
doi:10.6342/NTU201701572

國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

基於快取特性之記憶體式資料庫批次更新

Cache-Aware Batch Update for In-Memory Databases

張庭綱

Ting-Kang Chang

指導教授：陳銘憲博士

Advisor: Ming-Syan Chen, Ph.D.

中華民國 106年 7月
July, 2017

doi:10.6342/NTU201701572i

doi:10.6342/NTU201701572

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor,
Prof. Ming-Syan Chen, who introduced me to the opportunity to study on
this interesting topic, and gave me many helpful suggestions when I was lost
in pointless thoughts.

Also, this work is supported by ITRI (Industrial Technology Research
Institute) in Taiwan. I appreciate Director Tzi-Cker Chiueh for his insight-
ful suggestions, which helped me improve the work, and led me to break
through the bottlenecks. In addition, I am thankful for the colleagues of ITRI:
Chen-Ting Chang, Yu-Lun Chen, and Hung-Hsuan Lin, who constructed and
maintained the experiment environment, and gave valuable advice during the
weekly meetings.

I am grateful for my fellow mates in Network Database Laboratory, who
helped me improve this work and finish the thesis. It’s my pleasure to learn
and work with them.

Finally, I must thank my family for providing me spiritual and financial
support throughout my years of study. I could not have come this far without
their encouragement and support.

ii

doi:10.6342/NTU201701572

中文摘要

低延遲、高流通量的記憶體式資料庫管理系統(DBMS)近年來因為
硬體的發展，受到了研究與應用領域越來越多的關注。更甚者，有許

多因應未來使用非揮發性隨機存取記憶體(NVRAM)之記憶體式儲存系
統的研究也被提出。然而這些研究皆沒有對於在低局部性、密集的更

新作業負載下的處理器快取利用率進行討論。此類負載容易造成低度

的快取利用率，導致不理想的整體效能。我們設計了一個基於快取特

性之批次更新架構藉以提升在此類負載下之效能。藉由將更新請求暫

存於快取中，此系統可將數個於不同時間到達之相近請求聚合並在同

一批次內更新，以避免對記憶體不必要的重複存取，進而減少快取未

命中(Cache miss)並提升整體流通量。實驗結果顯示本論文提出的快取
模型相對於未考量快取特性的參考模型，能節省最高達75%的末級快
取(Last level cache)未命中數，以及達到最大65%的速度提升。

iii

doi:10.6342/NTU201701572

Abstract

Low-latency, high throughput in-memory DBMSs have been attracting
attention in research and application increasingly in recent years, thanks to
hardware evolutions. Furthermore, there are many works proposed to ad-
dress issues in the upcoming NVRAM era for durable in-memory storage.
However, very few of them were focused on cache utilization for low-locality
update-intensive workloads, which usually lead to poor cache utilization and
undesirable performance. We design a cache-aware batch update model to
improve cache efficiency for such workloads. By buffering update requests
in cache, the system can aggregate spatially close requests arriving at distant
time into one batched update, and avoid unnecessary data re-fetch from mem-
ory, thus reducing read latency and improve overall throughput. The exper-
iments show that our proposed cache-aware model can save up to 75% last-
level-cache misses and achieve up to 1.65x speedup over a cache-oblivious
reference model.

iv

doi:10.6342/NTU201701572

Contents

口試委員會審定書 i

Acknowledgments ii

中文摘要 iii

Abstract iv

1 Introduction 1

2 Preliminaries 3
2.1 Batch Update . 3
2.2 Cache-Oblivious Data Update . 3

2.2.1 Distributed-Input Configuration 3
2.2.2 Cache interference . 4
2.2.3 Memory bucket miss rate . 4

3 Cache-Aware Batch Update 6
3.1 In-cache Batch Update . 7

3.1.1 Batch aggregation ratio . 7
3.2 Relative Per-Request Misses . 8
3.3 Decoupled Threading . 8

3.3.1 Lock-free threading . 9
3.3.2 Flushing request queues . 10

4 Experiments & Discussions 11
4.1 Experiment Environment . 11

4.1.1 NUMA effect . 11
4.1.2 NUCA effect . 12

4.2 Experiment Settings . 12
4.2.1 Data & request model . 12
4.2.2 Searching data structure . 12
4.2.3 General factors settings . 13

4.3 Modeling the Cost per Input Request . 13
4.4 Workload Formation . 14

4.4.1 Uniformly random . 14
4.4.2 Clustered random . 14

4.5 Cache Partition using Coloring . 15
4.5.1 Side effect of CControl . 15

v

doi:10.6342/NTU201701572

4.6 Cache-Buckets Layout . 16
4.7 Overhead of Cache-Aware Model . 16
4.8 Changing memory Bucket Size . 17
4.9 Changing Effective Memory Bucket Number 18
4.10 Relative LLC Miss Count . 20
4.11 Summarization of All Factors . 20
4.12 Improvement in Cost vs. Improvement in LLC-Misses 22

