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中文摘要 

 在未來的無線通訊領域中，物聯網將成為下一個世代中的主角。不同於以往的

人對人通訊，物聯網是由數以萬計的裝置和物件所連通而成的網路。也因為這龐大

的數量，如何設定、管理與維護此難以想像的龐大網路成為了實現物聯網的關鍵。

很明顯的，傳統人工或半自動的解決方案無法有效的解決上述問題。 

 在許多設定與管理的物聯網議題中，知曉某一已知位置上安裝的裝置之虛擬邏

輯地址非常重要。舉例來說，使用者期望鄰近廚房電燈之開關能夠控制廚房之電燈，

而此家用物聯網路之控制邏輯需要同時知道開關和電燈的實際位置和網路地址。雖

然以人工的方式設定能解決小規模的實際位置和網路地址隻配對問題，但對於大規

模之物聯網路來說，人工的方式依然無法規模化且不便進行管理 

 為了解決此問題，我們提出了分散式且可規模化的基於拓樸之自動設定演算法。

有別於傳統以定位演算法之解決方案，此配對問題被我們視為一種排序問題。在我

們的演算法下，N個已知邏輯地址的裝置根據鄰近裝置之無線訊號資訊進行排序成

為一個序列，而 N個已知的實際位置根據安裝拓樸排序而成另一個序列。因此，此

問題從二維配對問題轉化為一維的排序問題，相較於傳統定位演算法與圖像演算法

來說進而更加簡單、更能被規模化以及具有更低的複雜度。 

 我們所研究模擬的結果顯示，在網狀拓樸中，我們提出的演算法在高達 0.8 測

量誤差 (Measurement Error Rate, MER) 的條件限制下，能夠達到 80%的成功率；而

基於定位之三角定位演算法與MDS-ICP演算法只能在 0.5與 0.2的較低測量誤差下

達到 80%的成功率。在其他拓樸中我們的演算法依然較為可靠且複雜度更低。為了

證明演算法在實際室內環境的可應用性，我們設計了類環令牌且基於 Simple 

Flooding之通訊協定，並將其實作於安裝了 IEEE 802.15.4模組與 STM32F0晶片之

FCM2401上。實驗結果也顯示我們的演算法於現實環境中運行良好且有效解決自動

設定之問題。 

 

關鍵字：物聯網、自動設定 
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ABSTRACT

The Internet of Things (IoT) is becoming main drive of the growth of wireless net-

works. Different from the human-to-human communication, IoT is a huge network

that connects an enormous amount of physical objects. As a result, how to config-

ure, manage, and maintain such a huge network becomes the key to realizing IoT.

Obviously, the traditional manual or semi-automatic solutions will not be applicable

to the emerging IoT networks.

Among many configuration/management issues in an IoT network, knowing the

network (logical) address of a device installed at a certain physical position is impor-

tant. For example, one would like a switch on the wall near the entrance of a kitchen

to control the light fixtures in the kitchen. The control logic of this home network

would need to know the network addresses of the switch and light fixtures at these

two specific locations. Although one can manually provide the logical address and

location ”tuple” of each device to the control logic, such a solution is not scalable for

an IoT network.

In this thesis, we propose a distributed, and scalable algorithm to solve this prob-

lem. Unlink the traditional positioning approaches, the problem is treated as a sorting

problem. With the help of our algorithm, N known logical addresses (i.e., MAC ad-

dresses) are sorted as a sequence based on radio neighborhood information collected

by the devices, while the N known physical addresses (installation locations) are

sorted as another sequence based on the installation topology. As a result, the prob-

lem becomes a one-dimensional problem and is more scalable and simpler, in terms

of computation complexity, than the traditional positioning-based or image-based

approaches.

ii
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iii

The simulation results show that our algorithm can achieve 80% success rate

with 0.8 Measurement Error Rate (MER), while the trilateration and MDS-ICP can

achieve the same success rate with only 0.5 MER and 0.2 MER, respectively t for

a grid topology. In order to demonstrate the feasibility, we also implement this

algorithm in IEEE 802.15.4 wireless modules using a simple flooding protocol with a

majority voting rule. The experiment results show that the algorithms work well in

a real indoor environment.

Keywords: the Internet of Things, automatic configuration
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CHAPTER 1

INTRODUCTION

The Internet of Things (IoT) is a huge network of enormous physical objects which

can communicate with each other. Tremendous physical objects are being connected

to the Internet to realize the concept of IoT. These physical objects are able to

sense the surroundings, analyze data, and perform jobs collaboratively. IoT is also

regarded as an extension of the Internet, expanding the communication from humans

and humans to machines and machines. Everything which is not only physical but

also virtual is possible to be connected by the IoT.

1.1 The Evolution of Internet of Things

IoT is evolving from the vertical applications to the integrated applications [1].

In the beginning, the most of IoT applications are domain-specific. For example,

automobile manufacturers start to install sensors and robots in the assembly line of

factories. These sensors and robots communicate with one another to collaboratively

assemble the car, analyze the quality and transmit all data produced during the work

to engineers and managers. The network of sensors and robots in the factories only

serve their company and form a vertical application. A domain-specific application

may only solve the problems with its own industry. This is the early stage of IoT.

Integrated applications are cross-industry applications based on different public

information platforms and IoT architectures. These applications serve both indi-

viduals and enterprises. For example, future road-traffic systems may be composed

of vehicle-to-vehicle networks, sensor networks on the road and global positioning

systems. These future systems can support not only individuals who drive on the

1
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road but also companies which may provide self-driving cars to carry passengers.

Moreover, through a public information platform of this systems, automobile man-

ufacturers, maintenance providers, and vehicle management agencies can share all

these data to improve the vehicles and promote the safety of the road-traffic.

With evolving into the integrated applications, cooperating with other industries

and creating more value are the current trend. Many countries consider IoT as strate-

gic industries and chances to stimulate the economy. European Union (EU) has al-

ready spent more than 100 million Euros on IoT technologies. These investments will

be used in the smart grid, intelligent transportation, smart cities, etc. South Korea

also invested more than 20 million U.S. dollars in IoT fundamental technologies and

researches. China even proposed the 12th Five-Year Plan for IoT development, and

a total of 45 billion U.S. dollars will be invested for smart cities with more than 200

cities selected [2].

The various IoT applications are the key points to stimulate the economy. In

addition to the applications mentioned above (smart cities, smart grid and intelligent

transportation), here are some other typical IoT applications: 1) smart industry; 2)

smart agriculture; 3) smart logistics; 4) smart home; 5) healthcare; 6) environment

protection [1]. These applications are different from each other, but most of them

consist of the following common capabilities:

1. Sensing

IoT systems can sense the environment with physical or chemical phenomena

around the sensors. Typical sensing information includes temperature, humid-

ity, velocity, light, motion and the magnetic fields. The sensors make the physi-

cal objects perceive the surroundings and have the ability to response to events

around them. On the other hand, sensing information can also help the config-

uration of networks through the sensed data. It is the basic capability of IoT

and has already been used widely in various scenarios before IoT showed up.
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With the sensor technology advances, more and more different phenomena can

be sensed and the precision of sensors will be better.

2. Remote Controlling

Not all IoT applications need to remotely control the physical objects, but this

capability can not be replaced. Remote controlling enables the IoT systems to

react to the surroundings physically. For example, smart home systems may

remotely control the lights through the cloud server or users.

3. Location Configuration

Almost every IoT systems need to know the location information of physical

objects to label the data sensed by the sensors because the data without the

location information are too raw to analyze and create value. The location

information can be dynamic or static. It depends on the requirements of IoT

applications. For example, smart lights in the smart industry need to know their

static location information because devices with only virtual addresses cannot

be controlled by humans. The location information can obtain from GPS, RFID,

cellular networks, absolute or relative position information between objects.

