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摘要 

肺癌在美國是死亡人數最高的癌症，及早的治療，可有效提升肺癌的存活率。

支氣管超音波影像由於他的即時性、低輻射、較好的偵測能力，並且可與穿刺搭

配常用來做肺部疾病檢查以及肺部病灶的良惡性診斷，近年來成為一個肺癌重要

的診斷工具之一。不過目前病灶的支氣管超音波圖像判斷以醫生主觀統整特徵做

判斷參考為主。電腦輔助診斷有運用灰階影像特徵做分類，但仍先需有醫生專業

從影像上取樣進行分析，屬於半自動化輔助。因此，此篇研究主要的目的是希望

藉由卷積神經網路來達成全自動化輔助。首先，調整每張 EBUS 影像成神經網絡

所需的影像輸入尺寸，接著藉由旋轉、翻轉影像做訓練資料數的擴充。欲作為使

用的卷積神經網絡 CaffeNet 遷移了預先已在 ImageNet 訓練過的模型參數，而

後再藉由訓練資料訓練來做網絡的參數優化。接著從第七層的全連階層取出 

4096 維度的特徵，利用 SVM 分類器進行病灶的良惡性分類。在此次研究中採用

164 個病例，包含 56 個良性病灶以及 108 個惡性病灶，研究結果顯示，使用遷

移學習的卷積神經網絡特徵作為分類使用，比特徵上使用 GLCM  (gray-level co-

occurrence matrix)更較具有分辨率，可達到準確率 85.4% (140/164)、靈敏性 87.0% 

(94/108)、特異性 82.1% (46/56)，以及 ROC 曲線面積 0.8705。從結果上來看，使

用卷積神經網絡作為支氣管超音波良惡性分類很具有潛力。 

 

關鍵詞: 肺癌，支氣管超音波，卷積神經網絡，遷移學習  
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Abstract 

In the United States, lung cancer is the leading cause of cancer death. The survival 

rate could increase by early detection. In recent years, the endobronchial 

ultrasonography (EBUS) images have been utilized to differentiate between benign and 

malignant lesions and guide transbronchial needle aspiration because it is real-time, 

radiation-free and has better performance. However, the diagnosis depends on the 

subjective judgement from doctors. There was a study which using the greyscale image 

textures of the EBUS images to classify the lung lesions but it belonged to semi-

automated system which still need the experts to select a part of the lesion first. 

Therefore, the main purpose of the study was to achieve full automation assistance by 

using convolution neural network. First of all, the EBUS images resized to the input 

size of convolution neural network (CNN). And then, the training data were rotated and 

flipped. The parameters of the model trained with ImageNet previously were 

transferred to the CaffeNet used to classify the lung lesions. And then, the parameter of 

the CaffeNet was optimized by the EBUS training data. The features with 4096 

dimension were extracted from the 7th fully connected layer and the support vector 

machine (SVM) was utilized to differentiate benign and malignant. This study was 

validated with 164 cases including 56 benign and 108 malignant. According to the 

experiment results, applying the classification by the features from the CNN with 
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transfer learning had better performance than the conventional method with Gray Level 

Co-Occurrence Matrix (GLCM) features. The accuracy, sensitivity, specificity, and the 

area under ROC achieved 85.4% (140/164), 87.0% (94/108), 82.1% (46/56), and 

0.8705, respectively. From the experiment results, it has potential to diagnose EBUS 

images with CNN. 

Keywords: lung cancer, EBUS, convolutional neural network, transfer learning 
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Chapter 1 

Introduction 

Lung cancer is a major health problem in the world. In 2016, the report proposed 

by Siegel noted that the estimated number of new cases and deaths would be 224,390 

and 158,080 respectively in the United States [1]. Lung cancer has a poor prognosis 

without early detection and it has an average 5-year survival rate of less than 20% [2]. 

Thus, early detection of a lung lesion is very important to improve the survival rate of 

lung cancer [3]. 

