
國⽴臺灣⼤學理學院應⽤數學科學研究所

碩⼠論⽂
Institute of Applied Mathematical Sciences

College of Science

National Taiwan University
Master Thesis

整合多重隨機奇異值分解與理論分析

Theoretical and Performance Analysis for Integrated
Randomized Singular Value Decomposition

張⼤衛

Da-Wei Chang

指導教授땻王偉仲博⼠

Advisor: Weichung Wang, Ph.D.

中華民國 106年 7⽉
July, 2017

doi:10.6342/NTU201702973

ii

doi:10.6342/NTU201702973

doi:10.6342/NTU201702973

iv

doi:10.6342/NTU201702973

誌謝

在最⼀開始땹我想感謝與這篇論⽂相關的所有⼈땹沒有你們的協

助땹我無法將這篇論⽂完成땾

感謝我的指導教授王偉仲⽼師땹教導我該如何進⾏研究땹定期開會

討論進度땹平常也總是開著辦公室的⾨땹當遭遇問題땹或是有新的進

展時땹都可以⼀起討論땹並給予建設性的回應땹除了學術討論以外땹

也對寫作與報告的模式進⾏指導땹讓我對於論⽂的寫作有更深⼊的認

識땾感謝中研院統計所陳素雲⽼師與陳定⽴⽼師讓我參與整合隨機奇

異值分解的這項研究땹並且在理論⽅⾯提供指導與協助땾感謝我的同

學楊慕與林建燿땹陪伴我⼀起討論땹並且提出了許多新的點⼦與想法땾

感謝 R439研究室的所有同學땹營造出歡樂的研究氣氛땹推動研究的推

展땹並且舒緩了研究不順利時的煩躁感땾感謝我的家⼈在這段時間裡

在⽣活與⼼理上的⽀持땹使我可以無憂無慮땹專⼼⼀致地完成這篇論

⽂땾

最後땹再次感謝所有與這篇論⽂相關的所有⼈땹從⼀開始接觸問

題땹到現在完成這份論⽂땹因為有敬愛的師⾧땿同學與家⾧的⽀持땹

才能讓這篇論⽂順利誕⽣땾

v

doi:10.6342/NTU201702973

vi

doi:10.6342/NTU201702973

Acknowledgements

First of all, I would like to thank my advisor Professor WeichungWang of

the Institute of Applied Mathematical Science at National Taiwan University.

When I ran into a trouble of the research, Prof. Wang always opened his office

door and discussed with me. He also spent a lot of time teaching me the skill

for academic writing and presentation. Without his passionate guidance, this

thesis would not have been successfully conducted.

I would also like to thank the collaborators of my advisor Dr. Su-Yun

Huang andDr. Ting-Li Chen of the Institute of Statistical Science at Academia

Sinica. They allowed me to join this research and guided me in theoretical

research. With their aid, the theory in this thesis could be vigorously con-

structed.

At the end, I would like to acknowledge my classmates, Mu Yang and

Chienyao Lin. I am very grateful for their comments about this research.

Some analysis and methods in this research are even inspired by their inter-

esting ideas.

vii

doi:10.6342/NTU201702973

viii

doi:10.6342/NTU201702973

摘要

維度降低和特徵提取是⼤數據時代的重要技術땹此⼆技術可以

降低數據維數並降低進⼀步分析數據的計算成本땾低秩奇異值分解

军low-rank SVD农是這些技術的關鍵部分땾為了更快地計算低秩奇異值

分解땹⼀些研究提出可以使⽤隨機抽取⼦空間的⽅法來獲得近似結果땾

在這項研究中땹我們提出了⼀種新的概念땹將隨機算法的結果進⾏整

合以獲得更準確的近似值땹稱為整合奇異值分解땾我們通過理論和數

值實驗來分析演算法的性質땹以及不同的整合⽅法땾整合⽅法的架構

是有條件的優化問題땹其具有唯⼀的局部極⼩值땾整合⼦空間將透過

線搜索땿Kolmogorov-Nagumo平均땿和簡化類型的⽅法來進⾏計算땹

並針對這些⽅法的理論背景及計算複雜度進⾏分析땹此外땹整合奇異

值分解與先前隨機奇異值分解的相似與相異處也會進⾏說明與分析땾

數值實驗結果顯⽰땹在所提供的例⼦中땹整合奇異值分解相對於同樣

數量的隨機奇異值分解땹使⽤線搜索⽅法時的疊代次數較少땾另外땹

使⽤簡化類型的⽅法땹來當作線搜索⽅法的初始值땹可以減少收斂所

需的疊代次數땾

關鍵詞땻 數值線性代數땿奇異值分解땿隨機演算法땿數值優化땿

維度降低

ix

doi:10.6342/NTU201702973

x

doi:10.6342/NTU201702973

Abstract

Dimension reduction and feature extraction are the important techniques

in the big-data era to reduce the dimension of data and the computational cost

for further data analysis. Low-rank singular value decomposition (low-rank

SVD) is the key part of these techniques. In order to compute low-rank SVD

faster, some researchers propose to use randomized subspace sketching al-

gorithm to get an approximation result (rSVD). In this research, we propose

an idea for integrating the results from randomized algorithm to get a more

accurate approximation, which is called integrated singular value decompo-

sition (iSVD). We analyze iSVD and the integration methods by theoretical

analysis and numerical experiment. The integration scheme is a constraint

optimization problem with unique local maximizer up to orthogonal transfor-

mation. Line search typemethod, Kolmogorov-Nagumo type averagemethod

and reduction type method are introduced and analyzed for their theoretical

background and computational complexity. The similarity and difference be-

tween iSVD and rSVD with same sketching number are also explained and

analyzed. The numerical experiment shows that the line search method in

iSVD converges faster than the one in rSVD for our test examples. Also, us-

ing the integrated subspace from reduction as the initial value of line search

method can reduce the iteration number to converge.

Keywords: Numerical Linear Algebra, Singular Value Decomposition, Ran-

domized Algorithm, Numerical Optimization, Dimension Reduction

xi

doi:10.6342/NTU201702973

xii

doi:10.6342/NTU201702973

Contents

⼝試委員會審定書 iii

誌謝 v

Acknowledgements vii

摘要 ix

Abstract xi

1 Introduction 1

2 Overview of Integrated Singular Value Decomposition 5

3 Properties of Integrated Subspace 9

3.1 Solution of the Optimization Problem 10

3.2 Asymptotic Behavior of the Integrated Subspace 12

3.3 Uniqueness of Local Maximizer . 13

4 Integration Method 21

4.1 Line Search Type Method . 21

4.2 Kolmogorov-Nagumo-Type Average . 29

4.3 Reduction-Type Average . 33

5 Comparison of rSVD and iSVD 37

xiii

doi:10.6342/NTU201702973

6 Numerical Experiment 41

6.1 Different Number of Sketched Subspaces 42

6.2 Comparison of KN and WY . 44

6.3 Comparison of iSVD, rSVD and Reduction 47

7 Discussion and Conclusion 51

Bibliography 53

xiv

doi:10.6342/NTU201702973

List of Figures

6.1 Similarity for different N . The size of test matrix is m = 219, n = 220.

For each cases, we repeat 30 times iSVDwith integration methodWY and

plot out the box plot of similarity. The box plot represent the maximum,

Q3, median, Q1, minimum for each inner product among 30 times. 43

6.2 Average iteration number to converge for different N and different size

of test matrix. The size of test matrix is m = 2d, n = 2d+1 for d =

9, 11, 13, 15, 17, 19. Each point shows the average iteration number among

30 tests. 43

6.3 Comparison of the approximate singular vectors by using WY and KN.

The size of test matrix is m = 211, n = 212 and the sampling number

N = 32. All of these test use the same 32 sketched subspaces Q[i]. The

first line in the legend represents the similarity of Q = Q[1]. The second

and third lines are the result fromWY and KN respectively. The forth and

fifth lines are from WY and KN respectively with fixed iteration number

15. 45

6.4 WY with different iteration numbers. The sketched subspaces Q[i] are

same in Figure 6.3. The first line in the legend represents the similarity

for the case Q = Q[1]. The second line is the similarity from WY (with

61 iteration for AH(10−1) and 84 iteration for AH(10−3) to converge).

The third to sixth lines are from WY with iteration number 5, 10, 15, 20

respectively. 46

xv

doi:10.6342/NTU201702973

6.5 KN with different iteration numbers. The sketched subspaces Q[i] are

same in Figure 6.3. The first line in the legend represents the similarity

for the case Q[1]. The second line is the similarity from KN. The third to

sixth lines are from KN with iteration number 5, 10, 15, 20 respectively. . 46

6.6 Similarity forWYwith iSVD and rSVD, reduction, and svds. The number

of sketched subspaces in iSVD is N = 32. The number of sketching in

rSVD is 32 ∗ 22, which is same as the total number of sketching in iSVD.

The algorithm red.+WY uses the result of reduction as the initial value of

WY. 48

6.7 Similarity for the methods in 6.6 with the fixed iteration number 10 for WY. 49

xvi

doi:10.6342/NTU201702973

List of Tables

1.1 Notation in this thesis. 3

6.1 Abbreviation and detail information of the algorithm used in this section. 41

xvii

doi:10.6342/NTU201702973

xviii

doi:10.6342/NTU201702973

Chapter 1

Introduction

Dimension reduction and feature extraction are important issues in data analysis, espe-

cially for large scale data, to reduce the size or condense the information of analyzed data.

The goal is to reduce the time for further analysis or find out the key features in the data.

Singular value decomposition (SVD) is one of the technique to realize dimension reduc-

tion. An SVD of anm× n matrixA takes the formA = UΣV ⊤, where U is anm×m

orthogonal matrix, V is an n× n orthogonal matrix, and Σ is an m× n diagonal matrix

with decreasing diagonal entries. In this representation,U , V are the left and right singu-

lar vectors of A respectively. The diagonal entries of Σ are the singular vector of A. A

rank-k approximation ofA via SVD is given as

A = UkΣkV
⊤
k

where Uk, Vk are leading k singular vectors and Σk contains leading k singular values.

This low-rank approximation is called rank-k SVD ofA. Rank-k SVD is the best rank-k

approximation of A in the sense that it has the smallest 2-norm or Frobenius norm error.

Therefore, it is a good choice for dimension reduction in many cases.

Many algorithms are aimed at computing the SVD or rank-k SVD. However, these al-

gorithms usually take at least O(m2n+mnk) for computing rank-k SVD of a realm×n

(m ≤ n) matrix. Consequently, these algorithms cost lots of time to obtain the output re-

sult. Some research [7, 10] proposed amethod to randomly sketch thematrix into a smaller

1

doi:10.6342/NTU201702973

subspace, and calculate approximate rank-k SVD in that space. This method is called ran-

domized singular value decomposition (rSVD) in this thesis. The accuracy and precision

of rSVD depend on the quality of random projection used to generate the subspace. How

to increase the quality of random sketching and the accuracy of the approximation is an

important issue in rSVD. In [4], integrated singular value decomposition (iSVD) is pro-

posed to enhance the projected subspace and obtain a better result. The main idea of iSVD

is using integrationmethod to condense the information frommultiple randomly sketching

and output a better-sketched subspace.

In this thesis, some properties of iSVD and integration method will be studied. The

concept of iSVD is introduced in Chapter 2. The key step of iSVD is the integration, which

is a constraint optimization problem. In the Chapter 3, we show the integrated subspace

defined previously is the only local maximizer of the constraint optimization problem.

The optimal solution and informal explanation of asymptotic behavior are introduced in

the same chapter. These properties give the reason for using gradient type methods to

solve this optimization problem. These methods are introduced and analyzed in Chapter

4. The similarity and difference between rSVD and iSVD with same sketching number

are shown in the Chapter 5. The numerical experiment is shown in Chapter 6. Finally, the

discussion and conclusion are given in Chapter 7.

