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Abstract

Dimension reduction and feature extraction are the important techniques
in the big-data era to reduce the dimension of data and the computational cost
for further data analysis. Low-rank singular value decomposition (low-rank
SVD) is the key part of these techniques. In order to compute low-rank SVD
faster, some researchers propose to use randomized subspace sketching al-
gorithm to get an approximation result (rSVD). In this research, we propose
an idea for integrating the results from randomized algorithm to get a more
accurate approximation, which is called integrated singular value decompo-
sition (1ISVD). We analyze iSVD and the integration methods by theoretical
analysis and numerical experiment. The integration scheme is a constraint
optimization problem with unique local maximizer up to orthogonal transfor-
mation. Line search type method, Kolmogorov-Nagumo type average method
and reduction type method are introduced and analyzed for their theoretical
background and computational complexity. The similarity and difference be-
tween iISVD and rSVD with same sketching number are also explained and
analyzed. The numerical experiment shows that the line search method in
1SVD converges faster than the one in rSVD for our test examples. Also, us-
ing the integrated subspace from reduction as the initial value of line search

method can reduce the iteration number to converge.

Keywords: Numerical Linear Algebra, Singular Value Decomposition, Ran-

domized Algorithm, Numerical Optimization, Dimension Reduction
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Chapter 1

Introduction

Dimension reduction and feature extraction are important issues in data analysis, espe-
cially for large scale data, to reduce the size or condense the information of analyzed data.
The goal is to reduce the time for further analysis or find out the key features in the data.
Singular value decomposition (SVD) is one of the technique to realize dimension reduc-
tion. An SVD of an m x n matrix A takes the form A = UXV T, where U is an m x m
orthogonal matrix, V' is an n x n orthogonal matrix, and 3 is an m x n diagonal matrix
with decreasing diagonal entries. In this representation, U, V  are the left and right singu-
lar vectors of A respectively. The diagonal entries of ¥ are the singular vector of A. A

rank-k approximation of A via SVD is given as
A=UX.V,

where Uy, V;, are leading k singular vectors and X, contains leading % singular values.
This low-rank approximation is called rank-k SVD of A. Rank-k SVD is the best rank-k
approximation of A in the sense that it has the smallest 2-norm or Frobenius norm error.
Therefore, it is a good choice for dimension reduction in many cases.

Many algorithms are aimed at computing the SVD or rank-k£ SVD. However, these al-
gorithms usually take at least O(m?n + mnk) for computing rank-k SVD of areal m x n
(m < n) matrix. Consequently, these algorithms cost lots of time to obtain the output re-

sult. Some research [7, 10] proposed a method to randomly sketch the matrix into a smaller

1
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subspace, and calculate approximate rank-k SVD in that space. This method is called ran-
domized singular value decomposition (rSVD) in this thesis. The accuracy and precision
of rSVD depend on the quality of random projection used to generate the subspace. How
to increase the quality of random sketching and the accuracy of the approximation is an
important issue in rSVD. In [4], integrated singular value decomposition (iISVD) is pro-
posed to enhance the projected subspace and obtain a better result. The main idea of iISVD
is using integration method to condense the information from multiple randomly sketching
and output a better-sketched subspace.

In this thesis, some properties of iSVD and integration method will be studied. The
concept of iISVD is introduced in Chapter 2. The key step of iSVD is the integration, which
is a constraint optimization problem. In the Chapter 3, we show the integrated subspace
defined previously is the only local maximizer of the constraint optimization problem.
The optimal solution and informal explanation of asymptotic behavior are introduced in
the same chapter. These properties give the reason for using gradient type methods to
solve this optimization problem. These methods are introduced and analyzed in Chapter
4. The similarity and difference between rSVD and iSVD with same sketching number
are shown in the Chapter 5. The numerical experiment is shown in Chapter 6. Finally, the
discussion and conclusion are given in Chapter 7.

The notations used in this thesis are as follows. The normal letters, such as a, «, denote
the scalar. The bold lower case letters, such as a, «, denote the vector. The bold upper
case letters, such as C, I, denote the matrix. Table 1.1 shows some frequently appeared

notations in this thesis.
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The matrix desired solving low-rank SVD.

The number of rows and columns of A respectively. We assume m < n.

The given desired rank for low-rank approximation.

The number of oversampling in rSVD and iSVD.

The total number of sampling in rSVD and i1SVD for a single sketched subspaces.
C=k+p {<K<m.

The total number of sketched subspaces in iSVD.

The Kronecker product.
The a x b commutation matrix.[9] For any a x b matrix M, vec(M ") = H,, vec(M).

SESERE

The current iterator in the iterative method.
The iterator of next step in the iterative method.

Table 1.1: Notation in this thesis.
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Chapter 2

Overview of Integrated Singular Value

Decomposition

Before introducing iSVD, we shall take a quick view of rSVD. The basic algorithm of

rSVD from [7, 10] is stated as Algorithm 1. In this algorithm, SVD is only applied to an

m X ¢ matrix and an ¢ X n matrix, which is much cheaper than applied on an m x n matrix

if 7 is small. The two main phases of rSVD are described in next two paragraphs.

Algorithm 1 Randomized SVD (rSVD)

Require: A (real m x n matrix), k¥ (number of desired rank for low-rank approximation),

p (number of oversampling), £ = k + p (number of the sketched column),

Ensure: Approximate rank-k SVD of A ~ UkEkaT

1:

AN AN

Generate a random matrix €2

Assign Y <+ AQ

Compute Q whose columns are an orthonormal basis of Y’

Compute the SVD of QTA = W, %, V.7

Assign U, +— QW,

Extract the largest k singular pairs from ﬁg, f]g, ‘72; to obtain ﬁk, f)k, ‘7}3

The first phase is randomly sketching a subspace of A. More precisely, compute the

matrix Y = A€ and find out the orthogonal basis of the range of Y as the approximate

subspace Q. In this case, €2 is a randomly generated matrix. Both [7, 10] propose a

commonly used €2 as Gaussian projection, which means the entries of 2 are independent

identical standard normal distribution. This choice gives Y some structure of the column

space from A and controls the error HQQTA — AH2 < e in high probability. Note that

5
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QQ" A is the approximate rank-¢ SVD of A with the column space spanned by Y.

The second phase is constructing an approximate rank-¢ SVD QQ T A. Only the SVD
of QT A is needed to construct the SVD of the rank-/ matrix QQ " A. Once the SVD
of QTA = ngﬂAff is obtained, the SVD of QQ ' A can be computed as QQ ' A =
(Qﬁ\/g)f)gf/f. Note that the column space of this approximation is already determined
in the first phase. The purpose of this phase is revealing the singular values and singular
vectors in correct arrangement, and then the leading & singular values and singular vectors
can be extracted.

The technique of oversampling is proposed here. Suppose the desired rank is k, the
number of sketches in the first phase can be chosen as ¢ = k + p for some positive integer
p. The approximate rank-k SVD is obtained from rank-¢ SVD by extracting the first &
singular vectors and singular values.

Based on rSVD, iSVD uses multiple random sketched subspaces in the first phase of
rSVD to gain more accurate result. The algorithm is stated as Algorithm 2. Three phases
are included in this algorithm. The first phase is similar to the first phase of SVD. Instead
of choosing only one random sketch in rSVD, iSVD choose multiple random sketches.
The second phase is integrating the subspaces obtained in the first phase and get an in-
tegrated subspace Q. The third phase is same as the second phase of rSVD. They both

construct the approximate rank-¢ SVD.

Algorithm 2 Integrated SVD with multiple sketches (iISVD).

Require: A (real m x n matrix), k (desired rank of approximate SVD), p (oversampling
parameter), ¢ = k + p (dimension of the sketched column space), ¢ (exponent of the
power method), IV (number of random sketches)

Ensure: Approximate rank-k SVD of A ~ U, X, V,"

1: Generate n x ¢ random matrices ;) fore =1,..., N

Assign Y} < AQp fori=1,..., N

Compute Q;; whose columns are an orthonormal basis of Y/

Integrate Q + {Q}Y,

Compute the SVD of GTA —W, %, ‘A/'ZT

Assign ﬁg <— Qﬁ\/g PN IR

Extract the largest & singular pairs from Uy, 3, V; to obtain Uy, 3y, Vi

A A T

The key part of iISVD is how to define the integrated subspace in the second phase. The

most intuitive idea is taking the arithmetic average of Q;) as Q, but the following state-

6
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ments show this is not a reasonable definition of the integrated subspace. The integrated
subspace @ should represent the subspace integrated by Q- Each Qy; is an orthogonal
matrix. Hence Q should also be an orthogonal matrix. However, the arithmetic average
of Q;) is not an orthogonal matrix. Therefore, the integrated subspaces should be defined
by another form instead of the arithmetic average.

The integrated subspace in the second phase is defined by the following optimization

problem.

