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Abstract

In the past, we know that the tree-basedmethods may not handle the large-

scale data sets. Therefore, the solver of the gradient boosting decision trees

performs excellent in the large-scale data competitions. To know the details,

we analyze themodels of these tree-basedmethods. Furthermore, we compare

their test accuracy and training time, we also consider the linear model and

kernel method.

KEYWORDS: gradient boosting decision trees, random forests, support vec-

tor machine, classification and regression tree
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Chapter 1

Introduction

Nowadays, manymethods are available to solve the classification problems. In Fernández-

Delgado et al. (2014), they show that for many benchmark sets SVM and random forests

are the two most effective methods in terms of the test accuracy. Recently, gradient boost-

ing decision trees (GBDT) type solvers (Friedman, 2001) such as XGBoost (Chen and

Guestrin, 2016) and LightGBM (Meng et al., 2016) have been shown to give excellent

performance in many competitions. The goal of this thesis is to compare these state-of-

the-art methods.

In Chapter 2, we introduce the models in detail. These methods include SVM, decision

tree, random forests, and GBDT. After the introduction of the models, we explore the

implementations of these models in Chapter 3. In particular, we give complexity analysis.

The experimental result is given in Chapter 4. Our goal is to compare SVM and tree-

based classification machines in different situations. We investigate that for large-scale

data with many features, whether tree-based methods are better than SVM in terms of test

accuracy and training time.

1
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Chapter 2

The Models

2.1 Support Vector Machine

The framework of SVM (Boser et al., 1992), is a very successful classification model

that covers different convex loss functions. We can obtain the SVMmodel easily because

it involves a convex minimization problem.

We introduce the linear form first. The data set is denoted as

D = {(yi,xi) | xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , l},

for the binary classification problem, where yi is the label of the ith instance, xi is the

feature vector of the ith instance, l is the number of the instances, and n is the total number

of the features. We define the linear SVM model as

fSVM(w;ϕlinear(x)) = wTϕlinear(x),

where

ϕlinear(x) = x

and

w ∈ Rn.

2
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If we set

fSVM(w;ϕlinear(x)) = 0,

then we get

wTϕlinear(x) = w1x1 + · · ·+ wnxn = 0,

which is a hyperplane to separate the two classes of data. That is, we predict

 1 if fSVM(w;ϕlinear(x)) > 0,

−1 otherwise.

We train fSVM by solving

min
w

1

2
wTw + C

l∑
i=1

ξ(fSVM(w;ϕlinear(xi)), yi), (2.1)

where C is the cost parameter, and ξ is a loss function convex with respect to the first

argument. The following formulas are the common convex loss functions.

L1-loss : ξL1(f
SVM(w;ϕlinear(xi)), yi) = max{0, 1− yifSVM(w;ϕlinear(xi))}

L2-loss : ξL2(f
SVM(w;ϕlinear(xi)), yi) = max{0, 1− yifSVM(w;ϕlinear(xi))}2

LR-loss : ξLR(f
SVM(w;ϕlinear(xi)), yi) = log(1 + exp(−yifSVM(w;ϕlinear(xi))))

The loss function gives a value of howwe classify the dataxi incorrectly. If yifSVM(w;ϕlinear(xi))

is negative, then the function fSVM does not predict ϕlinear(xi) correctly. By using a convex

loss function, (2.1) has a unique optimal function value and can be easily solved.

Next, we explain the kernel method. Because a linear model may not be good enough

in some data sets, the kernel method extends the linear model into a nonlinear model. The

idea of the kernel is to map the data x into a higher dimensional space Rn̂, where n̂ > n.

That is,

ϕkernel(x) ∈ Rn̂.

3
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Then we find a hyperplane

fSVM(w;ϕkernel(x)) = wTϕkernel(x)

in Rn̂ by minimizing (2.1). When we use a hyperplane to separate the mapped data in

the Rn̂ space, it is like to find a nonlinear function to seperate the original data in the Rn

space. However, the ϕkernel(x) vector may be in a very high dimension space. To solve

this problem, we consider special ϕkernel so that the following kernel function can be easily

calculated.

K(xi,xj) = ϕkernel(xi)
Tϕkernel(xj).

That is, we use another metric to meature the distance from xi to xj . Two common kernel

functions are

Kpolynomial(xi,xj) = (γxT
i xj + r)deg,

KGaussion(xi,xj) = exp(−γ∥xi − xj∥2),
(2.2)

where

γ, r > 0,

and

deg ≥ 1

are kernel parameters to be decided by the users. We give an example of the relationship

betweenK(xi,xj) and ϕkernel(x). Suppose we use the polynomial kernel with

γ = 1, r = 1, deg = 2.

We can calculate

Kpolynomial(xi,xj) = (xT
i xj + 1)2

= (xT
i xj)

2 + 2xT
i xj + 1.

(2.3)

4
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If we take

ϕkernel(x) = [x21, . . . , x
2
n, x1x2, . . . , xn−1xn,

√
2x1, . . . ,

√
2xn, 1]

T ,

then ϕkernel(xi)
Tϕkernel(xj) is equal to (2.3). In using the Gaussion kernel, the primalmodel

min
w

1

2
wTw + C

l∑
i=1

ξ(fSVM(w;ϕkernel(xi)), yi) (2.4)

may be difficult to solved, so we solve (2.4) by the dual problem. We give an example by

using the L1-loss function. The model (2.4) is equivalent to

min
w,ζ

1

2
wTw + C

l∑
i=1

ζi

s.t. yiwTϕkernel(xi) ≥ 1− ζi, i = 1, . . . , l,

ζi ≥ 0, i = 1, . . . , l.

(2.5)

The dual problem of (2.5) is

min
α

1

2
αTQα− eTα

s.t. 0 ≤ αi ≤ C, for i = 1, . . . , l,

(2.6)

where Qij = yiyjK(xi,xj). The derivation can be seen in, for example, Section A.2 in

Cortes and Vapnik (1995). Note that we do not have the bias term b considered in other

SVM works. It is important that we only needK(xi,xj) when solving the problem (2.6).

After we have the dual optimal solution α∗, we can use the primal-dual relationship

w =
l∑

i=1

αiyiϕ
kernel(xi)

to find the primal optimal solution w∗. The reason we can solve (2.5) by solving (2.6) is

that the strong duality holds for this problem. Thus the primal objective value is equal to

the dual objective value.