The notations used in this thesis are as follows. The normal letters, such as a,α, denote

the scalar. The bold lower case letters, such as a,α, denote the vector. The bold upper

case letters, such as C,Γ, denote the matrix. Table 1.1 shows some frequently appeared

notations in this thesis.

2

doi:10.6342/NTU201702973

A The matrix desired solving low-rank SVD.
m,n The number of rows and columns ofA respectively. We assumem ≤ n.
k The given desired rank for low-rank approximation.
p The number of oversampling in rSVD and iSVD.
ℓ The total number of sampling in rSVD and iSVD for a single sketched subspaces.

ℓ = k + p. ℓ≪ m.
N The total number of sketched subspaces in iSVD.
⊗ The Kronecker product.
Ha,b The a× b commutation matrix.[9] For any a× b matrixM , vec(M⊤) = Ha,b vec(M).
Qc The current iterator in the iterative method.
Q+ The iterator of next step in the iterative method.

Table 1.1: Notation in this thesis.

3

doi:10.6342/NTU201702973

4

doi:10.6342/NTU201702973

Chapter 2

Overview of Integrated Singular Value

Decomposition

Before introducing iSVD, we shall take a quick view of rSVD. The basic algorithm of

rSVD from [7, 10] is stated as Algorithm 1. In this algorithm, SVD is only applied to an

m× ℓmatrix and an ℓ×nmatrix, which is much cheaper than applied on anm×nmatrix

if ℓ is small. The two main phases of rSVD are described in next two paragraphs.

Algorithm 1 Randomized SVD (rSVD)
Require: A (realm×nmatrix), k (number of desired rank for low-rank approximation),

p (number of oversampling), ℓ = k + p (number of the sketched column),
Ensure: Approximate rank-k SVD ofA ≈ ÛkΣ̂kV̂ ⊤

k

1: Generate a random matrix Ω
2: Assign Y ← AΩ
3: ComputeQ whose columns are an orthonormal basis of Y
4: Compute the SVD ofQ⊤A = Ŵℓ Σ̂ℓ V̂ ⊤

ℓ

5: Assign Ûℓ ← QŴℓ

6: Extract the largest k singular pairs from Ûℓ, Σ̂ℓ, V̂ℓ to obtain Ûk, Σ̂k, V̂k

The first phase is randomly sketching a subspace of A. More precisely, compute the

matrix Y = AΩ and find out the orthogonal basis of the range of Y as the approximate

subspace Q. In this case, Ω is a randomly generated matrix. Both [7, 10] propose a

commonly used Ω as Gaussian projection, which means the entries of Ω are independent

identical standard normal distribution. This choice gives Y some structure of the column

space from A and controls the error
∥∥QQ⊤A−A

∥∥
2
< ϵ in high probability. Note that

5

doi:10.6342/NTU201702973

QQ⊤A is the approximate rank-ℓ SVD ofA with the column space spanned by Y .

The second phase is constructing an approximate rank-ℓ SVDQQ⊤A. Only the SVD

of Q⊤A is needed to construct the SVD of the rank-ℓ matrix QQ⊤A. Once the SVD

of Q⊤A = ŴℓΣ̂ℓV̂ ⊤
ℓ is obtained, the SVD of QQ⊤A can be computed as QQ⊤A =

(QŴℓ)Σ̂ℓV̂ ⊤
ℓ . Note that the column space of this approximation is already determined

in the first phase. The purpose of this phase is revealing the singular values and singular

vectors in correct arrangement, and then the leading k singular values and singular vectors

can be extracted.

The technique of oversampling is proposed here. Suppose the desired rank is k, the

number of sketches in the first phase can be chosen as ℓ = k+ p for some positive integer

p. The approximate rank-k SVD is obtained from rank-ℓ SVD by extracting the first k

singular vectors and singular values.

Based on rSVD, iSVD uses multiple random sketched subspaces in the first phase of

rSVD to gain more accurate result. The algorithm is stated as Algorithm 2. Three phases

are included in this algorithm. The first phase is similar to the first phase of SVD. Instead

of choosing only one random sketch in rSVD, iSVD choose multiple random sketches.

The second phase is integrating the subspaces obtained in the first phase and get an in-

tegrated subspace Q. The third phase is same as the second phase of rSVD. They both

construct the approximate rank-ℓ SVD.

Algorithm 2 Integrated SVD with multiple sketches (iSVD).
Require: A (realm× n matrix), k (desired rank of approximate SVD), p (oversampling

parameter), ℓ = k + p (dimension of the sketched column space), q (exponent of the
power method), N (number of random sketches)

Ensure: Approximate rank-k SVD ofA ≈ ÛkΣ̂kV̂ ⊤
k

1: Generate n× ℓ random matrices Ω[i] for i = 1, . . . , N
2: Assign Y[i] ← AΩ[i] for i = 1, ..., N
3: ComputeQ[i] whose columns are an orthonormal basis of Y[i]

4: IntegrateQ← {Q[i]}Ni=1

5: Compute the SVD ofQ⊤
A = Ŵℓ Σ̂ℓ V̂ ⊤

ℓ

6: Assign Ûℓ ← QŴℓ

7: Extract the largest k singular pairs from Ûℓ, Σ̂ℓ, V̂ℓ to obtain Ûk, Σ̂k, V̂k

The key part of iSVD is how to define the integrated subspace in the second phase. The

most intuitive idea is taking the arithmetic average of Q[i] as Q, but the following state-

6

doi:10.6342/NTU201702973

ments show this is not a reasonable definition of the integrated subspace. The integrated

subspace Q should represent the subspace integrated by Q[i]. Each Q[i] is an orthogonal

matrix. Hence Q should also be an orthogonal matrix. However, the arithmetic average

ofQ[i] is not an orthogonal matrix. Therefore, the integrated subspaces should be defined

by another form instead of the arithmetic average.

The integrated subspace in the second phase is defined by the following optimization

problem. ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q := argmin
Q

1

N

N∑

i=1

∥∥Q[i]Q
⊤
[i] −QQ⊤∥∥2

F

subject toQ⊤Q = Iℓ

(2.1)

The main idea of this definition is to define the integrated subspace that has the minimum

summation of distances between each Q[i] and Q, which is similar to the property of the

arithmetic average in Euclidean space. Instead of the Euclidean distance between Q and

eachQ[i], we use the distance betweenQQ⊤ andQ[i]Q⊤
[i] to preserve the invariant of right

orthogonal transformation. Suppose Q[1] = Q[2]R for some orthogonal matrix R. Q[1]

and Q[2] represent the same subspaces, so the measurement of error between Q[1], Q[i],

andQ[2],Q[i] should be same. By using the relation

Q[1]Q
⊤
[1] −Q[i]Q

⊤
[i] = Q[1]RR⊤Q⊤

[1] −Q[i]Q
⊤
[i] = Q[2]Q

⊤
[2] −Q[i]Q

⊤
[i]

the error measured in (2.1) gives the same value, which means it preserved the invariant

of right orthogonal transformation. However, it still needs some theoretical analysis to

make sure whether this objective function is suitable for the integration step. Chapter 3

provides an informal explanation that the integrated subspace defined by 2.1 can capture

the true singular vectors of the desired matrixA when N tends to be large.

7

doi:10.6342/NTU201702973

8

doi:10.6342/NTU201702973

Chapter 3

Properties of Integrated Subspace

In this chapter, some properties of the integrated subspace defined in (2.1) are analyzed.

First, an equivalent maximization problem (3.1) is introduced. Next, we show the solu-

tion of the optimization problem in (3.1) is the leading singular vectors of the arithmetic

average ofQ[i]Q⊤
[i]. Then we provide an informal explanation for the asymptotic behavior

of integrated subspace when N is large. Finally, we prove that the local maximizer of the

optimization problem in (3.1) is unique up to a right orthogonal transform.

At the beginning, some equivalent problems should be introduced for the simplicity

of analysis. The following theorem demonstrates an equivalent optimization problems of

(2.1).

Theorem 3.0.1. The constraint optimization problem (2.1) is equivalent to the problem

⎧
⎪⎪⎨

⎪⎪⎩

argmax
Q

1

2
tr(Q⊤PQ)

Q⊤Q = Iℓ

(3.1)

where P = 1
N

∑N
i=1Q[i]Q⊤

[i] is the arithmetic average of Q[i]Q⊤
[i] over all i.

Proof. From the relation between trace and Frobenius norm ∥M∥2F = tr(M⊤M), the

properties of trace tr(M1M2) = tr(M2M1), and the orthogonality of Q and Q[i], the

9

doi:10.6342/NTU201702973

Frobenius norm in the objective function of (2.1) can be rewritten as

∥∥Q[i]Q
⊤
[i] −QQ⊤∥∥2

F
= tr((Q[i]Q

⊤
[i] −QQ⊤)⊤(Q[i]Q

⊤
[i] −QQ⊤))

= tr(QQ⊤)− 2 tr(QQ⊤Q[i]Q
⊤
[i]) + tr(Q[i]Q

⊤
[i])

= tr(Q⊤Q)− 2 tr(Q⊤Q[i]Q
⊤
[i]Q) + tr(Q⊤

[i]Q[i])

= 2ℓ− 2 tr(Q⊤Q[i]Q
⊤
[i]Q).

This equation leads to another representation of the objective function

1

N

N∑

i=1

∥∥Q[i]Q
⊤
[i] −QQ⊤∥∥2

F
= 2

ℓ

N
− 2

1

N

N∑

i=1

tr(Q⊤Q[i]Q
⊤
[i]Q) = 2

ℓ

N
− 2 tr(Q⊤PQ).

Since the constant does not affect the problem and the negative scalar changes minimize

problem to maximize problem, (2.1) is equivalent to the problem

⎧
⎪⎪⎨

⎪⎪⎩

argmax
Q

1

2
tr(Q⊤PQ)

Q⊤Q = Iℓ

which is the problem (3.1).

The optimization problem in the form (3.1) is more simple than the original form (2.1)

for computing the derivative and further analyzing. So the simplified form (3.1) will be

used in the following analysis.

3.1 Solution of the Optimization Problem

The solution of the maximize problem (3.1) is the integrated subspace we defined in (2.1).

Theorem 3.1.1 shows that the optimizer of this problem is consisted by the leading ℓ eigen-

vectors of P .

Theorem 3.1.1 (Maximal Value of Objective Function). Let λ1 ≥ λ2 ≥ . . . ≥ λℓ >

λℓ+1 ≥ . . . ≥ λm be the eigenvalues of P and let Q∗ be the corresponding leading ℓ

10

doi:10.6342/NTU201702973

eigenvectors. Then the objective function in (3.1) has the upper bound

1

2
tr(Q⊤PQ) ≤ 1

2

ℓ∑

i=1

λi

and the equality holds when Q = Q∗R∗ for some ℓ× ℓ orthogonal matrix R∗.

Proof. The eigenvalue decomposition of P can be written as

P = Q∗S∗Q
⊤
∗ +Q⊥S⊥Q

⊤
⊥

whereQ⊥ denote orthonormal basis of the space perpendicular toQ,S∗ = diag(λ1, . . . ,λℓ)

and S⊥ = diag(λℓ+1, . . . ,λm). Since Q∗ and Q⊥ spans the whole Rm, any orthogonal

matrix Q can be represented as Q = Q∗B + Q⊥C with B⊤B + C⊤C = Iℓ. The

objective function becomes

1

2
tr(Q⊤PQ)

=
1

2
tr((Q∗B +Q⊥C)⊤(Q∗S∗Q

⊤
∗ +Q⊥S⊥Q

⊤
⊥)(Q∗B +Q⊥C))

=
1

2
tr(B⊤S∗B) + tr(C⊤S⊥C)

by the relationQ⊤Q⊥ = 0

Let B = RST⊤ be the SVD of B. By multiplying RT⊤ from left and TR⊤ from

right to the both sides of the condition B⊤B + C⊤C = Iℓ, the new condition is given

asRS2R⊤ +RT⊤C⊤CTR⊤ = RT⊤TR⊤ = Iℓ. By using this new condition and the

inequality

tr((CTR)⊤S⊥CTR⊤) =
m−ℓ∑

i=1

ℓ∑

j=1

λℓ+ic
2
ij ≤

m−ℓ∑

i=1

ℓ∑

j=1

λjc
2
ij = tr(S∗RT⊤C⊤CTR⊤)

11

doi:10.6342/NTU201702973

where CTR⊤ = [cij], the upper bound of the objective function can be given as

1

2
tr(Q⊤PQ) =

1

2
tr(B⊤S∗B) + tr(C⊤S⊥C)

=
1

2

(
tr(TSR⊤S∗RST⊤) + tr(C⊤S⊥CTR⊤RT⊤)

)

=
1

2

(
tr(S∗RS2R⊤) + tr(RT⊤C⊤S⊥CTR⊤)

)

≤ 1

2
tr(S∗(RS2R⊤ +RT⊤C⊤CTR⊤)) =

1

2
tr(S∗) =

1

2

ℓ∑

i=1

λi.