_ 1 N 2
Q := argmin — QuQp —QQ"
min > Q0@ - Q@ o

subjectto Q'Q = I,
The main idea of this definition is to define the integrated subspace that has the minimum
summation of distances between each Q; and Q, which is similar to the property of the
arithmetic average in Euclidean space. Instead of the Euclidean distance between @ and
each QQ[;}, we use the distance between QQ" and Q[Z-]Q[T.] to preserve the invariant of right
orthogonal transformation. Suppose Qi = Q2R for some orthogonal matrix R. Q
and Qo) represent the same subspaces, so the measurement of error between Qij, Qy;,

and @), Qy; should be same. By using the relation
T T THT T T T
Q[l]Qm - Q[i]Q[i] = Q[l}RR Q[1] - Q[i}Q[ﬂ = Q[Q]Q[z} - Q[i]Q[i]

the error measured in (2.1) gives the same value, which means it preserved the invariant
of right orthogonal transformation. However, it still needs some theoretical analysis to
make sure whether this objective function is suitable for the integration step. Chapter 3
provides an informal explanation that the integrated subspace defined by 2.1 can capture

the true singular vectors of the desired matrix A when N tends to be large.
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Chapter 3

Properties of Integrated Subspace

In this chapter, some properties of the integrated subspace defined in (2.1) are analyzed.
First, an equivalent maximization problem (3.1) is introduced. Next, we show the solu-
tion of the optimization problem in (3.1) is the leading singular vectors of the arithmetic
average of Qy; Q[TZ.]. Then we provide an informal explanation for the asymptotic behavior
of integrated subspace when N is large. Finally, we prove that the local maximizer of the

optimization problem in (3.1) is unique up to a right orthogonal transform.

At the beginning, some equivalent problems should be introduced for the simplicity
of analysis. The following theorem demonstrates an equivalent optimization problems of

@2.1).

Theorem 3.0.1. The constraint optimization problem (2.1) is equivalent to the problem

argmax % tr(Q" PQ)
Q (3.1
QR'Q=1,

where P = ]lv vazl Q[i]Q[TZ.] is the arithmetic average of Q[i]Q[I] over all i.

Proof. From the relation between trace and Frobenius norm || M ||§ = tr(M " M), the

properties of trace tr(M M) = tr(M,M,), and the orthogonality of @ and Qj;, the

9

doi:10.6342/NTU201702973



Frobenius norm in the objective function of (2.1) can be rewritten as

1QuQL - Q™| = (QuQY - Q) (QuQ] - Q"))
- 1(QQ") - 2tr(QQTQuQY) + r(QuQ))
=(Q'Q) - 2t(Q'QuQyQ) + tr(Q Q)
=20 — 2tr(QTQ[Z’]Q[I]Q).

This equation leads to another representation of the objective function
1 A ¢
T T T T i)
2 1Qu@l - QT =25 — 25> w(QTQuQ;Q) =2+ —2u(Q"PQ).
=1 =1

Since the constant does not affect the problem and the negative scalar changes minimize

problem to maximize problem, (2.1) is equivalent to the problem

argmax L tr(Q' PQ)
Q 2
Q'Q=1I

which is the problem (3.1).
O

The optimization problem in the form (3.1) is more simple than the original form (2.1)
for computing the derivative and further analyzing. So the simplified form (3.1) will be

used in the following analysis.

3.1 Solution of the Optimization Problem

The solution of the maximize problem (3.1) is the integrated subspace we defined in (2.1).
Theorem 3.1.1 shows that the optimizer of this problem is consisted by the leading ¢ eigen-

vectors of P.

Theorem 3.1.1 (Maximal Value of Objective Function). Let \y > Ay > ... > N\ >

Aeg1 > ... > A\, be the eigenvalues of P and let Q. be the corresponding leading ¢

10
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eigenvectors. Then the objective function in (3.1) has the upper bound
1 1 o
—(QTPQ)< =) N\
;1(QTPQ) < Z

and the equality holds when Q = Q. R. for some { x { orthogonal matrix R..

Proof. The eigenvalue decomposition of P can be written as

F = Q*S*QI + QJ_SJ_QI

where @ denote orthonormal basis of the space perpendicular to @, S, = diag(Ay, ..., A\p)
and S| = diag(Ap41,...,\p). Since Q. and Q spans the whole R™, any orthogonal

matrix @ can be represented as Q = Q.B + Q,C with B'B + C'C = I,. The

objective function becomes

1

5“( PQ)

= L 6((Q.B+Q.0)(Q.5.Q] +@.5.Q))(Q.B +Q.C))
- % 1(B'S.B) +t(C'S.C)

by the relation QTQ, =0

Let B = RST be the SVD of B. By multiplying RT " from left and TR from
right to the both sides of the condition B' B + C"C = I, the new condition is given

as RS’R" + RT'C"CTR'" = RT'TR" = I,. By using this new condition and the

inequality
m—L £ m—L £
tr((CTR)'S.CTR") => ) Myic, <> ) N, =te(S.RT'C'CTR")
i=1 j=1 i=1 j=1
11
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where CTR" = [c;;], the upper bound of the objective function can be given as

%tr(QTFQ) _ %tr(BTS*B) +t(CT S, C)
1
=5 (e(TSR'S.RST") +tt(C"S,CTR'RT"))
_ % (tr(S.RS*R") + tt(RT"C"S,CTR"))
1 1 1<
2T T~T T _ _
< S u(S.(RS’R" + RT'CTCTR")) = S (S.) = 52&-.

The quality holds when 7 Z§:1 AeyiChy = St Z§:1 Ajc;;. This equation means

CTR" = [¢;] = 0, and hence C = 0. Therefore, Q@ = Q.R. with B'B = I, and
R, = B. O

Theorem 3.1.1 shows that the integrated subspace defined in (2.1) or (3.1) is actu-
ally formed by the leading eigenvectors of the arithmetic average of Qy; Q[I.]. The leading
eigenvectors of P is same as the leading ¢ singular vectors of the matrix QulQul - 1Q
This form is used for explaining the similarity of rSVD and iSVD with same sketching

number in Chapter 5.

3.2 Asymptotic Behavior of the Integrated Subspace

Now we give an informal explanation about the reason why the the integrated subspace
defined in (2.1) or (3.1) can work in the iISVD algorithm. Please refer to [4] for more
detailed statistical analysis.

To explain the reason, the following theorem in [4] should be introduced first.

Theorem 3.2.1. Let the SVD of A be A = UXV " with distinct decreasing singular
values. Let Q denote an orthogonal subspace spanned by’ Y = A, where ) is randomly

generated by i.i.d. standard normal entries. Then
E[QuQu] =UAU'

where A satisfies

12
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1. A is diagonal matrix
2. all diagonal entries are in the interval (0, 1)

3. the diagonal entries are decreasing if the singular values of A are distinct.

By the law of large number and Theorem 3.2.1, as the sample size N goes large, the
arithmetic average P tends to a matrix with the same singular vectors of A in the cor-
rect arrangement. Also, Theorem 3.1.1 shows that the optimizer defined in (3.1) is the
leading singular vectors of P. Hence in the ideal case (/N tends to infinity), iSVD can
capture the leading singular vectors of A as Q and leads to an ideal result for the low-rank

approximation.

3.3 Uniqueness of Local Maximizer

Recall that we focus on the problem in the form (3.1)

1 —
max - tr(Q ' PQ)
(+> Q 2 ‘
Q'Q=1I,

Theorem 3.1.1 shows the optimal solution of the problem (+) is formed by the leading
¢ eigenvectors of the matrix P. However, this result dose not provide whether there exists
another local maximum of this problem. The goal of the following derivation is Theo-
rem 3.3.5, which shows that the only local maximum of the problem (+) is the orthogonal
matrices that formed by the leading ¢ eigenvectors of P (up to right orthogonal trans-
formation). The main idea of the following proof is checking the first and second order
necessary condition for the nonlinear equality constraint optimization problem. More in-
formation for the first and second order condition of optimization with equality constraint
can be obtained in the book for introducing optimization problem. (For example, [6].)

We begin with checking the first order necessary condition of the problem (+).
Lemma 3.3.1 (First Order Necessary Condition). Suppose Q is a local maximizer of the

problem (+) in the feasible set, i.e., the set collects all the m x { orthogonal matrix. Then

13
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Q satisfies the equation

(I-QQ")PQ=0. (3.2)

and the corresponding Lagrange multiplier A € R satisfies

A+AT=Q"PQ. (3.3)

Proof. This equation is obtained from the first order condition for optimal solution of an
equality constraint, which states that if 2* is a local maximizer of an equality constraint

optimization problem, then the following equations hold

Vo L(z" ") =0

VaL(z*, ") = 0

where L is the Lagrangian of the equality constraint optimization problem and A* is the

corresponding Lagrange multiplier.

Notice that any m x n matrix M can be seen as an mn vector by vectorizing M as
vec(M). Also, one of the relation between vec(e) and Kronecker product ® is vec(AX B) =

(BT ® A)vec(X). By using these technique, the Lagrangian of (+) is given as

£@Q.A) = ;H(QTPQ) - w(AT(@QTQ - 1)
= %V@C(Q)T vec(PQ) — vec(A) " vec(Q'Q — I)

= £ vee(Q)T (1 @ P) vee(Q) — vee(A) vee(QTQ ~ )

and the first order conditions can be represented by the derivative of Lagrangian as

Vi@ L£(Q, A) = (I ® P)vee(Q) — [Kim(Q ® Ir) + (I ® Q)] vee(A) = 0

Vvec(A)£<Q7 A) = VCC(QTQ — Ig) =0

where K ,,, denotes the communication matrix corresponding to £ x m matrix. By folding

14
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the vectorized matrix back, the above equations leads to

PQ-QA+AT)=0

Q'Q-I,=0.

