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Abstract

In this paper, I survey several important results for conformally compact
manifolds and relate these different objects together. These topics includes
renormalized volume, GJIMS operators, Q-curvature, and basic scattering the-
ory. The main goal of this paper is to survey conformally compact manifolds
from different historical developments and discuss how these developments

are related.
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Chapter 1

Introduction

A conformal manifold M is a manifold equipped with an equivalence class of Rie-
mannian metrics, where two metrics g, h are (conformally) equivalent if ¢ = uh for some
smooth positive function v on M. A diffeomorphism between two Riemannian manifolds
is conformal if the pull back metric is conformally equivalent to the original metric. Con-
formal diffeomorphisms of the Euclidean sphere is one of the most basic starting points
for studying conformal manifolds. One can view S™ as a line of light cone in (n + 2) di-
mensional Minkowski space, and the orthogonal transformation preserving the light cone
gives rise to a conformal diffeomorphism of S™. In other words, assume the coordinates
in R"*2 are (o, Y1, .-, Ynt1), and the light cone is G = {Z; << 1197 — y2 = 0}. Then G
projectives into the sphere ¥<p<,,+ 177 — 1 = 0, where x;, = yi/yo. The Lorentz metric
restricts on G is Y1<k<pi1dyi — dys = Y3 S1<k<nt1dxi. So the orthogonal transforma-
tion preserving light cones induces a conformal map of the sphere. From this observation,
Fefferman and Graham proposed the ambient metric (see chapter 4 for more details) in
order to study conformal invariants [1]. In the same paper, they also proposed a different
kind of metric called Poincaré metric (see chapter 4) based on another viewpoint for con-
formal diffeomorphism of S™. It considers S™ as the sphere at infinity of H"*!. Using the
Poincaré disk model, it is known that the conformal diffeomorphism of S™ can be uniquely
extended to H™™! as a hyperbolic isometry, and also, by restricting hyperbolic isometry
to the boundary we get the conformal diffeomorphism of S™ (see [2] for the details). This

relation between S™ and H™"! in some sense connects the conformal geometry of the
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boundary to the Riemannian geometry of the interior. This viewpoint between boﬁhdary
and interior has many important generalizations in physics and mathematics. Forinstance,
Penrose proposes the idea of conformal infinity in his Penrose diagram, and i.:t_flez}ds us to
consider conformally compact manifolds. -
Let X be a compact smooth (n + 1) dimensional manifold with smooth boundary
0X = M. Let r be a smooth nonnegative function on X. We say that r is a defining
Sfunction for M if M = {p € X|r(p) =0} and dr # 0 on M. Note that if r is a defining
function, then for any positive smooth function f, fr is also a defining funtion for M.
Let [h] be a conformal class of metrics on M. We say that a Riemannian metric g on
interior of X is conformally compact with conformal infinity [h] if § = r%g extends as a
continuous (or some smoothness conditions) Riemannian metric on X and g|ry € [A].
The basic example is the hyperbolic space H"™!. Consider the Poincaré disk model
(1_(17)2 S i<i<nil (dz')? on the unit ball. If take r =

, then g is the standard Euclidean metric. In this case, we see that hyperbolic

with the hyperbolic metric ¢ =

(1=l=P?)

2

metric is conformally compact on X = B"! with 9X = M = S™. Note that by rescaling
r, g|lrsn changes, and we get a conformal class of metric on S™.

The developments of conformally compact manifolds have many different aspects. In
this survey, I would like to introduce some basic theory for conformally compact mani-
folds. These developments from different starting points turns out to have some interesting
connections.

In chapter 2, we start from the curvature tensor, and deduce some general properties
for conformally compact manifolds. In chapter 3, we introduce the idea of renormalized
volume. The concept of renormalized volume is proposed by physicists based on Feffer-
man and Graham’s result [1], and it is a conformal invariant in odd dimensions and have
been studied by many mathematicians. In this part, we follow Graham’s work [3], impose
some regularity condition, and define the renormalized volume on conformally compact
Einstein manifolds.

While renormalized volume is more physics-oriented, in chapter 4, we consider two

related subjects: GJIMS operators and scattering theory. To get the whole picture, we’ll
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briefly introduce the ambient metric and Poincaré metric proposed by Fefferman andiGia-
ham. Originally, they propose these two metrics to study conformal invariants;:and in
paper [4], they continue the study from [1], introducing a family of confonﬁéﬂl;’i invari-
ant operators with leading terms A* by using ambient metric. These operators generaiize
conformal Laplacian, and give definition for Q-curvatures. Since [1] has shown that there
1s one to one correspondence between ambient metric and Poincaré metric, instead of de-
riving GJMS operators from ambient metric, it’s natural to ask whether we can derive
GIMS operators from Poincaré metric. What bridges this gap is scattering theory. This
work is done by Graham and Zworski [5]. The development of scattering theory is due
to mathematicians studying eigenvalue spectrums for Laplacian operators on asymptotic
hyperbolic manifolds. In this chapter we’ll state the result relating the scattering matrix
for a Poincaré metric and conformally invariant operators with leading terms in AF.