The quality holds when
∑m−ℓ

i=1

∑ℓ
j=1 λℓ+ic2ij =

∑m−ℓ
i=1

∑ℓ
j=1 λjc2ij . This equation means

CTR⊤ = [cij] = 0, and hence C = 0. Therefore, Q = Q∗R∗ with B⊤B = Iℓ and

R∗ = B.

Theorem 3.1.1 shows that the integrated subspace defined in (2.1) or (3.1) is actu-

ally formed by the leading eigenvectors of the arithmetic average ofQ[i]Q⊤
[i]. The leading

eigenvectors ofP is same as the leading ℓ singular vectors of thematrix
[
Q[1]|Q[2]| · · · |Q[N]

]
.

This form is used for explaining the similarity of rSVD and iSVD with same sketching

number in Chapter 5.

3.2 Asymptotic Behavior of the Integrated Subspace

Now we give an informal explanation about the reason why the the integrated subspace

defined in (2.1) or (3.1) can work in the iSVD algorithm. Please refer to [4] for more

detailed statistical analysis.

To explain the reason, the following theorem in [4] should be introduced first.

Theorem 3.2.1. Let the SVD of A be A = UΣV ⊤ with distinct decreasing singular

values. LetQ denote an orthogonal subspace spanned byY = AΩ, whereΩ is randomly

generated by i.i.d. standard normal entries. Then

E
[
Q[i]Q

⊤
[i]

]
= UΛU⊤

where Λ satisfies

12

doi:10.6342/NTU201702973

1. Λ is diagonal matrix

2. all diagonal entries are in the interval (0, 1)

3. the diagonal entries are decreasing if the singular values ofA are distinct.

By the law of large number and Theorem 3.2.1, as the sample size N goes large, the

arithmetic average P tends to a matrix with the same singular vectors of A in the cor-

rect arrangement. Also, Theorem 3.1.1 shows that the optimizer defined in (3.1) is the

leading singular vectors of P . Hence in the ideal case (N tends to infinity), iSVD can

capture the leading singular vectors ofA asQ and leads to an ideal result for the low-rank

approximation.

3.3 Uniqueness of Local Maximizer

Recall that we focus on the problem in the form (3.1)

(+)

⎧
⎪⎨

⎪⎩

max
Q

1

2
tr(Q⊤PQ)

Q⊤Q = Iℓ

.

Theorem 3.1.1 shows the optimal solution of the problem (+) is formed by the leading

ℓ eigenvectors of the matrixP . However, this result dose not provide whether there exists

another local maximum of this problem. The goal of the following derivation is Theo-

rem 3.3.5, which shows that the only local maximum of the problem (+) is the orthogonal

matrices that formed by the leading ℓ eigenvectors of P (up to right orthogonal trans-

formation). The main idea of the following proof is checking the first and second order

necessary condition for the nonlinear equality constraint optimization problem. More in-

formation for the first and second order condition of optimization with equality constraint

can be obtained in the book for introducing optimization problem. (For example, [6].)

We begin with checking the first order necessary condition of the problem (+).

Lemma 3.3.1 (First Order Necessary Condition). Suppose Q is a local maximizer of the

problem (+) in the feasible set, i.e., the set collects all them× ℓ orthogonal matrix. Then

13

doi:10.6342/NTU201702973

Q satisfies the equation

(I −QQ⊤)PQ = 0. (3.2)

and the corresponding Lagrange multiplier Λ ∈ Rℓ×ℓ satisfies

Λ+Λ⊤ = Q⊤PQ. (3.3)

Proof. This equation is obtained from the first order condition for optimal solution of an

equality constraint, which states that if x∗ is a local maximizer of an equality constraint

optimization problem, then the following equations hold

⎧
⎪⎨

⎪⎩

∇xL(x∗,λ∗) = 0

∇λL(x∗,λ∗) = 0

where L is the Lagrangian of the equality constraint optimization problem and λ∗ is the

corresponding Lagrange multiplier.

Notice that any m × n matrix M can be seen as an mn vector by vectorizing M as

vec(M). Also, one of the relation between vec(•) andKronecker product⊗ is vec(AXB) =

(B⊤ ⊗A) vec(X). By using these technique, the Lagrangian of (+) is given as

L(Q,Λ) =
1

2
tr(Q⊤PQ)− tr(Λ⊤(Q⊤Q− Iℓ))

=
1

2
vec(Q)⊤ vec(PQ)− vec(Λ)⊤ vec(Q⊤Q− Iℓ)

=
1

2
vec(Q)⊤(Iℓ ⊗ P) vec(Q)− vec(Λ)⊤ vec(Q⊤Q− Iℓ)

and the first order conditions can be represented by the derivative of Lagrangian as

⎧
⎪⎨

⎪⎩

∇vec(Q)L(Q,Λ) = (I ⊗ P) vec(Q)− [Kℓ,m(Q⊗ Iℓ) + (Iℓ ⊗Q)] vec(Λ) = 0

∇vec(Λ)L(Q,Λ) = vec(Q⊤Q− Iℓ) = 0

whereKℓ,m denotes the communication matrix corresponding to ℓ×mmatrix. By folding

14

doi:10.6342/NTU201702973

the vectorized matrix back, the above equations leads to

⎧
⎪⎨

⎪⎩

PQ−Q(Λ+Λ⊤) = 0

Q⊤Q− Iℓ = 0.

Applying Q⊤ to the left of each side in the first equation and Using the second equation

derives the relation Λ+Λ⊤ = Q⊤PQ. By substituting (Λ+Λ⊤) asQ⊤PQ in the first

equation, the first order conditions can be rewritten as

⎧
⎪⎨

⎪⎩

(I −QQ⊤)PQ = 0

Q⊤Q = Iℓ

Lemma 3.3 gives the necessary conditions for feasible points and the corresponding

Lagrange multiplier. The following lemma improves the result. It provides the explicit

solutions that satisfy these conditions.

Lemma 3.3.2. Let Q be a feasible points of the problem (+). Then Q satisfies the first

order condition (3.2) if and only if each column of QR is an eigenvector of P for some

orthogonal matrix R ∈ Rℓ×ℓ.

Proof. For the ‘if’ part, since the columns of QR are eigenvectors of P , the connection

between P and QR is given as PQR = QRS, where S is a diagonal matrix with the

corresponding eigenvalues on its diagonal entries. By directly calculation,

(I −QQ⊤)PQR = (I −QQ⊤)QRS = 0

and hence

(I −QQ⊤)PQ = 0

by multiplyingR⊤ to the right of both sides. This equation shows thatQ satisfies the first

order condition (3.2).

15

doi:10.6342/NTU201702973

For the ‘only if’ part, supposeQ satisfies the first order condition (I −QQ⊤)PQ =

0. Since (I − QQ⊤) is the projection matrix onto the orthogonal complement of the

range of Q, the first order condition means that the component of each columns of PQ

in the orthogonal complement is 0, i.e., each column of PQ is a vector in the range ofQ.

Therefore, each column of PQ can be written as the linear combination of the columns

ofQ and hence

PQ = QB

for some B ∈ Rℓ×ℓ. By applying Q⊤ to the left of both sides, the equation becomes

B = Q⊤PQ which is a symmetric matrix. Therefore, B has eigenvalue decomposition

B = RSR⊤ for some orthogonal matrix R and diagonal matrix S. This decomposition

gives the relation

PQ = QRSR⊤

and hence

P (QR) = (QR)S

by multiplyingR to the right of both sides. This equation shows each column of (QR) is

an eigenvector of P since S is diagonal.

Now we check the second order condition. The preparation for computing second

order condition is finding the null space spanned by the gradient of constrains. Let g(Q)

denote the constraint function g(Q) = vec(Q⊤Q − Iℓ) = 0, and NQ denote the null

space of the linear space spanned by the gradients of constrains ∇vec(Q)g(Q) at Q. The

following lemma gives some explicit representations of the null space NQ.

Lemma 3.3.3. The null space NQ is given as

NQ =
{
vec(Z) : Z ∈ Rm×ℓ,Q⊤Z +Z⊤Q = 0

}

or equivalently,

NQ =
{
vec(QB +Q⊥C) : B ∈ Rℓ×ℓ,C ∈ R(m−ℓ)×ℓ,B = −B⊤}

16

doi:10.6342/NTU201702973

where Q⊥ is a m× (m− ℓ) orthogonal matrix satisfies Q⊤
⊥Q = 0, i.e., Q⊥ contains the

basis of orthogonal complements of the range of Q.

Proof. By direct calculation, the gradient matrix of constraints atQ is given as

∇vec(Q)g(Q) = Kℓ,m(Q⊗ Iℓ) + (Iℓ ⊗Q).

According to the definition of NQ, every element vec(Z) in NQ satisfies the condition

[Kℓ,m(Q⊗ Iℓ) + (Iℓ ⊗Q)]⊤ vec(Z) = 0

which leads to

Q⊤Z +Z⊤Q = 0.

This computation shows that NQ ⊂
{
vec(Z) : Z ∈ Rm×ℓ,Q⊤Z +Z⊤Q = 0

}
. The

equality can be proved by computing the dimension of each space.

Since the columns of Q and Q⊥ can span Rm, any matrix Z ∈ Rm×ℓ can be repre-

sented as Z = QB + Q⊥C, where B ∈ Rℓ×ℓ and C ∈ R(m−ℓ)×ℓ. Another equivalent

condition for null space is obtained by plugging this representation into the condition

Q⊤(QB +Q⊥C) + (QB +Q⊥C)⊤Q = B +B⊤ = 0.

Hence

NQ =
{
vec(QB +Q⊥C) : B ∈ Rℓ×ℓ,C ∈ R(m−ℓ)×ℓ,B = −B⊤} .

The second order necessary condition can be written out by the explicit form of the

null space.

Lemma 3.3.4 (Second Order Necessary Condition). Suppose Q is a local maximizer of

17

doi:10.6342/NTU201702973

(+). Then Q satisfies the inequality

tr(Z⊤PZ −Z⊤ZQ⊤PQ) ≤ 0.

for all vec(Z) ∈ NQ.

Proof. The second order necessary condition is

vec(Z)⊤∇2
QQL(Q,Λ) vec(Z) ≤ 0

for all vec(Z) ∈ NQ. By the relation of Lagrange multiplier at the feasible point (3.3) as

Λ+Λ⊤ = Q⊤PQ, the gradient of L byQ can be written as

∇QL(Q,Λ) = (I ⊗ P) vec(Q)− [Kℓ,m(Q⊗ Iℓ) + (Iℓ ⊗Q)] vec(Λ)

= (I ⊗ P) vec(Q)− vec(QΛ⊤ +QΛ)

= (I ⊗ P) vec(Q)−
[
(Λ⊤ +Λ)⊗ Im

]
vec(Q)

= (I ⊗ P) vec(Q)− (Q⊤PQ⊗ Im) vec(Q)

Hence the Hessian matrix is

∇2
QQL(Q,Λ) = I ⊗ P −Q⊤PQ⊗ Im

The second order necessary condition can be rewritten as

vec(Z)⊤∇2
QQL(Q,Λ) vec(Z) = vec(Z)⊤ vec(PZ −ZQ⊤PQ)

= tr(Z⊤PZ −Z⊤ZQ⊤PQ) ≤ 0.