It is known that in general kernel SVM gives a model at least as good as linear SVM

5
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Figure 2.1: The example of the decision tree

(Keerthi and Lin, 2003). However, for large and sparse data, a linear model can often be

competitive with a kernel one, but training and prediction are much faster, (Chu et al.,

2015).

2.2 Classification and Regression Tree

Classification and regression tree (CART) by Breiman et al. (1984) is a useful classi-

fication model, and it is a binary decision tree model. The binary decision tree is like the

one on the right of Figure 2.1. It has a logical statement at each node, and predicts the

label of the data at the leaves. CART can handle both classification and regression. For

classification, it uses the Gini impurity to meature the value of the tree. If we are doing

multi-class classification with J classes, then the Gini impurity is

fGini(tCART) =
M∑

m=1

∑
j∈J

pmj (1− pmj ),

where

pmj =
|{i|yi = j, i = 1, . . . , l}|

|Im|
,

tCART is the CART function, and m, M , Im will be introduced later in this section. For

regression , CART considers the square loss defined as

ξSquare(t
CART({sm, Rm}Mm=1;x), y) = (y − tCART({sm, Rm}Mm=1;x))

2,

6
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where the CART function tCART({sm, Rm}Mm=1;x) will be introduced later in this section.

To make the problem be simpler, we discuss the square loss in this thesis.

Now, we introduce some properties of CART. The CART structure separates the fea-

ture space Rn into many regions. At each node we split data according to one feature

value. Because each leaf corresponds to one region, we denote all regions as

{Rm}Mm=1,

whereM is the number of the leaves. That is,

M∪
m=1

Rm = Rn,

and

Rm̂
∩

Rṁ = ∅, if m̂ ̸= ṁ.

In addition, each region Rm is a hyper rectangle in the Rn space. We denote

tCART({sm, Rm}Mm=1;x) =


s1 if x ∈ R1,

...

sM if x ∈ RM ,

as the CART function. If the data is in the leaf region Rm, tCART will predict the scalar

sm. Now, we introduce how to calculate the scalar sm. Suppose we have the following

training instances

{(zi,xi) | xi ∈ Rm}

in the leaf region Rm. Then we want to minimize the loss function

min
s

∑
i∈Rm

(zi − s)2.

7



doi:10.6342/NTU201702065

Because this is a convex problem, we can find the optimal solution sm by

d
ds

∑
i∈Rm

(zi − s)2 = 0,

⇒
∑
i∈Rm

s =
∑
i∈Rm

zi,

⇒s = 1

|Im|
∑
i∈Rm

zi.

It implies that

sm =
1

|Im|
∑
i∈Im

zi, where Im = {i | xi ∈ Rm}. (2.7)

Next, we introduce how to build a CART. With the square loss, define the following

measure function

π(T ) =
M∑

m=1

∑
i∈Rm

ξSquare(t
CART({sm, Rm}Mm=1;xi), yi), (2.8)

where T is the CART. If π(T̃ ) is smaller than π(T ), then we know the regression tree T̃

is better than T to fit the data. This property is used on growing the tree. Suppose we

have the CART T . From a leaf nodeN we want to grow the tree, and we denote T̃ as the

new tree. Then for every feature we find the best point to split data in N. In the end we

find T̃ that maximizes π(T ) − π(T̃ ). We give the pseudo code in algorithm 1 and leave

the complexity analysis in Chapter 3. With the algorithm 1, and the root node {ȳ,Rn},

where

ȳ =
1

l

l∑
i=1

yi,

we can run the procedure recursively. In the end we will get the tree structure of CART.

2.3 Random Forests

Before we introduce random forests by Breiman (2001), we explain the Bootstrap

aggregating model (i.e., the Bagging model) by Breiman (1996). We will give an example

after we introduce the model. Now, we give some notations for the Bagging model. If

8
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Algorithm 1 Grow one leaf of the CART
Input: T , the CART we want to grow
Input: N, the target leaf, and its region is Rm

DN = {(yi,xi) | xi ∈ Rm}
score = −∞, Best_splitting = ∅.
for i = 1 to n do
sort DN with the feature i
NR ← DN

for d in DN do
NL ← NL ∪ {d}, NR ← NR \ {d}
T̃ = the CART T after growing NL and NR at N
if score < π(T )− π(T̃ ) then
Best_splitting = (NL, NR, i, d)
score← π(T )− π(T̃ )

end if
end for

end for
grow the leaf N with Best_splitting as T̃
return T̃

the number of the submodels which we want is N , we have the submodel tBaggingk with

parameter ak, for k = 1, . . . , N . We can subsample the instances of the data set. That is,

DJk = {(yj,xj) | j ∈ Jk},

where Jk is the index set subsampled in the kth round. By training the set DJk with

parameter ak, we obtain a submodel

tBaggingk (ak;x).

The whole Bagging model is

fBaggingN (x) =
1

N

N∑
k=1

tBaggingk (ak;x).

By the law of large numbers, Theorem 1.2 and Appendix I in Breiman (2001) show that

1

N

N∑
k=1

tBaggingk (ak;x)→ Ex[t
Bagging(a;x)], as N →∞,

9
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where tBagging(a;x) is trained by thewhole data set without subsampling. We give a simple

example here. Suppose our submodel tBaggingk is linear SVMwith the L2-loss function. The

parameter ak in the Bagging model is the hyperplane weight wk in the SVM model. We

can train tBaggingk by solving

wk = argmin
w

1

2
wTw + C

∑
j∈Jk

ξL2(f
SVM(w;ϕlinear(xj)), yj).

Then we have

tBaggingk (ak;x) = fSVM(wk;ϕ
linear(x)).

Finally, we have

fBaggingN (x) =
1

N

N∑
k=1

tBaggingk (ak;x) =
1

N

N∑
k=1

fSVM(wk;ϕ
linear(x))

as the predicted value. Simiarly, we can do the subsampling on the features. That is,

DJ̃k
= {(yi, ψk(xi)) | i = 1, . . . , l}, for k = 1, . . . , N,

where J̃k is the feature subset selected in the kth round, and we suppose

J̃k = {j̃1 · · · j̃ñ}

is an ordered set, and

ψk(x) = [xj̃1xj̃2 · · · xj̃ñ ]
T .

We train tBaggingk with ak and DJ̃k
to get

tBaggingk (ak;ψk(x)), for k = 1, . . . , N,

and the Bagging model is

fBaggingN (x) =
1

N

N∑
k=1

tBaggingk (ak;ψk(x)).