Computed Tomography (CT) scan is conventionally implemented to diagnose and 

stage lung lesions [4]. Nevertheless, it is not successful to evaluate the lymph node 

involvement and it has a not few pneumothorax rate after guiding fine needle aspiration 

[5]. Therefore, it is necessary to overcome these problems by other medical techniques, 

such as endobronchial ultrasonography (EBUS) [6]. The EBUS is a well-established 

technique which uses ultrasound to scan beyond the airway and the structures adjacent 

to it. Moreover, it has a better performance than CT to identify lesions around the 

central air way and peripheral lung nodules [7]. The EBUS-guided transbronchial 

needle aspiration is useful to evaluate the lymph node involvement [8]. 
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In order to differentiate benign and malignant lesions through the EBUS images, 

there are several works about subjective criteria summarized from the physician. The 

images including homogeneous internal echoes or concentric circles are suggested for 

benign lesions [9]. In contrast to the characteristic of benign lesion, the images with 

anechoic areas, luminant areas and heterogeneity internal echoes are regarded as 

malignant lesions [10]. However, it is still a challenge for physician to diagnose a lesion 

as benign or malignant through the subjective criteria because it is dependent on the 

physician experiences on EBUS. Therefore, there is an interest in developing computer-

aided diagnosis (CAD) system to assist physician in diagnosis on EBUS images. There 

was only a CAD system for EBUS images diagnosis which used greyscale texture 

analysis for diagnosis [11]. However, it still required the experts to identify the region 

of interest (ROI) manually and spend time for designing the feature extraction. The 

experts-defined ROI did not include the border part of the EBUS images which also 

contained important features. Therefore, there is an interest in developing a CAD 

system which could input the whole EBUS images and did not need the experts to 

identify the ROI. Moreover, it could do the feature extraction automatically. 

Recently, a kind of deep learning, the convolutional neural network (CNN), which 

extracts features automatically had been used in the field of computer vision in the past 

decades [12-14]. The deep learning techniques also had been applied on the medical 
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image analysis, such as the Otitis media diagnosis [15] and the breast lesion diagnosis 

[16].  

However, the deep learning method is most effective when applied on large 

training sets. There is a challenge to develop a good disease-diagnosis classifier with 

limited amount of labeled training data like our study only with hundred cases. To 

overcome this problem, some ways are commonly used in practical situation, such as 

the data augmentation and the transfer learning. To begin with, the data augmentation 

is often used to increase the training data by flipping, rotating, and random cropping 

and color jittering [17]. And then, the transfer learning is the way pre-training the CNN 

on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 

categories [18]) and uses the pre-trained model to initialize the parameters of the 

network which we want to train. The transfer learning also has been used in medical 

image analysis, such as the chest pathology identification [19], the interstitial lung 

disease classification and the thoraco-abdominal lymph node detection [20]. After 

transferring parameters, the model continued to fine-tune by training with the EBUS 

images for achieving better performance [21]. 

The CNN models such as AlexNet [17], OverFeat [22] can be used as the powerful 

generic feature extractors by extracting values from the fully connected layer as features. 

Moreover, it was successfully utilized in some computer vision works such as the 
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classification and the object detection [23]. The features from the CNN model 

combined with the support vector machine (SVM) [24] can yield better performance 

compared to the original CNN [25]. However, there were no study using the CNN to 

diagnose the EBUS images. Therefore, in this paper, a CAD system using the 

convolutional neural network was proposed to automatically differentiate benign and 

malignant lesions for early detecting lung cancer. The proposed CAD system consists 

of the data augmentation, the feature extraction based on fine-tuned CNN and the 

classification. 

The organization of this paper is stated as follows. In chapter 2, the material data 

acquisition and the information of lesions are presented. The proposed data 

augmentation, the feature extraction based on fine-tuned CNN and the classification 

model used in this paper are introduced in chapter 3. Chapter 4 shows the experimental 

results and the results of comparison. Finally, chapter 5 specifies the conclusion and 

future work.  
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Chapter 2 

Material 

The EBUS images used in this research were acquired from China Medical 

University Hospital between January 2008 until May 2016. An endoscopic ultrasound 

system (EU-M30; Olympus) and a 20 MHz miniature radial probe (UM-S20-20R; 

Olympus) were utilized to acquire the EBUS images. The EBUS images are 8-bit 

greyscale images which have numerical pixel values ranging from 0 (black) to 255 

(white). 