5 Conclusion 23

Bibliography 24

vi

doi:10.6342/NTU201701572

List of Figures

2.1 Overview of BOSC conception . 3

2.2 The structure of cache-oblivious baseline model. 4

3.1 The structure of foreground tasks of cache-aware model. 7

3.2 An illustration of batch-update. The small squares form a cache-bucket,

each represents a buffered request. A request belongs to the memory

bucket with the same label. 8

3.3 The ratio of theoretical LLC-miss-rate between cache-aware and baseline

model. X-axis is thousands memory bucket m/1000. The other parame-

ters are from one of our experiment. 9

3.4 The structure of decoupled foreground-background cache-aware model. . 10

4.1 An illustration of request processing cost. 14

4.2 Plot Equation 3.2, Mc versus c. Let m/nc = 4. 15

4.3 The average base cost for handling a request per worker thread, in terms

of CPU cycles. The value is calculated by dividing the time elapsed by

number of request handled per thread, and transforming the unit by mul-

tiplying the master CPU frequency. 17

4.4 The average cost of handling a request, in unit of cycles. The effective #

of memory buckets is 400,000 and the record size is set as 16Bytes. . . . 18

4.5 The relative throughput of cache-aware model over baseline, versus # of

effective memory buckets. 19

4.6 The relative LLC miss count of cache-aware model over baseline, versus

of effective memory buckets. 19

4.7 The experiment results of relative LLC misses of cache-aware model,

compared with theoretical values in Equation 3.4. 20

4.8 The bar charts show the relative throughput values of cache-aware model

over baseline. The X-axis is effective # of memory buckets, multiplying

1000. 21

vii

doi:10.6342/NTU201701572

4.9 The bar charts show the relative measured LLC-miss counts of cache-

aware model over baseline. The X-axis is effective # of memory buckets,

multiplying 1000. 22

viii

doi:10.6342/NTU201701572

List of Tables

4.1 The specifications of experiment platform 11

4.2 The general settings of various factors. There are total 108 cases. 13

4.3 The average throughput of three cache-bucket organizations. r=16B,m=400k

a=512B. 16

4.4 The average LLC-misses of three cache-bucket organizations. r=16B,

m=400k a=512B. 17

4.5 The fitted linear model of per-request cost cycles versus per-request LLC-

misses. Each entry represents a model from data of 12 distinct (m, a)

combinations. 22

ix

doi:10.6342/NTU201701572

Chapter 1

Introduction

As the main memory evolves to be larger and cheaper, it becomes possible to use byte-

addressable, random access memory instead of hard disks as the main storage for database

manage systems (DBMSs), to achieve low latency service for modern applications who

have stricter performance requirements. Much research has been devoted to develop such

in-memory database management systems [24]. Unlike traditional disk-based DBMSs,

who usually care about I/O efficiency, in-memory DBMSs consider relatively more on

other performance factors, such as CPU efficiency [4, 17] or concurrency control [4, 7,

22]. In addition, CPU cache utilization is also an increasingly important factor for in-

memory DBMSs [18, 24]. For example, many cache-conscious index structures have

been proposed [12, 13]. Although in-memory DBMSs can benefit much from low latency

and high bandwidth of memory, it is still necessary to store durable data or logs into

persistent disks for recovery, if fault tolerance is required [24]. To avoid expensive I/O for

disk logging which potentially results in performance bottleneck, many approaches such

as group commit have been provided [4].

Furthermore, with the expectation of upcoming non-volatile random access memory

(NVRAM) era for durable in-memory database management, several NVRAM-based

DBMS designs [5, 9, 15], as well as improved index structures for NVRAM [3, 23]

have been proposed recently. While all these approaches spend more efforts on cache-

awareness than traditional disk-based systems, few of them consider the cache efficiency

with workload locality concern. For low-locality update-intensive workloads, which are

commonly produced by index updates in data de-duplication, user generated content

management and on-line transaction processing applications [20], could result in poor

cache utilization and few in-cache reuse due to limited cache capacity, and finally lead

to undesirable throughput. In order to alleviate the problem of poor cache utilization for

low-locality workloads in memory resident database, we propose a cache-centric update

request handling technique inspired by Batching mOdifications with Sequential Commit

1

doi:10.6342/NTU201701572

(BOSC) [20], which is proposed to improve the performance of disk-based storage system

for low-locality update-intensive workloads.

For in-memory database, an index update requires loading a region of memory into

the cache for CPU to operate searching. If the workload has poor locality, that is, arriving

update requests spread across a wide range within a short period, the total size of memory

regions required for handling these requests will not fit in the last-level cache. This results

in competition of cache capacity, and the loaded cache lines could be evicted from cache

before being referenced again, while a re-reference is expected for updating data in the

same memory region. In order to reduce these unwanted evictions, we design a data

structure called cache-buckets, which buffers incoming update requests. By buffering

update requests, we can aggregate the updates that require references to the same memory

region into a batch and apply them at a time. This helps achieving higher temporal locality

of memory reads. Thus the system needs only single time of memory region access to

solve multiple requests, reducing the unnecessary evictions and re-fetching in comparison

with cache-oblivious model.

The major contributions of this thesis are:

1. Propose a cache-centric batch update model using a specialized request buffering

data structure called cache-buckets, which reduces cache misses and improves over-

all throughput for low-locality update-intensive workloads.

2. Provide an analytic model which can roughly predict the relative last-level-cache

miss counts between proposed cache-aware and baseline cache-oblivious model

with locality factor and average read size per request factor.

3. Perform experiments on implemented cache-aware model and baseline model with

varieties of factor configurations. The experiment results show that cache-aware

model can save up to 75% last-level-cache misses and gain up to 65% increase in

throughput in comparison with cache-oblivious baseline.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the concept of batch update, the reference baseline model and some existing techniques

applied for proposed model. Chapter 3 describes our cache-aware batch update model in

detail. We provide experiment results and discussions in Chapter 4. Finally, we conclude

the thesis with Chapter 5.

