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Abstract

To realize practical quantum computation, a set of high-fidelity universal quantum gates
robust against noise and uncertainty in the qubit system is prerequisite. Constructing
control pulses to operate quantum gates which meet this requirement is an important and
timely issue. In most robust control methods, noise is assumed to be quasi-static, i.e.,
is time-independent within the gate operation time but can vary between different gates.
But this quasi-static-noise assumption is not always valid. Here we develop a systematic
method to find pulses for quantum gate operations robust against both low- and high-
frequency (comparable to the qubit transition frequency) stochastic time-varying noise.
Our approach, taking into account the noise properties of quantum computing systems,
can output single smooth pulses in the presence of multisources of noise. Furthermore, our
method can be applied to different system models and noise models, and will make essential
steps toward constructing high-fidelity and robust quantum gates for fault-tolerant quan-
tum computation (FTQC). We also discuss and compare the gate operation performance
by our method with that by the filter-transfer-function method.

Then we apply our robust control method for a realistic system of electron spin qubits
in semiconductor (silicon) quantum dots, a promising solid-state system compatible with
existing manufacturing technologies for practical quantum computation. A two-qubit
controlled-NOT (CNOT) gate, realized by a controlled-phase (C-phase) gate together with
some single-qubit gates, has been experimentally implemented recently for quantum-dot
electron spin qubits in isotopically purified silicon. But the infidelity of the two-qubit C-
phase gate is, primarily due to the electrical control noise, still higher than the required
error threshold for FTQC. Here we apply our robust control method to construct high-
fidelity CNOT gates with single smooth control pulses robust against the electrical noise
and the system parameter uncertainty. The experimental constraints on the maximum

pulse strength due to the power limitation of the on-chip electron spin resonance (ESR)
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line and the filtering effects on the pulses due to the finite bandwidth of waveform genera-
tors are also accounted for. The robust and high-fidelity single-qubit gates, together with
the two-qubit CNOT gates, can be performed within the same control framework in our
scheme, paving the way for large-scale FTQC.

Keywords: quantum computation, optimal control, robust, high-fidelity, time-

varying noise, quantum gate, quantum dot qubit
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1. Introduction

A bit is the fundamental storage and computing unit in classical computers. This fun-
damental unit in quantum computers is called a quantum bit (qubit), which is defined
through a realistic two-level system. The two-level states, |0) and |1), of a qubit corre-
spond to 0 and 1 of a classical bit, respectively. However, a qubit can according to quantum
mechanics be in the superposition state of |0) and |1), a|0) + 5 |1), and a classical bit can
only be 0 or 1. Combining with other properties of quantum mechanics such as entangle-
ment, quantum computers via quantum algorithms can tackle certain problems, which can
not be solved by the existing classical supercomputers. These quantum algorithms such
as Shor’s algorithm and Grover’s algorithm command the quantum computers to execute
a specific task via a composition of quantum gates. A quantum gate is operated on the
qubits by our controls in the system, and is just the propagator for the qubit system. The
dynamics of a quantum gate is governed by the Schrodinger equation. However, there
exist noise and uncertainty in a realistic system, causing the gate error or infidelity for
each gate. In this case, a quantum algorithm, composed of many quantum gates, may
easily fail. Fortunately, fault-tolerant quantum computation (FTQC) via a set of universal
quantum gates, in terms of which any unitary operation can be expressed to arbitrary
accuracy, can correct these errors if gate error of each universal quantum gate is below
some threshold, for example, 1072 for surface codes [1]. Therefore, our goal is to make all
universal quantum gates robust against the strength of noise and uncertainty to meet the
FTQC threshold requirement and to realize practical quantum computation.

Quantum gates in open quantum systems have been investigated by various methods such
as dynamical decoupling methods (2, 3, 4, 5, 6, 7, 8,9, 10, 11] and optimal control methods
[12, 13, 14, 15, 16, 17, 18, 19]. For classical noise, there are many robust control methods
such as composite pulses [20, 21, 22, 23, 24, 25, 26, 27, 28, 29|, soft uniaxial positive

control for orthogonal drift error (SUPCODE) [30, 31, 32, 33, 34, 35|, sampling-based
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learning control method [36, 37, 38|, inhomogeneous control methods [39, 40|, analytical
method [41], single-shot pulse method [42], optimal control methods [43, 44, 45|, invariant-
based inverse engineering method [46, 47|, and filter-transfer-function (FTF) methods [48,
49, 50, 51|. However, in most of these methods [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44], noise is assumed to be quasi-static. We
call these robust control strategies the quasi-static-noise (QSN) methods. But this QSN
assumption is not always valid [52]. The robust performance of control pulses obtained by
the QSN methods under time-dependent noise (e.g., 1/f“ noise) [32, 33, 35, 53] have been
investigated, and it was found that they can still work well for relatively low-frequency
non-Markovian noise (e.g., 1/ noise with o > 1) .

Stochastic time-dependent noise is treated in the FTF method [48, 49, 50] in which
the area of the filter-transfer function in the frequency region, where the noise power
spectral density (PSD) is non-negligible, is minimized. However, in this approach only
the filter-transfer function overlapping with the noise PSD in the preset frequency region
is considered, but the detailed information of the distribution of the noise PSD is not
included in the optimization cost function. Here we develop an optimal control method in
time domain by choosing the ensemble average gate infidelity (error) as our cost function
for optimization. As a result, the noise correlation function (CF) or equivalently the
detailed noise PSD distribution appears naturally in our chosen optimization cost function.
Therefore our method can have better robust performance against noise in a general case.
The idea of our method is simple, and our method is not limited to particular system
models, noise models, and noise CFs. We demonstrate our robust control method for
classical noise, but our method can be easily generalized to the case of quantum noise by
replacing the ensemble average for classical noise with the trace over the degrees of freedom
of the quantum noise (environment) [51]. In other words, our method can be applied to
systems with both classical noise and quantum noise present simultaneously.

Electron spin qubits in semiconductor quantum dots [54] are promising solid-state sys-
tems to realize quantum computation. Significant progresses of quantum-dot spin qubits
for quantum information processing have been made with III-V semiconductors such as
GaAs [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67|, but the coherence time of the qubits
is limited by the strong dephasing from the environment nuclear spins [68]. On the other

hand, the coherence time is substantially improved by using the Si-based host substrate
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[69, 70, 71, 72, 73, 74]. Recently, important quantum gate operations for quantum-dot
spin qubits in isotopically purified silicon have been demonstrated experimentally [71, 72].
There, the single-qubit gates have been demonstrated with fault-tolerant control-fidelity
[71], but the two-qubit gate fidelity [72] has not yet reached the criterion for surface codes,
primarily due to the noise of the electrical voltage control used to realize the two-qubit
gate.

Our goal is to construct robust quantum gates for quantum-dot spin qubits in purified
silicon with fidelity enabling large-scale FTQC by our robust control method. In the
experiment of this system [72], a single-qubit gate is realized by tuning down the detuning
energy to a small constant value to decouple the two-qubit coupling, and the qubit working
in this detuning energy region is not sensitive to the electrical noise. Inversely, a two-qubit
gate is realized by tuning up the detuning energy to a large constant value to increase the
coupling between two qubits, and the qubit working in this detuning energy region is very
sensitive to the electrical noise. Therefore, for two-qubit gates, the electrical noise is the
dominant source for fidelity degradation. Besides, when operating a sequence of single-
qubit gates and two-qubit gates, the rise and fall times of the detuning energy between
two-qubit gate and single-qubit gates would cause gate errors. And changing detuning
energy accompanies stark shifts on the quantum-dot qubits, which may result in additional
gate errors if the calibration is not precise. Therefore, we propose to keep the detuning
energy as a constant value when operating a sequence of single-qubit and two-qubit gates
to prevent the fidelity degradation from tuning the detuning energy up and down. After
finishing a sequence of gate operations, the detuning energy can be pulled to a small value
for the idle time.

Therefore, we keep the detuning energy as a constant value, and only control two AC
magnetic fields to operate single-qubit gates and two-qubit gates against the electrical noise
with realistic system parameters from the experiment [72|. In addition to the electrical
noise, we also consider other factors degrading the gate fidelity in our realistic model
for simulation such as the uncertainty in the system parameter and the filtering effects
due to the finite bandwidth of waveform generators. In experiment, the interdot tunnel
coupling is obtained by fitting the experimental data, and thus there may exist some
uncertainty in the interdot tunnel coupling, and the uncertainty will degrade the gate

fidelity. When we apply our optimal control pulses in an experiment, their shape will be

3 doi:10.6342/NTU201701845



altered due to the filtering effects, and the pulse distortion will also contribute extra gate
errors. Then we apply our robust control method to minimize the gate error contributions
from the noise, the uncertainty, and the filtering effects by our optimal control pulses;,
which satisfy the constraint of the maximum magnetic field strength smaller than 1mT
due to the power limitation through the on-chip ESR line. Instead of decomposing a
controlled-NOT (CNOT) gate into a C-phase gate and several single-qubit gates in series
as in the experiment [72], we can construct single smooth pulses for CNOT gates directly
to reduce the gate operation time and the accumulated gate errors from the decomposed
gates. Finally, we demonstrate that our optimal CNOT gate with maximum magnetic field
strength smaller than 1mT can suppress the infidelity contribution from the electrical noise
to ~ 10~ (around two orders of magnitude improvement compared with the simulation of
the realized ideal C-phase gate in experiment) and can be robust against the uncertainty
~ 10% of the interdot tunnel coupling for the threshold of surface codes (1072). For
our optimal single-qubit gates with maximum magnetic field strength smaller than 1mT,
the infidelity contribution from the electrical noise is also suppressed to ~ 10~° and the
robustness against the uncertainty error of the interdot tunnel coupling is over 15% for
the threshold of surface codes. The gate operation time of our optimal single-qubit gates
is also improved to 200 ~ 250ns from 1.5us (7 pulse in the experiment [72]). The gate
infidelities mentioned above have been recovered from the fidelity degradation due to the
filtering effects for both single-qubit gates and CNOT gates. To conclude, our robust
control strategy can provide high-fidelity and robust single-qubit gates and CNOT gates
for quantum-dot spin qubits in isotopically purified silicon, paving an essential step toward
large-scale FTQC.

The thesis is organized as follows. In Chapter 2, we introduce our robust control method
and demonstrate its performance. In Chapter 3, we apply our robust control method
introduced in Chapter 2 to construct high-fidelity and robust single-qubit gates and CNOT
gates for quantum-dot spin qubits in isotopically purified silicon. In Chapter 4, we conclude

what we did and show the future development directions for robust quantum gates.
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2. Robust quantum gates for stochastic

time-varying noise

In this chapter, we first introduce the concept of ensemble average infidelity and our robust
control method. We then demonstrate the performance of our method through comparing
with the quasi-static-noise (QSN) method and the filter-transfer-function (FTF) method,

and finally generalize our method to open quantum system.

2.1. Ensemble average infidelity

We describe the dynamics of the n—qubit system by its propagator

U(t) = T, expl—i /O M), 2.1)

where H(t) is the Hamiltonian of the system (in this chapter we set i = 1), and 7T is the
time-ordering operator. We can control H(t) from ¢ = 0 to t = t; to obtain U(ts) by Eq.
(2.1), and U(ty) is just a quantum gate for the n—qubit system with operation time ;.

Assume that Up is our target gate, we can define the gate error (gate infidelity) as

2
T , (2.2)

Tr [UfU(ty)|

=1-—
4n

where Tr denotes a trace over the n-qubit system state space. In a realistic system, there

may exist noise, and thus the Hamiltonian of the system H(¢) should include two parts
H(t) =Hi(t) + Hn(1), (2.3)

where H;(t) is the ideal system Hamiltonian and #Hy(t) is the noise Hamiltonian. If there

is no noise in the system (Hn(t) = 0), the Hamiltonian H(¢) will recover to the ideal
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system Hamiltonian H;(¢), and then the system propagator U(t) = U;(t), where

Ust) = T expl—i /0 ()t (244)

is the ideal system propagator. For there may exist many sources of noise, the general

form of the noise Hamiltonian is
Hn(t) = Bi(t)Huy,(t), (2.5)
J

where f3;(t) is the strength of the j-th noise and Hy;,(t) is the corresponding system
coupling operator term. In general, §;(t) is time-varying and stochastic, but if 3;(t) is a
constant and non-stochastic, 5; can be regarded as a systematic error or uncertainty.