10
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In the Bagging model, if we set a CART model tCARTk as the submodel tBaggingk , and we

do the subsampling on the features, then we get the random forests model.

fRFN (x) =
1

N

N∑
k=1

tCARTk ({smk , Rm
k }

Mk
m=1;ψk(x)).

2.4 Gradient Boosting Decision Trees

In recent years, GBDT (Friedman, 2001), is a very popular model. Successful im-

plementations such as XGBoost (Chen and Guestrin, 2016) and LightGBM (Meng et al.,

2016) have been published. GBDT is related to random forests, but we will show the

difference between these two models later. To begin, we discuss a boosting model.

2.4.1 Boosting Model

A boosting model consists of many submodels, which will be introduced later, and is

constructed step by step. The following is a boosting model:

fBoostingN (x) =
N∑
k=1

βkt
Boosting
k (ak;x),

where N is the number of boosting rounds, tBoostingk is the submodel, ak is its parameters

and βk ∈ R for k = 1, . . . , N . That is, we have N submodels tBoostingk with different

parameters ak to construct the whole model fBoostingN , for k = 1, . . . , N .

We explain the submodels by using an example, where tBoostingk (wk;x) is a linearmodel

with parameter wk. After a training procedure specified below, we have

tBoostingk (wk;x) = wT
k ϕ

linear(x)

as our predict function, for k = 1, . . . , N . Then we have

fBoostingN (x) =
N∑
k=1

βk(w
T
k ϕ

linear(x)).

11
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Next, we discuss how to construct fBoostingk in the kth round. Given a loss function ξ, we

generate (βk,ak) by

argmin
β,a

l∑
i=1

ξ(fBoostingk−1 (xi) + βtBoostingk (a;xi), yi) (2.9)

where fBoostingk−1 is given after we finished round k − 1. In (2.9), we try to imporve the

performce of the prediction function fBoostingk−1 by using the submodel tBoostingk .

2.4.2 Gradient Boosting

We have defined the boosting model fBoostingN , but still have problems in solving (2.9).

Gradient boosting is one of themethods to find a proximal minimum of (2.9). We calculate

the first derivative gik of the loss function ξ for i = 1, . . . , l.

gik =
∂ξ(z, yi)

∂z

∣∣∣∣
z=f

Boosting
k−1 (xi)

The reason we calculate gik for i = 1, . . . , l is that

l∑
i=1

ξ(fBoostingk−1 (xi)− δgik, yi)

can be reduced if the positive constant δ is small enough. We can give the detail by the

Taylor expansion

l∑
i=1

ξ(fBoostingk−1 (xi)− δgik, yi) =
l∑

i=1

[ξ(fBoostingk−1 (xi), yi)− δg2ik + εik)], (2.10)

where εik/δ → 0 as δ → 0 for i = 1, . . . , l. From (2.10),

l∑
i=1

ξ(fBoostingk−1 (xi)− δgik, yi)−
l∑

i=1

(ξ(fBoostingk−1 (xi), yi)) =
l∑

i=1

(−δg2ik + εik)),

and we focus on

−δg2ik + εik.

12
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Because

lim
δ→0

εik
δ

= 0, for i = 1, . . . , l,

we know that εik vanishes faster than δg2ik when δ goes to zero. That is,

−δg2ik + εik ≤ 0,

so we have

l∑
i=1

ξ(fBoostingk−1 (xi)− δgik, yi)−
l∑

i=1

(ξ(fBoostingk−1 (xi), yi)) ≤ 0,

if δ is small enough. We use the Taylor expansion again with the submodel tBoostingk to have

l∑
i=1

ξ(fBoostingk−1 (xi) + δ̂tBoostingk (ak;xi), yi)

=
l∑

i=1

[ξ(fBoostingk−1 (xi), yi) + δ̂gikt
Boosting
k (ak;xi) + ε̂ik)],

where ε̂ik/δ̂ → 0 as δ̂ → 0 for i = 1, . . . , l. If

l∑
i=1

tBoostingk (ak;xi)gik < 0, (2.11)

then we can imply

l∑
i=1

ξ(fBoostingk−1 (xi) + δ̂tBoostingk (ak;xi), yi) ≤
l∑

i=1

ξ(fBoostingk−1 (xi), yi) (2.12)

when δ̂ is small enough. We see that (2.12) can help to find a proximal solution of (2.9).

To make (2.11) happen, we can solve

min
a

l∑
i=1

(tBoostingk (a;xi)− (−gik))2 (2.13)

13
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as a way to find ak. The regression problem (2.13) aims to make tBoostingk (ak;x) close to

−gik so that (2.11) can hold.

Unfortunately, solving (2.13) doese not guarantee to obtain a model wk such that

(2.11) holds. If the property (2.11) does not hold, then

[tBoostingk (ak;x1) · · · tBoostingk (ak;xl)]
T , (2.14)

is an ascent direction. However, to avoid checking (2.11), we will show in Section 2.4.4

that by using CART to fit the regression problem (2.13), (2.11) can always hold.

Lastly, suppose (2.14) is a descent direction and we hope to find

βk = argmin
β

l∑
i=1

ξ(fBoostingk−1 (xi) + βtBoostingk (ak;xi), yi). (2.15)

Therefore, we do the line search to find βk. We can see that the minimization of (2.15)

involves only one variable. It can be approximately solved by backtracking line search.

We give an ordered sequence S = {2−h}∞h=0, and denote sh as the hth component in

sequence S. We check the function value with h = 0, 1, . . ., until

l∑
i=1

ξ(fBoostingk−1 (xi) + sht
Boosting
k (ak;xi), yi)

<
l∑

i=1

ξ(fBoostingk−1 (xi), yi) + shµ
l∑

i=1

tBoostingk (ak;xi)gik,

where µ ∈ (0, 1) is a given constant. After the line search procedure terminates, we set sh

as βk. With (2.11) and (2.13), we have

l∑
i=1

ξ(fBoostingk−1 (xi) + βkt
Boosting
k (ak;xi), yi) <

l∑
i=1

ξ(fBoostingk−1 (xi), yi),

and (ak, βk) is a proximal solution of (2.9)

14
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2.4.3 Newton Boosting

In Section 2.4.2 we have used first-order approximation to find a proximal solution

of (2.9). Now we use second-order approximation to find a proximal solution. The use

of second-order approximation was developed in LogitBoost (Friedman et al., 2000), in

which the LR-loss is used. Here we consider general losses. Define the Newton step from

the loss function of the ith instance as

−gik
hik

, where hik =
∂2ξ(z, yi)

∂z2

∣∣∣∣
z=f

Boosting
k−1 (xi)

.

