
doi:10.6342/NTU201703573

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於深度學習語義分割之城市道路汽車轉向操控

A Deep Learning Based Semantic Segmentation Approach

for Car Steering on Urban Roads

塗國星

Kuo-Hsin Tu

指導教授：傅立成 博士 共同指導：蕭培墉 博士

Advisor: Li-Chen Fu, Ph.D., Pei-Yung Hsiao, Ph.D.

中華民國 106 年 7 月

July 2017

doi:10.6342/NTU201703573

 i

口試委員會審定書

doi:10.6342/NTU201703573

 ii

誌謝

能完成這篇論文，我要特別感謝我的指導教授傅立成老師與共同指導的蕭培

墉老師，也要感謝實驗室的宗穎，學弟翔宇和興宇在計畫案的協助，特別感謝同

樣來自中央的學弟翔宇和禹齊在最後的時刻支援碩論的實驗，讓我可以沒有後顧

之憂，持續完成論文的進度。另外，也感謝在各課程中認識的同學，透過一起合

作課程專題，讓我們認識彼此互相鼓勵，在台大能認識各位一切都是緣分。其實

這次能進入台大就讀研究所，過程實屬不易，在忙碌的科技產業工作同時準備學

校的申請與考試，是個蠻大的挑戰，最後能夠順利就讀台灣第一學府，真的是個

恩典。在這段求學的過程，也是個挑戰，因為工作了一段時間，離開學校的環境

蠻長一段時間，回到學校念書需要許多調適，特別是與台灣頂尖的人才一起修課，

互相競爭，當中壓力也不小，因此我也要感謝在過程中所有支持、鼓勵我的人，

願你們在各樣事上都能蒙福。最後，我要感謝我的父母，在這段期間成為我的後

盾，透過各樣的方式支持與幫助我，使我能走到最後。

將一切頌讚、榮耀、感謝都歸於我在天上的父！

塗國星 僅誌於

國立台灣大學資訊工程研究所

智慧型機器人與自動化實驗室

2017 年 7 月 28 日

doi:10.6342/NTU201703573

 iii

中文摘要

在視覺式自動駕駛系統中，感知與控制是兩個重要且待解決的議題。此外，

由於深度卷積神經網路在解決感知與控制問題上有非常好能力，使得深度卷積神

經網路成為視覺式自動駕駛系統的解決方案之一。在本論文中，我們證明語義分

割可以用來提升視覺式自動駕駛系統的效能。論文中提出了一個使用語義感知並

基於端對端深度卷積神經網路的方法來解決自動駕駛中的視覺式控制問題。所提

出的方法具有兩個階段並透過影像輸入來預測汽車轉向操控。在第一個階段中，

使用一個深度卷積神經網路從輸入影像產生語義分割的結果，在第二個階段中則

使用另一個深度卷積神經網路從語義分割資訊來預測出汽車轉向操控。在實驗

中，我們使用一個公開的汽車駕駛資料集來評估所提出的方法，實驗結果顯示該

方法能達到比一般端對端的深度卷積神經網路方法更好的結果。

關鍵字：深度學習、卷積神經網路、語義分割、自動駕駛、車輛轉向

doi:10.6342/NTU201703573

 iv

Abstract

In vision based autonomous driving systems, perception and control tasks are two

critical problems to be solved. The effectiveness of deep convolutional neural networks

(CNNs) in solving visual perception and control tasks has made CNNs a desirable

solution for autonomous driving. In this thesis, we show that semantic segmentation can

be applied to enhance the performance of a vision based autonomous driving system.

We propose an end-to-end CNN architecture with semantic perception to solve the

vision based control problem in autonomous driving. The proposed approach is a

two-stage CNN architecture that takes a monocular image and outputs a steering angle.

In the first stage, a CNN module is used to generate semantic segmentation from the

input image. In the second stage, another CNN module is used to take advantage of the

semantic perception to predict steering angles. In the experiment, a publicly available

dataset of human driving data is used to evaluate the proposed method. Experimental

results demonstrate that the proposed method enhance the results of the typical

end-to-end CNN approach.

Keywords: Deep learning, Convolutional neural networks, Semantic segmentation,

Autonomous driving, Vehicle steering

doi:10.6342/NTU201703573

 v

Contents

口試委員會審定書 ..i

誌謝 .. ii

中文摘要 ... iii

Abstract ...iv

Contents ... v

List of Figures ... vii

List of Tables ..ix

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Related Work .. 4

1.3 Contributions .. 7

1.4 Thesis Organization .. 7

Chapter 2 Preliminaries .. 9

2.1 Vision-based Autonomous Driving Systems .. 9

2.2 Imitation Learning .. 10

2.3 Transfer Learning ... 11

2.4 Convolutional Neural Networks (CNNs) ... 13

2.5 Semantic Segmentation .. 19

Chapter 3 Methodology ... 23

3.1 System Overview .. 23

3.2 Semantic Segmentation Generation .. 24

3.2.1 Encoder Network .. 25

doi:10.6342/NTU201703573

 vi

3.2.2 Decoder Network .. 27

3.3 Car Steering Angle Prediction .. 30

Chapter 4 Experiments .. 34

4.1 Environments .. 34

4.2 Dataset .. 35

4.2.1 Cityscapes Dataset .. 35

4.2.2 Udacity Self-Driving Car Challenge 2 Dataset 35

4.3 Evaluation Metrics .. 38

4.4 Implementation Details ... 38

4.4.1 Semantic Segmentation Annotation for Udacity Dataset 38

4.4.2 Baseline Model .. 39

4.4.3 Perception Network ... 39

4.4.4 Control Network .. 40

4.5 Results .. 40

4.5.1 Overall Performance ... 40

4.5.2 Analysis of Error Cases ... 43

4.5.3 Effects of Different Perception Network Models................................ 54

Chapter 5 Conclusion .. 56

References ... 58

doi:10.6342/NTU201703573

 vii

List of Figures

Figure 1-1: End-to-end CNN approach for steering control.. 2

Figure 1-2: A two-stage CNN architecture. ... 2

Figure 2-1: Three main modules for an autonomous driving system. 9

Figure 2-2: Imitation learning in the context of steering control. 10

Figure 2-3: Paradigm of transfer learning. .. 12

Figure 2-4: A convolutional layer arranges its neurons in three dimensions................... 13

Figure 2-5: A filter is used to produce a new feature map. .. 14

Figure 2-6: Local connectivity of a convolutional layer. .. 15

Figure 2-7: Illustration of the max pooling operation. .. 16

Figure 2-8: Illustration of a fully connected layer. .. 16

Figure 2-9: Plots for various non-linear activation functions. ... 17

Figure 2-10: Architecture of VGG-16. .. 18

Figure 2-11: Comparison of different vision problems. .. 19

Figure 3-1: System architecture of the proposed approach. .. 23

Figure 3-2: Architecture of the Perception Network. .. 25

Figure 3-3: Architecture of the encoder network... 26

Figure 3-4: Illustration of max-pooling indices. .. 27

Figure 3-5: Architecture of the decoder network... 28

Figure 3-6: Illustration of the decoding process. ... 29

Figure 3-7: Overview of the second stage. .. 30

Figure 3-8: Architecture of the Control Network. ... 31

Figure 4-1: Example images and annotations from the Cityscapes dataset. 36

doi:10.6342/NTU201703573

 viii

Figure 4-2: Example images from the Udacity Self-Driving Car Dataset. 37

Figure 4-3: Absolute errors of the baseline model across the test data. 42

Figure 4-4: Absolute errors of the proposed model across the test data. 43

Figure 4-5: An image from error case #1 (frame 1857). ... 46

Figure 4-6: Prediction results of error case #1. ... 46

Figure 4-7: Comparison between feature maps from different models (frame 1857). 47

Figure 4-8: Result of semantic segmentation for frame 1857. .. 48

Figure 4-9: Semantic meaning and the corresponding color ... 48

Figure 4-10: An image from error case 2 (frame 4400). ... 49

Figure 4-11: Prediction results of error case #2... 49

Figure 4-12: Comparison between feature maps from different models (frame 4400) ... 50

Figure 4-13: Result of semantic segmentation for frame 4400 51

Figure 4-14: An image from error case #3 (frame 918). ... 51

Figure 4-15: Prediction results of error case #3. ... 52

Figure 4-16: Result of semantic segmentation for frame 918. .. 52

Figure 4-17: Comparison between feature maps from different models (frame 918). 53

Figure 4-18: Sample segmentation results for the test set. .. 55

doi:10.6342/NTU201703573

 ix

List of Tables

Table 4-1: Hardware specification for the experiment. ... 34

Table 4-2: Result on the test set of Udacity dataset. .. 41

Table 4-3: Results on the Udacity Self-Driving Car Challenge 2 leaderboard................ 41

Table 4-4: Mean absolute errors and standard deviations for all error cases. 44

Table 4-5: Results of different segmentation model on the test set. 54

doi:10.6342/NTU201703573

 1

Chapter 1 Introduction

1.1 Motivation

In recent years, the development of autonomous driving is fast advancing. Car

vendors and technology companies are moving forward to developing autonomous

driving cars. One of the reasons is that autonomous driving cars can benefit humanity.