Finally, the main theorem of this part can be proved by the first and second order

necessary conditions.

Theorem 3.3.5 (Local Maximizer of Optimization Problem). Let λ1 ≥ λ2 ≥ . . . ≥ λℓ >

λℓ+1 ≥ . . . ≥ λm be the eigenvalues of P and let Q∗ be the corresponding leading ℓ

18

doi:10.6342/NTU201702973

eigenvectors. Then Q is an local maximizer of (+) if and only if Q = Q∗R∗ for some

ℓ× ℓ orthogonal matrix R∗.

Proof. By Lemma 3.3.2, for all Q that satisfies the first order condition, there exists an

orthogonal matrixR such that each column ofQR is an eigenvector ofP . By computing

eigenvalue value decomposition,

P = (QR)S(QR)⊤ +Q⊥S⊥Q
⊤
⊥

whereQ⊥ contains (m− ℓ) eigenvector that orthogonal toQR, S = diag(s1, s2, . . . , sℓ),

S⊥ = diag(s⊥1 , s⊥2 , . . . , s⊥m−ℓ) and s1, s2, . . . , sℓ, s⊥1 , s⊥2 , . . . , s⊥m−ℓ form all eigenvalues of

P . By Lemma 3.3.3, the element (⃗Z) ∈ NQ can be represented as Z = QB + Q⊥C

withB = −B. These relations lead to a representation of second order condition as

tr(Z⊤PZ −Z⊤ZQ⊤PQ)

= tr((QB +Q⊥C)⊤((QR)S(QR)⊤ +Q⊥S⊥Q
⊤
⊥)(QB +Q⊥C)

− (QB +Q⊥C)⊤(QB +Q⊥C)Q⊤((QR)S(QR)⊤ +Q⊥S⊥Q
⊤
⊥)Q)

= tr(B⊤RSR⊤B) + tr(C⊤S⊥C)− tr(B⊤BRSR⊤)− tr(C⊤CRSR⊤) ≤ 0

By the properties of trace and the relationB = −B⊤, tr(B⊤BRSR⊤) = tr(BRSR⊤B⊤) =

tr(B⊤RSR⊤B). Also, sinceRR⊤ = Iℓ, tr(C⊤S⊥C) = tr(RR⊤C⊤S⊥C) = tr((CR)⊤S⊥(CR)

Hence the second order condition in Lemma 3.3.4 can be written as

tr(B⊤RSR⊤B) + tr(C⊤S⊥C)− tr(B⊤BRSR⊤)− tr(C⊤CRSR⊤)

= tr((CR)⊤S⊥CR)− tr((CR)⊤(CR)S⊥)

=
(m−ℓ)∑

i=1

ℓ∑

j=1

s⊥i c
2
ij −

(m−ℓ)∑

i=1

ℓ∑

j=1

sjc
2
ij ≤ 0

for all CR = [cij] ∈ Rm×(m−ℓ).

Let Q∗ denotes the leading ℓ eigenvectors of P . Suppose QR contains eigenvector

other than leading ℓ singular vectors of P . Then s⊥a > sb for some a and b. Now pick [cij]

19

doi:10.6342/NTU201702973

as cab = 1 and cij = 0 otherwise. Then

(m−ℓ)∑

i=1

ℓ∑

j=1

s⊥i c
2
ij −

(m−ℓ)∑

i=1

ℓ∑

j=1

sjc
2
ij = s⊥a − sb > 0.

This inequality conflicts to the second order necessary condition. On the other hand, sup-

pose QR = Q∗. Then S = diag(λ1,λ2, . . . ,λℓ) and S⊥ = diag(λℓ+1, . . . ,λm). Hence

for all [cij] ∈ Rm×(m−ℓ).

(m−ℓ)∑

i=1

ℓ∑

j=1

s⊥i c
2
ij −

(m−ℓ)∑

i=1

ℓ∑

j=1

sjc
2
ij ≤ (λℓ+1 − λℓ)

(m−ℓ)∑

i=1

ℓ∑

j=1

sjc
2
ij ≤ 0

by (λℓ+1 − λℓ) < 0 and
∑(m−ℓ)

i=1

∑ℓ
j=1 sjc

2
ij ≤ 0. This inequality obeys the second order

necessary condition.

To sum up, a feasible point Q satisfies the first and second order necessary condition

if and only if Q = Q∗R∗ for some orthogonal matrix R∗ = R⊤. Lemma 3.1.1 shows

thatQ∗R∗ is global maximizer, and hence local maximizer.

Theorem 3.3.5 provides that the only type of local maximizer is the orthogonal matrix

that formed by the leading ℓ eigenvectors of the matrix P (with some right orthogonal

transformation), which is the integrated subspaces defined in (2.1) or (3.1). This result

shows that if a line search can prevent the iterator from saddle points, it can find out the

integrated subspace successfully.

20

doi:10.6342/NTU201702973

Chapter 4

Integration Method

As shown in Chapter 2, the integrated subspace is the leading eigenvectors of the ma-

trix P , or the singular vectors of the matrix
[
Q[1]|Q[2]| · · · |Q[N]

]
.. Therefore, canonical

SVD (for example, the SVD routine in MATLAB or LAPACK [2]) can be applied to solve

this eigenvectors problem. However, the computational complexity of canonical SVD is

O(N2mℓ2), which is much slower when N increasing. Hence in this chapter, we intro-

duce some other methods to compute the integrated subspace with different computational

complexity than O(N2mℓ2).

4.1 Line Search Type Method

Since the integrated subspace is defined by an optimization problem, it is reasonable to use

the algorithm for solving the optimization problem for computing the integrated subspace.

A classical method for solving the optimization problem is line search methods. Gradient

descent method (in our case, gradient ascent method) is widely used among the line search

methods. The update scheme for unconstraint gradient ascent method is

xk+1 = xk + τk∇f(xk)

where f is the objective function and τk is the step size needed to search in the n-th it-

eration. In the viewpoint of line search, in each iteration, we define a curve γk(τ) =

21

doi:10.6342/NTU201702973

xk + τk∇f(xk). This curve is a straight line stating at the point xk and point to the direc-

tion∇f(xk), which is the steeps ascent direction of objective function at x. The point for

next iteration is given by finding a suitable step size τ and define xk+1 = γk(τ). These

explanations shows the main concept of gradient ascent method. It tries to find the optimal

solution by walking along the curve with steepest direction in each step with suitable step

size.

The main issue for this algorithm is to find a suitable step size τ . If the step size is

too large, it may be difficult to reach the optimal solution because it may walk too far.

However, if the step size is too small, it may need more iteration to reach the optimal

solution. One of the popular methods for selecting step size is using the back tracking

method with Armijo-Wolfe condition (for maximization problem)

f(xk + τkpk) ≥ f(xk) + ρτkp
⊤
k∇f(xk)

p⊤
k∇f(xk + τkpk) ≤ ρ2p

⊤
k∇f(xk)

where ρ, ρ2 is parameters that can be chosen and pk = ∇f(xk) in gradient ascend. The

second condition always holds due to the design of algorithm. Hence we just need to

focus on the first condition. We use Armijo rule for simplicity in the following content.

The back tracking method tries to find the step size τk satisfied the Armijo rule by the

following steps. First, assign an initial guess of step size, such as 1. Then test whether

this step size satisfies the Armijo rule. Suppose not, multiply this step size by a positive

constant β < 1 and test it again. Repeat these processes until the step size satisfies the

Armijo rule and set it into τk.

For the constraint optimization problem, the gradient ascent method needs to be mod-

ified. Here we choose to use the viewpoint of the gradient ascent method on Stiefel man-

ifold. The Stiefel manifold is the manifold consisted of allm× ℓ orthogonal matrices

Sm,ℓ =
{
Q ∈ Rm×ℓ : Q⊤Q = I

}

which is exactly our constraint in the optimization problem.

22

doi:10.6342/NTU201702973

Define

F (Q) =
1

2
tr(Q⊤PQ)

as our objective function. We denote the gradient of F atQ as

GF (Q) = PQ

where the equality can be computed easily. On the manifold, the gradient in the Euclidean

space may not represent the direction (tangent) at a point. Hence we need to project the

gradient to the tangent space on the manifold for further derivation.

Lemma 4.1.1. The projected gradient of F onto the tangent space TQSm,ℓ of Stiefel man-

ifold Sm,ℓ is

DF (Q) = (I −QQ⊤)PQ.

Proof. First we find a necessary and sufficient condition for X being in TQSm,ℓ. For all

X ∈ TQSm,ℓ, find a pathΓ(t) in Sm,ℓ withΓ(0) = Q andΓ′(0) = X . FromΓ(t)⊤Γ(t) =

I , differentiate each side by t and take t = 0, we have

X⊤Q+Q⊤X = 0, (4.1)

which gives a necessary condition for X ∈ TQSm,ℓ. There are ℓ(ℓ + 1)/2 conditions for

X in (4.1) and the dimension of TQSm,ℓ is mℓ − ℓ(ℓ + 1)/2, which means (4.1) is also

a sufficient condition for X ∈ TQSm,ℓ. By taking vec to each sides of (4.1), we get the

equality

[(Q⊤ ⊗ Iℓ)Km,ℓ + (Iℓ ⊗Q⊤)] vec(X) = 0.

Define T = Kℓ,m(Q⊗ Iℓ) + (Iℓ ⊗Q) and get T⊤ vec(X) = 0. This shows that the

tangent space (after vectorizing each elements) is contained in the null space of T⊤. One

can compute the rank of T and shows that the null space of T⊤ is actually the tangent

space. Hence the projection matrix onto the tangent space is given by (I − PT), where

PT = T (T⊤T)+T⊤ and (T⊤T)+ denoted the Moore-Penrose pseudo-inverse. WithPT ,

23

doi:10.6342/NTU201702973

DF can be given via vec(DF) = (I − PT) vec(GF). With some calculation, we have

T = (Iℓ ⊗Q)(Iℓ2 +Kℓ,ℓ) and thus

T⊤T = (Iℓ2 +Kℓ,ℓ)
⊤(Iℓ ⊗Q)⊤(Iℓ ⊗Q)(Iℓ2 +Kℓ,ℓ)

= (Iℓ2 +Kℓ,ℓ)(Iℓ2 +Kℓ,ℓ) = 2(Iℓ2 +Kℓ,ℓ).

Then the projection matrix PT can be calculated as:

PT = T (T⊤T)+T⊤

= (Iℓ ⊗Q)(Iℓ2 +Kℓ,ℓ)
1

2
(Iℓ2 +Kℓ,ℓ)

+(Iℓ2 +Kℓ,ℓ)
⊤(Iℓ ⊗Q)⊤

=
1

2
(Iℓ ⊗Q)(Iℓ2 +Kℓ,ℓ)(Iℓ ⊗Q⊤)

1

2
(Iℓ ⊗QQ⊤) +

1

2
(Q⊤ ⊗Q)Km,ℓ.

Hence, by vec(DF) = (I − PT) vec(GF),

vec(DF) = (Iℓ2 −
1

2
(Iℓ ⊗QQ⊤)− 1

2
(Q⊤ ⊗Q)Km,ℓ) vec(GF)

= vec(GF)−
1

2
(Iℓ ⊗QQ⊤) vec(GF)−

1

2
(Q⊤ ⊗Q)Km,ℓ vec(GF)

= vec(GF)−
1

2
vec(QQ⊤GF)−

1

2
vec(QG⊤

FQ)

andDF can be written as

DF =

(
I − 1

2
QQ⊤

)
GF −

1

2
QG⊤

FQ. (4.2)

Since we have the property Q⊤GF (Q) = GF (Q)⊤Q here, we can get DF (Q) = (I −

QQ⊤)GF (Q). This completes the proof.

