∑r−1

h=1Ah(ê), we can derive the resource allocation to each group g

Ag(ê) = min

{

Dg(êg),
wg(R−

∑g−1
h=1Ah(ê))

∑G

h=g wh

}

(2.23)

Given traffic case Cj as in (2.20), we can derive A1, A2, . . ., AG iteratively and obtain

(2.21) (The derivation process is skipped to save space). In other words, groups 1 to

j’s resource demands are satisfied, and groups (j + 1) to G’s resource demands are not

satisfied.

Lastly, for the use of notation in the rest of the paper, we denote the reported PEP

profile by ê = (êi,g, ê−(i,g)) where ê−(i,g) is the reported PEP profile of the UEs other

than UE (i, g). We also denote the reported PEP profile of the UEs in flow g by êg =

(êi,g, ê−i,g) where ê−i,g is the reported PEP profile of the UEs in flow g other than UE

(i, g). The notation of the proposed mechanism is summarized in Table 2.2.
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Table 2.2: Notation of the multicast resource allocation mechanism
cg(Ag) The price function for flow g defined in Design 2.1.

dg(ei,g) The resource demand of UE (i, g). It is defined as the resource allocation that

maximizes UE (i, g)’s utility.

dg(êi,g) The ”reported” resource demand of UE (i, g) that the BS computes based on

the reported PEP êi,g
Dg(eg) The group resource demand of flow g defined in Design 2.2.

Dg(êg) The ”reported” group resource demand of flow g that the BS computes based

on the reported PEPs êg.

wg The weight for flow g defined in Design 2.3.

Ag(ê) The resource allocation to flow g defined in Design 2.4.

êi,g The reported PEP of UE (i, g).
ê The overall reported PEP profile.

ê = (êi,g)i∈NG ,g∈G = (êi,g, ê−(i,g)).

ê−(i,g) The reported PEP profile of the UEs other than UE (i, g).

êg The reported PEP profile of the UEs in flow g.

êg = (ê1,g, ê2,g, . . . , êNg ,g) = (êi,g, ê−i,g).
ê−i,g The reported PEP profile of the UEs in flow g other than UE (i, g).

2.5 Resource Allocation Game

In the proposed resource allocation mechanism, the selfish UEs report the PEPs to max-

imize their own utility. We formulate the feedback decisions of the UEs as a strategic

game and apply game theory to analyze it. The aim of the game-theoretic analysis is to

derive a desirable operating steady state, specifically, truth-revealing dominant-strategy

equilibrium at which the resource allocation is efficient and fair. Even though each UE

may act selfishly and try to manipulate the multicast configuration, the proposed mecha-

nism ensures the robustness and optimality of the system. In the following, we construct a

resource allocation game model for the proposed mechanism and introduce the dominant-

strategy solution concept.

The resource allocation game is G = (N, S, U, E) where each component is specified

as below.

• Player set N : Each UE (i, g), i ∈ NG and g ∈ G, is a player in the game. Therefore,

the player set isN = {NG × G}. We may use the terms UE and player interchange-

ably.

• Strategy space S: Each player (i, g)’s strategy is to report the PEP êi,g. All possible

strategies of player (i, g) form the strategy set Êi,g = {êi,g : 0 ≤ êi,g ≤ 1}. Thus,
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the game has the strategy space S =
∏

i∈NG ,g∈G
Êi,g.

• Set of the utility functions U : The set of the utility functions is

U = {ui,g(ei,g, Ag(ê))}i∈NG,g∈G
. Each player (i, g) is selfish in maximizing the

valuation, i.e., the expected normalized throughput, vg(ei,g, Ag(ê)) of successfully

receiving and decoding the data flow. However, the BS also charges the price

cg(Ag(ê)) for transmitting the data flow. Hence, as defined in Definition 2.2, each

player (i, g)’s utility function is the valuation

vg(ei,g, Ag(ê)) minus the price cg(Ag(ê)),

ui,g(ei,g, Ag(ê)) = vg(ei,g, Ag(ê))− cg(Ag(ê)) (2.24)

To alleviate the complex notation, we use ui,g(ê) to denote player (i, g)’s utility

function for short in the rest of the paper.

• Set of the true PEPs E: The set of the true PEPs is E = {ei,g}i∈NG,g∈G
. Note that

each player (i, g)’s true PEP ei,g is private information.

The solution concept that will be used is dominant-strategy equilibrium. The dominant-

strategy solution concept is stronger and harder to achieve than the well-known Nash so-

lution concept [33]. Note that every player has the private PEP information. The Nash

solution concept that requires perfect information of all players’ preferences cannot be

applied. Instead, the dominant-strategy solution concept that requires no private informa-

tion is used (This is why the dominant-strategy solution concept is stronger and harder to

achieve). The formal definition of the dominant-strategy solution concept is as follows.

Definition 2.3. [Dominant strategy] Player (i, g)’s strategy ê∗i,g is a dominant strategy if it

maximizes player (i, g)’s utility for all possible strategies of the other players,

ui,g
(

ê∗i,g, ê−(i,g)

)

≥ ui,g
(

êi,g, ê−(i,g)

)

∀êi,g 6= ê∗i,g and ∀ê−(i,g).

Definition 2.4. [Dominant-strategy equilibrium] The strategy profile ê
∗ is a dominant-

strategy equilibrium if ê∗i,g is a dominant strategy for every player (i, g).
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When every player has a dominant strategy, every player can always play the dominant

strategy to maximize its utility without knowing any other’s information and strategy. The

game then reaches a dominant-strategy equilibrium, requiring no information about each

other.

2.6 Strategy-Proofness – Truth-Revealing Equilibrium

In the proposed resource allocation game, we prove that each UE (i, g) has the dominant

strategy to report the true PEP, ê∗i,g = ei,g. The game reaches the truth-revealing dominant-

strategy equilibrium ê
∗ = e. Hence, the proposed mechanism is strategy-proof [34].

Definition 2.5. [Strategy-proofness] A mechanism is strategy-proof if the game induced

by the mechanism reaches the truth-revealing dominant-strategy equilibrium.

The flow of the proofs are as follows. We first show how each UE influences the

group resource demand by changing its strategy in Lemma 2.6. We also show that how

the change of the group resource demand influences the resource allocation in Lemma

2.7. Based on these two lemmas, each UE is shown to have the truth-revealing dominant

strategy in Theorem 2.2.

Lemma 2.6. Each UE (i, g) can influence the group resource demandDg(êg) by changing

its strategy êi,g in the following three cases:

1. If UE (i, g)’s true resource demand is greater than the group resource demand, it

cannot influence the group resource demand by increasing its strategy. It can only

decrease the group resource demand by decreasing its strategy. Mathematically, if

dg(ei,g) > Dg(ei,g, ê−i,g),















Dg(êg) = Dg(ei,g, ê−i,g), êi,g > ei,g

Dg(êg) ≤ Dg(ei,g, ê−i,g), êi,g < ei,g

(2.25)

2. If UE (i, g)’s true resource demand is less than the group resource demand, it can-

not influence the group resource demand by decreasing its strategy. It can only
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increase the group resource demand by increasing its strategy. Mathematically, if

dg(ei,g) < Dg(ei,g, ê−i,g),















Dg(êg) ≥ Dg(ei,g, ê−i,g), êi,g > ei,g

Dg(êg) = Dg(ei,g, ê−i,g), êi,g < ei,g

(2.26)

3. If UE (i, g)’s true resource demand is the group resource demand,

dg(ei,g) = Dg(ei,g, ê−i,g), it can increase/decrease the group resource demand by

increasing/

decreasing its strategy.

Proof. The proofs for cases 1 and 2 are similar, so we only prove case 1. Case 3 is

straightforward, so we do not show it here. In case 1, according to Lemma 2.5 and Design

2.2, the condition dg(ei,g) > Dg(ei,g, ê−i,g) implies

dg(ei,g) > Dg(ei,g, ê−i,g) = dg(min {kg; ei,g, ê−i,g})

⇔ei,g > min {kg; ei,g, ê−i,g} (2.27)

Inequality (2.27) then implies (2.25).

Lemma 2.7. Without loss of generality, we assume that the group resource demands

{Dg(êg)}g∈G satisfy the weighted increasing order. We also assume that the group re-

source demands {Dg(êg)}g∈G are in traffic case Cj , j = 0, 1, . . . , G. The following two

statements are true:

1. For g = 1, 2, . . . , j, group g can acquire more/fewer resources by increasing/decreasing

the group resource demand.

2. For g = j + 1, j + 2, . . . , G, group g cannot acquire more resources by increasing

the group resource demand. It can only acquire fewer resources by decreasing the

group resource demand.
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Proof. We drop the notation ê and êg for short. When the group resource demands are in

traffic case Cj , groups 1 to j fulfill their group resource demands but groups (j + 1) to G

do not fulfill their group resource demands. According to (2.18), we know the resource

allocation base

ag =



















Dg − wg

∑g−1
l=1 al

wg

, g ≤ j

R−
∑g−1

l=1 al
∑G

h=l wh
∑G

h=g wh

, otherwise

(2.28)

[Case 1: g = 1, 2, . . . , j. Group g fulfills its group resource demand.] If group g

increases its group resource demand from Dg to D′
g (i.e., D′

g > Dg), group g will increase

its order from g to some k ≥ g. Since groups 1 to (g − 1)’s orders are not affected, the

resource allocation bases a1 to ag−1 are not affected as well. Then according to (2.19),

the resource allocation to group g becomes

A′
g = wg

(

g−1
∑

r=1

ar +
k
∑

r=g

a′r

)

(2.29)

where a′r is the new resource allocation base in the r-th round for r = g, g + 1, . . . , k.

Obviously, the new resource allocation base a′g in the g-th round should be greater than

or equal to ag, i.e., a′g ≥ ag, since the group with the new order g (group g if D′
g/wg <

Dg+1/wg+1, or group (g+1) otherwise) must have greater group resource demand. There-

fore, we have

A′
g = wg

(

g−1
∑

r=1

ar +

k
∑

r=g

a′r

)

≥ wg

g
∑

r=1

ar = Ag (2.30)

which means group g acquires more resources by increasing its group resource demand.

On the other hand, if group g decreases its group resource demand from Dg to D′
g

(i.e., D′
g < Dg), group g will decrease its order from g to some k ≤ g. Note that groups

1 to (k − 1)’s orders are not affected, and neither are the resource allocation bases a1 to
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ak−1. Then the resource allocation to group g becomes

A′
g = wg

(

k−1
∑

r=1

ar + a′k

)

(2.31)

where a′k is the new resource allocation base in the k-th round. Note that group k fulfills

its group resource demand as in (2.28). Also note that group g decreases its order from g

to some smaller k, which implies D′
g/wg ≤ Dk/wk. We must have a′k ≤ ak. Therefore,

A′
g = wg

(

k−1
∑

r=1

ar + a′k

)

≤ wg

g
∑

r=1

ar = Ag (2.32)

which means group g acquires fewer resources by decreasing its group resource demand.

[Case 2: g = j+1, j+2, . . . , G. Group g does not fulfill its group resource demand.]

The proof for case 2 is quite similar so we do not repeat the details. The only difference

is that group g cannot acquire more resources by increasing its group resource demand.

Since group g does not fulfill its group resource demand, even if group g increases its

group resource demand, the resource allocation base in the g-th round will not be affected.

Therefore, group g can only acquire fewer resources by decreasing its group resource

demand.

Theorem 2.2. [Strategy-proofness] Each UE (i, g) has the truth-revealing dominant strat-

egy ê∗i,g = ei,g that maximizes its utility. Therefore, the resource allocation game G

reaches the truth-revealing dominant-strategy equilibrium ê
∗ = e.

Proof. When UE (i, g) plays the truth-revealing strategy êi,g = ei,g, there are three pos-

sibilities for the relationship between UE (i, g)’s true resource demand dg(ei,g) and the

group resource demand Dg(ei,g, ê−i,g): (a1) dg(ei,g) > Dg(ei,g, ê−i,g), (a2) dg(ei,g) <

Dg(ei,g, ê−i,g), and (a3) dg(ei,g) = Dg(ei,g, ê−i,g). Given the group resource demand

Dg(ei,g, ê−i,g), there are also two possibilities: (b1) Group g fulfills its group resource

demand, and (b2) group g does not fulfill its group resource demand. Therefore, there are

totally six possibilities that UE (i, g)’s true resource demand dg(ei,g) is greater than/less

than/equal to the group resource demand Dg(ei,g, ê−i,g), and group g fulfills its group
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resource demand or not.

Now if UE (i, g) plays a different strategy êi,g 6= ei,g, it can influence the group

resource demandDg(ê) as stated in Lemma 2.6. Also note that group g may acquire more

or fewer resources when changing the group resource demands as stated in Lemma 2.7.

We take the first possibility, (a1) and (b1), for example. If UE (i, g) increases its strategy

êi,g > ei,g, the group resource demand remains unchanged (Lemma 2.6). This implies

unchanged resource allocation and unchanged UE (i, g)’s utility. If UE (i, g) decreases

its strategy êi,g < ei,g, the group resource demand decreases as well (Lemma 2.6). This

implies less resource allocation (Lemma 2.7) and lower UE (i, g)’s utility (Lemma 2.4).

The other five possibilities can be analyzed in a similar way (we do not repeat here).

Therefore, we can make the following six statements that are always true:

1. If (a1) and (b1), Ag(ê) ≤ Ag(ei,g, ê−(i,g)) < dg(ei,g).

2. If (a2) and (b1), Ag(ê) ≥ Ag(ei,g, ê−(i,g)) > dg(ei,g).

3. If (a3) and (b1), Ag(ê) ≥ Ag(ei,g, ê−(i,g)) = dg(ei,g) for êi,g > ei,g and Ag(ê) ≤

Ag(ei,g, ê−(i,g)) = dg(ei,g) for êi,g < ei,g.

4. If (a1) and (b2), Ag(ê) ≤ Ag(ei,g, ê−(i,g)) < dg(ei,g).

5. If (a2) and (b2), Ag(ê) = Ag(ei,g, ê−(i,g)) > dg(ei,g).

6. If (a3) and (b2), Ag(ê) ≤ Ag(ei,g, ê−(i,g)) = dg(ei,g).

Finally, as Lemma 2.4 states that UE (i, g)’s utility function is single-peaked and

maximized at dg(ei,g), we always have ui,g(ei,g, ê−(i,g)) ≥ ui,g(ê) ∀ êi,g 6= ei,g in all of

the six possibilities. In other words, UE (i, g) has the truth-revealing dominant strategy

ê∗i,g = ei,g that maximizes the utility. Therefore, game G reaches the truth-revealing

dominant-strategy equilibrium ê
∗ = e.

Remarks: There are six possibilities that the UE’s true resource demand is greater than/less

than/equal to the group resource demand, and the group resource demand is satisfied or

not. The UE’s utility with respect to the reported PEP in all six possibilities will be drawn
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in Fig. 2.4 in Chapter 2.8.1. Recall in Chapter 2.4.4 that each UE reports the PEP in

step 2, and the mechanism computes the resource allocation result in step 6. Therefore,

when reporting the PEP, each UE only knows the above six possibilities but does not

know in which possibility it is. Note that each UE always obtains the maximum utility in

each possibility by reporting the true PEP, but may obtain less utility in some possibili-

ties by reporting the false PEP. Therefore, it has no incentive to report the false PEP. The

proposed mechanism is ”ex-ante” strategy-proof. Taking this one step further, after the

mechanism gives the resource allocation result, each UE knows exactly in which case it

is. Again, since each UE always obtains the maximum utility by reporting the true PEP,

it still has no incentive to change the strategy (report false PEP). Hence, the proposed

mechanism is also ”ex-post” strategy-proof. Another thing worth mentioning is that after

the mechanism gives the resource allocation result, the UE knowing in which case it is

may obtain the same maximum utility by reporting the false PEP. One may wonder if the

UE has the incentive or any benefit to report such a false PEP? The answer is no. Since re-

porting such a false PEP does not affect the resource allocation result and the UE’s utility

at all, it brings no benefit and will be meaningless to play such a strategy.

Lastly, in the system meaning, the proposed mechanism enables the system to reach

the equilibrium operating point where the BS collects the true PEP information from the

UEs and allocates resources accordingly. The resource allocation at the truth-revealing

dominant-strategy equilibrium, or shortly, the equilibrium resource allocation is given in

Theorem 2.3.

Theorem 2.3. [Equilibrium resource allocation] Without loss of generality, the true group

resource demands {Dg(eg)}g∈G satisfy the weighted increasing order. If the group re-

source demands fall in traffic case Cj , j = 0, 1, . . . , G, the equilibrium resource alloca-

tion is

A∗
g(e) =



















Dg(eg), g ≤ j

wg(R−
∑j

k=1Dk(ek))
∑G

k=j+1wk

, otherwise

(2.33)
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Proof. Please refer to the proof for Design 2.4.

2.7 Desirable Properties of the Equilibrium Resource Al-

location

Besides the truth-revealing property, we further show that the equilibrium resource allo-

cation has several desirable properties, including flow-level weighted max-min fairness,

flow-level weighted proportional fairness, Pareto efficiency, and (weak) budget balance.

We briefly introduce these properties as follows.

Max-min fairness and proportional fairness are two of the most important system de-

sign issues. A resource allocation satisfies weighted max-min fairness if it is not possible

to increase a group’s weighted resource acquisition without simultaneously decreasing

another group’s weighted resource acquisition that is already fewer [35]. A resource al-

location exhibits weighted proportional fairness if it maximizes the product of all groups’

resource acquisition with the weight in the exponent [35, 36]. Pareto efficiency is another

key system design issue defined as a resource allocation upon which no UE can be made

better off in utility without making at least one other UE worse off in utility [34]. Lastly,

(weak) budget balance means that there is a net payment from the UEs to the mechanism,

not from the mechanism to the UEs. In other words, the BS does not need to pay the UEs

to ensure strategy-proofness [34].

In the following analysis, we drop the notation e and ê for short. We focus on the

effective resource allocation min {Ag, Dg} since each UE (i, g)’s resource acquisition

exceeding the resource demand contributes negative value to its utility (the single-peaked

property of the utility function in Lemma 2.4). Also note that any resource allocation A

must satisfy the resource constraint
∑G

g=1Ag ≤ R.

Theorem 2.4. [Weighted max-min fairness] The equilibrium resource allocation A
∗ is
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flow-level weighted max-min fair. Mathematically, A∗ satisfies

∃A 6= A
∗ and h ∈ G, min {Ah, Dh} > min {A∗

h, Dh}

⇒∃k ∈ G,
min {Ak, Dk}

wk

<
min {A∗

k, Dk}

wk

≤
min {A∗

h, Dh}

wh

(2.34)

Proof. Suppose that the group resource demands fall in traffic case Cj , j = 0, 1, . . . , G.

From (2.33), we know

min {A∗
1, D1}

w1
≤ . . . ≤

min
{

A∗
j , Dj

}

wj

≤
min

{

A∗
j+1, Dj+1

}

wj+1

= . . . =
min {A∗

G, DG}

wG

(2.35)

Suppose that there exists another resource allocation A such that

min {Ah, Dh} > min {A∗
h, Dh} for some h ∈ G (2.36)

This h must satisfy h > j according to (2.33) and (2.35). Thus, we have

min
{

A∗
g, Dg

}

wg

<
min {A∗

h, Dh}

wh

∀g 6= h (2.37)

Because
∑G

g=1min
{

A∗
g, Dg

}

= min
{

R,
∑G

g=1Dg

}

≥
∑G

g=1min {Ag, Dg}, there

must exist some k ∈ G such that min {Ak, Dk} < min {A∗
k, Dk}. Therefore, we have

min {Ak, Dk}

wk

<
min {A∗

k, Dk}

wk

≤
min {A∗

h, Dh}

wh

(2.38)

Theorem 2.5. [Weighted proportional fairness] The equilibrium resource allocationA∗ is

flow-level weighted proportionally fair. Mathematically, A∗ solves the objective function

max
A

G
∏

g=1

min {Ag, Dg}
wg (2.39)
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Proof. Suppose that the group resource demands fall in traffic case Cj , j = 0, 1, . . . , G.