We can explain that it is a descent direction by Taylor expansion

l∑
i=1

ξ(fBoostingk−1 (xi) + δ(
−gik
hik

), yi)

=
l∑

i=1

[ξ(fBoostingk−1 (xi), yi) + δgik(
−gik
hik

) +
1

2
δ2hik(

−gik
hik

)2 + εik)],

where εik/δ2 → 0 as δ → 0. We focus on

δgik(
−gik
hik

) +
1

2
δ2hik(

−gik
hik

)2.

It is equivalent to
g2ik
hik

(−δ + 1

2
δ2).

If ξ is a strongly convex function, we can imply hik > 0. We have

−δ + 1

2
δ2 < 0,

when δ is small enough, and therefore

l∑
i=1

ξ(fBoostingk−1 (xi) + δ(
−gik
hik

), yi) ≤
l∑

i=1

ξ(fBoostingk−1 (xi), yi).

15
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We use Taylor expansion again with the submodel tBoostingk to have

l∑
i=1

ξ(fBoostingk−1 (xi) + δ̂tBoostingk (ak;xi), yi)

=
l∑

i=1

[ξ(fBoostingk−1 (xi), yi) + δ̂gikt
Boosting
k (ak;xi) +

1

2
δ̂2hikt

Boosting
k (ak;xi)

2 + ε̂ik],

where ε̂ik/δ̂2 → 0 as δ̂ → 0. If

l∑
i=1

[δ̂gikt
Boosting
k (ak;xi) +

1

2
δ̂2hikt

Boosting
k (ak;xi)

2] < 0, (2.16)

then
l∑

i=1

ξ(fBoostingk−1 (xi) + δ̂tBoostingk (ak;xi), yi) ≤
l∑

i=1

ξ(fBoostingk−1 (xi), yi),

when δ̂ is small enough. To make (2.16) happen, we do

argmin
a

l∑
i=1

(tBoostingk (a;xi)− (
−gik
hik

))2 (2.17)

as a way to find ak. Similar to the situation of solving (2.13), this setting does not guaran-

tee that (2.16) holds. We can still multiply −1 on the direction, but we will show as well

in Section 2.4.4 that by using CART to fit the regression problem in (2.17), (2.16) always

holds.

Lastly, suppose (2.14) is the descent direction. We do the backtracking line search to

find the proximal solution βk by

argmin
β

l∑
i=1

ξ(fBoostingk−1 (xi) + βtBoostingk (ak;xi), yi)

and (ak, βk) is another proximal solution of (2.9).

To compare first-order and second-order boosting, we give two examples both with

the LR-loss function. The first-order one is multiple additive regression trees (MART)

by Friedman and Meulman (2003). The second-order one is additive logistic regression

(LogitBoost) by Friedman et al. (2000). In Li (2012), we can see the comparison result in

16
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Appendex A. One thing to note is that LogitBoost uses the weighted regression tree, so it

is different from (2.17). Another difference between Robust LogitBoost and LogitBoost

is the definition of the π function in CART, where details are in Section 2.1 in Li (2012).

The other thing we may notice is that neither MART nor LogitBoost uses the the line

search to find the step size. The reason can be found in (8) of Li (2012), and we give more

details in Section 2.4.4.

2.4.4 Some Technical Details

After we explained the boosting model, we know that (2.13) and (2.17) are not suffi-

cient to lead to the conditions (2.11) and (2.16), respectively. If we use CART to generate

a submodel tCARTk as our tBoostingk , the conditions (2.11) and (2.16) are guaranteed to hold.

We focus on the gradient boosting tree first by using the CART to fit the problem

(2.13). If Mk is large enough, we may construct the region {Rm
k }

Mk
m=1 to satisfy the fol-

lowing property. For any εmk > 0, there exists a region Rm
k , such that for all xi in Rm

k , we

have ∑
i∈Imk

[smk − (−gik)]2 < εmk , (2.18)

where smk is the average of

{−gik | i ∈ Imk }, and Imk = {i | xi ∈ Rm
k }. (2.19)

Note that smk here is defined differently from that in (2.7). The reason of (2.18) is that l

is finite. If we letMk equal l, and for each region we have only one instance, then (2.18)

holds. There are two cases we need to discuss.

Case 1: gik ̸= 0, for some i ∈ Rm̂
k , for all m̂.

Case 2: gik = 0, for all i ∈ Rm̂
k , for some m̂.

In Case 1, we rewrite the statement (2.18) to

∑
i∈Imk

[(smk gik] <
1

2
[εmk −

∑
i∈Imk

((smk )
2 + g2ik)].

17
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If

εmk −
∑
i∈Imk

((smk )
2 + g2ik) < 0,

for allm, then

l∑
i=1

tCARTk ({smk , Rm
k }

Mk
m=1;xi)gik =

Mk∑
m=1

∑
i∈Imk

[smk gik]

<

Mk∑
m=1

[εmk −
∑
i∈Imk

((smk )
2 + g2ik)]

< 0.

In Case 2, suppose we have a region Rm̂ such that

gik = 0, ∀i ∈ Im̂k .

Then we have ∑
i∈Imk

sm̂k gik = 0,

so

l∑
i=1

tCARTk ({smk , Rm
k }

Mk
m=1;xi)gik =

Mk∑
m=1

∑
i∈Imk

smk gik

=
∑
m̸=m̂

∑
i∈Imk

smk gik.

Thus, we can reduce the number of updated regions. If

gik = 0, ∀i = 1, . . . , l,

and

k < N,

then we early stop the boosting.

Next, we move on to the Newton boosting tree. Similarly, we have two cases to dis-

18



doi:10.6342/NTU201702065

cuss, ifM is large enough, for any ε̃mk > 0, there exists the region Rm
k , such that for all xi

in Rm
k , we have

[smk − (
−gik
hik

)]2 < ε̃mk , for all i ∈ Imk ,

where smk is the average of

{−gik
hik
| i ∈ Imk },

and Imk is the same as that in (2.19). In Case 1, assume

gik
hik
̸= 0 for some i ∈ Rm̂

k , for all m̂.

Then we imply

giks
m
k <

hik
2
[ε̃mk − (smk )

2 − (
gik
hik

)2].

Suppose we have a quadratic polynomial

δBi +
1

2
δ2Ai,

where Bi < 0 and Ai > 0. There exists δ̂i > 0, such that

δ̂iBi +
1

2
δ̂2iAi < 0.