Applying Q" to the left of each side in the first equation and Using the second equation
derives the relation A + A" = QT PQ. By substituting (A + A") as Q" PQ in the first

equation, the first order conditions can be rewritten as

(I-QQ"PQ=0
R'Q=1,

Lemma 3.3 gives the necessary conditions for feasible points and the corresponding
Lagrange multiplier. The following lemma improves the result. It provides the explicit

solutions that satisfy these conditions.

Lemma 3.3.2. Let Q be a feasible points of the problem (+). Then Q satisfies the first
order condition (3.2) if and only if each column of QR is an eigenvector of P for some

orthogonal matrix R € R,

Proof. For the “if* part, since the columns of QR are eigenvectors of P, the connection
between P and QR is given as PQR = QRS, where S is a diagonal matrix with the

corresponding eigenvalues on its diagonal entries. By directly calculation,

(I-QQ")YPQR=(I-QQ")QRS =0

and hence

(I-QQ"PQ=0
by multiplying R to the right of both sides. This equation shows that @ satisfies the first
order condition (3.2).
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For the ‘only if* part, suppose @ satisfies the first order condition (I — QQ")PQ =
0. Since (I — QQT) is the projection matrix onto the orthogonal complement of the
range of Q, the first order condition means that the component of each columns of PQ
in the orthogonal complement is 0, i.e., each column of PQ is a vector in the range of Q.
Therefore, each column of PQ can be written as the linear combination of the columns

of @ and hence
PQ=QB

for some B € R™‘. By applying Q" to the left of both sides, the equation becomes
B = Q" PQ which is a symmetric matrix. Therefore, B has eigenvalue decomposition
B = RSR' for some orthogonal matrix R and diagonal matrix S. This decomposition
gives the relation

PQ =QRSR'

and hence

P(QR) = (QR)S

by multiplying R to the right of both sides. This equation shows each column of (QR) is

an eigenvector of P since S is diagonal. [

Now we check the second order condition. The preparation for computing second
order condition is finding the null space spanned by the gradient of constrains. Let g(Q)
denote the constraint function g(Q) = vec(Q'Q — I;) = 0, and Ng denote the null
space of the linear space spanned by the gradients of constrains V..(g)g(Q) at Q. The

following lemma gives some explicit representations of the null space Ng.

Lemma 3.3.3. The null space N is given as
Ng={vec(Z): ZeR™ Q"' Z+2Z'Q =0}
or equivalently,

Ng = {VeC(QB +Q.C): B¢ R C e R(m*f)M’B _ _BT}
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where Q | is am x (m — () orthogonal matrix satisfies Q| Q = 0, i.e., Q| contains the

basis of orthogonal complements of the range of Q.

Proof. By direct calculation, the gradient matrix of constraints at (Q is given as

VVGC(Q)g(Q) = KZ,m(Q ® Ié) + (IE ® Q)

According to the definition of Mg, every element vec(Z) in N satisfies the condition
[Kim(Q®I)+ (I, Q)] vec(Z) =0

which leads to

Q'Z+Z'Q=0o.

This computation shows that Ng C {vec(Z): Z e R™* Q"Z+ Z'Q =0}. The

equality can be proved by computing the dimension of each space.

Since the columns of @ and Q; can span R™, any matrix Z € R™¢ can be repre-
sented as Z = QB + Q, C, where B € R*‘ and C € R(™9*!_ Another equivalent

condition for null space is obtained by plugging this representation into the condition
Q' (@B+Q.C)+(QB+Q.C)'Q=B+B'=0.
Hence

Ng ={vee(@B+Q,C): BeR* CecR"™ " B=-BT}.

The second order necessary condition can be written out by the explicit form of the

null space.

Lemma 3.3.4 (Second Order Necessary Condition). Suppose Q is a local maximizer of
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(+). Then Q satisfies the inequality
t(Z'PZ - Z'ZQ"PQ) <0.

forallvec(Z) € No.

Proof. The second order necessary condition is
Vec(Z)TVéQﬁ(Q,A) vec(Z) <0

for all vec(Z) € Ng. By the relation of Lagrange multiplier at the feasible point (3.3) as

A+ AT = QTPQ, the gradient of £ by Q can be written as

VaL(Q,A) = (I P)vece(Q) — [Kim(Q @ I) + (I ® Q)] vec(A)
= (I ® P)vec(Q) — vec(QAT + QA)
= (I®P)vec(Q) — [(A" +A) ® I, vec(Q)

= (I ®P)vec(Q) — (Q'PQ ® I,,) vec(Q)

Hence the Hessian matrix is
Vool QAN =IToP-Q'PQaI,
The second order necessary condition can be rewritten as

vee(Z) ' Voo L(Q,A) vee(Z) = vec(Z) ' vec(PZ — ZQ' PQ)

=twr(Z'PZ-Z"'ZQ"PQ) <0.

]

Finally, the main theorem of this part can be proved by the first and second order

necessary conditions.
Theorem 3.3.5 (Local Maximizer of Optimization Problem). Let Ay > Ao > ... > )\, >
Aeg1 > ... > A\, be the eigenvalues of P and let Q. be the corresponding leading ¢
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eigenvectors. Then Q is an local maximizer of (+) if and only if Q = Q. R, for some

{ x 0 orthogonal matrix R,.

Proof. By Lemma 3.3.2, for all  that satisfies the first order condition, there exists an
orthogonal matrix R such that each column of QR is an eigenvector of P. By computing

eigenvalue value decomposition,

=(QR)S(QR)' +Q.5.Q]

where @ contains (m — ) eigenvector that orthogonal to QR, S = diag(sy, s2, ..., S¢),

1

S| = diag(st, sy, ...,5- ,)and sy, 82,...,8¢, 81,55, .. form all eigenvalues of

7m€

P. By Lemma 3.3.3, the element ( ) € Ng can be represented as Z = QB + Q ,C

with B = — B. These relations lead to a representation of second order condition as

r(Z'PZ - Z"'ZQ'PQ)
=tr((QB+Q.C) (QR)S(QR)' +Q.5.Q)(QB+Q.C)

-(@B+Q.0)'(QB+Q.C)Q'((QRR)S(QR)' +Q.5.Q))Q)
=tr((B'"RSR'B) +tr(C'S,.C) —tr(B'"BRSR') —tr(C'"CRSR") <0

By the properties of trace and the relation B = —B ', tr(BTBRSR") = tr(BRSR'B") =
tr(B'RSR'B). Also,since RR" = I,,tr(C'S,C) =tr(RR'C"S,C) = tr((CR)" S, (CR)

Hence the second order condition in Lemma 3.3.4 can be written as

tr(B"RSR'B) +tt(C'S,C) —tr(B"BRSR'") —tr(C'CRSR")

:tr((CR)TSlCR) —tr((CR)'(CR)S))

m—{) )

L L
§ : 1.2 §

i=1 j=1 i=1 j=1

—~

Il
B

forall CR = [¢;;] € R™*(m=9),

Let Q. denotes the leading ¢ eigenvectors of P. Suppose QR contains eigenvector

other than leading ¢ singular vectors of P. Then s > s, for some a and b. Now pick 5]
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as ¢ = 1 and ¢;; = 0 otherwise. Then

This inequality conflicts to the second order necessary condition. On the other hand, sup-
pose QR = Q.. Then S = diag(\i, \g,..., \,) and S| = diag(A\p41,...,A\n). Hence

for all [c;;] € R™*(m=0),

—0)

¢ ¢
ZSILC%— Z ?S (Aer1 — o) ZZ S

1 =1 =1 j=1 =1 j=1

—0)

3
)

(

%

by (Aer1 — Ar) < 0 and Z m—t) E§:1 s;c;; < 0. This inequality obeys the second order
necessary condition.

To sum up, a feasible point @ satisfies the first and second order necessary condition
if and only if @ = Q. R, for some orthogonal matrix R, = R'. Lemma 3.1.1 shows

that Q. R, is global maximizer, and hence local maximizer. OJ

Theorem 3.3.5 provides that the only type of local maximizer is the orthogonal matrix
that formed by the leading ¢ eigenvectors of the matrix P (with some right orthogonal
transformation), which is the integrated subspaces defined in (2.1) or (3.1). This result
shows that if a line search can prevent the iterator from saddle points, it can find out the

integrated subspace successfully.
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Chapter 4

Integration Method

As shown in Chapter 2, the integrated subspace is the leading eigenvectors of the ma-
trix P, or the singular vectors of the matrix [Q[ll Q|- Qv | - Therefore, canonical
SVD (for example, the SVD routine in MATLAB or LAPACK [2]) can be applied to solve
this eigenvectors problem. However, the computational complexity of canonical SVD is
O(N?m(?), which is much slower when N increasing. Hence in this chapter, we intro-
duce some other methods to compute the integrated subspace with different computational

complexity than O(N?m/?).