The last chapter is about application. We state some results in [6], and show that the
huge machinery from different branches can be related by equations. Especially, we will
introduce an equality relates Q-curvature and renormalized volume via theorem proved by
scattering theory [5]. The main work in [6] is that the authors prove that Q-curvature can
be regarded as a coefficient in the solution to a boundary problem for Laplace operator.

This gives an alternative definition for Q-curvature.
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Chapter 2

Basic properties

Since conformally compact manifolds are generalization from hyperboic model, they
also behave similary near the boundary. Note that conformally compact manifolds is au-
tomatically complete since g = r~2g and the boundary is pushed to infinity. In fact, we

have following characterizations for conformally compact manifolds.

Lemma 1. /7] [8] Let (X", g) be a conformally compact manifold, then we have the
following,
(i) Suppose g is a C* metric, then Ric(g) +ng = O (r=') near M iﬂ|dr|§ = 1lon M.

(ii) If|dr|; = 1on M, then g has asymptotic sectional curvature -1 near M.

Proof. To prove the first property, we have to consider the conformal transformation of

curvature tensor. Let R;; and R, be Ricci tensors for g and g respectively. Denote 7;; =
=k . . .

0;0;r — I';;0¢r. Then via formulas for conformal transfomation (see, for instance [9]), we

have

Ry, = —T_Q(nﬁrm)ﬂ + 7t (ﬁmgjk + (n— 1)737) + Rijk

= —r?%n |dr|§)ﬁ+ O (7"_1) near M.

Therefore, Ric (g) +ng = O (r~') near M iff |dr|§ =1lon M.

As for the second property, by formula for conformal transformation, we have

Riji = — (|d7’|§) (girgjt — gugir) + O (T_?)) ‘
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We know that a manifold has constant sectional curvature x iff R, = —r(gi5g57 — g,l o )

Therefore, — |d7’|§ = —1 on M is the asymptotic sectional curvature of g. =ik O

From lemma 1, we see that conformally compact manifolds satisfying |drl§ == 1 on
M behave like the hyperbolic metric. Therefore, we call a conformally compact met-
ric g asymptotically hyperbolic if |dr]§ = 1 on M. Espeicially, lemma 1 tells us that a
conformally compact asymptotically Einstein metric is asymptotically hyperbolic.

When we fix a defining function , it determines the conformal representative 72 glra-
But given a conformal representative doesn’t fix a defining function as it just specifies
values on M. Next, we introduce a special defining function for a given conformal repre-

sentative, which will be useful for later calculations.

Lemma 2. /8] Let g be an asymptotically hyperbolic metric on X with 0X = M. Then
given a boundary metric h € [h], there exists a unique defining function r such that G|ry =
r2g|rar = h, and |dr|§ = 1in a neighborhood of M. Moreover, the metric g takes the form

G = gr + dr? near M; g, is a 1-parameter family of metrics on M.

Proof. Fix an defining function s with ¢° = s%g and |ds

5—5 = 1 on M Our goal is to find
some w, such that for the defining function ¢t = se* and g = t>g. We have |dt|§7 =1lina
neighborhood of M.

As gt = g%, and dt = e* (ds + sdw), it gives

|dt|§7 = |e¥(ds+ sdw)|§2wg—s = |ds + sdw

2
9°

= |ds

2 i 2
7 1+ 28(V9s)(w) + s [dw

2
977

where the gradient (V?s)l is given by (g%)” 0;s.

Plugging into the condtion \dt|§7 = 1, we have

2
1-— |dsg—s.

IV s(w) + 5% |dw

2 J—
==

Since V¥’ s is transverse to M. Above equation is a non-charcteristic first order PDE for
w, so by theory from PDE (see, for instance [10]), there exists solution in a neighborhood
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of M with w|ys prescribed. The first part of lemma is thus proved.

Next, we want to identify M x [0, e) with a neighborhood of M in X by a.'_;_igﬁning.
function r. Fix the special defining function r in the lemma.We now denote V§ a‘s V| Let
(p, ) € M x [0,¢) be the integral curve s (t) of Vr, starting from p, and go-X unit ti£ne.
Say, s (\) = (x1,..,n, A),and Vr (s (¢)) = ¢’ (t) = (0, ...,0,1).

PO (s ) = [ Sr(s) = [ (Vrs)di=

0

A A " § A )
/ (Vr,Vr)ydt = / G;: " O0krg’ Or = / |dr|Z = .
0 o 7Y 0 g
So the A coordinates is just 7. Hence 0;r = 0 for 1 < j < n.
(Vr)' = (@)" o = ()"

Since (Vr)" = 0 for 1 < i < n, it follows that (g)""™" = 0 for 1 < i < n. Therefore,

g = g, + dr? for some tensors ¢, on M. L

The paper [3] provides a concrete example for lemma 2. The example is again the

hyperbolic metric g = ﬁ do1<i<ntl (dxi)2 . To find the special defining function,
2

we have to solve |dr\§ = ‘d (log %)‘ = 1. For equation looks like ]dF|§ = 1, it is known
g

that the distance function is one of its solution. Therefore, one of the solution is log % =

d(z) = log ilﬂ Sor = ;EI Therefore, § = r?g = ﬁ Yi<i<ni (dz')?, and the

conformal representative g is 1/4 Y"1 <;<, 11 (d:ci)Q. So we can express g as (1 — 7’2)2 go+

dr? = g, + dr®. The metric expansion will play a key role in the following chapters.