To see the noise contribution in the gate infidelity Z, we transform the system to the

interaction picture by U;(t), and then the system Hamiltonian in the interaction picture is
H(t) = Si8;(0)R;(0), (2.6)

where
R;(t) = UL (t)Hn, (t)U;(1). (2.7)

Then the system propagator in the interaction picture is

0(t;) = To exp|—i /0 ()t (2.8)

If noise strength is not too strong, we can expand U(ts) by Dyson series [75] as the form

U(ty) =1+ ¥y + W + -+, where the first two terms of ¥; are

tro
Uy = 1/ Hy(t)dt', (2.9)
0

tf t1 ~ ~
Uy — — / it / dtsFn (0 F (t2). (2.10)
0 0

Now we transform the propagator in the interaction picture f](tf) back to the original
frame to obtain

Ulty) =Ur(ty) - [T+ 1+ Tg + - -], (2.11)

6 doi:10.6342/NTU201701845



and substitute it into the gate infidelity definition in Eq. (2.2). The expanded infidelity Z

(see Appendix A) takes the form

I=Ji+J2+ e+ OHR,m > 3), (2.12)
1 2

h=1-|m [U}Ul(tf)” : (2.13)
1 1

Jo = _WRG [Tr (¥q)] — o |Tr (Uy)]2. (2.14)

Here J; is the definition of gate infidelity for the ideal system Hj(t), J2 is the lowest-order
contribution of the noise to the gate infidelity, ¢ (detailed form shown in Appendix A)
denotes an extra contribution that is correlated to J; and the Dyson expansion terms ¥,
and O( ~}(§, m > 3) represents other higher-order terms excluding e. If noise strength is not
too strong such that || < |¥;], the extra contribution € will become negligible when
Jp is getting small (see discussion in Appendix A). The symbol Re in Eq. (2.14) denotes
taking the real part of the quantity it acts on. Because noise 3;(t) is stochastic in general,

we denote the ensemble average of the infidelity over the different noise realizations as
(L) = Ji + (T2} + (e) + (O(HR,m > 3)). (2.15)

Here

B ty t1 ‘ Tr [Rj (tl)Rk (tQ)]
<J2> = %/0 dtl/o dtQCjk<t1,t2) on—1

_Z/Otf i, /Otf dtijk(t1,t2)Tr [R;(t1)] Tr [Rk(h)]’ (2.16)
ik

4’!’L

where Cj(t1,t2) = (8;(t1)Br(t2)) is the CF for noise 8;(t1) and B (t2). The first-order noise
term proportional to Re[Tr(¥;)] vanishes due to the fact that Tr(¥;) is purely imaginary
rather than the assumption of (5;(t)) = 0 (see Appendix A). If different sources of noise
are independent, Cji(t1,t2) = 0 for j # k, and if noise Hamiltonian H () is traceless, the

second term in Eq. (2.16) vanishes. If 3; is a systematic error or uncertainty, Cj;(t1,t2) =

8.
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2.2. Optimization method and noise suppression

The ideal Hamiltonian H;(¢) is a function of the control field (), that is Hi(t) =
Hr(22(t)), and the control field €(t) is chosen to be a function of a set of control pa-
rameters [a1,ag,---|. Then Us(t) and each term of the ensemble average infidelity (Z) in
Eq. (2.15) are also a function of the control parameter set a1, ag, - - -]. Our goal is to search
the optimal parameter set [a1, a9, - - -] that minimizes the ensemble average infidelity (Z).
If the noise strength or fluctuation is not large, then the dominant noise contribution to
(I) is from (Jp) as the higher order terms (O(H, m > 3)) can be neglected (see Ap-
pendix B). J; can generally be made sufficiently small so that the extra term (e) in (Z) of
Eq. (2.15) can be safely ignored. So we concentrate on the minimization of (Z) = J; + (Jo)
for obtaining the optimal control parameter set.

We use the two-step optimization to achieve this goal. The first step is called the J;
optimization in which Jj is the cost function. The gate infidelities Jj in an ideal unitary
system with gate-operation-controllability and a sufficient number of control parameters
can be made as low as one wishes, limited only by the machine precision of the computation.
So using an ensemble of random control parameter sets as initial guesses, we obtain after
the J; optimization an ensemble of optimized control parameters sets all with very low
values of J;. The second step is called the Jy + (J2) optimization. We take J; + (Ja)
as a cost function and randomly choose some optimized control parameter sets in the
first optimization step as initial guesses to run the optimal control algorithm. After the
J1 + (J2) optimization, we obtain an ensemble of control parameter sets with low values
of J1 + (Ja2), and then choose the lowest one as the optimal control parameter set. The
purpose of using the two-step optimization is to improve optimization efficiency. If we run
the J; + (J2) optimization directly from an ensemble of random control parameter sets,
we need more optimization iterations to achieve the goal, and the success rate is relatively
low compared with the two-step optimization. Besides, the J; 4 (J2) optimization enables
us to know separately the optimized values of J; and (J2). When (J3) can be minimized
to a very small value as in the case of static or low-frequency noise, one has to use a
small time step for simulation to make J; smaller than (J2). However, for high-frequency
noise, (J3) is hard to be minimized to a very small value, and one can instead choose a

suitable larger time step to make J; just one or two orders of magnitude smaller than (.Js),
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saving substantially the optimization time especially for multiqubits and multiple sources
of noise. We use the gradient-free and model-free Nelder-Mead (NM) algorithm [76] in
both the J; and J; + (J3) optimization steps. However, the NM algorithm may be stuck
in local traps in the Jj + (J2) parameter space topography. To overcome this problem, we
use the repeating-NM algorithm in the J; + (J) optimization step. The control parameter
set from the first Jj + (J2) optimization may lie in a local trap. Therefore, we add random
fluctuations to this control parameter set and try to pull it out of the trap. Then we
use this shifted control parameter set as an initial guess to run the second J; + (Jo)
optimization. We repeat the same procedure many times until the values of J; + (J2) can
not be improved (reduced) anymore, and then output the corresponding control parameter
set. Our optimization method employing the gradient-free and model-free NM algorithm
is quite general, capable of dealing with different forms or structures of the ideal system
Hamiltonian #;(t), control field ©(t), noise Hamiltonian Hx(t), and noise CF Cj(t1,t2)
for a few qubit systems.

The robustness of our method can be understood as follows. After the two-step optimiza-
tion, one can obtain small J; + (J2). Generally, J; can be even a few orders of magnitude
smaller than (.Js), and then (Z) = (.J;). For simplicity, let us assume that there is only one
source of traceless noise present in the system with correlation function given by C(t1,t2) =
a2C (t1,t2), where & is the standard deviation of the noise strength fluctuation. Then from
Eq. (2.16), we have (Z) 2 (o) = 62 {[,* dt1 [3" dt2C(t1, ta) Tr[R(t1) R(t2)]/271} . If the
value of {fgf dty 51 dtoC(t1,ta) Tr[R(t)R(t2)] /2" '} can be reduced more, then larger

noise g2

can be tolerated under the same error (infidelity) threshold, that is, the quantum
gate can be more robust to noise fluctuation. The infidelity (Z) to the lowest noise order
is proportional to &2; but if & is too large, then the higher order terms (O( ~ﬁ, m > 3))
should be considered. Therefore, robust performance can be demonstrated by showing the
relation of full-order (Z) versus . The full-order (Z) we use to show the robust perfor-
mance is calculated using the full evolution of the total system-noise Hamiltonian without
any approximation. By inputting the optimal control parameter set obtained by the opti-
mization strategy into the total system-noise Hamiltonian H(t) = H;(t) +H () to obtain
numerically the full propagator for a single noise realization, we can calculate the gate

infidelity Z using Eq. (2.2) for the noise realization. The procedure is repeated for many

different noise realizations. Then we take an ensemble average of the infidelities over the
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different noise realizations to obtain (Z).

2.3. Demonstration of our optimal control method

In principle, we could deal with any given form of the noise correlation function (or equiv-
alently the noise PSD) to insert into Eq. (2.16) for the J; + (J3) optimization. But as a
particular example, we choose the Ornstein-Uhlenbeck (OU) process Soy(t) to simulate
stochastic time-varying noise [77|. Studying the influence of and developing robust strate-
gies against time-dependent noise is an important subject of research in quantum control
problems both theoretically and experimentally [48, 49, 50, 52, 53]. If the initial noise
Bou(t = 0) is a normal distribution with zero mean and with standard deviation ooy,

then the noise CF of the OU process Boy(t) is

COU(tl,tQ) = U?)U exp (—'yOU ’tl — tg‘) (2.17)

with the noise correlation time 7 ~ (1/v0or), and the corresponding noise PSD is Lorentzian

2
2UOU’}’OU

Sov(w) = By + o)

(2.18)

Lorentzian PSDs of spin noise resulting in a fluctuating magnetic field at the location of
the qubits in InGaAs semiconductor quantum dots have been measured experimentally
[78, 79]. Generally, a small yorr corresponds to low-frequency or quasi-static noise; a large
~vou corresponds to high-frequency noise. The noise Soy(t) can be simulated through the
formula Boy (t + dt) = (1 — youdt) Bou (t) + couv27v0udW (t), where W (t) is a Wiener
process |77]. Figures 2.1(c), (d), and (e) show the different realizations of the noise So(t)
with ooy = 1072 for different values of yor/wo = 1077, 1073, and 107!, respectively,
where wq is the typical system frequency. We note here that the particular choice of the
OU noise should by no means diminish the value of our work or the power of our method.
Any given or experimentally measured well-behaved noise PSD or noise CF can be dealt
with. We will demonstrate later that our method can also work effectively for another
form of noise PSD different from that of the OU noise when we compare the performance
of our method with that of the FTF method. The reason for using the OU noise in the

system-noise Hamiltonian here is that it is relatively easy to simulate its stochastic noise
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realizations in the time domain. Therefore, we can calculate the full-order ensemble average
infidelity (Z) to show that our J; + (J2) optimization, which minimizes the second-order
noise contribution to the average infidelity (Z), can indeed work rather well for not too

strong a noise fluctuation.

2.3.1. Comparison with the quasi-static-noise method
2.3.1.1. Single-qubit gates

We demonstrate as an example the implementation of single-qubit gates in the presence of

time-varying noise using our method. The ideal system Hamiltonian for the qubit is

Hi(t) :WO§+QX(t)§7 (2.19)

where X and Z stand for the Pauli matrices, wg is the qubit transition frequency, and
Qx(t) is the control field in the X term. The noise Hamiltonian is written as

HN(t) = ﬂz(t)u)og + 5X(t)Qx<t)§. (2.20)

We call 5z(t) the Z-noise and Sx (t) the X-noise, and assume that they are independent OU
noises with CFs Czz(t1,t2) = O'%Z exp (—yzz |t1 — t2]) and Cx x (t1, t2) :Ug(x exp (—yxx [t1 — t2|)
as the form of Eq. (2.17). We choose the control pulse as a composite sine pulse expressed

as

kmax
t
Qx(t) = E ay sin <mk7rt> , (2.21)
— !
k=1

where the set of the strengths of the single sine pulses is the control parameter set [ay] =
l[a1, a2, ,ak,. ] and {my} is a set of integers, chosen depending on the nature of the
system Hamiltonians and the target gates as well as the properties of the noise models.
We define below three optimization strategies, namely, the ideal-gate (IDG) strategy,
quasi-static-noise (QSN) strategy, and time-varying-noise (TVN) strategy. The IDG strat-
egy is to perform the first-step optimization (.J; optimization) only and to show the perfor-
mance of an ideal gate pulse in the presence of noise. The TVN strategy is our proposed
method described earlier above, in which the actual vzz and yxx values are used in the
noise CFs of the cost function (J;) for the second-step optimization. The QSN strategy

uses the same optimization procedure as the TVN strategy, but with vzz = vxx = 0 for
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Figure 2.1.: J; + (J3) versus (a) vzz for Z-noise (077 = 1073, oxx = 0) and (b) yxx
for X-noise (ocxx = 1073, 0zz = 0). The J; + (Jo) values are obtained
using the optimal control parameter sets of the Hadamard gate from the IDG
strategy (blue triangles), QSN strategy (red circles), and TVN strategy (yellow
squares). Ten realizations of OU noise Boy(t) with ooy = 1073 for you /wo
equal to (¢) 1077, (d) 1073, and (e) 1071
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Figure 2.2.: J;+(.J) values versus vz for Z-noise (677 = 1073, oxx = 0) and versus yx x

for X-noise (ocxx = 1073, 07z = 0) obtained from the IDG strategy (blue
triangles), QSN strategy (red circles), and TVN strategy (yellow squares) for
the phase gate shown in (a) and (b), respectively, and for the 7/8 gate in (c)
and (d), respectively.
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the noise CFs in the cost function (J3). Thus it is regarded to represent the QSN methods.
We choose the gate operation time ¢ty = 20/wg. After the optimizations of Hadamard gate,
we plot the corresponding J; + (J2) values obtained from these three strategies versus
vzz in Figure 2.1(a) for the Z-noise and versus yxx in Figure 2.1(b) for the X-noise.
For low-frequency (quasi-static) noise (7727 = yxx = 107 7wp), the performance of the
TVN strategy and the QSN strategy are about the same but they are several orders of
magnitude better in infidelity J; + (J2) value than the IDG strategy which does not take
the noise into account at all. As the noise goes from the low frequency to high frequency
(vzz = vxx = 107 'wp), the TVN strategy taking account of the TVN information in the
cost function gets better and better (from a factor-level to an order-of-magnitude-level)
improvement in J; + (J3) values than the QSN strategy in which noise is assumed to be
quasi-static. In addition to the Hadamard gate, we perform calculations for other quan-
tum gates, namely the phase gate, 7/8 gate and controlled-NOT (CNOT) gate, in the
fault-tolerant universal set in terms of which any unitary operation can be expressed to
arbitrary accuracy. The J; + (J3) values versus vzz and versus yxx obtained from the
three strategies are shown in Figures 2.2(a) and (b), respectively, for the phase gate and
in Figures 2.2(c) and (d), respectively, for the 7/8 gate. Their performances are similar
to those in Figure 2.1(a) and (b) of the Hadamard gate. The optimization results for the
two-qubit CNOT gate are presented in Sec. 2.3.1.2.