4. Networking

Networking is another important capability of IoT. Sensors need to transmit

data to other sensors, gateways, and even remote servers. People also want

to control the remote devices and send commands to do jobs. IoT systems

must have network configuration capability to interoperate with each other and

connect to the backbone network to provide different services.

The technologies of the four capabilities have existed for a long time. Sensor tech-

nologies are still evolving, and they are mature enough to support the current IoT sce-

narios. The most of the remote controlling requirements are also satisfied. However,



doi:10.6342/NTU201702027

1.1. THE EVOLUTION OF INTERNET OF THINGS 4

some of the requirements and scenarios of IoT are different from the past. Networking

becomes more complicated because the infrastructures are more distributed, and the

capability of devices are limited. The limited communication capability makes the

configuration of a network more difficult. Also, the location configuration of tremen-

dous sensors still, cannot be automated. The following will elaborate the challenges

and constraints for realizing IoT [3].

• Scalability and Performance

The scalability of IoT is about adding new devices, services, and functions to

systems without negatively affecting the current systems. The diversity of IoT

is the difficult part to achieve the scalability. Different devices, architectures,

and protocols now are not easy to build systems with the scalability because of

the lack of standards. Another difficult part is about the limited capabilities of

devices. The most of the devices in IoT only have limited resources. Energy,

computation resources, wireless radio coverage, etc. are typical constraints of

the IoT. These constraints affect not only the network performance but also the

accuracy of location configuration. How to achieve the scalability and improve

the performance are always important for IoT.

• Reliability and Availability

The availability means anytime and anywhere services, and the reliability refers

to the high success rate of IoT service delivery. The two challenges must be

implemented in both hardware and software. In IoT, hardware shall exist all

the time and work normally, and software shall be able to provide services for

huge amounts of users. For example, the communication networks of emergency

response applications must be robust and can recover from the failure quickly.

Also, the locating capability must be reliable to help the system work correctly

and accurately. How to achieve the requirements above are still a challenge for
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IoT.

• Management and Configuration

The management is the challenge due to the transformation of quantitative into

qualitative changes. Billions of IoT end-devices will be deployed, and the night-

mare of managing tremendous devices come along. For example, we know that

monitoring the fault of connectivities among devices can control the reliability

of services, but tracking a device in a huge distributed sensor network is diffi-

cult. We cannot directly get the information about the certain device because

the radio coverage is limited. The data must be relayed from the device to

monitors, and this process will consume power and cause latency.

The configuration is another potential problem for the deployment of IoT. Con-

figuring the information of IoT applications among thousands of devices is also

a nightmare. If we know the locations of devices, automating the configuration

of devices is a promising way to solve the problem. However, the locations of

devices also need to be configured, but the current technologies are still too

immature to be adopted. New light-weight management protocols and config-

uration protocols are necessary and indispensable for IoT.

As mentioned above, the locations of devices are the key point for management

and configuration. Figure 1 is an example problem about the location configuration.
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Figure 1: Smart light- location configuration example

Users get the message from the control panel and know that light-8 should be

turned off. If users only have this message without any other information, they still

do not know where the light-8 is. An intuitive solution is configuring the locations of

devices manually. The mappings between cyberspace addresses and physical location

information can be done by humans, and there are some technologies can make the

location configuration easier, such as Quick Response Code (QR Code), Radio Fre-

quency Identication (RFID), Near Field Communication (NFC) and Bluetooth Tag.

Figure 2 shows how QR code can help the location configuration.

QR code can store cyberspace addresses information such as device IDs. Installa-

tion personnel can use QR code scanners to get the information and mark down the

locations of devices. Then the QR code scanners can transmit the mapping between

the location and the device ID to cloud servers, and the problem is solved.
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Figure 2: An example of manual configuration with QR code

However, the reliability, efficiency, scalability and manageability of manual con-

figuration have some problems. First, the installation personnel should be trained

before they start to do configuration and we cannot guarantee that all devices can be

configured correctly by humans. Furthermore, the difficulty of manually configuring

an IoT application is proportional to the number of devices. Second, when we need

to replace the broken devices, we must redo the all configuration procedures manu-

ally. This will be a nightmare when companies deploy systems in our home because

users may not be able to do configuration with new devices, especially for elders and

patients. Thus, for all reasons above, we need an automatic location configuration

method.

In this thesis, we want to solve the location configuration problem with an au-

tomatic location configuration algorithm. The location is the key attribute of IoT

introduced in the previous section, and also important for the management of IoT.

However, in contrast to the positioning problem, the location configuration problem
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is ignored for a long time during the development of IoT. Location configuration

problems are not positioning problems. IoT applications can know the deploy-

ment topology in advance no matter whether the topology is regular or irregular.

Developers can use the known deployment topology to assist the location configura-

tion, therefore, the location configuration problem becomes a “matching problem”:

We know all device-IDs and all locations, but we do not know which device is lo-

cated in a certain location, as shown in Figure 3. The next chapter will elaborate the

problems and introduce some typical solutions for the configuration of locations.

Figure 3: An example of the matching problem

1.2 Problem Statement

As mentioned in the previous section, location configuration is a “matching prob-

lem”: All device-IDs and all locations are known, but we do not know which device

is located in a certain location. We can consider all device-IDs as one set, and all

locations as the other set, as shown in Figure 4.
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Figure 4: Two sets of device-IDs and locations

The number of the two sets must be the same because each device can only have

one location. In other words, each element in the device-ID set is only mapped to one

element in the location set. Thus, the location configuration is a one-to-one mapping

problem with the two sets. Assume there are N elements in each set. There are total

N! combinations, and only one of them is the correct answer. The goal of automatic

location configuration algorithms is to find that correct answer.

We can use some space information such as distance to help the location con-

figuration. Figure 5 is an example. L1, L2, . . . , L9 represent nine locations, and

D1, D2, . . . , D9 represent nine devices. The left of the dotted line is the correct

mapping between locations and device-IDs, and the right of the dotted line is a sim-

plified example of what we guess. Assume the devices can measure distances between

other devices. For D5, the measured distance from D1 may be twice as large as the

measured distance from D6, so devices can know that the guess is wrong.
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Figure 5: An example of space information

Distances between devices can really help us find the correct mappings, but how

to measure distances is another problem. Using additional distance measurement

modules such as ultrasound or infrared for location configuration is not cost-efficient

because usually we only need to do location configuration once. On the other hand,

most of the devices in IoT are equipped with wireless communication modules. Thus,

the only thing we can use for free is Received Signal Strength Indicator (RSSI), even

though RSSI has its limitations. Converting RSSIs into distances is very difficult

because 1) we may not know the current wireless channel model of the environment [4],

2) even we know the model, the coefficients of the model for different environments

are not the same so we always need to do massive measurements to estimate the

model [5]. In spite of the disadvantages of RSSI, we still want to use it because it is

the only thing we can use for free.
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Although positioning problems are not the same as location configuration prob-

lems, typical positioning solutions provide many ways to use RSSI effectively. The

next chapter will introduce typical solutions which can be used to solve location

configuration problems.

1.3 Contributions

The main contributions of this thesis are listed as follows:

• Proposed a novel automatic configuration algorithm to solve the location con-

figuration problem. In our designs, the algorithm only needs one anchor and do

not need to convert RSSIs to distances. The algorithm can handle any topology

and the complexity of the algorithm can be only O(n). With the grid topology,

the algorithm can achieve 80% success rate with the measurement error rate

under 0.8, which is much better than other algorithms.