In the following, Bg is used to denote min {Ag, Dg} for short. Dividing the objec-

tive function of (2.39) by
∏G

g=1w
wg
g , we get a new objective function

∏G

g=1 (Bg/wg)
wg

with the same solution. Applying the arithmetic mean-geometric mean inequality to

∏G

g=j+1 (Bg/wg)
wg , we have

G
∏

g=1

(

Bg

wg

)wg

≤

(

∑G

g=j+1Bg
∑G

g=j+1wg

)

∑G
g=j+1 wg j

∏

g=1

(

Bg

wg

)wg

≤

(

R−
∑j

g=1Bg
∑G

g=j+1wg

)

∑G
g=j+1 wg j

∏

g=1

(

Bg

wg

)wg

(2.40)

The equality of (2.40) holds if and only if

Bg =
wg

(

R−
∑j

k=1Bk

)

∑G

k=j+1wk

, ∀g > j (2.41)

We let

H =

(

R−
∑j

g=1Bg
∑G

g=j+1wg

)

∑G
g=j+1 wg j

∏

g=1

(

Bg

wg

)wg

(2.42)

for short. Differentiating H by Bj and rearranging it, we have

∂H

∂Bj

=

∑G

g=j wg
∑G

g=j+1wg

(

R−
∑j−1

g=1Bg
∑G

g=j wg

−
Bj

wj

)

×

(

R−
∑j

g=1Bg
∑G

g=j+1wg

)(
∑G

g=j+1 wg−1)(
Bj

wj

)(wj−1) j−1
∏

g=1

(

Bg

wg

)wg

(2.43)

Equation (2.43) tells that H is an increasing function of Bj , i.e., ∂H/∂Bj ≥ 0, if and

only if

Bj ≤
wj

(

R −
∑j−1

k=1Bk

)

∑G

k=j wk

(2.44)

Given the condition of (2.44), if continuing to differentiate H by Bj−1, we can derive
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that H is an increasing function of Bj−1 and Bj if and only if

Bg ≤
wg

(

R −
∑g−1

k=1Bk

)

∑G

k=g wk

, g = j − 1, j (2.45)

Applying the same procedure iteratively to Bj−2, ..., and B1, we can derive that H is

an increasing function of Bg ∀g ≤ j if and only if

Bg ≤
wg

(

R−
∑g−1

k=1Bk

)

∑G

k=g wk

, ∀g ≤ j (2.46)

Then (2.40) along with the above analysis on H becomes

G
∏

g=1

(

Bg

wg

)wg

≤

(

R−
∑j

g=1Bj
∑G

g=j+1wg

)

∑G
g=j+1 wg j

∏

g=1

(

Bg

wg

)wg

≤

(

R−
∑j

g=1A
∗
g

∑G

g=j+1wg

)

∑G
g=j+1 wg j

∏

g=1

(

A∗
g

wg

)wg

(2.47)

The equality of (2.47) holds if and only if (2.41) and (2.46) hold. This is uniquely

satisfied by A
∗.

Theorem 2.6. [Pareto efficiency] The equilibrium resource allocation A
∗ is Pareto effi-

cient. Mathematically, A∗ satisfies

∃A 6= A
∗, i ∈ NG , and g ∈ G, ui,g(ei,g, Ag) > ui,g(ei,g, A

∗
g)

⇒∃l ∈ NK and k ∈ G, ul,k(el,k, Ak) < ul,k(el,k, A
∗
k) (2.48)

Proof. Assume that the group resource demands fall in traffic case Cj , j = 0, 1, . . . , G.

Recall in Lemma 2.4 that each UE’s utility function is single-peaked. First, ifAg 6= A∗
g for

g ≤ j, at least the UE in group g whose resource demand is the group resource demand

Dg obtains less utility. Second, if Ag < A∗
g for g > j, at least the UE in group g whose

resource demand is the group resource demand Dg obtains less utility. Lastly, if Ag > A∗
g

for g > j, since
∑G

g=1min
{

A∗
g, Dg

}

= min
{

R,
∑G

g=1Dg

}

≥
∑G

g=1min {Ag, Dg},

there must exist some k such that min {Ak, Dk} < min {A∗
k, Dk}. Then at least the UE
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Table 2.3: Parameter setting
Meaning Default value

R The number of resource blocks. 10000 − 12000
G The set of flows. Flows 1, 3, . . ., 19 are loss-tolerant.

Flows 2, 4, . . ., 20 are loss-sensitive.

{1, 2, . . . 20}

Mg The number of original packets of flow g. 500
NG The group of UEs in flow g. Random in [10, 100]
ec,g The PEP threshold for flow g. 0.2
ei,g The PEP of UE (i, g). Uniform in (0, ec,g)
kg The indicator for the group resource demand of flow g. min {20, Ng}
wg The weight of flow g. log (1 +Ng)

in group k whose resource demand is the group resource demand Dk obtains less utility.

Therefore, even if there exists A 6= A
∗ such that ui,g(ei,g, Ag) > ui,g(ei,g, A

∗
g), there must

exists some l and k such that ul,k(el,k, Ak) < ul,k(el,k, A
∗
k).

Theorem 2.7. [Budget balance] The equilibrium resource allocationA∗ is (weak) budget-

balanced. Mathematically, the UEs’ total payment at the equilibrium resource allocation

A
∗ satisfies

G
∑

g=1

Ngcg
(

A∗
g

)

≥ 0 (2.49)

Proof. Note cg (Ag) = vg (ec,g, Ag) ≥ 0 ∀g ∈ G. This then implies (2.49).

2.8 Numerical Simulation Results

In this section, we numerically evaluate the proposed resource allocation mechanism. We

also show the performance of the proposed mechanism in the 3GPP MBMS simulation.

2.8.1 Numerical Analysis

The default parameter setting for the numerical analysis is given in Table 2.3. The results

are plotted for a single network instance if not specially mentioned. First, we verify

the property of access control of the proposed pricing method (Theorem 2.1). Fig. 2.3

shows the UE’s utility functions (the expected normalized throughput minus the cost)
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Figure 2.3: The UE’s utility under different PEP values. (a) Loss-tolerant flow. (b) Loss-

sensitive flow.

corresponding to different PEP values ei,g = 0.01, 0.1, 0.3, and 0.4, in both of the loss-

tolerant and the loss-sensitive flows. The UE’s utility functions are positive with the PEP

0.01 and 0.1 less than the PEP threshold ec,g = 0.2, and negative with the PEP 0.3 and

0.4 greater than the PEP threshold. Hence, the proposed pricing method performs access

control that allows only the UEs with the PEPs less than the PEP threshold to join the

mechanism and gain positive utility.

We also verify the property of truth-revelation of the proposed mechanism (Theorem

2.2). Note that there are totally six possibilities that the UE’s true resource demand is

greater than/less than/equal to the group resource demand, and the group fulfills its group

resource demand or not. Fig. 2.4 shows the UE’s utility function (the expected normalized

throughput minus the cost) with respect to the reported PEP êi,g in all six possibilities. The

step-like behavior of the utility function is due to the step-like property of the UE resource

demand function, as explained in Chapter 2.4.2. In each possibility, the UE always obtains

the maximum utility by reporting the true PEP êi,g = ei,g. Even though the UE may obtain

the the same maximum utility by reporting the false PEP, the UE has no incentive to do

so, as discussed in the remarks in Chapter 2.6. Hence, the proposed mechanism ensures

truth-revelation.

Lastly, we evaluate the performance of the proposed mechanism in weighted propor-

tional fairness (Theorem 2.5) and weighted max-min fairness (Theorem 2.4) in Fig. 2.5(a)

and Fig. 2.5(b),, respectively. We compare the proposed mechanism with a weighted

scheme and a random scheme. The weighted scheme allocates resources with the same

weight setting except for gathering the private PEP information. The random scheme allo-
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Figure 2.4: The UE’s utility with respect to the reported PEP. (a) The UE’s true resource

demand is ”greater” than the group resource demand, and the group ”fulfills” its group

resource demand. (b) ”less” and ”fulfill”. (c) ”equal” and ”fulfill”. (d) ”greater” and ”not

fulfill”. (e) ”less” and ”not fulfill”. (f) ”equal” and ”not fulfill”.

cates resource randomly without considering the private PEP information and the weights

(The results of the random scheme are averaged over 100 runs). Fig. 2.5(a) shows the

weighted proportional-fairness metric, i.e., the objective function of (2.39), under dif-

ferent numbers of the resource blocks R from 10000 to 12000. The proposed mecha-

nism always outperforms the other two schemes. This is because the proposed mech-

anism can collect the true PEP information and accordingly compute the true resource

demand of each group. In this way, the resource allocation is always effective and there

will be no resource waste. Fig. 2.5(b) shows the weighted effective resource allocation

min {Ag, Dg} /wg to each group, given the number of resource blocks R = 11000. The

proposed mechanism achieves weighted max-min fairness in the sense that it is impossible

to increase the (weighted effective) resources allocated to one group without simultane-

ously decreasing the resources allocated to another group that are already fewer. This
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Figure 2.5: Performance comparison among the proposed mechanism, the weighted

scheme, and the random scheme: (a) Weighted proportional fairness. (b) Weighted max-

min fairness.

can be seen in Fig. 2.5(b) as the proposed mechanism always allocates more resources

to each group than the weighted scheme. Although the random scheme allocates more

resources to groups 14, 15, and 20 than the proposed mechanism, this brings the tradeoff

in decreasing the resources allocated to groups 1, 3, 5, 6, 10, and 13 that are already fewer.

2.8.2 3GPP MBMS Simulation

We also conduct the 3GPP MBMS simulation to evaluate the proposed resource alloca-

tion mechanism. The simulation platform includes the video and LTE simulation mod-

ules. The video module is implemented from SVEF [37], which is a JSVM [38] based

video streaming framework. Raw FOREMAN [39] video with CIF format is encoded

into 10-second, 2-layer H.264 video with the average bitrate 3.84 Mbps. The encoded

video is further fragmented and resynthesized into 300 packets with the fixed packet size

128 Kb. The LTE simulation module is based on LTE specification [40]. There are five

multicast groups with different number of UEs in one cell. The channel bandwidth is 20

MHz. 64 QAM modulation is adopted to achieve the maximum channel capacity 37.52

Mbps. Assuming that the channel capacity is divided into 128-Kb resource blocks (one

resource block can be used to transmit one video packet), the system has the maximum

number of resource blocks Rmax = 3000 in 10 seconds. The packet error rate (PER) of

each UE is obtained from the LTE simulator [41]. The proposed access-control scheme is

used to select the UEs with PER < 0.5. The proposed mechanism is then used to append

redundancy packets to each video. The encoded video packets with redundancy are trans-
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Figure 2.6: PSNR evaluation of the proposed mechanism in LTE MBMS: (a) Average

PSNR. (b) Standard deviation of the PSNR.

mitted according to 3GPP MBMS protocol [5]. After each UE receives the video packets,

error correction is performed and the peak signal-to-noise ratio (PSNR) is computed from

the original video and the recovered one. By using PSNR as the performance metric, we

run the simulation under three resource constraint levels: R = 1500 (default), 1650 (10%

more), and 1800 (20% more). The simulation results are averaged over 10 runs.

Fig. 2.6 shows the average PSNR of each multicast group and the overall system.

When R = 1500, by transmitting all the video flows without redundancy, the system

has the average PSNR 36.79 dB and the standard deviation 2.86 dB. When the number of

resource blocks increases by 10% (R = 1650) and 20% (R = 1800), the proposed mecha-

nism brings higher average PSNR to each group and the system. The average PSNR of the

system increases by 0.33 dB and 0.66 dB, respectively. Moreover, the standard deviation

of the PSNR of each group and the system decreases. This means the proposed mech-

anism reduces the PSNR difference among the UEs in each group as well as the PSNR

difference among all groups. With the above simulation results, the proposed mechanism

is shown to improve 3GPP MBMS, providing more efficient (higher average PSNR) and

fairer (lower standard deviation) multicast operation.

2.9 Summary

In this chapter, we address the resource allocation problem in the multi-flow multicast

scenario from the perspective of incentive mechanism design. Unlike the other previous

works, this chapter considers the UEs’ selfish characteristic and private CQI. The pro-
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posed resource allocation mechanism is desirable in many aspects. It achieves access

control. Only the UEs with the PEPs less than the system-defined PEP threshold have the

incentive to join the mechanism. The proposed mechanism also ensures truth-revelation.

The system operation reaches the equilibrium where all of the UEs reveal their true PEPs

to the BS. With truthful PEP feedback, the resource allocation at the truth-revealing equi-

librium is further proven to be efficient, fair, and (weak) budget-balanced.
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Chapter 3

Wireless Multicast over Time-Varying

Channels for Energy-Harvesting

Devices

3.1 Introduction

In recent years, energy consumption has emerged as a key design issue for next-generation

wireless networks. The renewable energy supply becomes a desirable alternative to de-

crease the use of fossil fuels and the emission of greenhouse gases. To achieve this, energy

harvesting is a novel technology that enables wireless devices to scavenge energy from

the ambient environment [3]. Energy harvesting not only means obtaining energy from

rich sources including solar power, electromagnetic waves, thermal energy, wind energy,

and kinetic energy. It also contains the process of storing energy for a period of time, and

using the energy for wireless communications. Energy harvesting also provides many

promising advantages that cannot be provided by conventional energy supply, such as

prolonged lifetime of mobile devices and self-sustaining operation of wireless networks.

Despite the advantages, the random and intermittent characteristics of renewable energy

also impose new design challenges to wireless communications. Unlike the conventional

networks with fixed energy supply, the available energy in energy-harvesting networks
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is time-varying and bounded by the harvested and stored energy. With the advantages

and challenges, energy harvesting becomes an important design consideration of future

protocols.

On the other hand, radio resource efficiency is another key design objective in wireless

networks. When devices request the same data, e.g., firmware updates, software updates,

or group messages [42], wireless multicast is a promising mode for data delivery with

the efficient use of radio resources. As wireless channels are not perfect and devices

may face different wireless channel conditions, the designs of efficient application error

correction frameworks and on-demand resource allocation mechanisms are important for

future multicast transmission [10, 43]. Inspired by the efficient use of energy and radio

resources, we are interested in exploiting the potential of renewable energy in wireless

multicast, which should be one of the future developments in the next-generation wireless

communications.

In this chapter, we provide a theoretic model for energy-harvesting enabled wireless

multicast over time-varying channels. In the proposed scenario, a base station (BS) is

capable of sending multiple data flows to devices in multiple time slots. To receive data,

the devices are capable of harvesting energy from the environment but also suffer from

channel variations. To provide the efficient and fair multicast, the BS requires the de-

vices to feedback the energy states and channel states (states for short). The states are

in general time-varying and only known to the devices themselves. Regarding this, this

chapter further considers the rational and selfish user characteristics. Devices controlled

by rational and selfish users may intentionally feedback the false state information to ma-

nipulate the BS’s multicast if they can benefit from such false feedback. The multicast

may turn out inefficient and unfair. Therefore, to ensure reliable and truthful feedback

from the devices becomes an important issue. To this end, we propose an incentive-based

multicast resource allocation mechanism that can elicit the true state information from

the devices (incentive compatibility), avoiding any manipulation of multicast and thereby

guaranteeing efficient and fair network operation. The detailed contributions are stated as

follows:
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1. Taking into account energy and radio resource efficiency, we provide a theoretic

foundation for energy-harvesting enabled wireless multicast and design an incentive-

based multicast resource allocation mechanism.

2. The proposed resource allocation mechanism induces the devices to feedback their

true state information in each time slot (incentive compatibility). The system then

operates at the truth-revealing equilibrium.

3. The resource allocation at the equilibrium point maximizes the system throughput.

4. The payment is always made from the devices to the BS (budget balance). In other

words, the BS does not need to pay the devices to ensure truthful feedback. More-

over, all devices will obtain higher utility when joining the proposed resource allo-

cation mechanism (individual rationality).

3.2 Related Works

Transmission scheduling with renewable energy is a mature research area. In the follow-

ing, we review some state of the art. Ozel et al. considered data transmission of an energy

harvesting node in a wireless fading channel [44]. They studied optimal off-line trans-

mission policies that maximize the throughput and minimize the transmission completion

time. They also considered optimal on-line policies solved via stochastic dynamic pro-

gramming. Near-optimal policies were also proposed with reduced complexity. Ho and

Zhang considered energy allocation of point-point wireless communications over a finite

horizon with time-varying channel conditions and energy sources [45]. With available

side information on the channel conditions and harvested energy, optimal water-filling

energy allocation policies were proposed to maximize the throughput. Ju and Zhang stud-

ied a wireless powered network where the users first harvest the wireless energy broadcast

by the access point in the downlink and then send their independent information to the

access point in the uplink [46]. The maximum sum-throughput was shown to be unfair

in that substantially more time is allocated to the near users than the far users, of which
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the problem was called doubly near-far. They then proposed a common-throughput per-

formance metric with an efficient algorithm to solve the doubly near-far problem. Yang

et al. investigated the completion time minimization of data transmission from a energy-

harvesting transmitter to two users in a broadcast channel [47]. They proved there exists

a cut-off power level: if the optimal total transmit power is lower than this cut-off level,

all transmit power is allocated to the stronger user and vice versa. Accordingly, they pro-

posed an algorithm converging to the optimal off-line scheduling policy. Xu and Zhang

considered point-to-point data transmission of a transmitter with the time-varying energy

constraint and the non-ideal circuit power consumption [48]. To maximize the average

throughput over a finite horizon, they first studied the off-line optimal transmit power al-

location. They also proposed an on-line algorithm with only the past and present energy

state information known at the transmitter.

Energy-aware multicast over fading channels is also a topic that has been thoroughly

studied [49]. Ko et al. studied a multi-flow multicast scenario where a BS is capable

of sending multiple data flows to multiple multicast groups [43]. Under the assumption

of the unknown channel quality information, they proposed a resource allocation mecha-

nism that elicits the true channel quality information from the users and achieves efficient

and fair network operation. Chuan et al. investigated resource allocation and scheduling

for scalable video multicast [50]. They formulated the problem by maximizing the video

quality subject to transmission energy and channel access constraints. Their proposed

scheme maximizes the video quality while satisfying the energy budget and channel ac-

cess constraints. Al-Kanj and Dawy studied multicast resource allocation with bit rate

adaptation [51]. By dividing mobile users into groups based on their channel condi-

tions, they formulated the problem as a linear mixed integer programming problem that

minimizes the total energy consumption. They proposed a near-optimal polynomial time

heuristic algorithm to solve the problem. Kuan et al. proposed an erasure-based broadcast

scheme to guarantee reliable broadcast transmission in energy-harvesting networks [52].

They proposed three policies to determine the broadcast period for different performance

requirements, balancing the tradeoff between reliability and throughput.
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Figure 3.1: System model. The BS provides multiple multicast flows to energy harvesting

devices. The energy source can be solar power, radio-frequency (RF) energy, etc. Each

device accesses only one flow. Device i accessing flow g is denoted by device (i, g).

To sum up, the works [44, 45, 48, 52] considered a single transmission flow. Our

work differs in that we solve the optimal resource allocation to multiple data transmission

flows. Different from [43, 50, 51] that did not consider energy harvesting, this chapter

considers renewable energy where the design objective is the best use of renewable energy

over time to achieve system efficiency. Moreover, unlike all of these previous works, we

further make the practical assumption that devices controlled by rational and selfish users

may feedback the false state information to improve their own performance. Such an

assumption was considered in our previous work [43] for multi-flow multicast in a one-

shot scenario. So in this chapter, by further modelling energy variations and channel

fluctuations over time, we design a mechanism that gathers the true state information and

accordingly allocates resources to multicast flows to achieve desirable properties.

3.3 System Model

We consider a time-slotted wireless network consisting of a BS and multiple wireless

devices, as illustrated in Fig. 3.1. We assume that the BS has fixed power supply and the

devices can harvest energy from the environment. The system starts in time slot 0 and
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has R resource blocks in each time slot. The BS provides a set of multicast flows G =

{1, 2, . . . , G} where each flow g is accessed by a group of devices Ng = {1, 2, . . . , Ng}.