In this study, 164 EBUS images were acquired from 164 patients (mean: 

63.41±14.66 years; range: 22-90 years). There are 56 benign lesions, including 6 

aspergillius, 4 cryptococcus, 2 fungal pneumonia, 2 mucormycosis, 1 organizing 

pneumonia, 3 Pneumocystis jiroveci pneumonia, 13 pneumonia, 25 tuberculosis. The 

108 malignant lesions, including 50 adenocarcinoma, 4 large-cell carcinoma, 23 small 

cell lung cancer, 31 squamous cell carcinoma. 



doi:10.6342/NTU201702994

6 

 

Chapter 3 

EBUS Images Diagnosis System Using Convolutional 

Neural Network 

In this study, the EBUS diagnosis system based on the hybrid convolution neural   

network-support vector machine (CNN-SVM) classifier was proposed to differentiate 

between benign and malignant peripheral lung lesions. The proposed diagnosis system 

was composed of the sequential procedures including the data augmentation, the feature 

extraction based on the fine-tuned CNN and the lesion classification. To begin with, the 

data augmentation was performed to prevent the overfitting problem. Then, a 

convolutional neural network based on the fine-tuned CNN, CaffeNet, was utilized to 

extract features. After the feature extraction, the SVM classifier was trained based on 

the extracted features for distinguishing the benign lesions from malignant. The 

architecture of the proposed system was shown in Fig. 3-1. 
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Fig. 3-1. The architecture of the diagnosis system. 

 

3.1. Data Augmentation 

Because the deep neural networks were especially dependent on the availability of 

enormous quantities of training data for learning a non-linear function from input to 

output which yielded high classification accuracy on unseen data [26]. Therefore, for 

the smaller data, the data augmentation was utilized to enlarge the training data and 

reduce the overfitting problem simultaneously [17]. In our study, the rotation and 

flipping image processes were applied on the EBUS images. However, because the 

difference of quantity between benign and malignant lesions might affect the 

classification accuracy, the manners of data augmentation performed on benign and 

EBUS Images 

Data Augmentation 

Feature Extraction Based on 

Fine-tuned CNN 

Classification 
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malignant cases were distinct. In malignant cases, the flipping with vertical axis and 

the rotation with 180 degrees image processes were performed. In benign cases, besides 

the vertical, and 180 degrees applied on the malignant cases, there were additional 

degrees, 90 and 270, used to rotate the images for shorten the difference of quantity 

between benign and malignant lesions. The results after flipping and rotation were 

shown in Fig. 3-2. This data augmentation produced eight modes of one benign case 

and four modes of one malignant case, respectively. 

 

Fig. 3-2. Data augmentation. 

 

3.2. Feature Extraction based on Fine-tuned CNN 

Conventionally, a classification system is a time-consuming process when 

designing a feature extractor that transformed the raw data into feature vector as the 

input of a classifier. Recently, the deep learning model, CNN, allows feeding with raw 

Benign 

Malignant 

Rotate 90,180,270 

/ Flip vertically 

Rotate 180 

/ Flip vertically 
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data and automatically generating discriminative features for classification [13], it 

simplifies the process and reduces much time used to design a good feature extractor. 

Therefore, the CNN was utilized in our proposed system. Because it was time-

consuming to directly train a CNN from scratch, it could reduce the training time by 

fine-tuning a CNN that had been trained with a large dataset from a different application 

[27]. And the features extracted from the fine-tuned model were powerful for 

classification [23]. Therefore, fine-tuning the model that transferred parameters from 

pre-trained model and extracting features from fine-tuned model were used in this study. 

 In following sections, the details of feature extraction including the layer functionality, 

the configuration in used CNN mode, the transfer learning, and the manner of feature 

extraction were described. 

3.2.1. Convolutional Neural Network 

The convolutional neural network is a deep supervised learning structure and can 

be regarded as the architecture that constituted of an automatic feature extractor and a 

learnable classifier. The automatic feature extractor which retrieved features from the 

raw images was performed by two steps: the convolutional filtering and the down 

sampling. The convolutional filtering implemented with the weight sets regarded as 

kernels at convolutional layers was utilized to extract certain local features in the input 

images as shown in Fig. 3-3. In the convolutional layer, the value in each neuron 
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computed after the convolutional filtering was only relative to a small subset of the 

input images or the outputs of the layer. Furthermore, the neurons in the convolutional 

layers shared the same connection weights for controlling the number of weight 

throughout the input. After the convolutional filtering, the result of each filter was 

passed through a nonlinear activation function for approaching any function to improve 

the ability of CNN. 