2

doi:10.6342/NTU201701572

Chapter 2

Preliminaries

In this chapter, we’d like to introduce the basic concept about batch update for disk-based

systems and our cache-oblivious baseline model for analysis with proposed cache-aware

model.

Figure 2.1: Overview of BOSC conception

2.1 Batch Update

The Batching mOdifications with Sequential Commit (BOSC) [20] system maintains a

set of data disks to store data and a set of in-memory disk update request queues. By

buffering update requests in the memory, the system can aggregate several requests which

refer to the same disk block into a batch, and complete them with single disk block read

and write. Thus most expensive random disk access can be reduced.

2.2 Cache-Oblivious Data Update

We design a cache-oblivious update model as the baseline in our experiments.

2.2.1 Distributed-Input Configuration

We assume that each thread can access the input interface on its own simultaneously. Thus

the baseline model is called distributed-input model. As shown in Figure 2.2, there are

3

doi:10.6342/NTU201701572

·
·
·

Hash
Directly
Update

Input

Buckets 0

Buckets 1

Buckets 2

.

.

.

Buckets N

Lock 0

Lock 1

Lock 2

.

.

.

Lock N

Figure 2.2: The structure of cache-oblivious baseline model.

multiple identical threads. Each thread keeps taking update requests from input, calculat-

ing the corresponding hash key from request record key and then directly applying each of

them into its corresponding memory bucket. Since the memory buckets are not separated

into exclusive regions, it is possible that a memory bucket is required by multiple threads

at a time, so locks are necessary to preserve consistency.

2.2.2 Cache interference

On each update request, CPU must read data from the corresponding memory bucket, for

searching the target position of the request. If required data present in CPU cache, update

operations can start sooner and faster. If not, the CPU will fetch the data from memory

to CPU cache, and will evict other data from the same cache set, if the cache set is full.

Unfortunately, the capacity of cache is too small for every memory bucket to stay in, so

evictions happen frequently. Thus, the probability of a bucket being in the cache when

required is low, producing many memory accesses.

2.2.3 Memory bucket miss rate

For simplicity of theoretical analysis of cache misses, we assume that the number of cache

misses is proportional to number of requests. Thus we can instead discuss per-request

miss rate. Furthermore, we assume that the memory bucket is fetched into and evicted

from cache atomically. Let the total available last-level-cache size be S, the number of

4

doi:10.6342/NTU201701572

memory buckets be m, and the average required (that is, accessed) size for each update

request be a. Then with uniformly random distributed access to each bucket, we have the

probability that a memory bucket is still cached when it’s going to be updated again. That

is, the per-request cache hit-rate in long term is

Hb =
S

ma
, (2.1)

assuming the cache usage of other data is negligible.

By subtracting 1 by Equation 2.1, we can also get the per-request cache miss rate as

Mb = 1−Hb = 1− S

ma
. (2.2)

We will compare the per-request miss rate of cache-oblivious model with that of our

cache-aware model later in Chapter 3.

5

doi:10.6342/NTU201701572

Chapter 3

Cache-Aware Batch Update

The key cause of poor bucket reuse rate for uniformly random access is the low temporal

locality of bucket accesses. If the system buffers update requests for a period and applies

spatially close requests at a time, the temporal locality of memory bucket accesses can be

increased. That is, each time the system loads a memory bucket from memory into cache,

multiple update requests are solved, and the rate of memory accesses can be reduced.

To achieve such target, we designed cache-aware batch update model, which is equipped

with a cache-centric data structure named cache-buckets. As its name implies, there are a

set of buffer buckets, each of whom can hold several requests in it. With the total size not

larger than the size of last-level-cache (LLC), the cache-buckets are expected to stay in the

cache most of the time, and thus the system can access them with cache speed. When a

cache-bucket gets full, the system will flush all the buffered requests in the cache-bucket,

by executing a batch update.

As shown in Figure 3.1, in addition to the main memory buckets, there is a set of in-

cache-buckets. The system does not directly apply an input request to its corresponding

memory bucket. It instead puts the request into its corresponding cache-bucket. We call

taking input requests, calculate corresponding cache-bucket keys and buffer the requests

into cache-buckets as foreground jobs. Unlike the main buckets, the cache-buckets are

small enough and expected to stay in the cache, holding buffered input requests. Before

a cache-bucket getting full, there is no need to read from memory. All the tasks can be

done within the LLC, with high speed and low latency accesses on cached data.

When a cache-bucket is found full, the thread which is holding the cache-bucket’s lock

will flush the buffered requests and apply them to their corresponding memory buckets.

We call popping out buffered requests from a cache-bucket, calculating corresponding

memory bucket keys and finally applying them to the memory buckets as background

tasks. In the following section, we will describe the flushing procedure in detail.

6

doi:10.6342/NTU201701572

Hash BufferInput

Lock 0

Lock 1

Lock 2

.

.

.

Lock N

Cache Buckets 0

Cache Buckets 1

Cache Buckets 2

.

.

.

Cache Buckets N

·
·
·

Figure 3.1: The structure of foreground tasks of cache-aware model.

3.1 In-cache Batch Update

Upon a cache-bucket being full, the system will manage a batch-update on it. Since each

cache-bucket has been mapped to several memory buckets, one batch-update may requires

accesses to multiple memory buckets. In Figure 3.2, the cache-bucket has 4 corresponding

memory buckets. This implies that batch-update on it requires at most 4 memory bucket

reads. In fact, there are chances that only 3 or less memory buckets are required in a

single batch. As Figure 3.2 shows, the buffered requests belong to A, B, and D memory

buckets. That is, in this batch, the system needs to access 3 memory buckets and can solve

8 requests. Then we have per-request bucket miss rate of 3/8 in this case. We will discuss

the average per-request bucket miss rate in the following section.