• Developed a method for choosing the optimized parameters of the algorithm.

Simulated the performance of the proposed algorithm and compare the perfor-

mance to trilateration and MDS-ICP. The simulation results show that, with

the same success rate, our algorithm can tolerate much higher measurement

error rate than trilateration and MDS-ICP.

• Implemented the proposed algorithm with a distributed protocol on the board

STM32F0 which equipped with IEEE 802.15.4 wireless module.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we will elaborate

the problems of location configuration and introduce typical solutions which are used

for automatic configuration and positioning. The proposed algorithm designs are
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introduced in Chapter 3. In Chapter 4, the simulation and implementation results

are presented. Finally, the conclusions and future works are drawn in Chapter 5.
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RELATED WORK

Location information is one of the most important information for IoT. Most of the

devices in IoT need both a cyberspace address and a physical location information,

and the two information need to be combined to provide services. In this chapter, we

will introduce several possible solutions for location configuration. We will summarize

pros and cons about the possible solutions and figure out the technical challenges in

the end.

2.1 Trilateration Based Methods

Trilateration is the process of determining locations by measuring the distances

between the anchor node and the target with the geometry of circles, spheres or

triangles [6] [7] [8] [9] [10]. Anchor nodes here refer to the devices which have prior

knowledge of their absolute positions, as shown in Figure 6. It is the most popular

method used in positioning technologies and there exist many practical applications

with trilateration.

13
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Figure 6: Trilateration

Figure 7 is an example of how trilateration can solve the location configuration

problem. The system now wants to map the device D1 to a certain location. With the

help of three anchors, D1 can use trilateration to estimate a location. Trilateration

just gives us an estimation, not a mapping, so here we choose the closest known

location L5 which has not mapped to another device as the mapped location of D1.

The advantages of trilateration are the relatively high accuracy and the relatively

low complexity. Trilateration just need to get three distances and three locations

of anchors to calculate the estimated location (with the complexity of O(1)), then

choose a closest known location as the mapped location (with the complexity of

O(n)). Because all devices need to do the same process, thus the total complexity

is O(n2). However, the disadvantage of trilateration is fatal. Converting RSSIs into

distances is too difficult as mentioned in the Section 1.2, and in most of the time, it
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requires more effort than the manual location configuration. This is also the reason

why trilateration is seldom used for location configuration problems.

Figure 7: An example of how trilateration solve the location configuration problem

2.2 Multidimensional Scaling based Methods

In this section, we will introduce the multidimensional scaling (MDS), a well-

known algorithm for data analysis and visualization. However, because of the limita-

tions of MDS, it cannot completely solve the location configuration problem. Thus,

we will also introduce a typical point registration algorithm, Iterative Closest Point

(ICP) Algorithm, which is widely used in image registration problems to help MDS

solve the location configuration problem.

2.2.1 Multidimensional Scaling Algorithm

Multidimensional Scaling (MDS) is widely used in data analysis to represent mea-

surements or similarity among pairs of objects through the “distance” between ob-

jects. For example, the “distances” can be correlations among the attributes of ob-

jects, or some similarity measurements distances such as Euclidean distance, Man-

hattan distance, Mahalanobis distance, etc. The MDS representation is a plane with
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Device D1 D2 D3 . . . D9

D1 0 189 184 . . . 171

D2 186 0 165 . . . 132

D3 188 159 0 . . . 180

. . . . . . . . . . . . . . . . . .

D9 176 143 188 . . . 0

Table 1: An example of the RSSI matrix between devices

points which represent the objects. The points on the plane are closer, the corre-

lation is more positive. Therefore MDS are usually used to visualize the relation

between measurement targets. More details about theories and applications of MDS

are available in [11].

Figure 8: The example result of multidimensional scaling with Table 1

RSSI can be viewed as a similarity of distance. Using RSSIs as the physical

relation among devices and calculating the MDS are another typical way to locate

the positions [12] [13], as the example shown in Table 1 and Figure 8. The MDS

result will be the similarity of the real topology, and the similarity depends on the

measurement errors and conversion errors.

As we mentioned in the beginning, MDS has some limitations. MDS only provide
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the similarities between objects, so the MDS result may be a twisted, scaled, rotated

and flipped version of the original topology. How to transform back to the original

one is still a problem. Using the point registration algorithms is one of the methods

to do the transformation [14], and Iterative Closest Point (ICP) algorithm is a famous

point registration algorithm which we will introduce in the next subsection.

2.2.2 Iterative Closest Point Algorithm

Iterative Closest Point (ICP) algorithm is widely used in image registration to

reconstruct 2D or 3D surfaces from different scans [15] [16]. The principle of ICP

is to minimize the difference between two sets of points. Here we continue from the

MDS result and the real topology. In ICP, the real topology is called reference, which

is kept fixed, while the MDS result is transformed to best match the reference. The

algorithm iteratively updates the transform matrix which is composed of translation

and rotation. The goal of the algorithm is to minimize an error function, usually the

distance from the set of the MDS result to the set of the real topology.

The ICP here is composed of four steps, as shown in Figure 9. We will introduce

the four steps of the algorithm with some mathematical formulas as follows:

1. For each point in the MDS result, find the closest point in the real topology

Assume M is the set of the MDS result, and V is the set of the real topology.

∀m ∈M find a closest point v ∈ V, which we called matchv(m).

2. Estimate the combination of rotation and translation using a cost function that

will best align each MDS result point to its match found in the previous step

Assume R is the rotation matrix, and T is the transform matrix. Update R

and T that minimize

1

Nm

∑
m∈M

‖matchv(m)− (R×m+ T)‖,

where Nm is the number of elements of M.
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We can obtain the T by the following equations:

T = avg(V)−R× avg(M),

and R can be solved by cubic equation, linear list squares, or SVD

3. Update the MDS result with the obtained transformation

∀m ∈M, mnew = R×mold + T

4. Iterate the previous steps until the cost function converged

Redo the step-1 to step-3 until the cost function in step-2 converged

Figure 9: An example of one iteration of the ICP algorithm

After doing the ICP algorithm, each device can be mapped to the closest location

one by one without duplicate. The next subsection will discuss the pros and cons

about the MDS-ICP algorithm.
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2.2.3 Summary of the MDS-ICP algorithm

The main advantage of the MDS-ICP algorithm is that it can avoid converting

RSSIs to distances. It is very attractive because the converting is too difficult. How-

ever, there are many disadvantages about the MDS-ICP algorithm. First, the com-

plexity is too high. The complexity of only MDS is O(n3), much less the complexity

of MDS-ICP. Second, the accuracy of MDS-ICP is relatively lower than trilateration.

The relationship between RSSI and distance are non-linear, so the distortion may be

too severe to achieve enough accuracy. Third, if the original topology is symmetric,

MDS-ICP cannot find the correct solution. This is a fatal disadvantage because it

can not handle arbitrary topologies.

2.3 Summary

In this chapter, we introduced typical possible solutions for the location configu-

ration. Two algorithms are summarized in Table 2. Converting RSSIs to distances is

a critical problem for location configuration because in most of the time it requires

more effort than manually location configuration. Accuracy is another critical prob-

lem because the location of a certain device must be fixed after deployed. These two

requirements are a trade-off. Trilateration provides a relatively high accuracy but

needs to convert RSSIs to distances. MDS-ICP can avoid converting the RSSI while

it can only provide relative low accuracy.