4.1 Line Search Type Method

Since the integrated subspace is defined by an optimization problem, it is reasonable to use
the algorithm for solving the optimization problem for computing the integrated subspace.
A classical method for solving the optimization problem is line search methods. Gradient
descent method (in our case, gradient ascent method) is widely used among the line search

methods. The update scheme for unconstraint gradient ascent method is
Tpi1 = T+ %V f(Th)

where f is the objective function and 7y is the step size needed to search in the n-th it-

eration. In the viewpoint of line search, in each iteration, we define a curve (1) =
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@y + 7V f (). This curve is a straight line stating at the point x;, and point to the direc-
tion V f(x;), which is the steeps ascent direction of objective function at . The point for
next iteration is given by finding a suitable step size 7 and define @y, = ~;(7). These
explanations shows the main concept of gradient ascent method. It tries to find the optimal
solution by walking along the curve with steepest direction in each step with suitable step

size.

The main issue for this algorithm is to find a suitable step size 7. If the step size is
too large, it may be difficult to reach the optimal solution because it may walk too far.
However, if the step size is too small, it may need more iteration to reach the optimal
solution. One of the popular methods for selecting step size is using the back tracking

method with Armijo-Wolfe condition (for maximization problem)

f(e + 7epr) > f(x) + prepy V f (201

LV (x4 mepr) < popyp Vf ()

where p, py is parameters that can be chosen and p, = V f(x) in gradient ascend. The
second condition always holds due to the design of algorithm. Hence we just need to
focus on the first condition. We use Armijo rule for simplicity in the following content.
The back tracking method tries to find the step size 7 satisfied the Armijo rule by the
following steps. First, assign an initial guess of step size, such as 1. Then test whether
this step size satisfies the Armijo rule. Suppose not, multiply this step size by a positive
constant 5 < 1 and test it again. Repeat these processes until the step size satisfies the

Armijo rule and set it into 7.

For the constraint optimization problem, the gradient ascent method needs to be mod-
ified. Here we choose to use the viewpoint of the gradient ascent method on Stiefel man-

ifold. The Stiefel manifold is the manifold consisted of all m x ¢ orthogonal matrices

Sume={Q eR™".QTQ =1}

which is exactly our constraint in the optimization problem.
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Define

1

F(Q) = ;w(Q"PQ)

as our objective function. We denote the gradient of /" at @ as

where the equality can be computed easily. On the manifold, the gradient in the Euclidean
space may not represent the direction (tangent) at a point. Hence we need to project the

gradient to the tangent space on the manifold for further derivation.

Lemma 4.1.1. The projected gradient of F' onto the tangent space TqS,, ¢ of Stiefel man-
ifold S, ¢ is
Dr(Q) = (I-QQ"PQ.

Proof. First we find a necessary and sufficient condition for X being in 7S, ,. For all
X € TS84, findapath T'(¢) in S, with T'(0) = Q and IV(0) = X. FromT'(¢) 'T'(¢) =

1, differentiate each side by ¢ and take ¢ = 0, we have

X'Q+Q'X =0, (4.1)

which gives a necessary condition for X € 7S, . There are ¢(¢ + 1)/2 conditions for
X in (4.1) and the dimension of 7S, is ml — ¢(¢ + 1)/2, which means (4.1) is also
a sufficient condition for X € 7S, .. By taking vec to each sides of (4.1), we get the
equality

(QT®I)K,,,+ (I; ® Q)] vec(X) = 0.

Define T = K;,,(Q ® I)) + (I, ® Q) and get T'" vec(X) = 0. This shows that the
tangent space (after vectorizing each elements) is contained in the null space of T'". One
can compute the rank of T" and shows that the null space of T'" is actually the tangent

space. Hence the projection matrix onto the tangent space is given by (I — Pr), where

Pr=T(T"T)"T" and (T"T)* denoted the Moore-Penrose pseudo-inverse. With P,
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Dy can be given via vec(Dr) = (I — Pr)vec(Gr). With some calculation, we have

T=(I,® Q)(Ie + K,/) and thus

T'T = (I + Ke,z)T(Ie ®Q) (I ® Q)L + Kyy)

= (Ig2 + K&g)([ﬁ + K&g) = 2(152 + K&g).

Then the projection matrix Pr can be calculated as:

Pr=T(T'T)"T"
1
=T, 2Q) e+ Kz,@)ﬁ(I@ + Ko ) (I + Kop) (L 2Q)"

= %(Ie @ Q) + Kyy) (I ® QT)%(Ie ®QQ") + %(QT ® Q) K.

Hence, by vec(Dr) = (I — Pr)vec(Gr),

vee(Dr) = (I — (1.9 QQT) — 1@ © Q) Ko ) vee(Gr)

1

~ veo(Gp) — %(Ig ©QQ")vec(Gr) ~ 5@ © @)Ky vee(Gy)

= vec(Gr) — %VGC(QQTGF) — %Vec(QG;Q)

and Dy can be written as

D; - (1-;007) Gr - ;Q67@ @2)

Since we have the property Q' Gr(Q) = Gr(Q)" Q here, we can get Dp(Q) = (I —
QQ")Gr(Q). This completes the proof. O

Algorithm 3 is rewritten from [1] by the notation in this thesis and the projected gra-
dient as above. Note that the function F/(M) denote the function that orthogonalize M
first (hence this point is in the Stiefel manifold) and then plug into F'.

The basic concept of Algorithm 3 is same as the gradient ascent method described
previously. For each step, we find the projected gradient, which is the steepest direction
on the manifold. Then we walk along this direction with a suitable step size decide by

backtracking and Armijo-Wolfe condition. The difference is that we need to retract back
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Algorithm 3 Integration of {Qy; }~, based on Armijo line search.

Require: Qy,Qy, . .., Qn) (subspace matrices), Qiy; (initial guess), 7o > 0 (initial step
size), B € (0, 1) (scaling parameter for step size searching), p € (0, 1) (parameters
for step size searching)

Ensure: Integrated subspace matrix @ based on Armijo line search

1: Initialize the current iterate Q. < Qini

2: while (not convergent) do

3:  Compute the gradient on manifold X = (I,, — Q.Q.)PQ.

4:  Find the smallest integer ;7 > 0 such that the following inequality holds:

F(Q. + 1 X) > F(Q.) +nfpll X|I%

5. Orthogonalize (Q.+ 793’ X) (for example, by QR-decomposition or polar decom-
position) as Q.

6: Assign Q.+ Q.
7: end while
8: Output Q = Q.

to the manifold before we calculate the objective function and before the next iteration. In
this algorithm, it uses orthogonalization as the retraction.

In [1], the convergent theorem is also provided. Here we translate the theorem and
write down the most important part as Theorem 4.1.2. Note that in the theorem, a critical
point z,. (the points that make projected gradient is 0) is stable, if for any neighborhood &/
around z,, there exists another neighborhood ) around z., such that if the initial value start
in V, then after any finite steps, the result will be in /. A critical point is asymptotically
stable if it is stable, and the condition also holds as the number of steps tends to infinity.

A critical point is unstable if it is not stable.

Theorem 4.1.2 (Convergence theory for Algorithm 3). Let \y > Xy > ... > Ay >
Aes1 > ... > A\, be the eigenvalues of P and let Q. be the corresponding leading ¢
eigenvectors. Algorithm 3 converge to the orthogonal matrix Q with each column are
eigenvectors of P. Among all the critical points, Q. (up to a right orthogonal transform)
is the only asymptotically stable point with the linear convergent rate. Other critical points

are unstable.

This theorem gives the promise of the convergence. Also, our result for the property of
optimization problem in Chapter 3 can support this result. The critical points are actually

the points satisfying first order condition 3.2. Among these points, only @, satisfies the
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second order condition, which is related to the condition of stable points.

However, same as the traditional gradient ascent method, the convergent rate of the
Algorithm 3 is linear. This could be a problem since it might take many steps to converge.
Here we provide another algorithm. Algorithm 4 is rewritten by the notation and objective

function in this thesis from the algorithm proposed by Wen and Yin [11].

This algorithm is based on gradient ascent method which is similar to Algorithm 3.
However, some modification is introduced for this algorithm. The method to retract the
point back to the manifold is changed in this modified algorithm. The searching path
at current point Q. is defined as I (1) = (I — IM)"'(I + IM)Q., where M =

GQ! — Q.G and G = PQ. is the gradient of the objective function in Euclidean

space. By using Woodbury matrix identity, the searching path is same as
[ —p—
Lq. (T) =Q.— TL(-I% + §TR L) R Q. (4.3)

where L = [-G Q.] and R = [Q. G]. This modification decreases the matrix size
to compute inverse. As mentioned in [11], this path also satisfies some properties, hence

Theorem 4.1.2 also holds for this algorithm.

Algorithm 4 also uses the Barzilai-Borwein step size [3] (BB step size) to accelerate
this gradient method, and the nonmonotone strategy in [12] to prevent stuck in the local
optimal points. The Armijo rule in the Algorithm 4 is

dF(Tq.(1))

F(Tq.(7)) = F(Iq.(0)) + 70 "

The nonmonotone strategy in [12] modified the Armijo rule by

dF(Tq.(7))

Fr >
(Tq.(r) 2 ¢+ 7o =28

where c is a scalar updated in each iteration by ¢ < (nCc+ F((Q+))/(n¢ + 1) and then
¢ < n¢ + 1 for a given parameter 7. The initial value of ¢ is F'(Qj,). This condition

soften the Armijo rule and increase the chance to jump out the local minimum.
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The BB step size is the simulation for Newton’s method, in a more efficient way.
They consider the update scheme x;.; = x; + Skgir. In Newton’s method, the matrix
S}, is the Hessian matrix of objective function. They set the matrix S, = 7,1, where
Ty 18 the step size needed to computed. Also, they wish Sy can approximately satisfies
the secant condition Ax = S, Ag or Sy Ax = Ag in quasi-Newton’s method, where

Ax = xp — x_1, Ag = gr — gir—1. Hence the step size 73 is determined by
7, = argmin ||Ax — 7Ag|| or 7, = argmin ||[TAx — Ag|| .