3.1.1 Batch aggregation ratio

In each flush of a cache-bucket, there are c requests to be solved. On the other hand, we

have to load multiple memory buckets in the batch since requests in a cache-bucket could

be mapped to m/n memory buckets, if there are n cache-buckets. Then the expected

number of actually mapped memory buckets is

ρ =
m

n
(1− (

m− n
m

)c). (3.1)

We can solve c request with only ρ memory bucket reads, resulting a aggregation ratio

written as ρ/c.

Assuming each load produces a memory bucket miss, we have the per-request miss

rate as

Mc =
ρ

c
=
m

nc
(1− (

m− n
m

)c). (3.2)

7

doi:10.6342/NTU201701572

A B A A B D D A

A

B

C

D

Figure 3.2: An illustration of batch-update. The small squares form a cache-bucket, each

represents a buffered request. A request belongs to the memory bucket with the same

label.

3.2 Relative Per-Request Misses

By assuming that the cache-buckets occupy almost the whole last-level-cache, we can

rewrite the total LLC size S as

S = ncr, (3.3)

where r is the size of each request.

Then the relative per-request miss count of cache-aware model over baseline can be

obtained from Equation 2.2, 3.2 and 3.3:

Mr =
Mc

Mb

=
m
nc
(1− (m−n

m
)c)

1− ncr
ma

. (3.4)

We can plot the theoretical relative miss rate of cache-aware model over baseline. As

Figure 3.3 shows, there is a knee point in the curve with position related to a. With few

memory buckets (the left side of Figure 3.3), almost all the working set can fit in the CPU

cache, so the baseline model has very low miss rate without cache-awareness and there is

no room of improvement in cache miss rate.

3.3 Decoupled Threading

In addition to the foreground-background dual-mode identical threads model, we also

propose a model which separates the request-handling tasks into two parts, as foreground

8

doi:10.6342/NTU201701572

Figure 3.3: The ratio of theoretical LLC-miss-rate between cache-aware and baseline

model. X-axis is thousands memory bucket m/1000. The other parameters are from one

of our experiment.

tasks and background tasks, and assign foreground tasks and background tasks to different

threads.

There is one or several threads, called foreground thread(s), keeping accepting re-

quests from input interface, and putting each request into its corresponding buffering

cache-bucket. We call the other threads background threads or flusher threads. They

keep flushing buffered input requests from cache-buckets into memory buckets. Since the

cache-buckets are expected to stay in the cache most of the time, foreground thread can

thus always run at cache speed.

However, due to limited size of current cache, the capacity of cache-buckets cannot

be high enough to keep requests for a reasonably long request duplicate interval. So there

is no in-place update for current cache-buckets model, and the requests remain unsolved

until they are flushed from the cache-bucket. One possible way to solve this problem

is to apply fault-tolerance techniques such as write-ahead-logging between cache and

NVRAM data blocks, and let read requests always take the latest version. This could be

an issue of future study.

3.3.1 Lock-free threading

One advantage of decoupled threading is there can be no locks. If there is only one thread

in foreground, it can access any cache-bucket at any time, without conflict concern. For

background threads, we can divide the cache-buckets into several exclusive and complete

9

doi:10.6342/NTU201701572

Flush
Request

Batch
Update

Buckets Region 0

Buckets Region 1

Buckets Region 2

.

.

.

Buckets Region N-1

N Threads

Region 0
Region 1
Region 2

.

.

.
Region N-1

Cache Buckets

Input

Hash Buffer

Figure 3.4: The structure of decoupled foreground-background cache-aware model.

regions, one for each background thread. To avoid costly lock contention for buckets,

each background thread has disjoint responsible region of cache-buckets.

3.3.2 Flushing request queues

Since the cost of scanning meta-data about cache-buckets is too high, we use passive

flushing threads. A flusher thread does not seek for cache-buckets who need to be flushed.

It instead keeps checking a lock-free FIFO queue [11] contains ”flushing requests” which

are raised by the foreground thread, who can know if a cache-bucket requires flushing

immediately. By checking the flushing request queue, the background threads can know

which cache-bucket needs flushing, without additional operations.

But there is a load-balancing problem in this decoupled threading model. If the

throughput of foreground and background threads cannot meet, there would be waste of

computation powers, depends on the system scheduler. In our model, there are no other

running threads who compete CPU cores with the foreground and background threads,

and each thread has a dedicated logical core to avoid expensive thread switch. This makes

fine-tuning the foreground and background threads throughput to obtain load balance for

different workloads extremely hard.

10

doi:10.6342/NTU201701572

Chapter 4

Experiments & Discussions

In this chapter, we are going to discuss our experiments, including our experiment envi-

ronment, the experiment settings and discussions on experiment results.

4.1 Experiment Environment

All experiments are compiled by g++ with -O2 flag and executed on the experiment plat-

form with specifications listed in Table 4.1.

4.1.1 NUMA effect

The platform has two CPU sockets, with non-uniform memory access (NUMA) [10] in

effect. We do not discuss NUMA in this work and would like to perform all experiments

with minimum NUMA effects. However, if the program accesses the same data from

different sockets, there must be cache-misses, since the last-level-cache of each socket

is not shared across the sockets. So we have to bind the threads to cores on the same

socket, and execute the experiment programs with numactl, forcing the loader to start the

executable on the same node.