First of all, autonomous driving cars can provide us with more safety. According to a

report from World Health Organization (WHO), nearly 1.25 million people die in road

accidents each year [1]. Cars that drive by itself could reduce casualties in car accidents

by making quicker and more stable decisions. Autonomous driving cars also improves

the efficiency of transportation, which may lower global CO2 emissions and decrease

the impact on global warming.

The idea of autonomous driving has been researched from 1930s. In the early days,

these autonomous cars required human guidance and did not involve any intelligence.

Since 1980, truly autonomous driving technologies are invented, Ernst Dickmanns and

his group at Bundeswehr University Munich built the world's first real autonomous

driving car VaMoRs. Artificial intelligence for autonomous driving started to get

people’s attention in 2005 DARPA Grand Challenge. Since then, research organizations

have started to develop autonomous driving technologies, and in 2013 many major

automotive manufacturers start to test autonomous driving systems.

Recently, numerous types of sensor are installed on an autonomous driving car to

provide better and reliable perceptional functionalities. Common sensors can be found

on an autonomous driving car are ultrasound, radar, LIDAR (Light Detection And

doi:10.6342/NTU201703573

 2

Ranging), and camera [2]. Among these sensors, visual sensors such as cameras can

provide more information about the environment surrounding a car, for example, the

color, texture, and appearance of objects can hardly be analyzed by others type of

sensors. In addition, the infrastructures of urban roads have been built to be perceived

by human vision, and naturally, it is important to research on vision based technologies

so as to help autonomous driving cars perceive the world.

In recent years, the effectiveness of deep convolutional neural networks (CNNs)

has been shown in various visual perception tasks such as object detection, object

recognition, and semantic segmentation [3-6]. Besides, learning control policies from

visual perception through CNNs has been proved promising [7, 8]. The recent research

from NVIDIA also demonstrated an end-to-end CNN approach that could predict car

steering from a monocular RGB image [9] (Figure 1-1). However, it is strongly believed

that for robust steering control in autonomous driving, a higher level interpretation of

the perceived scene will be extremely helpful.

Figure 1-1: End-to-end CNN approach for steering control.

Figure 1-2: A two-stage CNN architecture.

doi:10.6342/NTU201703573

 3

However, simply utilizing a raw RGB image for scene understanding would have a

lot of noisy information that are not necessarily related to the scenario of driving. In

general, we only need to focus on important objects in the scene and ignore unimportant

details. For example, we only need to know where cars, pedestrians, and roads are

located in the image and the overall layout of the scene. Actually, the visual processing

of the human brain does perform information filtering. Generally, human visual

perception has two sequential stages [10]. The first stage is pre-attentive stage, which

processes all the information fast but coarsely, whereas the second attention stage

processes part of the input information with more efforts. Note that pre-attentive

processing accumulates information from the environment subconsciously. Information

from the environment is pre-processed through pre-attentive processing. Then, our brain

filters unimportant information and only continues to processes what is important [10].

Also, human beings have a remarkable ability to organize visual inputs. Instead of a

bunch of intensity values, we perceive a number of visual groups, usually associated

with objects. The visual system of human beings segments the visual input, which

partitions the visual input into regions that have similar properties or semantic meaning.

This representation facilitates visual reasoning at the level of regions and their

boundaries while not caring too much about the small details in the visual input [11].

Inspired by the visual processing of the human brain, we propose to use semantic

segmentation to filter unimportant visual information. After we perform semantic

segmentation on an image, we achieve the effect of ignoring unimportant information

and focus on objects or regions that are related to a driving scenario. In addition, regions

in the semantic segmentation presents an object or a meaning, for example, a region

represents a car or a region is covered by the road. In addition, semantic segmentation

doi:10.6342/NTU201703573

 4

provides a higher-level understanding of a scene, for example, what kind of road we are

driving on and the road is going straight or turning to the left.

In this thesis, we focus on solving the vision based control problem in an

autonomous driving system, particularly, predicting steering angles from monocular

RGB images. Besides, our work only considers urban roads since the environments are

more structured. Also, we would like to take advantage of the semantic segmentation

extracted from a raw image and use this higher-level understanding of the image to

enhance steering angle prediction. Therefore, in the thesis, a deep learning approach that

is based on semantic perception is proposed. The proposed method has two stages: the

generation of semantic segmentation and the prediction of steering angles (Figure 1-2).

1.2 Related Work

In general, recent works in vision based autonomous driving system can be divided

into two categories. Approaches from the first category usually comprise of several

sub-modules, and each sub-module is responsible for solving a specific vision problem,

e.g., obstacle detection, lane detection, etc. As soon as results such as detection of cars

and lanes are obtained, a global view of the environment around the host car is

constructed. Based on the global view, a rule-based controller can be used to drive a car.

The work of Huval et al. [12] is an example of this kind of approach that is commonly

seen in the industry. They solve vision tasks such as vehicle and lane detection using

deep learning on a large dataset of highway driving and demonstrate that their system

can run in real-time. The advantage of this approach is generality, i.e., the system is

capable of handling different driving scenarios. Since we have world information, we

can have better understanding of the environment and drive the host car appropriately.

doi:10.6342/NTU201703573

 5

However, this kind of approach has disadvantages such as that the system will be

complex, many vision problems need to be solved at the same time, and more data are

required for training each sub-module if a deep learning based approach is used.

Another category of vision based autonomous driving system is based on an

end-to-end approach. This end-to-end approach is built on imitation learning to

construct a direct mapping from a visual input to a driving control. In this type of

approach, a human drives a car on real road to collect images and steering angles as the

training data. The seminal work of this kind of approach is ALVINN [13], which used

artificial neural networks (ANNs) to construct a direct mapping from an image to

driving controls such as steering. Because of the success of deep CNNs in vision tasks,

NVIDIA has researched on controlling car steering based only on camera inputs [9].

They propose a framework that uses a deep CNN architecture to predict steering angles.

Their results show that their proposed framework can learn lane and road following for

navigating cars and operate in diverse scenarios, such as on highways or local roads.

The end-to-end approach makes an autonomous driving system simple since we only

use a single CNN architecture to control a car. Also, it is relatively easy to collect

training data, for example, the input images and corresponding steering values can be

collected at the same time during driving. However, the driving capability may be

limited because the system can only handle scenarios already seen from the collected

human performance.

Beyond aforementioned categories, Chen et al. [14] proposed a direct perception

approach that maps an image to several driving affordance indicators, such as angle of

the car relative to the road, the distance to the lane markings, and the distance to

doi:10.6342/NTU201703573

 6

surrounding cars. They used CNN to map input images to driving affordance and the

immediate results are used by a rule-based controller to drive a car. They conducted

experiments for their proposed method in a racing simulator called TORCS [15] and the

result showed that the car can be driven smoothly. However, their proposed method

cannot be adapted to real world scenarios easily since it is difficult to collect ground

truth labels for driving affordance.

The work of Yang et al. [16] has similar approach to our proposed method. In their

work, the goal is to solve obstacle avoidance problem in robot navigation. For robots to

navigate autonomously, they need to detect and avoid obstacles in real time. Instead of

using range sensors such as laser, stereo cameras, and depth cameras to build a 3D map

of the environment, they focus on solving the obstacle avoidance problem using

monocular cameras. Yang et al. solve the obstacle avoidance problem by proposing a

two-stage CNN with immediate perception. In the first stage, depth and surface normal

are predicted and then a path is predicted from these sources of information. The

proposed approach is similar to our approach; however, in our work, we use semantic

segmentation as an intermediate perception.

There are some other works which dealt with problem similar to vision-based

autonomous driving. Muller et al. [17] proposed a system to deal with obstacle

avoidance for off-road mobile robots. Their system is based on a learning based

approach that maps stereo images to steering angles. A 6-layer CNN is used for learning

a mapping between a pair of stereo images and steering angles. Different from their

objectives, in this thesis, we are interested in steering a car on urban roads, which

requires different skills. Steering a car on roads deals with road following while in the

doi:10.6342/NTU201703573

 7

work of Muller et al. they dealt with obstacle avoidance instead. In the work of Giusti et

al. [18], the objective is to solve the problem of autonomous navigation of Micro Aerial

Vehicles (MAVs) in forest or mountain trails. Their proposed method is based on a deep

CNN that takes a raw RGB input image and predicts a direction for navigating the MAV.