Next, we take the optimal control parameter sets of the Hadamard gate from these three
strategies to show their robust performance against Z-noise, X-noise, and Z-&-X-noise
at a low frequency (vzz = vxx = 10~ "wp) in Figures 2.3(a), (b), and (c) and at a high
frequency (yzz = vxx = 10~ wp) in Figures 2.4(a), (b), and (c). For low-frequency noise
and for low noise strength (oxx < 107!, 07z < 107!), one can see in Figure 2.3 that the
full-order ensemble average infidelity (Z) scales for the IDG strategy as the second power
of the noise standard deviation (0zz, oxx) but scales for the TVN and QSN strategies
as the fourth power. This implies that (Z) = (J2) for the IDG strategy, but the TVN and
QSN strategies can nullify the contribution from (J2) for the low-frequency (quasi-static)
noise and the dominant contribution in (Z) comes from the next higher-order term, i.e.,
(T) = (O(H%)). In this case, our method, the TVN strategy, still performs slightly better
than the QSN strategy. For gate error (infidelity) less than the error threshold of 102

of surface codes required for FTQC, the Hadamard gate of TVN strategy can be robust
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Figure 2.3.: Robust performance of the Hadamard gate of the IDG strategy (blue tri-
angles), QSN strategy (red circles), and TVN strategy (yellow squares) for
low-frequency (vzz = vxx = 10~ 7wp) (a) Z-noise, (b) X-noise, and (c) Z-&-
X-noise. The corresponding optimal control pulses of the TVN strategy for
Z-noise, X-noise, and Z-&-X-noise are shown in (d), (e), and (f), respectively.
The number of control parameters kpyax—10 for Qx(¢) in (d)-(f).

to ozz ~ 30% for low-frequency Z-noise (i.e., against noise fluctuation with a standard
deviation up to about 30% of wp/2), robust to oxx ~ 20% for the X-noise [i.e., against
noise fluctuation with a standard deviation up to about 20% of Qx(t)/2], and robust to
ozz = oxx ~ 10% for Z-&-X-noise as shown in Figures 2.3(a), (b), and (c), respectively.
The corresponding optimal control pulses of the TVN strategy are shown in Figures 2.3(d),
(e), and (f), respectively.

For high-frequency noise shown in Figure 2.4, the full-order ensemble average infidelity
(Z) scales as the second power of the noise standard deviation (0zz, oxx) for all three
strategies and noises. This indicates that for high-frequency noise (Jz) is not nullified
completely, and is only minimized. Even in this case, the TVN strategy still has over
two orders of magnitude improvement in (Z) compared with the IDG strategy, and over
one order of magnitude improvement compared with the QSN strategy for the Z-noise
at small noise strengths as shown in Figure 2.4(a). For (Z) < 1072 less than the FTQC
error threshold of the surface codes, the Hadamard gate implemented by our optimal
control pulse shown in Figure 2.4(d) can be robust to o7z ~ 20% for the Z-noise. On

the other hand, for the high-frequency X-noise, (Z) obtained by the QSN strategy has
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Figure 2.4.: Robust performance of the Hadamard gate of the IDG strategy (blue tri-

angles), QSN strategy (red circles), and TVN strategy (yellow squares) for
high-frequency (vzz = vxx 10~twp) (a) Z-noise, (b) X-noise, and (c)
Z-&-X-noise. For TVN strategy with an additional Y control (green pen-
tagrams) in (b), vy = 7vxx = 107'wg and oyy = oxx, and in (c),
YWY = Yzz = VXX = 10~'wy and oyy = oxx = ozz. Optimal control
pulses of the TVN strategy (d) for Z-noise and of the TVN strategy with an
additional Y control and accompanying Y-noise (e) for X-noise and (f) for
Z-&-X-noise. The number of control parameters kpyax=10 for Qx(¢) in (d)
and kmax—20 for both Qx(t) and Qy (¢) in (e) and (f).
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even slightly higher values than those by the IDG strategy. The improvement in (7)
by the TVN strategy over the other two strategies is less than one order of magnitude.
To improve the gate performance, we increase the degrees of freedom for optimization
by adding a control term Qy (¢)Y/2 and its accompanying Y-noise term By (¢)Qy (¢)Y/2
in the Hamiltonian. We choose, for simplicity, vvy = vxx and oyy = oxx, and use
the same optimal procedure as the TVN strategy. The improvement in (Z) of the TVN
strategy with an additional Y control as compared with the TVN strategy is over a half
order of magnitude. As a result, the Hadamard gate with the optimal control pulses of
the TVN strategy with an additional Y control shown in Figure 2.4(e) can be robust to
oxx = oyy ~ 20% for (Z) < 10~2. Note that the optimization algorithm seems to find
control pulses with stronger strengths to suppress the Z-noise, but searches weaker control
pulses to minimize the X-noise cost function since the system coupling operator term of
the X-noise is proportional to the control field Qx (¢) in our noise model. So for the case
with the Z-noise and X-noise simultaneously present, there is a trade-off in the control
pulse strength for the cost function optimization between the Z-noise and the X-noise.
Consequently, the ensemble infidelity of the Z-&-X noise does not reach a low value as
in the case with only Z-noise or X-noise. Thus one can see from Figure 2.4(c) that the
improvement in (Z) of the TVN strategy over the IDG strategy is just near one order of
magnitude, and only a half order as compared with the QSN strategy. A similar trade-off
also takes place for the TVN strategy with additional Y control, although it performs
slightly better than the TVN strategy with only the Qx(¢) control field. Nevertheless, the
Hadamard gate implemented with the optimal pulse obtained by the TVN strategy with
additional Y control shown in Figure 2.4(f) can be still robust to 07z = oxx = oyy ~ 6%

for (Z) <1072

2.3.1.2. Two-qubit gates

Next, we demonstrate that our method can find control pulses for high-fidelity two-qubit
CNOT gate operations in the presence of multiple sources of high-frequency noise. The

two-qubit Hamiltonian is chosen as

Z X Z X
H(t) = w071 + Qxl(t)71 +w072 + QXQ(zt)T2 +J()

Z Zo
2 ?

(2.22)
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where Z; and X; denote the Pauli’s matrix operators for qubit j, {2x,(t) is the control field
applied to qubit j and J(t) is the two-qubit coupling strength. We assume OU noise can be
present in each of the five terms, and o721, 0722, 0xx1, 0xXx2, and oy are, respectively,
the corresponding standard deviation ooy, and vzz1, vzz2, Yxx1, YxXx2, and vy  are,
respectively, the corresponding yoy. We choose the control fields Qx, (t) and Qx,(t) as
composite sine pulses, and the two-qubit control J(¢) as a composite sine pulse with a
constant shift.

The robust performance of the CNOT gate using the three strategies for high-frequency
(Yzz1 = Yz22 = Yxx1 = Yxx2 = V77 = 107 wy) Z-noise, X-&-J-noise, and Z-&-X-&-J-
noise are shown in Figures 2.5(a), (b), and (c), respectively. The corresponding optimal
control pulses of the TVN strategy for operation time ¢y = 100/wg are shown in Fig-
ures 2.5(d), (e), and (f), respectively. For wot; = 100, our method (the TVN strategy) in
the case of the Z-noise and the case of the X-&-J-noise shows a one order of magnitude
improvement in (Z) values compared with the QSN strategy for low noise strength, but
only a half-order improvement in the case of the Z-&-X-&-J-noise. This is because in the
case of the Z-&-X-&-J-noise, there is a trade-off in the control pulse strength for the cost
function optimization between the Z-noise and the X-&-J-noise, similar to that in the
single-qubit case. The robust performance can be improved by reducing gate operation
time ¢y, for example, from ¢ty = 100/wy to ty = 20/wp, to decrease the duration of the
influence of the noises. This can be seen from the purple pentagrams in Figures 2.5(a) and
(c). In the case of the X-&-J-noise in Figure 2.5(b), only slight improvement is observed
for the ty = 20/wy case because when the operation time decreases, it is hard to make
the strengths of the control fields QJX (t) and J(t) all low as in the ¢ty = 100/wq case. For
high-frequency noise and for FTQC error threshold (Z) < 1072 of the surface codes, the
CNOT gate with operation time ¢ty = 20/wy can be robust to ozz1 = o722 ~ 10% for
the Z-noise, robust to oxx1 = oxx2 = o055 ~ 10% for the X-&-J-noise, and robust to
Oz71 =0zz9 =0xx1=0xx2 = 0y5 ~ 3% for the Z-&-X-&-J-noise by our method.

We describe briefly about the computational resources and computation time in our
calculations. In the case of the Z-&-X-&-J-noise, we use 40 control parameters in a
parameter set to run the two-step optimization for the two-qubit CNOT gate, and choose
100 random initial guesses of the parameter sets for the first-step optimization and 10

parameter sets obtained in the first-step optimization as initial guesses for the second step
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Figure 2.5.: Robust performance of CNOT gates of the IDG strategy (woty = 100, blue

triangles), QSN strategy (woty = 100, red circles), TVN strategy (woty =
100, yellow squares; and woty = 20, purple pentagrams) for high-frequency
(vzz1 = Yzz2 = Yxx1 = Yxx2 = sJ = 107wy) (a) Z-noise, (b) X-&-
J-noise, and (c) Z-&-X-&-J-noise. The optimal control pulses of the TVN
strategy (woty = 100) for the Z-noise, X-&-J-noise, and Z-&- X-&-J-noise are
shown in (d), (e), and (f), respectively. The numbers of control parameters
kmax=16, 16, and 8 for Qx, (t), Qx,(t), and J(t), respectively, in (d) and (f);
kmax—12, 12, and 6 for Qx, (), Qx,(t), and J(t), respectively, in (e).
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Figure 2.6.: The behavior of [F;(w)/(2rw?)] obtained using the optimal control parameter
sets from the IDG strategy (thick dotted blue line), FTF strategy (thin dash-
dotted red line), and TVN strategy (thick solid yellow line) for the noise PSD
S(w) with (a) v = 0.1wp, (b) v = 0.3wp, and (c) v = 0.5wp is shown in (d),
(e), and (f), respectively. (g) The corresponding (J2) values.

optimization. We use a total of 60 2-GHz-CPU cores and it takes about 2 days to obtain
the control pulses and robust performance calculations of Figure 2.5(c). These resources
and time spent to construct the robust high-fidelity CNOT gates against five sources of

high-frequency noise are quite acceptable.

2.3.2. Comparison with the filter-transfer-function method

In this subsection, we compare our method with the FTF method [48, 49, 50]. The cost

function (J2) in Eq. (2.16) can be transformed to the frequency domain as
1 [ dw
=Y 5 [ DS ), (223)
j —00

where Sj(w) is the noise PSD for the j-th noise, and Fj(w) is the corresponding filter-
transfer function. The cost function of the j-th noise for optimization in the FTF method
is defined as A; = f:); Fj(w)dw [48, 49, 50]. The region [wr,w| of the integration of the

cost function A; is determined by the non-negligible region of the noise PSD. In order
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to compare with our method, we use the same form of control pulse, the same number of
control parameters, and the same optimal procedure except, for the FTF method, changing
the cost function from Jj + (J2) to J1 + A; in the second step of the two-step optimization.
We call this procedure the FTF strategy. Then we apply the IDG strategy, FTFE strategy,
and TVN strategy to find high-fidelity Hadamard gate for one-qubit system with single
Z-noise. To demonstrate the advantage of our method over the FTF method, we choose

the noise PSD for the Z-noise to contain a high-frequency distribution as

S(w) — 02 27 Y Y

2.24
PR TR Gy WP P oy w)? 224

that has two peaks at w = 0 and w = 5y. As the value of ~ increases, the dominant
distribution associated with the second peak of the PSD S(w) moves to a high frequency
region in which the FTF method may not work very effectively. We demonstrate that
our method, including the detailed noise PSD distribution in the cost function, can still
in this case suppress the gate error coming from S(w), a PSD different from that in the
OU noise model used previously. The lower limit wy, of the integral of the cost function
A, for the FTF strategy is chosen to be zero, and the upper limit w, is chosen to be 1wy,
2wp, and 3wp to enclose the dominant distribution of S(w) [see Figures 2.6(a), (b), and
(c)] for v = 0.1wp, 0.3wp, and 0.5wy, respectively. For the single Z-noise considered here,
the infidelity from Eq. (2.23) is (J2) = [7° dwS(w) [F:(w)/(27w?)]. The improvement of
(J2) can be analyzed through the overlap of S(w) with [F(w)/(2mw?)] [45]. If the control
pulses can make [F.(w)/(2mw?)] small in the dominant distribution region of S(w), then
(Ja) can be significantly improved (reduced). We plot [F,(w)/(27w?)] evaluated by the
optimal control parameter sets obtained from the above three strategies for three different
values of v = 0.1wy, 0.3wp, and 0.5wy of S(w) in Figures 2.6(d), (e), and (f), respectively.
The corresponding (.J2) values are shown in Figure 2.6(g). By taking the case of v = 0.3wp
as an example, the function [F;(w)/(27w?)] of the TVN strategy shows apparent drops
near the two peaks of the noise PSD at w = 0 and w = 1.5wy, but the function for the FTF
strategy and the IDG strategy does not. Thus, about one order of magnitude improvement
in (J3) of the TVN strategy over the other two strategies is observed. In short, as the range
of dominant distribution of the PSD enlarges [e.g., from Figure 2.6(a) to Figure 2.6(c)],

the TVN strategy, including the detailed noise information (CF) in the optimization cost
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function [45], can suppress the dominant infidelity contribution more effectively than the
FTF strategy. Furthermore, the concatenation method is used to construct control pulses
against two different non-commuting noises in the FTF method [49, 50|. But using the
concatenation method to deal with the case of multicontrols, multiple sources of noise, and
multiqubits may be very complicated. On the other hand, our method can find robust
control pulses for high-fidelity CNOT gates that involve three control knobs and up to five

sources of high-frequency noise as demonstrated in Figure 2.5.