Algorithm 3 is rewritten from [1] by the notation in this thesis and the projected gra-

dient as above. Note that the function F (M) denote the function that orthogonalize M

first (hence this point is in the Stiefel manifold) and then plug into F .

The basic concept of Algorithm 3 is same as the gradient ascent method described

previously. For each step, we find the projected gradient, which is the steepest direction

on the manifold. Then we walk along this direction with a suitable step size decide by

backtracking and Armijo-Wolfe condition. The difference is that we need to retract back

24

doi:10.6342/NTU201702973

Algorithm 3 Integration of {Q[i]}Ni=1 based on Armijo line search.
Require: Q[1],Q[2], . . . ,Q[N] (subspace matrices),Qini (initial guess), τ0 > 0 (initial step

size), β ∈ (0, 1) (scaling parameter for step size searching), ρ ∈ (0, 1) (parameters
for step size searching)

Ensure: Integrated subspace matrixQ based on Armijo line search
1: Initialize the current iterateQc ← Qini
2: while (not convergent) do
3: Compute the gradient on manifoldX = (Im −QcQ⊤

c)PQc

4: Find the smallest integer j ≥ 0 such that the following inequality holds:

F (Qc + τ0β
jX) ≥ F (Qc) + τ0β

jρ ∥X∥2F

5: Orthogonalize (Qc+τ0βjX) (for example, by QR-decomposition or polar decom-
position) asQ+

6: AssignQc ← Q+

7: end while
8: OutputQ = Qc

to the manifold before we calculate the objective function and before the next iteration. In

this algorithm, it uses orthogonalization as the retraction.

In [1], the convergent theorem is also provided. Here we translate the theorem and

write down the most important part as Theorem 4.1.2. Note that in the theorem, a critical

point x∗ (the points that make projected gradient is 0) is stable, if for any neighborhood U

around x∗, there exists another neighborhoodV around x∗, such that if the initial value start

in V , then after any finite steps, the result will be in U . A critical point is asymptotically

stable if it is stable, and the condition also holds as the number of steps tends to infinity.

A critical point is unstable if it is not stable.

Theorem 4.1.2 (Convergence theory for Algorithm 3). Let λ1 ≥ λ2 ≥ . . . ≥ λℓ >

λℓ+1 ≥ . . . ≥ λm be the eigenvalues of P and let Q∗ be the corresponding leading ℓ

eigenvectors. Algorithm 3 converge to the orthogonal matrix Q with each column are

eigenvectors of P . Among all the critical points,Q∗ (up to a right orthogonal transform)

is the only asymptotically stable point with the linear convergent rate. Other critical points

are unstable.

This theorem gives the promise of the convergence. Also, our result for the property of

optimization problem in Chapter 3 can support this result. The critical points are actually

the points satisfying first order condition 3.2. Among these points, only Q∗ satisfies the

25

doi:10.6342/NTU201702973

second order condition, which is related to the condition of stable points.

However, same as the traditional gradient ascent method, the convergent rate of the

Algorithm 3 is linear. This could be a problem since it might take many steps to converge.

Here we provide another algorithm. Algorithm 4 is rewritten by the notation and objective

function in this thesis from the algorithm proposed by Wen and Yin [11].

This algorithm is based on gradient ascent method which is similar to Algorithm 3.

However, some modification is introduced for this algorithm. The method to retract the

point back to the manifold is changed in this modified algorithm. The searching path

at current point Qc is defined as ΓQc(τ) = (I − τ
2M)−1(I + τ

2M)Qc, where M =

GQ⊤
c − QcG⊤ and G = PQc is the gradient of the objective function in Euclidean

space. By using Woodbury matrix identity, the searching path is same as

ΓQc(τ) = Qc − τL(I2ℓ +
1

2
τR⊤L)−1R⊤Qc (4.3)

where L = [−G Qc] and R = [Qc G]. This modification decreases the matrix size

to compute inverse. As mentioned in [11], this path also satisfies some properties, hence

Theorem 4.1.2 also holds for this algorithm.

Algorithm 4 also uses the Barzilai-Borwein step size [3] (BB step size) to accelerate

this gradient method, and the nonmonotone strategy in [12] to prevent stuck in the local

optimal points. The Armijo rule in the Algorithm 4 is

F (ΓQc(τ)) ≥ F (ΓQc(0)) + τσ
dF (ΓQc(t))

dt

∣∣∣∣
t=0

.

The nonmonotone strategy in [12] modified the Armijo rule by

F (ΓQc(τ)) ≥ c+ τσ
dF (ΓQc(τ))

dt

∣∣∣∣
t=0

where c is a scalar updated in each iteration by c ← (ηζc + F ((Q+))/(ηζ + 1) and then

ζ ← ηζ + 1 for a given parameter η. The initial value of c is F (Qini). This condition

soften the Armijo rule and increase the chance to jump out the local minimum.

26

doi:10.6342/NTU201702973

The BB step size is the simulation for Newton’s method, in a more efficient way.

They consider the update scheme xk+1 = xk + Skgk. In Newton’s method, the matrix

Sk is the Hessian matrix of objective function. They set the matrix Sk = τkI , where

τk is the step size needed to computed. Also, they wish Sk can approximately satisfies

the secant condition ∆x = Sk∆g or Sk∆x = ∆g in quasi-Newton’s method, where

∆x = xk − xk−1, ∆g = gk − gk−1. Hence the step size τk is determined by

τk = argmin
τ
∥∆x− τ∆g∥ or τk = argmin

τ
∥τ∆x−∆g∥ .

The solutions of these minimization problems are

αk =
⟨∆x,∆g⟩
⟨∆g,∆g⟩ or αk =

⟨∆x,∆x⟩
⟨∆x,∆g⟩

These tow step size are called BB step size. In our case, the BB step size are

τguess =
tr(D⊤

1 D1)

| tr(D⊤
1 D2)|

or
| tr(D⊤

1 D2)|
tr(D⊤

2 D2)

where D1 = Q+ −Qc and D2 = X+ −Xc. However, BB step size does not imply the

convergence. Therefore, Algorithm 4 still need to use back tracking method with Armijo-

Wolfe conditions to ensure the convergence of the algorithm.

In each iteration, the most intensive calculation in Algorithm 4 is the multiplication

G = PQc. This multiplication can be computed by
∑N

i=1 Q
⊤
[i]Qc first and then G =

∑N
i=1 Q[i]Q⊤

[i]Qc. The first step contains N matrix multiplication with size ℓ × m and

m×ℓ. The second step containsN matrix multiplication with sizem×ℓ and ℓ×ℓ. Hence

the complexity for computingG is O(Nmℓ2).

The remaining steps in each iteration can be computed by usingG. First, we consider

the part for line search. The value of objective function can be computed by F (Q) =

tr(Q⊤G), which is the summation of dot product of twom× ℓ matrices. The complexity

isO(mℓ). The point on the curve ΓQc(τ) can be solved by a linear system with dimension

ℓmatrix multiplication of sizem×2ℓ and 2ℓ×m, andm×2ℓ and 2ℓ×2ℓ. The complexity

27

doi:10.6342/NTU201702973

Algorithm 4 Integration of {Q[i]}Ni=1 based on nonmonotone line search with BB step
size.
Require: Q[1],Q[2], . . . ,Q[N] (subspace matrices),Qini (initial guess), τ0 > 0 (initial step

size), β ∈ (0, 1) (scaling parameter for step size searching), ρ ∈ (0, 1) (parameter for
step size searching), η ∈ (0, 1) (parameter for next step searching), τM , τm (maximum
and minimum for predicting step size)

Ensure: Integrated subspace matrixQ based on Armijo line search with BB step size
1: InitializeQc ← Qini, τ̄ ← τ0, ζ = 1, c = F (Qc)
2: while (not convergent) do
3: Compute the gradient in Euclidean spaceG = PQc

4: Set L = [−G Qc] andR = [Qc G].
5: Find the smallest integer j ≥ 0 such that the following inequality holds:

F (ΓQc(τ̄β
j)) ≥ c+ τ̄βjρ

∥∥QcG
⊤ −GQ⊤

c

∥∥2
F

where ΓQc(τ) = Qc − τL(I2ℓ +
1
2τR

⊤L)−1R⊤Qc

6: AssignQ+ = Qd(τ̄βj))
7: Update c← (ηζc+ F ((Q+))/(ηζ + 1) and then ζ ← ηζ + 1
8: Compute the differencesD1 = Q+ −Qc andD2 = X+ −Xc, where

Xc = (Im −QcQ
⊤
c)PQc

X+ = (Im −Q+Q
⊤
+)PQ+

9: Assign τ̄ ← max(min(τguess, τM), τm), where

τguess =
tr(D⊤

1 D1)

| tr(D⊤
1 D2)|

or
| tr(D⊤

1 D2)|
tr(D⊤

2 D2)

10: AssignQc ← Q+

11: end while
12: OutputQ = Qc

28

doi:10.6342/NTU201702973

is O(mℓ2 + ℓ3). Hence the total complexity for line search is O(Iinner(mℓ2 + ℓ3)), where

Iinner denotes the number of iteration of line search (inner loop). Second, we consider the

part for updating c. The main calculation of this part is the computation of the objective

function. Hence the complexity of this part is O(mℓ). Finally, we consider the part for

computing BB step size. The main computation in this part isX+, which need to calculate

G+ = PQ+. However, this computation can be directly used in next iteration. Hence

we compute the complexity of this part in the next iteration. For other components, they

need matrix multiplication with complexity O(mℓ2). Also, it needs O(mℓ) to compute

each trace for computing τguess.

To sum up, suppose we use IWY iteration to converge, then the computational com-

plexity of Algorithm 4 is IWY (O(Nmℓ2)+O(Iinner(mℓ2+ℓ3))+O(mℓ)+O(mℓ2+mℓ)),

which is dominate by the termO(IWYNmℓ2), suppose Iinner is controlled. (This assump-

tion is reasonable since Iinner is often restricted within some number.)

4.2 Kolmogorov-Nagumo-Type Average

Besides using the viewpoint from line search method, one can use another viewpoint from

the average on Stiefel manifold to compute the integrated subspace. Algorithm 5 is in-

spired by the Kolmogorov-Nagumo-type average on Stiefel manifold [8, 5]. If a pair of

retraction map and lifting map is defined, then the algorithm can be generate by a fixed

point method scheme. In these paper, a retraction map at a point Q on Stiefel manifold

is defined as a map ϕ−1
Q : TQSm,ℓ → Sm,ℓ from the tangent space at Q to the Stiefel

manifold and satisfies the following three conditions: (1) ϕ−1
Q can be defined around

0 ∈ TQSm,ℓ, (2) ϕ−1
Q (0) = Q and (3) dϕ−1

Q (tX)

dt

∣∣∣∣
t=0

= X . The corresponding lifting

map is a map ϕQ : Sm,ℓ → TQSm,ℓ from the Stiefel manifold to the tangent space and

satisfies ϕ−1
Q (ϕQ(W)) = W . The fixed point scheme defied by this pair of lifting and

retraction map is

Q+ = ϕ−1
Qc

(
1

N

N∑

i=1

ϕQc(Q[i])

)
.

Note thatQ+ is an Kolmogorove-Nagumo average ofQ[i].