We set Bi = giks
m
k , Ai = hik(s

m
k )

2, and take

δ̂ = min{δ̂1 . . . δ̂l}.

Then we imply

δ̂Bi +
1

2
δ̂2Ai < 0, for all i = 1, . . . , l.

Thus, (2.16) holds. In Case 2, assume

gik
hik

= 0, for all i ∈ Rm̂
k , for some m̂.
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Then

sm̂k = 0,

and

l∑
i=1

[δ̂gikt
Boosting
k (ak;xi) +

1

2
δ̂2hikt

Boosting
k (ak;xi)

2]

=

Mk∑
m=1

∑
i∈Imk

[δ̂giks
m
k +

1

2
δ̂2hiks

m
k

2]

=
∑
m̸=m̂

∑
i∈Imk

[δ̂giks
m
k +

1

2
δ̂2hiks

m
k

2].

Similar to the first-order form, we can reduce the updated regions. If

gik
hik

= 0, ∀i = 1, . . . , l,

and

k < N,

then we early stop the boosting. Finally, we have proved that (2.11) and (2.16) can hold

if we use CART to fit the data with a large enoughMk.

Furtheremore, if CART is used, the feature space can be splitted into {Rm
k }

Mk
m=1. Every

leaf region is adjoint, so we can modify the function value smk to find the best descent step.

Given a region Rm
k , we can take

βm
k = argmin

β

∑
i∈Imk

ξ(fBoostingk−1 (xi) + βsmk , yi), (2.20)

such that we have

tCARTk ({βm
k s

m
k , R

m
k }

Mk
m=1;x) =


β1
ks

1
k if x ∈ R1

k,

...

βMk
k sMk

k if x ∈ RMk
k .

The setting is similar to the line search in each region. Futhermore, we use the second-

20
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order Taylor expansion:

∑
i∈Imk

ξ(fBoostingk−1 (xi) + βsmk , yi) ≈
∑
i∈Imk

[ξ(fBoostingk−1 (xi), yi) + gikβs
m
k +

1

2
hikβ

2(smk )
2].

Then we can imply

βm
k = argmin

β

∑
i∈Imk

ξ(fBoostingk−1 (xi) + βsmk , yi)

≈ argmin
β

∑
i∈Imk

[ξ(fBoostingk−1 (xi), yi) + gikβs
m
k +

1

2
hikβ

2(smk )
2]

=
1

smk

−
∑

i∈Imk
gik∑

i∈Imk
hik

.

(2.21)

After (2.21), we have

βm
k s

m
k =

−
∑

i∈Imk
gik∑

i∈Imk
hik

,

so the model is

tCARTk ({βm
k s

m
k , R

m
k }

Mk
m=1;x) =



−
∑

i∈I1
k
gik∑

i∈I1
k
hik

if x ∈ R1
k,

...
−

∑
i∈I

Mk
k

gik∑
i∈I

Mk
k

hik
if x ∈ RMk

k .

Note that (2.21) is an approximation. In other words, fBoostingk may be larger than fBoostingk−1 ,

but we do not have the cost of the line search. Last, in Section 5 of Friedman (2001), a

learning rate η is used to avoid overfitting. Thus, the second-order GBDT model will be

fGBDTN (x) = η
N∑
k=1

tCARTk ({βm
k s

m
k , R

m
k };x).
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Chapter 3

The Implementations

In this Chapter, we will discuss how to implement the models in Chapter 2 and calcu-

late their computational complexities.

3.1 The Complexity of CART

Before we explain random forests and GBDT, we need to understand the complexity

of the CART. In Section 6.1 of Witten et al. (2011), they have derived the following

complexity for building a balanced tree.

O(n× l × log(l)), for calculating the square loss,

O(n× l × log(l)), for sorting the data.

They assume that a complete tree is established, but in practice, the tree is often constructed

up to a give depth d. We extend their analysis to cover such situations. Without loss of

generality, we let T be the tree shown in Figure 3.1, and we would like to grow a tree from

the black node N. Assume we select a subset of p features to construct the tree. Let

IN = {i | xi ∈ Region(N)}

and for each of the p selected features, we find the best splitting point. If the jth feature

is given, we conduct the following steps:
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Figure 3.1: Growing leaf N

Figure 3.2: Splitting candidates

Step 1: Sort (zi,xi),∀i ∈ IN by the jth conponent of xi, i ∈ IN.

Step 2: Check the Gain(NL,NR) of all splitting candidates; see an example in Figure 3.2.

Here

Gain(NL,NR) = π(T̃ )− π(T ),

where T is the CART before we grow NL and NR, T̃ is the one after growing, and π is

defined at (2.8). We give an example in Figure 3.3, where we predict T (x) as

sN, if x ∈ Region(N),

and predict T̃ (x) as

sNL
, if x ∈ Region(NL),

sNR
, if x ∈ Region(NR).

Then we can calculate the square loss in the π function as

ξSquare(N) =
∑
i∈IN

(zi − sN)2,

ξSquare(NL) =
∑
i∈INL

(zi − sNL
)2,

ξSquare(NR) =
∑
i∈INR

(zi − sNR
)2,
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Figure 3.3: The prediction before and after growing children

where IN, INL
, INR

are index sets of instances in N, NL, NR, respectively. To find the

splitting point, we consider the middle point in the interval between any two adjacent

points; see Figure 3.4. There exists a quick way to know the loss value of these two sets.

Suppose we have NL and NR. After we move one element (zî,xî) from NR to NL, we

get ÑL and ÑR with

ÑL =NL ∪ {(zî,xî)},

ÑR =NR − {(zî,xî)}.
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Figure 3.4: Searching the splitting point by considering all middle points between any two
adjacent feature values.

The calculation is as follows.

ξSquare(ÑL) =
∑
i∈IÑL

(zi − sÑL
)2

=
∑
i∈IÑL

z2i −
(
∑

i∈IÑL

zi)
2

|IÑL
|

=
∑
i∈INL

z2i + z2
î
−

(
∑

i∈INL
zi + zî)

2

|INL
|+ 1

=ξSquare(NL) +
(
∑

i∈INL
zi)

2

|INL
|

+ z2
î
−

(
∑

i∈INL
zi + zî)

2

|INL
|+ 1

=ξSquare(NL) +
1

|INL
|+ 1

[
|INL
|+ 1

|INL
|

(
∑
i∈INL

zi)
2

+ (|INL
|+ 1)z2

î
− (

∑
i∈INL

zi + zî)
2]

=ξSquare(NL) +
1

|INL
|+ 1

[
1

|INL
|
(
∑
i∈INL

zi)
2

+ (|INL
|)z2

î
− 2(

∑
i∈INL

zi)zî]

=ξSquare(NL) +
|INL
|

|INL
|+ 1

[

∑
i∈INL

zi

|INL
|
− zî]

2.