The solutions of these minimization problems are

B (Ax, Ag) of s — (Ax, Ax)
T ag, Ag) M T (Aw, Ag)

These tow step size are called BB step size. In our case, the BB step size are

__ «(D[Dy) _ |t(D]Dy)
7 = [a(D[D,)| ' (D, D)

where D; = Q, — Q. and D, = X, — X,.. However, BB step size does not imply the
convergence. Therefore, Algorithm 4 still need to use back tracking method with Armijo-

Wolfe conditions to ensure the convergence of the algorithm.

In each iteration, the most intensive calculation in Algorithm 4 is the multiplication
G = PQ.. This multiplication can be computed by sz\il Q[I.]QC first and then G =
SV Qi [I.]Qc. The first step contains /N matrix multiplication with size ¢ x m and
m x . The second step contains N matrix multiplication with size m x £ and ¢ x ¢. Hence

the complexity for computing G is O(Nm/?).

The remaining steps in each iteration can be computed by using G. First, we consider
the part for line search. The value of objective function can be computed by F(Q) =
tr(Q" G), which is the summation of dot product of two m x ¢ matrices. The complexity
is O(m/). The point on the curve I'_(7) can be solved by a linear system with dimension

¢ matrix multiplication of size m x 2¢ and 2¢ x m, and m x 2¢ and 2¢ x 2¢. The complexity
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Algorithm 4 Integration of {Qy;}1_, based on nonmonotone line search with BB step

size.

Require: Qp), Q2 - - ., Qn) (subspace matrices), Qiy; (initial guess), 7o > 0 (initial step
size), § € (0, 1) (scaling parameter for step size searching), p € (0, 1) (parameter for
step size searching), n € (0, 1) (parameter for next step searching), 7/, 7, (maximum
and minimum for predicting step size)

Ensure: Integrated subspace matrix @ based on Armijo line search with BB step size

1: Initialize Q. < Qini, T + 70, ( = 1, c = F(Q.)

2: while (not convergent) do

3:  Compute the gradient in Euclidean space G = PQ.

4 SetL=[-G QJand R=[Q. G|.

5:  Find the smallest integer ; > 0 such that the following inequality holds:

F(Tq.(737) = ¢+ 7#p | Q.GT - GQ!|,

where g (1) = Q. — TL(I+ 37RTL) 'R Q,
6 Assign Q; = Qu(7H))
7. Update ¢ < (n¢c+ F((Q+))/(n¢ + 1) and then ¢ +— n¢ + 1
8:  Compute the differences D, = Q. — Q. and D, = X, — X, where

Xc = (Im - QCQI)FQC
Xy =UIn— Q+QDPQ+
9:  Assign 7 < max(min(7yyess, Tar), Tm ), Where

__ «(D[Dy) _ |t(D]Dy)
7 = [a(D[D,)| " (D, D)

10:  Assign Q. <+ Q.
11: end while

12: Output Q = Q.
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is O(m¢?* + (3). Hence the total complexity for line search is O(I;,er (mf? + £3)), where
L;nner denotes the number of iteration of line search (inner loop). Second, we consider the
part for updating c. The main calculation of this part is the computation of the objective
function. Hence the complexity of this part is O(m/). Finally, we consider the part for
computing BB step size. The main computation in this part is X |, which need to calculate
G, = PQ.. However, this computation can be directly used in next iteration. Hence
we compute the complexity of this part in the next iteration. For other components, they
need matrix multiplication with complexity O(m/¢?). Also, it needs O(m/) to compute
each trace for computing 7,yess.

To sum up, suppose we use Iy iteration to converge, then the computational com-
plexity of Algorithm 4 is Iyyry (O(Nmt?) 4+ O(Lipner (M€ +£3)) +O(ml) +O(ml%+ml)),
which is dominate by the term O (Iyy Nmé?), suppose Lippe, is controlled. (This assump-

tion is reasonable since ;.. 1s often restricted within some number.)

4.2 Kolmogorov-Nagumo-Type Average

Besides using the viewpoint from line search method, one can use another viewpoint from
the average on Stiefel manifold to compute the integrated subspace. Algorithm 5 is in-
spired by the Kolmogorov-Nagumo-type average on Stiefel manifold [8, 5]. If a pair of
retraction map and lifting map is defined, then the algorithm can be generate by a fixed
point method scheme. In these paper, a retraction map at a point @ on Stiefel manifold
is defined as a map goél : ToSme — Sme from the tangent space at @Q to the Stiefel

1

manifold and satisfies the following three conditions: (1) g can be defined around

0 € TSme (2) pg (0) = Q and (3) Lt

= X. The corresponding lifting
t=0
map is amap ¢q : Smy¢ — ToSm, from the Stiefel manifold to the tangent space and

satisfies gpél(goQ(W)) = W. The fixed point scheme defied by this pair of lifting and

retraction map is
| XN
Qi = vo. (N Z @QC(QM)> :
i=1
Note that @ is an Kolmogorove-Nagumo average of Q|;.
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Algorithm 5 Integration of {Qy; 1 | as Kolmogorov-Nagumo-type average.

Require: Qy),Qy, . .., Q|n) (subspaces matrices), Qi,; (initial guest)
Ensure: Integrated subspace matrix @ based on the Kolmogorov-Nagumo-type average
1: Initialize the current iterate Q. < Qi
2: while (not convergent) do
3:  Perform the lifting map and average X = (I,, — Q.Q.)PQ.
4:  Perform the retraction map Q. <+ Q.C + XC!,

where C = {1 + (1 — XTX>1/2}1/2
=932 1

50 Assign Q. < Q.
6: end while
7: Output Q = Q.

To connect the KN-type average to our integration problem (3.1), the lifting map is

chosen as

()OQc(W> = (Im - QCQZ)WWTQC

which is an element in tangent space since Q. pg. (W) + . (W)'Q. = 0+ 0 = 0 for

any W € S,,, ;. This choice makes the average of Q|; on tangent space becomes

N

N
=1

i=1

which is the projected gradient at Q.. The problem now is what the corresponding retrac-

tion map is. As proposed in [4], the corresponding retraction map is chosen as
vo (X)=Q.LC+XC™! (4.4)

where C' = {% + (% - X'X > 1/2}1/2. Algorithm 5 summarize these two maps with
the fixed point scheme.

Here we give a quick derivation and check for the retraction map. For more detailed
results, please refer to [4]. We want to find the retraction map 90(31 (X). Observe that from
our choice of lifting map, we have the condition Q. pq. (W) = 0 forany W € S, .
Also, the condition we want for the retraction map is @él(wQ(W)) = W. Hence the
condition X = ¢pqo(W) is a reasonable assumption. Also, assume goa(X ) =Q.C +

X B. This assumption means that 90221 (X)) is spanned by the columns of Q. and X.

30

doi:10.6342/NTU201702973



By using the condition gpéi(X ) € Sy and goél(goQ(W)) = W, we get the following

equations
.

I=(Q.C+XB)'(Q.C+ XB)

W =Q.C +XB

\X = (I - QCQZ)WWTQC

Plug the second equation into third equation, we get X = X BC''. Here we add an
assumption that C is invertible and symmetric. Hence we have X B = XC~!. Plug
this back to the first equation and get I = C? + C~'X " XC~!. This equation leads to
C? = C* + X" X. Square this equation and get (C* — £)> = £ — X T X, and hence

1/2) 1/2
C = {% + (i — XTX) } . To sum up, our guessed retraction map is same as the

one given in (4.4).

No matter how many assumptions that we use for guessing the retraction map, we just
need to check whether (4.4) is a corresponding retraction. We need to check the three
conditions for retraction first. The guessed retraction map cpa (X)) can be defined around
0 € TqSm, since C can be defined for tr(X " X) < ;. The guessed retraction map
satisfies 90(51(0) = Q by directly computation. To check the third condition, we write
vo (tX) = QC(t) + tX C'(t). Derivative ¢ to the both sides of condition C(t)* —
Ct)?+t2XTX =0, we get

&(t)
d(?C (1)
T

dC(#)

C(t)* + C‘(75)7<tc,*(zf)2 + C(t)QM

dt
C(t) + C(t)%t(t) +2tX"X =0.

5 (tX)

When ¢ = 0, C(0) = I and hence 9| = 0. Hence we can get g 1X)

= X.
|, dt

t=0

Now we check the condition that ¢g,' (9o(W)) = W. Here we may assume W 'Q
is symmetric. Suppose not, compute the SVD of W'Q = USV " and replace W by
WUV Let X = po(W) = (I — Q.Q) YWW Q.. Hence we get the equation

XX =(W'Q’-(W'Q)"
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Solve for (W Q) and get W' Q = C. Hence we can directly compute

v (po(W)) =Q.C+XC™!
=QC+(I-QQ"YWwW'QC'.