CPU Intel Xeon E5-2620v2 [1]

of Cores 6C12T

L3 Cache Size 15MB Shared

RAM 48GB

OS Linux 2.6.32

Table 4.1: The specifications of experiment platform

11

doi:10.6342/NTU201701572

4.1.2 NUCA effect

The last-level-cache of our experiment platform consists 6 slices of 2.5MB cache [2].

Each of the slices is shared by all cores on the socket, but the latency is slightly higher

for a core accessing a far slice. There are researches [19] showing methods to find the

address mapping with this organization. But in this work, we assume that the whole last-

level-cache is uniformly available for the system’s memory usage. Since the difference of

latency between hitting local or remote slice does not exceed 5 cycles, we do not discuss

effects of non-uniform cache access (NUCA) [8] in the experiments.

4.2 Experiment Settings

4.2.1 Data & request model

In our experiments, we assume all the incoming requests are fix-sized key-value pairs, and

the size is the same as that of records in memory buckets. As Equation 3.3 shows, with

the same available LLC capacity, the request size will determine nc, which represents

how many requests the cache-buckets can hold in total. Furthermore, we assume there

are only UPDATE requests. Before a test run starts, we fill up the memory buckets with

a range of keys. During a test run, the system searches along a memory bucket for the

corresponding record of an input request.

To minimize side effects and factors which we are not interested in for this work, we

do not include INSERT workloads to avoid using extensible data structures which make

dynamic memory allocation an important factor, while we do not focus on it. As for read

workloads, we consider that the system can handle read requests with other CPU sockets.

If strict read consistency is not required, the threads on other CPU sockets can read the

memory buckets without interfering data cached by the CPU socket who handles update

requests. However, this threading model is rarely implementable in our simplified input

model, so we leave the mixed workload to future works.

4.2.2 Searching data structure

In order to find the position of corresponding record of an input request in a memory

bucket, the system needs a search method for searching records in memory buckets, so

the data table must be organized as some search structure. To keep our analysis model

described in Chapter 3.1 not too complicated, we assume a memory bucket a memory

block, and within each block the system uses linear search for experiments, with reason-

able memory bucket size.

12

doi:10.6342/NTU201701572

of Threads {1, 5, 10}
r {8B, 16B, 32B}
a {128B, 256B, 512B}
m {200k, 400k, 600k, 800k}

Table 4.2: The general settings of various factors. There are total 108 cases.

4.2.3 General factors settings

For following experiments, if it is not specified, the factor settings of each experiment are

those listed in Table 4.2. We take the average of results from 3 runs for each case.

4.3 Modeling the Cost per Input Request

For clear analysis of the factors in performance improvement of cache-aware model, we

decompose the cost for processing an input request into two parts:

1. Base cost. This consists of all costs which are nothing to do with the memory

buckets, such as accessing the input interface, calculating the corresponding bucket

key of the record key. And for distributed baseline model, there is a lock cost. For

cache-aware model, the base cost also includes costs of accessing the cache-buckets

(one read & one write for each request) as its overhead.

2. Bucket cost. This is correlated to the configuration and status of the memory buck-

ets. Since the RAM access is fine-grained and there is no asynchronous reading

for RAM, the CPU cost of dealing with the memory buckets (e.g. key comparison)

should be proportional to the memory cost accessing the memory buckets, with a

constant cache-hit ratio. Moreover, according to Equation 3.4, with higher average

per-request access size a, the memory cost increases faster in baseline model than

in cache-aware model. In most cases, the cache-aware model has less cache-misses

and thus has lower memory cost.

While having higher base cost due to additional cache-buckets accesses, the cache-

aware model can offset its overhead, and even get lower total cost with advantage in

bucket memory cost, if the bucket cost is high enough. We will discuss the actual values

of such costs later.

13

doi:10.6342/NTU201701572

Low bucket cost

High bucket cost

Figure 4.1: An illustration of request processing cost.

4.4 Workload Formation

4.4.1 Uniformly random

With uniformly random distributed requests, the per-request miss rate of cache-aware

model and baseline is directly affected by the number of memory buckets. The more

memory buckets, the higher miss rate for both models. However, if we want to keep

the total size of memory buckets to avoid effects of different memory usage, we cannot

apply m/nc factor analysis at fixed memory bucket length, which determines average

per-request access size a, with uniformly random workloads.

However, in order to keep the memory layout constant for implementation, it is not

desirable to change the actual allocated number of memory buckets. Thus we would like

to use dynamic memory buckets mapping described as follows for experiments.

4.4.2 Clustered random

Instead of uniformly random, we would like to apply clustered random distribution of

incoming requests. By activating only parts of all memory buckets are being accessed in

a short period, we can get more flexible control on effective # of memory buckets, without

changing the total size or unit size of memory buckets. The formation of clustered random

is described as follow:

In a set of workload, the incoming requests are divided into several periods with identi-

cal length p, in unit number of requests. During each period, a map sized β determines the

”active” memory buckets. For each cache-bucket, there are β memory buckets mapped to

it, according to the map. The randomly generated requests during a period are with keys

only belong to the mapped memory buckets.

14

doi:10.6342/NTU201701572

Thus the effective memory bucket number m is determined by mapping ratio β and

cache-bucket number n, no matter how many memory buckets are allocated in total. We

can have reasonably many memory buckets and fixed bucket size while remaining flexible

control on m.