The work of Giusti et al. has similar approach to that of NVIDIA’s autonomous driving

system; however, the approach of Giusti et al. is not enough to steer a car with only

directions since driving car requires more precise controls.

1.3 Contributions

The main contribution of this work is to propose a deep CNN approach that uses

intermediate semantic perception for predicting car steering from a raw RGB image.

The proposed method has two stages. It computes semantic segmentation in the first

stage and predicts car steering angles in the second stage.

The second contribution is to show that semantic perception such as semantic

segmentation, can be used to enhance the performance of the car steering angle

prediction. We show that semantic segmentation can provide a higher level

understanding of the driving scene and the proposed approach provides more robust

results than the typical end-to-end CNN approach without semantic perception.

1.4 Thesis Organization

Besides Chapter 1, this thesis is organized as follows:

Chapter 2. In this chapter we introduce the topics such as imitation learning and

vision-based autonomous driving system. In addition, fundamentals of CNNs are

introduced, for example, basic architecture, common components, and operations

doi:10.6342/NTU201703573

 8

involved. We also introduce the problem of semantic segmentation and some recent

approaches to the problem.

Chapter 3. This chapter introduces the method proposed in this thesis. The proposed

approach has two stages and we will introduce each stage and explain the details in

individual sections.

Chapter 4. In this chapter, we introduce details about experiments for our research.

Details such as environment setup and data used for training and testing are provided.

Also, experimental results are provided to support that semantic segmentation can be

used to enhance the performance of car steering angle prediction.

Chapter 5. This chapter concludes the work in this thesis and proposes further

directions for research.

doi:10.6342/NTU201703573

 9

Chapter 2 Preliminaries

2.1 Vision-based Autonomous Driving Systems

Autonomous driving can be viewed as a robotic problem and there are two

important aspects to be considered—perception and control. The perceptions from

various sensors help an autonomous vehicle understand the environment surrounding it.

Computer vision tasks such as object detection and semantic segmentation can be

considered as visual perception problems in autonomous driving.

Generally, visual perception problems fall into two categories: local object and the

whole environment. In the local object category, objects in the environment are

extracted, for example, in object detection the locations of different objects are detected

so that a robotic system can interact with them. On the other hand, the whole

environment perception problem tries to figure out meaning from the environment, for

example, semantic segmentation can provide a robotic system a sense of spatial layout.

An autonomous driving system usually consists of many sub-modules and each of

them is complex. In general, an autonomous driving system can be divided into three

modules: the perception module, the decision module, and the control module [19]

(Figure 2-1).

Figure 2-1: Three main modules for an autonomous driving system.

doi:10.6342/NTU201703573

 10

The perception module manages perceptions of an autonomous driving system. It

extracts relevant knowledge about the environment from the sensor data. For example,

the perception module may convert an input image to certain types of representations,

such as semantic segmentation. The results of the perception module are passed to the

decision module. The decision module acts as the brain of the autonomous driving

system, which determines high-level decisions for the autonomous car, these decisions

include switching to the adjacent lane or overtaking. Finally, the control module

executes the driving decisions by computing driving controls, for example, steering

angles, and the amount of accelerations or brakes.

2.2 Imitation Learning

Imitation learning is a technique that learns a controller or policy from expert’s

demonstration of good behavior. This technique has proven effective and achieves

state-of-the-art performance in various applications [20-23]. A common approach to

imitation learning is to train a regressor to output an expert’s behavior given input

observations and ground truth actions performed by the expert [24].

Figure 2-2: Imitation learning in the context of steering control.

doi:10.6342/NTU201703573

 11

Imitation learning in the context of autonomous driving is learning a policy for

controlling a car. The goal is to learn a policy πθ(ui|oi) that lets the system choose an

action ui in response to observations oi to control car steering. In vision-based

autonomous driving systems, oi represents an input image and ui represents a driving

control, e.g., steering or acceleration. The policy πθ is parameterized by θ which can be

the weights of a CNN. Figure 2-2 shows an illustration of the concept. Here the policy

πθ learns to steer a car by imitating a reference policy π* based on the data collected

from human drivers. The traditional approach to imitation learning is based on

supervised learning. It simply trains a policy π that performs well under the distribution

of states encountered by the expert’s reference policy π*. The loss function for training

a policy can be written as [25]:

where O is a set of observations, i is the i-th element in O.

Then, the desired policy π can be obtained by

2.3 Transfer Learning

In supervised learning, when there is not sufficient training data for the task we

want to solve, the trained model for the task may be unreliable. It is important to train a

reliable model that can apply to unseen data because we want the model to be able to

handle as many cases as possible. Deep learning models require a large amount of

training data since a typical deep neural network has millions or billions of parameters.

Therefore, it is difficult to train deep models on small quantities of data. Transfer

doi:10.6342/NTU201703573

 12

learning [26] allows us to overcome this problem by leveraging the existing labeled data

of some related task. The learned knowledge in solving the source task can apply to our

problem of interest (Figure 2-3).

A common transfer learning approach for deep neural network models is

fine-tuning pre-trained models. Bengio et al. [27] show that transfer of knowledge in a

network can be achieved by training a neural network on a domain with a large amount

of training data and retraining the network on a related but different domain via

fine-tuning its weights. For example, we can take a pre-trained model of object

recognition and use a small amount of data to fine-tune it for training a car recognition

model.

Figure 2-3: Paradigm of transfer learning.

doi:10.6342/NTU201703573

 13

2.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Network (CNN) is a type of feed-forward artificial neural

network that its connectivity pattern between neurons is inspired by the organization of

the animal visual cortex and biological processes. The response of an individual neuron

in biological processes can be approximated mathematically by a convolution operation.

Different from typical artificial neural networks, CNNs exploit the spatially local

correlation presented in natural images and have three distinguished features: 3D

volumes of neurons, local connectivity, and shared weights. A CNN arranges neurons in

a layer in three dimensions (Figure 2-4): width, height, and depth. Here depth means the

third dimension of a feature map volume, while the depth of a Neural Network refers to

the total number of layers in a network. The neurons in a layer are only connected to a

small region of the layer precedes to it. Besides, CNNs exploit spatial locality by

enforcing a local connectivity pattern between neurons of adjacent layers. Also, each

convolutional kernel is applied across the same image. That is, the same convolutional

kernel is applied at many locations in the image and the same weight is shared.

Figure 2-4: A convolutional layer arranges its neurons in three dimensions.

doi:10.6342/NTU201703573

 14

A typical CNN contains convolutional, pooling, and fully connected layers.

Different types of layers are connected locally and stacked together to form a CNN

architecture. In CNNs, a convolutional layer convolves with input feature maps and

generate output feature maps. A filter in a convolutional layer has size W × H × D,

where W is the width of the filter, H is the height of the filter, and D is the number of

input feature maps. For each input feature map, each W × H values of the W × H × D

weights are used as a convolutional kernel for one particular input feature map. If we

have N filters, each filter will produce an output feature map by convolving with the

input feature maps. For example, in Figure 2-5, a W × H × 3 filter convolves with three

input feature maps of size 32 × 32 and produces an output feature map of size 30 × 30.

Figure 2-5: A filter is used to produce a new feature map.

Instead of predefining by humans as common convolution kernels, CNNs learn the

values of convolution kernels during the training process. To reduce the computational

complexity of 2D convolution, a convolutional layer only connects each neuron in a

feature map with a small region of the input. In Figure 2-6, multiple neurons at the same

doi:10.6342/NTU201703573

 15

location in the output feature maps are connected to the same region in the input feature

map. This spatial connectivity is controlled by a filter size, for instance, the filter of size

W × H × D defines the spatial connectivity between the input and output feature maps.

During the forward pass, each convolutional kernel convolves with any possible

position in an input feature map and a new feature map will be generated.

Figure 2-6: Local connectivity of a convolutional layer.

Pooling layers perform similar operations as convolutional layers, but the

operations of pooling layers find the maximum (max pooling) or the average value

(average pooling) within the region defined by a 2D window (Figure 2-7 assumes a 2 ×

2 window with stride 2 for pooling and each color represents the pooling position and

the result.) It is common to periodically insert a pooling layer in-between convolutional

layers in CNNs. The purpose of a pooling layer is decreasing the spatial size of a feature

map and the number of parameters. In addition, computation in the network will also be

reduced. Also, pooling layers are not involved in the training process of CNNs and have

no parameters associated with them since the operations of them are fixed and

predefined.

doi:10.6342/NTU201703573

 16

Figure 2-7: Illustration of the max pooling operation.