=ξSquare(NL) +
|INL
|

|INL
|+ 1

[sNL
− zî]

2.

Similarly,

ξSquare(ÑR) = ξSquare(NR)−
|INR
|

|INR
| − 1

[sNR
− zî]

2.
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Base on this updating rule, we know that the complexity of searching for the best splitting

node with the jth feature is

O(|IN|).

Remember that we have p features to search, so we have

O(p× |IN|)

in growing node N.

Next, we discuss the complexity of calculating the square loss in two cases.

Case 1: Balanced tree.

Case 2: Unbalanced tree.

In case 1, suppose the tree is balanced. We use

1, . . . , 2d+1 − 1

as indices of nodes and let their corresponding regions be

N1, . . . ,N2d+1−1.

See an illustration in Figure 3.5. Therefore, numbers of instances in regions which are at

the same layer are about equal. That is,

|IN
2d̃
| ≈ |IN

2d̃+1
| ≈ · · · ≈ |IN

2d̃+2d̃−1
| for d̃ = 1, . . . , d.

In node Ni, we need

O(p× |INi
|).
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Figure 3.5: A balanced tree with depth d

Figure 3.6: The complexity of training a balanced CART.

Given a tree of d̂ layers, the complexity of growing it to d̂+ 1 layers is

O(p× |IN
2d̂−1
|) + · · ·+O(p× |IN

2d̂−1
|)

=2d̂O(p× |IN
2d̂−1
|)

=2d̂O(p× l

2d̂
)

=O(p× l).

The complexity of nodes at different layers is shown in Figure 3.6. From Figure 3.6, we
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Figure 3.7: An unbalanced tree with depth d

can easily know the total complexity of calculating the square loss is

d

O(p× l) + · · ·+O(p× l) = O(p× d× l).

In Case 2, we assume T is an unbalanced tree, and use

1, . . . , 2d+ 1

as indices of nodes and let their corresponding regions be

N1, . . . ,N2d+1.

See an illustration in Figure 3.7. To discuss the worst case, we assume that

|IN2d̃+1
| = 1, for d̃ = 1, . . . , d.

That is, we have only one instance in each of these leaves. At a layer d̂, to expand the

node N2d̂, the cost is

O(p× |IN2d̂
|) = O(p× (l − d̂)).
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Figure 3.8: The complexity of training an unbalanced CART.

The complexity of nodes at different layers are shown in Figure 3.8. We can know the the

total complexity of calculating the square loss is

O(p× l) +O(p× (l − 1)) + . . .+O(p× (l − d+ 1)) = O(p× d(2l − d+ 1)

2
)

≈ O(p× d× l).

After the discussion, we know that whether the tree is balanced or not, we have the com-

plexity of calculating the square loss to be O(p× d× l).

Next, we introduce the sorting complexity in Step 1. From Section 6.1 of Witten et al.

(2011), we may use the appropriate algorithm. For example, suppose we have

value 10 30 3 16 27

rank 2 5 1 3 4
.

If we have the following subset

10 30 27,

and want to sort them, then we check the indices of the rank, which can be obtained in the

beginning. They are

2 5 4,
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so we can sort them. Because we select a fixed subset of p features in growing the tree,

the sorting operation is needed only once in the beginning. The cost is

O(p× Υ

n
× log(

Υ

n
)),

where Υ is the number of the non-zeros in the data set. Note that for sparse data sets, for

each feature we only need to sort non-zero values, and on average the number of non-zero

elements is
Υ

n
.

In conclusion, the complexity of constructing the CART is

O(p× d× l), for calculating the square loss,

O(p× Υ

n
× log(

Υ

n
)), for sorting the data.

3.2 Complexity of Random Forests

In a random forests model, we train N CARTs and pre-sort all the data once, so the

complexity is

O(N × d× p× l), for calculating the square loss,

O(N ×Υ× log(
Υ

n
)), for sorting the data.

3.3 Complexity of GBDT

In GBDT, we trainN CARTs. Before we fit the kth CART, we must calculate gik and

hik, for i = 1, . . . , l. The complexity is

O(N × l), for calculating gik and hik, ∀i, ∀k .

O(N × d× p× l), for calculating the square loss,

O(N ×Υ× log(
Υ

n
)), for sorting the data.

30



doi:10.6342/NTU201702065

Recently, to improve the sorting time and the memory usage, LightGBM uses the his-

togram technique (Jin and Agrawal, 2003). This technique uses the ordered integer indices

to replace the continues values. Then we can easily do the sort by these index tags. When

the number of the bins is given, we need to scan the values of the data set and replace them

with bin indices. For the jth feature, the cost is

Υ

n
+

Υ

n
.

The first part of the cost is for finding the minimum and the maximum values of the jth

feature, denoted as max_valj and min_valj , respectively. We then calculate

max_valj −min_valj
#(bins− 1)

for the interval of the bins. The second part of the cost is for replacing the values with the

indices of the bins. The total cost for all features is

2× Υ

n
× n = 2×Υ.

Note that, we replace the values in all of the data set, not only for the p features used in a

tree. The benefits of using histogram are the saving of the memory usage and the saving

of the sorting time, but we transform the data to some discrete points. Now we check how

using a histogram saves the memory usage. For a double floating-point value, 64 bits are

need to store it. On the other hand, if the number of the bins is 256, we only need 8 bits to

store the bin index. Back to the sorting, with the indices of the bins, we only need to scan

data once. The complexity of sorting in CART is

O(p× Υ

n
).

31



doi:10.6342/NTU201702065

The total complexity with using histogram are

O(2×Υ) for replacing continues values to bins indices,

O(N × l) for calculating gik and hik, ∀i, ∀k,

O(N × d× p× l) for calculating the square loss,

O(N × d× p× Υ

n
) for sorting the data.