4.5 Cache Partition using Coloring

As described above, the cache-buckets are expected to stay in LLC most of the time. How-

ever, in most CPU architectures, we have little explicit control of cache usage. If we let

the memory allocation up to malloc system, it is possible that the not-frequently-accessed

memory buckets compete cache capacity with frequently-accessed cache-buckets. To

avoid such pollution behavior, we apply the concept of pollute buffer [21] for memory

allocation. By partitioning the cache-buckets and memory buckets to different cache re-

gion, the memory buckets will compete only their cache partition and won’t touch the

cache-buckets region. Thus pollution to cache-buckets can be eliminated.

4.5.1 Side effect of CControl

For implementation, we use CControl[16] to partition cache-buckets, memory buckets

and other metadata. With appropriate partitioning, the total cache misses can be reduced

by 11% in average among all 108 cases listed in Table 4.2, in comparison to normal

malloc. However, there are hidden side effects that cause lower throughput of colored

version, even with less cache misses and page faults. So in later experiments we rather use

the non-color version, since it has more consistent relative throughput while not having

notably much more cache misses than colored version.

Figure 4.2: Plot Equation 3.2, Mc versus c. Let m/nc = 4.

15

doi:10.6342/NTU201701572

Throughput Few*Large Medium Many*Small

1 thread 5.87 5.42 5.17

5 threads 18.50 14.90 17.73

10 threads 34.27 28.48 32.80

Table 4.3: The average throughput of three cache-bucket organizations. r=16B, m=400k

a=512B.

4.6 Cache-Buckets Layout

In Equation 3.3, we let the total size of cache-buckets be fixed. Moreover, with the same

request size r, the total number of cache-buckets capacity nc is constant. Thus we can

have a few large cache-buckets, medium number of medium-sized cache-buckets or many

small cache-buckets with the same nc. As Figure 4.2 shows, with fixed total capacity nc,

the change in cache-buckets number and size has little effect on per-request miss ratio. So

the effects of changing cache-buckets organization are limited to:

1. Meta-data size. In the implementation of cache-aware model, each cache-bucket

has one lock and one counter. If the number of cache-buckets increases, the total

size required for cache-bucket locks and cache-bucket counters will also increase.

2. On the other hand, if the number of cache-buckets decreases, the lock contention for

multi-thread configuration could get heavier, since the probability of lock conflict

is higher.

Since the two effects above are opposite, we operate experiments with 3 different cache-

buckets organizations to find which effect matters more: For few*large organization, there

are 12500 cache-buckets of 1kiB size each. For medium organization, we have 25000

cache-buckets, each is sized 512B. For many*small organization, the cache-buckets are

allocated as 50000*256B. The results shows that few*large configuration win 105 out of

108 cases listed in Table 4.2. Table 4.3 and 4.4 shows the average throughput and average

LLC-misses of the 3 cache-bucket organizations in some cases, respectively. Since the

few*large organization has the best performance overall, we use this configuration as the

default of cache-aware model for remaining experiments.

4.7 Overhead of Cache-Aware Model

In Chapter 4.3, we say that there could be higher base cost with cache-aware model. The

extra accesses to cache-buckets for each request consists of cost of putting the request

16

doi:10.6342/NTU201701572

Throughput Few*Large Medium Many*Small

1 thread 7.98E+07 8.33E+07 8.76E+07

5 threads 7.58E+07 7.90E+07 8.17E+07

10 threads 7.42E+07 7.74E+07 8.04E+07

Table 4.4: The average LLC-misses of three cache-bucket organizations. r=16B,m=400k

a=512B.

into its corresponding cache-bucket and cost of reading it from the full cache-bucket upon

flushing.

To measure the actual overhead of cache-aware model, we run experiments with no

actual update to memory buckets actions included. For baseline model, the threads keep

generating input requests. They then take and release the corresponding bucket lock with-

out accessing memory buckets. For cache-aware model, the threads keep generating in-

put requests, and then putting the record into the corresponding cache-bucket with locks.

When a cache-bucket is found full, the thread who find it full directly set it to empty,

without flushing the requests into memory buckets.

We run tests with 3 different record sizes. As shown in Figure 4.3, the base cost for

handling a request of cache-aware model is slightly higher than that of baseline by about

70 cycles, no matter how the size of each record is.

0

100

200

300

400

1 thread 5 threads 10 threads

8Byte Requests

baseline cache-aware

0

100

200

300

400

1 thread 5 threads 10 threads

16Byte Requests

baseline cache-aware

0

100

200

300

400

1 thread 5 threads 10 threads

32Byte Records

baseline cache-aware

Figure 4.3: The average base cost for handling a request per worker thread, in terms of

CPU cycles. The value is calculated by dividing the time elapsed by number of request

handled per thread, and transforming the unit by multiplying the master CPU frequency.

4.8 Changing memory Bucket Size

With the extra costs, the cache-aware model won’t win with low memory buckets cost per

request, where the cache-aware model wins. If the size of each memory bucket is higher,

the average required size of memory buckets per request a becomes larger, in order to

seek for the existing record of the same key.

17

doi:10.6342/NTU201701572

0

100

200

300

400

500

600

base cost a=128B a=256B a=512B

Per-Request Cost Cycles

baseline cache-aware

Figure 4.4: The average cost of handling a request, in unit of cycles. The effective # of

memory buckets is 400,000 and the record size is set as 16Bytes.

But according to the simple random access test above, we know that long enough

linear read can benefit a lot from hardware prefetching, and thus the advantage of cache-

aware model over baseline in terms of cache-efficiency becomes smaller. So there should

be an ”advantage zone” of memory buckets sizes, which are large enough for cache-aware

model to offset its overhead, and small enough that hardware prefetching helps not much

of baseline model.