 

 

Fig. 3-3. The operation of convolution. 

After performing the convolutional filtering, the down sampling operation was 

implemented in the pooling layer after each convolutional layer for reducing the 

computation complexity in the network. The most common down sampling operation 

was max pooling which applied a max filter to take the maximum feature value of the 

overlapping or non-overlapping sub-regions from the feature maps as shown in Fig. 3-

4. The convolutional and the pooling layers were the important characteristic of a CNN 
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which reduced the computation complexity than neural networks (NNs) [28]. Besides, 

another important characteristic was the automatic optimization of the weights in CNN 

performed by the backpropagation algorithm [13]. 

Fig. 3-4. The operation of max pooling. 

In this study, a higher performance CNN modified from AlexNet, the CaffeNet 

[29], was utilized for extracting the features. The CaffeNet contained five convolution 

and three fully-connected layers as shown in Fig. 3-5 and Table 3-1. The nonlinear 

activation function in the network was the Rectified Linear Unit (ReLU) which made 

the network train faster than using tanh or sigmoid function. The ReLU activation 

function is defined as following 

f(x)= {
x,  x>0

0,  x≤0
(1) 

Then, because the purpose of this method was to deal with the classification of EBUS 

the number of outputs for the last fully-connected (FC) layer was replaced 1000 with 2. 
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Table 3-1. The configuration of the CaffeNet. 

Layer Type Output size 

data input 3×227×227 

conv1 convolution 96×55×55 

conv2 convolution 256×27×27 

conv3 convolution 384×13×13 

conv4 convolution 384×13×13 

conv5 convolution 256×13×13 

fc6 fully connected 4096×1×1 

fc7 fully connected 4096×1×1 

fc8 fully connected 2×1×1 

 

  

conv5 

fc6 fc7 

fc8 conv3 
conv4 

conv2 
conv1 

Input 

Feature Extraction 
Classification 

conv 

max pool 

norm 

conv 

max pool 

norm 

conv conv conv 

max pool 

Fig. 3-5. The structure of the CaffeNet. 
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3.2.2. Fine-tuning the CNN 

If the network were directly trained with scratch, the large number of weights in 

the layers would be randomly initialized. Therefore, the iterative updating of weights 

without a sufficient dataset might cause an unacceptable local minimum for the cost 

function. To overcome the problem, the fine-tuning based on the concept of transfer 

learning was performed in the proposed system. To begin with, the pre-trained model 

of CaffeNet which was previously trained on ImageNet [18]. Then, the weights of the 

pre-trained model were copied to the network which we want to train. Although the 

ImageNet and the EBUS images differ greatly, it was demonstrated that fine-tuning on 

the target data had potential for improving the performance [21]. After fine-tuning, the 

image features became more data-specific. 

 

3.2.3. Feature Extraction 

To achieve better performance than directly classifying with CNN, a method 

which was extracting features from the CNN model was utilized in this study. Moreover, 

the features were taken as training input for the SVM classifier. After fine-tuning the 

CaffeNet, the model could be seen as a feature extractor by taking the activations of 

one layer in CaffeNet. The higher layers generally produced discriminative features [30] 

and the last fully connected layer (fc8) only produce the score of the class prediction. 
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Therefore, the output of the fully connected layer 7 (fc7) was used as the features 

representation of EBUS images in this study. The features extracted from fc7 were a 

4096-dimensional vector and the feature values were scaled by its maximum absolute 

value to the [-1, 1].  

 

3.3. Classification 

To differentiate benign and malignant lesions with better performance than 

directly classifying by the CNN, a supervised learning models, support vector machine 

(SVM), were utilized to classify the images with the training input from the features 

extracted from the layer of the model [25].  