29

doi:10.6342/NTU201702973

Algorithm 5 Integration of {Q[i]}Ni=1 as Kolmogorov-Nagumo-type average.
Require: Q[1],Q[2], . . . ,Q[N] (subspaces matrices),Qini (initial guest)
Ensure: Integrated subspace matrixQ based on the Kolmogorov-Nagumo-type average
1: Initialize the current iterateQc ← Qini
2: while (not convergent) do
3: Perform the lifting map and averageX = (Im −QcQ⊤

c)PQc

4: Perform the retraction mapQ+ ← QcC +XC−1,

where C =

{
I
2 +

(
I
4 −X⊤X

)1/2}1/2

5: AssignQc ← Q+

6: end while
7: OutputQ = Qc

To connect the KN-type average to our integration problem (3.1), the lifting map is

chosen as

ϕQc(W) = (Im −QcQ
⊤
c)WW⊤Qc

which is an element in tangent space sinceQ⊤
c ϕQc(W) +ϕQc(W)⊤Qc = 0+ 0 = 0 for

anyW ∈ Sm,ℓ. This choice makes the average ofQ[i] on tangent space becomes

N∑

i=1

ϕQc(Q[i]) =
N∑

i=1

(Im −QcQ
⊤
c)Q[i]Q

⊤
[i]Qc = DF (Qc)

which is the projected gradient atQc. The problem now is what the corresponding retrac-

tion map is. As proposed in [4], the corresponding retraction map is chosen as

ϕ−1
Qc
(X) = QcC +XC−1 (4.4)

where C =

{
I
2 +

(
I
4 −X⊤X

)1/2}1/2

. Algorithm 5 summarize these two maps with

the fixed point scheme.

Here we give a quick derivation and check for the retraction map. For more detailed

results, please refer to [4]. We want to find the retraction map ϕ−1
Qc
(X). Observe that from

our choice of lifting map, we have the condition Q⊤
c ϕQc(W) = 0 for any W ∈ Sm,ℓ.

Also, the condition we want for the retraction map is ϕ−1
Q (ϕQ(W)) = W . Hence the

condition X = ϕQ(W) is a reasonable assumption. Also, assume ϕ−1
Qc
(X) = QcC +

XB. This assumption means that ϕ−1
Qc
(X) is spanned by the columns of Qc and X .

30

doi:10.6342/NTU201702973

By using the condition ϕ−1
Qc
(X) ∈ Sm,ℓ and ϕ−1

Q (ϕQ(W)) = W , we get the following

equations ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I = (QcC +XB)⊤(QcC +XB)

W = QcC +XB

X = (I −QcQ
⊤
c)WW⊤Qc

.

Plug the second equation into third equation, we get X = XBC⊤. Here we add an

assumption that C is invertible and symmetric. Hence we have XB = XC−1. Plug

this back to the first equation and get I = C2 +C−1X⊤XC−1. This equation leads to

C2 = C4 + X⊤X . Square this equation and get (C2 − I
2)

2 = I
4 −X⊤X , and hence

C =

{
I
2 +

(
I
4 −X⊤X

)1/2}1/2

. To sum up, our guessed retraction map is same as the

one given in (4.4).

No matter how many assumptions that we use for guessing the retraction map, we just

need to check whether (4.4) is a corresponding retraction. We need to check the three

conditions for retraction first. The guessed retraction map ϕ−1
Qc
(X) can be defined around

0 ∈ TQSm,ℓ since C can be defined for tr(X⊤X) ≤ 1
4 . The guessed retraction map

satisfies ϕ−1
Q (0) = Q by directly computation. To check the third condition, we write

ϕ−1
Q (tX) = QC(t) + tXC−1(t). Derivative t to the both sides of condition C(t)4 −

C(t)2 + t2X⊤X = 0, we get

dC(t)

dt
C(t)3 +C(t)

dC(t)

dt
C(t)2 +C(t)2

dC(t)

dt
C(t) +C(t)3

dC(t)

dt

+
dC(t)

dt
C(t) +C(t)

dC(t)

dt
+ 2tX⊤X = 0.

When t = 0, C(0) = I and hence dC(t)
dt

∣∣∣
t=0

= 0. Hence we can get dϕ−1
Q (tX)

dt

∣∣∣∣
t=0

= X .

Now we check the condition that ϕ−1
Q (ϕQ(W)) = W . Here we may assume W⊤Q

is symmetric. Suppose not, compute the SVD of W⊤Q = USV ⊤ and replace W by

WUV ⊤. LetX = ϕQ(W) = (I −QcQ⊤
c)WW⊤Qc. Hence we get the equation

X⊤X = (W⊤Q)2 − (W⊤Q)4.

31

doi:10.6342/NTU201702973

Solve for (W⊤Q) and getW⊤Q = C. Hence we can directly compute

ϕ−1
Q (ϕQ(W)) = QcC +XC−1

= QcC + (I −QQ⊤)WW⊤QC−1

= QcC +WCC−1 −C2C−1 = W

.

Note that in the definition of integrated subspace, it is defined with orthogonal invariance

ofQ[i]. Hence it is reasonable to assumeW can be transformed by UV ⊤ and satisfy the

condition thatW⊤Q is symmetric.

An important issue in Algorithm 5 is the well definite of the matrix C. We need to

check that (I4−X
⊤X) is semi positive definite forX = (I−QcQ⊤

c)PQc, and hence the

square root of matrix can be defined (by SVD). It is equivalent to check
∥∥X⊤X

∥∥
2
≤ 1

4 .

It is also equivalent to check ∥X∥2 ≤ 1
2 by the relation

∥∥X⊤X
∥∥
2
= ∥X∥22. By triangle

inequality, we have

∥X∥2 ≤
1

N

N∑

i=1

(I −QcQ
⊤
c)Q[i]Q

⊤
[i]Qc.

Now we check that for every W ∈ Sm,ℓ, the inequality
∥∥I −QcQ⊤

c)WW⊤Qc

∥∥
2
≤ 1

2

holds. It is equivalent to prove
∥∥(I −QcQ⊤

c)WW⊤Qc)⊤(I −QcQ⊤
c)WW⊤Qc)

∥∥
2
≤

1
4 . Suppose the SVD ofQ⊤

c W = USV . Then by directly computation

∥∥(I −QcQ
⊤
c)WW⊤Qc)

⊤(I −QcQ
⊤
c)WW⊤Qc)

∥∥
2

=
∥∥US2U −US4U

∥∥
2

=
∥∥S2 − S4

∥∥
2
.

Note that S is diagonal matrix, and hence (S2 − S4) is also diagonal matrix. For any

real number x, we have the inequality (x2 − x4) = −(x2 − 1
2)

2 + 1
4 ≤

1
4 . This equation

shows that all diagonal entries of (S2 − S4) is no greater than 1
4 . This result leads to

∥S2 − S4∥2 ≤ 1
4 . The check is completed by tracing back the statements.

The convergence of Algorithm 5 is given as the following theorem. For the detailed

32

doi:10.6342/NTU201702973

proof, please refer to [4].

Theorem 4.2.1. There exists an ε > 0 such that KN-average algorithm converges, pro-

vided that the iteration starts from an initialQini ∈ Nε(Q∗R0), whereR0 is an arbitrary

orthogonal matrix.

The Algorithm 5 can be also seen as a kind of gradient ascent method due to the selec-

tion of lifting map. Therefore, the computational complexity of this algorithm is similar

to Algorithm 4. The dominant term of computational complexity is O(IKNNmℓ2) if the

algorithm needs IKN iteration to converge. The dominant term is also comes from the

computation of the projected gradient X = (Im −QcQ⊤
c)PQc, which is the average of

lifting map for all sample subspacesQ[i].

4.3 Reduction-Type Average

The main idea for this method is grouping the sample subspaces Q[i] into several group,

computing the integrated subspace of each groups, and then integrating these integrated

subspaces. For example, suppose we have 4 sample subspaces need to be integrated and

we choose the grouping number as 2. This method computes the leading ℓ left singular

vectors of [Q[1] Q[2]] as Q[1,2], which is the integrated subspaces of Q[1] and Q[2]. Next

this method computes the leading ℓ left singular vectors of [Q[3] Q[4]] asQ[3,4]. Then this

method computes the average Q as leading ℓ left singular vectors of [Q[1,2] Q[3,4]]. If the

number of sample subspaces is more than 4, we can do it hierarchically.

The concept of reduction can be extended to any grouping number. However, we only

consider the case that the grouping number is 2. The advantage of this case is that the

leading left singular vectors of M = [Q1 Q2] can be written explicitly by the SVD of

a small matrix Q⊤
1 Q2 = USV ⊤. Suppose the SVD of M = LΣR⊤ and the SVD of

Q⊤
1 Q2 = USV ⊤. The leading left singular vectors Lℓ can be obtained via the leading

right singular vectorsRℓ and leading singular values Σℓ as

Lℓ = MRℓΣℓ.

33

doi:10.6342/NTU201702973

Now, the problem is how to find the matrixRℓ andΣℓ. These two matrices can be ob-

tained by the eigenvalue decomposition ofM⊤M = RΣ2R⊤. The singular value (eigen-

value) decomposition of M⊤M can be write down explicitly by the SVD of Q⊤
1 Q2 =

USV ⊤ as

M⊤M =

⎡

⎢⎣
Iℓ Q⊤

1 Q2

Q⊤
2 Q1 Iℓ

⎤

⎥⎦

=

⎡

⎢⎣
Iℓ USV ⊤

V SU⊤ Iℓ

⎤

⎥⎦

=

⎛

⎜⎝
1√
2

⎡

⎢⎣
U U

V −V

⎤

⎥⎦

⎞

⎟⎠

⎡

⎢⎣
I + S

I − S

⎤

⎥⎦

⎛

⎜⎝
1√
2

⎡

⎢⎣
U U

V −V

⎤

⎥⎦

⎞

⎟⎠

⊤

.

Hence Σℓ = I + S,Rℓ =
1√
2

⎡

⎢⎣
U

V

⎤

⎥⎦ and

Lℓ = M
1√
2

⎡

⎢⎣
U

V

⎤

⎥⎦ (I + S) = (Q1U +Q2V)(2(I + S))−
1
2 .

Combine the above derivation and the hierarchical structure of the reduction, we can

write down the algorithm as Algorithm 6.

Algorithm 6 Reduction
Require: The orthogonal matrices to be integratedQ[1],Q[2], . . . ,Q[N].
Ensure: The averageQ.
1: Set n = N .
2: while n > 1 do
3: Setm = ⌊n2 ⌋
4: for i = 1, 2, . . . ,m do
5: Find SVD ofQ⊤

[i]Q[i+m] as USV ⊤.
6: Q[i] ← (Q[i]U +Q[i+m]V)(2(I + S))−

1
2 .

7: end for
8: n← ⌈n2 ⌉
9: end while
10: Q = Q[1].

34

doi:10.6342/NTU201702973

Since we have the explicit form of the integration of two subspaces, the computational

cost of reduction becomes very cheap. The computation of integration of each pair of sub-

spaces only needs matrix multiplication form× ℓ and ℓ× ℓ matrices. The computational

complexity of this part isO(mℓ2). Also, only an ℓ×ℓ SVD needs to be computed for each

pair. The computational complexity of this part is O(ℓ3). For each pair, the computa-

tional complexity isO(mℓ2+ ℓ3), which is dominated byO(mℓ2). Due to the hierarchical

structure of reduction, there are only (N − 1) pairs need to be applied these processes.

Therefore, the computational complexity of reduction is O(Nmℓ2), which is lower than

the line search methods and canonical SVD.

The intuition of this algorithm is that if each group can get a good integrated subspace,

the final integrated subspaces is also a good subspace. Since Q[i] are sketched from a

same matrix A, the last statement should be correct in some sense. However, there is no

related theory so far. In theory, the leading ℓ left singular vectors of [Q[1,2] Q[3,4]] is in

general not the integrated subspace defined in (2.1), which is the left singular vectors of

[Q[1] Q[2] Q[3] Q[4]]. Although this fact, reduction still gives a roughly integrated sub-

space in our numerical experiment. Also, in the experiment, we try to use the result from

reduction as the initial value of the line search algorithm.

35

doi:10.6342/NTU201702973

36

doi:10.6342/NTU201702973

Chapter 5

Comparison of rSVD and iSVD

Some comparison of rSVD and iSVDwith same sketching number is shown in this chapter.