It is assumed that each device only accesses one multicast flow and will not change the

access over time. Thus, each device i accessing flow g is denoted by device (i, g), i ∈ Ng

and g ∈ G. In each time slot t = 0, 1, 2, . . ., each multicast flow g is assumed to have

constant mg data packets. This assumption will be relaxed to Markov data sources in

Chapter 3.8.2. The BS allocates atg resource blocks to each flow g where one resource

block can be used to transmit one packet. The notation a
t = (atg)g∈G is used to denote the

profile of resource allocation to all flows. The notations a
〈t〉
g and a

〈q≥t〉
g are used to denote

the resource allocation to flow g in all time t and all time q ≥ t, respectively. (Without

special mention, the use of notation 〈·〉 in the superscript has the same meaning in the rest

of paper.) On the other hand, the devices can harvest energy from the environment. The

devices consume energy to receive and decode multicast data1. We assume that receiving

and decoding one packet requires one resource block and consumes one unit of energy.

3.3.1 Types of Multicast Flows

We consider two types of multicast flows: loss-tolerant and loss-sensitive. A loss-tolerant

flow means that a device obtains a fixed amount of throughput from each packet received,

and the throughput reaches the maximum once the device receives all of the packets. In

contrast, A loss-tolerant flow means that a device must receive all of the packets to obtain

the maximum throughput; otherwise, it gains nothing. Since the channels are lossy as will

be discussed in Chapter 3.3.3, the generalized erasure coding [30, 31] is then applied to

control error. Specifically, in each time slot t, the BS applies generalized erasure coding

to transform mg packets of each flow g into atg coded packets (i.e., transmit atg packets in

flow g). The data contents can be fully recovered from any mg out of the coded packets.

So if a device receives a sufficient number of the coded packets j ≥ mg, it obtains the

maximum throughput in both types of data. If a device receives insufficient number of

the coded packets j < mg, it obtains j/mg and zero throughput in the loss-tolerant and

1The devices also consume energy for other tasks such as feedbacking the state and computing the

utility. We will explain later why the energy consumption of these tasks can be negligible.
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loss-sensitive types of data, respectively.

3.3.2 Energy Arrivals and Markov Energy States

Each device can harvest energy from the environment to receive and decode multicast

data. Each device (i, g)’s energy arrival in each time slot t is modeled by an independent

and identically distributed (i.i.d.) discrete random variable ei,g [53, 45].2 The harvested

energy in time slot t will be ready for use in the next time (t + 1). The energy arrivals of

different devices can be correlated and different, which may be related to each device’s

energy-harvesting environment such as the physical location. The system energy arrivals,

i.e., the collection of the energy arrival of each device, in each time slot is denoted by

e = (ei,g)i∈Ng,g∈G. The system energy arrivals other than device (i, g) is denoted by

e−(i,g) = (ej,k)j∈Nk,k∈G,(j,k)6=(i,g).

At the beginning of each time t, the energy stored in each device (i, g) is called the

energy state and denoted by esti,g ∈ ES i,g = {0, 1, . . . , ECi,g} where ECi,g is the energy

capacity. Recall that receiving and decoding one packet requires one resource block and

one unit of energy. The relationship of the energy states between any two consecutive

time slots is given as follows:

est+1
i,g = min

(

esti,g −min(esti,g, a
t
g) + ei,g, ECi,g

)

, (3.1)

where atg is the number of resource blocks allocated to flow g in time slot t. From (3.1),

one can note that the energy state has the Markov transition. The energy state transition

probability of each device (i, g) is denoted by

Ei,g(es
t+1
i,g |es

t
i,g, a

t
g). (3.2)

The system energy state is denoted by es
t = (esti,g)i∈Ng,g∈G ,with the energy state transi-

2The i.i.d. assumption of the energy arrivals should be reasonable since the duration of a resource block

is usually on the order of millisecond, while the energy harvesting process, e.g., solar and wind power,

typically remains constant for seconds.
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tion probability

E(est+1|est, at). (3.3)

The system energy state other than device (i, g) is denoted by

es
t
−(i,g) = (estj,k)j∈Nk,k∈G,(j,k)6=(i,g), with the energy state transition probability

E−(i,g)(es
t+1
−(i,g)|es

t
−(i,g), a

t). (3.4)

3.3.3 Fading Channels and Markov Channel States

Transmission through wireless channels suffers from packet loss. To accommodate dy-

namic channel fading scenarios, we assume that each device experiences the constant

channel quality in a time slot, but the channel quality has the Markov transition from one

time slot to the next time slot [54, 55]. Specifically, each device (i, g) has the packet suc-

cess probability, i.e., channel state, csti,g ∈ CS i,g in each time slot t where CS i,g is the set

of all possible channel states. The channel state transition probability is given as

Ci,g(cs
t+1
i,g |cs

t
i,g). (3.5)

The system channel state is denoted by cs
t = (csti,g)i∈Ng,g∈G, with the channel state tran-

sition probability

C(cst+1|cst). (3.6)

The system channel state other than device (i, g) is denoted by

cs
t
−(i,g) = (cstj,k)j∈Nk,k∈G,(j,k)6=(i,g), with the channel state transition probability

C−(i,g)(cs
t+1
−(i,g)|cs

t
−(i,g)). (3.7)
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3.3.4 Joint States and Information Assumptions

For the ease of notation, the joint energy and channel state is denoted by xti,g = (esti,g, cs
t
i,g)

and called the state for short. Note that the state xti,g has the state space Xi,g = ESi,g ×

CS i,g. From (3.2) and (3.5), the state transition probability is

Xi,g(x
t+1
i,g |x

t
i,g, a

t
g) = Ei,g(es

t+1
i,g |es

t
i,g, a

t
g)Ci,g(cs

t+1
i,g |cs

t
i,g). (3.8)

The system state in time slot t is denoted by x
t = (xti,g)i∈Ng,g∈G , with the system state

space X = ×i∈Ng,g∈GXi,g and the system state transition probability

X(xt+1|xt, at) = E(est+1|est, at)C(cst+1|cst). (3.9)

The system state other than device (i, g) is denoted by x
t
−(i,g) = (xtj,k)j∈Nk,k∈G,(j,k)6=(i,g),

with the system state space X−(i,g) = ×j∈Nk,k∈G,(j,k)6=(i,g)Xj,k and the system state transi-

tion probability

X−(i,g)(x
t+1
−(i,g)|x

t
−(i,g), a

t) = E−(i,g)(es
t+1
−(i,g)|es

t
−(i,g), a

t))C−(i,g)(cs
t+1
−(i,g)|cs

t
−(i,g)).

(3.10)

We assume that the BS can measure the energy-harvesting and channel environment

to know the system state dynamics X(xt+1|xt, at).3 The BS will also broadcast this in-

formation to each device. However, the exact state xti,g of each device (i, g) is only known

to the device itself. Such an assumption of incomplete state information should be more

reasonable than complete state information. The Bayesian update of the state information

will be derived in Chapter 3.4.3.

3.3.5 One-Shot and Long-Term Throughput

We assume that each device cares about its own throughput performance. Recall that

receiving and decoding one packet requires one resource block and one unit of energy.

3The BS can deploy sensor nodes in the area to measure the energy-harvesting and channel environment

to get the system state dynamics.
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When the BS transmits atg packets in flow g, device (i, g) will successfully receive j

packets, 0 ≤ j ≤ min(esti,g, a
t
g), with probability

p(xti,g, a
t
g, j) =

(

min(esti,g, a
t
g)

j

)

(csti,g)
j(1− csti,g)

min(esti,g,a
t
g)−j . (3.11)

Thus, each device (i, g)’s one-shot throughput in time slot t is given as follows:

Definition 3.1. [One-shot throughput] If flow g is loss-tolerant, the one-shot throughput

of device (i, g) in time slot t is

vg(x
t
i,g, a

t
g) =

min(esti,g,a
t
g)

∑

j=0

min(1,
j

mg

)p(xti,g, a
t
g, j). (3.12)

If flow g is loss-sensitive, the one-shot throughput of device (i, g) in time slot t is

vg(x
t
i,g, a

t
g) =















∑min(esti,g,a
t
g)

j=mg
p(xti,g, a

t
g, j), atg ≥ mg

0, otherwise

. (3.13)

With the one-shot throughput, we can further define the long-term throughput (or

throughput for short). The throughput of each device seen in time slot t is the time-

discounted sum of the one-shot throughput in each time slot q ≥ t.

Definition 3.2. [Throughput] The throughput of device (i, g) seen in time slot t is

∞
∑

q=t

βq−t
E
[

vg(x
q
i,g, a

q
g)
]

, (3.14)

where β, 0 ≤ β ≤ 1, is the discount factor.

In the following we define the weighted system throughput:

Definition 3.3. [Weighted system throughput] The weighted system throughput seen in

time slot t is

∑

i∈Ng,g∈G

∞
∑

q=t

βq−twgE
[

vg(x
q
i,g, a

q
g)
]

, (3.15)
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where wg is the weight for flow g.

The weight wg for flow g can be designed as a decreasing function of the number of

the devices |Ng| in flow g. As throughput maximization always brings unfair resource

allocation, maximizing the weighted system throughput can balance the throughput per-

formance of devices especially when there are huge differences in the number of devices

in different flows. One possible design of the weight is as follows.

Design 3.1. [Flow weight] The flow weight wg is decreasing with respect to the number

of the devices Ng. One simple candidate is

wg =
log(1 +Ng)

Ng

. (3.16)

3.4 Resource Allocation Problem and Mechanism Design

In the proposed framework, the BS allocates resources to each multicast flow in each

time slot. The goal is to maximize the weighted system throughput defined in Definition

3.3. Note that the throughput is a function of the devices’ states as shown in (3.15) of

Definition 3.3. As the BS has no exact knowledge of the states, the BS may require the

devices feedback the states. The devices are controlled by selfish and rational users. They

may falsely feedback to manipulate the resource allocation result if doing so increases

their own performance. The system throughput performance may become undesirable.

Therefore, in this section we design a resource allocation mechanism that can induce

truthful feedback from the devices.

The block diagram of the proposed resource allocation mechanism is shown in Fig.

3.2. The proposed resource allocation mechanism first requires the feedback of the states

from the devices. Each device will make a feedback strategy that decides how to feed-

back the state in each time slot. Then we design a resource allocation policy and a pricing

policy. The resource allocation policy decides how the BS allocates resources to each mul-

ticast flow in each time slot. It is designed to maximize the weighted system throughput.

The pricing policy decides how the BS charges each device in each time slot. it is de-
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Figure 3.2: The block diagram of the proposed resource allocation mechanism. The

detailed designs are specified in each subsection.

signed to ensure truthful feedback from the devices and to achieve several other desirable

properties. Also, a value iteration algorithm is proposed to derive the resource allocation

policy and the pricing policy. The detailed designs are specified in each subsection.

3.4.1 Feedback Strategies of the Devices

Before the proposed resource allocation mechanism starts, each device (i, g) makes a

feedback strategy si,g = x̂
〈t〉
i,g upon which device (i, g) feedbacks the state x̂ti,g in each

time slot t. Note that truthful feedback means x̂ti,g = xti,g. The collection of all devices’

feedback states up to time (t − 1) is called the history in time slot t and denoted by

ht = x̂
〈q≤t−1〉. The feedback state x̂ti,g in each time slot t should depend on the history ht

and device (i, g)’s true state xti,g. In other words, the feedback state should be x̂ti,g(h
t, xti,g).

However, we just use x̂ti,g for the ease of notation in the rest of the paper. The strategy

profile of all devices is denoted by s = x̂〈t〉 where x̂
t = (x̂ti,g)i∈Ng,g∈G is the feedback

states of all devices in time slot t. The strategy profile of all devices other than device (i, g)

is denoted by s−(i,g) = x̂
〈t〉
−(i,g) where x̂

t
−(i,g) = (x̂tj,k)j∈Nk,k∈G,(j,k)6=(i,g) is the feedback
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states of all devices other than device (i, g) in time slot t. Lastly, it is worth mentioning

that the feedback of the state information can be a few bits. Compared with the reception

and decoding of multicast packets that are on the order of 105 bits, the energy consumption

for the feedback should be negligible.

3.4.2 Flow Resource Allocation Policy

Since the system has the Markov state transition in (3.9), Markov decision processes [56],

which provide a mathematical framework for decision making under uncertainty, will be

a powerful tool. We propose a Markov resource allocation policy under which the BS

allocates resources according to the feedback of the current state only. To be specific, the

proposed resource allocation policy is denoted by π∗ = (π∗
g)g∈G under which the resource

allocation to each flow g is atg = π∗
g(x̂

t), given the current feedback state x̂
t in each time

slot t. The resource allocation policy π∗ is designed to maximize the weighted system

throughput as follows.

Design 3.2. [Resource allocation policy] The resource allocation policy π∗ is designed

to maximize the weighted system throughput given any initial system state x̃0:

π∗ = argmax
a〈t〉

∑

i∈Ng,g∈G

∞
∑

t=0

βtwgE
[

vg(x̃
t
i,g, a

t
g)|x̃

0
]

(3.17)

s.t.
∑

g∈G

π∗
g ≤ R,

where the system state x̃
t satisfies the system state transition probability in (3.9) with

a
t = π∗(x̃t).4

Given the feedback state x̂
t in each time slot t, the resource allocation to each multi-

cast flow g is atg = π∗
g(x̂

t).

It is useful to denote the weighted system throughput in (3.17) by the value function

4Because of the stationary Markov state transition and stationary throughput function of each device, the

optimal policy for this particular maximization problem is indeed stationary and a function of the current

state only.
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Figure 3.3: Illustration of three different information stages in a time slot. Each time slot

can be broken into ex-ante, interim, and ex-post stages according to what information is

known at different time instants.

V ∗:

V ∗(x̃0) =
∑

i∈Ng,g∈G

∞
∑

t=0

βtwgE
[

vg(x̃
t
i,gπ

∗
g(x̃

t))|x̃0
]

. (3.18)

For the use in the pricing policy in 3.4.4, it is also useful to denote the weighted system

throughput other than device (i, g) by the value function V ∗
−(i,g). On the other hand, we

can also design a resource allocation policy π−(i,g) that maximizes the weighted system

throughput with device (i, g) excluded from the system in a similar way in Design 3.2.

Under π−(i,g), we can also denote the weighted system throughput with device (i, g) ex-

cluded by V −(i,g). The algorithm for deriving the resource allocation policies and the

value functions will be given in Chapter 3.7.

3.4.3 Bayesian Update of the State Information

In the following, we discuss how the BS and each device update the probability mass

function (pmf) of the system state ∆(xt) with the feedback state x̂
t and history ht. As

depicted in Fig. 3.3, each time t can be broken into the ex-ante, interim, and ex-post

stages [57] with respect to what information is known to the BS and the devices:

• Ex-ante stage: The system enters the ex-ante stage right before entering time t. The

BS knows the pmf ∆(xt|ht) derived via the state transition probability in (3.9) as
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follows:

∆(xt|ht) =
∑

xt−1∈X

∆(xt−1|ht)X(xt|xt−1, π∗(x̂t−1)). (3.19)

where ∆(xt−1|ht) is the pmf of the system state in the ex-post stage of time (t− 1)

that will shown in point 3.

Similarly, each device (i, g) knows the pmf ∆(xt|xt−1
i,g , h

t) derived as follows:

∆(xt|xt−1
i,g , h

t) =
∑

x
t−1
−(i,g)

∈X−(i,g)

∆(xt−1|xt−1
i,g , h

t)X(xt|xt−1, π∗(x̂t−1)), (3.20)

• Interim stage: The system enters the interim stage at the beginning of time t and

before each device feedbacks the state. The BS still knows the pmf ∆(xt|ht) as in

the ex-ante stage. Each device (i, g) knows its current state xti,g and updates the pmf

∆(xt|xti,g, h
t) as follows:

∆(xt|xti,g, h
t) =

∑

x
t−1
−(i,g)

∈X−(i,g)

∆(xt−1|xt−1
i,g , h

t)X−(i,g)(x
t
−(i,g)|x

t−1
−(i,g), π

∗(x̂t−1)).

(3.21)

• Ex-post stage: The system enters the ex-post stage right after each device feedbacks

the state. The BS updates the pmf ∆(xt|ht+1) by the Bayes’ rule as follows:

∆(xt|ht+1) =
∆(xt|ht)∆(x̂t|xt, ht)

∑

xt∈X ∆(xt|ht)∆(x̂t|xt, ht)
. (3.22)

Similarly, each device (i, g) updates the pmf ∆(xt|xti,g, h
t+1) as follows:

∆(xt|xti,g, h
t+1) =

∆(xt|xti,g, h
t)∆(x̂t|xt, ht)

∑

xt
−(i,g)

∈X−(i,g)
∆(xt|xti,g, h

t)∆(x̂t|xt, ht)
. (3.23)

We will only focus on the ex-post stage, since any properties that are ex-post must be

interim and ex-ante as well. So without special mention, the weighted system throughput
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defined in Definition 3.3 and everything else that will be defined or designed later are all

in the ex-post manner.

3.4.4 Device Pricing Policy

We also propose a pricing policy by which the BS charges each device to ensure truthful

feedback and to achieve desirable properties. The basic idea of the proposed pricing

policy comes from the Vickrey-Clarke-Groves (VCG) mechanism [58, 59, 60] but we

extend it from one shot to multiple time slots.

In each time slot t with the feedbacks state x̂
t, to ensure truthful feedback, the BS

pays each device (i, g) the one-shot price
∑

j∈Nk,k∈G,(j,k)6=(i,g)
wk

wg
vk(x̂

t
j,k, π

∗
k(x̂

t)), i.e., the

one-shot system throughput other than device (i, g). To balance the payment, the BS also

charges each device the one-shot price

κti,g(h
t, x̂t) =

1

wg

{

V −(i,g)(x̂t
−(i,g))− βE

[

V −(i,g)(xt+1
−(i,g))|h

t+1
]}

, (3.24)

where ht+1 = (ht, x̂t). Just as in the VCG mechanism, we want the time discounted sum

of κti,g to be V −(i,g), i.e., the weighted system throughput with device (i, g) excluded from

the system. However, directly using the VCG mechanism to charge the one-shot system

throughput with device (i, g) excluded from the system,

∑

j∈Nk,k∈G,(j,k)6=(i,g)
wk

wg
vk(x̂

t
j,k, π

−(i,g)
k (x̂t

−(i,g))), cannot make the time discounted sum equal

to V −(i,g). Therefore, we find another way to decompose V −(i,g) in time into κti,g in (3.24).

As will be shown in Lemma 3.1, the time discounted sum of κti,g is indeed V −(i,g). There-

fore, the overall pricing policy denoted by ρ〈t〉 = (ρ
〈t〉
i,g)i∈Ng,g∈G is designed as follows:

Design 3.3. [Pricing policy] The one-shot price the BS charges each device (i, g) in time

slot t is

ρti,g(h
t, x̂t) = −

∑

j∈Nk,k∈G,(j,k)6=(i,g)

wk

wg

vk(x̂
t
j,k, π

∗
k(x̂

t)) + κti,g(h
t, x̂t), (3.25)

where κti,g is given in (3.24).
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3.4.5 Ex-Post Utility of the Devices

With the proposed resource allocation policy π∗ and the pricing policy ρ〈t〉, the utility

of each device is defined as the throughput minus the price. Mathematically, the utility

function of each device (i, g) after the feedback history ht in time slot t is denoted by

ui,g(s|xti,g, h
t+1):

Definition 3.4. [Ex-post utility] In each time slot t, the utility of device (i, g) is

ui,g(s|x
t
i,g, h

t+1) =
∞
∑

q=t

βq−t
E
[

vg(x
q
i,g, π

∗
g(x̂

q))− ρqi,g(h
q, x̂q)|xti,g, h

t+1
]

, (3.26)

where ht+1 = (ht, x̂t).

3.5 Resource Allocation Game

In the proposed resource allocation mechanism, each device feedbacks the state informa-

tion to maximize its own utility. Since the state transition is Markov and the exact states

are only known to the devices themsilves, the devices’ decision making can be formulated

as a stochastic game with incomplete information [61]. The induced resource allocation

game is denoted by G = (N ,x〈t〉, s, X,S,u) where each component is specified as be-

low:

• Player set N : Each device (i, g) ∈ N = Ng × G is a player in the game.