Complexity is another issue. Lower complexity is better, because most of the

devices in IoT may not have powerful computation resources. In addition, the com-

plexity affects not only the performance but also the difficulty of implementation. As

mentioned before, the complexity of MDS-ICP is greater than O(n3). Because MDS-

ICP requires iteration, it is much more complex than the complexity of trilateration

which is only O(n2).
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The problem of scaled, rotated, and flipped result is another fatal issue for MDS-

ICP. If the original topology is symmetric, ICP cannot ensure whether the result

is correct or not. Refer to the previous 3x3 grid example. ICP only minimize the

difference between two sets, but it cannot tell the direction. If the MDS result is just

a 90-degree rotated version of the original topology, then ICP may consider it is the

best match.

Trilateration MDS-ICP

Convert RSSIs to
distances

Yes No

Accuracy High Low

Complexity O(n2) > O(n3)

Scaled, Rotated
and Flipped

No Yes

Table 2: Comparison between two algorithms

Converting RSSIs to distances, accuracy, and complexity are three technical chal-

lenges for location configuration. Both trilateration and MDS-ICP cannot solve the

three challenges simultaneously. Therefore, our goal is to design a whole new al-

gorithm to achieve high accuracy, low complexity, and avoid converting RSSIs to

distances for the location configuration.

The following chapters will introduce the solution proposed by this paper to solve

the automatic location configuration problem with the help of the known topology

and analyze the performance to compare with other existed solutions.
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PROPOSED SCHEME

As we mentioned in the previous chapter, we want to conquer the technical chal-

lenges: 1) converting RSSIs to distances, 2) high accuracy, 3) low complexity, and 4)

can work with arbitrary topologies. In this chapter, we will first make a description

of the system setting, and then introduce the concept and details of the proposed

algorithm.

3.1 System Setting

We consider a set of installed devices and a set of known locations. We do not

know which device is in a certain location, but we know that the number of known

locations is the same as the number of devices. Devices are equipped with wireless

modules and each device has a unique ID. Thus, devices can communicate with one

another and get RSSIs of other devices. We assume the set of locations is on a 2-D

plane for simplicity, and the deployment environment has boundaries.

3.2 Concepts of the Algorithm

According to the system setting, here we have two sets: one is the location set and

the other is the ID set. Each unique ID represents a device, so the ID set can also be

viewed as the device set. As we mentioned in Chapter 2, the location configuration

is a one-to-one mapping problem. Thus, here we want to find all correct mappings

between the location set and the device set.

Assume we have an algorithm to serialize the two sets. If each mapping of the two

sets just contains the same sequence number, then the one-to-one mapping problem

21
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is solved, as shown in Figure 10. In other words, we can use sequence numbers to

map the two sets.

Figure 10: Key idea

For the device set, the RSSI is the only information we can use. For the location

set, we have all known locations and all distances among locations are also known.

Now assume a device has prior knowledge of its location and the sequence number of

the device and location is “0”. The device starts to receive other devices’ packet and

get RSSIs. We can know which device has the maximum RSSI value, and it means

that the device with the maximum RSSI is “closest” to the device with sequence

number 0. Also, from the location set, we can know which location is closest to the

location with sequence number 0. Thus, the closest location is the location of the

closest device, and we assign the sequence number “1” to this mapping. is the key

idea of our algorithm, and we will elaborate the algorithm in the next section.
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3.3 Topology-based Automatic Configuration Al-

gorithm

In our algorithm, we need one anchor as a start-point to do the serialization. The

anchor refers to the additional device which has prior knowledge of its location. We

will introduce the importance of the anchor and how to determine the location of the

anchor in Section 3.5. Here we use an example to introduce our algorithm step by

step first, and then summary each step of the algorithm in the end.

The algorithm has two steps: 1) serialization of the location set and 2) serialization

of the device set. We start from the location set. Figure 11 is the initial step of the

serialization. The red circle with number 0 is the location of the anchor, and green

circles are the other known locations. We assign the sequence number 0 to the location

of the anchor.

Figure 11: Serialization of the location set - Initialization

Next, we want to find the owner of sequence number 1. We choose the location

which is closest to the anchor and does not have the sequence number. Here is
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no ambiguity and we assign the sequence number 1 to that location, as shown in

Figure 12. The ambiguity refers that there are more than two closest locations with

the same distance.

Figure 12: Serialization of the location set - Find sequence number 1

Now we want to find the owner of sequence number 2, but in Figure 13 we can see

that there are two closest locations (red circles without numbers). In this situation,

the current location will ask the previous location to choose the closest location from

it. That is, in Figure 13, the location with sequence number 1 ask the location with

sequence number 0 to choose the closest location. The dotted line shows which the

location with sequence number 0 chooses. When a location find that there exists

ambiguity, we record the sequence number and how many ambiguous locations, as

shown on the right-hand side of Figure 13.

We can use the same procedure to find the owner of sequence number 3. The

location of sequence number 2 encounter two closest locations, so it asks the previous

location (sequence number 1) to determine the next one, as shown in Figure 14.
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Figure 13: Serialization of the location set - Find sequence number 2

Figure 14: Serialization of the location set - Find sequence number 3
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We have already serialized the location set from sequence number 0 to 3, and

now we want to find the location of sequence number 4. The current location is the

location with sequence number 3, and it finds that here are three ambiguous locations,

as shown in Figure 15. We record the ambiguous information on the right-hand side

of Figure 15. According to our algorithm, the current location must ask the previous

location which has sequence number 2 to determine the location of sequence number 4.

However, the location with sequence number 2 also encounters ambiguous locations,

as shown in Figure 16. We also record the ambiguous information and recursively

ask the previous location which has sequence number 1. Finally, the location with

sequence number 1 can find the next location and the direction of the dotted arrow

is the found location.

There are no ambiguities with sequence 5 to 9, and the procedure is almost the

same as what we did from sequence number 0 to 1. We just find the closest locations

one by one and the serialization of the location set is done, as shown in Figure 17.

Figure 15: Serialization of the location set - Find sequence number 4 (part1)
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Figure 16: Serialization of the location set - Find sequence number 4 (part2)

Figure 17: Serialization of the location set - Find all sequence numbers
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After we serialize the location set, we get the sequence numbers of all locations

and an “ambiguity list”. The ambiguity list refers to the list which records how many

ambiguity locations when each location wants to determine the owner of the next

sequence number. We simplify the ambiguity list as shown in Figure 18. The column

of closest numbers means that when we want to find the sequence number n+1 from n,

how many closest locations the sequence number n will encounter. The ambiguity list

can guide the serialization of devices, and the device with the corresponding sequence

number can know what it should do.

Figure 18: Simplified ambiguity list

Now we want to serialize the device set. We also start the serialization from the

anchor device. As we mentioned in Section 3.2, RSSI is the only thing we can use

to serialize the device set. We “repeat” the same process as what we did with the

location set, but here we choose the device with the maximum received RSSI as the

owner of the next sequence number. The following is the step-by-step example of

serialization of device set.

The red icon with number 0 is the location of the anchor, and green icons are

the other known devices. We assign the sequence number 0 to the anchor device for
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initialization, as shown in Figure 19.

Figure 19: Serialization of the device set - Initialization

The next step is to find the owner of sequence number 1. First, we check the

ambiguity list and find that we only need to find one “closest” device from sequence

number 0 to 1, as shown on the right-hand side of Figure 20. The device with sequence

number 0 now receive all packets from the other devices and assign sequence number

1 to the device with the maximum RSSI. In Figure 20, the red arrow refers to the

packet with the maximum RSSI.