From Figure 4.4 we find that while having slightly higher base cost, the cache-aware

model turns out to outperform the baseline since it has less cost increment as bucket size

becomes larger. This suggests that cache-aware model performs relatively better when

each request needs more memory access to deal with.

4.9 Changing Effective Memory Bucket Number

With the analytical prediction about miss-rate ratio, we expect that the relative last-level-

cache misses of cacahe-aware model over baseline model will be high for few effective

number of memory buckets m and will drop sharply to a knee point and then grow slowly

with higher m. Since with higher m, the relative LLC-misses of cache-aware model is

lower enough, we also expect that the cache-aware model would achieve higher through-

put over baseline model. Figure 4.5 and 4.6 show the ratio of overall throughput and

last-level-cache between cache-aware and baseline model, with 1 thread and r = 16B.

18

doi:10.6342/NTU201701572

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400

R
el

at
iv

e
Th

ro
u

gh
p

u
t

of Effective Memory Buckets (k)

a=512B

a=256B

a=128B

Figure 4.5: The relative throughput of cache-aware model over baseline, versus # of ef-

fective memory buckets.

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8
0.9

1

0 100 200 300 400

R
el

at
iv

e
LL

C
 m

is
se

s

of Effective Memory Buckets (k)

a=512B

a=256B

a=128B

Figure 4.6: The relative LLC miss count of cache-aware model over baseline, versus # of

effective memory buckets.

19

doi:10.6342/NTU201701572

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

of Effective Memory Buckets (k)

Theoretical & Experimental
Relative LLC misses

exp_a512 exp_a256
exp_a128 theo_a512
theo_a256 theo_a128

Figure 4.7: The experiment results of relative LLC misses of cache-aware model, com-

pared with theoretical values in Equation 3.4.

4.10 Relative LLC Miss Count

In modern CPU, the replacement policy is different from pure LRU. For example, recent

Intel CPUs are equipped with generally improved policies such as RRIP [6]. Thus if

the access pattern of buckets during updating the table isn’t uniformly random (that is,

somewhat predictable), the reuse rate can be higher than (2.1) with recent CPUs. But for

uniformly random distribution, no extra control can help improve the hit rate.

On the other hand, most memory control units are equipped with hardware prefetch-

ers, who can detect sequential access patterns and issue reads from the lower memory

hierarchy before the next cacheline is required, avoiding cache-misses.

These factors are sources of error of theoretical relative LLC-misses shown in Figure

4.7. In addition, the model assume the cache-buckets occupy the whole last-level-cache,

which is not true for implementation. However, while there are these implementation-

dependent factors which are difficult to model, the theoretical prediction, especially the

growing trend roughly meets experiment values and can be used for reference.

4.11 Summarization of All Factors

We would like to summarize all the factors discussed above. Figure 4.8 and Figure 4.9

show the relative throughput and LLC-misses of cache-aware model with 24 out of 108

combination of factors listed in Table 4.2. The factors are described as following:

20

doi:10.6342/NTU201701572

1. The request size r. It determines the total capacity of cache-buckets nc. With

smaller requests, the total capacity of cache-buckets is higher, resulting better rela-

tive cache misses and throughput for cache-aware model.

2. The average memory bucket access size a. For baseline model, it affects the total

working set size. According to Equation 2.2, the per-request miss rate grows with

a. On the other hand, since the miss rate of cache-aware model depends only on

batch aggregation ratio in Equation 3.1, the cache-aware model can win further with

higher a.

3. The number of threads. As shown in Figure 4.3, cache-aware model suffers more

from thread interference because that the frequently accessed cache-buckets are

shared across threads. Furthermore, since the total number of LLC-misses is con-

stant to number of threads, the advantage in LLC-misses of cache-aware model will

be split out by multiple threads. So the cache-aware model wins less in throughput

with multiple threads.

4. The effective number of memory buckets m. This factor is discussed in Chapter

4.9.

0

0.5

1

1.5

2

200 400 600

r = 8B , a = 256B

1 thread 10 threads

0

0.5

1

1.5

2

200 400 600

r = 8B , a = 512B

1 thread 10 threads

0

0.5

1

1.5

2

200 400 600

r = 16B , a = 256B

1 thread 10 threads

0

0.5

1

1.5

2

200 400 600

r = 16B , a = 512B

1 thread 10 threads

Figure 4.8: The bar charts show the relative throughput values of cache-aware model over

baseline. The X-axis is effective # of memory buckets, multiplying 1000.

21

doi:10.6342/NTU201701572

0

0.2

0.4

0.6

0.8

1

200 400 600

r = 8B , a = 256B

1 thread 10 threads

0

0.2

0.4

0.6

0.8

1

200 400 600

r = 8B , a = 512B

1 thread 10 threads

0

0.2

0.4

0.6

0.8

1

200 400 600

r = 16B , a = 256B

1 thread 10 threads

0

0.2

0.4

0.6

0.8

1

200 400 600

r = 16B , a = 512B

1 thread 10 threads

Figure 4.9: The bar charts show the relative measured LLC-miss counts of cache-aware

model over baseline. The X-axis is effective # of memory buckets, multiplying 1000.