• State profile x
〈t〉: Each device (i, g)’s state xti,g in time slot t is only known to

itself. The state information is updated after feedback in each time slot as shown in

Chapter 3.4.3.

• Strategy profile s: Each device (i, g) has a strategy si,g = x̂
〈t〉
i,g that feedbacks the

state x̂ti,g in each time slot t. The strategy profile is s = x̂
〈t〉.

• State transition probability X: Derived from (3.9), the state transition probability

under the proposed resource allocation policy π∗ is X(xt+1|xt, π∗(x̂t)). We have

assumed that the state transition probability is known to the BS and each device.
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• Utility profile u: Each device (i, g) has the utility function ui,g as shown in Defini-

tion 3.4. The utility profile is u = (ui,g)i∈Ng,g∈G.

We will use the solution concept ”perfect ex-post equilibrium” to anayze the proposed

resource allocation game. A perfect ex-post equilibrium is a refinement of a subgame per-

fect equilibrium [62] where the strategies form an ex-post equilibrium in any subgame.

It is a stronger solution concept than Bayesian equilibrium and Nash equilibrium that re-

quire Bayesian and complete information, respectively. The formal definition of a perfect

ex-post equilibrium is given as follows:

Definition 3.5. [Perfect ex-post equilibrium] The strategy profile s
∗ is a perfect ex-post

equilibrium if

ui,g(s
∗|xti,g, h

t+1) ≥ ui,g(si,g, s
∗
−(i,g)|x

t
i,g, h

t+1) ∀(i, g), t,xt, ht, m, si,g 6= s∗i,g. (3.27)

It is well-known that a strategy profile is a subgame perfect equilibrium if and only if

there are no profitable one-shot deviations. The definitions of one-shot deviation strategy

and the one-shot deviation principle [63, 64] for the proposed resource allocation game

are given as follows:

Definition 3.6. [One-shot deviation strategy] A strategy s′i,g = x̂
′,〈q〉
i,g is a one-shot devia-

tion from another strategy si,g = x̂
〈q〉
i,g after some history ht in time slot t if x̂′,ti,g 6= x̂ti,g and

x̂′,qi,g = x̂qi,g ∀ q > t.

Definition 3.7. [One-shot deviation principle] The strategy profile s
∗ is a perfect ex-post

equilibrium if and only if

ui,g(s
∗|xti,g, h

t+1) ≥ ui,g(si,g, s
∗
−(i,g)|x

t
i,g, h

t+1) ∀(i, g), t,xt, ht, si,g (3.28)

where si,g is any one-shot deviation strategy from s∗i,g after history ht.

61



doi:10.6342/NTU201701588

3.6 Truth-Revealing Equilibrium and Desirable Proper-

ties

We prove in Theorem 3.1 that the proposed resource allocation game reaches the truth-

revealing perfect ex-post equilibrium s
∗ = x

〈t〉. The proposed resource allocation mecha-

nism is then called ex-post incentive compatible. Before that we first show the following

lemma about κti,g that will be used in the proof for Theorem 3.1.

Lemma 3.1. Given any strategy si,g = x̂
〈q≥t〉
i,g of device (i, g) and the truthful feedback

strategies s∗−(i,g) = x
〈q≥t〉
−(i,g) of the other devices after any history ht, the time discounted

sum of κti,g is

∞
∑

q=t

βq−t
E

[

κqi,g(h
q, x̂qi,g,x

q

−(i,g))|h
t+1
]

=
1

wg

V −(i,g)(xt
−(i,g)), (3.29)

where hq+1 = (hq, x̂qi,g,x
q

−(i,g)) ∀ q ≥ t.

Proof. From (3.24), we know ∀ q ≥ t

βq−t
E

[

κqi,g(h
q, x̂qi,g,x

q

−(i,g))|h
t+1
]

=
1

wg

βq−t
E

[

V −(i,g)(xq

−(i,g))|h
t+1
]

−
1

wg

βq+1−t
E

[

V −(i,g)(xq+1
−(i,g))|h

t+1
]

, (3.30)

where E
[

V −(i,g)(xt
−(i,g))|h

t+1
]

= V −(i,g)(xt
−(i,g)). Therefore, (3.29) can be easily derived

by summing (3.30) ∀ q ≥ t.

Theorem 3.1. [Ex-post incentive compatibility] The proposed resource allocation mech-

anism is ex-post incentive compatible. That is, the proposed game reaches the truth-

revealing perfect ex-post equilibrium s
∗ = x

〈t〉.

Proof. The proof follows the one-shot deviation principle. Given s
∗
−(i,g) = x

〈q≥t〉
−(i,g) after

any history ht, we show that s∗i,g = x
〈q≥t〉
i,g always brings higher utility than any one-shot

deviation strategy.
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From (3.26) and (3.25), each device (i, g)’s utility after history ht under the truth-

revealing strategy profile s
∗ = x

〈q≥t〉 is

ui,g(s
∗|xti,g, h

t+1) =

∞
∑

q=t

βq−t
E

[

∑

j∈Nk,k∈G

wk

wg

vk(x
q
j,k, π

∗
k(x

q))− κqi,g(h
q,xq)|ht,xt

]

=
1

wg

[

V ∗(xt)− V −(i,g)(xt
−(i,g))

]

, (3.31)

where the last equality comes from (3.18) and Lemma 3.1. If device (i, g) plays any one-

shot deviation strategy si,g = (x̂ti,g, x
〈q>t〉
i,g ) that only deviates after history ht in time slot

t, its utility becomes

ui,g(si,g, s
∗
−(i,g)|x

t
i,g, h

t+1) =
1

wg

[

V ′(xt)− V −(i,g)(xt
−(i,g))

]

, (3.32)

where

V ′(xt) =
∑

j∈Nk,k∈G

{

wkvk(x
t
j,k, π

∗
k(x̂

t
i,g,x

t
−(i,g))) +

∞
∑

q=t+1

βq−twkE
[

vk(x
q
j,k, π

∗
k(x

q))|xt
]

}

.

(3.33)

According to (3.17) and (3.18), since a
q = π∗(xq) ∀ q ≥ t maximizes the weighted

system throughput, we know V ∗(xt) ≥ V ′(xt). Therefore,

ui,g(s
∗|xti,g, h

t+1) ≥ ui,g(si,g, s
∗
−(i,g)|x

t
i,g, h

t+1) ∀(i, g), t,xt, ht. In other words, the pro-

posed resource allocation game has the truth-revealing perfect ex-post equilibrium s
∗ =

x
〈t〉. The proposed resource allocation mechanism is ex-post incentive compatible.

Theorem 3.1 means that the proposed resource allocation mechanism allows the sys-

tem to reach the equilibrium point where the BS always collects the true state information

from the devices in each time slot. The equilibrium is perfect in that if each device is

allowed to change a feedback strategy in each time slot, each device still always feed-

backs the true state information. The equilibrium is also ex-post in that after the true

state information is revealed in the ex-post stage of each time slot, each device will not

regret the strategy it has made before the proposed resource allocation mechanism starts.
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In the following propositions, we show the resource allocation, the history, and the state

information at the truth-revealing equilibrium.

Proposition 3.1. [Equilibrium resource allocation] The equilibrium resource allocation

to flow g in time slot t is a∗,tg = π∗
g(x

t).

Proposition 3.2. [Equilibrium history and state information] The equilibrium history in

time slot t is h∗,t = x
〈q≤t−1〉. In the ex-post stage of time t, the BS and each device knows

the exact state x
t.

Since the states have the Markov transition, Proposition 3.2 implies that once the true

state xt is revealed in each time slot t, the BS and each device only need to memorize xt.

No need to memorize the history h∗,t at all. At the truth-revealing equilibrium, the BS

and each device can also easily compute the prices and the utility given in Propositions

3.3 and 3.4, respectively. Since each device’s computation of the utility is quite simple

at the truth-revealing equilibrium, the energy consumption for the computation should be

negligible compared with the reception and decoding of multicast packets.

Proposition 3.3. [Equilibrium price] The (long-term) equilibrium price seen in time slot

t is

∞
∑

q=t

βq−t
E
[

ρ∗,qi,g |x
t
]

=
1

wg

[

−V ∗
−(i,g)(x

t) + V −(i,g)(xt
−(i,g))

]

(3.34)

where ρ∗,qi,g = ρqi,g(h
∗,q,xq).

Proof. From (3.25), we have

∞
∑

q=t

βq−t
E
[

ρ∗,qi,g |x
t
]

=−
∞
∑

q=t

βq−t
∑

(j,k)6=(i,g)
j∈Nk,k∈G

wk

wg

E
[

vk(x̂
q
j,k, π

∗
k(x

q))|xt
]

+
∞
∑

q=t

βq−t
E
[

κqi,g(h
∗,q,xq)|xt

]

=
1

wg

[

−V ∗
−(i,g)(x

t) + V −(i,g)(xt
−(i,g))

]

, (3.35)
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where in the last equality the first term comes from the definition of V ∗
−(i,g) and the second

term comes from Lemma 3.1.

Proposition 3.4. [Ex-psot equilibrium utility]The equilibrium utility of each device (i, g)

seen in time slot t is

ui,g(s
∗|xti,g, h

∗,t+1) =
1

wg

[

V ∗(xt)− V −(i,g)(xt
−(i,g))

]

. (3.36)

In addition to the property of truth-revelation, the proposed resource allocation mech-

anism also achieves several desirable properties, including maximum weighted system

throughput, budget balance, and individual rationality, all in the ex-post manner [34].

Maximum weighted system throughput means that the equilibrium resource allocation is

the most efficient since no other allocation can achieve greater weighted system through-

put.

Theorem 3.2. [Maximum weighted ex-post system throughput] The proposed resource al-

location mechanism achieves maximum weighted system throughput.

π∗ = arg max
a〈q≥t〉

∑

i∈Ng,g∈G

∞
∑

q=t

βq−twgE
[

vg(x
q
i,g, a

t
g)|x

t
]

. (3.37)

Proof. Recall in Design 3.2 that the proposed resource allocation policy π∗ is designed to

maximize the weighted system throughput. Therefore, the proof follows Design 3.2 and

Theorem 3.1.

Budget balance means that the net payment is always from the devices to the BS, but

not from the BS to the devices. This property is desirable in that the BS does not need

to pay the devices to ensure truthful feedback [34]. We show that the proposed resource

allocation mechanism achieves ex-post budget balance.

Theorem 3.3. [Ex-Post Budget balance] The proposed resource allocation mechanism is

ex-post budget-balanced.

∑

i∈Ng,g∈G

∞
∑

q=t

βq−t
E
[

ρ∗,qi,g |x
t
]

≥ 0 (3.38)
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Proof. Since π−(i,g) maximizes the weighted system throughput with device (i, g) ex-

cluded from the system, we know

V −(i,g)(xt
−(i,g)) ≥ V ∗

−(i,g)(x
t). (3.39)

Therefore, (3.38) is a direct result from (3.34) and (3.39).

Lastly, individual rationality is also important in mechanism design. While devices

can decide to join a mechanism or not, individual rationality means that all devices are

willing to join to obtain as much utility as without joining. We show that the proposed

resource allocation mechanism achieves ex-post individual rationality.

Theorem 3.4. [Ex-Post Individual rationality] The proposed resource allocation mecha-

nism is ex-post individual rational.

ui,g(s
∗|xti,g, h

∗,t+1) ≥ 0 ∀i ∈ Ng, g ∈ G. (3.40)

Proof. Since π∗ maximizes the weighted system throughput, we know

V ∗(xt) ≥ V −(i,g)(xt
−(i,g)). (3.41)

Therefore, from (3.36) and (3.41), we know (3.40) must hold.

To sum up, the proposed resource allocation mechanism is ex-post incentive com-

patible that reaches the truth-revealing perfect ex-post equilibrium. At the truth-revealing

equilibrium, the proposed resource allocation mechanism also achieves maximum weighted

ex-post system throughput, ex-post budget balance, and ex-post individual rationality.

3.7 Value Iteration for the Resource Allocation Policy

Recall in Design 3.2 and Theorem 3.2 that the proposed resource allocation policy π∗

maximizes the weighted system throughput at the truth-revealing equilibrium. Since the

proposed resource allocation policy and the state transition are both Markov, the resource
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Algorithm 3.1: Value iteration algorithm for multicast resource allocation

1: Initialize V ∗(x) ∀ x.

2: Repeat

3: δ ← 0
4: For each x

5: v ← V ∗(x)

6: V ∗(x)← maxa

{

∑

i∈Ng,g∈Ng
wgvg(xi,g, ag) + β

∑

x′∈X X(x′|x, a)V ∗(x′)
}

7: δ ← max(δ, |v − V ∗(x)|)
8: Until δ < ǫ (a small positive number)

9: Output the value function V ∗ and the policy π∗

10: π∗(x) = argmaxa

{

∑

i∈Ng,g∈Ng
wgvg(xi,g, ag) + β

∑

x′∈X X(x′|x, a)V ∗(x′)
}

allocation problem is essentially a Markov decision process. Recall in (3.18) that the

value function V ∗ represents the weighted system throughput under the resource alloca-

tion policy π∗. We may also express V ∗ in a recursive form as follows:

V ∗(x) = max
a







∑

i∈Ng,g∈G

wgvg(xi,g, ag) + β
∑

x′∈X

X(x′|x, a)V ∗(x′)







. (3.42)

Equation (3.42) is usually referred to as the Bellman equation. There are several algo-

rithms for solving the Bellman equation. One of the most widely used is value iteration

due to its many advantages, such as quick convergence and easy implementation, espe-

cially when the state space is very large [65]. The value iteration algorithm for deriving

the resource allocation policy π∗ and the value function V ∗ is given in Algorithm 3.1.

It involves the arbitrary initialization of the value function V ∗ (line 1) and the iterative

update of the value function according to the Bellman equation in (3.42) (lines 2 to 7).

We may also update the value function V ∗
−(i,g) at the same time in lines 1 to 7. The update

process repeats until the convergence criterion is met, i.e., the update error δ is less than

the specified error tolerance ǫ (line 8). Lastly, the value iteration algorithm outputs the

desirable value function V ∗ and the resource allocation policy π∗ (lines 9 and 10). The

same value iteration algorithm can also be used to derive the resource allocation policy

π−(i,g) and V −(i,g), respectively.

To derive the optimal solutions via the value iteration algorithm, the number of iter-

ations is Poly(|X |
∑

g∈G |Ng|, |A|, 1
1−β

) and the worst-case computational complexity per

67



doi:10.6342/NTU201701588

iteration is O(|X |2
∑

g∈G |Ng||A|) where |A| is the number of possible resource allocation

[66].

3.8 Further Discussions

3.8.1 Feedback per n Time Slots

As the proposed resource allocation mechanism requires each device to feedback the state

information, signaling overhead may be a concern. To reduce the signaling overhead, we

may allow each device to feedback the state information per n time slots where n =

2, 3, 4, . . .. In this case, the resource allocation policy becomes π∗,〈0≤q≤n−1〉 that decides

the resource allocation ant+q
g = π∗,q

i,g (x̂
nt) to each flow g in time slot (nt + q) given

the feedback state x̂
nt in time slot nt. In other words, the resource allocation in time slot

(nt+q) depends on the feedback state information in time slot nt. The resource allocation

policy is now designed to maximize the weighted system throughput

V ∗,n(x0) = max
a〈0≤q≤n−1〉







∑

i∈Ng,g∈G

n−1
∑

q=0

βqwgE
[

vg(x
q
i,g, a

q
g)|x

0
]

+βn
∑

xn∈X

Xn(xn|x0, a〈0≤q≤n−1〉)V ∗,n(xn)

}

, (3.43)

where Xn(xn|x0, a〈0≤q≤n−1〉) is the n-step transition probability satisfying

Xn(xn|x0, a〈0≤q≤n−1〉) =
∑

x1,...,xn−1∈X

n
∏

q=1

X(xq|xq−1, aq−1). (3.44)

Comparing (3.42) and (3.43), we know V ∗(x) ≥ V ∗,n(x), i.e., the system throughput is

lower under feedback per n time slots. Moreover, to solve the Bellman equation via the

value iteration algorithm, the number of iterations becomesPoly(|X |
∑

g∈G |Ng|, |A|n, 1
1−βn )

but each iteration becomes more costly with the time complexity O(|X |2
∑

g∈G |Ng||A|n).

In other words, reducing the signaling overhead may bring the trade-off of lower system

throughput and higher time complexity of the value iteration algorithm. To further reduce
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the time complexity, we can restrict that the resource allocation is the same in the n time

slots, i.e., a0 = a
1 = . . . = a

n−1. In this way, the system throughput should be even lower

but the number of iterations and the time complexity of each iteration both decrease to

Poly(|X |
∑

g∈G |Ng|, |A|, 1
1−βn ) and O(|X |2

∑
g∈G |Ng||A|), respectively.

3.8.2 Markov Data Sources

So far in this chapter, we have assumed that each flow g has the constant mg data packets

in each time slot t. We may use the Markov data model, assuming that each flow g

has mt
g data packets in time slot t and the data packets satisfy the transition probability

Mg(m
t+1
g |m

t
g) [67]. We also assume that the data information is known to the BS and

also made public to each device. In this Markov data model, the one-shot throughput of

each device (i, g) becomes vg(x
t
i,g, m

t
g, a

t
g) that is the same as vg(x

t
i,g, a

t
g) in Definition

3.1, but with mg replaced by mt
g. Then the proposed resource allocation mechanism in

Chapter 3.4 can be applied. The optimal resource allocation policy becomes π∗(xt,mt)

that is a function of the state xt and data mt in each time slot t. With the extensions above,

the proposed resource allocation mechanism can be shown to achieve the truth-revealing

equilibrium along with all other desirable properties as in Chapter 3.6. Since the proofs

are quite similar, we will not repeat them here.

3.9 Numerical Results

In this section, numerical results are presented to evaluate the proposed resource alloca-

tion mechanism. The parameter setting is given as follows: We randomly generate 10

devices and 2 loss-tolerant flows where flow 1 contains 3 devices and flow 2 contains 7

devices. The BS is scheduled to provide one resource block in each time slot, R = 1.

Each device has the i.i.d. Bernoulli energy arrivals ei,g in each time slot with mean uni-

formly generated from [0, 1]. The energy capacity of each device is 1 unit of energy,

ECi,g = 1. The wireless channel has two states, csi,g = 1, 2, where 1 means ”bad” with

packet success probability 0.4 and 2 means ”good” with packet success probability 0.8.
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Figure 3.4: The utility of each device in all possible feedback states.

The channel state transition probabilities of each device from state 1 to state 1 and state

2 to state 2 are uniformly generated from [0, 1], respectively. We randomly assign initial

energy state es0i,g and channel state cs0i,g to each device. The discount factor is β = 0.9

and the threshold for the value iteration algorithm is ǫ = 10−6. The results are plotted for

a single network instance if not specially mentioned.

We first verify the property of truth-revelation. Fig. 3.4 shows the utility of 4 randomly

selected devices (2 devices in flow 1 and 2 devices in flow 2) in all possible feedback states

in time slot 0. It can be seen that each device always achieves the maximum utility in the

true energy and channel states (the circled ones). This is true in each time slot. In other

words, the devices will always feedback the true state in each time slot. The proposed

resource allocation mechanism then ensures perfect ex-post incentive compatibility. We

also verify the properties of budget balance and individual rationality. In Fig. 3.5(a), the

net payment from the devices to the BS is greater than zero. Similarly, in Fig. 3.5(b), the

utility of each device is always greater than zero. Hence, the proposed resource allocation

is both ex-post budget balanced and ex-post individual rational.