In the beginning, we shall explain the meaning of rSVD and iSVD with same sketching

number. Suppose in iSVD, we generate N sample subspace with rank ℓ. These numbers

mean the sample subspace Q[i] is an m × ℓ orthogonal matrix for i = 1, 2, . . . , N . To

generate these subspaces, we need to compute Y[i] = AΩ[i] for all i. In the block matrix

form [
Y[1]|Y[2]| · · · |Y[N]

]
= A

[
Ω[1]|Ω[2]| · · · |Ω[N]

]
.

Now we change the viewpoint from iSVD to rSVD. Suppose the random matrix for

sketching is Ω =

[
Ω[1]|Ω[2]| · · · |Ω[N]

]
which is an n × Nℓ matrix. Then the sketched

matrix is Y = AΩ =

[
Y[1]|Y[2]| · · · |Y[N]

]
which is same as the case in iSVD. This

derivation shows that using N sample subspaces with rank k in iSVD is equivalent to

using Nℓ sketches in rSVD. Actually, both of them need to compute the same number of

sketches. This is the meaning of rSVD and iSVD with same sketching number.

In common case, rSVD finds the orthogonal matrix of Y asQ and compute the SVD

of QQ⊤A as an approximation of the low-rank SVD. However, one can also find the

leading singular vectors of Y as Q instead of using all the information from Y . This

can reduce the computational cost for computing the SVD of QQ⊤A. In the following

discussion and the numerical experiment, this technique is included when we write the

term ‘iSVD and rSVD with same sketching number.’

37

doi:10.6342/NTU201702973

Now we can compare iSVD and rSVD with same sketching number. For rSVD, after

sketching, we need to find the leading singular vectors of

[
Y[1]|Y[2]| · · · |Y[N]

]

as Q, and then computing the SVD of QQ⊤A. In iSVD, after sketching, we need to

orthogonalize Y[i] intoQ[i], and then find the integrated subspaceQ. As mentioned in the

previous chapter, we need to find the leading singular vectors of the matrix

[
Q[1]|Q[2]| · · · |Q[N]

]

as Q, and then computing the SVD of QQ
⊤
A. Therefore, the difference between iSVD

and rSVD is finding the different subspace to approximate the original matrixA.

Intuitively, the approximation by rSVD may be accurate than iSVD since the block

matrix in iSVD is the orthogonalization of each block in rSVD, which may loose the

information of length. The numerical result shows that rSVDwith same sketching number

is slightly better than iSVD for accuracy. However, in theory, iSVD still get the exact low-

rank approximation ofA if the number of sample subspace N goes large.

Due to the similarity between rSVD and iSVD, we can explain rSVD in the view-

point of integration same as iSVD. Similar to the averaging concept as Theorem 3.2.1, the

corresponding theorem for rSVD can be described as the following theorem.

Theorem 5.0.1. Let the SVD ofA beA = UΣV ⊤. Let Y = AΩ, whereΩ is randomly

generated by i.i.d. standard normal entries. Then

E
[
Y[i]Y

⊤
[i]

]
= UΣ2U⊤.

38

doi:10.6342/NTU201702973

Proof. By direct computation,

E
[
Y[i]Y

⊤
[i]

]
= E

[
AΩ[i]Ω

⊤
[i]A

⊤]

= AE
[
Ω[i]Ω

⊤
[i]

]
A⊤

= AInA
⊤ = UΣ2U⊤

where E
[
Ω[i]Ω

⊤
[i]

]
= In is derived directly from the condition that Ω is randomly gener-

ated by i.i.d. standard normal entries.

The difference between the theorem for iSVD and rSVD is the spectrum matrix of

the expected value. For rSVD, the spectrum matrix is Σ2, which is directly related to the

spectrum of A. For iSVD, the spectrum matrix is Λ, which we can just describe some

properties in the theorem.

For computing the leading singular vectors in rSVD, one can also use Algorithm 4

(WY) by replacing the matrix P as

P =
1

N

N∑

i=1

Y[i]Y
⊤
[i] .

However, Algorithm 5 (KN) can not be applied directly since the well definite of the

retraction map will use the orthogonal property of Q[i]. The idea of reduction can be

applied to rSVD. However, there is no explicit form for two subspace Y[1],Y[2]. It can not

generate the fast algorithm as Algorithm 6.

39

doi:10.6342/NTU201702973

40

doi:10.6342/NTU201702973

Chapter 6

Numerical Experiment

In this section, the performance of iSVD will be tested through the numerical experiment.

The codes for testing are implemented in MATLAB. The desired rank in all the test is k =

10 and the exact sampling rank is ℓ = 22. If a test only needs to observe the performance

without timing, it is run on the machines with the larger size of memory. If a test needs

to record the timing result, it is run on the MacBook Pro (Mid. 2014). (Processor: 2.6

GHz Intel Core i5. 2 cores. 4 threads. Memory: 8 GB 1600 MHz DDR3). All the tests

follows the same steps as Algorithm 1 (rSVD) or Algorithm 2 (iSVD), but may use the

different integration method. Table 6.1 shows the abbreviation and detail information of

the integration algorithm used in this section.

The test matrices used in this paper aremodified from the test matrix in [10]. Thesema-

trices are generated by the formA = HmΣH⊤
n , whereHm denotes them×mHadamard

matrix (a kind of orthogonal matrix with all the entries are 1 or−1),Hn denotes the n×n

Hadamard matrix, m = 2d, n = 2m = 2d+1, and Σ is an m × n diagonal matrix. In this

svds The MATLAB built-in command svds
WY Algorithm 4 with parameter β = 0.5, ρ = 10−4, η = 0.85.

Convergent condition: ∥DF (Qc)∥2 < 10−3 (iSVD)
Convergent condition: ∥DF (Qc)∥2 < 10−3 tr(Y ⊤

[1]Y[1])/ℓ (rSVD)
Initial valueQini = Q[1]

KN Algorithm 5. Convergent condition: ∥I −C∥F < 10−5

Initial valueQini = Q[1]

red. Reduction, Algorithm 6

Table 6.1: Abbreviation and detail information of the algorithm used in this section.

41

doi:10.6342/NTU201702973

thesis, Σ is given by setting its diagonal entries as

σi,i =

⎧
⎪⎨

⎪⎩

s
i−1
k if i ≤ k

s(m− i)

m− k − 1
otherwise

for s = 10−1, 10−3 and k = 10. We use AH(10−1) and AH(10−3) to denote the matrix

generated with the case s = 10−1 and s = 10−3 respectively.

The similarity between each column of approximate leading singular vectors Û and

exact leading singular vectors Uk are used to measure the accuracy of the approximate

leading left singular vectors Û from each test with different methods. The arranged left

singular vectors U of the test matrix is exactly the Hadamard matrixHm due to the con-

struction of test matrix. Therefore, we compute the similarity between i-th column by

computing the absolute value of inner product between the i-th column ofUk and the i-th

column of Û . The more inner product close to 1, the better the approximation.

6.1 Different Number of Sketched Subspaces

The purpose of this test is to compare the result for the different choice of the number of

sketched subspaces N with the different test matrixAH(10−1) andAH(10−3).

Figure 6.1 shows the similarity for differentN with testmatrixAH(10−1) andAH(10−3).

The accuracy increases as N increasing, which is coherent to the explanation of 3.2.1 in

Chapter 3. For AH(10−3), as N increasing, the boxes in box plot become shorter. This

provides that the variance of the similarity due to the randomness in sketching step is re-

duced as the number of sampling subspaces goes large. ForAH(10−1), the decreasing of

variance is not same as AH(10−3). The reason may be the quality for single subspaces

(N = 1) is not good enough. Hence it is hard to capture the singular vectors after the fifth

one. However, the accuracy still improves as N increasing, which is still a good result

and coherent to the explanation in Chapter 3.

Next, we study the relation of N and the convergent iteration number of WY. Figure

6.2 shows that no matter the size of the matrix, the number of iteration for convergence

42

doi:10.6342/NTU201702973

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of different N, test_matrix: AH(10-1)524288x1048576

N=1
N=10
N=50
N=100
N=200

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of different N, test_matrix: AH(10-3)524288x1048576

N=1
N=10
N=50
N=100
N=200

(b) Test matrix: AH(10−3)

Figure 6.1: Similarity for different N . The size of test matrix is m = 219, n = 220. For
each cases, we repeat 30 times iSVD with integration method WY and plot out the box
plot of similarity. The box plot represent the maximum, Q3, median, Q1, minimum for
each inner product among 30 times.

0 20 40 60 80 100 120 140 160 180 200
N

0

10

20

30

40

50

60

70

80

N
um

be
r o

f I
te

ra
tio

n

tol = 1e-3, test_matrix: AH(10-1)

d= 9
d=11
d=13
d=15
d=17
d=19

(a) Test matrix: AH(10−1)

0 20 40 60 80 100 120 140 160 180 200
N

0

10

20

30

40

50

60

70

80

N
um

be
r o

f I
te

ra
tio

n

tol = 1e-3, test_matrix: AH(10-3)

d= 9
d=11
d=13
d=15
d=17
d=19

(b) Test matrix: AH(10−3)

Figure 6.2: Average iteration number to converge for differentN and different size of test
matrix. The size of test matrix is m = 2d, n = 2d+1 for d = 9, 11, 13, 15, 17, 19. Each
point shows the average iteration number among 30 tests.

43

doi:10.6342/NTU201702973

has no clear relation to the number of sampling subspacesN . This result is not surprising

since the matrixP tends to be a fixed matrix (expected value in Theorem 3.2.1) asN goes

large. This is a good news since the computational complexity of WY is O(IWYNmℓ2)

and the computational complexity of canonical SVD is O(N2mℓ2). This figure shows

IWY do not increase as the number of sketched subspaces N increase. Hence using WY

for integration is better in computational complexity than using canonical SVD.

6.2 Comparison of KN and WY

The purpose of this test is to compare the results of iSVD by using WY and KN. WY is

derived from the viewpoint of line search and KN is derived from the viewpoint of average

on Stiefel manifold. Although they are derived from different viewpoints, both of them

contain the idea of gradient ascent. Therefore, it is interesting to observe the difference

between these two algorithms.

Figure 6.3 shows the accuracy for the approximate singular vectors by using WY and

KN. Both WY and KN can capture the approximate singular vectors with the same accu-

racy when they both converge. This result is coherent to the convergent theory in Section

4 that both of WY and KN converge to the same Q, and hence generate the same Ũ .

However, KN needs more iteration to converge. To eliminate the effect of different con-

vergence criteria, tow more results for the accuracy for WY and KN with same iteration

number are added to the same figure. The approximation from WY is more accurate than

KN when the iteration number is fixed as 15. This difference is not surprising since WY

use BB step size to accelerate the convergence while KN does not use any technique to

accelerate the convergence.

We do more test on the iteration number for WY and KN. Figure 6.4 and Figure 6.5

show the accuracy fromWY and KN respectively, with the iteration number 5, 10, 15 and

20. As these tow figure shown, bothWY andKN get a better accurate result as the iteration

number goes large. WY converge faster than KN. For the test matrixAH(10−1), WY can

get almost same accurate as the converged result with only 20 iteration. For the test matrix

AH(10−3), WY only uses 15 iteration to get the almost same accurate result. In contrast,

44

doi:10.6342/NTU201702973

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of KN and WY, test_matrix: AH(10-1)2048x4096

single sketch
iSVD(WY) N = 32
iSVD(KN)
iSVD(WY) iter = 15
iSVD(KN) iter = 15

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of KN and WY, test_matrix: AH(10-3)2048x4096

single sketch
iSVD(WY) N = 32
iSVD(KN)
iSVD(WY) iter = 15
iSVD(KN) iter = 15

(b) Test matrix: AH(10−3)

time(sec) iSVD(WY) iSVD(KN) iSVD(WY, fix iter) iSVD(KN, fix iter)
iteration number

AH(10−1) 0.964061 1.634885 0.266471 0.113637
61 242 15 15

AH(10−3) 1.363975 1.538313 0.243105 0.142008
84 218 15 15

Figure 6.3: Comparison of the approximate singular vectors by using WY and KN. The
size of test matrix is m = 211, n = 212 and the sampling number N = 32. All of these
test use the same 32 sketched subspaces Q[i]. The first line in the legend represents the
similarity of Q = Q[1]. The second and third lines are the result from WY and KN re-
spectively. The forth and fifth lines are fromWY and KN respectively with fixed iteration
number 15.