6 doi:10.6342/NTU201703321



Chapter 3

Renormalized volume

In this chapter, we introduce a volume-related quantity for conformally compact man-
ifolds. A conformally compact manifold (X™*!, ¢) has infinite volume. A compact sub-
manifold Y in the interior of X has finite volume, but as Y approaches 0.X, the volume of
Y tends to infinity. Physicists suffer from a similar scenario as above [11]. They consider
some stress tensor 7" on given spacetime region K, and the tensor diverges as 0K tends to
infinity. For some specific tensor, they observe that the divergence part of 7" depends only
on the intrinsic geometry of the boundary. By using tools in quantum field theory, they
are able to add some counter terms to 7" and substract the divergence. After substraction,
they can take 0K tends to infinity. The above technique is a kind of renormalization in
quantum field theory.

Motivated by above, we may imagine 7" as Vol (Y'), 0K as dY/, infinity as 90X, and

try to renormalize the volume. First of all, we define the regulated volume of X [12].
The regulated volume Vol. (X) is defined as |, dvol,.

As e tends to 0, Vol (X) tends to Vol (X) . To analyze Vol. (X), we would like to do
asymptotic expansion of regulated volume in terms of . To do this, we have to consider the
asymptotic expansion of the metric. Below, we always use the special defining function

stated in lemma 2.

Lemma 3. /3] Let (X", g) be a conformally compact Einstein manifold. Suppose g
has asymptotic expansions in r to high enough order, then

7 doi:10.6342/NTU201703321



1. Fornodd, g, = ¢© + g®r2 + (even powers) + g=Dpn=1 4 gpniaa

2. Forneven, g, = g 4+ g®r? 4 (even powers) + kr™logr + g®rm —l—‘:—r

Note that in the odd case, if we fix a conformal representative h, the terms. g\ are: lo-
cally determined tensors on M for0 < j < n—1, g™ is undetermined but tracey, (g(")) =
0.

As for the even case, ¢ are locally determined for 0 < j < n — 2, k is locally

determined and trace-free, and only trace of g™ is locally determined.

Proof. (Sketch) Let T = Ric(g) + ng. Consider the tensor component of 7. Using
M x (0, ) as local coordinates, express g as 72 (g, + dr?) by lemma 2. For 1 < 4,5 < n,
we have

r

59" g, = 2r Ricy; (g:) = 0. (3.1)

—2rly; = ng'j"‘(l —n) gz’j_gklgklgij_Tgklgikgjl+

The differentiation is with respect to 7, and Ric (g,) means the Ricci curvature of g,

with fixed r. Setting » = 0, we have

(1—n)g; — 9" gugi; = 0.

Observe that above equation can be regarded as an invertible operator acting on the
column vector g;w. Therefore, g,/w\r:o = 0. Similarly, by differentiating (¢ — 1) times on

—2rT;;, we have

(t —n)0lgi; — g™ O grgi; = (terms involving 0" g, u < t).

As long as t < n, the LHS is an invertible operator acting on 9'g,,,. Therefore, d.g,.,
is solvable. By induction, we can show that all odd derivatives are zero.
For t = n, if n is odd, one can conclude that the RHS vanishes at » = 0 by counting the
order of derivatives (odd or even). Therefore, we only know that ¢ 9" gy,g;; = 0. If n is

even, the RHS may not be zero. We may assume g, = ¢© + ¢®r? + (even powers) +

8 doi:10.6342/NTU201703321



pr’logr 4+ qr™, where p and ¢ are smooth functions. Then plug it into equation ('3“.1) to

observe the properties of p and q. (=
A

bl
With above metric expansion, one can calculate Vol (X)) and obtain
Lemma 4. /3] The regulated volume Vol. (X) has the following expansions:
1. Fornodd, Vol. (X) = coe™™ + coe "2 + (0dd powers) + c,_1e ' +V +o0(1).

2. For n even,
-n —n+2 -2 1
Vol. (X) = coe™" + e + (even powers) + ¢,_9e”“+ Llog—+V +0(1),
€

where c; and L are integrals over M for a conformal representative h, and V' is the

constant term.