Now we want to find sequence number 2 from 1. We check the ambiguity list and

find that we need to find two closest devices from sequence number 1 to 2, as shown

on the right-hand side of Figure 21. Then we “repeat” what we did with the location

set: the device with sequence number 1 ask the device with sequence number 0 to

decide which one is closer, as shown in Figure 22. Finally the device with sequence

number 0 choose the device with the red arrow as the owner of sequence number 2.
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Figure 20: Serialization of the device set - Find sequence number 1

Figure 21: Serialization of the device set - Find sequence number 2 (part1)
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Figure 22: Serialization of the device set - Find sequence number 2 (part2)

We skip the process of finding sequence number 3 from 2 because it is almost the

same as finding sequence number 2 from 1. Now we want to find sequence number 4

from 3, and we check the ambiguity list first. We can see that the device with sequence

number 3 needs to find 3 closest devices, as shown in the right hand side of Figure 23.

The device with sequence number 3 receive packets from the other devices which do

not have sequence numbers, and then ask the previous devices to determine the three

devices which have larger RSSIs. Before the previous devices (with sequence number

2) choose closest devices, it should check the ambiguity first. It found that it should

choose the closest two of three devices, as shown in Figure 24. Thus, the device with

sequence number 2 receive packets of that three devices and choose two devices with

larger RSSIs. The device with sequence number 2 still cannot determine the closest

device, so it should also ask the previous device. The ambiguity list shows that the

previous device only needs to find the device with largest RSSI, so the device with

sequence number 1 choose the device with the largest RSSI as the owner of sequence

number 4, as shown in Figure 25.
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Figure 23: Serialization of the device set - Find sequence number 4 (part1)

Figure 24: Serialization of the device set - Find sequence number 4 (part2)
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Figure 25: Serialization of the device set - Find sequence number 4 (part3)

Figure 26: Serialization of the device set - Find all sequence numbers



doi:10.6342/NTU201702027

3.3. TOPOLOGY-BASED AUTOMATIC CONFIGURATION ALGORITHM 34

The way to find the other sequence numbers remained is almost the same as

finding sequence number 1 from 0, and the final result is in Figure 26. Until now we

have serialized the location set and the device set. The device with the maximum

RSSI means the closest device in the physical environment, and this is the same

as finding the closest location. We can say that we use the same criteria (find the

closest location/device) to serialize the two sets and get two correspondent sequences,

as shown in Figure 27. The correspondent sequence number means a mapping, and

finally, the location configuration is done.

Figure 27: Two correspondent sets

The previous step-by-step example introduced how the topology-based configura-

tion algorithm works. It can be used for not only the grid topology but also all other

topologies. We summarize the algorithm in the following and discuss the problems

remained in the end.

I. Serialization of the Location Set

Step 1. Assign the sequence number 0 to the location of the anchor. Set the

current sequence number as 1.
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Step 2. Choose the location which does not have a sequence number and is

closest to the location with the current sequence number.

Step 3. If there are only one closest location, assign the current sequence num-

ber to the location. If all devices have a sequence number, the algorithm

is done. If at least one location has no sequence number, increase the

current sequence number by one and go to Step 2.

Step 4. If there are more than two closest locations with the same distance,

record in the ambiguity list.

Step 5. Choose the location which does not have a sequence number and is

closest to the location with current sequence number-1. If there is only

one closest location, go to Step 3. If there are more than two closest

locations, go to Step 4.

After the serialization of the location set is done, we can get all sequence number

of locations and an ambiguity list. The ambiguity list refers to the list which

records how many ambiguity locations when each location wants to determine

the owner of the next sequence number.

II. Serialization of the Device Set

Step 1. Assign the sequence number 0 to the anchor device. Set the current

sequence number as 1. Set the current device as the anchor.

Step 2. The current device query the ambiguity list with the current sequence

number to know how many other devices it should find. Set N as

the number of devices it should find. The current device gets RSSIs

from other devices which do not have a sequence number and choose

N devices with larger RSSIs.
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Step 3. If N is equal to 1, assign the current sequence number to the device

found by the current device and set the found device as the current

device. If all devices have a sequence number, the algorithm is done.

If not, increment the current sequence number by 1 and go to Step 2.

Step 4. If N is greater than 1, set the previous device as the current device and

query the ambiguity list with the current sequence number to know how

many devices the current device should find from the N devices. Set

M as the new number of devices the current device should find. The

current device gets RSSIs from the N devices and chooses M devices

with larger RSSIs.

Step 5. If M is equal to 1, set N = M and go to Step 3.

Step 6. If M is greater than 1, set N = M and go to Step 4.

The topology-based configuration algorithm is composed of the two serializations

above. The two sequences produced from the algorithm represent the one-to-one

mappings and the location configuration is done. Each device is located on the

location which has the same sequence number of the device.

However, there still exists some problems. First, it is impossible that devices

can find the correct mapping all the time because of the fluctuation of RSSIs. It is

possible that the RSSI of a closer device is smaller than other further devices in a

certain moment. Second, if the anchor cannot determine two locations when we start

to serialize the location set, the algorithm failed. How to decide a good location for

the anchor is the other problem remained. We will introduce our solutions to solve

the problems mentioned above in the following two sections.
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3.4 Majority Mechanism

When we serialize the device set, we cannot assume that devices can always find

the correct mapping. RSSI contains not only noise but also interference and the

value of RSSI can be viewed as a Gaussian random variable [17]. Thus, it is possible

that in a certain moment the RSSI of a closer device is smaller than another further

device. In this situation, the serialization of the device set will be different from the

serialization of the location set, and the mappings will be wrong. This is not a specific

problem of our algorithm. All algorithms using RSSI will encounter this problem. We

cannot avoid the fluctuation of RSSI.

However, we can “repeat” the algorithm for many times to see the statistical trend

of all results of the algorithm. Assume we repeat the algorithm for 1000 times. We

may get 5 results of the algorithm, and the occurrence frequency for each result will

be different, as shown in Table 3. We choose the majority, C, as the final answer for

the location configuration. The repeating number is called “majority number”.

Serialization Result A B C D E

Occurence Frequency 153 425 252 38 132

Table 3: An example of the majority mechanism

Using the majority mechanism can deal with the fluctuation of RSSI when the

fluctuation is in a reasonable range. Also, not only our algorithm but also other

algorithms can use the majority mechanism to promote the accuracy. The location

configuration does not need to be real-time, so repeating the algorithm is valid for

accuracy.
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3.5 Anchor Location Determination Algorithm

The location of the anchor is the most important parameter for our algorithm. If

the location of the anchor cannot find or cannot help others find the next locations,

then the algorithm fail. For example, in Figure 28, all locations from L1 to L9 cannot

be the anchor because every location cannot determine the next location with our

algorithm. This is the reason why we need an anchor and we need to determine the

location of the anchor by ourselves. On the other hand, the location of the anchor

also affects the performance of the algorithm. The accuracy of the algorithm depends

on the locations of the anchor, and we will see the simulation results of different

locations in the next chapter.

Figure 28: An example of the location of the anchor

As we mentioned, if the location of the anchor cannot determine the next loca-

tion, the algorithm will fail. Thus, the problem is, when the location of the anchor

cannot determine the next location? The answer is in the Figure 29. We can draw

the perpendicular bisector of two certain locations. If the anchor is located on the
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perpendicular bisector, the distances from the anchor to the two locations will be the

same, and the anchor will be not able to distinguish the closest distance to these two

locations.

Figure 29: The perpendicular bisector of two locations

Thus, for the location set, anywhere the location is not on any perpendicular

bisector can be the location of the anchor because any distance from the anchor to

certain location will be different. However, for the device set, if the anchor is closer

to a certain perpendicular bisector, it is more difficult to distinguish which device has

larger RSSI because of the fluctuation of RSSI.