2.4. Generalization to open quantum system

From Sec. 2.1 to Sec. 2.3, we describe the dynamics of the qubits in the space which
includes the degrees of freedom in the qubit-system only, and doesn’t include those in the
environment, that is, we treat the problems in a closed system. For an open quantum
system, the dynamics of the qubits is described in the space which includes the qubit-
system subspace (degrees of freedom in the qubit-system) and the environment subspace
(degrees of freedom in the environment). Thus the total Hamiltonian of an open quantum

system can be written as

H(t) = Hs(t) + Hen(t) + He(t) + Hon(t). (2.25)

Here Hg(t) and Hon(t) are defined in the qubit-system subspace, and Hg(t) is the ideal
qubit-system Hamiltonian and Hon (t) is the classical noise Hamiltonian, which correspond
to Hy(t) and Hy(t), respectively, discussed in a closed system from Sec. 2.1 to Sec. 2.3.
Hg(t) is the environment Hamiltonian and is defined in the environment subspace. In
an open quantum system, except the classical noise, the quantum noise also degrades the
gate fidelity and is described by the quantum noise Hamiltonian Hgn (), coupling the
qubit-system subspace and the environment subspace together. Detailed form of these

Hamiltonians in Eq. (2.25) are shown below:
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Hs(t) = Hs(t) @ IF, (2.26)

Hen(t Zﬂj (t)Sen, ()] ® 17, (2.27)
Hp(t) = I° ® Hg(t), (2.28)
Hon(t) ZSQN E;(t). (2.29)

Here I¥ and I® are the identity operators in the environment subspace and in the qubit-
system subspace, respectively. Hg(t) is the ideal qubit-system Hamiltonian operator in the
qubit-system subspace, and Hg(t) is the environment Hamiltonian operator in the environ-
ment subspace. In Eq. (2.27), 8;(t) is the strength of the j-th classical noise and S, (t)
is the corresponding system coupling operator term. For the quantum noise Hamiltonian
in Eq. (2.29), Sgn;,(t) and Ej(t) are the system-environment coupling operators in the
qubit-system subspace and in the environment subspace, respectively. In fact, if we choose
E;(t) = B;(t)IF, quantum noise recovers to classical noise, but the treatment processes for
classical noise and quantum noise are somewhat different, so we separate them.

Following treatment processes are similar to those in a closed system in Sec. 2.1. First,

we transform the Hamiltonian to the interaction picture by Ug(t) ® Ug(t), where

Us(t) = T, expl—i /O CHg(t). (2.30)

Ug(t) = Ty exp|—i /Ot Hg(t)dt'] (2.31)

are the ideal qubit-system propagator and the environment propagator, respectively. Then

the total Hamiltonian in the interaction picture becomes Hon(t) + Hon (t), where

Hon(t Zﬁj )Rew, ()] @ 17, (2.32)

Hon (1) ZRQN ® R, (t), (2.33)

29 doi:10.6342/NTU201701845



and

Ren, (t) = UL(t) S, (t)Us (1), (2.34)
Row, () = UL()Sqn, (1)Us (1), (2.35)
Rp, (t) = UL E;()Ug (D). (2.36)

The total propagator in the interaction picture at the gate operation time 7 is

U(ty) = T expl—i /0 ! (Fow(t) + Fign(0)dr). (2.37)

If the strength of both classical noise and quantum noise is not too large, we can expand
U(ts) by Dyson series [75] as the form U(t;) = I + U1 + Wg + -+, where the first two

terms of U; are

U o= /0 Y Fow () + How (B, (2.38)

ty t1 B B B ~
¥y = —/ dty / dta[Hon (t1) + Hon (0)][Hon (t2) + Hon (t2)]. (2.39)
0 0
The total propagator in the original frame becomes
Ulty) = Us(ty) @ Up(ty)] - (1 +¥1+ Wa 4 ---). (2.40)

Next derivations are different from those in a closed system in Sec. 2.1. In general, the

dynamics of an open quantum system is described by a density matrix

p(t) = U)p(0)UT (1), (2.41)

Here we assume the initial density matrix is separable, p(0) = ps(0) ® pg(0), and pg(0)
is the initial density matrix in the qubit-system subspace, and pg(0) is the initial density
matrix in the environment subspace. To see the quantum noise contribution to the ensemble

average gate infidelity, we need to trace over the degrees of freedom in the environment to
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obtain the reduced density matrix in the qubit-system subspace as
ps(t) = Trep(t) = Us(t) (ps(0) + Ty + Ty + ) UL(0), (242)
where the definitions of U, and Uy are

Uy = Trg[¥1(ps(0) ® pr(0)) + h.c, (2.43)

Ty = Trp[Wa(ps(0) ® pp(0) + he + Trp[1(ps(0) @ pp(0)T]].  (2.44)

Here “h.c.” is the abbreviation of Hermitian conjugate. Trg denotes tracing over the
degrees of freedom in the environment subspace only it acts on. To see the classical noise
contribution to the ensemble average infidelity, we can take the ensemble average of the
reduced density matrices pg(t) in Eq. (2.42) over different classical noise realizations or
take the ensemble average of infidelities later, and no matter the former method or the
latter method, we can obtain the same results. And we use the latter method to derive
the cost functions.

In order to obtain the propagator for the reduced density matrix pg(t), we should vec-

torize it as
vec|ps(t)] = G(t)vec[ps(0)]. (2.45)

Here vec [ps(0)] is the initial vectorized reduced density matrix, vec [pg(t)] is the vectorized

reduced density matrix at time ¢, the symbol vec denotes vectorizing the matrix it acts on,

for example, in one-qubit system vec [ps(t)] = (ps.11(t), ps21(t), psi2(t), ps20(t))T, and
G(t) = [Us(t) @ Us(t)] - (I + 41+ o+ ). (2.46)

is the propagator of the vectorized reduced density matrix. The relation between \i'j in

Eq. (2.42) and v; in Eq. (2.46) is

vec[W;] = ;vec[ps(0)]. (2.47)
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Now we can define the gate infidelity in an open quantum system as
1
Topen =1 = 55, Re{Tr[GFG (1))}, (2.48)

where G = U} ® Ur is the target gate for the vectorized reduced density matrix, and Ur
is the target gate in the qubit-system subspace, n is the qubit number. Tr here denotes a
trace over the matrix it acts on. The gate infidelity definition in an open quantum system
Topen in Eq. (2.48) can recover to the gate infidelity definition in a closed system Z in Eq.
(2.2) if G(t) can be written as G(t) = V*(¢) ® V(t), where V (¢) is a matrix with the same
dimensions as Ur. Substituting G(t) in Eq. (2.46) and G into Zopen in Eq. (2.48), we can

obtain the expanded Zypen as

Iopen = Jl + J2,open + 5 + O(ﬂenN, f[TQnN, m > 3), (2.49)
1
Ji =1 55 Re{Tr[GLGs(t7)]}, (2.50)
1 _ _
J2,0pen = —ﬁRe[Tr(wl + 12)]. (2.51)

The forms of above equations are similar to those in a closed system from Eq. (2.12) to
Eq. (2.14). Here Jj is the definition of gate infidelity for the ideal qubit-system, where
Gs(t) = [U4(t) ® Us(t)] and Us(t) is the ideal qubit-system propagator in Eq. (2.30).
J2 open 18 the lowest-order contribution of the classical noise and the quantum noise to the
gate infidelity; the function of ¢ is equivalent to that of € in a closed system as discussed
in Appendix A, and O(ﬁg‘N,ﬁgN,m > 3) represents other higher-order terms of noise
excluding &. Substituting the definition of v and 1) into J2.0pen in Eq. (2.51), we can
easily obtain Tr(¢;) = 0 without extra assumptions, and thus Jo open = —Re[Tr(1)2)] /22" .

For quantum noise, Zopen has been the ensemble average infidelity because the action of
taking the ensemble average for quantum noise has been done when we trace the degrees
of freedom in the environment to obtain the reduced density matrix in Eq. (2.42). Next,
for classical noise, we take the ensemble average of Z,pen over different classical noise

realizations to obtain the complete ensemble average infidelity for both classical noise and
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quantum noise
(Zopen) = J1 + (agpen) + () + (OF ey, Ay om = 3))

where

(To.open) = Z /O 7y /0 % 420G (t1.12) - Te{Ren, (1) Row, (£2)]/27)
_Z/ dtl/ dtQC tl,tg) TI“[RCNj(tl)]Tr[RCNk(t2>]/4n
+ Z/ dtq /t1 dtQRe tl,tg)] ~TI‘[RQN]. (tl)RQNk (tg)]/Qn_l
—Z / Y / Y dtaReC2Y (1, 12)] - Tr[Row, (t)] Tr[Rou, (t2)] /47
tr t1
+3 | an /0 dts (8,(1)) Trs (R, (12)p(0)] - Tr[Row, (t1) R, (£2)]/2"
+Z/ dty dtszE[REj(tl)PE(U)] (Br(t2)) - Tr[Ron, (t1) Ron, (t2)] /27

_Zk/o dt1/0 dts (B;(11)) Trg[Re, (t2)pp(0)] - Tr[Row, (1) Tr[Rany (t2)] /227

(2.52)

Here CﬁCN(tl,tg) = (B;(t1)Bk(t2)) is the correlation function of the classical noise [3;(t1)
and S (t2); CijN(tl,tQ) = Trg[RE;(t1)RE, (t2)pe(0)] is the correlation function of the
quantum noise Rg; (t1) and R, (t2). The first two terms in Eq. (2.52) are the lowest-order
contribution of the classical noise to the ensemble average infidelity (Zopen), and these two
terms are exactly the same as (Jo) derived in a closed system in Eq. (2.16). The next
two terms are the lowest-order contribution of the quantum noise to (Zopen), which have
similar forms as those of the classical noise. The last three terms are the contribution from
the combination of the classical noise and the quantum noise, and these three terms can
be omitted if the classical noise has zero mean, (8;(t1)) = 0, or the quantum noise has
zero mean, Trg (Rg, (t1)pe(0)) = 0. For this case, only the classical noise and quantum
noise correlation functions, Cjcl; (t1,t2) and C (tl, t2), the coupling operators to the ideal

qubit-system, Scn;(t) and Sgn;,(t), and the ideal qubit-system Hamiltonian, Hg(t), are
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required to evaluate J; and (J3 open) for optimization.

Once cost functions J; and <J270pen> are defined clearly, then we can use our two-step
optimization introduced in Sec. 2.2, with the first step J; optimization and the second
step J1 4 (J2,0pen) Optimization, to find the optimal control pulses for suppressing both the

classical noise and the quantum noise simultaneously.
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3. Applications to quantum-dot electron
spin qubits in isotopically purified

silicon

In this chapter, we first give a brief introduction to quantum-dot electron spin qubits. Then
we focus on the qubits in isotopically purified silicon: we describe the simulation skills for
the ideal system, analyze the electrical noise and other factors degrading the gate fidelity
in the realistic system, and finally we apply our robust control method for the system and
demonstrate the performance of our optimal high-fidelity single-qubit gates and CNOT

gates.

3.1. Quantum-dot electron spin qubits

The idea of quantum-dot electron spin qubits was first proposed by Loss and DiVincenzo
[54] in 1998. In their model shown in Figure 3.1, the qubit is defined by the electron
spin state in a single-electron semiconductor quantum dot, the two-qubit coupling via the
exchange interaction is controlled by the tunnel coupling between two dots, an auxiliary
ferromagnetic dot (FM) is designed to operate single-qubit gates, and another auxiliary dot
with an electrometer is for spin state read-out, etc. They showed that the quantum-dot elec-
tron spin qubit was a promising candidate for realizing quantum computation because the
five requirements for quantum computation, that is, identification of well-defined qubits,
reliable state preparations, low decoherence, accurate quantum gate operations, and strong
quantum measurements were all satisfied for their proposal.