Both of the libraries XGBoost and LightGBM support the histogram method nowadays.
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Chapter 4

Experiments

After introducing various classification methods, our purpose in this chapter is to com-

pare them in detail. We select some large data sets in LIBSVMdata sets. 1 Note that astro-

physic and yahoo-japan are not publicly available. While all these sets have a large number

of instances, their number of features significantly varies. Most data sets come with avail-

able training and test sets, but for astro-physic, covtype, real-sim, url and webspam, only

training instances are available. Therefore, we randomly split the original training set as

the training set and test set with the ratio 4 : 1. Statistics of data sets are presented in

Table 4.1. Testing accuracy is the ratio between the number of correct predictions and the

testing size.

4.1 Parameter Selection

For each of these classifiers, some suitable parameters must be chosen. We conduct

cross validation to select parameters. We respectively discuss parameters of each method

in a subsection. We also discuss the package used for each method.

4.1.1 SVM

To train SVM, we consider LIBSVM (Chang and Lin, 2011) for kernel SVM with

using l1 loss and LIBLINEAR (Fan et al., 2008) for linear SVM with using LR loss. For
1https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/

33



doi:10.6342/NTU201702065

Data set Training size Test size #features (n) #nnz / n
astro-physic 49,896 12,473 99,757 38
cod-RNA 59,535 271,617 8 59,535
covtype 464,810 116,202 54 102,824
ijcnn1 49,990 91,701 22 29,540
kdd10b-raw 19,264,097 748,401 1,163,024 149
kdd10b 19,264,097 748,401 29,890,095 15
kdd12 119,711,284 29,927,821 54,686,452 24
MNIST38 11,982 1,984 752 2,680
news20 15,997 3,999 1,355,191 5
rcv1 20,242 677,399 47,236 32
real-sim 57,848 14,461 20,958 142
url 1,916,904 479,226 3,231,961 69
webspam 280,000 70,000 254 93,827
yahoo-japan 140,963 35,240 832,026 23

Table 4.1: Statistics of data sets.

kernel SVM, the Gaussion (RBF) kernel (2.2) is considered. Therefore, parameters to

be selected are (C, γ) for kernel SVM, and C for for linear SVM. For linear SVM, LIB-

LINEAR implements an approach in Chu et al. (2015) to quickly find a suitable C value.

For kernel SVM, we conduct cross validation (CV) on C ∈ {2−10, 2−8, 2−6, . . . , 210} and

γ ∈ {2−10, 2−8, 2−6, . . . , 210} to select the one with the highest CV accuracy.

4.1.2 Random Forests

Weconsider the random forests implementation in Scikit-learn (Pedregosa et al., 2011),

which implements the code by themselves. In Scikit-learn, they have the following options

on the random forests models:

1. n_estimators: The number of trees in the random forests.

2. criterion: The function to measure the quality of a split.

3. max_features: The number of features to consider when looking for the best split.

4. max_depth: The maximum depth of the tree.

5. min_samples_split: The minimum number of samples required to split an internal

node.
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6. min_samples_leaf: The minimum number of samples required to be at a leaf node.

Because of the many parameters, it is not practical to check all combinations of pa-

rameter values. To save the running time, we consider only two or three candidates for

each value. They are listed below.

n_estimators = {100},

criterion = {Gini,Entropy},

max_feature = {
√
n, 0.001n, 0.002n, 0.005n, 0.01n, 0.02n, 0.05n, 0.1n, 0.2n, 0.5n},

max_depth = {unlimited, 200, 100},

min_sample_split = {2, 4},

min_sample_leaf = {1, 2}.

Note that parameters min_sample_split, min_sample_leaf and max_depth are related. Re-

called that the training time is related to the complexityO(N ×d× p× l). When we have

more instances, a smaller number of max_feature (p) should be chosen. Otherwise, the

training timemay be too long. Therefore, for the data sets url, kdd10b and kdd10b-raw, we

have to limit the max_depth to {10, 20, 50}, reduce the n_estimators and the max_feature

to {20} and {0.0001n, 0.0002n, 0.0005n, 0.001n}, respectively. For url, we reduce the

max_feature to {0.0001n, . . . , 0.01n}. For the data set kdd12, we only run the parameters

{ n_estimators, criterion, max_feature, max_depth } = {20, gini, 0.0001n, 10}

in a reasonable time. Note that, we also cancel the cross validation on these large data

sets when we train the random forests model, and change to use holdout validation with

a split ratio 4 : 1 (training : validation). In addition, we change min_sample_leaf and

min_sample_split to {1} and {2}, respectively, becausewe observe that they do not impact

the test accuracy very much.
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4.1.3 GBDT

We consider the GBDT implementation in XGBoost (Chen and Guestrin, 2016) and

LightGBM (Meng et al., 2016). In XGBoost, they have following options on the GBDT

models:

1. rounds: The number of trees in the GBDT.

2. eta: The learning rate.

3. max_depth: The maximum depth of the tree.

4. min_child_weight: Minimum sum of instance hessian (hik) needed in a child.

5. gamma: The regularization of the number of the leaves.

6. lambda: The regularization of the value in the leaves (smk ).

In LightGBM, they have the following options:

1. num_trees: Same with rounds in XGBoost.

2. learning_rate: Same with eta in XGBoost.

3. max_depth: Same in XGBoost.

4. min_sum_hessian_in_leaf: Same with min_child_weight in XGBoost.

5. min_gain_to_split: Same with gamma in XGBoost.

6. lambda_l2: Same with lambda in XGBoost.

7. num_leaves: The maximum number of the leaves.

8. min_data_in_leaf: The minimum number of samples required to be at a leaf.

9. max_bins: The maximum number of the bins.

Both of them also support the subsampling on the features to decide p and the subsam-

pling on the instances to reduce the instance size l. In our experiments, we do not use
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the subsample options on features and instances. Note that the regularization parameter

lambda and gamma of the XGBoost which we do not claim in this thesis, but the details

can be found in Chen and Guestrin (2016).

Similar to the random forests, we consider two or three candidates for each parameter

value. For XGBoost,

rounds = {100},

eta = {0.1, 0.2, 0.3, 0.4, 0.5},

max_depth = {4, 5, 6, 7, 8, 9},

min_child_weight = {0, 1, 2},

gamma = {0, 0.1, 1},

lambda = {0, 1, 10}.

For LightGBM,

num_trees = {100},

learning_rate = {0.1, 0.2, 0.3, 0.4, 0.5},

max_depth = {unlimited},

min_sum_hessian_in_leaf = {0, 1, 2},

min_gain_to_split = {0},

lambda_l2 = {0, 1, 10},

num_leaves = {15, 31, 63, 127, 255, 511},

min_sample_leaf = {10, 50, 100},

max_bins = {255}.