Finally, a fully connected layer is a layer that has full connections to the previous

layer, i.e., each neuron in a fully connected layer has connections to all neurons in the

previous layer. Figure 2-8 illustrates the idea of full connections. In Figure 2-8, the

green one on the right is a fully connected layer that each neuron (the white circle)

connects to all neurons in the previous layer (the blue one) and connections to these

neurons are represented by lines with different colors. As a result, a fully connected

layer has dense connections between neurons and a significant amount of storage and

computation is required.

Figure 2-8: Illustration of a fully connected layer.

doi:10.6342/NTU201703573

 17

In addition to aforementioned layers, non-linear activations and normalization

layers can also be found in a CNN. The non-linear activation is used to apply a

non-linear transformation to the output of a convolutional or a fully connected layer.

Common non-linear functions used in CNNs are rectified linear unit (ReLU), sigmoid,

and hyperbolic tangent (tanh). Figure 2-9 shows function plots for these non-linear

functions. ReLU is defined as follows:

The sigmoid function is defined as

Figure 2-9: Plots for various non-linear activation functions.

(Left: ReLU, center: sigmoid, right: tanh)

A normalization layer is usually used to improve training efficiency and model

accuracy by controlling the input distribution across layers. Batch normalization [28] is

a common practice used in normalization layers, which performs the normalization for

each training mini-batch. Usually, the distribution of the layer input is normalized to a

zero mean and a unit standard deviation. In batch normalization, the normalized input

value is scaled and shifted.

doi:10.6342/NTU201703573

 18

A common pattern of CNN architecture is stacking together a convolutional layer,

a ReLU activation layer, and a pooling layer. The pattern repeats until the image has

been downsampled to a small size. Finally, fully connected layers are appended to the

end of CNN and the last fully-connected layer holds the output, such as the class scores.

Many deep CNNs have been proposed over the past two decades, and each proposed

CNN has a different network architecture concerning the arrangement of layers, for

example, type of layers, the order of layers, and the number of layers to be used. In

addition, the configuration of filters separates one CNN from the other. The

configuration of filters can be the width and height of the filter or the depth of the filter.

Figure 2-10: Architecture of VGG-16.

VGG-16 proposed by Simonyan et al. [29] is a widely adapted CNN architecture

(Figure 2-10). It consists of 16 layers: 13 convolutional layers and 3 fully connected

layers. The core idea of VGG-16 is using smaller filters (3 × 3) that have fewer weights

doi:10.6342/NTU201703573

 19

to achieve the same effect as larger 5 × 5 filters. Therefore, all convolutional layers in

VGG-16 have the 3 × 3 filter size. In addition, the three fully connected layers at the

end of the network have 4096, 4096, and 1000 neurons, respectively.

2.5 Semantic Segmentation

In semantic segmentation, the goal is labeling every pixel in an image with a

semantic meaning. A label usually describes a specific class of objects, in an urban road

scene, for example, pixels are labeled as the sky, car, or pedestrian. The problem of

semantic segmentation is dense prediction comparing to other vision problems, such as

image classification and object detection. Generally, there are three categories of

computer vision problems and each has different level of complexity (see Figure 2-11).

The task of semantic segmentation needs to predict a label for every pixel in an image

while image classification or object detection only need to make predictions for the

whole image or parts of the region within an image.

(a) Image classification (b) Object detection (c) Semantic segmentation

Figure 2-11: Comparison of different vision problems. [30]

Before deep CNNs have been widely used in solving vision tasks, most methods

relied on handcrafted features to predict pixels independently. In this kind of approaches,

an image patch is usually fed into a classifier such as Random Forest or Boosting to

predict the class probabilities of the center pixel. Recently, the success of deep CNN for

doi:10.6342/NTU201703573

 20

object classification has attracted researchers to take advantage of their feature learning

capabilities for semantic segmentation. Most state-of-the-art deep CNN architectures [5,

31] designed for segmentation learn to encode an input image into a low resolution

image representations and decode them to the original resolution with pixel-wise

prediction.

For evaluating the performance of a semantic segmentation system, three metrics

are commonly used: per-pixel accuracy, per-class accuracy (class average accuracy) and

average precision [32]. Per-pixel accuracy is defined by the percentage of correctly

classified pixels in the test set:

where Ncorrect is the number of correctly classified pixels in an image and N is the total

number of pixels in the image.

As for per-class accuracy, it is defined as follows:

where C is the total number of classes in the dataset, N’
i is the total number of correctly

classified pixels of class i ∈ {1, 2, … C}, and Ni is the total number of pixels of class i.

The average precision (AP) for a class is defined as the intersection over union metric.

For a given object class c, we compute a ratio between the intersection and the union of

two sets, that is, the ground truth pixels and the predicted pixels for class c.

In addition, mean average precision (mAP) is commonly used to evaluate over all

classes in the dataset:

doi:10.6342/NTU201703573

 21

where C is the total number of classes in the dataset and i is an object class that i ∈ {1,

2, …, C}.

Since the success of CNNs for object classification, researchers have taken

advantage of its learning capabilities to tackle problems of semantic segmentation.

Recent CNNs for semantic segmentation usually exploit the encoder-decoder

architecture [5, 31, 33]. Fully Convolutional Network (FCN) proposed by Long et al. [5]

is the forerunner of this kind of architecture. In an encoder-decoder CNN architecture,

the network architecture is divided into two parts. The first part is the encoder network

that encodes input images into lower resolution spatial features. VGG-16 [29] is

commonly adapted for the encoder network. Then, another part called decoder network

will learn to upsample these low resolution feature maps to original input resolution and

predict class labels for each pixel. The decoder network learns to upsample feature maps

for the next decoder in the hierarchy by combining output feature maps from multiple

encoders in the encoder network. For example, a deconvolutional layer will be applied

to fuse and upsample the feature maps to a segmentation score map.

Most recent deep CNN approaches for semantic segmentation have a similar

architecture of encoder network and they are mainly different in the design of decoder

network and the way of training. Some researches exploit multi-scale CNNs to deal

with semantic segmentation [34, 35]. The core idea of this approach is using features

extracted at different scales to obtain local and global contexts. Feature maps from early

encoders can provide sharper object boundaries because of higher frequency details

doi:10.6342/NTU201703573

 22

within them. However, the test time of this approach is expensive since feature

extractions are performed in multiple paths of CNNs.

doi:10.6342/NTU201703573

 23

Chapter 3 Methodology

3.1 System Overview

We design a vision-based autonomous driving system that maps visual sensory

inputs to driving controls. In this thesis, we only consider visual sensory input from a

front-facing camera and the autonomous driving system learns how to steer through

imitation learning. To collect data, human drivers collects images and corresponding

steering angles as a reference policy.

The overall system is illustrated in Figure 3-1, and the system design is based on

the knowledge in Section 2.1. Because of the learning capacities of deep CNNs, we can

utilize it to compute semantic segmentation from a raw RGB image. Also, deep CNNs

can also be used to map high level visual representation such as semantic segmentation

to driving controls such as steering. Therefore, we can construct a vision-based

autonomous driving system that uses deep CNNs to solve visual perception and steering

control problems. In our proposed system, a deep CNN is used as the cognition module,

while another deep CNN functions as the decision making module and the control

module. The Perception Network is used to generate semantic segmentation and the

Control Network generates steering values based on the result of the perception module.

Figure 3-1: System architecture of the proposed approach.

doi:10.6342/NTU201703573

 24

The proposed method is based on intermediate semantic perception. Instead of

simply taking an end-to-end CNN approach [9] with raw RGB images as inputs, we first

process the input image to get an understanding of the road scene. We generate a high

level understanding of the scene and use it as an extra supervision to train a steering

prediction model. In general, two steps are involved in the proposed approach. First, we

use a deep CNN to generate semantic segmentation from an image as an intermediate

perception. Then, the segmentation result is used to feed another deep CNN to predict

steering. The first step is used to parse the whole image so that a high level information

of the scene is obtained. The semantic segmentation obtained from this step describes

the scene layout, for example, which part of the input image represents sky or road.

After obtaining a semantic scene layout, we use this information to facilitate learning of

car steering since the segmented result provides semantic information which reveals the

specific part of the image we should focus on and the part of the image that can be

ignored.

3.2 Semantic Segmentation Generation

As mentioned above, the first stage is semantic segmentation generation. In this

stage, we use SegNet [36] as the CNN infrastructure for the Perception Network.