In Fig. 3.6, to evaluate the weighted system throughput, we compare the proposed

resource allocation mechanism with the other schemes, including the greedy scheme, the
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(a) (b)

Figure 3.5: Budget balance and individual rationality: (a) The net payment from the

devices to the BS in all system states. (b) The utility of each device in all system states.

random scheme, and the partial feedback schemes that collect the feedback of energy

states or channel states, but not both. The greedy scheme allocates resources assuming

that each device greedily feedbacks the highest energy state and ”good” channel state

in each time slot. The random scheme allocates resource randomly in each time slot

(The results of the random scheme are averaged over 10 runs). Both greedy and random

schemes do not collect the feedback information from the devices. It can be seen in

Fig. 3.6(a) that the proposed resource allocation mechanism always outperforms the other

schemes. This is because the proposed resource allocation mechanism collects the true

feedback states and allocates resources in the most efficient way. The two partial feedback

schemes outperform the greedy and random schemes that do not collect the feedback

information. The partial feedback scheme that collects the feedback of the energy states

has better performance since the energy states are affected by the resource allocation and

it would be better to know the energy states, instead of the channel states. The random

scheme outperforms the greedy scheme. This is because in the random scheme each flow

has equal opportunities to gain resources, but in the greedy scheme only one specific flow

can gain resources. Thus, the random scheme has better performance.

The discount factor is also varied β = 0, 0.4, 0.8, 0.9, 0.95 to investigate its impact on

the weighted system throughput. Fig. 3.6(b) shows that the weighted system throughput

gets higher when the discount factor β increases. We can foresee this result as higher β
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(a) (b)

Figure 3.6: Performance comparison in the system throughput: (a) The weighted system

throughput of the proposed resource allocation mechanism, and other schemes. (b) The

weighted system throughput of the proposed resource allocation mechanism with different

values of the discount factor β.

means the proposed resource allocation mechanism takes more future one-shot throughput

into account and thus achieves higher weighted system throughput. Another way is to see

the weighted system throughput normalized by (1− β). We can find that the normalized

weighted system throughput may be high or low in different system states when β is small.

On the other hand, when β is large, the normalized weighted system throughput becomes

stable around 0.8 in all system states by taking more future one-shot system throughput

into account.

We also evaluate the weighted system throughput under different feedback frequen-

cies from per time slot to per 5 time slots. Fig. 3.7(a) shows that the weighted system

throughput is lower when n gets larger (the feedback is less frequent). Also, the decrease

becomes smaller when n gets larger. The reason is that the difference between the dis-

count factors in the n-th and (n + 1)-th time slots, βn(1 − β), is decreasing with respect

to n. Thus, there will be less difference to update the feedback states in the n-th and

(n + 1)-th time slots when n gets larger. Fig. 3.7(b) shows that the number of iterations

and the total time complexity both decrease when n gets larger. In other words, reducing

the signalling overhead brings the trade off of lower system throughput and less total time

complexity as we have discussed in Chapter 3.8.1.

Lastly, the throughput of each device with/without the weight design is compared in
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n

(a)

n

(b)

Figure 3.7: Trade-off among the signaling overhead, the system throughput and the time

complexity: (a) The weighted system throughput under feedback frequencies from per

time slot to per 5 time slots. (b) The number of iterations and the total time complexity

under feedback frequencies from per time slot to per 5 time slots.

Fig. 3.8. It can be seen that with the weight design, the throughput of each device in flow

1 (with 3 devices) is higher. The throughput of each device in flow 2 (with 7 devices) and

the system throughput are less. This means that the proposed weight design indeed trades

the system throughput off for fairer throughput performance among the devices.

3.10 Summary

In this chapter, we investigate multi-flow multicast over time-varying channels for energy-

harvesting devices. From the perspective of incentive mechanism design, this chapter

solves the resource allocation problem, considering the selfish characteristic and incom-

plete state information of the devices. The proposed resource allocation mechanism en-

sures the system to operate at the truth-revealing equilibrium where each device feedbacks

the true state information to the BS in each time slot. With truthful feedback, the resource

allocation achieves the desirable properties of maximum weighted system throughput,

budget balance, and individual rationality. The simple weight design also brings the sys-

tem fairness to some extent. From the algorithmic viewpoint, the proposed resource allo-

cation policy can be solved via the value iteration algorithm. The system throughput can

be traded off for less feedback signaling overhead and time complexity.
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Figure 3.8: Throughput performance of each device and the system with/without the pro-

posed weight design.
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Chapter 4

On Maximizing Data Fidelity in

Energy-Harvesting IoT: A Mechanism

Design Approach

4.1 Introduction

The Internet of things (IoT) is the inter-networking of smart devices, vehicles, and ma-

chines, and other items. The key factor for enabling this sophisticated paradigm is the

integration of novel communication protocols and technologies [1, 2]. The basic premise

of the IoT is to have wireless sensors collaborate directly without human involvement

[68]. The wireless sensors can collect data from the environment, which allows other

IoT items to further process data and make decisions. Conventional wireless sensors are

installed with batteries of limited capacity. Therefore, limited energy is a major bottle-

neck and minimizing energy consumption to ensure longer network operation is a main

design aspect. With the rapid development of energy harvesting technologies [69], wire-

less sensors now have chances to harvest renewable energy from ambient sources, such

as solar power, electromagnetic waves, thermal energy, wind energy, kinetic energy, etc.

Essentially, wireless sensors can benefit from the energy harvesting technologies to pro-

long life time and to achieve better performance [70]. Energy harvesting thus becomes
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an important design consideration of future IoT protocols. However, even with renew-

able energy, wireless sensors cannot always be activated as harvested energy is usually

scarce and time-varying, radio resources are limited, and wireless channels are also time-

fluctuating. Many research papers endeavor to propose energy management and node

activation schemes to achieve throughput maximization, transmission completion time

minimization, etc. Moreover, as the environmental data are usually correlated in space

and time, achieving high data fidelity, instead of solely maximizing throughput, also be-

comes a design objective. Even if many existing works optimize different network per-

formance metrics with complete information on energy, channels, and data correlations,

optimization is still difficult when such information is incomplete/unknown.

In this chapter, we investigate a node activation decision problem in the energy-

harvesting IoT over an infinite time horizon. In the proposed scenario, there are three

different groups of entities: a base station (BS), servers, and sensor nodes. The BS has

a limited number of radio resources. It manages the network and gives activation to sen-

sor nodes. The servers deploy sensor nodes to sense different environmental data, such

as temperature, humidity, pressure, etc. The sensor nodes can harvest energy to sense

data and transmit the sensed data through the BS to their servers. The data to be sensed

are assumed to have spatial-temporal correlations. Consider the case where two sensor

nodes gather data at the same time. When the data have high spatial correlations, the

data fidelity, i.e, the meaning and quality of the data, is lower than when the data have

low spatial correlations, even if the throughput, i.e., the amount of data gathered, is the

same. This is also true for high temporal data correlations. Therefore, the design metric

should be data fidelity in the server layer, not merely throughput in the sensor node layer.

Furthermore, we make a practical assumption that the data statistics (correlations) and the

energy states are only known to the servers and the sensor nodes, respectively. To achieve

efficient node activation, the BS requires the servers and the sensor nodes to feedback the

data statistics and the energy states. Considering the rational and selfish characteristics

of the servers, the servers and their own sensor nodes may falsely feedback to manipu-

late the BS’s node activation if doing so increases their own performance. The overall
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system performance may become inefficient. To this end, we propose an incentive-based

node activation mechanism to guarantee truthful feedback from the servers and the sensor

nodes. The detailed contributions are stated as follows:

1. We provide the theoretic foundation for the node activation decision problem in the

energy-harvesting IoT, considering spatial-temporal data correlations and incom-

plete information on the data statistics and the energy states.

2. The proposed node activation mechanism ensures the servers and the sensor nodes

to feedback the true data statistics and energy states. The system then operates at

the truth-revealing equilibrium (incentive compatibility).

3. The proposed node activation mechanism maximizes the system data fidelity, i.e.,

the meaning and quality of data.

4. The proposed node activation mechanism also ensures that the payment is always

made from the servers to the BS (budget balance). In other words, the BS does not

need to pay the servers to guarantee truthful feedback.

5. The servers will join the proposed node activation mechanism to obtain higher util-

ity than without joining (individual rationality).

4.2 Related Works

We first survey some previous works about transmission scheduling of senor nodes with

renewable energy. Sharma et al. studied a sensor node with an energy harvesting source

[71]. They proposed energy management policies that are throughput optimal and mean

delay optimal. Comparisons with other energy management policies were also made to

justify their proposed policies. Michelusi et al. also considered a wireless sensor powered

by an energy harvesting device [72]. By classifying data into different importance, they

proposed transmission policies to achieve near-optimal performance in terms of the aver-

age long-term data importance. Heuristic policies were also proposed based on the anal-

ysis of a system with a deterministic and periodic energy supply. Ozel et al. considered
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data transmission of an energy harvesting node in a wireless fading channel [44]. They

studied optimal off-line transmission policies that maximize the throughput and minimize

the transmission completion time. They also considered optimal on-line policies solved

via stochastic dynamic programming. Near-optimal policies were also proposed with re-

duced complexity.

Correlated data gathering is also a mature topic. Vuran et al. developed a theoretical

framework to model the spatial and temporal correlations in wireless sensor networks

[73]. Their framework enabled the designs of efficient communication protocols which

exploit intrinsic features of the spatial and temporal correlations. Liu et al. developed a

framework to exploit spatial and temporal correlations to partition sensors into clusters

and to restore the data in the sink with high fidelity [74]. An empirical study was also

conducted to test their method using both a real test bed system and a large-scale synthetic

data set. Yoon and Shahabi proposed a clutered aggregation algorithm that forms clusters

based on sensing values [75]. One sensed data per cluster was transmitted to achieve

a predefined error threshold. Another approach to exploit data correlations was given

in [76]. Luo et al. applied compressive sampling theory to propose compressive data

gathering that reduces global scale communication cost and extends the lifetime the entire

sensor network. They also tested their proposed method on real sensor data to show the

efficiency and robustness.

Combining transmission scheduling and data gathering, several existing research pa-

pers also proposed sensor node activation schemes to achieve different design goals. Since

these papers are the most related to this chapter, we also show our differences below. Roy

et al. defined application fidelity and studied the fidelity maximization problem in the

application layer of wireless sensor networks [77] . They proposed a utility-based algo-

rithm to select the optimal subset of applications to deploy given the available resources.

However, the work of [77] was focused on one-shot optimization where energy varia-

tions were not considered. Zheng et al. studied the node activation control problem in

energy-harvesting wireless sensor networks with a dynamic and unknown environment

[78]. They decomposed the problem into energy balancing among sensors in the spatial
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dimension and activation mode adaptation in the temporal dimension. Energy balancing

was optimized with game theory in a distributed way, whereas activation mode adaptation

in the dynamic and unknown environment was solved via reinforcement learning. Zhang

et al. investigated resource management and allocation in energy-harvesting cognitive

radio sensor networks [79]. They developed an aggregate network utility optimization

framework and proposed an on-line algorithm to achieve energy balancing and licensed

spectrum utilization of unlicensed sensors. Both [78] and [79] did not consider spatial-

temporal data correlations. In other words, even if the node activation policies were de-

signed to maximize the system utility/throughput, the system data fidelity may not be

optimal. Also, the fully distributed optimization in [78] may not work when consider-

ing spatial-temporal data correlations. Moreover, the work of [79] did not considered

the rational and selfish characteristics of sensors. As their proposed method consisted of

distributed optimization in each sensors and global optimization in the BS, information

feedback from the sensors to the BS is required. Intentionally false feedback may occur

if doing so increases an individual sensor’s performance.

We also introduced some of our previous works in energy harvesting. Shih et al. in-

vestigated two fundamental push-based and pull-based random access channel (RACH)

procedures in Long Term Evolution (LTE) for energy-harvesting devices [80]. A hy-

brid scheme was proposed to manage different traffic loads, avoiding severe RACH col-

lisions in the push-based scheme and the long delay in the pull-based scheme. Lin et al.

proposed a deep sleeping mechanism that is a median Medium Access Control (MAC)

enhancement scheme on IEEE 802.11 power saving mode (PSM) for energy-harvesting

devices [81]. By properly considering the energy levels and contention windows of the

energy-harvesting devices, their proposed deep sleeping mechanism is shown to reduce

the overall outage probability and collision probability and thus improve energy effi-

ciency. Kuan et al. proposed an erasure-based broadcast scheme to guarantee reliable

broadcast transmission in energy-harvesting networks [52]. They proposed three policies

to determine the broadcast period for different performance requirements, balancing the

tradeoff between reliability and throughput. Compared with [80, 81, 52] that assumed full
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Figure 4.1: A model of the energy-harvesting IoT. There are one BS and multiple sensor

nodes owned by different servers. Sensor node i owned by server g is denoted by node

(i, g). The nodes can harvest energy from the environment. The BS decides to activate

nodes to sense and transmit data back through the BS to their servers. The node activation

ati,g = 1 means that the BS activates node (i, g) in time slot t.

knowledge on the network environment, this chapter investigates a totally different node

activation decision problem with incomplete information of the network environment.

This chapter studies the node activation decision problem in energy-harvesting IoT

with energy variations and limited radio resources. Considering spatial-temporal data

correlations, we aim to maximize the system data fidelity. Unlike most of the previous

works, we assume that the data statistics and the energy states are only known to the

servers and the sensor nodes. We further assume that the servers are rational and self-

ish. Thus, the servers and their own sensor nodes may feedback the false information

to increase their own performance. We then propose an incentive-based node activation

mechanism that can elicit truthful feedback and also achieve several desirable properties.

4.3 System Model

We consider the time-slotted IoT consisting of three different groups of entities: a BS,

servers, and sensor nodes. A simple illustration of the proposed energy-harvesting IoT is

given in Fig. 4.1. The BS operates the network starting from time slot 0. It manages and

gives activation to nodes to sense data. It also provides R radio resource blocks in each

time slot for nodes to transmit the sensed data. A set of servers G = {1, 2, . . . , G} aims
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to collect different environmental data such as temperature, pressure, humidity, etc. To

sense data, each server g deploys a set of nodes Ig = {1, 2, . . . , Ig} where each node i of

server g is denoted by node (i, g). Each node has the simple functions:

1. It harvests energy from the environment.

2. It senses and transmits data to the server through the BS when being activated.

As the BS has R resource blocks, it can decide to activate up to R nodes to sense and

transmit data. Sensing and transmitting data is assumed to consume one unit of energy.

The activation status of node (i, g) in time slot t is denoted by ati,g = {0, 1}where 1 means

activation. The notations at = (ati,g)i∈Ig,g∈G, at
g = (ati,g)i∈Ig , and a

t
−g = (ati,k)i∈Ik,k∈G\g

are used to denote the activation profiles of all nodes in the system, all nodes of server g,

and all nodes other than those of server g, in time slot t, respectively. The notation a
〈t〉

and a
〈q≥t〉 are used to denote the activation profiles in each time slot t and each time slot

q ≥ t, respectively. Without special mention, the uses of g and−g in the subscript and 〈·〉

in the superscript have the same meaning to other notations throughout the paper.

4.3.1 Data Statistics and Entropy

We model the data of each server g in the network area by a discrete-space discrete-time

Gaussian random field

X
〈t〉
g ∼ N(µg,Σg). (4.1)

where X t
i,g represents the data at node (i, g) in time slot t [82, 83]. The notation µg is the

mean vector of the data at all nodes in all time slots, and Σg is the covariance matrix that

models the spatio-temporal data correlations. We assume that the Gaussian random field

is stationary and Markov in time.1 The data statistics µg and Σg are assumed to be only

known to each server g.

1Such an assumption is reasonable since the duration of a resource block is usually on the order of

millisecond, while the environmental remains constant for a much longer duration.
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We further consider the data entropy of the proposed Gaussian data model. Suppose

that various nodes of server g are activated in different time slots to sense data. The set of

the data is denoted byK with the mean vector µK,g and the covariance matrix ΣK,g, where

µK,g and ΣK,g are sub-vector and sub-matrix of µg and Σg, respectively. The entropy is

H(K) =
1

2
log
[

(2πe)|K||ΣK,g|
]

, (4.2)

which is only related to the covariance matrix ΣK,g. Therefore, in the rest of the paper,

when referring to the data statistics, we refer to the covariance matrix Σg. The entropy

means the expected value of the information obtained in the data. It is regarded as the

data fidelity that will be used as the optimization metric.

4.3.2 Energy States and Activation Intervals

In each time slot t, each node (i, g) is assumed to have independent and identically dis-

tributed (i.i.d.) energy arrivals denoted by ei,g [53, 45]. The i.i.d. assumption can be

generalized to stationary and Markov energy arrivals as will be shown in Chapter 4.7.3.

The energy arrivals in time slot t will be ready for use in the next time slot (t + 1). The

energy arrivals of different nodes can be different and correlated, which may be related

to each device’s energy-harvesting environment such as the physical location. At the be-

ginning of each time slot t, the energy stored in each node (i, g) is defined as the energy

state esti,g ∈ ES i,g = {0, 1, . . . , ECi,g} where ECi,g is the energy capacity. As a node

consumes one unit of energy to sense and transmit data when being activated, the energy

state transition is given as follows:

est+1
i,g = min(esti,g −min(esti,g, a

t
i,g) + ei,g, ECi,g), (4.3)

where ati,g is the activation status of node (i, g) in time slot t. One can note that the energy

states have the stochastic Markov transition due to the i.i.d. energy arrivals in different

time slots. The energy state transition function of each node (i, g), which can be derived
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from (4.3), is denoted by

Ei,g(es
t+1
i,g |es

t
i,g, a

t
i,g). (4.4)

Also, the energy state transition function of all nodes in the system is denoted by

E(est+1|est, at), the energy state transition function of all nodes other than those of server

g is denoted by E−g(es
t+1
−g |es

t
−g, a

t
−g).

We also introduce an activation interval variable τ ti,g to show how many time slots ago

the last activation of node (i, g) was. For instance, τ ti,g = q means that the last activation

of node (i, g) was in time slot (t− q). The initial activation interval is set τ 0i,g =∞ which

means there is no previous activation. It can be shown that the activation interval has the

deterministic Markov transition:

τ t+1
i,g =















τ ti,g + 1, ati,g = 0

1, ati,g = 1

. (4.5)

Derived from (4.5), we can also denote the activation interval transition function by

Ti,g(τ
t+1
i,g |τ

t
i,g, a

t
i,g). Similarly, we can also show the activation interval transition func-

tions of all nodes in the system, and all nodes other than those of server g, respectively, as

follows:

T (τ t+1|τ t, at) =
∏

i∈Ig,g∈G

Ti,g(τ
t+1
i,g |τ

t
i,g, a

t
i,g), (4.6)

T−g(τ
t+1
−g |τ

t
−g, a

t
−g) =

∏

i∈Ik,k∈G\g

Ti,k(τ
t+1
i,k |τ

t
i,k, a

t
i,k). (4.7)

In addition to the Markov energy states and activation intervals, we do not consider

channel fluctuations to simplify the model and analysis. The case of time-varying channel

conditions will be discussed in Chapter 4.7.3.
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4.3.3 Information Assumption on the Data Statistics, Energy States,

and Activation Intervals

Data statistics Σg is only known to each server g itself. The BS will require each server to

feedback the data statistics. Also note that each node only has a simple function to harvest

energy from the environment. It does not have to predict or measure how much energy

it can harvest. We assume that the measurement is done by the BS.2 However, even if

the BS can measure the energy harvesting dynamics, the exact energy state esti,g in each

time slot t is only known to each node (i, g) itself. The BS will also require each node to

feedback the energy state. On the other hand, the activation intervals are always known to

the BS since they are deterministic and fully controlled by the BS’s activation decision.