Because the number of the parameters in LightGBM is larger than that of XGBoost, we set

max_bins, min_gain_to_split andmax_depth to the default setting. Note that we do not use

the histogram technique and unblanced tree in XGBoost, but we use them in LightGBM.
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Futhermore, we consider not only the GBDTmodel, but also the linear boosting model

in XGBoost. The parameters are shown at the following.

1. rounds: The number of trees in the GBDT.

2. eta: The learning rate.

3. lambda: The regularization of the linear regression weight w.

For a linear model, we may consider more candidates for each parameter,

rounds = {100},

eta = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},

lambda = {2−10, 2−9, . . . , 210}.

Note that, when we use XGBoost to train the data set kdd10b-raw and url, we use the

holdout validation with the ratio 4 : 1. We also reduce the search region of the data set

kdd10b-raw which we let gamma, lambda and min_child_weight be the default value.

4.2 Result

We run the experiments on amachine with a 10-core CPU i7-6950X and 128GBRAM.

For LIBLINEAR and LIBSVM, we run them by using a single thread. For the others, we

use ten threads. We compare the following methods.

SVM_LR : SVM with linear kernel and LR loss.

SVM_RBF : SVM with Gaussion kernel.

RF : Random forests.

XGB_linear : XGBoost with using linear regression.

XGB : XGBoost with using regression tree.

LightGBM : LightGBM.
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Data sets SVM_LR SVM_RBF RF XGB_linear XGB LightGBM
astro-physic 96.81 97.31 96.67 96.99 96.30 96.38
cod-RNA 95.11 96.67 96.68 94.48 96.79 96.80
covtype 75.77 96.11 97.65 75.32 95.73 97.39
ijcnn1 91.96 98.69 98.21 92.01 98.07 98.32
kdd10b-raw 89.05 - 88.77 88.07 89.05 89.43
kdd10b 88.83 - 86.09 - - 87.96
kdd12 95.56 - 95.55 - - 96.58
MNIST38 96.82 99.70 99.09 96.93 99.29 99.40
news20 97.10 96.90 89.67 97.50 93.87 95.12
rcv1 97.57 - 97.67 97.67 97.58 98.11
real-sim 97.60 97.82 96.17 97.87 98.43 95.43
url 97.80 - 98.97 99.47 99.35 99.64
webspam 92.35 99.26 99.03 92.58 99.23 99.27
yahoojp 92.97 93.31 92.24 93.08 93.40 92.22

Table 4.2: Test accuracy

The results presented in the Table 4.2 are test accuracy in percentage. Because some data

sets are too large to be solved by some methods, we use the notation ’-’ to denote that the

results are not available. (Training time is greater than 30,000 seconds, or out of memory)

Table 4.3 presents the training time (in seconds) with the best parameters after the grid

search.

In Table 4.2, we give the result on the following cases:

1. linear ≈ kernel ≈ RF ≈ GBDT: astro-physic, real-sim and yahoojp.

2. kernel ≈ RF ≈ GBDT > linear: cod-RNA, ijcnn1, MNIST38 and webspam.

3. linear > kernel ≈ RF ≈ GBDT: kdd10b.

4. linear ≈ RF ≈ GBDT > kernel: kdd10b-raw and rcv1.

5. RF ≈ GBDT > kernel > linear: covtype.

6. linear ≈ kernel > GBDT > RF: news20.

7. GBDT > RF ≈ linear > kernel: kdd12.

8. GBDT > RF > linear > kernel: url.

Where linear including SVM_LR and XGB_linear, GBDT including XGB and lightGBM.

On the other hand, in Table 4.3, we give the result as the followed:
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Data sets SVM_LR SVM_RBF RF XGB_linear XGB LightGBM
astro-physic 2.20 2076.63 38.74 3.50 12.22 5.57
cod-RNA 0.30 411.17 6.33 0.76 1.56 1.61
covtype 2.28 26796.28 131.87 2.80 13.98 3.99
ijcnn1 0.29 45.52 7.65 0.52 1.58 0.92
kdd10b-raw 102.63 - 142.08 306.73 19498.48 467.48
kdd10b 278.19 - 16254.93 - - 1306.15
kdd12 1110.45 - 4054.71 - - 2081.70
MNIST38 0.66 13.95 1.80 0.98 1.18 0.81
news20 4.72 935.79 31.59 3.86 45.15 28.90
rcv1 32.27 - 1497.72 10.75 141.55 185.86
real-sim 1.54 1370.17 12.11 1.95 8.94 4.01
url 81.48 - 2421.92 209.98 564.11 353.44
webspam 9.40 6519.51 390.64 10.35 75.05 7.92
yahoojp 15.39 10026.14 1911.26 13.24 48.15 20.91

Table 4.3: Training time

1. kernel≫ RF > GBDT > linear: astro-physic, cod-RNA, covtype, ijcnn1 and rcv1.

2. kernel≫ RF ≈ GBDT > linear: news20 and real-sim.

3. kernel≫ RF > GBDT > XGB_linear > SVM_LR: url.

4. kernel≫ RF ≈ GBDT ≈ linear: MNIST38.

5. kernel≫ XGB≫ lightGBM > XGB_linear > RF ≈ SVM_LR: kdd10b-raw.

6. kernel ≈ XGB ≈ XGB_linear ≫ RF > lightGBM > SVM_LR: kdd10b and

kdd12.

7. kernel≫ RF > XGB > lightGBM ≈ linear: webspam and yahoojp.

We may observe that kernel method (RBF kernel) cost too much training time, it is not

suitable in large-scale data sets. For the tree-based methods, lightGBM gets a beautiful

training time, and histogram is very useful in GBDT. The random forests is disadvantaged

on the implementation, we do not know the situation that the histogram technique is used

with the random forests. For the linear models, the speed of training time is very fast, it

is important for analyzing the large-scale data sets, but the performence may not exceed

tree-based models and kernel method.
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Chapter 5

Conclusion

After analyzing the model of random forests and GBDT, we know that the essence

of these two models is totally different. Random forests uses the law of large number

to make the prediction of the model be the expectation of it. On the other hand, GBDT

adds the submodels as the descent direction of its loss function. This difference may be a

reason that GBDT performs better than random forests in some sparse data sets. For the

dense data, their performences are similar. Furthermore, according to our experiments,

GBDT with the histogram technique is fast enough for the large-scale data sets, and the

test accuracy is performed well. There is a disadvantage part of parameter selection in

tree-based methods, this disadvantage makes the total training time be longer.
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