For the reasons above, the location of the anchor must be as far as possible to any

perpendicular bisector. Therefore, our objective is to find the best location

which has the maximum of the minimum distance to any perpendicular

bisector. We call the best location as max-min point, and call the distance as max-

min distance.

We can draw all perpendicular bisectors for all locations first. Figure 30 is an

example of all perpendicular bisectors for Figure 28. The blue line represents the

perpendicular bisector and the green line represents the boundary of the deployment

environment. The night green circles represent location L1 to L9 in the Figure 28.
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Figure 30: All perpendicular bisectors for Figure 28

We can see that there are a lot of “regions” divided by perpendicular bisectors

and boundaries. The region refers to the area which does not contain any segment

of perpendicular bisectors, as shown in Figure 31. The algorithm which can analyze

the topology and find all regions is in Appendix A.

Figure 31: The definition of a region
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Inside a certain region, the location with the maximum of the minimum distance

is only related to the perpendicular bisectors surrounded, and we call the location as

“local max-min point”. Similarly, we call the distance as “local max-min distance”.

Obviously, the local max-min point which has the maximum local max-min distance

is the best anchor location, which is also called max-min point, and therefore we can

use “divide and conquer” with all regions to find the max-min point.

There are two kinds of regions. The first is the region which is surrounded only

by perpendicular bisectors, and the second is the region which is surrounded by both

perpendicular bisectors and boundaries. Here we discuss the two cases respectively.

Case 1. In a region which is surrounded only by perpendicular bisectors (the yellow

region in Figure 32), the local max-min point is the center of the largest

tangent circle in this region and the local max-min distance is the radius of

that circle.

Figure 32: Local max-min point - Case 1

Case 2. In a region which is surrounded by perpendicular bisectors and boundaries,

the local max-min point may be:

I. The center of the largest tangent circle in this region, as shown in
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Figure 33.

Figure 33: Local max-min point - Case 2-1

II. The intersection point of a certain boundary and the angle bisector of

two certain perpendicular bisectors. The intersection point is also the

center of the largest tangent circle whose center is in the region.

Figure 34: Local max-min point - Case 2-2
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The circle does not need to be tangent with boundaries, so the circle

can cross boundaries (green lines). In fact, the way to find the largest

tangent circle has only two limitations: 1) the center of the circle must

be in the region, and 2) the circle cannot cross any perpendicular bi-

sector (blue lines). Thus, the circle in Figure 34 is valid.

We can find that the center of the largest tangent circle in a green region is

also the intersection point of two certain angle bisectors of perpendicular bisectors.

Therefore, the brute-force algorithm to find the local max-min point in a certain

region is as follows:

Step 1. Find all angle bisectors of all perpendicular bisectors in the region.

Step 2. Find all intersection points of perpendicular bisectors and boundaries (if there

exists)

Step 3. The intersection point which has the maximum of all minimum distances is

the local max-min point in the region.

As we mentioned above, the point with the maximum local max-min distance

among all regions is the best anchor. Here we color all regions in Figure 30 with the

value of local max-min distances, and the result is shown in Figure 35. The color bar

on the right-hand side represents the relationship between colors and local max-min

distances. White points in the figure represent local max-min points and the black

points represent the best location of anchors, also known as max-min points. We can

see that this topology has eight best anchors due to the symmetry. The performance

simulation for different anchors is in the next chapter, and we will see how the location

of anchor affect the performance of the algorithm.
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Figure 35: Colored regions and best anchors

Until now, we have introduced 1) topology-based configuration algorithm, 2) ma-

jority mechanism and 3) how to find the best anchor. In the next chapter, we will

simulate the performance among different locations of anchors. Also, we will compare

different algorithms with our solution and discuss the performance. Readers can find

more examples of the anchor determination algorithm in Appendix B.
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CHAPTER 4

SIMULATION, ANALYSIS AND

IMPLEMENTATION

In this chapter, we will evaluate our algorithm in different points of view. We will

introduce the simulation setting first, and then discuss the performance metrics of our

algorithm. We will also discuss the analytical performance analysis. In the end, we

will introduce the implementation and the protocol designed for our topology-based

configuration algorithm.

4.1 Simulation Settings

In the following simulation, we adopt the well-known log-distance path loss model

for RSSI as follows [17]:

PR = PT
GTGRγh

2

4πdp
(4.1)

• PR is the received power value, and PT is the transmitted power

• GR and GT are the transmitter antenna gains and receiver antenna gains

• d is the distance between transmitter and receiver

• p is the path loss exponent

• γ is a model parameter for slow fading (log-normal distribution), also known as

shadow fading

• h is a parameter modeling the fast fading, often referred to Rayleigh fading

(NLoS condition) or Rician fading (LoS condition)

45
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If the RSSI are averaged over a certain time interval, the fast fading term h can

be approximated with h=1 and using logarithmic units, the model becomes

RSSI(dbm) = α− 10 p log10(d) + z(0, σ) (4.2)

• z(0, σ) represents the shadow fading which is a Gaussian random variable with

zero mean and standard deviation

• α contains the averaged fast fading, PT , GT and GR

As we mentioned above, we know that RSSI is a Gaussian random variable and

RSSI N(α − 10 p log10(d), σ). We can assume the measured distance d̂ is another

random variable transformed from RSSI with

d̂ = g(RSSI, α, p) = 10
α−RSSI

10 p . (4.3)

Here we define the measurement error rate (MER) as the following:

MER =

√
V ar(d̂)

E[d̂]
. (4.4)

We can derive the MER as follows:

MER =

√
V ar(d̂)

E[d̂]

=

√
E[d̂2]− E2[d̂]

E2[d̂]

=

√
E[d̂2]

E2[d̂]
− 1,

(4.5)

where E[d̂2] and E2[d̂] are:
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E[d̂2] =

∫ ∞
−∞

(g(RSSI, α, p))2N(α− 10 p log10(d), σ)dx

=

∫ ∞
−∞

(10
α−x
10 p )2

1

σ
√

2π
e−

(x−(α−10 p log10(d))
2

2σ2 dx,

(4.6)

and

E[d̂] =

∫ ∞
−∞

g(RSSI, α, p)N(α− 10 p log10(d), σ)dx

=

∫ ∞
−∞

(10
α−x
10 p )

1

σ
√

2π
e−

(x−(α−10 p log10(d))
2

2σ2 dx.

(4.7)

We can finally get the MER as follows:

MER =

√
E[d̂2]

E2[d̂]
− 1

=

√√√√√ ∫∞
−∞(10

α−x
10 p )2 1

σ
√
2π
e−

(x−(α−10 p log10(d))
2

2σ2 dx

(
∫∞
−∞(10

α−x
10 p ) 1

σ
√
2π
e−

(x−(α−10 p log10(d))
2

2σ2 dx)2
− 1

(4.8)

Through the observation of the numerical integration, we find that MER is only

the function of σ and p, and independent of α and d, as shown in Figure 36 to 39 .

Figure 36: Relationship between MER and α
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Figure 37: Relationship between MER and distance

Figure 38: Relationship between MER and p
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Figure 39: Relationship between MER and σ

Thus, MER can be written as MER(σ, p). MER(σ, p) is a good performance

indicator:

• MER represents the fluctuation of measurements.

• MER is independent of the antenna gain and the transmit power.

• MER is also independent of the distance between transmitters and receivers. It

means that, if the measured distance is larger, the fluctuation is also larger.

In the following simulation, we use the fixed p = 4 and change σ to get different

MER to evaluate the performance of algorithms.