3.3.1. SVM 

Support vector machine (SVM) [31] which was a supervised learning classifier 

was utilized to differentiate between benign and malignant images with the extracted 

features. The features from CaffeNet were included in the SVM model. Supposing a 

training set S={xi,yi
}, where feature vector xi ∈ Rn 

, and an indicator vector y ∈ Rl such 

that yi ∈{1,0} . The soft margin SVM tries to find a hyperplane that satisfies the 

following constrained optimization: 
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min
ω,b,ξ

1

2
ωTω+C ∑ ξ

i

l

i=1

subject to  y
i
(ωTϕ(xi)+b) ≥ 1 - ξ

i
,

ξ
i
 ≥ 0, i=1, . . . ,l,

where  ω  is a n-dimensional vector, b is a scalar, and C > 0 is the regularization 

parameter. There was a possibility that classification the EBUS images was a non-linear 

problem. To achieve better performance for the non-linear problem, the kernel function 

ϕ(xi) was utilized to mapping feature vector xi into a higher dimensional space. In this 

study, the kernel function was the radial basis function kernel, also called the Radial 

Basis Function kernel. The SVM classifier produced the results which represented the 

probabilities of lesion tendency with range 0 to 1. And the threshold was set to 0.5. If 

the prediction probability exceeds 0.5, the sample is predicted to be malignant; 

otherwise, benign. 
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Chapter 4 

Experiment Results and Discussion 

4.1. Experiment Environment 

The experiments of the proposed computer-aided diagnosis (CAD) system 

included data augmentation, feature extraction based on fine-tuned CNN, classification. 

All the methods were implemented by python programming language and python 

modules, such as numpy, opencv, scikit-learn and scikit-image which are always 

utilized in computer vision and machine learning. And the convolutional neural 

network used in the transfer learning was based on Caffe framework [32] which is 

developed by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center 

(BVLC). The pre-trained models were from the Caffe Model Zoo [24]. The system was 

operated under the Microsoft Windows 10 operating system (Microsoft, Redmond, WA, 

USA) and ran on an Intel® Core™ i7-4790 3.6 GHz processor with 16GB RAM. And 

the transfer learning was ran on a Geforce GTX 1070 8GB GPU. 
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4.2. Results 

The dataset containing 56 benign cases and 108 malignant cases was used to 

measure the performance of the experiments. To evaluate the performance of the CAD 

system, the five-fold cross validation method [33] was utilized. Six indicators included 

accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV) and area under the curve (AUC) of receiver operating characteristic curve 

(ROC) were calculated. The ROC was obtained by using ROCKIT software (C. Metz; 

University of Chicago, Chicago, IL, USA). To examine whether using the pre-trained 

model was useful to improve the performance, the fine-tuned CaffeNet and the 

CaffeNet trained from scratch had a comparison and the results were shown in Table 4-

1. With the advantage of pre-trained model, the accuracy was improved from 62.8% to

81.1% and the sensitivity was increased from 66.7% to 91.7%. Moreover, their ROC 

curves were illustrated in Fig. 4-1. The diagnosis performance of the fine-tuned 

CaffeNet was statistically significant better than the CaffeNet directly trained from 

scratch with a p-value less than 0.05. 
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Table 4-1. The comparison between CaffeNet trained with scratch and fine-tuned 

CaffeNet. 

 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
AUC 

CaffeNet 

scratch 

62.8 

(103/164) 

66.7 

(72/108) 

55.4 

(31/56) 

74.2 

(72/97) 

46.3 

(31/67) 
0.5995 

Fine-tuned 

CaffeNet 

81.1* 

(133/164) 

91.7* 

(99/108) 

60.7 

(34/56) 

81.8 

(99/121) 

79.1* 

(34/43) 
0.8495* 

The value with “*” means the p-value of the comparison between it and the first row< 0.05 

 

 
Fig. 4-1. The ROC curve of the comparison of whether using pre-trained model. 
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To determine whether the fusion of the fine-tuned CaffeNet and SVM have better 

performance, the fusion of the fine-tuned CaffeNet and SVM compared with the fine-

tuned CaffeNet. Their results were listed in Table 4-2. The fusion of the fine-tuned 

CaffeNet and SVM boosted the specificity from 60.7% to 82.1% and the accuracy from 

81.4% to 85.4%. The p-value of the AUC less than 0.05 indicated there was statistically 

significant about the improvement. Their ROC curves were shown in Fig. 4-2. 