Proof. Let h = gy be the chosen representative metric on M, and (z1, Z3,... x,) be coor-

dinates on M. Note that g = 2 (g, + dr?), and h = go. We have

det g, \?
dvol, = (det g)1/2 dridxs...de,dr = r~"1 *g dvolydr. (3.2)
det h
By metric expansions for g, in lemma 3, we have
q 1
tg, >
g =1+ v@r? £ (even powers) + v™r" 4 .., (3.3)
det gq

where vU) are locally determined functions on A/,

Fix a small number 7, then
Vol. (X) = / dvol, = c + dvol,.
r>¢e ro>r>e

Now, apply equation (3.2) and (3.3) for dvol,, we get the desired results. In particular,
co = Vol (M) and L = [, v™dvol,. O

T on

9 doi:10.6342/NTU201703321



The renormalized volume is defined as the constant term V' in the expansiongor Vc')l‘E (X)
For the renormalized volume, Graham has the following theorem. =i
Theorem 1. /3] If nis odd, then V is independent of the choice of conformial ’l!’epres'ei_a_ta-

tives on M. If n is even, then L is independent of the choice of conformal representatives

on M.

Here we just give the ideas of the proof. For the details, please consult theorem 3.1

in [3]. First of all, we state a useful lemma.

Lemma 5. /3] Let h and h be two different representative metrics on M associated with
two special defining function r and 7 satisfying the condition in Lemma 2. Then r = re®,
where w is a function on M x [0, ¢) , and the Taylor expansion of w at 0 up to 7" terms

consists only of even powers of T.

Proof. (Sketch) Recall that g" = r?g. Since |dF ]27 = |dr z— = 1, similar to the proof of
gT
lemma 2, we have

2w+ ?(w%—i— |de|§7) =0.

When 7 = 0, w- = 0. Note that |de|§: = ggwiwj. Now, consider 6?’““10 for k even by

differentiating above equation. We have
205w = 2 ((9%11)?) ( gwﬁ) + ((959%]) (ang) (Q,ﬁwj-) atr =0,

where p+q = k—2,and a+ b+ ¢ = k — 1. By induction, if w is differentiated odd times,
then it’s zero. And g:{j is zero when differentiated odd times due to lemma 3. Therefore,

we can prove the results by considering the parity. O

Note that via lemma 5, we know that if h = e2*h, then 7 = e“r 4+ O (r?). Next,

we sketch the proof for the theorem. The main idea is to calculate Vol ({r > ¢}) —
Vol ({7 > ¢}), where r and 7 are the special function associated with different confor-
mal representatives. If there is no constant term in above expression, it means that the
renormalized volume V' for different conformal representatives is cancelled. Therefore,
V' is a conformal invariant.

10 doi:10.6342/NTU201703321



Write €® as b (7, 1, Zo,...%,, ). Note that when 7 = ¢, 7 = 7b (7, z) = &b (£) 2650,

Vol({r >e})—=Vol({F >¢}) = [y ffdvolg. Using equation (3.2), the integral?,eﬂ__(_:omes.
I M

o)

EOSan—l,j eveng_n—‘rj / (b (‘T7 €>_n+j - 1) delh +o (1) for n ‘odd.
M

The remaining thing is to argue that this integral does not have constant term when n
is odd (or no log% term when n is even). From lemma 5, we see that Taylor expansion
of b (¢, x) only consists of even powers of ¢ up to e"*! terms. Write down the expression
and take ¢ — 0, then we are done.

In [3], Graham explicitly calculated the renormalized volume for hyperbolic spaces.

1 nt2 n

He proved that V = (—1)"% =2 _ forn odd and L = (—1)? (EZ))? for n even. We

r(=2)

remark that the renormalized volume is in strong connection to Euler characteristics. For

example, when n = 2, L = —mx (M) . Furthermore, in [13], it is showed that for confor-
mally compact hyperbolic manifolds, L and V' are just multiples of Euler characteristics

in even and odd dimensions respectively.

11 doi:10.6342/NTU201703321



Chapter 4

GJMS operators and scattering theory

This chapter will divide into two sections, and serve as a brief review for some impor-

tant facts in [4] and [5].

4.1 GJIMS operators

GIMS operator is a kind of conformally invariant operators, and GJIMS stands for
Graham, Jenne, Mason and Sparling. To begin with, we give the definition of conformally

invariant operators.

Let M be a compact n-dimensional Riemannian manifold with metric h. Let h = e h.
A metric-dependent operator P is called conformally invariant if there exist constants a

and b, such that P (?L) (¢) = e®P (h) (e=9¢) for all smooth functions ¢ on M.

n—2
4(n—1)

The conformal Laplacian L = —A + R is the most well-known conformally

invariant operator. In these case, a and b are 2_7” and _22_” respectively. There is a for-
mal point of view by considering that conformal Laplacian acts on spaces with different
weighted functions. It is known as conformal densities, and we say that the conformal
Laplacians are a map from ¢ [1 — g} to e [—1 - g] , where ¢ [w] denotes conformal den-
sities of weight w. We will introduce it briefly after we define ambient metric. For more

details, we refer to [14] for more details.