4.2 Performance among different locations of an-

chors

In this section, we use the simulation to verify the correctness of our anchor

location determination algorithm. Here three local max-min points are picked. One

is the best location of the anchor (black point), and the others are not, as shown in
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Figure 40. The value of the local max-min distance can refer to the color bar on the

right-hand side of the Figure.

Figure 40: Picked locations of anchors

In the following simulation, the majority mechanism mentioned in the Chapter 3.4

is used. The majority number used here is 1000, which means that the algorithm is

repeated for 1000 times to choose the majority of mappings as the final answer. For

each MER, we calculate the success rate which is defined as follows:

SuccessRate =
Successful experiment times

Total experiment times
. (4.9)

Total experiment times here for each MER are 100, and the successful experiment

means that the final answer of the configuration is correct. The simulation result

is shown in Figure 41. The result shows that the best location of the anchor (black

point) has the best performance among three locations, and the performance is related

to the local max-min distance. This result verifies our anchor location determination

algorithm. More examples of comparing different locations of anchors are in Appendix

B.
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Figure 41: Performance among three different locations of anchors

4.3 Performance among different algorithms

We will compare three algorithms in this section: 1) topology-based configuration

algorithm, 2) trilateration-based configuration, and 3) MDS-ICP-based configuration.

First, we explain the simulation setting of each algorithm and then discuss the per-

formance in the end.

Simulation settings about trilateration-based configuration:

• Assume the trilateration-based configuration can transform RSSIs back to dis-

tances with a perfect transformation model.

• Three anchors of trilateration are located on the edge of the boundaries, as

shown on the right-hand side of Figure 42.
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Simulation settings about MDS-ICP-based configuration:

• Using only RSSI to do configuration is too inaccurate to do configuration, so

for MDS-ICP, we still transform RSSIs back to distances with a perfect trans-

formation model.

• MDS-ICP cannot handle the symmetric topology, so we add an anchor to break

the symmetry. The location of the anchor is the same as the topology-based

algorithm, as shown in the left-hand side of Figure 42.

Figure 42: Locations of anchors and devices for three algorithms

In addition to the settings above, the followings are common settings for three

algorithms:

• Make sure that each device will only be mapped to one location. For trilatera-

tion and MDS-ICP, if two devices find the same location, only one of them can

pick that location and the other must pick another closest location.
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• All three algorithms adopt the majority mechanism for accuracy and we will

use different majority numbers in the following simulation.

Figure 43 to Figure 46 are the performances among three algorithms with different

majority. Figure 43 is the performance without majority mechanism. We can see

that MDS-ICP cannot achieve 80% success rate even when MER is very low, and the

performance of our algorithm is slightly better than trilateration. However, with the

majority number become 500, all performances of three algorithms become better.

The difference of performances among three algorithms also becomes clear. Our

solution can achieve 80% success rate with 0.5 MER, while trilateration and MDS-ICP

can only achieve 80% success rate with about 0.35 MER and 0.2 MER respectively.

When the majority number become 1000, we can see that the performance of

MDS-ICP is the same as the majority number equals to 500. Here we also simulate

the MDS-ICP with only RSSI, and the result shows that it is too inaccurate to

use. On the other hand, our solution and trilateration can achieve 80% success rate

with about 0.55 MER and 0.38 MER respectively. Next, when the majority number

becomes 5000, we can see that the difference of performances among three algorithms

becomes much larger. Our solution can achieve 80% success rate with 0.8 MER, while

trilateration can only achieve 80% with 0.5 MER. The performance of MDS-ICP is

still the same as when the majority number equals to 500.

We can see that as the majority number becomes larger, the performance of our

algorithm becomes better than other algorithms. The key point is about how to

find each mapping. For trilateration and MDS-ICP, when they estimate the location

of a device, the estimated location can not exceed a limited region, as shown in

Figure 47. This will cause errors when MER becomes larger. Even the majority

number becomes larger, the problem cannot be solved. However, our algorithm does

not have the limited region problem because we only compare values between RSSIs.

Even if the MER becomes larger, the statistical trend of two RSSIs with different
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distances will be not the same. This is the reason why our algorithm is better than

the others.

Figure 43: Comparison among three methods without Majority

Figure 44: Comparison among three methods with majority number=500
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Figure 45: Comparison among three methods with majority number=1000

Figure 46: Comparison among three methods with majority number=5000
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Figure 47: The reason why our algorithm is better

4.4 Analytical Performance Analysis

In this section, we try to analyze the success rate of the topology of previous

example without majority. The location of the anchor is the same as Figure ??. The

RSSI between different devices is a Gaussian random variable defined as Ri,j , where

i and j are sequence numbers of devices. Assume α and p are the same as Section 4.1,

Ri,j can be defined by σ and the distance between the two devices . Assume we have

two Gaussian random variable A = Ri,j and B = Rm,n, the formula to compare the

two random variables are as follows:

P (A < B) =

∫ ∞
0

∫ y

0

fB(y)fA(x)dxdy

=

∫ ∞
0

fB(y)Pr(A < y)dy.

(4.10)

Here we define the event Success as finding the correct configuration and define
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Successi→i+1 as the event that we successfully find the next sequence number of

device from sequence number i. The probability of Success can be defined as follows:

P (Success) =
7∏
i=0

P (Successi→i+1) (4.11)

Refer to Figure 20, the R0,1 must be greater than all other RSSI. Thus, the

probability P (Success0→1) can be defined as :

P (Success0→1) =
9∏
i=2

P (R0,1 > R0,i). (4.12)

Refer to Figure 21, we can see that R1,2 must be at least greater than all other

RSSI except for R1,4. For simplicity, we assume R1,4 is also greater than all other

RSSI except for R1,2. Then, R0,2 must be greater than R0,4 in Figure 22. Therefore,

the upper-bound of probability P (Success1→2) can be defined as :

P (Success1→2)upper−bound = (
9∏

i=3,i6=4

P (R1,2 > R1,i))× P (R0,2 > R0,4). (4.13)

Similarly, the upper-bound of probability P (Success2→3) can be defined as:

P (Success2→3)upper−bound = (
9∏

i=4,i6=9

P (R2,3 > R2,i))× P (R1,3 > R1,9). (4.14)

Next, we want to calculate P (Success3→4). Refer to Figure 23, we only consider

that R3,4 is greater than R3,5, R3,7, and R3,9 for simplicity. From Figure 24 and 25,

we know that R3,4 and R3,8 must be greater than R3,6 and R1,4 must be greater than

R1,8. Then the probability can be defined as:

P (Success3→4)upper−bound = (
9∏

i=5,i6=6,8

P (R3,4 > R3,i))× P (R2,4 > R2,6)

× P (R2,8 > R2,6)× P (R1,4 > R1,8).

(4.15)
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For the rest probabilities, devices only need to find the closest devices and the

probability can be defined as:

P (Successi→i+1) =
9∏

j=i+2

P (Ri,i+1 > Ri,j), where 4 ≤ i ≤ 7. (4.16)

The curve of the analytical result and the simulation result are shown in Figure 48.

We can see that the analytical result corresponds with the simulation.

Figure 48: Comparison between simulation and analytical result

We also plot all P (Successi→i+1), as shown in Figure 49. Obviously, the bottleneck

of this topology is at sequence number 3. With MER=0.2, P (Success3→4) is under

0.6 while other P (Successi→i+1) are greater than 0.8. This makes sense because

from sequence number 3 to 4, it encounters the most ambiguity number. Also, only
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sequence number 3 need to ask previous devices twice.