4.12 Improvement in Cost vs. Improvement in LLC-Misses

To understand the relationship between improvement in LLC-misses and improvement

in overall performance, we apply linear regression on per-request cost cycle versus per-

request LLC-misses for several sets of experimental results and formulate the cost caused

by LLC-misses. Table 4.5 shows some sets of linear models. For r = 16B, the per-

request LLC-misses of baseline model range from 4 to 11, which result in 57%-78% of

total costs with 1 thread. Among these cases, the cache-aware model can save 20%-

50% LLC-misses. However, since the cache-aware model has higher base cost and more

expensive LLC-misses, the overall saved cost is less than 30% in all cases.

r = 16B Cache-aware Baseline

1 thread 44x+ 118 37x+ 110

5 threads 68x+ 209 60x+ 136

10 threads 80x+ 211 74x+ 127

Table 4.5: The fitted linear model of per-request cost cycles versus per-request LLC-

misses. Each entry represents a model from data of 12 distinct (m, a) combinations.

22

doi:10.6342/NTU201701572

Chapter 5

Conclusion

In this thesis, we propose a cache-centric update request handling model using a request

buffering data structure called cache-buckets. This model targets to alleviate the poor

cache utilization problem of in-memory DBMSs for low-locality update-intensive work-

loads. Our cache-aware batch update model tends to aggregate multiple update requests

into one batched update to obtain higher temporal locality of cache usage, avoiding re-

reference of memory data buckets. The experiment results show that the cache-aware

model has up to 4 times less cache misses and 65% increase in throughput. Due to not

negligible overhead, not dominating cache-miss penalties and limited room of improve-

ment in LLC-misses, the cache-aware model can achieve only slight improvement of

overall throughput.

For future work, we would like to study the feasibility of designing a cache-centric,

fault-tolerance storage system for NVRAM, which is equipped with the cache-aware

batch update model, to achieve cache-speed request handling.

23

doi:10.6342/NTU201701572

Bibliography

[1] Intel R© Xeon R© Processor E5-2620 v2 (15M Cache, 2.10 GHz) Prod-

uct Specifications. https://ark.intel.com/products/75789/

Intel-Xeon-Processor-E5-2620-v2-15M-Cache-2_10-GHz.

[2] Intel R© 64 and IA-32 Architectures Optimization Reference Manual.

https://software.intel.com/sites/default/files/managed/

9e/bc/64-ia-32-architectures-optimization-manual.pdf, Jun

2017.

[3] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. Proceedings

of the VLDB Endowment, 8(7):786–797, 2015.

[4] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,

N. Verma, and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP

engine. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, pages 1243–1254. ACM, 2013.

[5] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware logging in transaction

systems. Proceedings of the VLDB Endowment, 8(4):389–400, 2014.

[6] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High performance cache

replacement using re-reference interval prediction (RRIP). In ACM SIGARCH Com-

puter Architecture News, volume 38, pages 60–71. ACM, 2010.

[7] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel, and W. Lehner.

Improving in-memory database index performance with Intel R© Transactional Syn-

chronization Extensions. In High Performance Computer Architecture (HPCA),

2014 IEEE 20th International Symposium on, pages 476–487. IEEE, 2014.

[8] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for

wire-delay dominated on-chip caches. In Acm Sigplan Notices, volume 37, pages

211–222. ACM, 2002.

24

doi:10.6342/NTU201701572

[9] H. Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, pages 691–706. ACM, 2015.

[10] C. Lameter. Numa (non-uniform memory access): An overview. Queue, 11(7):40,

2013.

[11] L. Lamport. Specifying concurrent program modules. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 5(2):190–222, 1983.

[12] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful indexing

for main-memory databases. In Data Engineering (ICDE), 2013 IEEE 29th Inter-

national Conference on, pages 38–49. IEEE, 2013.

[13] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-Tree: A B-tree for new

hardware platforms. In Data Engineering (ICDE), 2013 IEEE 29th International

Conference on, pages 302–313. IEEE, 2013.

[14] Z. Majo and T. R. Gross. Memory management in NUMA multicore systems:

trapped between cache contention and interconnect overhead. In ACM SIGPLAN

Notices, volume 46, pages 11–20. ACM, 2011.

[15] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage management in the

NVRAM era. Proceedings of the VLDB Endowment, 7(2):121–132, 2013.

[16] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling Cache Utilization of

HPC Applications. In International Conference on Supercomputing (ICS), 2011.

[17] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold, A. Kemper, and

M. Kersten. CPU and cache efficient management of memory-resident databases.

In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages

14–25. IEEE, 2013.

[18] H. Plattner and A. Zeier. In-memory data management: technology and applica-

tions. Springer Science & Business Media, 2012.

[19] A. Scolari, D. B. Bartolini, and M. D. Santambrogio. A Software Cache Partition-

ing System for Hash-Based Caches. ACM Transactions on Architecture and Code

Optimization (TACO), 13(4):57, 2016.

[20] D. N. Simha, M. Lu, and T.-c. Chiueh. An update-aware storage system for low-

locality update-intensive workloads. In ACM SIGPLAN Notices, volume 47, pages

375–386. ACM, 2012.

25

doi:10.6342/NTU201701572

[21] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level cache

polluters with an OS-level, software-only pollute buffer. In Proceedings of the 41st

annual IEEE/ACM International Symposium on Microarchitecture, pages 258–269.

IEEE Computer Society, 2008.

[22] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in mul-

ticore in-memory databases. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 18–32. ACM, 2013.

[23] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. NV-Tree: Reducing

Consistency Cost for NVM-based Single Level Systems. In FAST, volume 15, pages

167–181, 2015.

[24] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang. In-memory big data

management and processing: A survey. IEEE Transactions on Knowledge and Data

Engineering, 27(7):1920–1948, 2015.

26