Besides conformal Laplacian, Paneitz [15] found a fourth order conformally invari-
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ant operator on a Riemannian manifold with leading term AZ2. This operator map's' from

€ {2 — %} toe [—2 — %} , and is now known as Paneitz operator. Branson and ®§;§d [16]

use the constant term of Paneitz operator to define Q curvature in 4 dimens_ionjs_;. Il\‘Tote_that

the constant term of conformal Laplacian is basically the scalar curvature. .I
GJIMS operators are generalizations of conformal Laplacian and Paneitz operator. In

[4], the authors prove the following theorem regarding these kind of operators.

Theorem 2. Suppose M is a conformal manifold of dimension n > 2. If n is odd, for
each positive integer k, there exists a conformal invariant operator of order 2k, mapping
from ¢ {k: = %] to € [—k - %} with leading term A*. If n is even, the same result is true

with the restriction 1 < k < 3.

These conformally invariant operators with leading terms A* form a family Py, the
GJMS operators. Given two conformal representatives h and /f\L, ifh = e?“h, then P (h)

and f’; £ p (ﬁ)is related as

o~

P, = e(n/2Ru p, o(n/2—k)u

These operators are constructed through usages of ambient metric [1], and they can
be expressed via curvature and covariant derivatives for a given representative metric.
Instead of giving an outline of this proof, [ would rather give a concrete example from [4]
to demonstrate the construction. To begin with, it’s necessary to introduce the ambient
metric.

In [17] it was shown that a conformally flat (n) space of signature (p, ¢) can be viewed
as the quadric in P"*!. The quadric is the projectivization of the light cone in flat (n + 2)
space of signature (p + 1, ¢ + 1) . The most standard example is S™. Every point in S” can
be viewed as a line of light cone in n+2 dimensional Minkowski space. The ambient metric
is a generalization of this to a curved version. It associated a con formalsome partial
differential equations with inital data from conformal structure. To show an example for
GJMS operator, let’s define G precisely.

Suppose M is a conformal manifold of signature (p, ¢) . p+q = n > 2. Let g be an rep-

13 doi:10.6342/NTU201703321



resentative metric in the conformal class. Define the metric bundle G = { (¢, T)dx € Wt € R*}.
For each ¢, we can associate a metric t*g (), and therefore, sections of G are representa-
f

tives for conformal class. There is a nature symmetric 2-tensor gy on GG by_nat?dra’fpmjec-

tion 7 from G to M. Namely, for (t,x) € G and A, B € T{; )G, we define
go (A, B) = g(m, A, m,B).

Locally, if g = g;; (x) dz'da?, then go = t2g;; (z) da'da?.

Besides, for s > 0 we can define dilation 5 on G as 0, (t,z) = (st,z) and have
6*go = s2go. Now, consider the product manifold G = G x (—1,1) as our ambient space.
Define the inclusion map ¢ : G < G as 1 (z) = (2,0) for z € G. We identify G with
1 (G). Denote points in G as (z, p), where z = (¢, ) € G. We can extend &, on G by
acting on the G component only. Now, we would like to extend the tensor gy, and find an
ambient metric g of signature (p+ 1,¢ + 1) in G. We require that 7 = s2g, and since

it’s an extension, t*g = go. Then [1] shows that locally
g = t2gi; (z, p) da'da? + 2pdt* + 2tdtdp, 4.1)

where g;; (z,0) = g;; () is the represented metric on ). Here, we give the partial state-

ments of [1]’s theorem.

Theorem 3. Assume dimension of M is n, and G and G are defined as above. Then we

have the following.

1. Suppose n is odd, then there is a formal power series solution g to the equation
Ric(g) = 0. Furthermore, the solution is unique up to a R -equivariant diffeo-

morphism of G fixing G.

2. Suppose n is even, then in general, there doesn t exist a formal power series solution
g to the equation Ric(g) = 0. We can only find § such that Ric(g) vanishes to
order § — 2 on G and the components tangent to G vanish to order 5 — 1. The

solution is unique up to addition of terms vanishing to order 35 and a R -equivariant

14 doi:10.6342/NTU201703321



diffeomorphism of G fixing G.

Note that in above two statements, the order refers to the power of p i Tayfc’ﬁ;':'series

expansion.

Same as equation (3.1), we can determine the power series expansion for g;; (z, p) in

p by induction. First of all, write down each component of Ric (g). We have

1 n / 1 / / ! p / ! .
pgi; + (1 - 2) G5 = 59" 995 = p9" Gudy + 59" 9ugy; + Ricij (9,) = 0.

The differentiation is with respect to p, and Ric (g,) means the Ricci curvature with
fixed p.

Set p = 0, we can solve gg) inductively. For example, we have
gi; (,0) = 2P;; (x) and gg;; (x,0) = 2P; P, (4.2)

where

1 R
I n—2< d 2(n—1)9]>
Definition 1. The metric g;; (z, p) is the ambient metric associated to the ambient mani-

fold G.