4.3.4 Data Fidelity

Data fidelity is defined in the sense that when more nodes are activated to get more data

samples, the server will obtain more information and thus more precise knowledge on the

environmental data. Data fidelity then represents how precise the knowledge we have on

the environmental data. However, as the data has spatio-temporal correlations, different

data samples may contain different information. This means the data fidelity achieved

may be different. We define the new information obtained in each time slot as the one-

shot data fidelity. For server g, given the activation status profile a
t
g, the energy state

profile es
t
g and the activation interval profile τ tg in time slot t, we denote the set of data

sensed by the nodes with ati,g = 1 in time slot t by K1(a
t
g) =

{

X t
i,g|a

t
i,g = 1

}

. We also

denote the set of data sensed by the nodes with a
t−τ ti,g
i,g = 1, i.e., in the most recent previous

time slots, by K2(τ
t
g) =

{

X
t−τ ti,g
i,g |a

t−τ ti,g
i,g = 1

}

. The new information obtained due to the

activation of the nodes in time slot t is the conditional entropy H(K1(a
t
g)|K2(τ

t
g)) =

H(K1(a
t
g),K2(τ

t
g)) − H(K2(τ

t
g)). Because of the Markov data assumption in time, we

only have to consider the data sensed by the nodes in the most recent previous time slots,

instead of the data sensed in all previous time slots, to derive the new information obtained

2The BS can deploy sensor nodes in the network area to sense and measure the energy harvesting

dynamics.
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in time slot t. This conditional entropy is defined as the one-shot data fidelity of server g,

denoted by vg(a
t
g,Σg, es

t
g, τ

t
g):

Definition 4.1. [One-shot data fidelity] The one-shot data fidelity of server g in time slot

t is

vg(a
t
g,Σg, es

t
g, τ

t
g) = H(K1(a

t
g),K2(τ

t
g))−H(K2(τ

t
g)). (4.8)

We further define the (long-term) data fidelity. We introduce a time discount factor β,

0 ≤ β ≤ 1, to consider the time value of one-shot data fidelity, emphasizing the one-shot

data fidelity in the near time slots. Therefore, the (long-term) data fidelity is defined as

the time-discounted sum of the one-shot data fidelity:

Definition 4.2. [Long-term data fidelity] The data fidelity of server g seen in time slot t is

∞
∑

q=t

βq−t
E
[

vg(a
t
g,Σg, es

t
g, τ

t
g)|Σg, es

t
g, τ

t
g

]

, (4.9)

where β, 0 ≤ β ≤ 1, is the discount factor.

Lastly, we define the (long-term) system data fidelity:

Definition 4.3. [Long-term system data fidelity] The system data fidelity seen in time slot

t is

∑

g∈G

∞
∑

q=t

βq−t
E
[

vg(a
t
g,Σg, es

t
g, τ

t
g)|Σ, es

t, τ t
]

. (4.10)

Maximizing the system data fidelity will be the main design objective as will be shown

in Chapter 4.4.

4.4 Node Activation Mechanism

In the proposed framework, the BS makes the node activation decision to maximize the

system data fidelity. As the data statistics and the energy states are only known to the
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Figure 4.2: The block diagram of the proposed node activation mechanism. The servers

and the nodes are required to feedback the data statistics and the energy states, respec-

tively. The BS makes the node activation decision and also charges the servers prices.

servers and the nodes, the BS requires the feedback of the data statistics and the energy

states. Since the servers and the nodes (owned by the servers) are selfish in nature, they

may falsely feedback to manipulate the BS’s node activation decision if doing so increases

their own performance. The overall system performance may become undesirable. There-

fore, we design a node activation mechanism that can induce truthful feedback.

The proposed node activation mechanism is shown in Fig. 4.2. It consists of a node

activation policy and a pricing policy. The node activation policy decides which nodes

to be activated in each time slot. It is designed to maximize the system data fidelity.

The pricing policy decides how the BS charges each server in each time time slot. It

is designed to ensure truthful feedback and achieve several desirable properties. Also,

a value iteration algorithm is proposed to derive the optimal solutions of the resource

allocation policy and the pricing policy. The details are specified as below.
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4.4.1 Feedback Strategies of the Servers

Each server g is required to feedback the data statistics Σg in each time slot. Though the

data statistics will not vary with time, we require the feedback in each time slot is for

the following reasons: Once the feedback is untruthful in a time slot, the feedback in the

future time slots can still be truthful. As we will propose a node activation policy and

a pricing policy both based on the current feedback, the untruthful current feedback will

not affect the future node activation and pricing. On the other hand, each node (i, g) is

required to feedback the energy state esti,g in each time slot. We assume that each server

makes a feedback strategy that decides how itseld and its nodes feedback the data statistics

and the energy states. To be specific, when the mechanism starts, each server g decides

a feedback strategy sg = (Σ̂
〈t〉
g , ês

〈t〉
g ) upon which server g feedbacks the data statistics

Σ̂t
g and each node (i, g) feedbacks the energy state êsti,g in each time slot t. A truthful

feedback strategy means s∗g = (Σ
〈t〉
g , es

〈t〉
g ) where Σt

g = Σg ∀ t. The collection of the

feedback and the activation intervals τ 〈q≤t−1〉 (no feedback is required as fully controlled

by the BS) up to time slot (t − 1) is called the history in time slot t and denoted by

ht = (Σ̂〈q≤t−1〉, ês〈q≤t−1〉, τ 〈q≤t−1〉). The feedback data statistics Σ̂t
g and energy state êsti,g

should be functions of the history ht, the true data statistics Σg, and true energy state esti,g.

However, we omit the complex notations and just use Σ̂t
g and êsti,g for short.

4.4.2 Node Activation Policy and Value Iteration

The system is Markov due to the Markov energy state and activation interval transitions.

The BS’s node activation decision can be modelled as a Markov decision process. Note

that the data statistics also affect the node activation decision. Therefore, we propose a

node activation policy under which the node activation in each time slot depends on the

feedback of the current data statistics and energy states. To be specific, the proposed node

activation policy is denoted by π∗ = (π∗
g)g∈G = (π∗

i,g)i∈Ig,g∈G. The node activation in

time slot t is a
t = π∗(Σ̂t, êst, τ t), given the current feedback data statistics Σ̂

t, energy

state ês
t, and activation interval τ t. The proposed node activation policy π∗ is designed
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to maximize the system data fidelity.3

Design 4.1. [Node activation policy] The node activation policy π∗ is designed to max-

imize the system data fidelity with any initial data statistics Σ̃, energy state ẽs
0, and

activation interval τ̃ 0:

π∗ = argmax
a〈t〉

∑

g∈G

∞
∑

t=0

βt
E

[

vg(a
t
g, Σ̃g, ẽs

t
g, τ̃

t
g)|Σ̃, ẽs

0, τ̃ 0
]

(4.11)

s.t.
∑

i∈Ig,g∈G

π∗
i,g ≤ R,

where the energy state ẽst and the activation interval τ̃ t satisfy the transition functions E

and T with a
t = π∗(Σ̃, ẽst, τ̃ t), respectively.

Given the feedback data statistics Σ̂t, energy state ês
t, and activation interval τ t in

each time slot t, the node activation is at = π∗(Σ̂t, êst, τ t).

From (4.11), we can also show the maximum system data fidelity denoted by a value

function V ∗ in a recursive form as follows:

V ∗(Σ, es, τ) =

max
a

[

∑

g∈G

vg(ag,Σg, esg, τg) + β
∑

es′,τ ′

E(es′|es, a)T (τ ′|τ, a)V ∗(Σ, es′, τ ′)

]

. (4.12)

Equation (4.12) is usually referred to as the Bellman equation. There are several algo-

rithms for solving the Bellman equation. One of the most widely used is value iteration

due to its many advantages, such as quick convergence and easy implementation, espe-

cially when the state space is very large [65]. The value iteration algorithm for deriving

the node activation policy π∗ and the value function V ∗ is given in Algorithm 4.1. It in-

volves the arbitrary initialization of the value function V ∗ (line 1) and the iterative update

of the value function according to the Bellman equation in (4.12) (lines 2 to 8). The up-

date process repeats until the convergence criterion is met, i.e., the update error δ is less

than the specified error tolerance ǫ (line 9). Lastly, the value iteration algorithm outputs

3Because of the stationary and Markov properties of the system, the optimal policy is indeed stationary

and a function of the current data statistics, energy state and activation interval.
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the optimal value function V ∗ and node activation policy π∗ (line 10).

Algorithm 4.1: Value iteration algorithm for node activation

1: Given Σ, initialize V ∗(Σ, es, τ) for each es and τ .

2: Repeat

3: δ ← 0.

4: For each es and τ .

5: v ← V ∗(Σ, es, τ).
6: V ∗(Σ, es, τ)←
7:

maxa

[

∑

g∈G vg(ag,Σg, esg, τg) + β
∑

es′,τ ′ E(es
′|es, a)T (τ ′|τ, a)V ∗(Σ, es′, τ ′)

]

.

8: δ ← max(δ, |v − V ∗(Σ, es, τ)|).
9: Until δ < ǫ (a small positive number).

10: Output the value function V ∗ and the policy π∗.

Lastly, it is useful to denote the system data fidelity other than server g (and its nodes)

by the value function V ∗
−g. For the use in the pricing policy in 4.4.4, we can also design a

node activation policy π−g that maximizes the system data fidelity with server g excluded

from the system. The system data fidelity with server g excluded is denoted by V −g.

4.4.3 Update of the Energy State Information

We discuss how the BS and the servers update the probability mass function (pmf) ∆(est)

of the energy state after the feedback in each time slot t.4 The time instant after the

feedback is called the ex-post stage of the time slot. In fact, we can define the other two

stages: the ex-ante stage and the interim stage [57]. However, since any properties that

are ex-post must be interim and ex-ante, we focus on the ex-post stage. So without special

mention, the system data fidelity in Definition 4.3 and everything else that will be defined

or designed later are all in the ex-post manner. Also note that there is no need to update

the information of the data statistics and the activation intervals since the former is not

time-varying and the latter is fully controlled by the BS.

After each node feedbacks the energy state, the BS updates the pmf ∆(est|ht+1) by

4Since each node’s feedback is based on the server’s feedback strategy, we keep the functions of the node

as simple as possible and assume that each node needs not update the system energy state information.
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the Bayes’ rule as follows:

∆(est|ht+1) =
∆(est|ht)∆(êst|est, ht)

∑

est
∆(est|ht)∆(êst|est, ht)

, (4.13)

where ∆(est|ht) is derived via the energy state transition function E as follows:

∆(est|ht) =
∑

est−1

∆(est−1|ht)E(est|est−1, π∗(Σ̂t−1, êst−1, τ t−1)). (4.14)

On the other hand, though the feedback may not be truthful, we assume that each

server g can transform untruthful feedback to the real energy states of its nodes (an inverse

transform from its feedback strategy). Thus, each server g knows the energy state estg and

updates the pmf ∆(est|estg, h
t+1) as follows:

∆(est|estg, h
t+1) =

∆(est|estg, h
t)∆(êst|est, ht)

∑

est−g
∆(est|estg, h

t)∆(êst|est, ht)
, (4.15)

where ∆(est|estg, h
t) is derived via the energy state transition function E−g as follows:

∆(est|estg, h
t) =

∑

es
t−1
−g

∆(est−1|est−1
g , ht)E−g(es

t
−g|es

t−1
−g , π

∗
−g(Σ̂

t−1, êst−1, τ t−1)).

(4.16)

4.4.4 Server Pricing Policy

We propose a pricing policy by which the BS charges each server for not only using the

network service but also ensuring truthful feedback. Several desirable properties can also

be achieved with the proposed pricing policy. The basic idea of the proposed pricing

policy comes from the Vickrey-Clarke-Groves (VCG) mechanism [58, 59, 60]. Since the

proposed node activation mechanism have multiple time slots, we extend the design idea

from one shot to multiple time slots. Specifically, after the feedback in each time slot

t, the BS pays each server g
∑

k∈G\g vk(π
∗
k, Σ̂

t
k, ês

t
k, τ

t
k), i.e., the one-shot system data

fidelity other than server g. To balance the payment, the BS also charges each server g the
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one-shot price

κtg(h
t, Σ̂t, êst) = V −g(Σ̂t

−g, ês
t
−g, τ

t
−g)− βE

[

V −g(Σ̂t
−g, es

t+1
−g , τ

t+1
−g )|ht+1

]

, (4.17)

where ht+1 = (ht, Σ̂t, êst, τ t). Just as in the VCG mechanism, we want the time dis-

counted sum of κtg to be V −g, i.e., the system data fidelity with server g excluded from the

system. However, directly using the VCG mechanism to charge

∑

k∈G\g vk(π
−g
k , Σ̂t

−g, ês
t
−g, τ

t
−g), i.e., the one-shot system data fidelity with server g ex-

cluded from the system, cannot make the time discounted sum equal to V −g. Therefore,

we find another way to decompose V −g in time into κtg in (4.17). The proposed pricing

policy denoted by ρ〈t〉 = (ρ
〈t〉
g )g∈G is then designed as follows:

Design 4.2. [Pricing policy] The one-shot price the BS charges each server g in time slot

t is

ρtg(h
t, Σ̂t, êst) = −

∑

k∈G\g

vk(π
∗
k(Σ̂

t, êst, τ t), Σ̂t
k, ês

t
k, τ

t
k) + κtg(h

t, Σ̂t, êst), (4.18)

where κtg is given in (4.17).

4.4.5 Utility of the Servers

With the proposed node activation policy π∗ and pricing policy ρ〈t〉, we define the ex-post

utility of each server g, denoted by ug(s|t,Σg, es
t
g, h

t+1), as the data fidelity minus the

price:

Definition 4.4. [Ex-post utility] The utility of server g seen in time slot t is

ug(s|Σg, es
t
g, h

t+1) =

∞
∑

q=t

βq−t
E

[

vg(π
∗
g(Σ̂

q, êsq, τ q),Σg, es
q
g, τ

q
g )− ρ

q
g(h

q, Σ̂q, êsq)|Σg, es
t
g, h

t+1
]

(4.19)

Each server g maximizes its own utility by choosing the feedback strategy sg. As will

be proved in Chapter 4.6, the proposed node activation mechanism can induce the truthful
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feedback strategy s∗g from each server g.

4.5 Node Activation Game and Solution Concept

The data statistics and the energy states in each time slot are only known to the servers

and the nodes, respectively. Since the energy state transition, the node activation tran-

sition, and the node activation policy are all Markov, the servers’ feedback decisions

under the proposed node activation mechanism can be formulated as a stochastic game

with incomplete information. The induced node activation game is denoted by G =

(G,Σ, es〈t〉, τ 〈t〉, s, E, T,u) where each component is specified as below:

• Player set G: Each server g ∈ G is a player in the game.

• Data statistics profile Σ, energy state profile es
〈t〉, and activation interval profile

τ 〈t〉: Each server g knows the data statistics Σg and the energy state es
t
g in each

time slot t. The activation interval τ t in each time slot t is fully controlled by and

known to the BS.

• Strategy profile s: Each server g has a strategy sg = (Σ̂
〈t〉
g , ês

〈t〉
g ) to feedback the

data statistics and the energy states in each time slot. The strategy profile is s =

(Σ̂〈t〉, ês〈t〉).

• Energy state transition functionE and activation interval transition function T : The

energy state transition function is E(est+1|est, π∗(Σ̂t, êst, τ t)), and the activation

interval transition function is T (τ t+1|τ t, π∗(Σ̂t, êst, τ t)). The energy state transi-

tion function and the activation interval transition function are both known to the

BS and the servers.

• Utility profile u: Each server g has the ex-post utility ug as shown in Definition 4.4.

The utility profile is u = (ug)g∈G .

The solution concept ”perfect ex-post equilibrium” will be used to anayze the pro-

posed node activation game. A perfect ex-post equilibrium is a refinement of a subgame
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perfect equilibrium [62] where the strategies form an ex-post equilibrium in any subgame.

It is a stronger solution concept than Bayesian equilibrium and Nash equilibrium that re-

quire Bayesian and complete information, respectively. The formal definition of a perfect

ex-post equilibrium is given as follows:

Definition 4.5. [Perfect ex-post equilibrium] The strategy profile s is a perfect ex-post

equilibrium if

ug(s|Σg, es
t
g, h

t+1) ≥ ug(s
′
g, s−g|Σg, es

t
g, h

t+1) ∀t, g,Σg, es
t
g, h

t, s′g 6= sg. (4.20)

It is well-known that a strategy profile is a subgame perfect equilibrium if and only if

there are no profitable one-shot deviations. The definitions of one-shot deviation strategy

and the one-shot deviation principle [63, 64] for the proposed node activation game are

given as follows:

Definition 4.6. [One-shot deviation strategy] A strategy s′g = (Σ
′,〈q〉
g , es

′,〈q〉
g ) is a one-shot

deviation from another strategy sg = (Σ̂
〈q〉
g , ês〈q〉g ) after some history ht in time slot t if

(Σ′,t
g , es

′,t
g ) 6= (Σ̂t

g, ês
t
g) and (Σ′,〈q>t〉

g , es′,〈q>t〉
g ) = (Σ̂〈q>t〉

g , ês〈q>t〉
g ). (4.21)

Definition 4.7. [One-shot deviation principle] The strategy profile s is a perfect ex-post

equilibrium if and only if

ug(s|Σg, es
t
g, h

t+1) ≥ ug(s
′
i,g, s−g|Σg, es

t
g, h

t+1) ∀t, g,Σg, es
t
g, h

t, s′g (4.22)

where s′g is any one-shot deviation strategy from sg after history ht.

4.6 Truth-Revealing Equilibrium and Desirable Proper-

ties

In the following, we prove that the proposed node activation game reaches the truth-

revealing perfect ex-post equilibrium s
∗ = (Σ〈q≥t〉, es〈q≥t〉) where Σt = Σ. The proposed
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node activation mechanism is then called ex-post incentive compatible. Before that we

first show the following lemma about κtg that will be used in the proof for Theorem 4.1.

Lemma 4.1. Given any strategy sg = (Σ̂
〈q≥t〉
g , ês〈q≥t〉

g ) of server g and the truthful feed-

back strategies s∗−g = (Σ
〈q≥t〉
−g , es

〈q≥t〉
−g ) of the other servers after any history ht, the time

discounted sum of κtg is

∞
∑

q=t

βq−t
E

[

κqg(h
q, Σ̂q

g,Σ
q
−g, ês

q
g, es

q
−g)|h

t+1
]

= V −g(Σt
−g, es

t
−g, τ

t
−g), (4.23)

where hq+1 = (hq, Σ̂q
g,Σ

q
−g, ês

q
g, es

q
−g) ∀ q ≥ t.

Proof. From (4.17), we know ∀ q ≥ t

βq−t
E

[

κqg(h
q, Σ̂q

g,Σ
q
−g, ês

q
g, es

q
−g)|h

t+1
]

=βq−t
E
[

V −g(Σq
−g, es

q
−g, τ

q
−g)|h

t+1
]

− βq+1−t
E
[

V −g(Σq+1
−g , es

q+1
−g , τ

q+1
−g )|ht+1

]

,

(4.24)

where E
[

V −g(Σt
−g, es

t
−g, τ

t
−g)|h

t+1
]

= V −g(Σt
−g, es

t
−g, τ

t
−g). Therefore, (4.23) can be

easily derived by summing (4.24) ∀ q ≥ t.

Theorem 4.1. [Ex-post incentive compatibility] The proposed node activation mechanism

is ex-post incentive compatible. The proposed game reaches the truth-revealing perfect

ex-post equilibrium s
∗ = (Σ〈t〉, es〈t〉) where Σ

t = Σ.

Proof. The proof follows the one-shot deviation principle. We consider the truthful feed-

back strategy profile s∗ = (Σ〈q≥t〉, es〈q≥t〉) and another feedback strategy profile (sg, s
∗
−g)

where server g plays a one-shot deviation strategy sg with (Σ̂t
g, ês

t
g) after some history ht

in time slot t.

From (4.19), given s
∗, we can derive server g’s utility after history ht:
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ug(s
∗|Σg, es

t
g, h

t+1) =
∑

k∈G

∞
∑

q=t

βq−t
E
[

vk(π
∗
k(Σ, es

q, τ q),Σk, es
q
k, τ

q
k )|Σg, es

t
g, h

∗,t+1
]

−
∞
∑

q=t

βq−t
E
[

κqg(h
q,Σq, esq)|Σg, es

t
g, h

t+1
]

= V ∗(Σ, est, τ t)− V −g(Σ−g, es
t
−g, τ

t
−g), (4.25)

where the first and the second terms in the last equality come from Design 4.1 and Lemma

4.1, respectively.