SegNet is designed to be efficient enough for solving pixel-wise semantic segmentation.

It is efficient for road scene understanding both in memory and computation. In addition,

SegNet can delineate small objects in a scene properly. Besides, training of SegNet can

be performed end-to-end. The architecture of SegNet is an encoder-decoder approach

(Figure 3-2) that is inspired by the unsupervised feature learning architecture proposed

by Ranzato et al. [37].

doi:10.6342/NTU201703573

 25

Figure 3-2: Architecture of the Perception Network.

3.2.1 Encoder Network

The first part of the network is an encoder network that produces low resolution

feature maps. In SegNet, the encoder network has 13 convolutional layers that

correspond to the first 13 convolutional layers in VGG-16 (Figure 3-3). However, the

encoder network and decoder networks do not have any fully connected layers. The

absence of fully connected layers makes parameters of the encoder fewer and easier to

train than other CNN architectures for semantic segmentation [5, 31]. Each encoder

block in the encoder network is composed of some convolutional layer with ReLU

non-linear activation (from 2 to 3) and each convolutional layer is followed by a batch

normalization layer. A max-pooling layer is attached to the end of an encoder block. The

convolutional layer of an encoder block convolves with input feature maps to produce

new feature maps. After each convolutional layer, batch normalization is performed on

doi:10.6342/NTU201703573

 26

the output feature maps. Following that, ReLU non-linear activation is applied. At the

end of an encoder block, a max-pooling layer with a 2 × 2 window and stride 2 is

applied on the input feature maps and their dimensions are downsampled by a factor of

2.

Figure 3-3: Architecture of the encoder network.

The effect of max-pooling is used to achieve translation invariance over small

spatial shifts in an input feature map and the sub-sampling brings in a large spatial

context from an input feature map for each pixel in the output feature map. A sequence

of encoders can achieve more translation invariance for better classification results;

however, there is a loss of spatial resolution of the feature maps. This increasingly loss

of spatial resolution of the feature maps can affect the results of segmentation since

boundary details between objects also get lost. Therefore, feature map information

doi:10.6342/NTU201703573

 27

before downsampling should be stored for later uses. To keep this information, we store

the input feature maps of a max-pooling layer. To save memory usage, max-pooling

indices can be used. Note that max-pooling indices are the locations of the maximum

feature value in a 2 × 2 pooling window during max-pooling and they are stored for

each input feature map to the max-pooling layer. The storage required for max-pooling

indices of a feature map is 2 bits for each 2 × 2 pooling window (Figure 3-4) since we

only need to remember the maximum location among all 4 locations within the window.

Figure 3-4: Illustration of max-pooling indices.

In Figure 3-4, each color means the correspondence between blocks. Besides, the

possible value of max-pooling index can be {0, 1, 2, 3}, where 0 is the top-left location,

1 is the top-right location, 3 is the bottom-left location, etc. In this way, it is more

efficient to store than storing a full size feature map although the accuracy will decrease

slightly.

3.2.2 Decoder Network

The second part of the network is a decoder network which is responsible for

producing multi-dimensional features for each pixel for classification. The architecture

of the decoder network is shown in Figure 3-5 The decoder network consists of a

doi:10.6342/NTU201703573

 28

sequence of decoder blocks and each block consists of an upsampling layer in the

beginning and some convolutional layers (from 2 to 3) with ReLU activation. Besides,

similar to the encoder network, a batch normalization step is applied to the output

feature maps from each convolutional layer. Each decoder block has a corresponding

encoder block. Therefore, the decoder network also has 13 convolutional layers, and the

decoder blocks are arranged in a hierarchical order such that the blocks with smaller

input dimension are in the front. Each decoder block performs non-linear upsampling of

input feature maps by the max-pooling indices received from the corresponding encoder

block. The resulting upsampled feature maps are sparse, and therefore, series of

convolutional layers are used to produce dense feature maps. The decoding process of

SegNet is illustrated in Figure 3-6.

Figure 3-5: Architecture of the decoder network.

doi:10.6342/NTU201703573

 29

Figure 3-6: Illustration of the decoding process.

After a series of decoding steps, high dimensional features maps that have the

same resolution as the input to the encoder network will be obtained from the final layer

of the decoder network. The high dimensional features maps are fed to a softmax

classification layer which classifies each pixel independently. The output of the softmax

classifier is a C-channel image of object class probabilities where C is the number of

classes. The result of semantic class assignment for each pixel is obtained by finding the

class with the maximum class probability. Finally, the whole network is trained with

per-pixel cross entropy loss:

where N is the number of samples, W and H are width and height of the input image,

Y(x, y) is the class label for the pixel location (x, y) in the ground truth mask Y, and P(x, y)

is the predicted class label for the pixel location (x, y) in the network output P.

doi:10.6342/NTU201703573

 30

3.3 Car Steering Angle Prediction

After obtaining semantic segmentation from the previous stage, we are moving

into the second stage. The result of the semantic segmentation is a 2D map that marks

each pixel in the original input with a label, which is an integer value that represents a

class. For example, a value of 2 represents the road class, and pixels in the input image

are labeled with 2 if they are covered by roads. Also, since the input to the second stage

is a 2D segmentation map, we utilize a CNN based approach to extract features from the

map and predicting steering angles. In this stage, we use a CNN called the Control

Network to predict steering angles from the segmentation result.

Figure 3-7: Overview of the second stage.

 Figure 3-7 provides a high-level overview of the second stage. In our system, the

Control Network serves as decision and control modules in an autonomous driving

system because the system only solves the lane following problem and does not deal

with other high-level decision problems, such as switching lanes or overtaking previous

cars. The Control Network decides how to drive along the lane based on the input

semantic segmentation and executes the decision by adjusting steering angles.

doi:10.6342/NTU201703573

 31

Since the segmentation result has removed many details from the input image, the

design goal of the Control Network is compactness and efficiency. A compact CNN

architecture is preferred since the segmentation map contains few features. Besides, we

want to reduce the computation time and achieve promising results at the same time.

Therefore, the Control Network should have as fewer layers as possible and does not

contain any complex structures.

The basic idea of the Control Network is to downsample the segmentation map and

feed it to a fully connected layer for steering angle prediction. The Control Network

architecture for mapping a semantic segmentation to a steering angle is shown in Figure

3-8.

Figure 3-8: Architecture of the Control Network.

doi:10.6342/NTU201703573

 32

The Control Network is composed of 4 blocks and each block has a convolutional

layer with 16 filters of size 3 × 3 and a 2 × 2 max-pooling layer with stride 2. Following

each convolutional layer, a max-pooling layer is appended to downsample the output

feature maps of each block. Finally, two fully connected layers with 256 and 1 neuron,

respectively, are attached to the end of the Control Network. The last fully connected

layer will predict a steering angle value.

To meet our design goal, the 3 × 3 filter size is used in a convolutional layer. When

using a small filter size such as 3 × 3 in a convolutional layer, finer and local

information may be preserved during feature extraction. On the other hand, using larger

filter sizes, such as 5 × 5 and 7 × 7 in a convolutional layer, more context will be

considered, but finer and local information may be lost. Also, using smaller filter size

can result in faster execution and smaller model size.

Another design choice of the Control Network is the number neurons in a fully

connected layer. Basically, the number of neurons in a fully connected layer affects the

execution time and model size. More neurons in a fully connected layer result in longer

execution time and larger model size. In addition, the number of neurons decides the

learning capacity of the network. When the number of neurons is large, the CNN has a

better learning capability, but it also has more chances to overfit the training data.

Therefore, the final number of neurons of the second to last fully connected layer is 256,

which is the optimal value found by experimenting different values.

In general, the parameters of the Control Network is driven by empirical results.

For example, we have conducted an experiment to change the number of convolutional

layers and max-pooling layers, and a 4-block architecture that each block is composed

doi:10.6342/NTU201703573

 33

of a convolutional layer and a max-pooling layer bring the best outcome. Besides, from

the experiment, using 16 filters of size 3 × 3 proves to have the best result. In addition,

we have conducted experiments to replace each max-pooling layer with a convolutional

layer of 16 3 × 3 and stride 2 filters. Both of these configurations can downsample a

feature map by a factor of two, but using a max-pooling layer has a better result.

The output representation is an important design decision in the network

architecture. In an autonomous driving system, the Control Module outputs a driving

control, e.g., a steering angle. In general, the output driving controls should be

continuous scalar values. Therefore, the output of the Control Network should represent

a steering angle value that reflects the input semantic segmentation. Also, the output

steering angles should be continuous and range from sharp left to sharp right. Therefore,

we consider a single value representation for the output of the Control Network.