With ambient metric, we can calculate the GIMS operators via propositions in [4].
First, let’s define some notation. In above, we have introduced ¢ [w], the idea of weighted
function. Basically, it’s a function depends on conformal representatives. After fixing
a conformal representative, it becomes a function on M. To be more precisely, we may
denote f € e[w] as f = f(g,x), where z € M, and g is a conformal representative. If
gu = €%%g, then f (g, 1) = (e*)” f (g, x) . Naturely, it can be view as a function on the
metric bundle G. Abusing the notation, we may denote f = f (¢, z), where ¢ corresponds
to t2g. For the dilation 6, on G, 67 f = f (st,x) = s f. Define X as dis(ss|s:1a and locally,
X = t0,. We say a function v on G is homogeneous of degree w if X (u) = wu. Observe
that f € € [w] is homogeneous of degree w on G. Similarly, we can define a function on
G to be homogeneous of degree w by same criterion.
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From above viewpoint, we know that the conformal Laplacian is in‘fact.an opérator
acting on functions which are homogeneous of degree w on G. Given [ & aiw] , the
main idea is to find an extension of f on G such that A f = 0, where A 18 the ItLap_lace
operator for ambient metric, and f denotes the extension of f. One try to solve,it by po§>ver
series expansion; however, it turns out that there is an obstruction at certain order, and the
obstruction is a conformally invariant operator.

The procedure is somewhat mysterious, but it’s inspired by [1]. When [1] do the for-
mal power series expansion of Ric (g) = 0 in even dimensions, there is an obstruction in
certain orders. This obstruction is conformally invariant, and is known as the ambient ob-

struction. So it is sometimes fruitful when we have obstruction in power series expansion.

Here’s the lemma.

Lemma 6. Let w = —%n + k, where k € N. Suppose [ € ¢ |w]. Let fbe an extenision
of f to G, and f is homogeneous of degree w. Denote the Laplace operator on G as
A, and Q = g (X, X). The extension fvmodulo QF is uniquely determined by Af =0
modulo Q*'. It’s impossible to solve for A f = 0 since there is an obstruction at order

QF. The obstruction is Q**Af|

G, which is a conformal invariant operator from € [w| to

e [w—2k].

We’ll calculate the most simple example for k = 1.

The lemma seems to be weird, but note that () = 0 on G, and that () is homogeneous
of degree 2 with respect to d,. So, @ is a defining function for G. In fact, g (X, X) =
g (tot,tot) = 2pt? in local coordinates. Note that since ¢ is postive, @ = 0 if and only
if p = 0. The Taylor expansion around () = 0 is basically the Taylor expansion around
p = 0. Then what the lemma states can be viewed as concerning the Taylor expansion of
Af with respect to p.

Let f € e[w] and fix a conformal representative g. Denote ¢ (z) = f(1,z) €
C> (M), then f (t,x) = t“¢ (z) . An extension f homogeneous of degree w can be writ-

ten as f (t,x,p) = t“¢ (z,p), where ¢ (z,0) = ¢ (z) . In terms of metric § in equation
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(4.1), we have

1
=

Af=AtY¢) =tv? [—2p¢" + (2w +n—2-— pgijg;j> ¢ +ApF %wg”gzjd) -
BT
The differentiation is with respect to p, and ¢ = ¢ (x, p) . The metric defining A is

gij (z, p) dz*dx? with p fixed, so A is an operator on x alone.

For k =1, Ql_kﬁﬂG =A (t“¢) | ,=0- Apply equation (4.2), we have

A (t“9) |p:0 = —tv? —A¢ + 1 n- Ro| .

(n—1)

So we get the conformal Laplacian, which is a a conformal invariant operator from
e [w] to e [w — 2] . In general, it’s quite difficult to compute higher order GIMS operators,

but for the flat case, it’s simple. If g;; are constant, then for w = —%n + k, we have
A(tmg) =t"2[-2p0" +2(k— 1) ¢ + Ag].

For k = 2, A (t*¢) = 0 modulo Q'. Therefore, A (t“¢) |,—o = 0, we get A¢ =
2¢'| )—o. The conformally invariant operator is an obstruction at order Q. In other words,
A (t“¢) modulo Q? is nonzero. The obstruction is the first order Taylor coefficient.
9, (5 (t”“”gb)) lp=0 = t“72[0, (AQ)] |0 = t¥ 2 [% (A%)] . So the conformally invari-
ant operator at k = 2 for flat metric is A2?¢. Similarly, by induction, one can show that
A¥¢ is a GIMS operator for every k € N.

Finally, we’d like to verify that Paneitz operator is the GJMS operator for £k = 2.

Paneitz operator [15] has the following form:

-4 . n?>—4n +8 i
A%W”'KHR”z(n—l)m—z)M)Wl*
n—4 o on—=4 .., (n—4)(n®—4n* + 16n — 16) 2]
[4(n—1)AR (n—2)2RJRZ]+ 16 (n —1)* (n — 2) ¢

From the lemma, for k = 2, A f — 0 modulo Q. Therefore, A f |)=0 = 0. By equation
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(4.3), we have

¢’ (2,0) = —; [M - 471__41)}%4 : =:(|(4.4)

(n

We know it’s impossible to solve for Af = 0 modulo Q2 by lemma, and the obstruction:

is the conformally invariant operator. The obstruction is

9y (A (tw¢>> lp=0 = =2 [_gijgz,‘qul + [0, (Ag)] + ;wap (gijg;jﬁb)] |p=0-

By equation (4.4), 9, (A¢) =0 = —3 [Aqu — 4(7;;1)A (Rgb)} . Apply equation (4.4)
and (4.2), and via Bianchi identity, we have VJR{; = %VkR. From these equations, we
can arrange the conformally invariant operator into the form of Paneitz operator.