Table 4-2. The comparison of whether classifying by SVM with the features from the 

fine-tuned CaffeNet. 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
AUC 

Fine-tuned 

CaffeNet 

81.1 

(133/164) 

91.7 

(99/108) 

60.7 

(34/56) 

81.8 

(99/121) 

79.1 

(34/43) 
0.8495 

Fine-tuned 

CaffeNet-

SVM 

85.4 

(140/164) 

87.0 

(94/108) 

82.1* 

(46/56) 

90.4 

(94/104) 

76.7 

(46/60) 
0.8705* 

The value with “*” means the p-value of the comparison between it and the first row< 0.05 
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Fig. 4-2. The ROC curve of the comparison of whether classifying by SVM with the 

features from Fine-tuned CaffeNet. 

To evaluate whether the proposed CNN method was better than the conventional 

handcrafted approach, the gray-level co-occurrence matrix (GLCM) [34] method was 

performed in this experiment to extract second-order statistical texture features from 

EBUS images. Six GLCM features including contrast, correlation, homogeneity, 

energy, dissimilarity, ASM were utilized to classify with SVM. In Table 4-3, the results 

showed that the CaffeNet trained from scratch and the fusion of the CaffeNet trained 

from scratch and SVM was not superior to the handcrafted approach. Nevertheless, the 
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fusion of the fine-tuned CaffeNet and SVM outperformed the handcrafted method with 

statistical significance. Their ROC curves were illustrated in Fig. 4-3.  

 

Table 4-3. The comparison between the handcrafted method and the CNN methods. 

 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
AUC 

GLCM-

SVM 

65.9 

(108/164) 

67.6 

(73/108) 

62.5 

(35/56) 

77.7 

(73/94) 

50.0 

(35/70) 
0.6891 

CaffeNet 

scratch 

62.8 

(103/164) 

66.7 

(72/108) 

55.4 

(31/56) 

74.2 

(72/97) 

46.3 

(31/67) 
0.5989 

CaffeNet 

scratch-

SVM 

56.1 

(92/164) 

52.8* 

(57/108) 

62.5 

(35/56) 

73.1 

(57/78) 

40.7 

(35/86) 
0.6265 

Fine-

tuned 

CaffeNet-

SVM 

85.4* 

(140/164) 

87.0* 

(94/108) 

82.1* 

(46/56) 

90.4* 

(94/104) 

76.7* 

(46/60) 
0.8705* 

The value with “*” means the p-value of the comparison between it and the first row< 0.05  
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Fig. 4-3. The ROC curve of the comparison between the handcrafted method and the 

CNN methods. 

The other deeper neural networks including the VGGNet with 16 layers [35], the 

GoogleNet with 22 layers [36], the ResNet with 50 layers [37] were also utilized the 

transfer learning and the fine-tuning to examine whether the features from deeper neural 

networks with limited training data had better performance. In Table 4-4 the results 

showed the fusion of the fine-tuned CaffeNet with SVM was better than the fusion of 

the VGGNet with 16 layers, the GoogleNet, and the ResNet with 50 layers. And their 

ROC curves and training time were illustrated in Fig. 4-4 and listed in Table 4-5. 
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Table 4-4. The performance of the fusion of the fine-tuned CaffeNet and other deeper 

CNN models. 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
AUC 

Fine-tuned 

CaffeNet- 

SVM 

85.4 

(140/164) 

87.0 

(94/108) 

82.1 

(46/56) 

90.4 

(94/104) 

76.7 

(46/60) 
0.8705 

Fine-tuned 

VGG16-

SVM 

73.8* 

(121/164) 

81.5 

(88/108) 

58.9* 

(33/56) 

79.3* 

(88/111) 

62.3 

(33/53) 
0.7683* 

Fine-tuned 

GoogleNet- 

SVM 

77.4 

(127/164) 

81.5 

(88/108) 

69.6 

(39/56) 

83.8 

(88/105) 

66.1 

(39/59) 
0.8337 

Fine-tuned 

ResNet50-

SVM 

73.8* 

(121/164) 

73.1* 

(68/108) 

75.0 

(42/56) 

84.9 

(79/93) 

59.2* 

(42/71) 
0.8394 

The value with “*” means the p-value of the comparison between it and the first row< 0.05 



doi:10.6342/NTU201702994

24 

Fig. 4-4. The ROC curve of the comparison between CaffeNet and other CNN 

models. 

Table 4-5. The training time of the fusion of the fine-tuned CNN models and SVM. 