Given (sg, s
∗
−g), we can also derive server g’s utility after history ht:

ug(sg, s
∗
−g|Σg, es

t
g, h

t+1) = V ′(Σ, est, τ t)− V −g(Σ−g, es
t
−g, τ

t
−g), (4.26)

where

V ′(Σ, est, τ t) =E

[

vg(π
∗
g(Σ̂

t
g,Σ−g, ês

t
g, es

t
−g, τ

t),Σg, es
t
g, τ

t
g)|Σg, es

t
g, h

t+1
]

+
∑

k∈G\g

E

[

vk(π
∗
k(Σ̂

t
g,Σ−g, ês

t
g, es

t
−g, τ

t),Σt
k, es

t
k, τ

t
k)|Σg, es

t
g, h

t+1
]

+
∑

k∈G

∞
∑

q=t+1

βq−t
E
[

vk(π
∗
k(Σ, es

q, τ q),Σk, es
q
k, τ

q
k )|Σg, es

t
g, h

t+1
]

.

(4.27)

According to Design 4.1, since aq = π∗(Σ, esq, τ q)maximizes the system data through-

put, we know V ∗(Σ, est, τ t) ≥ V ′(Σ, est, τ t). Therefore, we have ug(s
∗|Σg, es

t
g, h

t+1) ≥

ug(sg, s
∗
−g|Σg, es

t
g, h

t+1). In other words, for each server g, the truthful feedback strategy

s∗g always brings higher ex-post utility than any one-shot deviation strategy sg after any

history ht. The game then has the truth-revealing perfect ex-post equilibrium s
∗. The

proposed node activation mechanism is ex-post incentive compatible.

Theorem 4.1 means that the proposed node activation mechanism reaches the equi-

librium point where the BS always collects the true data statistics and energy states from

the servers and the nodes. The equilibrium is perfect in that if each server is allowed to
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change a feedback strategy in each time slot, each server still always truthfully feedbacks.

The equilibrium is also ex-post in that after the true data statistics and energy states are

revealed in each time slot, each device will not regret the strategy it has made before

the proposed node activation mechanism starts. In the following propositions, we show

the node activation, the history, and the energy state information at the truth-revealing

equilibrium.

Proposition 4.1. [Equilibrium node activation] The equilibrium node activation in each

time slot t is

a
∗,t = π∗(Σ, est, τ t). (4.28)

Proposition 4.2. [Equilibrium history and energy state information] The equilibrium his-

tory in time slot t is

h∗,t = (Σ〈q≤t−1〉, es〈q≤t−1〉, τ 〈q≤t−1〉). (4.29)

In the ex-post stage of time slot t, the BS and each server knows the exact energy state

es
t.

Since the energy states have the Markov transition, Proposition 4.2 implies that once

the true energy state es
t is revealed in each time slot t, the BS and each server do not

need to memorize the history h∗,t. At the truth-revealing equilibrium, the BS and each

device can also easily compute the prices and the utility given in Propositions 4.3 and 4.4,

respectively.

Proposition 4.3. [Equilibrium price] The (long-term) equilibrium price seen in time slot

t is

∞
∑

q=t

βq−t
E
[

ρ∗,qg |Σg, es
t
g, h

∗,t+1
]

= −V ∗
−g(Σ, es

t, τ t) + V −g(Σ−g, es
t
−g, τ

t
−g), (4.30)

where ρ∗,qg = ρqg(h
∗,q,Σq, esq).
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Proposition 4.4. [Ex-post equilibrium utility] The equilibrium utility of each server g is

ug(s
∗|Σg, es

t
g, h

∗,t+1) = V ∗(Σ, est, τ t)− V −g(Σ−g, es
t
−g, τ

t
−g). (4.31)

In addition to the property of incentive compatibility, the proposed node activation

mechanism also achieves several desirable properties, including maximum system data

fidelity, budget balance, and individual rationality, all in the ex-post manner [34]. Max-

imum system data fidelity means that the node activation is the most efficient since no

other node activation can achieve greater system data fidelity.

Theorem 4.2. [Maximum ex-post system data fidelity] The proposed node activation mech-

anism achieves maximum ex-post system data fidelity. Mathematically, the equilibrium

node activation a
∗,〈q≥t〉 maximizes the ex-post system data fidelity:

a
∗,〈q≥t〉 = argmax

a〈q≥t〉

∑

g∈G

∞
∑

t=0

βt
E
[

vg(a
q
g,Σ

q
g, es

q
g, τ

q
g )|Σ, es

t, τ t
]

. (4.32)

Proof. The proposed node activation policy is designed to maximize the system data fi-

delity as shown in Design 4.1. Therefore, the proof follows Design 4.1 and Theorem

4.1.

Budget balance means that the payment is always made from the servers to the BS.

This is desirable as the BS does not need to pay the servers to ensure truthful feedback

[34]. We show that the proposed node activation mechanism achieves ex-post budget

balance.

Theorem 4.3. [Ex-post budget balance] The proposed node activation mechanism is ex-

post budget-balanced.

∑

g∈G

∞
∑

q=t

βq−t
E
[

ρ∗,qg |Σg, es
t
g, h

∗,t+1
]

≥ 0. (4.33)

Proof. Since π−g maximizes the system data fidelity with server g excluded from the
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system, we know

V −g(Σ−g, es
t
−g, τ

t
−g) ≥ V ∗

−g(Σ, es
t, τ t). (4.34)

Therefore, (4.33) can be derived from (4.30) and (4.34).

Lastly, individual rationality means that all servers will join the proposed node activa-

tion mechanism since they can obtain as much utility as without joining.

Theorem 4.4. [Ex-post individual rationality] The proposed node activation mechanism

is ex-post individual rational.

ug(s
∗|Σg, es

t
g, h

∗,t+1) ≥ 0 ∀g ∈ G. (4.35)

Proof. Since π∗ maximizes the ex-post system data fidelity, we know

V ∗(Σ, est, τ t) ≥ V −g(Σ−g, es
t
−g, τ

t
−g). (4.36)

From (4.31) and (4.36), we have (4.35).

To sum up, the proposed node activation mechanism is ex-post incentive compatible

that reaches the perfect ex-post equilibrium where the server and the nodes feedback

the true data statistics and energy states in each time slot, respectively. At the truth-

revealing equilibrium, the system achieves the maximum ex-post system data fidelity.

The BS charges the servers for node activation from the concept of user pays. There will

be no net payment from the BS to the servers to ensure truthful feedback (ex-post budget

balance). Also, the servers will join the proposed node activation mechanism as they can

obtain as much utility as without joining (ex-post individual rationality).

4.7 Further Discussions

We first show the complexity of the value iteration algorithm. Since the data statistics

are not time-varying and the activation intervals are deterministic that do not need to
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be feedbacked, we focus on the energy states es
〈t〉 in the following analysis. To de-

rive the value function V ∗ and the node activation policy π∗, the number of iterations is

Poly(|ES|
∑

g∈G |Ig|, |A|, 1
1−β

) and the worst-case computational complexity per iteration

is O(|ES|2
∑

g∈G |Ig||A|) where |A| is the number of possible node activation [66]. As the

proposed node activation mechanism requires feedback in each time slot, to reduce the

signalling overhead, we propose two methods – one with synchronous feedback and the

other with asynchronous feedback – in Chapters 4.7.1 and 4.7.2, respectively. We also

show the trade-off between the complexity and signalling overhead. In addition, recall

in Chapter 4.3.2 that each node’s energy arrivals are assumed to be i.i.d. in each time

slot. We discuss how this assumption can be generalized to stationary and Markov energy

arrivals in Chapter 4.7.3. Lastly, channels are assumed to be perfect throughout the paper.

We also discuss how the proposed node activation mechanism can work in time-varying

channels in Chapter 4.7.3.

4.7.1 Synchronous Feedback per n Time Slots

To reduce the signalling overhead to 1/n, we can allow each node to feedback the energy

state per n time slots. In this case, the node activation policy is ψ∗,〈0≤q≤n−1〉 that decides

the node activation in time slot (nl+q) based on the feedback energy state in time slot nl,

i.e., anl+q = ψ∗,q(êsnl). The node activation policy is designed to maximize the system

data fidelity seen in each time slot nl where the value function is denoted by Ψ∗. To

simplify the notation, we also denote v(at, est) =
∑

g∈G vg(a
t
g, es

t
g).

Design 4.3. [Node activation policy and value function for synchronous feedback per n

time slots] The node activation policy ψ∗,〈0≤q≤n−1〉 and the value function Ψ∗ are derived

as follows:

ψ∗,〈0≤q≤n−1〉(es0) = argmaxa〈0≤q≤n−1〉Ψ(a〈0≤q≤n−1〉, es0), (4.37)

Ψ∗(es0) = Ψ(ψ∗,〈0≤q≤n−1〉, es0), (4.38)
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where

Ψ(a〈0≤q≤n−1〉, es0) =v(a0, es0) +
n−1
∑

q=1

βq
∑

esq

Eq(esq|es0, a〈0≤l≤q−1〉)v(aq, esq)

+ βn
∑

esn

En(esn|es0, a〈0≤l≤n−1〉)Ψ∗(esn), (4.39)

and Eq(esq|es0, a〈0≤l≤q−1〉) for 1 ≤ q ≤ n is the q-step transition function satisfying

Eq(esq|es0, a〈0≤l≤q−1〉) =
∑

es1,...,esq−1

q
∏

l=1

E(esl|esl−1, al−1). (4.40)

Comparing (4.12) and (4.38), we know V ∗ ≥ Ψ∗. To solve (4.38) via the value itera-

tion algorithm, the number of iterations becomes Poly(|ES|
∑

g∈G |Ig|, |A|n, 1
1−βn ) but each

iteration becomes more costly with the time complexity O(|ES|2
∑

g∈G |Ig||A|n). There-

fore, reducing the signalling overhead by synchronous feedback per n time slots brings

lower system data fidelity and higher time complexity. To further reduce the time com-

plexity, we can add a constraint that the node activations are the same in the n time slots,

i.e., ψ∗,0 = ψ∗,1 = . . . = ψ∗,n−1. In this way, the system data fidelity should be even lower

but the number of iterations and the time complexity of each iteration both decrease to

Poly(|ES|
∑

g∈G |Ig|, |A|, 1
1−βn ) and O(|ES|2

∑
g∈G |Ig||A|), respectively.

4.7.2 Asynchronous Group Feedback

To reduce the signalling overhead to 1/n, another method is partition the servers into n

groups where each group is denoted by Cq for q = 0, 1, . . . , n − 1. (Note that a group

can be empty. Also note that the nodes of the same server must be in the same group;

otherwise, the property of truth-revelation will not hold.) We allow each group Cq to

feedback the energy state ês
nl+q
Cq

in each time slot (nl+q). In this case, the node activation

policy is φ∗,〈0≤q≤n−1〉 that decides the node activation in time slot (nl+ q) based on group

Cq’s feedback energy states, i.e., anl+q = φ∗,q(êsnl+q
Cq

). Note that the BS only has the

feedback energy state from group Cq in each time slot (nl + q). As we want to prevent

the BS from memorizing the feedback energy states of the other groups in the previous
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time slots, the node activation policy is designed to maximize the minimum system data

fidelity given all possible energy states of the other groups. Denoting the value function

in each time slot (nl + q) by Φ∗,q , we have the following designs:

Design 4.4. [Node activation policy and value functions for asynchronous group feed-

back] The node activation policy φ∗,〈0≤q≤n−1〉 and the value functions Φ∗,〈0≤q≤n−1〉 are

derived as follows:

φ∗,q(esqCq) = argmax
aq

[

min
es

q
−Cq

Φq(aq, esq)

]

, (4.41)

Φ∗,q(esq) = Φq(φ∗,q, esq), (4.42)

for q = 0, 1, . . . , n− 1, where

Φq(aq, esq) = v(aq, esq) + β
∑

esq+1

E(esq+1|esq, aq)Φ∗,(q+1)n(esq+1), (4.43)

and (·)n means modulus of n.

We know V ∗ ≥ Φ∗,q by comparing (3.42) and (4.42). The number of iterations for

solving each equation in (4.42) is Poly(|ES|
∑

g∈G |Ig|, |A|, 1
1−β

) and the time complexity

of each iteration is O(|ES|2
∑

g∈G |Ig||A|). Since there are n equations in (4.42), the total

number of iterations is n times. Therefore, reducing the signalling overhead by asyn-

chronous group feedback brings lower system data fidelity and more iterations with the

same time complexity.

4.7.3 Stationary, Markov Energy Arrivals and Time-Varying Chan-

nels

We consider a more general case that each node has stationary and Markov energy ar-

rivals. In the following analysis, we still omit the data statistics and node activations for

simplicity. Specifically, the energy arrivals in time slot t, denoted by e
t, are assumed to be
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stationary and Markov. Then, according to (4.3) with ei,g replaced by et+1
i,g , we can derive

the stationary and Markov energy state transition function as E(est+1, et+1|est, et, at).

Just as in Chapter 4.3.3, we assume that the BS knows the energy state transition E. The

BS does not know the exact energy state es
t and energy arrivals et and thus requires the

feedback of them. The Bellman equation for the value function becomes

V ∗(est, et) = max
at



v(at, est) + β
∑

est+1,et+1

E(est+1, et+1|est, et, at)V ∗(est+1, et+1)



 .

(4.44)

One can note that if the energy arrivals are i.i.d., (4.44) reduces to (3.42).

On the other hand, we have assumed perfect channels so far in this chapter. However,

we can also model the time-varying channels by assuming that each node experiences the

constant channel quality in a time slot, and the channel quality has the Markov transition

over time slots [54, 55]. To be specific, each node (i, g) has the packet success probability,

i.e., the channel state, csti,g ∈ CS i,g in each time slot t where CS i,g is the set of possible

channel states. The system channel state is denoted by cs
t = (csti,g)i∈Ng,g∈G with the

Markov transition function C(cst+1|cst). Since the channels are uplink from the nodes

to the BS, the BS is assumed to know the channel states and no feedback is required.

The system data fidelity should be a function of the energy states and channel states, i.e.,

v(at, est, cst).The Bellman equation for the value function becomes

V ∗(est, cst) =

max
at



v(at, est, cst) + β
∑

est+1,cst+1

E(est+1|est, at)C(cst+1|cst)V ∗(est+1, cst+1)



 .

(4.45)

With the assumptions of stationary and Markov energy arrivals and time-varying chan-

nels, our proposed node activation mechanism can still work to have the same desirable

properties of ex-post incentive compatibility, maximum system data fidelity, budget bal-

ance, and individual rationality.
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4.8 Numerical Results

In this section, numerical results are presented to evaluate the proposed node activation

mechanism. The general set-up of the parameters is given in Chapter 4.8.1. In Chapter

4.8.2, we verify the properties of incentive compatibility, budget balance, and individual

rationality. In Chapter 4.8.3, we change various parameters to show their impacts on the

system data fidelity. Lastly, the comparison of the synchronous feedback per n time slots

and asynchronous group feedback in the system data fidelity and the complexity is given

in Chapter 4.8.4.

4.8.1 Parameter Setting

The number of servers is G = {1, 2}. Each server has 3 nodes, Ig = {1, 2, 3}. The 6

nodes are uniformly deployed in a rectangular area where the BS is in the center. The

BS has the number of resource blocks R = 2 in each time slot. The energy capacity of

each node (i, g) is ECi,g = 1. Each node has i.i.d. Bernoulli energy arrivals in each time

slot with mean uniformly generated from [0, 1]. For each server g, the spatial-temporal

covariance of any two data points whose locations are x1 and x2 and whose time are t1

and t2 is given as σ2 exp
(

− ||x1−x2||
lx

)

exp
(

− |t1−t2|
lt

)

, with the variance σ2 = 1, the spatial

kernel lx = 5, and the temporal kernel lt = 1. The discount factor is β = 0.9 and the

threshold for the value iteration algorithm is ǫ = 10−6. The results are plotted for a single

network instance if not specially mentioned.

4.8.2 Verification of Incentive Compatibility, Budget Balance, and

Individual Rationality

We first verify the property of incentive compatibility, i.e., truth-revelation. Each server

has 8 possible feedback energy states (2 possible energy states of 3 nodes). We also as-

sume that each server can feedback 3 different values of the spatial kernel lx = 0, 5, 10

and 3 different values of the temporal kernel lt = 0, 1, 2. Fig. 4.3(a) shows that each

server always achieves the highest utility when feedbacking the true energy states and the
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(a) (b)

(c)

Figure 4.3: Incentive compatibility, budget balance, and individual rationality: (a) The

utility of each server under all possible one-shot deviation strategies in time slot 0. (b)

The price charged by the BS in all system states. (c) The utility of each server in all

system states.

true spatial-temporal kernel values (the true values are circled). Therefore, each server

will feedback the true energy state and data statistics, which then ensures incentive com-

patibility. In the following figures, we sort the curve with the highest value in ascending

order for better presentation. Fig. 4.3(b) shows the price charged by the BS in all system

states, where a system state means the collection of the energy state and activation interval

of each node. It can be seen that the price charged to each server and the overall price are

always greater than zero in all system states. Therefore, the payment is always made to

the BS (budget balance). Fig. 4.3(c) shows that the utility of each server is always greater

than zero in all system states. This then verifies individual rationality: each server will

join the proposed node activation mechanism as it always obtains utility greater than or
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(a)
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(b)
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Figure 4.4: Impacts of the parameter change on the system data fidelity: (a) The discount

factor β = 0, 0.4, 0.8, 0.9, 0.95, .099. (b) The energy capacity ECi,g = 1, 2. (c) The

spatial kernel lx = 0, 5, 10 and the temporal kernel lt = 0, 1, 2. (d) The number of

resource blocks R = 1, 2, 3, 4, 5, 6. (e) The number of nodes |Ig| = 2, 3, 4.

equal to zero. Due to the resource constraint, when the utility of server 1 goes up, the

utility of server 2 goes down.

4.8.3 Impacts of Parameter Change

We change the values of different parameters to show their impacts on the system data

fidelity. Given different values of the discount factor β = 0, 0.4, 0.8, 0.9, 0.95, 0.99, the

upper plot of Fig. 4.4(a) shows that the system data fidelity is higher when the discount

factor is higher since more future data fidelity is taken into account. Another way is

to see the normalized system data fidelity, i.e., the system data fidelity times (1 − β).

As shown in the lower plot of Fig. 4.4(a), when β = 0, the normalized system data

fidelity, i.e., the one-shot system data fidelity, varies from zero to 4 in different system

states. However, when β = 0.99, the normalized system data fidelity is quite stable

above 3 in all system states. This is because even if the one-shot system data fidelity may

be high or low (β = 0), the long-term performance of the system data fidelity is more

stable by averaging the system data fidelity in more future time slots. In Fig. 4.4(b),
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by varying the energy capacity ECi,g of each node from 1 to 2, the system data fidelity

becomes higher. The reason is that higher energy capacity means more energy stored for

future activation and thus higher future system data fidelity. (When ECi,g = 1, some

points have zero value since the system states where nodes have the energy state 2 are

not feasible.) We also vary the values of the spatial kernel lx = 0, 5, 10 and the temporal

kernel lt = 0, 1, 2 in Fig. 4.4(c) and find that the system data fidelity is higher when the

values of the kernels are smaller. In fact, smaller values of kernels mean the data are less

correlated. Therefore, each node activation should obtain more new information and thus

higher system data fidelity. Revealed in Fig. 4.4(d), by varying the number of resource

blocks R = 1, 2, 3, 4, 5, 6, the system data fidelity becomes higher. However, there is

no significant increase in the system data fidelity when R = 4, 5, 6 as the probability that

more than 5 or 6 nodes have energy to be activated in a time slot is relatively small. Lastly,

we vary the number of the nodes of each server |Ig| = 2, 3, 4. Fig. 4.4(e) reveals that the

system data fidelity is higher when each server has more nodes to sense the data. (When

|Ig| = 2, 3, some points have zero value since the system states where the fourth node of

each server has non-zero energy state are not feasible.)

4.8.4 Performance Comparison of Synchronous and Asynchronous

Feedback Designs

In Chapters 4.7.1 and 4.7.2, we propose two schemes to reduce the signaling overhead.