The single value representation uses a one-neuron fully connected layer to

represent a steering angle value, which is shown in Figure 3-8. The goal of the Control

Network is predicting a steering angle from a segmentation map which can be viewed as

a single value regression problem. Therefore, in order to solve steering angle prediction,

mean square error (MSE) is used as the loss function for training the Control Network.

MSE is defined as the following equation:

where ŷi is the prediction for i-th training sample, yi is the actual value for the i-th

training sample, and N is the number of total training samples.

doi:10.6342/NTU201703573

 34

Chapter 4 Experiments

In the experiments, we use Udacity Self-Driving Car Challenge 2 Dataset [38] as a

benchmark for the proposed approach. The challenge requires a model to predict

steering angles from input images. We have conducted various experiments and show

that the proposed method is more robust than the typical end-to-end CNN approach with

an RGB image as input.

4.1 Environments

The hardware and system environments are summarized in Table 4-1. Basically,

our experiments ran on an Ubuntu PC with Intel i7 3.5GHz CPU, 16GB of memory, and

a NVIDIA GTX 1070 GPU.

CPU
Intel Core i7-2700K 3.50GHz

(Quad-Core)

Main Memory 16GB

GPU
NVidia GeForce GTX 1070

(with 8GB memory)

Operating System Ubuntu 14.04 LTS 64-bit

Table 4-1: Hardware specification for the experiment.

doi:10.6342/NTU201703573

 35

4.2 Dataset

4.2.1 Cityscapes Dataset

The Cityscapes Dataset [39] provides large data for pixel-level and instance level

semantic labeling and focuses on real world urban scenes. Data in the dataset is

collected across 50 cities in Europe and captured in different seasons. The dataset

contains 5,000 images with fine annotations and each image in the dataset has a

resolution of 2048 × 1024 pixels. Examples images and their annotations from the

dataset are shown in Figure 4-1. The dataset defines 30 different labels and only 19 of

them are used for training and evaluation. In our work, we use pre-trained weights on

the Cityscapes dataset and fine-tune the Perception Network.

4.2.2 Udacity Self-Driving Car Challenge 2 Dataset

The Udacity Self-Driving Car Challenge 2 Dataset consists of 33,808 images for

the training set and 5,614 images for the test set. Each image in the dataset is in RGB

format and has a size of 640 × 480 pixels. Figure 4-2 shows several example images

from the dataset. The dataset contains challenging driving scene in different lighting,

road, and traffic conditions, for example, shadows, uphill, and heavy traffic. All these

images are captured from a front-facing camera installed on a car and we ignore images

captured from others cameras (the left and right cameras). In addition, the data were

collected by humans driving on urban roads during the daytime. The dataset also

includes car motion history such as speeds and steering angles, but we only use steering

angles as the ground truth label. The recorded steering angles capture human

performance and the value ranges from -2.0 to 2.0 (sharp right to sharp left).

doi:10.6342/NTU201703573

 36

Figure 4-1: Example images and annotations from the Cityscapes dataset.

doi:10.6342/NTU201703573

 37

Figure 4-2: Example images from the Udacity Self-Driving Car Dataset.

doi:10.6342/NTU201703573

 38

4.3 Evaluation Metrics

The evaluation metrics used in the experiments are absolute error (AE), mean

absolute error (MAE), and root mean squared error (RMSE). AE is used to measure the

absolute difference between the predicted value and the actual value. In addition, it is

used to evaluate the performance of a single prediction. The absolute error (AE) is

defined as:

where ŷi is the prediction for i-th sample, yi is the actual value for the i-th sample.

Each CNN model will be evaluated by RMSE and MAE. RMSE and MAE are

common measurements for evaluating the accuracy of a regression model. The

definition of RMSE is defined as:

where ŷi is the prediction for i-th sample, yi is the actual value for the i-th sample, and N

is the number of samples. And MAE is defined as the mean of AE over some samples.

4.4 Implementation Details

4.4.1 Semantic Segmentation Annotation for Udacity Dataset

Because the Udacity dataset does not have semantic segmentation annotations, we

have to construct ground truth annotations for images in the dataset. First of all, we

define 7 classes: Sky, Road Marking, Road, Construction, Car, Vegetation, and

Background. The Construction class represents various structures that separates two

doi:10.6342/NTU201703573

 39

areas and those locating on the side of the road to prevent accidents, for example, fences

and guard rails; the Vegetation class includes vertically and horizontally growing

vegetation, for instance, trees and grasses; finally, the Background class includes other

objects not immediately related to car steering, for example, buildings, traffic signs, etc.

Generally, images from the Udacity dataset are frames from videos recorded during

driving. Since consecutive frames in videos are similar, we take advantage of this fact to

prevent labeling every image in the dataset. The videos in the dataset were recorded at

20 FPS, so we labeled images every 120 images (frames) on average and totally 335

images are labeled. To generate ground truth annotations for the remaining images, we

first fine-tuned a pre-trained SegNet model with these 335 manually labeled images.

Finally, we used the fine-tuned model to generate pixel-wise labels for all images in the

Udacity dataset.

4.4.2 Baseline Model

The baseline model serves as a reference for the performance of a typical

end-to-end CNN with a raw RGB image as input. We modify a VGG-16 network to

have two fully connected layers with 256 neurons and 1 neuron, respectively. In

addition, we downsample images from Udacity dataset by a factor of 2 to have an image

size of 320 × 240 pixels. The reduced size of the input image enables us to use a larger

batch size for efficient training. Finally, the network is trained with Adam optimizer [40]

using a learning rate of 1 × 10-4 with a batch size of 32.

4.4.3 Perception Network

The Perception Network is based on SegNet and it is pre-trained with Cityscapes

dataset and then fine-tuned with our manually labeled semantic segmentation

doi:10.6342/NTU201703573

 40

annotations for Udacity dataset. Images from Udacity dataset are downsampled to 320 ×

240 pixels for efficient training. Also, the network is trained with Stochastic gradient

descent [41] with a batch size of 32. The initial learning rate is set to 1 × 10-3. Besides,

weight decay and momentum are set to 5 × 10-4 and 9 × 10-1, respectively. Finally, we

fine-tuned the network for 800 iterations with a batch size of 8.

4.4.4 Control Network

The Control Network is trained with semantic segmentation results of images in

the Udacity dataset and the corresponding steering ground truths. Semantic

segmentation results are downsampled to 320 × 240 pixels for efficient training. In

addition, the network is trained with Adam optimizer [28] using a learning rate of 1 ×

10-6 with a batch size of 32.

4.5 Results

4.5.1 Overall Performance

The overall result of the proposed model is promising. We compare the

performance of the proposed model and the baseline model in Table 4-2 (the definition

of the baseline model can be found Section 4.4.2). The proposed approach outperforms

the baseline model in several aspects. First of all, the proposed model is more robust

than the baseline model concerning RMSE. The proposed model has an RMSE of 8.85

× 10-2 on the test set while the baseline model has an RMSE of 9.2 × 10-2. The mean

absolute error of the proposed model is slightly higher than the baseline; however, it has

more stable results than the baseline approach since it has a lower standard deviation of

the absolute error.

doi:10.6342/NTU201703573

 41

Model RMSE
Mean Absolute Error

(± Std. Deviation)

Training Time

(Epochs)

Baseline 0.0920 0.059±0.071 47

Ours 0.0885 0.065±0.060 35

Table 4-2: Result on the test set of Udacity dataset.

Team Name Rank RMSE Approach

komanda 1 0.0512 3D CNN [42] and RNN [43]

rambo 2 0.0559

Using two consecutive images as

input [43]

chauffeur 3 0.0572 CNN and RNN [43]

lookma 4 0.0716 N/A

 5 0.0743 Use ResNet50 [44, 45]

epoch 6 0.0789

CNN with data augmentation and

output smoothing [46]

Proposed Model N/A 0.0885 CNN with semantic perception

Baseline Model N/A 0.1121 CNN

bitas 7 0.0944 N/A

ai-world 8 0.0988 N/A

bauer 9 0.1057 N/A

fsc3 10 0.1202 N/A

Table 4-3: Results on the Udacity Self-Driving Car Challenge 2 leaderboard.

doi:10.6342/NTU201703573

 42

In addition, Table 4-3 shows the results of the baseline model and our proposed

model on the Udacity Self-Driving Car Challenge 2 leaderboard [47]. Most of the top

teams do not simply use a CNN model, for example, some of them using both CNN and

RNN (Recurrent Neural Network) [48]. Besides, some of them take advantage of

temporal information and use consecutive images as inputs. On the other hand, our

proposed model is based on CNNs and only use a single image as input. If our result

would be submitted to the challenge, we would rank 7. However, most of the top results

come from more complex techniques and computation. Among those teams using only

CNNs our model would rank second (third if team lookma uses CNNs).