Figure 49: All P (Successi→i+1), i = 1, 2, ..., 7

If we can use two anchors, we can assign the second anchor to the location of

sequence number 3 as a “checkpoint”. From doing this, we can avoid the bottleneck

of this topology and become more robust. Other topologies can use the similar analyze

method to calculate all P (Successi→i+1) and find the bottleneck of that topology.

4.5 Protocol and Implementation

In addition to designing the topology-based algorithm, we also design a simple

protocol for the algorithm. We adopt the concept of the token ring protocol, as

shown in Figure 50.

In our protocol, only the device which holds the token can action, and we call

that device as the token holder. The way to decide the next token holder is based

on our algorithm. We assume that all devices hold the ambiguity list for the current

topology. The current token holder uses the topology-based configuration algorithm

to find the device of the next sequence number, and then send the token to that

device. Thus, the next device becomes the token holder. Until the final device, it will
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use flooding to send the token back to the anchor, and this round is done. The system

repeats this procedure for majority number times which is set by programmers and

each device will record the result of every round. The details of what each device will

do are shown in Figure 51.

Figure 50: The concept of the protocol

Figure 51: The details of the protocol

There is a good property of this protocol: it can concurrently do multiple rounds.

Devices which have a sequence number will do nothing until the end of this round, so

these devices can start the next round. Concurrency can accelerate the configuration
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speed of our algorithm. Other algorithms cannot achieve concurrency because they

need to check if there are two devices in one location or not.

Figure 52: FCM2401 Module

Figure 53: The implementation and indoor environment

The algorithm is easy to implement in the distributed way. We have also im-

plemented the proposed algorithm with the protocol mentioned above on the board

FCM2401 which equipped with STM32F0 chip and IEEE 802.15.4 wireless module.
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The implementation shows that our algorithm can really be used indoors and without

any RSSI model measurement.

4.6 Summary

The performance metrics among three algorithms is in Table 4. The calculation

of complexity of topology-based configuration algorithm is as follows. Each device

needs to compare at most N RSSIs, where N is the total number of devices. We have

N devices, so the complexity is O(n2). However, if the protocol proposed is used,

the complexity can reduce to O(n) due to the concurrency. The performance metrics

show that our algorithm is the most accurate and do not have any trade off.

Trilateration MDS-ICP
Topology

based

Convert RSSIs
to distances

Yes No No

Accuracy Medium Low High

Complexity O(n2) > O(n3) O(n2) or O(n)

Scaled, Rotated
and Flipped

No Yes No

Table 4: Performance metrics among three algorithms
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CHAPTER 5

CONCLUSIONS

In this thesis, we proposed a topology-based algorithm for location configuration

of IoT applications which have a prior topology information. In our solution, devel-

opers do not need to estimate the transformation model between RSSIs and distances

and the accuracy is very high. Simulations show that, with the grid topology, the

performance of our solution can achieve 80% success rate with 0.8 MER, which is

much better than other algorithms. Moreover, the complexity can be only O(n) with

the protocol designed by us.

The protocol we designed is based on token ring and it can simply achieve con-

currency to accelerate the configuration speed. The implementation shows that our

algorithm can really be used indoors and without any RSSI model measurement.

Our solution can be used in not only smart agriculture but also many applications

such as smart lights in a factory, smart street lights, sensors of smart health-care

systems, etc. With our solution, developers and service providers can avoid labor-

intensive RSSI measurements and achieve high success rate to configure locations of

devices. For the most of IoT applications, configurations of devices will be much

easier and effective with the help of our location configuration solution.
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APPENDIX A

ALGORITHM TO FIND ALL REGIONS

We design an algorithm to analyze a topology and find all regions without overlap-

ping. We first introduce some definitions with Figure 54. Notice that the blue lines

are perpendicular bisectors and the green lines are boundaries, as shown in Figure 30.

• Vertex

Intersect points of perpendicular bisectors. In Figure 54, all red points are

vertices.

• Edge

A line connects only two vertices. In Figure 54, edges are a part of perpendicular

bisectors or boundaries. Thus, edges are green or blue.

• Region

An area enclosed by edges. Each region is a polygon, and any polygon does not

intersect with any edge.

• Degree of an edge

Times to be used to construct a region. In Figure 54, the degree of blue edges

is two, and the degree of green edges is one.

64
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Figure 54: Vertices, edges and regions

Now we want to convert Figure 54 to an adjacency matrix. Figure 55 is a simplified

example for converting a graph to an adjacency matrix. The order of each column

and row of the matrix represent each vertex in the graph. If there exists an edge

between vertex-2 and vertex-4, we record the degree of that edge at [2, 4] and [4, 2] in

the matrix. We can see that because the degree of the edge is two, the value of [2, 4]

in the matrix is two. Notice that the adjacency matrix is a symmetric matrix.
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Figure 55: Simplified example for the adjacency matrix

All regions can be found with the adjacency matrix. First, we extract all triangles,

because all triangles are regions. As shown in Figure 56, we can find a triangle from

one vertex to other two vertices. Here the three edges and three vertices represent

a region. We record the region and delete one degree of each edge in the adjacency

matrix, as shown in Figure 57.

Figure 56: The way to find all triangles
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Figure 57: Remove degrees of edges

After extracted a triangle, the graph and the adjacency matrix is shown in Fig-

ure 58. Now the remained region is a polygon with five edges. It is too difficult to find

a polygon with five edges just as what we do with triangles, so we use an alternative

way to extract the polygon. We “fold” the adjacency matrix as the following rules:

Step-1 Find a vertex which is connected by only two edges. The two another vertices

of the two edges form a folded edge. For example, in Figure 59, if we find

a vertex-2 which has two edges [3, 2] and [4, 2], vertex-3 and vertex-4 form a

folded edge [3, 4].

Step-2 Remove degrees of the two edges on the original adjacency matrix and record

them.

Step-3 Add the degree of the folded edge to the folded adjacency matrix

Step-4 Repeat Step-1 to 3 until the original adjacency matrix becomes a zero matrix

Figure 59 to 61 are each step of our algorithm, and the folded result is in Figure 62.
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Figure 58: The graph and the adjacency matrix after extract a triangle

Figure 59: Fold the [3, 2] and [3, 4]
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Figure 60: Fold the [5, 4] and [5, 6]

Figure 61: Extract the edge [3, 6]
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Figure 62: The folded graph and folded adjacency matrix

We can extract the triangle from the folded adjacency matrix and then transform

the triangle back to the polygon in Figure 58. If the polygon folded is still not a

triangle, just fold it recursively. We can repeat the folding and extract triangles to

find all regions and the complete algorithm is shown in Figure 63. Here we also show

another more complicated example in Figure 64 to 66.

Euler planar theorem is another way to check the correctness of the number of all

regions. The graph is a planar graph because of the definition of vertices. There is

no edge intersection and the each edge does not cross another edge. Thus, the graph

is a planar graph. Euler planar theorem is as follows:

Euler Planar Theorem. If a finite, connected, planar graph is drawn in the plane

without any edge intersections, and v is the number of vertices, e is the number of

edges and r is the number of regions (regions bounded by edges, including the outer,

infinitely large region), then

v − e+ f = 2 (A.1)
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Because our algorithm does not consider the outer, infinitely large region, we use

v − e+ f = 1 as the formula to check the number of regions.

Figure 63: The algorithm to find all regions

Figure 64: A more complicated topology
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Figure 65: Recursively find all regions

Figure 66: Final result of finding the max-min point
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APPENDIX B

EXAMPLES OF OTHER TOPOLOGIES

Figure 67: Example of topology 1
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Figure 68: Example of topology 2
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Figure 69: Example of topology 3
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Figure 70: Example of topology 4
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Figure 71: Example of topology 5
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