At last, we remark that Branson first defined Q-curvature by GIMS operators. In n
dimensions, the constant term of P can be denoted as (n/2 — k) Q, and the Q-curvature
in even dimension n is then defined as (),,/. Moreover, from the transformation law for
GJIMS operators, it can be deduced that if h = e?“h, and the corresponding () curvatures
are 671 and (5. Then

—

Pojou+ Qa2 = e™Q.

4.2 Scattering theory

First of all, we would like to introduce the idea of Poincaré metric. Poincaré metric is
introduced with ambient metric in [1]. It is a higher dimension metric which is constructed
from a conformal manifold (M, [h]) . Basically,in [1], it is showed that the Poincaré metric
associated to a conformal manifold can be constructed from the regarding ambient metic,
and vice versa. Since we can construct GJMS operators from the ambient metric, it is
natural to ask whether we can construct it directly from the Poincaré metrc. To do it, the
key role involves some scattering theory.

Let (M, [h]) be a conformal manifold. We can constructa (n+1) dimensional manifold
X with 0X = M, and r is a definig function for M. For any conformal representative

h € [h], there exists a metric g on X, such that g is an asymptotic solution to the Einstein
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equation Ric (g) = —ng. To be more specific, one can find a conformally compact metfic

g on X with conformal infinity [h] satisfying

4. :"‘.‘n 1

O (r*) nodd
Ric(g) +ng =1 :
O (r"=2?) neven

By fixing the conformal representative, the solution g mod O (r*°) for n odd (or g
mod O (r"~2) for n even) is unique up to diffeomorphism. These metrics are called as
Poincaré metrics associated to [h] .

The construction of Poincaré metric is basically the same as the metric expansion we
have introduced in previous section. Since [1] has proved the existence, we can simply
assume gasr 2 (g, + dr?) , and solve g, in terms of a given boundary metric just as before.

Next, we introduce the idea of scattering matrix.

A scattering matrix is an operator originated from physics. The idea is that every wave
can be decomposed into incoming waves and outgoing waves. When a beam of waves F
collides into a energy barrier, &/ will scatter into incoming waves F' and outgoing waves
G. Itis known that a solution under a Hamiltonian operator can be decomposed into linear
combinations of eigenstates. Therefore, in above picture, we define the scattering matrix
S (s) as the operator maps the eigenstate at energy s in F' to the eigenstate at energy s°
in G. For example, consider the Laplace operator in R". For (A — s?)u (z) = 0, there
is a unique solution to this equation such that as || — oo, u () = Fe®l*l 1 Ge=sl#l 4-

O <|x|zgl> [18]. Then the scattering matrix is defined by S (s) F' = G.

With above preliminaries, we now state some important results done by [5]. The main

focus of their works is studying the asymptotic solutions of
(Ay—s(n—1s)u=0(r>), (4.5)

where g is a given Poincaré metric. To solve above equations, they found a special family

of operators ¢ (s) . Take f € ¢ [s — n] . They construct a meromorphic family of operators
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o (s) from € [s — n| to C* (X?) for Re s> n/2 with following properties.

(B —s(n—5)p(s) f=0

p(s)f=r""F+rdG ifs¢n/2+N
o(s) f=r">"FF + Hr/**Flogr ifs=n/2+k keEN,

where F, G, H € C* (X) and F|;; = f. Besides, p (n)1 = 1.

Motivated by the solution for (A — s?) u, one may regard F’ as the incoming data, and
G as the outgoing data. Then define the scattering matrix by S (s) f = G|,s. From above

setup, they have following results:

1. Derive GIMS operators from a given Poincaré metric as a coefficient in the solution

to equation (4.5).
2. Find the relationship between scattering matrix and GJIMS operators.

3. Define Q-curvature via scattering matrix.

The corresponding theorems for above three results are stated below.

Lemma 7. Let (X, g) be a Poincare matric associated to (M, [h]) and let f € C> (M) .

k is a positive integer, and k < 3 if n is even. There exists solution to equation (4.5) for

s = n/2 + k of the following form
u =2k (F + Hr?* logr) ,

where F, H € C*(X),and F|y = f. F mod O (7‘2’“) and H |y are determined by a

conformal representative formally.

1

H|y = =20, Pf, e (—1)" [2%/{?! (k — 1)!}7 ;

where Py, are GJMS operators.
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Theorem 4. Let S (s) be the scattering matrix of (X, g) . With same assumptions as above,

and (n/2)” — k? is not an L? eigenvalue of A,. Then S (s) has simple pole at s :&/2—1— k,

Il m |
|| =3

and

cp Py = —Residues—p 2115 (s) .