Figure 4-3: Absolute errors of the baseline model across the test data.

doi:10.6342/NTU201703573

 43

Figure 4-4: Absolute errors of the proposed model across the test data.

Also, the overall prediction error from the proposed model is more stable. We

compared prediction errors from both models and found that the baseline model has

large errors in many test cases. On the other hand, our proposed model is more stable

and has smaller errors. For example, in Figure 4-3, there are many test cases that have

absolute errors more than 0.4, while in Figure 4-4 the proposed approach has relatively

few such cases.

4.5.2 Analysis of Error Cases

To compare the performance between the baseline and the proposed model, we

analyze selected error cases for the baseline model. Here, we define an error case as a

sequence of frames in the test set that the baseline model predicts with an error over a

threshold. An error case reflects the weakness of the baseline model. Based on the

information in Figure 4-3, we define an error threshold 0.3 and select three error cases

doi:10.6342/NTU201703573

 44

of the baseline model for further analysis. Table 4-4 gives a summary of the mean

absolute errors (MAEs) for all error cases.

Model

Mean Absolute Error (± Std. Deviation)

Error Case #1 Error Case #2 Error Case #3

Baseline 0.516±0.079 0.438±0.088 0.344±0.019

Ours 0.183±0.111 0.198±0.124 0.091±0.054

Table 4-4: Mean absolute errors and standard deviations for all error cases.

In addition to MAE, in the following analysis, we will investigate the average

feature map that obtained from the layer just before the fully connected layer.

Specifically, we investigate the average feature maps that obtained from the 4th

max-pooling layer of the proposed model and the 5th max-pooling layer of the baseline

model. The averaged feature map is generated by summing and averaging values of

each pixel from all output feature maps of the last max-pooling layer.

Figure 4-5 shows an image (frame 1857) from the first error case of the baseline

model. In this case, the baseline model has the worst performance and has an MAE

around 0.516. On the other hand, our proposed model can handle this test case with an

MAE around 0.183. An overview of the performance comparison between both models

can be found in Figure 4-6, which shows the prediction results of both models. Also,

from Figure 4-6, we can see that the proposed model has more accurate prediction than

the baseline model. This test case represents a scenario that a lot of background objects

appear in the image and the baseline model fails to extract important features from the

image, e.g., the centerline marking of the road. The reason may be that the lack of

doi:10.6342/NTU201703573

 45

training data to help the CNN recognize the centerline marking and relate it to the

steering angle. However, the proposed model uses semantic segmentation and is able to

recognize regions that are important for driving, e.g., the road and the centerline

marking. Besides, the proposed model can map these important features to steering

angles. The segmentation result in Figure 4-8 shows that the road region and centerline

marking are identified (see Figure 4-9 for color mapping). The average feature maps of

both models also show that the proposed model is able to extract and highlight

important features, such as the road and the centerline marking, while the baseline

model cannot (Figure 4-7).

An image from the second error case of the baseline model is shown in Figure 4-10.

Overall, the proposed model has a better accuracy than the baseline model, which is

reflected in Figure 4-11. In this error case, the baseline model has an MAE around 0.438.

On the other hand, our propose model can handle this error case with an MAE around

0.198. This error case also shows that the proposed model cannot recognize important

region such as the centerline marking. From Figure 4-12 and Figure 4-13, it shows that

the proposed model is able to extract features of centerline markings, while the baseline

model cannot.

In Figure 4-14, an image from the third error case of the baseline model is shown.

In this error case, the baseline model has an MAE around 0.344. On the other hand, our

proposed model can handle these test case with an MAE around 0.091. From Figure

4-15, we can see that the proposed model outperforms the baseline model with much

higher prediction accuracy.

doi:10.6342/NTU201703573

 46

Figure 4-5: An image from error case #1 (frame 1857).

Figure 4-6: Prediction results of error case #1.

doi:10.6342/NTU201703573

 47

Figure 4-7: Comparison between feature maps from different models (frame 1857).

(a) Baseline model

(b) Proposed model

doi:10.6342/NTU201703573

 48

Figure 4-8: Result of semantic segmentation for frame 1857.

Figure 4-9: Semantic meaning and the corresponding color

This test case represents a driving scenario that lacks lighting. An RGB image with

low lighting may cause the CNN fail to extract important features from the image, e.g.,

lane markings and side of the roads. However, the proposed model can handle such case

and recognize roads and lane markings (segmentation result can be found in Figure

4-16). In Figure 4-17 (a) we can see that the baseline model does not extract any

important features, while in Figure 4-17 (b), it shows that proposed model can

successfully extract road edges as features.

doi:10.6342/NTU201703573

 49

Figure 4-10: An image from error case 2 (frame 4400).

Figure 4-11: Prediction results of error case #2.

doi:10.6342/NTU201703573

 50

Figure 4-12: Comparison between feature maps from different models (frame 4400)

(a) Baseline model

(b) Proposed model

doi:10.6342/NTU201703573

 51

Figure 4-13: Result of semantic segmentation for frame 4400

Figure 4-14: An image from error case #3 (frame 918).

doi:10.6342/NTU201703573

 52

Figure 4-15: Prediction results of error case #3.

Figure 4-16: Result of semantic segmentation for frame 918.

doi:10.6342/NTU201703573

 53

Figure 4-17: Comparison between feature maps from different models (frame 918).

(c) Baseline model

(d) Proposed model

doi:10.6342/NTU201703573

 54

4.5.3 Effects of Different Perception Network Models

In our proposed method, the Perception Network is responsible for generating

semantic segmentation from an RGB image. To evaluate the effect of semantic

segmentation quality on the prediction result, we trained two models and evaluated

these two models on the test set and see how semantic segmentation qualities affect the

testing results.

We prepared Model-500, which is the Perception Network fine-tuned with

pre-trained Cityscape weights. In Model-500, we only fine-tune the Perception Network

for 500 iterations and use the fine-tuned model to generate semantic segmentation.

Finally, the segmentation results are fed to the Control Network for predicting steering

values. Model-800 is similar to Model-500, but it is fine-tuned for 800 iterations.

Generally, Model-800 will have better segmentation results than Model-500. From

Table 4-5, we can see that there is a 0.007 difference in the RMSE between these two

models and the MAE of Model-800 is lower than that of Model-500. The results show

that a well-trained Perception Network is beneficial to the steering prediction. Figure

4-18 shows the results of semantic segmentation generated by both models. From the

figure we can see that results produced by Model-800 are more accurate than those

produced by Model-500, for example, the predictions of lane markings, roads, and cars

are more accurate in the results of Model-800.

Model RMSE
Mean Absolute Error

(± Std. Deviation)
Training Time (epochs)

Model-500 0.0955 0.069±0.065 44

Model-800 0.0885 0.065±0.060 35

Table 4-5: Results of different segmentation model on the test set.

doi:10.6342/NTU201703573

 55

Figure 4-18: Sample segmentation results for the test set.

(The left column are input images, the center column are segmentation maps generated

by Model-500, and the right column are segmentation maps generated by Model-800.)

doi:10.6342/NTU201703573

 56

Chapter 5 Conclusion

In this thesis, a deep CNN model for autonomous car steering is proposed. The

proposed approach is based on deep CNNs and it takes advantages of semantic

segmentation to provide a high-level representation for steering angle prediction. In

general, the proposed method has two stages: semantic segmentation generation and car

steering angle prediction.

In the first stage of the proposed approach, a Perception Network that based on the

architecture of SegNet is used to generate semantic representation from an RGB input

image. In order to obtain better segmentation results, we used pertained weights on

Cityscapes for the Perception Network and fine-tune it with our manually labeled

semantic segmentation ground truths. In the second stage, the segmentation result is fed

to a Control Network for predicting a steering angle. The Control Network is a compact

network that can learn to map a semantic segmentation result to a steering angle value.

The experimental results demonstrate that the proposed approach outperforms a

typical end-to-end CNN baseline model. The proposed approach has RMSE 8.85 × 10-2

on the test set of Udacity dataset while the baseline model has 9.2 × 10-2 RMSE. In

addition, we use several data to support that our method has more robust results than the

baseline model.