Early development of this proposal mainly focused on III-V semiconductor quantum
dots such as GaAs. And there were two major types of qubits for the realizations of

the proposal, i.e., single-spin qubits and singlet-triplet (S — Tj) qubits. For single-spin
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Figure 3.1.: Loss-and-DiVincenzo’s model for quantum dot spin qubit (courtesy of Daniel
Loss and David P. DiVincenzo, 1998).

qubits, the basis states are spin-up state |1) and spin-down state ||) of the electron in the
single-electron quantum dot. The qubits were realized by F. H. L. Koppens et al. [56] in
2006, and the two-qubit gates via exchange interaction were also realized in 2011 [63, 64].
Another type of qubit is called the singlet-triplet (S — Tp) qubit, which was realized by J.
R. Petta et al. [55] in 2005, and the basis states of the qubit are |S) = %(]T@ —41)) and
|To) = %(]T@ + [41)), which are constructed from spin states |1) or ||) of the electrons in
two adjacent single-electron quantum dots. Because |S) and |Tj) states have zero magnetic
quantum number, they are insensitive to uniform fluctuations in the magnetic field. Two-
qubit gates via capacitive coupling of two adjacent S — Ty qubits were realized in 2012
[65]. The architecture of single-spin qubit and S — Ty qubit is shown in the left panel and
right panel of Figures 3.2, respectively. The key drawback for these qubits is just the host
material-GaAs itself. This is because all three nuclear species %°Ga, "'Ga, and As of
the host material GaAs have nuclear spin 3/2 and typically there are ~ 10° nuclei in a
quantum dot [80], strong hyperfine interaction (the coupling between the electron spin of
the qubit and the nuclear spins of the host material) limits the dephasing time (7%) of the
qubit to be ~ 10ns.

The effective way to overcome the drawback is to replace the host material GaAs by the
new material with more nuclear-spin-free atoms. Defining the quantum dots in silicon is a
good choice because the most abundant stable silicon isotopes on earth are 28Si (~ 92.2%),
PSi (~ 4.7%), and 2°Si (~ 3.1%), and only 2°Si has nuclear spin 1/2 and both 28Si and

30Si have zero nuclear spin. Therefore, for the qubits in the silicon-based quantum dots,
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€ (Courtesy of M. D. Shulman et al., 2012)

Figure 3.2.: The architecture of single-spin qubit (left panel) and singlet-triplet qubit (right
panel) in GaAs semiconductor quantum dots.

the hyperfine interaction from the host material, silicon, can be largely reduced, that is
the dephasing time (7%) can be greatly improved. In the Si/SiGe quantum dots, 73 was
improved to 360ns for the singlet-triplet qubits [69] in 2012, and to ~ 900ns for single-
spin qubits |70] in 2014. In the natural silicon quantum dots, 73 was further improved
to ~ 2us for single-spin qubits [74] in 2016. However, the T} is still limited by 5% 2°Si
atoms (nuclear spin 1/2) in the natural silicon substrate. In 2014, M. Veldhorst et al. [71]
defined the quantum dots in the isotopically purified 2®Si with a residual concentration of
2951 800 ppm, and then observed that T for the single-spin qubits is remarkably extended
to 120us and realized the single qubit gates (a m-pulse 1.6us) with infidelity 4 x 10~3 below
the threshold of surface codes 1072.

Another benefit for the quantum dots in the isotopically purified silicon is that the
complete fabrication is compatible with the standard CMOS (complementary metal-oxide-
semiconductor) manufacturing technology, an appealing feature to realize large-scale (many
qubits) quantum computation. The fabrication process of the quantum dot in silicon starts
from a MOSFET (metal-oxide-semiconductor field-effect transistor) including source (S),
drain (D), and the gates (L1, L2) as shown in Figure 3.3 [81]. When the transistor is in
inversion mode, the 2DEG (2-dimensional electron gas) appears underneath the gate oxide
(Si02). Then the single-electron quantum dot underneath the gate electrode P is formed
by adjusting the gate voltage of the electrode P to deplete the excess electrons.

Therefore, the quantum-dot electron spin qubits in isotopically purified silicon (?8Si) is
indeed a promising candidate for realizing quantum computation. However, the infidelity
of the two-qubit C-phase gate [72|, primarily due to the electrical noise, is still higher

than the error threshold of surface codes. We aim to construct high-fidelity and robust
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Figure 3.3.: Quantum dots in silicon (courtesy of W. H. Lim et al., 2009).

CNOT gates for this system using our robust control method described in Chapter 2. The
architecture of this two-qubit system is shown in Figures 3.4 [72]. The two qubits are
defined underneath the electrodes G; and Go. The tunnel coupling between two dots is a
fixed constant after fabrication and thus can’t be controlled. For the system, there are only
two control channels: the first is the AC magnetic field on both qubits via on-chip electron
spin resonance (ESR) line and the second is the detuning energy via the gate voltage of
the electrode G; or Gs. In the following sections, we use this architecture of quantum-dot
electron spin qubits in isotopically purified silicon [72] to describe the simulation skills
for the ideal system, then to analyze the electrical noise and other factors degrading the
gate fidelity in the realistic system, and finally to implement our robust control method to

demonstrate optimal CNOT gates and single-qubit gates.

3.2. ldeal system

For quantum-dot electron spin qubit in isotopically purified silicon, the ideal two-qubit

Hamiltonian written in the basis states of (|dot2,dotl) =) [T,1), |1,4), [, 1), |4,4) and
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Figure 3.4.: Architecture of the quantum-dot electron spin qubits in isotopically purified
silicon (courtesy of M. Veldhorst et al., 2015).

|0,2) can be expressed as

E;  iEx(t) 3Ex(t) 0 0
$Ex(t) 30Ey 0 1Ex(t) to
Hi(t)=h| LEx@t) 0 -8Bz 1Ex(t) —to |- (3.1)

where h is the Plank constant, E; = (Ez, + Ez,)/2 is the average frequency and 6Ey; =
(Ez, — Ez,) is the frequency difference in Zeeman splitting between the two dots with Ez,
and Ez, the Zeeman splitting frequencies in the z-direction for dotl and dot2, respectively,
to is the interdot tunnel coupling and AU is the on-site Coulomb energy, and he is the

detuning energy or relative alignment of the potential of the two dots.

Ex(t) = gupBx(t)/h = WTB (QX (t) cos(E z2mt) + Qy (t) cos(E 72t + g)) . (32)
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is the Zeeman splitting frequency in the z-direction for both two dots. We control an AC
magnetic field Bx(t) via on-chip ESR line with amplitudes Qx(¢) and Qy (¢) to operate
quantum gates.

The realistic values of the system parameters for realizing C-phase gates in experiment
[72] are E; = 39.16GHz, §E; = —40MHz, and to = 900MHz. Substitute these values
and Ex(t) = 0 into the ideal Hamiltonian H; in Eq. (3.1), we can evaluate the energy
levels Apppy, Apyy > Aty Ay, and Aoy of Hy for states [1,1), [1,4), [, 1), [{,4), and
|0,2), respectively. Ajppy = Ez and Ay = —FE 4, which are independent of e. ARy
Alpy, and Ajg gy are function of e. As e increases from zero to a large value (e > U),
Ajpyy decreases from ~ —% |0Ez| to ~ (U — €), and A}y decreases from ~ %](SEZ| to

~ 5 |0Ez|. Introduce the effective detuning frequencies

1
vyl = —5 |5E2’ - )\|T¢>’ (33)

1
= +§ ‘(5E2’ — )‘HT)' (3.4)

For the fast C-phase gate in experiment, 14| ~ 3MHz, and we can extract the corresponding
(U—¢€) ~ 300GHz by our calculation as shown in Figure 3.5. However, these realistic values
of the system parameters in the ideal Hamiltonian #(t) in Eq. (3.1) range from 40MHz to
300GHz (|0 Ez| = 40MHz, to = 900MHz, Ez = 39.16GHz, and U — e = 300GHz), and thus
a very small time-step for simulation of the system is needed, that is, very long computation
time is required. Two approximations can help for this problem. First, for (U —¢) > t; and
(U —€) > |0Ez|, we can use the Schrieffer-Wolff transformation with approximation [82]
to convert to(= 900MHz) into the numerator and U — e(= 300GHz) into the denominator
of a new parameter with a smaller value in the transformed Hamiltonian. Second, for
Ez > gup|Qx(t)| /hand Ez > gup |Qy (t)| /h (Ez = 39.16GHz; the maximum strength
of gup |Qx ()| /h and gup |y (t)| /h are ~ 27.965MHz for the power limitation of the on-
chip ESR line), we can use the rotating wave approximation to eliminate the large-value
term E7 in the Hamiltonian in the rotating frame.

First, we transform the ideal Hamiltonian H;(¢) to

HIW (t) = eSH (t)e ™ (3.5)

33 doi:10.6342/NTU201701845



0FE7=-40MHz, t,=900MHz

103 F

10% ¢

10t

MHz

10°¢

107 ¢

10.2 i i i Podoiiil i i i N | i
10t 102 10° 10%
U — e (GHz)

Figure 3.5.: The effective detuning frequencies 14 and v |4 versus U —e for 6Ez = —40MHz
and tog = 900MHz.

by Schrieffer-Wolff transformation (SW) [82], where

0 0 0 0 0
0 0 0 0 —(—6Ey)
S=1o0 0 0 0  ~(0Ez) : (3.6)
0 0 0 0
0 v(=6Ez) —v(0Ez) 0 0
and
(6Ez) = (3.7
NOEZ) = G e 5B, )2 ‘

For (U —€) >ty and (U — €) > |§Ez|, we can expand H3}W (t) in Eq. (3.5) to the second
order of S and omit the terms including O[y?(§Ez)] or [y(—0Ez) — y(§Ez)] to obtain
the Hamiltonian H3WA(t) (SWA denotes the Hamiltonian is transformed by Schrieffer-
Wolff transformation with the above approximations). The estimated error for the above
omitted terms is ~ 107° at most for ty = 500mns, that is, the infidelity simulation error

by ﬂ?WA(t) is ~ 107°. After SWA, the subspace spanned by the computational basis
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states {|T, 1), |[T,4), [, 1), |4, 1)} and the subspace spanned by |0,2) are decoupled in the

Hamiltonian #3WA(t). Therefore, we can treat the Hamiltonian

Ez  1Bx(t) 1Ex(?) 0
sEx(t) 30Ez —Jm 3(Jp+Jm) $Ex(t)

Hiba®) =h| 1 1 : (3.8)
jEx(t) Q(Jp‘i‘Jm) —§5E2—Jm §Ex(t)
0 $Ex(t) $Ex(t) —FEy
in the computational basis states {|1,1),[1,4), 4, 1), [{,4)} only, where
_ 5
O T oy (3.9)
A - (3.10)
T U—e—6Ez/2 '

With SWA| the large-value system parameters, U — ¢ = 300GHz and t; = 900MHz, are
transformed into J, and Jy,, and J, = J,,, = 2.7MHz is comparable with éFz = 40MHz.
Thus the remaining large-value system parameter in the Hamiltonian 3" 7.4 A (1) in Eq. (3.8)
is E; = 39.16GHz, and we use the rotating wave approximation to overcome it.

We transform H?Yﬁ( ) to the rotating frame (RF) through the transformation formula
SWA RF Y . ;
Hpte (8) = USOHTE (4 Uo() — ihUG (£)Uo (1), (3.11)

where

exp(—iEz2mt) 0 0 0
0 10 0
Uo(t) = . (3.12)
0 0 1 0
0 0 0 exp(+iEz2nt)

In ﬂ?XVXAfF(t), there exist some terms such as [gupQx (t)/h] - [1 + exp(£i2E72nt)] and
[guBQy (t)/h]-[1—exp(£i2E z27t)], and we can omit the terms [gupQx (t)/h] exp(di2 E z2mt)
and [gupQy (t)/h] exp(+i2E z27t) for E7 = 39.16GHz is much larger than the maximum
values of gup|Qx(t)| /h and gup |Qy ()| /h (~ 27.965MHz, which corresponds 1mT for

the maximum strength constraint of [Qx ()| and |2y (¢)| due to the power limitation of
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the on-chip ESR line). Then we can obtain the Hamiltonian with the rotating wave ap-

proximation (RWA),

I.4x4
0 19x () —izQy(t) 1Qx(t) —i3Qy(t) 0
I R UNCR O Yt dm) 30k () - 30y (1)
12x () + i3y () 3 (Jp + Jm) —50Ez —Jm  19x(t) — Qv (t)
0 10x(t) +i10y (1) 1Qx(t) +i30y (1) 0
(3.13)
where
2x(t) = LLax (), (3.14)
Qy(t) = WTBQy(t). (3.15)

After SWA and RWA, J,, J, Qx(t), Qy(t), and §Ez in 7:[§XV;A4RWA (t) range from 2.7MHz

to 40MHz, and thus ﬁ?ZVXAZiRWA(t) is good for simulation.

d -~
We solve the Schrodinger equation, ih—UISZVX/Z’RWA(t)

dt
obtain the propagator UISYXZZRWA(t), and transform this propagator from the rotating frame

~SWA,RWA /,\ 77SWA, RWA
= M7 4x4 U (t), to

I4x4

back to the Schrieffer-Wolff transformed frame by the formula
2 - SWA,RWA
IS,vaAzl(t) = Uo()U7 44 (t). (3.16)

In the Schrieffer-Wolff transformed frame, we combine the dynamics in the subspace |0, 2)
and Uﬁﬁi(t) in the subspace of the computational basis states to obtain the propagator

in the full space

~ rTSWA t 0
UPWA(t) = Faxi(t) . (3.17)

0 exp(=i{U — e + toly(=0Ez) + y(5Ez)]}2rt)

Finally, the ideal system propagator in the original frame, U;(t), is obtained via the trans-

formation

Ur(t) = e SUPWA(t)e ™S, (3.18)
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where we expand e~ and et to the second order of S.