Theorem S. With same notations as above, the scattering matrix has following properties:

Sn)1=0 ifn odd.
S (n)1 =cu2Q ifneven.
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Chapter 5

Application

This chapter serves as a brief application for previous chapters. Recall that in first
chapter, we introduce the special defining function to construct a suitable coordinate,
and then, we use this coordinate to construct renormalized volume. Later, we state some
some basic facts for GIMS operators and scattering theory. Now based on what we have,
we show an application from [6], in which they give a new definition for Branson’s Q-
curvature in even dimensional conformal geometry and prove a theorem concerning renor-

malized volume and Q-curvature from [5]. They have the following theorems.

Theorem 6. [6] Let (X, g) be be a compact (n + 1)-manifold with 0X = M, where g is
the Poincaré metric on X with conformal infinity (M, [h]) . Fix a conformal representative

h with defining function r. Then there is a unique function U € C* (X°) solving
AU =n
with the following asymptotics

logr + A+ Br"” n odd

logr + A+ Br™logr n even,

where A and B are smooth functions on X, and even functions in r after mod O (r*°) .
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Besides,

Bly = —2¢,/2Q if nis even,

-1

where ¢ (—1)" [22’%! (k — 1)!}

The idea of proving this theorem can be divided into two steps. First of all, one con-
siders the solution of AjU = n near the boundary M mod some finite order terms. In first
step, they show that the asymptotic expansions of U can be determined by fixing a con-
formal representative. In second step, they use solutions of (A, — s (n — s)) u from [5]
to deduce theorem 6. We now briefly sketch the proof in the following.

Step 1 In this step, we only discuss near the boundary, so we take X = M x [0, 1).

First, one proves the following lemma.

Lemma 8. /6] Let g be the Poincaré metric on X with conformal infinity (M, [h]) . Fix

a conformal representative h with defining function r.

1. Suppose n is even, then there is a unique function U mod O (™) solving
AU =n+0 (7“”“ log 7“)
with the following form
U=logr+ A+ Br"logr+ O (r"),

where A, B € C* (X)), Aly = 0. The function Amod O (r™) and B| s are formally

determined by h.

2. Suppose n is odd, then there is a unique function U mod O (r*°) solving
AU =n+ 0O (r™)

with the following form
U=logr+ A,
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where A € C* (X)), A|yr = 0. The function A mod O (r*°) is_formally, determiried

by h. (s |
| A
(A

Proof. (sketch) Fix a conformal representative , and recall that g = 7~ >R dr2)l' with

ho = h. Then
A, =—(rd,)’ + (n - gtrhr (@h,)) ror +r2Ay, .

Note that A;U = n is equivalent to A, (U —logr) = 5try, (0.h,). Observe that for
aj € C= (M), we have A, (a;jr?) = j(n— j)a;r? + O (r7*!) . Take ag and a; = 0, by
induction, we can find a; such that

, r
Ay (21<j<najrj) = §t7"hr (Orhy) + 1" E,

where £ € C*° (X). Finally, we may eliminate " £/ by introducing the term Br" log .

]

Step 2 We now use some of the facts in chapter 3 from [5]. For convenience, we

summarize it below. We have a family of operators ¢ (s) such that

(Ag —s(n—s))p(s)f=0.

Ifs¢n/2+N,p(s)f=r""*F+7r°G,where F|y; = fandp(n)1=1. S(s) f =
G|y Furthurmore, S (n) 1 = 0 ifnis odd, and S (n) 1 = ¢, »Q if n is even.

Now, take f = 1, consider (A, — s(n — s)) p (s) 1 = 0. Differentiation with respect
to s at s = n. Get

AW l—jsp(s) Hsznl =n.

Therefore, —% o (s) 1|, is a solution to AU = n.

Since p (s) f =r"°F 4+ r°G,

U= (Flogr—F —Gr"logr —r"G") |s=n.

24 doi:10.6342/NTU201703321



Via above properties, the form of U follows. Due to step 1, up to r" terms, Uas fofmally

determined by /. So the uniqueness follows from that the fact that there is no L7 hattmonic
f
functions. '

With theorem 6, we have following applications to the coefficient L in.the 'volume

expansion.

Theorem 7. [6] If n is even, then
L= 20n/2/ Qdvoly,.
M
Proof. Take a small number r, > 0. Use Green’s identity, we have
/ AyUdvol, = 51_”/ o, Udvol,, — ré_”/ &Udvolhro.
e<r<ro r=¢e r=TrQ
Recall that
dvoly, = (1 + @72 + (even powers) + v™Wr™ + ) dvoly,.

Substitute U = logr + A + Br"logr + O (r™) and compare the coefficient of log ¢ on

both sides of equation. We have
—nlL = n/ Bdwvoly,.
M

The rest follows from theorem 6. ]
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