In future work, we would like to survey how to label semantic segmentation for

driving videos efficiently. In this thesis, we have to label segmentation ground truths

manually; however, if we could introduce automatic annotation techniques, we can

expand the size of the training data easily. Possible directions for efficient labeling of

doi:10.6342/NTU201703573

 57

semantic segmentation are video segmentation or unsupervised learning of semantic

segmentation. Finally, we also interested in designing a unified CNN architecture that

can deal with semantic meaning extraction and driving control prediction in a single

CNN.

doi:10.6342/NTU201703573

 58

References

[1] Global Status Eport on Road Safety 2015. Available:

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/

[2] J. Janai, F. Güney, A. Behl, and A. Geiger, "Computer Vision for Autonomous

Vehicles: Problems, Datasets and State-of-the-Art," arXiv preprint

arXiv:1704.05519, 2017.

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, "Efficient Processing of Deep

Neural Networks: A Tutorial and Survey," arXiv preprint arXiv:1703.09039,

2017.

[4] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-Cnn: Towards Real-Time

Object Detection with Region Proposal Networks," in Advances in Neural

Information Processing Systems, pp. 91-99, 2015.

[5] J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for

Semantic Segmentation," in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431-3440, 2015.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet Classification with

Deep Convolutional Neural Networks," in Advances in Neural Information

Processing Systems, pp. 1097-1105, 2012.

[7] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, "Deep Spatial

Autoencoders for Visuomotor Learning," in IEEE International Conference on

Robotics and Automation, pp. 512-519, 2016.

[8] S. Levine, C. Finn, T. Darrell, and P. Abbeel, "End-to-End Training of Deep

Visuomotor Policies," Journal of Machine Learning Research, vol. 17, no. 39,

pp. 1-40, 2016.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, and J. Zhang, "End to End Learning for

Self-Driving Cars," arXiv preprint arXiv:1604.07316, 2016.

[10] A. H. van der Heijden, "Two Stages in Visual Information Processing and Visual

Perception?," Visual Cognition, vol. 3, no. 4, pp. 325-362, 1996.

[11] T. S. Lee and A. L. Yuille, "Efficient Coding of Visual Scenes by Grouping and

Segmentation," in Bayesian Brain: Probabilistic Approaches to Neural Coding,

pp. 141-185, 2006.

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/

doi:10.6342/NTU201703573

 59

[12] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M.

Andriluka, P. Rajpurkar, T. Migimatsu, and R. Cheng-Yue, "An Empirical

Evaluation of Deep Learning on Highway Driving," arXiv preprint

arXiv:1504.01716, 2015.

[13] D. A. Pomerleau, "Alvinn: An Autonomous Land Vehicle in a Neural Network,"

in Advances in Neural Information Processing Systems, pp. 305-313, 1989.

[14] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, "Deepdriving: Learning

Affordance for Direct Perception in Autonomous Driving," in IEEE

International Conference on Computer Vision, pp. 2722-2730, 2015.

[15] The Open Racing Car Simulator Website. Available: http://torcs.sourceforge.net/

[16] S. Yang, S. Konam, C. Ma, S. Rosenthal, M. Veloso, and S. Scherer, "Obstacle

Avoidance through Deep Networks Based Intermediate Perception," arXiv

preprint arXiv:1704.08759, 2017.

[17] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, "Off-Road Obstacle

Avoidance through End-to-End Learning," in Advances in Neural Information

Processing Systems, pp. 739-746, 2006.

[18] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, F. Fontana, M.

Faessler, C. Forster, J. Schmidhuber, and G. Di Caro, "A Machine Learning

Approach to Visual Perception of Forest Trails for Mobile Robots," IEEE

Robotics and Automation Letters, vol. 1, no. 2, pp. 661-667, 2016.

[19] C. Chen, "Extracting Cognition out of Images for the Purpose of Autonomous

Driving," Ph.D., Princeton University, 2016.

[20] L. G. Appelbaum and A. M. Norcia, "Attentive and Pre-Attentive Aspects of

Figural Processing," Journal of Vision, vol. 9, no. 11, pp. 18-18, 2009.

[21] S. Chernova and M. Veloso, "Interactive Policy Learning through

Confidence-Based Autonomy," Journal of Artificial Intelligence Research, vol.

34, no. 1, p. 1, 2009.

[22] S. Ross and D. Bagnell, "Efficient Reductions for Imitation Learning," in

International Conference on Artificial Intelligence and Statistics, pp. 661-668,

2010.

[23] D. Silver, J. Bagnell, and A. Stentz, "High Performance Outdoor Navigation

from Overhead Data Using Imitation Learning," Robotics: Science and Systems

IV, Zurich, Switzerland, 2008.

http://torcs.sourceforge.net/

doi:10.6342/NTU201703573

 60

[24] S. Ross, G. J. Gordon, and D. Bagnell, "A Reduction of Imitation Learning and

Structured Prediction to No-Regret Online Learning," in International

Conference on Artificial Intelligence and Statistics, pp. 627-635, 2011.

[25] J. Zhang and K. Cho, "Query-Efficient Imitation Learning for End-to-End

Simulated Driving," in AAAI Conference on Artificial Intelligence, pp.

2891-2897, 2017.

[26] S. J. Pan and Q. Yang, "A Survey on Transfer Learning," IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

[27] Y. Bengio, "Deep Learning of Representations for Unsupervised and Transfer

Learning," in ICML Workshop on Unsupervised and Transfer Learning, pp.

17-36, 2012.

[28] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift," in International Conference on

Machine Learning, pp. 448-456, 2015.

[29] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for

Large-Scale Image Recognition," arXiv preprint arXiv:1409.1556, 2014.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, "Microsoft Coco: Common Objects in Context," in European

Conference on Computer Vision, pp. 740-755, 2014.

[31] H. Noh, S. Hong, and B. Han, "Learning Deconvolution Network for Semantic

Segmentation," in IEEE International Conference on Computer Vision, pp.

1520-1528, 2015.

[32] P. O. Pinheiro, "Large-Scale Image Segmentation with Convolutional

Networks," Ph.D., École Polytechnique Fédérale de Lausanne, 2017.

[33] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab:

Semantic Image Segmentation with Deep Convolutional Nets, Atrous

Convolution, and Fully Connected Crfs," IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. PP, no. 99, pp. 1-1, 2017.

[34] D. Eigen and R. Fergus, "Predicting Depth, Surface Normals and Semantic

Labels with a Common Multi-Scale Convolutional Architecture," in IEEE

International Conference on Computer Vision, pp. 2650-2658, 2015.

[35] G. Lin, C. Shen, A. van den Hengel, and I. Reid, "Efficient Piecewise Training of

Deep Structured Models for Semantic Segmentation," in IEEE Conference on

doi:10.6342/NTU201703573

 61

Computer Vision and Pattern Recognition, pp. 3194-3203, 2016.

[36] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation," arXiv preprint

arXiv:1511.00561, 2015.

[37] F. J. Huang, Y.-L. Boureau, and Y. LeCun, "Unsupervised Learning of Invariant

Feature Hierarchies with Applications to Object Recognition," in IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2007.

[38] Udacity Self-Driving Car Challenge 2 Dataset. Available:

https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2

[39] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U.

Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset for Semantic Urban

Scene Understanding," in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3213-3223, 2016.

[40] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in

International Conference on Learning Representations, 2014.

[41] L. Bottou, "Stochastic Gradient Descent Tricks," in Neural Networks: Tricks of

the Trade: Springer, pp. 421-436, 2012.

[42] S. Ji, W. Xu, M. Yang, and K. Yu, "3d Convolutional Neural Networks for

Human Action Recognition," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 1, pp. 221-231, 2013.

[43] Teaching a Machine to Steer a Car. Available:

https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c

[44] Model of Team Rwightman in Udacity Self-Driving Car Challenge 2. Available:

https://github.com/udacity/self-driving-car/blob/master/steering-models/evaluati

on/rwightman.py

[45] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," in IEEE Conference on Computer Vision and Pattern Recognition,

pp. 770-778, 2016.

[46] Model of Team Epoch in Udacity Self-Driving Car Challenge 2. Available:

https://github.com/udacity/self-driving-car/tree/master/steering-models/commun

ity-models/cg23

[47] Udacity Self-Driving Car Challenge 2 Leaderboard. Available:

https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2#fi

https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c
https://github.com/udacity/self-driving-car/blob/master/steering-models/evaluation/rwightman.py
https://github.com/udacity/self-driving-car/blob/master/steering-models/evaluation/rwightman.py
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2#final-leaderboard

doi:10.6342/NTU201703573

 62

nal-leaderboard

[48] T. Mikolov, M. Karafiat, and L. Burget, "Recurrent Neural Network Based

Language Model," in Eleventh Annual Conference of the International Speech

Communication Association, 2010.

https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2#final-leaderboard