With the ideal system propagator Us(t), we can then evaluate the cost functions J;
and (Jy) for two-step optimization to find the robust control pulses. But there exists a
problem, that is, the simulation space {|[1,1),[1,1), [, 1), [{,1),]0,2)} is larger than the
computational space {|T,1),|1,4), [, 1), |4,4)}. Therefore, we should redefine the gate
infidelity as

T=1- %6 ’ﬁ [U}U4X4(tf)} ‘2 . (3.19)

Here Ur is the two-qubit target gate, and Uixa(ty) is the propagator in the subspace
spanned by the two-qubit computational basis states {|1,1), [T,4), 4, T), |4, 4)}, projected
from the propagator U(ts) of the total Hamiltonian at the final gate operation time t;.
For the new definition of Z in Eq. (3.19), we should do some corresponding modifications

for J; and (J2). The modified

J 1 L ’ 3.20
1= _E } ( )

Tr (U}UL4X4(tf))

where Ur4xa(ty) is the projected propagator in the subspace of the computational basis
states from the ideal system propagator Ur(ty). For the modified J; definition in Eq.
(3.20), the leakage error, i.e., the state probability remains in the |0,2) subspace, is also

accounted for. And the modified

(J2) = Zk/fdt/ dtyCir(t1, t2)Re{ Tr[(R; (t1) Ri(t2) )axal }/ (21%)

_ Z /Otf dty /Otf dtaCir(t1,ta) Tr[Rjaxa(t1)] Tr[ Ry axa(t2)]/ (16R2), (3.21)
.k

where R;(t) = U}(t)HNj (t)Ur(t) defined in Eq. (2.7), and R;4x4(t) and (R;(t1)Ri(t2)) 44
are projected in the subspace of the computational basis states from R;(t) and R;(t1)Ry(t2),
respectively. With the modified J; in Eq. (3.20), and the modified (J3) in Eq. (3.21), we are
ready to apply our two-step optimization introduced in Sec. 2.2 to construct high-fidelity

and robust quantum gates for this system once the noise or the uncertainty are defined

clearly.

37 doi:10.6342/NTU201701845



3.3. Realistic system

In this section, we analyze the dominant factors degrading the gate fidelity in the realistic
system of quantum-dot electron spin qubits in isotopically purified silicon, which include
the electrical noise By_c(t), the uncertainty oy, in tunnel coupling tg, and the filtering
effects on the control pulses due to the finite bandwidth of waveform generator [83, 84].

Therefore, a more realistic Hamiltonian taking these factors into account becomes

Bz 3BER()  3ER() 0 0
SEX(E) 50Ez 0 ZER(®)  (to+ow)
H(t) =h| FE) 0 —16E, LB —(to + o) , (3.22)
0 sER@)  SEV() ~Ey 0

0 (t0+at0) _(t0+at0) 0 U_E‘}'ﬁUfe(t)

Bt = WTB (Q‘}}t(t) cos(Bz2mt) + Qi (1) cos(B 2t + g)) : (3.23)

where Q*(¢) and Qfl(¢) are the actual output field amplitudes with the filtering effects
accounted for.

To understand the influence of the electrical noise S7—¢(¢) on the dynamics of the qubits,
we simulate the experiment in Section 7 of the Supplementary Information of the paper
by Veldhorst et al. [72]. In this experiment, the probability of the state [1]), P(|1])), is
measured after the operations (7/2)x, —(7/2)z, —C-phase(rz) — (7/2)y, with initial
state ||, ]) for different 77 (gate operation time of C-phase gate). Gates (7/2)x,, (7/2)y,,
and (7/2)z, represent g rotation in X-direction, Y-direction, and Z-direction, respectively,
for dot2 qubit, and identity operation for dotl qubit simultaneously. In experiment, C-
phase is realized by tuning € up to a large constant value (small U — e, U > ¢) for a period
time 7z, and then tuning e down to a small constant value (large U — €) to turn off the
two-qubit coupling. To see the probability oscillation from the two-qubit coupling, the

probability in experiment is measured in the rotating frame by

38 doi:10.6342/NTU201701845



e~ 1Bz2mt 0 0 0 0
0 e ia0lzm 0 0 0
Ui(t) = 0 0 etigdBz2rt g (3.24)
0 0 0 etifz2mt
0 0 0 0 1

to eliminate Fz and § Ez in the Hamiltonian. If there is no electrical noise, this probability

L1 5Ez ( Q7 \°  0Ez [ Q5 \*

Qy = J, + Jpm, can be evaluated by the ideal Hamiltonian H; in Eq. (3.1) with SWA
(Schrieffer-Wolff transformation with approximation in Sec. 3.2). For the realistic case
(taking the electrical noise fSy—_.(t) into consideration), we use the realistic Hamiltonian
in Eq. (3.22) with E¥(t) = 0, ayy = 0, Ez = 39.16GHz, Ez = —40MHz, t; = 900MHz,
and U — ¢ = 300GHz, and the electrical noise Sy_.(t), chosen as a static and stochastic
noise model (i.e., the noise strength is a time-independent constant value in each single
run of experiment but this constant value can stochastically vary for different runs) with
noise strengths obeying a normal distribution with standard deviation opy_. and mean
value uy_. to simulate the C-phase gate suffering the electrical noise effect. We assume
(7/2)x,, (7/2)z,, and (7/2)y, are all ideal gates. The ensemble average probability (1000
different By _.(t) noise realizations), (P(|1l))), is calculated for o = 0, 3, 10GHz (mean
value py—. = 0) in Figure 3.6. One observes that (P(|1]))) simulation with oy, = 3GHz
is very close to the experiment in FIG. S6 in Section 7 of the Supplementary Information
[72] as shown in Figure 3.7. Therefore, we assume the electrical noise Sy _.(t) is static and
stochastic with standard deviation oy_. = 3GHz for the rest of quantum gate operation
simulations.

In experiment, the interdot tunnel coupling g is obtained by fitting the experimental
data with the simulation by the ideal Hamiltonian in Eq. (3.1). Therefore, there may exist
some uncertainty value ay, for ¢y extraction. We regard a4, as a systematic error, that
is oy, is a fixed constant value for a specific two-qubit system, but the fixed constant ay,

can vary for different two-qubit systems. For ideal system, U — € and ty are converted
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Stochastic and static electrical noise Gy_e for (7/2)x, — (7/2)z, — C-phase(rz) — (7/2)y,
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Figure 3.6.: Ensemble average probability (P(|1l))) simulation for stochastic and static

electrical noise fy—. with mean value puy—_. = 0 and with standard deviation
oy_e =0, 3, 10GHz.
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Figure 3.7.: The experimentally measured (P(|1]))) (courtesy of Veldhorst et al., 2015).

2
tO

to Jp and Jp, (Jp = Jp = i ) in 7—2?}3&4@) in Eq. (3.8) by SWA. For the realistic

system, the uncertainty oy, and the electrical noise S;_, are accompanied by ¢g and U —e,

2
respectively, into J, and J,, in 7:[?5&4(@ as the form J, = J,,, = (to—i_—am). Assume
d U—e€e+ Pu—c
oy, and PBy_. are small fluctuations compared with ¢y and U — e, respectively, and then
Jp ~ Jn = £6 +ﬂa —Lﬁ So ﬂoz and —iﬂ are
P T U—€e U—e¢® (U—e2V U—¢ ' (U — 2"V

the corresponding uncertainty and noise contributions in the Hamiltonian, and the most
important is that both uncertainty and noise contributions appear in the same locations of
the Hamiltonian ﬁ?}ivﬁ(t). Therefore, once the static electrical noise [y_. is suppressed,
and the uncertainty error oy, is also minimized. Next, we simulate Jo, versus (Joy—e),
the lowest-order contribution to the ensemble average infidelity (Z) for the systematic
error oy, and the stochastic and static noise Sy_., respectively, from an ensemble of J;
optimized control parameter sets of the CNOT gate (Ez = 39.16GHz, dE; = —40MHz,
to = 900MHz, U — € = 300GHz, and ¢y = 500ns) as shown in Figure 3.8. One can see that

as (Jo,y_e) decreases Ja 4, also decreases with a constant ratio. By estimation, this ratio
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CNOT J; optimi.
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Figure 3.8.: Jay, versus (Jo ) with oy = 3GHz for ayy = 9MHz and 4.5MHz.

2
ﬂa ot
Joty A U—e 0% 4(U — €)? ( Qi )2

o 3.26
(Jo,u—e) [ t2 t3 OU—e (326)

2
50U —¢" ty
U0
with oy_e = 3GHz is ~ 4 and ~ 1 for oy, = 9MHz and 4.5MHz, respectively. These
estimated ratios are comparable with our simulation in Figures 3.8. Therefore, Jo, can
be simultaneously minimized when we suppress (J 7—.) only under the conditions of the
realistic values of system parameters and the electrical noise model. In other conditions,
Ja 4, may not linearly correlate to (Jo,7—c), and we should include both Js ;) and (Jo—c)

in the cost function (J2) for optimization.

We choose the form of the control pulses as

kmax

Qx(t) =) agsin® (wx - 1), (3.27)
k=1
kmax

Qy(t) =Y besin® (wy - 1), (3.28)
k=1

to construct the optimal CNOT gates and all optimal single-qubit gates of the system.
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Here

2k — 1
WXk = ( )ﬂ, (3:29)
b tf
2k
Wy k = )W, (3.30)
tr
and {ai,as,--- ,ax,, t and {b1,ba, -, by, } are the control parameter sets for Qx(¢)

and Qy (t), respectively. By using the third power of sine function with the oscillation
frequency wx  and wyy, in Eq. (3.29) and Eq. (3.30) to compose the pulse, Qx(t) and
Qdy (t) have zero pulse strength and zero pulse slope at ¢ = 0 and ¢t = ¢, which guarantees
the smooth pulse-pulse connection of adjacent gates to reduce the extra error from the
rise time issue. Besides, for the controllability of the quantum gates of this system, we
should choose the symmetric form (symmetric to the middle gate operation time ¢;/2) for
pulse Qx(t) by wx ; in Eq. (3.29), and antisymmetric form for pulse Qy (¢) by wy, in Eq.
(3.30). In experiment, there exist some realistic constraints on the control pulses such as the
limitation of the maximum pulse strength and the filtering effects. For the power limitation
of the on-chip ESR line, the maximum strength of both control pulses |Qx (¢)| and |Qy (¢)]
is limited by 1mT. This realistic constraint limits the region for searching the optimal
control parameter set in the control parameter space {ai,as, - ,ax,..,b1,02, - , bk ..},
and thus the performance of the optimal gate we find in the limited searching region could
not be as good as that in the searching region without any constraints. Next, we discuss
the filtering effects. When we input our optimal pulse Q(t) (we use Q(t) to represents
Qx(t) and Qy (¢) pulses) to the instrument of the experiment, we expect the realistic pulse
on the qubits is the same as our input. However, due to the finite bandwidth of waveform
generators, our input optimal pulse Q(#) is altered to the realistic filtered pulse Q/%(¢) via

the transfer function [83, 84]

+00 +oo . ,
Qfitt(¢) = 2i / dt’ / dwF (w)e' =) q(t'), (3.31)
T J—c0 —00
where
F(w) = exp(—w?/wd) (3.32)

is the response function of the filter with wg being the cutoff frequency. The transfer

function can be rewritten as
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Qfilt(py — L / ™ e P () Q). (3.33)

where

Qw) = / o dt'e ' Q(t) (3.34)

is the input optimal pulse in the frequency domain. Assume (w) distributes in the
frequency region [—w’, w']. If ' is far below the cutoff frequency wy, the response function of
the filter F(w), defined in Eq. (3.32), in the preset frequency region [—w’, w'] approximates
to 1, and thus the transfer function in Eq. (3.33) becomes Qfi*(¢) = % _erw,l dwe™Q(w),
just the Fourier transformation of Q(w), and Q*(#) = Q(t) . For this case, F(w) in the
transfer function doesn’t work, and thus the filtering effects can be neglected. However,
as w’ approaches the cutoff frequency wp, F(w) works by nullifying more and more high-
frequency distribution of Q(w) in the transfer function, and thus the filtering effects become
more and more apparent. Therefore, in the optimization process, we can not choose wx
and wy in the Qx(t) and Qy(t) as high as we need because F'(w) will nullify the high
frequency component of the pulse, which is in the working region of F'(w). In Figure 3.9, we
show the optimal pulses of CNOT gate with ¢ = 500ns in the frequency domain, Qx (w)
and Qy (w). One can see that most frequency distribution of Qx(w) and Qy (w) is around
and below ~ 20MHz because we choose the number of control parameters ky,,x = 11 for
both Qx(t) and Qy (t), and the maximum wy k.. /27 = 21MHz and wy,,,. /27 = 22MHz
by Eq. (3.29) and Eq. (3.30). But there still exist some distribution of Qx (w) and Qy (w)
in the frequency higher than ~ 20MHz. This is because we choose the third power of sine
function to compose the pulse as shown in Eq. (3.27) and Eq. (3.28), and the third power
of sine function can be expanded to the first power of sine function, i.e., sin® (wx-t) =
3sin (wxk - t) — 3 sin (Bwx - t), and the contribution of the higher-frequency distribution
of Qx(w) and Qy (w) just comes from sin (3wx i, - t) and sin (3wy, - t), respectively. Next,
we show the filtering effects on the optimal pulses of the CNOT gate in Figure 3.9 by
the transfer function in Eq. (3.33) with the response function of the filter F(w) in Eq.
(3.32). We vary the cutoff frequency wo/27 from 425.4MHz to 50MHz to see the pulse

shift as shown in Figure. 3.10 and the corresponding infidelity J; and (Jo 7—¢) degradation
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Figure 3.9.: Qx(w) and Qy (w) of the optimal CNOT gate with ¢; = 500ns.

as shown in Figure 3.11. One can see that as wy decreases the pulse shift is more and
more apparent and the corresponding infidelity J; is getting worse and worse, but the
corresponding (Jo—¢) is not sensitive to wp until wy/27 < 100MHz, which implies that
the (Ja 7—¢) topography in the control parameter space {a1, a2, - , @k, 01,02, b }
around our optimal control parameter set is very flat. Therefore, we can add a fine-tuning
optimization (substituting the filtered pulse Qfi*(¢) into the cost functions) after the two-
step optimization introduced in Sec. 2.2 to recover the J; degradation and keep (Jo—e)
unchanged. We use the assumption of wy/2m = 425.4MHz (approximation for Tektronix
AWGH5014 [83]) for simulating the filtering effects on the quantum gates we demonstrate

in the following section.