-Q.C+WCC' -C*C' =W

Note that in the definition of integrated subspace, it is defined with orthogonal invariance
of Q. Hence it is reasonable to assume W can be transformed by UV and satisfy the

condition that W' Q is symmetric.

An important issue in Algorithm 5 is the well definite of the matrix C. We need to
check that (£ — X T X)) is semi positive definite for X = (I —Q.Q.)PQ., and hence the
square root of matrix can be defined (by SVD). It is equivalent to check HX TX H2 < %.
It is also equivalent to check || X ||, < % by the relation || X "X H2 = || X||2. By triangle

inequality, we have

1 N

| X, < N Z(I - Q.Q))QuQ}Q..

i=1

Now we check that for every W € S,, 4, the inequality ||I — Q.Q)WWTQ.|, < i

holds. It is equivalent to prove ||(I — Q. Q) )WWTQ.)'(I - Q.Q1 ) WWTQ.)||, <
%. Suppose the SVD of Q] W = USV'. Then by directly computation

H(I - QCQI)WWTQC)T(I - QCQI)WWTQC)HQ
=|lUus*U -Us'U||,

~ s - 57,

Note that S is diagonal matrix, and hence (S? — S*) is also diagonal matrix. For any
real number x, we have the inequality (z? — 2?) = — (2% — %)2 + i < %1. This equation
shows that all diagonal entries of (S? — S*) is no greater than ;. This result leads to

|S% — S§*||, < 1. The check is completed by tracing back the statements.

The convergence of Algorithm 5 is given as the following theorem. For the detailed
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proof, please refer to [4].

Theorem 4.2.1. There exists an € > 0 such that KN-average algorithm converges, pro-
vided that the iteration starts from an initial Qi € N-(Q.Ry), where Ry is an arbitrary

orthogonal matrix.

The Algorithm 5 can be also seen as a kind of gradient ascent method due to the selec-
tion of lifting map. Therefore, the computational complexity of this algorithm is similar
to Algorithm 4. The dominant term of computational complexity is O(IxyNmt?) if the
algorithm needs [y iteration to converge. The dominant term is also comes from the
computation of the projected gradient X = (I,, — Q.Q.)PQ., which is the average of

lifting map for all sample subspaces Q ;.

4.3 Reduction-Type Average

The main idea for this method is grouping the sample subspaces Q) into several group,
computing the integrated subspace of each groups, and then integrating these integrated
subspaces. For example, suppose we have 4 sample subspaces need to be integrated and
we choose the grouping number as 2. This method computes the leading ¢ left singular
vectors of [Qp) Q] as Q2. Which is the integrated subspaces of Q) and Qy. Next
this method computes the leading ¢ left singular vectors of [Q3) Qpy] as Q3,4. Then this
method computes the average Q as leading / left singular vectors of Q.2 Q3,4 If the
number of sample subspaces is more than 4, we can do it hierarchically.

The concept of reduction can be extended to any grouping number. However, we only
consider the case that the grouping number is 2. The advantage of this case is that the
leading left singular vectors of M = [Q; Q>] can be written explicitly by the SVD of
a small matrix Q{ Q, = USV". Suppose the SVD of M = LXR" and the SVD of
Q! Q, = USV". The leading left singular vectors L, can be obtained via the leading

right singular vectors R, and leading singular values 33, as

L, = MR,3,.
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Now, the problem is how to find the matrix R, and 3,. These two matrices can be ob-

tained by the eigenvalue decompositionof M " M = RX?R". The singular value (eigen-

value) decomposition of M " M can be write down explicitly by the SVD of Q| Q- =

USVT as
MM — I, Q[Q:
Q, Q: I,
I, Usv’
VSU' I,
1 (U U I1+S
V2 ly vy -8
U
Hence ¥, =1+ S, Rg:\% and
Vv

1

Ly=M— v (I+S)=(QU +Q.V)(2(I + S))fé.

V2 ly

Sl

Combine the above derivation and the hierarchical structure of the reduction, we can

write down the algorithm as Algorithm 6.

Algorithm 6 Reduction

Require: The orthogonal matrices to be integrated Qi), Q[2, - - -

Ensure: The average Q.
1: Setn = N.
while n > 1 do
Setm = | 5]
fori:=1,2,...,mdo
Find SVD of Q[Ti]Q[Hm] asUSV .

end for
n [g}
end while

. Q = Qpu.

A e AT ANl

1

(=

Qi+ (QuU + Qv V) (2(I + S)) 2.

34

doi:10.6342/NTU201702973



Since we have the explicit form of the integration of two subspaces, the computational
cost of reduction becomes very cheap. The computation of integration of each pair of sub-
spaces only needs matrix multiplication for m x ¢ and ¢ x ¢ matrices. The computational
complexity of this part is O(m¢?). Also, only an £ x £ SVD needs to be computed for each
pair. The computational complexity of this part is O(¢3). For each pair, the computa-
tional complexity is O(m¢* + ¢3), which is dominated by O(m/?). Due to the hierarchical
structure of reduction, there are only (N — 1) pairs need to be applied these processes.
Therefore, the computational complexity of reduction is O(Nm/(?), which is lower than
the line search methods and canonical SVD.

The intuition of this algorithm is that if each group can get a good integrated subspace,
the final integrated subspaces is also a good subspace. Since Q; are sketched from a
same matrix A, the last statement should be correct in some sense. However, there is no
related theory so far. In theory, the leading ¢ left singular vectors of [Q1,9) Qy3,47] is in
general not the integrated subspace defined in (2.1), which is the left singular vectors of
Q) Q) Q3 Qq]- Although this fact, reduction still gives a roughly integrated sub-
space in our numerical experiment. Also, in the experiment, we try to use the result from

reduction as the initial value of the line search algorithm.
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Chapter 5

Comparison of rSVD and iSVD

Some comparison of rSVD and iSVD with same sketching number is shown in this chapter.
In the beginning, we shall explain the meaning of rSVD and iSVD with same sketching
number. Suppose in iSVD, we generate N sample subspace with rank ¢. These numbers
mean the sample subspace Q; is an m x £ orthogonal matrix for: = 1,2,..., N. To
generate these subspaces, we need to compute Yj; = A; for all 7. In the block matrix

form

{Y[1]|Y[2]| e |l/[N]} =A [9[1}19[2]| - |

Now we change the viewpoint from iISVD to rSVD. Suppose the random matrix for

sketching is 2 = [Q[l} Q|- | N}} which is an n x N/ matrix. Then the sketched

matrix is Y = AQ = [Y[”|Y[Q]| . |Y[N]] which is same as the case in iSVD. This
derivation shows that using N sample subspaces with rank % in iSVD is equivalent to
using N/ sketches in rSVD. Actually, both of them need to compute the same number of
sketches. This is the meaning of rSVD and iSVD with same sketching number.

In common case, rSVD finds the orthogonal matrix of Y as @ and compute the SVD
of QQT A as an approximation of the low-rank SVD. However, one can also find the
leading singular vectors of Y as @ instead of using all the information from Y. This
can reduce the computational cost for computing the SVD of QQ " A. In the following
discussion and the numerical experiment, this technique is included when we write the

term ‘iISVD and rSVD with same sketching number.’
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Now we can compare iSVD and rSVD with same sketching number. For rSVD, after

sketching, we need to find the leading singular vectors of

[Ym!Ym\ e !Y[NJ

as Q, and then computing the SVD of QQ ' A. In iSVD, after sketching, we need to
orthogonalize YJ; into Qy;, and then find the integrated subspace Q. As mentioned in the

previous chapter, we need to find the leading singular vectors of the matrix

QulQul - 1Qu

as @, and then computing the SVD of Q—QTA. Therefore, the difference between iSVD

and rSVD is finding the different subspace to approximate the original matrix A.

Intuitively, the approximation by rSVD may be accurate than iSVD since the block
matrix in iSVD is the orthogonalization of each block in rfSVD, which may loose the
information of length. The numerical result shows that rfSVD with same sketching number
is slightly better than iSVD for accuracy. However, in theory, iSVD still get the exact low-

rank approximation of A if the number of sample subspace N goes large.

Due to the similarity between rSVD and iSVD, we can explain rSVD in the view-
point of integration same as iSVD. Similar to the averaging concept as Theorem 3.2.1, the

corresponding theorem for rSVD can be described as the following theorem.

Theorem 5.0.1. Let the SVD of Abe A=UXV . LetY = AQ, where S is randomly

generated by i.i.d. standard normal entries. Then

B [Yv] - UstUT
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Proof. By direct computation,

E[YyY,] = E[AQuQ;AT]
= AE [Q; 9] AT

= AILLA" =UX*U"

where [Q[i]Q[Ti]} = I, is derived directly from the condition that €2 is randomly gener-

ated by 1.i.d. standard normal entries. [

The difference between the theorem for iSVD and rSVD is the spectrum matrix of
the expected value. For rSVD, the spectrum matrix is X%, which is directly related to the
spectrum of A. For iSVD, the spectrum matrix is A, which we can just describe some
properties in the theorem.