45

doi:10.6342/NTU201702973

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)
Comparison of different iteration number of WY, test_matrix: AH(10-1)2048x4096

single sketch
iSVD(WY) N = 32
iSVD(WY) iter = 5
iSVD(WY) iter = 10
iSVD(WY) iter = 15
iSVD(WY) iter = 20

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of different iteration number of WY, test_matrix: AH(10-3)2048x4096

single sketch
iSVD(WY) N = 32
iSVD(WY) iter = 5
iSVD(WY) iter = 10
iSVD(WY) iter = 15
iSVD(WY) iter = 20

(b) Test matrix: AH(10−3)

Figure 6.4: WY with different iteration numbers. The sketched subspaces Q[i] are same
in Figure 6.3. The first line in the legend represents the similarity for the case Q = Q[1].
The second line is the similarity fromWY (with 61 iteration forAH(10−1) and 84 iteration
for AH(10−3) to converge). The third to sixth lines are from WY with iteration number
5, 10, 15, 20 respectively.

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of different iteration number of KN, test_matrix: AH(10-1)2048x4096

single sketch
iSVD(KN) N = 32
iSVD(KN) iter = 5
iSVD(KN) iter = 10
iSVD(KN) iter = 15
iSVD(KN) iter = 20

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of different iteration number of KN, test_matrix: AH(10-3)2048x4096

single sketch
iSVD(KN) N = 32
iSVD(KN) iter = 5
iSVD(KN) iter = 10
iSVD(KN) iter = 15
iSVD(KN) iter = 20

(b) Test matrix: AH(10−3)

Figure 6.5: KN with different iteration numbers. The sketched subspaces Q[i] are same
in Figure 6.3. The first line in the legend represents the similarity for the case Q[1]. The
second line is the similarity from KN. The third to sixth lines are from KN with iteration
number 5, 10, 15, 20 respectively.

46

doi:10.6342/NTU201702973

KN does not get the same accurate result in both cases by using 20 iteration.

However, the convergence of KN is more ‘smooth’ than WY. For the test matrix

AH(10−1), the similarity of the first column at 20 iteration is lower than the previous

iteration. The same phenomenon also shows up in the sixth column of 10 iteration for the

test matrix AH(10−3). This could be a risk if one wants to use early stop technique in

iSVD for WY. However, the fast convergence of WY could also be an advantage to use

early stop technique.

Also, these two figures point out that the stopping criterion for WY may not be suit-

able. For the test matrix AH(10−3), WY can get almost same accurate as the converged

result with only 20 iteration. However, the stopping criterion is not satisfied until 84 iter-

ation. This phenomenon also happens in the test matrix AH(10−1). The reason why this

phenomenon happens may be the unsuitable choice of stopping criteria, since the stopping

criteria measure whether Qc is convergent in WY, not measure whether Qc is an enough

accurate subspace for generating the low-rank approximation ofA.

Remark. The timing results show that for a single iteration, WY uses about twice

time than KN. However, the computation of complexity shows WY and KN have same

computational complexity. This difference could be caused by the small size of the matrix

and the lack of optimization for codes implemented WY.

6.3 Comparison of iSVD, rSVD and Reduction

The purpose of this test is to observe the difference between iSVD and rSVD numerically.

As mentioned in the Chapter 5, iSVD and rSVD is very similar if the total sketching

number is same. Also, we will do the numerical test of reduction in the same time to

compare with rSVD more easily.

Figure 6.6 shows the result for iSVD and rSVD with WY and svds. We may treat the

result from svds as the ideal result for iSVD and rSVD and compare it with the result from

WY. For the test matrix AH(10−1), the accuracy of rSVD is slightly better than iSVD.

Also, both rSVD and iSVD with WY can capture the same accurate approximation as

svds does. However, the iteration number of rSVD is more than the iteration number of

47

doi:10.6342/NTU201702973

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of Different Methods, test_matrix: AH(10-1)2048x4096, max_iter = 500

single sketch
iSVD(WY) N = 32
rSVD(WY)
iSVD(svds)
rSVD(svds)
iSVD(reduction)
iSVD(redunction - WY)

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of Different Methods, test_matrix: AH(10-3)2048x4096, max_iter = 500

single sketch
iSVD(WY) N = 32
rSVD(WY)
iSVD(svds)
rSVD(svds)
iSVD(reduction)
iSVD(redunction - WY)

(b) Test matrix: AH(10−3)

time(sec) iSVD(WY) rSVD(WY) iSVD(svds) rSVD(svds) iSVD(red.) iSVD (red.+WY)
iteration number

AH(10−1) 0.746769 1.839638 0.775641 0.692867 0.052223 0.901197
61 122 66

AH(10−3) 1.057405 0.865924 0.640089 0.597390 0.039458 1.017564
84 63 79

Figure 6.6: Similarity for WY with iSVD and rSVD, reduction, and svds. The number
of sketched subspaces in iSVD is N = 32. The number of sketching in rSVD is 32 ∗ 22,
which is same as the total number of sketching in iSVD. The algorithm red.+WY uses the
result of reduction as the initial value of WY.

48

doi:10.6342/NTU201702973

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of Different Methods, test_matrix: AH(10-1)2048x4096, max_iter = 10

single sketch
iSVD(WY) N = 32
rSVD(WY)
iSVD(svds)
rSVD(svds)
iSVD(reduction)
iSVD(redunction - WY)

(a) Test matrix: AH(10−1)

1 2 3 4 5 6 7 8 9 10
i

0

0.2

0.4

0.6

0.8

1

ab
so

lu
te

 in
ne

r p
ro

du
ct

 o
f i

-th
 c

ol
um

n
of

 (t
ur

e
U

) a
nd

 (a
pp

ro
xi

m
at

e
U

)

Comparison of Different Methods, test_matrix: AH(10-3)2048x4096, max_iter = 10

single sketch
iSVD(WY) N = 32
rSVD(WY)
iSVD(svds)
rSVD(svds)
iSVD(reduction)
iSVD(redunction - WY)

(b) Test matrix: AH(10−3)

time(sec) iSVD(WY) rSVD(WY) iSVD(svds) rSVD(svds) iSVD(red.) iSVD (red.+WY)
iteration number

AH(10−1) 0.158318 0.153800 0.823445 0.694192 0.039138 0.131893
10 10 10

AH(10−3) 0.149794 0.166209 0.637057 0.617643 0.039255 0.133753
10 10 10

Figure 6.7: Similarity for the methods in 6.6 with the fixed iteration number 10 for WY.

iSVD. For the test matrixAH(10−3), rSVD with WY even fails to find the approximation

with the same accuracy as svds. To eliminate the difference of convergent criteria, Figure

6.7 shows the results for the same setting with fixed iteration number 10. As shown in

the figure, the accuracy for iSVD with WY is better than the accuracy for rSVD with WY

when the iteration number is fixed. Although svds capture slightly better result than WY

for iSVD, the computing time of WY is much faster than the svds.

For the reduction part, Figure 6.6 shows that reduction fails to capture the same accu-

rate approximate asWY and svds. However, the computational time only takes about 0.04

second, which is very fast compare to WY and svds. Figure 6.7 shows that the accuracy

for reduction is even better than the rSVD when the iteration number is 10.

Also, Figure 6.7 shows that using the result from reduction as the initial value of WY

with only 10 iteration gives an almost accurate approximation same as svds does. How-

ever, the computational time for reduction+WY is much lower than svds. Although there

is no theoretical guarantee for the error bound of the reduction so far, the numerical ex-

periment shows that reduction can get an integrated subspace with better accuracy than

49

doi:10.6342/NTU201702973

the single sketched subspaces, which is the original initial value for WY. It is not surpris-

ing that reduction+WY can get a better result than WY with same iteration number since

reduction+WY start from a better initial guess.

50

doi:10.6342/NTU201702973

Chapter 7

Discussion and Conclusion

In this thesis, some theoretical and performance analysis are shown. The integrated sub-

spaceQ is defined by the solution of the optimization problem (2.1) or (3.1). The solution

of these problems is the leading ℓ singular vectors of the matrix P . Also, this is the only

local maximizer of the problem (3.1).

Line search type algorithm (WY), KN type average (KN), and reduction are intro-

duced to compute the integrated subspace. WY and KN are convergent to the integrated

subspace. The leading term of computational complexity for WY and KN is O(INmℓ2),

where I is the iteration number to converge. The computational complexity for canoni-

cal SVD for integration is O(N2mℓ2). The numerical results show that N is independent

of I . Also, WY can get nearly accurate approximation same as the convergent result by

only few iteration number. These results provide that WY is an efficient algorithm for

integration.

The computational complexity of reduction is O(Nmℓ2), which is faster than canoni-

cal SVD,WY, and KN. In theory, it does not capture the exact integrated subspace defined

in (2.1). In the numerical experiment, the reduction can find an approximate integrated

subspace. Also, it shows the potential that reduction can be used as a preprocess for WY

to speed up the convergent with just a little extra computational cost.

If the total sketching number is same, iSVD is similar to rSVD. The difference between

them is that the spectrum of the expected value in Theorem 3.2.1 and 5.0.1. Also, WY can

directly apply to rSVD as the method to find the leading singular vectors of the sketching.

51

doi:10.6342/NTU201702973

In the numerical experiment, WY converges faster for iSVD than rSVD. Sometimes WY

also fails to find the leading singular vectors of the sketching in rSVD. However, there is

no theoretical proof or explanation so far.

To sum up, iSVD gives an idea to integrate the subspaces generated from random

sketching of a matrix. Although some phenomenons shown in numerical experiment lack

theoretical explanation and proof, iSVD still shows the potential for approximate low-rank

SVD with higher quality than rSVD in the same computing time. As more theoretical re-

sults showing up, iSVD could be an option for computing dimension reduction and feature

extraction of large scale data faster but still accurate in the future.

52

doi:10.6342/NTU201702973

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix man-

ifolds. Princeton University Press, 2009.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-

tion, 1999.

[3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA Journal

of Numerical Analysis, 8(1):141–148, 1988.

[4] T.-L. Chen, D. D. Chang, S.-Y. Huang, H. Chen, C. Lin, and W. Wang. Integrat-

ing multiple random sketches for singular value decomposition. arXiv preprint

arXiv:1608.08285, 2016.

[5] S. Fiori, T. Kaneko, and T. Tanaka. Mixed maps for learning a kolmogoroff-nagumo-

type average element on the compact Stiefel manifold. IEEE International Confer-

ence on Acoustic, Speech and Signal Processing (ICASSP), pages 4518– 4522, 2014.

[6] I. Griva, S. G. Nash, and A. Sofer. Linear and nonlinear optimization. Siam, 2009.

[7] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM

review, 53(2):217–288, 2011.

[8] T. Kaneko, S. Fiori, and T. Tanaka. Empirical arithmetic averaging over the compact

Stiefel manifold. IEEE Transations on Signal Processing, 61(4):883–894, 2013.

53

doi:10.6342/NTU201702973

[9] J. R. Magnus and H. Neudecker. The commutation matrix: some properties and

applications. The Annals of Statistics, pages 381–394, 1979.

[10] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal compo-

nent analysis. SIAM Journal onMatrix Analysis and Applications, 31(3):1100–1124,

2009.

[11] Z. Wen and W. Yin. A feasible method for optimization with orthogonality con-

straints. Mathematical Programming, 142(1-2):397–434, 2013.

[12] H. Zhang andW.W. Hager. A nonmonotone line search technique and its application

to unconstrained optimization. SIAM Journal on Optimization, 14(4):1043–1056,

2004.

54

doi:10.6342/NTU201702973