Training Time (5 fold) 

Fine-tuned CaffeNet-SVM 3 minutes 40 seconds 

Fine-tuned VGG16-SVM 50 minutes 

Fine-tuned GoogleNet-SVM 15 minutes 

Fine-tuned ResNet50-SVM 1 hour 27 minutes 
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4.3. Discussion 

In this study, the fine-tuning based on the concept of the transfer learning was 

performed to overcome the problem of insufficient training data. The Table 4-1 showed 

that the fine-tuned CaffeNet initialized weights by the model trained with nature images 

successfully boosts the performance on classifying EBUS images which is not similar 

to nature images. Directly training with limited scratch was not sufficient to optimize 

the parameters of the CaffeNet; hence the performance was not good. As with the 

previous study [38], it was helpful to perform the transfer leaning from the large scale 

annotated nature image datasets (ImageNet). To achieve better performance, the fusion 

of the fine-tuned CaffeNet and SVM was performed in this study. In Table 4-2, the 

fusion of the fine-tuned CaffeNet and SVM improved the specificity and the 

performance. It represented that the features extracting from the fine-tuned CaffeNet 

was discriminative and the classification ability of SVM outperformed the direct 

classification with the CaffeNet using the softmax layer. The reason might be that the 

generalization ability of the SVM was better than that of the softmax layer [39]. 

Moreover, according to the experimental results shown in Table 4-3, the performance 

of the handcrafted method (GLCM+SVM) was higher than that of the CaffeNet directly 

trained with scratch but lower than the fine-tuned CaffeNet and the fusion of the 

finetuned CaffeNet and SVM. The major reason might be that directly training with 
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limited training data was not plenty to optimize the parameters of the CaffeNet; hence, 

the automatic feature extractor of the CaffeNet could not produce powerful features 

than the handcrafted method. Besides the CaffeNet, there have recently been many 

deeper networks proposed with better performance in the ImageNet Large Scale Visual 

Recognition Competition [40], like the VGGNet, the GoogleNet and the ResNet. In our 

experiments, the performance and the training time of the fusion of the fine-tuned 

CaffeNet and SVM which only contains 8 layers was better than the fusion with other 

fine-tuned deeper CNNs. The reason might be that the deeper neural networks with 

more parameters, hence they need more training data and training time to optimize. 

Although the proposed system achieved higher performance, there were two 

limitations. First, the quantity of the original dataset was not sufficient for fine-tuning 

the model to achieve the performance as the expert diagnosis. Although the data 

augmentation was performed to expand the dataset, the distribution of the dataset was 

not enlarged too much. To overcome the limitation, it was necessary to acquire more 

labeled data for fine-tuning. Besides, the images of the dataset came from only the same 

type of machine. Therefore, it was unconfirmed whether the proposed system was 

robust to the images from different types of machines. There was a need to acquire the 

images from different types of machines for fine-tuning the model to confirm the 

robustness. 
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Chapter 5 

Conclusion and Future Work 

In this study, a CAD system classifying lung lesions into benign or malignant was 

proposed. The system utilized data augmentation to expand the size of training data. 

Then feature extraction based on fine-tuned CNN was performed. It was achieved by 

initializing the CaffeNet with the weight pre-trained on ImageNet and then the layers 

were fine-tuned with scratch. Moreover, the features were extracted from the fully 

connected layer 7 of CaffeNet. Furthermore, the SVM model was applied with the 

features to differentiate between benign and malignant lesions. According to the 

experiment results, the accuracy, sensitivity, specificity, PPV, NPV and the AUC of this 

system achieved 85.4% (140/164), 87.0% (94/108), 82.1% (46/56), 90.4% (94/104), 

76.6% (46/60) and 0.8705, respectively. The results showed that the fusion of the fine-

tuned CaffeNet and SVM system had potential to assist detecting lung cancer. In 

addition, the proposed method outperformed than the conventional handcrafted method 

and was the first to utilize deep learning for diagnosing EBUS images automatically. It 

decreased the manual operation and the time for diagnosis. In the future, it was required 

to expand the data set with the same quantity of benign and malignant lesions to 

enhance the optimization of the model. In addition, there was a need to evaluate the 

method with the images from different types of machines to confirm the robustness. 
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