For computing the leading singular vectors in rSVD, one can also use Algorithm 4

(WY) by replacing the matrix P as

1 N
D T
P= - YY)
i=1

However, Algorithm 5 (KN) can not be applied directly since the well definite of the
retraction map will use the orthogonal property of Q;;. The idea of reduction can be
applied to rSVD. However, there is no explicit form for two subspace Y/[;}, Y. It can not

generate the fast algorithm as Algorithm 6.
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Chapter 6

Numerical Experiment

In this section, the performance of iISVD will be tested through the numerical experiment.
The codes for testing are implemented in MATLAB. The desired rank in all the test is k =
10 and the exact sampling rank is ¢ = 22. If a test only needs to observe the performance
without timing, it is run on the machines with the larger size of memory. If a test needs
to record the timing result, it is run on the MacBook Pro (Mid. 2014). (Processor: 2.6
GHz Intel Core i5. 2 cores. 4 threads. Memory: 8 GB 1600 MHz DDR3). All the tests
follows the same steps as Algorithm 1 (rSVD) or Algorithm 2 (iSVD), but may use the
different integration method. Table 6.1 shows the abbreviation and detail information of
the integration algorithm used in this section.

The test matrices used in this paper are modified from the test matrix in [10]. These ma-
trices are generated by the form A = H,, X H|, where H,, denotes the m x m Hadamard
matrix (a kind of orthogonal matrix with all the entries are 1 or —1), H,, denotes the n x n

Hadamard matrix, m = 2%, n = 2m = 2%*! and X is an m x n diagonal matrix. In this

svds | The MATLAB built-in command svds

WY | Algorithm 4 with parameter 5 = 0.5, p = 10~%, = 0.85.
Convergent condition: ||Dr(Q.)|, < 1072 (iSVD)

Convergent condition: || Dr(Q.)|, < 1073 tr(Y[lT]Ym)/E (rSVD)
Initial value Qi = Qi

KN | Algorithm 5. Convergent condition: || I — C||, < 10~

Initial value Qi = Qi

red. | Reduction, Algorithm 6

Table 6.1: Abbreviation and detail information of the algorithm used in this section.
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thesis, 3 is given by setting its diagonal entries as

i—1

S°F ifi <k

Tii = s(m —1)

—— otherwise
m-—k—1

for s = 10711072 and & = 10. We use Ay (1071) and A5 (1073) to denote the matrix
generated with the case s = 107! and s = 1072 respectively.

The similarity between each column of approximate leading singular vectors U and
exact leading singular vectors U}, are used to measure the accuracy of the approximate
leading left singular vectors U from each test with different methods. The arranged left
singular vectors U of the test matrix is exactly the Hadamard matrix H,,, due to the con-
struction of test matrix. Therefore, we compute the similarity between i-th column by
computing the absolute value of inner product between the ¢-th column of U}, and the -th

column of U. The more inner product close to 1, the better the approximation.

6.1 Different Number of Sketched Subspaces

The purpose of this test is to compare the result for the different choice of the number of
sketched subspaces N with the different test matrix Ay (107") and Ay (1073).

Figure 6.1 shows the similarity for different N with testmatrix Az (107!) and Az (1073).
The accuracy increases as IV increasing, which is coherent to the explanation of 3.2.1 in
Chapter 3. For Ay (1073), as N increasing, the boxes in box plot become shorter. This
provides that the variance of the similarity due to the randomness in sketching step is re-
duced as the number of sampling subspaces goes large. For Ay (107!), the decreasing of
variance is not same as Ay (1073). The reason may be the quality for single subspaces
(N = 1) is not good enough. Hence it is hard to capture the singular vectors after the fifth
one. However, the accuracy still improves as [V increasing, which is still a good result
and coherent to the explanation in Chapter 3.

Next, we study the relation of N and the convergent iteration number of WY. Figure

6.2 shows that no matter the size of the matrix, the number of iteration for convergence
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Comparison of different N, test_matrix: AH(10'1 )524288x1048576
T T T T T T

Comparison of different N, test_matrix: AH(1 0'3)524288x1 048576
T T T T T T T

—— N=1
—%— N=10 |
—%— N=50

—»%— N=100
—%— N=200

08

0.8 |-

0.6 -

0.4

0.4 -

02 0.2 -

absolute inner product of i-th column of (ture U) and (approximate U)

absolute inner product of i-th column of (ture U) and (approximate U)

—— N=1
—*— N=10
—%— N=50
—%— N=100
—%— N=200

(a) Test matrix: Ag(1071)

(b) Test matrix: Az (1073)

Figure 6.1: Similarity for different N. The size of test matrix is m = 2%, n = 22°. For
each cases, we repeat 30 times iISVD with integration method WY and plot out the box
plot of similarity. The box plot represent the maximum, Q3, median, Q1, minimum for

each inner product among 30 times.

tol = 1e-3, test_matrix: A,(10™")
80 T T T T T

80

70 -

60 -

@
3

—¥—d=9
—k— d=11
d=13
—¥— d=15
—k—d=17
d=19

Number of Iteration
s
8

8
f

Number of Iteration
IS
8
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L L L 0
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N
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(a) Test matrix: Ag(1071)

tol = 1e-3, test_matrix: A,(10°%)

70 -

60 -

10

—¥—d=9
—H—d=11
d=13
—H—d=15
—H—d=17
d=19

100 120 140 160 180
N

20 40 60 80 200

(b) Test matrix: Az (1073)

Figure 6.2: Average iteration number to converge for different NV and different size of test
matrix. The size of test matrix is m = 2%, n = 2% for d = 9,11, 13,15, 17,19. Each
point shows the average iteration number among 30 tests.
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has no clear relation to the number of sampling subspaces N. This result is not surprising
since the matrix P tends to be a fixed matrix (expected value in Theorem 3.2.1) as NV goes
large. This is a good news since the computational complexity of WY is O(Iyy Nmt?)
and the computational complexity of canonical SVD is O(N?m/¢?). This figure shows
Iy do not increase as the number of sketched subspaces /V increase. Hence using WY

for integration is better in computational complexity than using canonical SVD.

6.2 Comparison of KN and WY

The purpose of this test is to compare the results of iISVD by using WY and KN. WY is
derived from the viewpoint of line search and KN is derived from the viewpoint of average
on Stiefel manifold. Although they are derived from different viewpoints, both of them
contain the idea of gradient ascent. Therefore, it is interesting to observe the difference
between these two algorithms.

Figure 6.3 shows the accuracy for the approximate singular vectors by using WY and
KN. Both WY and KN can capture the approximate singular vectors with the same accu-
racy when they both converge. This result is coherent to the convergent theory in Section
4 that both of WY and KN converge to the same Q, and hence generate the same U.
However, KN needs more iteration to converge. To eliminate the effect of different con-
vergence criteria, tow more results for the accuracy for WY and KN with same iteration
number are added to the same figure. The approximation from WY is more accurate than
KN when the iteration number is fixed as 15. This difference is not surprising since WY
use BB step size to accelerate the convergence while KN does not use any technique to
accelerate the convergence.

We do more test on the iteration number for WY and KN. Figure 6.4 and Figure 6.5
show the accuracy from WY and KN respectively, with the iteration number 5, 10, 15 and
20. As these tow figure shown, both WY and KN get a better accurate result as the iteration
number goes large. WY converge faster than KN. For the test matrix Az(1071), WY can
get almost same accurate as the converged result with only 20 iteration. For the test matrix

Ap(1073), WY only uses 15 iteration to get the almost same accurate result. In contrast,
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Comparison of KN and WY, test_matrix: AH(1 o )2048x4096
T T T T T T T T

06

0.2 |- | —E3— single sketch
—— ISVD(WY) N =32
iSVD(KN)

—— ISVD(WY) iter = 15
—— ISVD(KN) iter = 15

absolute inner product of i-th column of (ture U) and (approximate U)

L L L
1 2 3

L L L
5 6 7
i

(a) Test matrix: Az (1071)

1 @ i i

Comparison of KN and WY, test_matrix: AH(1 0'3)2048)(4096
T T T T T T T T

0.2 |- | —E— single sketch

—— ISVD(WY) N =32
ISVD(KN)

—%— ISVD(WY) iter = 15

—#— ISVD(KN) iter = 15

absolute inner product of i-th column of (ture U) and (approximate U)

L L L
1 2 3

L L L L L L L
4 5 6 7 8 9 10
i

(b) Test matrix: Ay (1073)

time(sec) iISVD(WY) | iSVD(KN) | iSVD(WY, fix iter) | iISVD(KN, fix iter)
iteration number
Ap(1071) 0.964061 1.634885 0.266471 0.113637
61 242 15 15
Ay (1073) 1.363975 1.538313 0.243105 0.142008
84 218 15 15

Figure 6.3: Comparison of the approximate singular vectors by using WY and KN. The
size of test matrix is m = 2!', n = 2'? and the sampling number N = 32. All of these
test use the same 32 sketched subspaces Q;. The first line in the legend represents the
similarity of Q = Q. The second and third lines are the result from WY and KN re-
spectively. The forth and fifth lines are from WY and KN respectively with fixed iteration

number 15.
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Comparison of different iteration number of WY, test_matrix: A, (1 07)2048x4096 Comparison of different iteration number of WY, test_matrix: A_(1 07%)2048x4096
T T T T T T T T T T T T T T T

" e——a— g .
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—%— ISVD(WY) iter = 15 —— ISVD(WY) iter = 15
iSVD(WY) iter = 20 ISVD(WY) iter = 20
ol . . . . . . . . . ol . . . . . . . . .
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absolute inner product of i-th column of (ture U) and (approximate U)

absolute inner product of i-th column of (ture U) and (approximate U)

(a) Test matrix: Ag(1071) (b) Test matrix: Az (1073)

Figure 6.4: WY with different iteration numbers. The sketched subspaces Q; are same
in Figure 6.3. The first line in the legend represents the similarity for the case Q = Q.
The second line is the similarity from WY (with 61 iteration for Az (107") and 84 iteration
for Ay (1073) to converge). The third to sixth lines are from WY with iteration number
5,10, 15, 20 respectively.