3.4. Demonstration of our control scheme

In the work of Veldhorst et al. [72], U — € is tuned up to a larger value to turn off the
exchange interaction when operating single-qubit gates, and U —e is tuned down to a smaller
value to turn on the exchange interaction when operating two-qubit gates. However, when

operating a sequence of single-qubit gates and two-qubit gates, the rise and fall times of
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Figure 3.10.: The filtered pulse Qi (¢) and Q!l*(¢) of the optimal CNOT gate by the trans-
fer function with the response function of the filter F'(w) = exp(—w?/w?).
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Figure 3.11.: J; and (J2 y—.) degradation from the filtering effects.
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U — e between two-qubit gate and single-qubit gates would cause gate errors. Besides,
changing U — € accompanies stark shifts on the quantum-dot qubits, which may results
in additional gate errors if the calibration is not precise. Therefore, we propose to keep
U — € as a constant value when operating a sequence of single-qubit and two-qubit gates to
prevent the fidelity degradation from tuning U — e up and down. After finishing a sequence
of gate operations, the U — € can be pulled to a larger value for the idle time. We choose
the values of the system parameters as those used to realize C-phase gates experimentally
in the work of Veldhorst et al. [72]: £z = 39.16GHz, §E; = —40MHz, and ¢ty = 900MHz.
We keep U — € = 300GHz (corresponding vy = 3MHz as shown in Figure 3.5 for the fast
C-phase gate in the experiment [72|) for gate operations. We control two AC magnetic field
amplitudes Qx(¢) and Qy (¢) to suppress the electric noise Sy_.(t), to enlarge the robust
window against the uncertainty ay, in ¢g, and to recover the gate fidelity deteriorated by
the filtering effects, while keeping the maximum values of |Qx (¢)| and |Qy (¢)| smaller than
1mT.

We use the ideal Hamiltonian H;(t) in Eq. (3.1) with two approximations SWA and RWA
to simulate the ideal propagator U(t) as described in Sec. 3.2. With Uj(t), we can simulate
J1 in Eq. (3.20). To suppress the gate error contribution from the electrical noise Sy—(t)
and the uncertainty «, simultaneously, we should define (J2) = (Joy—¢) + J24,, Where
(Jo,u—e) is the lowest order contribution from the electrical noise Syr—c(t) and Ja4, is that
from the uncertainty oy, to the ensemble average infidelity (Z). However, as the discussion
in Sec. 3.3, Ja 4, and (Jo,7—c) are linearly correlated as shown in Figure 3.8, and thus we can
suppress (Ja y—c) only, i.e. (Ja) = (Jo,u—e), and Ja ¢, can also be minimized simultaneously.
The definition of the noise Hamiltonian in Eq. (2.5) becomes Hy (t) = hBy—e(t) Hy—.(t),

where

00000
00000

Hy-«t)=|0 00 0 0 (3.35)
00000
00001

By the definition of (J2) in Eq. (3.21) and the static and stochastic noise model described

in Sec. 3.3,
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o e ty t1
(ho-d="C / ordty / dmdtyRe{Tr[(Ru_(t1) Rur—(t2)) 1]}
0 0
o2 y 2
U—e
- |:/ 27Tdt1TI‘ (RU_674><4(t1)) N (3.36)
0

16

where Ry_.(t) = U}r(t)HU,E(t)UI(t). With J; and (J3), we can apply the two-step opti-
mization introduced in Sec. 2.2 to find the optimal pulses. To recover the J; degradation
from the filtering effects, we should add an extra fine-tuning optimization after the two-
step optimization. The cost function of the fine-tuning optimization is the same as the
second step of the two-step optimization, i.e. Jy + (J2), but the control pulses Qx(¢) and
Qy (t) for simulating J; + (J2) is replaced by the filtered pulses Qi (¢) and Q(¢) via the
transfer function in Eq. (3.33) with the response function of the filter F'(w) in Eq. (3.32)
and the cutoff frequency wg/2m = 425.4MHz (approximation for Tektronix AWG5014 [83]).
We use the Nelder-Mead (NM) algorithm [76] to search the optimal control parameter sets
both in the two-step optimization and the fine-tuning optimization. Finally, we use the
realistic Hamiltonian in Eq. (3.22) without extra approximations to simulate the ensemble
average infidelity (Z) for demonstrating the suppression ability to the electrical noise and

the robustness against the uncertainty a4, of our optimal quantum gates.

3.4.1. CNOT gates

For the CNOT gates, we choose the operation time ¢; = 500ns, which is comparable to
that of the fastest C-phase gate in the experiment [72]. And we choose the same number of
control parameters kpyax for both control pulses Qx(¢) and Qy (¢) in Eq. (3.27) and in Eq.
(3.28), and vary kpax = 7 to kpmax = 13 for the J; optimization. After the J; optimization
(100 random initial guesses), we show the optimized J; values versus the optimization
iterations (NM algorithm) in Figure 3.12. One can see that if kpax is too small (kpax < 9),
not all initial guesses can achieve the control parameter sets with the lowest .J; values
after the optimization; if kyax is too large (kmax = 13), more optimization iterations are
needed to achieve the control parameter sets with the lowest J; values for some samples.
Therefore, we choose kpax = 11 for the CNOT gate optimization. However, the lowest J;
values after the optimization are around 4 x 1075 and these values can not be improved to

arbitrarily small (to the machine limit) even if we increase kyax or use smaller time-step
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for simulation. To exclude the approximation issue, we also do the J; optimization by the
ideal Hamiltonian in Eq. (3.1) without two approximations SWA and RWA, and observe
the same result as the J; optimization with SWA and RWA. Therefore, we think that the
controllability with only Qx (¢) and Qy (¢) controls is not enough to fully control the system.
Even so, Jp is still over three orders of magnitude smaller than the threshold of surface
codes 1072, Next, we see the distribution of the maximum pulse strength Q%“ and Q¥ax
(the maximum values of |Q2x ()| and |Qy (¢)| within the gate operation time t;) for the
ensemble of J; optimized control parameter sets in Figure 3.13, and we observe that only a
small portion of the ensemble with Q}** < 1mT and Q}* < 1mT. Therefore, we increase
the ensemble size of the J; optimization to add more samples, satisfying Ql)\(/[ax < ImT and
Qll\//lax < 1mT, after the optimization. Before implementing the second step of the two-step
optimization, we show the corresponding (Jo 7 —c) in Eq. (3.36) versus the corresponding
Ql\X/IaX and an" for the J; optimized ensemble (1100 samples) in Figure. 3.14. One can see
that most lower values of (Jo 7_.) appear in the region with Q}# > 1mT and Q}** > 1mT,
and it implies that stronger pulse strength has benefit for suppressing the electrical noise.
However, for the maximum pulse strength constraint in the realistic system, we need to
choose the initial guesses for the second step optimization from the J; optimized control
parameter sets in the region with Q)** < ImT and Q)% < 1mT (49 samples).

After the second step optimization, we first filter out the optimized control parameter sets
with Q%a" > 1mT or 91)\,4“ > 1mT, and then find an optimal control parameter set in the
remaining sets with J; = 4.53 x 107¢ and (Jo y_) = 2.78 x 1075 and with QY* = 0.89mT
and QI\Y/IaX = 0.98mT. To see the robustness against the uncertainty a4, for this optimal
control parameter set, we simulate the ensemble average infidelity (Z) with the realistic
Hamiltonian in Eq. (3.22) (standard deviation of the electrical noise oy_. = 3GHz; the
cutoff frequency for filtering effects, wo /27 = 425.4MHz) without SWA and RWA as shown
in blue circle-line in Figure 3.15. At the point oy, = 0, J2¢, = 0, our predicted ensemble
average infidelity should be (Z) & J; + (Jay_.) = 4.53 x 1076 +2.78 x 107° = 3 x 1077,
but it contradicts with (Z) = 10~* simulated by the realistic Hamiltonian in Figure 3.15.
This is because the filtering effects degrade .J; from 4.53 x 1076 to 10~* as shown in Figure
3.11. Therefore, we use the optimal control parameter set after two-step optimization as
the initial guess for the fine-tuning optimization. The (Z) versus ay, after the fine-tuning

optimization is shown in the red diamond-line in Figure 3.15, and at the point oy, = 0, (Z)
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Figure 3.12.: The optimized J; values versus optimization iterations after the J; optimiza-
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{Jorr—¢) topography, CNOT <107

Figure 3.14.: The (J2 y—.) topography of the CNOT gate with oy— = 3GHz versus max-
imum pulse strength QY and QMa* for the J; optimized ensemble (1100
samples).

recovers to our original estimation ~ 3 x 107°. Besides, one can see that the robustness
curves ((Z) versus oy,) after the two-step optimization (blue circle-line) and after the
fine-tuning optimization (red diamond-line) coincide for larger ay,. This is because, for
large v, (J2,v—) and other higher-order noise contributions are larger than J; and thus
dominate in (Z), and (J2 y—.) is not sensitive to the filtering effects as shown in Figure
3.11 and other higher-order noise contributions could also be insensitive to the filtering
effects, which results in the overlap of the two curves for large ay,. After the fine-tuning
optimization, we obtain a new optimal control pulse, which can recover the J; degradation
from the filtering effects, and the pulse shift from the original optimal control pulse after
the two-step optimization is ~ 1073mT as shown in Figure 3.16.

Next, we compare the performance of our optimal CNOT gates with the maximum pulse
strength Q%ax and Ql}\,/[ax smaller than 1mT (Q<1y,7) and smaller than 1.5mT (241 5m71),
and the C-phase gate (simulation for the ideal C-phase realized in the experiment [72])
in Figure 3.17. To see the ability to suppress the static and stochastic electrical noise
Bu—e with standard deviation oy_. = 3GHz, let us take ay, = 0. At oy, = 0, the

ensemble average infidelity (Z) of the optimal CNOT gate of Q<11 (red diamond-line)
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Figure 3.15.: (Z) of the CNOT gate versus «y, after the two-step optimization and after
the fine-tuning optimization.
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Figure 3.16.: Pulse shift after the fine-tuning optimization for the CNOT gate.
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Figure 3.17.: Robust performance against uncertainty oy, in to for the optimal CNOT
gates of Q17 (red diamond-line) and Q-1 5,7 (yellow square-line), and the
C-phase gate (blue circle-line).

is improved near two orders of magnitude compared with that of the C-phase gate (blue
circle-line). If the maximum pulse strength QY and Q) is relaxed to be smaller than
1.5mT (Q<1.5mT), (Z) of the optimal CNOT gate (yellow square-line) is improved more
than two orders of magnitude. For the robust performance against the uncertainty a4, in
to, the C-phase gate (blue circle-line) can be robust only to ay,/ty < 1% for the threshold
of the surface codes ((Z) < 1072). Our optimal CNOT gate of Q1,7 (red diamond-line)
can be robust to ay,/to ~ 10%, and that of Q<1 51 (yellow square-line) further robust to
ay, /to ~ 15%. The corresponding optimal pulses after the fine-tuning optimization for the

CNOT gate of Q1T and the CNOT gate of Q.1 5mT are shown in Figure 3.18.