Here we show their trade-offs in the system data fidelity and the complexity. As shown in

Figs. 4.5(a) and 4.5(b), we have the highest system data fidelity and the lowest complexity

under feedback per time slot. When reducing the signaling overhead to 1/2 and 1/3 by

synchronous feedback per 2 and 3 time slots, the system data fidelity reduces to 93% and

88% and the complexity becomes 13 times and 199 times, respectively. On the other hand,

When reducing the signaling overhead to 1/2 by asynchronous 2-group feedback, the

system data fidelity reduces to 82%. This is the lowest among all schemes since we use

the ”maxmin” optimization criterion to prevent the BS from memorizing the feedback

energy states in the previous time slots. However, the complexity is only 2.5 times that is
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(a) (b)

Figure 4.5: Comparison of the synchronous and the asynchronous feedback designs: (a)

The system data fidelity. (b) The complexity.

quite lower than that of feedback per 2 and 3 time slots.

4.9 Summary

In this chapter, we investigate the node activation decision problem in the energy-harvesting

IoT. We model time-varying harvested energy, limited radio resources and spatial-temporal

data correlations. From the viewpoint of incentive mechanism design, we also consider

the rational and selfish characteristics of servers and incomplete information on the data

statistics and the energy states. Our theoretic analysis shows that the proposed node ac-

tivation mechanism is incentive compatible. That is, the network operates at the truth-

revealing equilibrium where each server and each node feedback the true data statis-

tics and energy states, respectively. With truthful feedback, the network operation also

achieves the desirable properties of maximum system data fidelity, budget balance, and

individual rationality. From the algorithmic viewpoint, the value iteration algorithm is

proposed to solve the optimal node activation policy. The numerical results also verify

our theoretical findings.
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Chapter 5

Conclusions

Table 5.1: Summary of the significant results
Time

horizon

Truthful

equilibrium

Efficiency Fairness Budget

balance

Individual

rationality

Multimedia multicast

(Chapter 2)

One-shot Dominant-

strategy

Pareto Max-min and

proportional

Yes Access

control

Small data multicast

(Chapter 3)

Infinite Perfect

ex-post

Max system

throughput

Yes Yes

Correlated data gathering

(Chapter 4)

Infinite Perfect

ex-post

Max system

data fidelity

Yes Yes

In this dissertation, we first indicate the importance of radio resource allocation in

the IoT. We also consider selfishness of IoT devices and incomplete information of the

network environment. This dissertation then takes a mechanism design approach to ad-

dressing the resource allocation problems for IoT information gathering and multicast

distribution. In Chapter 2, the multi-flow multimedia multicast is studied. The users’

private CQI are also considered. Chapter 3 addresses multi-flow multicast for common

data transmissions over time-varying channels for energy-harvesting devices. We also

consider the incomplete state information of the devices. Chapter 4 solves the activation

decision for energy-harvesting sensors to gather information and transmit to servers. We

model time-varying harvested energy, limited radio resources and spatial-temporal data

correlations. We also consider the incomplete information on the data statistics and the

energy states. Traditional solutions may not work as they did not consider selfishness of

the devices and incomplete information of the network environment. This dissertation

then has significant contributions in proposing the novel resource allocation mechanisms

to induce truthful feedback of the incomplete information and to achieve desirable prop-
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erties in the equilibria. Specifically, Chapter 2 achieves truthful dominant-strategy equi-

librium whereas Chapters 3 and 4 achieve truthful perfect ex-post equilibriums. For effi-

ciency, Chapter 2 achieves Pareto efficiency. Chapters 3 and 4 achieve maximum system

throughput and maximum system data fidelity, respectively. Chapter 2 achieves max-min

fairness and proportional fairness. Though Chapters 3 does not achieve specific fairness

metrics, the proposed weight design brings fairness resource allocation to some extent

as justified in the numerical result. Budget balance is guaranteed in all chapters as the

proposed mechanisms ensures that the BS does not need to pay to ensure truth-revelation.

Lastly, Chapter 2 achieves access control. Only devices with channel quality higher than

the system-defined threshold will join the proposed mechanism to gain non-negative util-

ity. Individual rationality is achieved in both Chapters 3 and 4. All devices and serves will

join the proposed mechanisms to gain non-negative utility. We summarize the significant

results in Table 5.1.

For future research, multimedia sensing and multimedia data processing may be one

direction. How to model the characteristics of multimedia data and to provide efficient

resource allocation are worth investigating. This also completes the multimedia data flow

from gathering to distribution in the IoT. On the other hand, the value iteration algorithms

are used to derive resource allocation policies in this dissertation. We have discussed

some methods in Chapters 3.8.1, 4.7.1, and 4.7.2. We may investigate faster and more

efficient algorithms to derive the optimal or sub-optimal solutions. With our current re-

search results and future endeavors, our long-term goal is to complete resource allocation

mechanism design for the IoT, solving the issues of selfishness and incomplete informa-

tion of devices, enhancing network performance, and ultimately achieving greater user

utility.
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Appendix A

Proofs for Lemmas 2.1, 2.3, and 2.4

A.1 Lemma 2.1

Proof. We only prove the case of the loss-tolerant flows. The proof for the loss-sensitive

flows is quite similar, so we skip it for simplicity. For the loss-tolerant flows, we prove that

vg(ei,g, Ag) is strictly decreasing with respect to ei,g by showing that
∂vg(ei,g, Ag)

∂ei,g
≤ 0

for 0 ≤ ei,g ≤ 1.
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∂vg(ei,g, Ag)

∂ei,g

=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

[

−j(1− ei,g)
j−1e

Ag−j

i,g + (Ag − j)(1− ei,g)
je

Ag−j−1
i,g

]

=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
j−1e

Ag−j−1
i,g [−jei,g + (Ag − j)(1− ei,g)]

=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
j−1e

Ag−j−1
i,g [Ag(1− ei,g)− j]

=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

Ag(1− ei,g)
je

Ag−j−1
i,g

−

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

j(1− ei,g)
j−1e

Ag−j−1
i,g

=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

Ag(1− ei,g)
je

Ag−j−1
i,g

−

Ag
∑

j=1

min

{

1,
j

Mg

}(

Ag − 1

j − 1

)

Ag(1− ei,g)
j−1e

Ag−j−1
i,g

(a)
=

Ag−1
∑

j=0

min

{

1,
j

Mg

}(

Ag − 1

j

)

Ag(1− ei,g)
je

Ag−j−1
i,g

+

Ag
∑

j=1

min

{

1,
j

Mg

}(

Ag − 1

j − 1

)

Ag(1− ei,g)
je

Ag−j−1
i,g

−

Ag
∑

j=1

min

{

1,
j

Mg

}(

Ag − 1

j − 1

)

Ag(1− ei,g)
j−1e

Ag−j−1
i,g

=

Ag−1
∑

j=0

min

{

1,
j

Mg

}(

Ag − 1

j

)

Ag(1− ei,g)
je

Ag−j−1
i,g

−

Ag
∑

j=1

min

{

1,
j

Mg

}(

Ag − 1

j − 1

)

Ag(1− ei,g)
j−1e

Ag−j

i,g

=

Ag−1
∑

j=0

min

{

1,
j

Mg

}(

Ag − 1

j

)

Ag(1− ei,g)
je

Ag−j−1
i,g

−

Ag−1
∑

j′=0

min

{

1,
j′ + 1

Mg

}(

Ag − 1

j′

)

Ag(1− ei,g)
j′e

Ag−j′−1
i,g

= −

Mg−1
∑

j=0

Ag

Mg

(

Ag − 1

j

)

(1− ei,g)
je

Ag−j−1
i,g ≤ 0. (A.1)
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where (a) uses the combinatorial equality
(

Ag

j

)

=
(

Ag−1
j

)

+
(

Ag−1
j−1

)

for 0 ≤ j ≤ Ag. Note

that the equality of (A.1) holds if and only if ei,g = 0 and 1. Therefore, vg(ei,g, Ag) is

strictly decreasing with respect to ei,g. We also prove that vg(ei,g, Ag) is strictly increasing

with respect to Ag by showing that vg(ei,g, Ag + 1)− vg(ei,g, Ag) ≥ 0 ∀Ag ≥ 0.

vg(ei,g, Ag + 1) =

Ag+1
∑

j=0

min

{

1,
j

Mg

}(

Ag + 1

j

)

(1− ei,g)
je

Ag+1−j

i,g

(b)
=

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
je

Ag+1−j

i,g

+

Ag+1
∑

j=1

min

{

1,
j

Mg

}(

Ag

j − 1

)

(1− ei,g)
je

Ag+1−j

i,g , (A.2)

where (b) uses the combinatorial equality
(

Ag

j

)

=
(

Ag−1
j

)

+
(

Ag−1
j−1

)

for 0 ≤ j ≤ Ag.

vg(ei,g, Ag) =

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
je

Ag−j

i,g , (A.3)

vg(ei,g, Ag + 1)− vg(ei,g, Ag) = −

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
j+1e

Ag−j

i,g

+

Ag+1
∑

j=1

min

{

1,
j

Mg

}(

Ag

j − 1

)

(1− ei,g)
je

Ag+1−j

i,g

= −

Ag
∑

j=0

min

{

1,
j

Mg

}(

Ag

j

)

(1− ei,g)
j+1e

Ag−j

i,g

+

Ag
∑

j′=0

min

{

1,
j′ + 1

Mg

}(

Ag

j′

)

(1− ei,g)
j′+1e

Ag−j′

i,g

=

Mg−1
∑

j=0

1

Mg

(

Ag

j

)

(1− ei,g)
j+1e

Ag−j

i,g ≥ 0. (A.4)

Also note that the equality of (A.4) holds if and only if ei,g = 0 and 1. Therefore,

vg(ei,g, Ag) is strictly increasing with respect to Ag
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A.2 Lemma 2.3

Proof. We only prove the loss-tolerant case. The proof for the loss-sensitive case is quite

similar and thus skipped. We first prove that the gradient function is single-peaked with

respect to ei,g. Note that the gradient function

∆vg(ei,g, Ag) = vg(ei,g, Ag + 1)− vg(ei,g, Ag) =

Mg−1
∑

j=0

1

Mg

(

Ag

j

)

(1− ei,g)
j+1e

Ag−j

i,g

(A.5)

Differentiating ∆vg(ei,g, Ag) with respect to ei,g, we have

∂∆vg(ei,g, Ag)

∂ei,g
=

(

Ag

Mg

)

(1− ei,g)
Mge

Ag−Mg

i,g −
1

Mg

Mg−1
∑

j=0

(

Ag

j

)

(1− ei,g)
je

Ag−j

i,g

= e
Ag

i,g

[

(

Ag

Mg

)(

1− ei,g
ei,g

)Mg

−
1

Mg

Mg−1
∑

j=0

(

Ag

j

)(

1− ei,g
ei,g

)j
]

(A.6)

Let x = (1−ei,g)/ei,g, and equivalently ei,g = 1/(1+x). Note that ei,g and x is one-to-

one mapping. Also note that ei,g increases when x decreases, and vice versa. Substituting

x into (A.6) and using f(x,Ag) to denote
∂∆vg(ei,g, Ag)

∂ei,g
for short, we have

f(x,Ag) =
∂∆vg(ei,g, Ag)

∂ei,g
=

(

1

1 + x

)Ag

[

(

Ag

Mg

)

xMg −
1

Mg

Mg−1
∑

j=0

(

Ag

j

)

xj

]

(A.7)

The term inside the square brackets is increasing with respect to x, from negative

to positive (can be easily proved by the first-order differentiation). We denote the point

that makes the term inside the square brackets equal to zero by x∗(Ag). Besides, the

term

(

1

1 + x

)Ag

is always positive. Therefore, the function f(x,Ag) is negative on

[0, x∗(Ag)), zero at x∗(Ag), and positive on (x∗(Ag),∞). In other words, the function

∂∆vg(ei,g, Ag)

∂ei,g
, with respect to ei,g, is positive on [0, e∗g(Ag)), zero at e∗g(Ag), and neg-

ative on (e∗g(Ag), 1], where e∗g(Ag) = 1/(1 + x∗(Ag)). That is, the gradient function

∆vg(ei,g, Ag) is single-peaked with respect to ei,g, and is maximized at e∗g(Ag).

We continue to prove that the function e∗g(Ag) is strictly increasing with respect to Ag.

113



doi:10.6342/NTU201701588

From (A.7), we know x∗(Ag) satisfies

(

Ag

Mg

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=0

(

Ag

j

)

(x∗(Ag))
j = 0 (A.8)

Consider the function f(x,Ag + 1)

f(x,Ag + 1) =
∂∆vg(ei,g, Ag + 1)

∂ei,g

=

(

1

1 + x

)Ag+1
[

(

Ag + 1

Mg

)

xMg −
1

Mg

Mg−1
∑

j=0

(

Ag + 1

j

)

xj

]

(A.9)

We prove the following to be true

(

Ag + 1

Mg

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=0

(

Ag + 1

j

)

(x∗(Ag))
j

(a)
=

(

Ag

Mg

)

(x∗(Ag))
Mg +

(

Ag

Mg − 1

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=0

(

Ag

j

)

(x∗(Ag))
j

−
1

Mg

Mg−1
∑

j=1

(

Ag

j − 1

)

(x∗(Ag))
j

=

(

Ag

Mg − 1

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=1

(

Ag

j − 1

)

(x∗(Ag))
j

=
Mg

Ag −Mg + 1

(

Ag

Mg

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=1

(

Ag

j − 1

)

(x∗(Ag))
j

=
1

Ag −Mg + 1

Mg−1
∑

j=0

(

Ag

j

)

(x∗(Ag))
j −

1

Mg

Mg−1
∑

j=1

(

Ag

j − 1

)

(x∗(Ag))
j

=
1

Ag −Mg + 1
+

Mg−1
∑

j=1

[

1

Ag −Mg + 1

(

Ag

j

)

−
1

Mg

(

Ag

j − 1

)]

(x∗(Ag))
j > 0

(A.10)

where (a) uses (A.8) and the combinatorial equality
(

Ag+1
j

)

=
(

Ag

j

)

+
(

Ag

j−1

)

for 0 ≤ j ≤

Mg. The last inequality of (A.10) holds since
(

Ag

j

)

/(Ag −Mg + 1)−
(

Ag

j−1

)

/Mg > 0 for

114



doi:10.6342/NTU201701588

j = 1, 2, . . . ,Mg − 1. From (A.9) and (A.10), we know

(

1

1 + x∗(Ag)

)Ag+1
[

(

Ag + 1

Mg

)

(x∗(Ag))
Mg −

1

Mg

Mg−1
∑

j=0

(

Ag + 1

j

)

(x∗(Ag))
j

]

> 0

(A.11)

Lastly, we know x∗(Ag + 1) < x∗(Ag) according to (A.11) and the fact that the

function f(x,Ag + 1) is negative on [0, x∗(Ag + 1)), zero at x∗(Ag + 1), and positive on

(x∗(Ag +1),∞). That is x∗(Ag) is strictly decreasing with respect to Ag. In other words,

e∗g(Ag) is strictly increasing with respect to Ag.

A.3 Lemma 2.4

Proof. As we increase Ag, three possible relationships among e∗g(Ag), ei,g, and ec,g will

be as follows:

1. e∗g(Ag) ≤ ei,g < ec,g.

2. ei,g < e∗g(Ag) ≤ ec,g.

3. ei,g < ec,g < e∗g(Ag).

According Lemma 2.3, we know that the utility gradient function is positive in the

first case and negative in the last case, shown as follows:















∆ui,g(ei,g, Ag) > 0, e∗g(Ag) ≤ ei,g < ec,g

∆ui,g(ei,g, Ag) < 0, ei,g < ec,g < e∗g(Ag)

(A.12)

We also know that there must exist the smallest-value Ag, denoted by di,g, such that

∆ui,g(ei,g, di,g) ≥ 0 and ∆ui,g(ei,g, di,g + 1) < 0. In the following, we derive the last

inequality of (2.11), ∆ui,g(ei,g, Ag) < 0 for Ag > di,g, from ∆ui,g(ei,g, di,g + 1) < 0. We

denote (di,g + 1) by d′i,g for short. There are two possible relationships among e∗g(d
′
i,g),

ei,g, and ec,g. If ei,g < ec,g < e∗g(d
′
i,g), as e∗g(Ag) is increasing with Ag, we know ei,g <
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ec,g < e∗g(Ag) for Ag > di,g. According to (A.12), this implies ∆ui,g(ei,g, Ag) < 0 for

Ag > di,g.

If ei,g < e∗g(d
′
i,g) ≤ ec,g, since ∆vg(ei,g, d

′
i,g) is continuous on ei,g, there must exist e′i,g

satisfying ei,g < e∗g(di,g) ≤ ec,g < e′i,g and such that ∆vg(ei,g, d
′
i,g) = ∆vg(e

′
i,g, d

′
i,g). We

show ∆vg(ei,g, d
′
i,g + 1) < ∆vg(e

′
i,g, d

′
i,g + 1) as below.

∆vg(ei,g, d
′
i,g + 1) < ∆vg(e

′
i,g, d

′
i,g + 1)

⇔
1

Mg

Mg−1
∑

j=0

(

d′i,g + 1

j

)

(1− ei,g)
j+1e
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∑
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(
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j

)
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(
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⇔
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(
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j

)
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(
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j − 1

)
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<
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(

d′i,g
j

)
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j+1
(

e′i,g
)d′i,g+1−j

+

Mg−1
∑

j=1

(

d′i,g
j − 1

)

(1− e′i,g)
j+1
(

e′i,g
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⇔
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(
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j

)
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d′i,g−j

i,g +

(

d′i,g
Mg − 1

)

(1− ei,g)
Mge

d′i,g−Mg+2
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<
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(1− ei,g)
Mge

d′i,g−Mg+1

i,g (A.13)

Let x = (1 − ei,g)/ei,g and x′ = (1 − e′i,g)/e
′
i,g. We know x > x′. Also, from

∆vg(ei,g, d
′
i,g) = ∆vg(e

′
i,g, d

′
i,g), we know

x

1 + x

(

1

1 + x

)d′i,g
Mg−1
∑

j=0

(

d′i,g
j

)

xj =
x′

1 + x′

(

1

1 + x′

)d′i,g
Mg−1
∑

j=0

(

d′i,g
j

)

(x′)
j

(A.14)

With the substitution of x and x′ and the use of (A.14), the last inequality in (A.13)
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becomes

(1− e′i,g)

(

d′i,g
Mg − 1

)

(1− e′i,g)
Mg
(

e′i,g
)d′i,g−Mg+1

< (1− ei,g)

(

d′i,g
Mg − 1

)

(1− ei,g)
Mge

d′i,g−Mg+1

i,g

⇔

(

x′

1 + x′

)2(
1

1 + x′

)d′i,g
(

d′i,g
Mg − 1

)

(x′)
Mg−1

<

(

x

1 + x

)2(
1

1 + x

)d′i,g
(

d′i,g
Mg − 1

)

xMg−1

⇔
x′

1 + x′

(

d′i,g
Mg−1

)

(x′)Mg−1

∑Mg−1
j=0

(

d′i,g
j

)

(x′)j
<

x

1 + x

(

d′i,g
Mg−1

)

xMg−1

∑Mg−1
j=0

(

d′i,g
j

)

xj
(A.15)

The last inequality can be proved easily from the first-order differentiation. Therefore,

if ei,g < e∗g(di,g + 1) ≤ ec,g, ∆ui,g(ei,g, di,g + 1) < 0 implies ∆ui,g(ei,g, di,g + 2) < 0.

We may continue to consider the possible relationships among e∗g(di,g + 2), ei,g, and ec,g,

and apply the same proof procedure. Finally, we get ∆ui,g(ei,g, Ag) < 0 for Ag > di,g.

The first inequality of (2.11), ∆ui,g(ei,g, Ag) > 0 for Ag < di,g, can be derived from

∆ui,g(ei,g, di,g) ≥ 0 in a similar way. So we do not repeat the proof here.

With all of the above derivations, there exists unique di,g such that ui,g(ei,g, Ag) is

maximized at Ag = di,g, and (2.11) is satisfied.
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