Comparison of different iteration number of KN, test_matrix: AH(1 o' )2048x4096 Comparison of different iteration number of KN, test_matrix: AH(10'3)2048x4096
T T T T T T T T T T T T T T T T T T T T
T @ —e—a 4 1 T @E—a—a—6—=6 a— @

0.8

0.6

—3— single sketch
0.2 | | —E— iSVD(KN) N =32
iSVD(KN) iter = 5
—+— ISVD(KN) iter = 10
——%— ISVD(KN) iter = 15 —#— ISVD(KN) iter = 15
iSVD(KN) iter = 20 ISVD(KN) iter = 20
0 ! ! ! . . . . . . . 0 ! ! ! . . . . . . .
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0.2 | [ —E—iSVD(KN) N = 32
iSVD(KN) iter = 5
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absolute inner product of i-th column of (ture U) and (approximate U)

absolute inner product of i-th column of (ture U) and (approximate U)

(a) Test matrix: Ay (1071) (b) Test matrix: Ay (1073)

Figure 6.5: KN with different iteration numbers. The sketched subspaces Q; are same
in Figure 6.3. The first line in the legend represents the similarity for the case Q). The
second line is the similarity from KN. The third to sixth lines are from KN with iteration
number 5, 10, 15, 20 respectively.
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KN does not get the same accurate result in both cases by using 20 iteration.

However, the convergence of KN is more ‘smooth’ than WY. For the test matrix
Ap(1071), the similarity of the first column at 20 iteration is lower than the previous
iteration. The same phenomenon also shows up in the sixth column of 10 iteration for the
test matrix Ay (1073). This could be a risk if one wants to use early stop technique in
iSVD for WY. However, the fast convergence of WY could also be an advantage to use
early stop technique.

Also, these two figures point out that the stopping criterion for WY may not be suit-
able. For the test matrix Ay (1073), WY can get almost same accurate as the converged
result with only 20 iteration. However, the stopping criterion is not satisfied until 84 iter-
ation. This phenomenon also happens in the test matrix Az (107!). The reason why this
phenomenon happens may be the unsuitable choice of stopping criteria, since the stopping
criteria measure whether Q.. is convergent in WY, not measure whether Q. is an enough
accurate subspace for generating the low-rank approximation of A.

Remark. The timing results show that for a single iteration, WY uses about twice
time than KN. However, the computation of complexity shows WY and KN have same
computational complexity. This difference could be caused by the small size of the matrix

and the lack of optimization for codes implemented WY.

6.3 Comparison of iSVD, rSVD and Reduction

The purpose of this test is to observe the difference between iSVD and rSVD numerically.
As mentioned in the Chapter 5, iISVD and rSVD is very similar if the total sketching
number is same. Also, we will do the numerical test of reduction in the same time to
compare with rSVD more easily.

Figure 6.6 shows the result for iSVD and rSVD with WY and svds. We may treat the
result from svds as the ideal result for iSVD and rSVD and compare it with the result from
WY. For the test matrix Az (1071), the accuracy of rSVD is slightly better than iSVD.
Also, both rSVD and iSVD with WY can capture the same accurate approximation as

svds does. However, the iteration number of rSVD is more than the iteration number of
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Comparison of Different Methods, test_matrix: AH(1 0! )2048x4096, max_iter = 500
T T T T T T T T T T
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(a) Test matrix: Ag(1071) (b) Test matrix: Az (1073)
time(sec) iISVD(WY) | rfSVD(WY) | iSVD(svds) | rfSVD(svds) | iISVD(red.) | iSVD (red.+WY)
iteration number
Ap(1071) 0.746769 1.839638 0.775641 0.692867 0.052223 0.901197
61 122 66
Ay (1073) 1.057405 0.865924 0.640089 0.597390 0.039458 1.017564
84 63 79

Figure 6.6: Similarity for WY with iSVD and rSVD, reduction, and svds. The number
of sketched subspaces in iSVD is N = 32. The number of sketching in rSVD is 32 x 22,
which is same as the total number of sketching in iISVD. The algorithm red.+WY uses the
result of reduction as the initial value of WY.
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T T T T T T T T T

Comparison of Different Methods, test_matrix: AH(1 0'3)2048x4096, max_|
T T T T T T T T

iter =10
T

06

—E— single sketch

—*— ISVD(WY) N =32
1SVD(WY)

—O— iSVD(svds)
1SVD(svds)
iSVD(reduction)

—— iSVD(redunction - WY)

—f3— single sketch

—*—iSVD(WY) N =32
SVD(WY)

["| —©— isvD(svds)
1SVD(svds)
iSVD(reduction)

—#— iSVD(redunction - WY)

0.2

absolute inner product of i-th column of (ture U) and (approximate U)
absolute inner product of i-th column of (ture U) and (approximate U)

L L L L L L L L L L
6 10 1 2 3 4 5 6 7 8 9
i i

L L L
1 2 3 4 5

(a) Test matrix: Az (1071) (b) Test matrix: Ay (1073)

L
10

time(sec) iISVD(WY) | rISVD(WY) | iSVD(svds) | rfSVD(svds) | iSVD(red.) | iSVD (red.+WY)
iteration number
A (1071 0.158318 0.153800 0.823445 0.694192 0.039138 0.131893
10 10 10
Ay (1073) 0.149794 0.166209 0.637057 0.617643 0.039255 0.133753
10 10 10

Figure 6.7: Similarity for the methods in 6.6 with the fixed iteration number 10 for WY.

iSVD. For the test matrix Az (1073), rSVD with WY even fails to find the approximation
with the same accuracy as svds. To eliminate the difference of convergent criteria, Figure
6.7 shows the results for the same setting with fixed iteration number 10. As shown in
the figure, the accuracy for iSVD with WY is better than the accuracy for rSVD with WY
when the iteration number is fixed. Although svds capture slightly better result than WY

for iSVD, the computing time of WY is much faster than the svds.

For the reduction part, Figure 6.6 shows that reduction fails to capture the same accu-
rate approximate as WY and svds. However, the computational time only takes about 0.04
second, which is very fast compare to WY and svds. Figure 6.7 shows that the accuracy
for reduction is even better than the rfSVD when the iteration number is 10.

Also, Figure 6.7 shows that using the result from reduction as the initial value of WY
with only 10 iteration gives an almost accurate approximation same as svds does. How-
ever, the computational time for reductiontWY is much lower than svds. Although there
is no theoretical guarantee for the error bound of the reduction so far, the numerical ex-

periment shows that reduction can get an integrated subspace with better accuracy than
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the single sketched subspaces, which is the original initial value for WY. It is not surpris-
ing that reductiontWY can get a better result than WY with same iteration number since

reduction+WY start from a better initial guess.
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Chapter 7

Discussion and Conclusion

In this thesis, some theoretical and performance analysis are shown. The integrated sub-
space Q@ is defined by the solution of the optimization problem (2.1) or (3.1). The solution
of these problems is the leading ¢ singular vectors of the matrix P. Also, this is the only
local maximizer of the problem (3.1).

Line search type algorithm (WY), KN type average (KN), and reduction are intro-
duced to compute the integrated subspace. WY and KN are convergent to the integrated
subspace. The leading term of computational complexity for WY and KN is O(I Nm/(?),
where [ is the iteration number to converge. The computational complexity for canoni-
cal SVD for integration is O(N?m/(?). The numerical results show that N is independent
of I. Also, WY can get nearly accurate approximation same as the convergent result by
only few iteration number. These results provide that WY is an efficient algorithm for
integration.

The computational complexity of reduction is O(Nm/¢?), which is faster than canoni-
cal SVD, WY, and KN. In theory, it does not capture the exact integrated subspace defined
in (2.1). In the numerical experiment, the reduction can find an approximate integrated
subspace. Also, it shows the potential that reduction can be used as a preprocess for WY
to speed up the convergent with just a little extra computational cost.

If the total sketching number is same, iISVD is similar to rSVD. The difference between
them is that the spectrum of the expected value in Theorem 3.2.1 and 5.0.1. Also, WY can

directly apply to rSVD as the method to find the leading singular vectors of the sketching.
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In the numerical experiment, WY converges faster for iSVD than rSVD. Sometimes WY
also fails to find the leading singular vectors of the sketching in rSVD. However, there is
no theoretical proof or explanation so far.

To sum up, iSVD gives an idea to integrate the subspaces generated from random
sketching of a matrix. Although some phenomenons shown in numerical experiment lack
theoretical explanation and proof, iISVD still shows the potential for approximate low-rank
SVD with higher quality than rfSVD in the same computing time. As more theoretical re-
sults showing up, iSVD could be an option for computing dimension reduction and feature

extraction of large scale data faster but still accurate in the future.
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