3.4.2. Single-qubit gates

In this subsection, we demonstrate the performance of two single-qubit gates I ® X
(Identity gate for dot2 qubit and X-gate for dotl qubit) and Hy ® I; (Hadamard gate for
dot2 qubit and Identity gate for dotl qubit). We suitably choose the number of control
parameters kpyax = 8 for both Qx(¢) and Qy (¢) of these two gates and choose the gate

operation time t; = 200ns and ¢y = 250ns for I ® X; and Hy ® Iy, respectively. The
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Figure 3.18.: The optimal control pulses of the CNOT gate with Q<117 and Q<1 5mT-

(Jo,u—c) topography of I ® X; gate after the J; optimization is shown in Figure 3.19,
and we compare it with that of the CNOT gate in Figure 3.14. One can see that the
height difference in the (J 7—¢) topography of the CNOT gate is only around one order of
magnitude, while around two orders of magnitude for Io® X; gate. Furthermore, the lowest
(Jo,y—c) area (deep blue area) for I, ® X; gate is closer to the area with Q}** < 1mT and
OMax < 1mT than that for the CNOT gate. That is, the (Jo—¢) topography of Ir ® X3
gate around the area Q%ax < 1mT and Q%\ﬁ[a" < 1mT is more steep than that of the CNOT
gate. Therefore, for the second step optimization of Iy ® X7 gate, all initial guesses in the
area Ql\X/IaX < 1mT and Q%}Iax < 1mT flow into the area Qx max > 1mT or Qypax > ImT
more easily than that of the CNOT gate does.

So, we should add an extra cost function, the fluence (a measure of the field energy) [43],
ty 9 ty 9
J-":/ 2 (1) dt+/ ()2 dt (3.37)
0 0

in the second step optimization and in the fine-tuning optimization to modify the cost

function topography in the control parameter space, and the total cost function becomes

J1 4+ (Jou—e) + & F, (3.38)
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Figure 3.19.: (Jo,y—¢) topography of I ® X; gate with oy_. = 3GHz versus maximum
pulse strength Q2% and QY8 for the J; optimized ensemble (2389 samples).

where the constant parameter £ determines the contribution ratio of the fluence F in the
total cost function. If £ is too small, F doesn’t work and the steep (Jo 7—¢) topography still
exists, while if ¢ is too large, F dominates all the topography and thus (Jzy—c) can not
be suppressed. And we find the optimal & = 1076, The performance of the optimal single-
qubit Ir ® X, gate and Ho® I7 gate is shown in Figure 3.20, and the corresponding optimal
pulses after the fine-tuning optimization are shown in Figure 3.21. Both optimal gates can
suppress the static and stochastic electrical noise with oy = 3GHz to (Z) = 107> (at
ay, = 0), and can be robust to oy, /tp more than 15% for the threshold of surface codes,

() <1072
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Figure 3.21.: The optimal control pulses of the single-qubit I, ® X, gate and Hy ® I gate.
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4. Conclusion

Our two-step optimization method can provide robust control pulses of high-fidelity quan-
tum gates for stochastic time-varying noise and systematic error. Besides, our method is
quite general, and can be applied to different system models, noise models, and noise CFs
(PSDs). We apply our robust control method to the realistic system, quantum-dot electron
spin qubits in isotopically purified silicon. We use the realistic system parameters from the
experiment, characterize the noise model and noise strength from the experiment, and also
consider experiment constraints such as the power limitation of the on-chip ESR line and
the finite bandwidth of waveform generators, and finally demonstrate the high-fidelity and
robust single-qubit gates and CNOT gates for this realistic system by our robust control
method. Therefore, our method will make essential steps toward constructing high-fidelity
and robust quantum gates for FTQC in realistic quantum computing systems.

When our optimal pulses are applied to the qubits in the laboratory, the gate fidelity
could degrade from our prediction for some unknown factors without taking into account
in our simulation model. Therefore, some closed-loop optimization methods [85, 86] imple-
mented in the laboratory are suggested to calibrate our optimal pulses for recovering the
fidelity degradation from these unknown factors. The cost function for the closed-loop op-
timization in the laboratory is just the ensemble average infidelity (Z) which is obtained via
many repetitions of infidelity measurement in the experiment. If the fluctuations of these
unknown factors are small, then (Z) = J; + (Ja). If these unknown factors doesn’t alter
our original (J3) topography simulation and change only Ji, the function of the closed-
loop optimization in the laboratory corresponds to that of our fine-tuning optimization. If
these unknown factors destroy our original (Js) topography simulation largely, our opti-
mal control parameter set is no longer on the flat bottom of the realistic (J3) topography.
Thus the function of the closed-loop optimization in the laboratory is equivalent to that

of our second step of the two-step optimization. To estimate how much time is required
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for implementing the closed-loop optimization in the laboratory, we first assume the cor-
responding fine-tuning optimization via NM algorithm is implemented in the laboratory,
and, in the case of our optimal CNOT gate (22 control parameters) in Sec. 3.4, around
1000 optimization iterations are required for NM algorithm, where the average number of
cost function calls per each iteration is ~ 3 [87]. So we need to input the cost function
to NM algorithm ~ 3000 times, and the cost function in the closed-loop optimization is
just the ensemble average infidelity (Z). Each (Z), obtained by randomized benchmarking
[88, 89], can be performed in 2 seconds in the laboratory of the superconducting qubit
system [86], and thus we can perform the corresponding fine-tuning optimization of our
optimal CNOT gate in the laboratory in ~ 1.7 hours by ~ 3000 (Z) measurements. How-
ever, the optimization iterations of the second-step optimization is over 500 times as that
of the fine-tuning optimization. Therefore, around ~ 35 days are required for the closed-
loop optimization in the laboratory when the unknown factors change the original (Js)
topography simulation largely, and in this case we think the practical way is to character-
ize these unknown factors in experiment, and then input the detailed information of these
unknown factors to simulate the precise (J2) topography for our two-step optimization via
classical computers. Another improvement way is to use more efficient optimal algorithms
other than NM algorithm to reduce the total number of measurements for the closed-loop
optimization in the laboratory [90].

To conclude, the optimal control theory enables us to construct robust and high-fidelity
gate pulses against noise and uncertainty in qubit systems. The optimized pulses af-
ter closed-loop calibration and optimization in the experiments can implement desired
quantum gates with target performance. Several advanced experiments using the optimal
control pulses have been demonstrated [86, 91, 92, 93, 94]. Thus the optimal control the-
ory is practical and applicable experimentally and can provide an essential input into the

realization of large-scale FTQC.
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A. : Derivation of Egs. (2.12)-(2.14)

We present the derivation of Egs. (2.12)-(2.14) and discuss the role of the extra term e
in Eq. (2.12). Substituting the total system propagator in the Dyson expansion U(ty) =
Ur(ty) - (I + ¥y + W + ---) into the infidelity definition Z of Eq. (2.2), we obtain

=
_%Re{Tr[thUl(tf)]* CTY[UFU (k) - (U1 + Wo + -4 )]}

| - (e[ (A1)

The first term J; on the right hand side of Eq. (A.1) is the gate infidelity for the ideal system
defined in Eq. (2.13). Then we define the error shift matrix U, of the ideal propagator

Ur(ty) at time t; from the target gate Ur up to a global phase ¢ as
Ur(ty) = eUrp(I +U,). (A.2)

Note that when the gate infidelity J; for the ideal system is made small, the matrix
elements of U, also become small. Substituting the expression of Ur(ty) of Eq. (A.2) back

to Eq. (A.1), we obtain

T = i+ {~ gy RelTe(W)])

+J2 + G(Uea \I]j) + 0(7:[%7777' > 3)7 (A3)
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where Js is defined in Eq. (2.14),

6(U€, \If]) =

_ %Re{Tr[Ue(\Ifl +Wy+ )]}

N %Re{Tr[UE]* CTe[W) 4 Uy +- -]}
a %Re{Tr[Ue(\I’l + Wyt )] Tr [W + Wa + -]}
_ %Re{Tr[UE]* CTe[U (T + Uy + -+ )]}

DU s )P (A4)

and O( ~%, m > 3) denotes other higher-order terms without containing U.. The first-order
noise term, —Re[Tr(¥1)]/2"7 1, in Eq. (A.3) actually vanishes for Tr(¥;) = —i fotf Tr[Hy (¢)]dt
is a purely imaginary number, where the noise Hamiltonian Hy(t") is Hermitian [with 3;(t)
being real] and thus Tr[Hx(t')] is a real number. This result of no first-order noise contri-
bution in Z is similar to that in Ref. [42]. This is also the reason why there is no first-order
noise contribution in ensemble average (Z) of Eq. (2.15). Equations (2.12)-(2.14) can then

be easily obtained from Eq. (A.3) with the identification of € = (U, ¥;).

We discuss below the property and the role of € = €(U, ¥;) in Eq. (2.12) or in Eq. (A.3).
The extra contribution € = €(U,, ¥;) to the gate infidelity, with the detailed form shown
in Eq. (A.4), is related to the error shift matrix Uc and all Dyson expansion terms ¥;. As
noted earlier, if J; is small, then the matrix elements of U, are also small. Moreover, if
the noise strength is not too strong such that |¥;, | < |¥}|, then the extra contribution
e = €(Ue, ¥;) is also small. Therefore when running optimization for a low noise strength,
for which the higher-order term O(HR, m > 3) becomes negligible (see Appendix B), the
extra contribution € can be omitted as J; is minimized to a small number. Consequently,
one can focus on the optimization of only J; + (J3).

The advantage of introducing J; and € in our method is to enable more degrees of freedom
in control parameters for optimization. There are actually no J; and € contributions in the
gate infidelity expression of the robust control method of SUPCODE [30, 31] and the filter-
transfer-function method [49, 50]. In these methods, Jj, or, equivalently, the error shift
matrix U,, is set exactly to 0 by imposing some constraints on the control parameters. In

contrast, our method can tolerate some error of U, and thus have more degrees of freedom
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in control parameters as long as J; and the extra contribution (e) in gate infidelity (Z)
are made just smaller than (J). This advantage of having more degrees of freedom for
optimization plays an important role in finding better control pulses as the number of

qubits, the number of controls, and the number of noise sources increase.
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B. : Estimation of higher-order

contributions

Here we estimate the contributions of higher-order terms O(H%, m > 3) and discuss when
they can be neglected. We express the higher-order terms as (’)(ﬂ%,m >3) =253
where J, denotes the p-th order noise term of the gate infidelity. Detailed forms of the

first two lowest-order terms in O(HR, m > 3) are

Js = — gy Re[Tr(¥5)] — - Re{ Te(W1)Tr(¥s)"), (B.1)

Ji = = g ReTH(W)] = 1 [TH(W) — - Re{TR() Te(Wg)'), (B2)
where

v, = (—i)q/O f dtl/O 1 dtz - /0 . dtgHn () Hn (t2) - H(tg) (B.3)

is the ¢g-th order Dyson expansion term. To make an estimation of the magnitude of ¥, we
take the Z-noise model for the single-qubit gate operations in Sec. 2.3.1.1 as an example.
Substituting the noise Hamiltonian Hy(t) = Bz (t)Rz(t) with Ry (t) = UIT(t)[woZ/2]U[(t)

in the interaction picture into ¥,, we obtain

tf t1 tqfl
v, = (_i)q/ wodt1/ wodto - - / wodty
0 0 0

x {Bz(t1)Bz(t2) - - Bz(ty) H{Rz(t1)Rz(t2) - - - Rz(ty)}- (B.4)

where Ryz(t) = U;r(t) [Z/2|U(t). Since Uy(t) is unitary, its matrix elements |Uy jx(¢)| < 1
for all j and k. Consequently, | Rz ;,(t)| < 1forall j and k, so [{Rz(t1)Rz(t2) - - Rz(tq) }k| <
1 for all j and k. Taking the strength of Sz(¢) to be about its standard deviation oz,
we estimate the noise strength contribution to be [{8z(t1)Bz(t2) - Bz(ty)} ~ (022)%.

The time integral contribution {f(ff wodty fgl wodty - - - fgq‘l wodt,} can be estimated to be
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about ~ (wotf)?/q!. By combining the above estimations, the magnitude of |W, ;x| is
of the order of ~ (wotfozz)?/q!. Then substituting the estimated value of |W ;x| into
Jo in Eq. (2.14), Js3 in Eq. (B.1), and Jy in Eq. (B.2), we obtain the magnitude ra-
tio Js/Jo ~ (wotfozz)/3 and Jy/Jo ~ (wotfozz)?/12. The single-qubit gate operation
time in Sec. 2.3.1.1 is woty = 20. If we choose the noise fluctuation o7z = 1073, then
the ratio J3/Jo ~ (6 x 1073) and Jy/J2 ~ (3 x 107°), and thus the higher-order terms
O( ~7]G, m > 3) can be safely neglected. If, however, 077 ~ 1071, then wotfozz ~ 2. In this
case, J3/Jo ~ 2/3 and Jy/Ja ~ 1/3, so the higher-order terms O(HR, m > 3) can not be
neglected. Comparing our estimation with the results of the full-Hamiltonian simulation,
one finds that the ensemble average of the gate infidelity (Z) of the IDG strategy scales
as the second power of o7z (because (J) dominates) for small o7z until o7z ~ 107! in
Figure 2.3(a) for low-frequency noise 77z = 10~ 7wp and in Figure 2.4(a) for high-frequency
noise 7z = 107 wy. This is consistent with our estimation. In other words, if oz is con-
siderably smaller than 1071, O( ~ﬁ, m > 3) can be ignored. Therefore, even in the case
where the full-Hamiltonian simulation is not available, we can use this estimation method

to determine the criterion for neglecting the higher-order terms O( ~%, m > 3).
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