B2~ FLPRTATRTLPI BT
FAEL 2
Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

FEPRIHS B 4 fAtihe g G ReRie s
AFTEPFELEFRLAY
Unknown Indoor Semantic Navigation Based on

Recursive Neural Network for Intelligent Service Robotics

R 45
Chang-Jiun Chen

hERER RCE L
Advisor: Ren.C. Luo, Ph.D.

PoEA R 106 &£ 7 7
July 2017

doi:10.6342/NTU201703341

>+ 2
A

RFFALFIies # Z AL 4P - R EFaw o FRkr p Fidr - ﬁg\fi&
FIOB R R apy] o TRl AF T IE PR B B ALFEUE
RANIREBRBY BN RES BN TR ERRECERR REAPE
BT RNME AP T EREGRY SR E O FERAAPAIRER) IR
Fug o AT - oA - EFEEON% o 2 KA FRAY ST
Tl gk e - E LR > X ALK BRNAEES FE F Db F
BRI 2 RN PFERE R FRER R LA AP AL

WAy 1SS BEAPF XL FFR DA] o AF A RFE PG 0 K
APPSR E) REHEInER] o PR AEE LS -

AR A FTEHEEAZ B FEEY ¢ o (NTU-ICeiRA) & & s
TAEY OABRBHAY TR AP ME S £ S prp B L B
WEFEIIFE P I RAFOEA{E > B2 J Ao p 2 HR DR
Hehd % - BREBHAFE LS 2% L ¥ k228 v 2ix -5
A2 BT REAPFEPL AT 0 R R RY S SR
Frpes alBFLP-HKBT - LA RTERE-AY S FHOREE R §
S IR qﬁt;@ﬁ . gg-% B s s B F s fpd oini - A2 f

FHLRE T P R AR AT R DT
2 — o MR E N R E ST BE TR PR FAROFTT A
BYE TH - TES LA CEE FPA-I T EL o fIE A p T -
ArdrIhiE R o) BR BB AF LA PR AF S HEHT % (Tracy) ~ 24
(Dornin) ~ % % (Amy) ~ =4 (Helen) ~ & = (Winnie) % 2+ 32 i@ ©

Boid o RAA N A AT BB AT i Py AT R
PO ERA PR RFEL-EF NI EhEKY RERBANS &9

Boeni — B A > Boenzbf SRR o

doi:10.6342/NTU201703341

EE ¥

HEAHFE Y ¢ GRIRFAB B LG L AR R BB BE L # i o &
Moo iR HAATRERANTAE IR F B Tl &2 R AARTHIR

B SUARE s AR AR F RARBE- S K@

-~

Y

\‘-F
%53»

B 3 22

x\“l

Foo PR B BB E L o F R LGB RGE

b

fe|ehr gdp 4 0 AR Arauks Y Eauan 4 .

GAEE P s AR DR AR Y Bt 0 F T AB BT

)
3

A e AP ENRBE T A I LA SRR ERFLAFY
RS G2 o NP RN - BESLR S I A REahiE b S fodp HR RS
;}F] VSN SR RS ;Ls-%vﬁmjp ARSI R A L e Il =2 _%fsfp VAl
BRI BAP T RS AR L BY Y 0 A F L e g MG -
B4 KB E R E G AU SRR R o AP LR - %E
SERBERS VE Tl Ea e sl Y A

B BRI EauR B Y RIES AL AP AREREL T §

CTRERELE RS EE R SR SN L 2 R S IE T

Bho LS B A B BT B P RAp 4 R A ST AL KPR TR 7 S
MR A - Ea R R A R A s DRI A LR R o

MiEs S RBABE A BEUPEL FLOE PELERTY - A

#

doi:10.6342/NTU201703341

ABSTRACT

Recent researches have made service robots capable of navigating through
complex and clustered indoor environments. However, such techniques require prebuilt
maps and cannot be applied to unknown environments. By contrast, when entering an
unknown environment, humans can ask someone for directions to figure out how to get
to a specific location, and further navigate to the destination by following the
instructions. Present mobile robots lack the ability of navigating under unknown
environments according to the given verbal instructions.

In this research, we aim to implement the ability of navigating through unknown
environments on mobile robots. We focus on indoor environments, using recursive
neural networks to make robots learn the methods of navigating from humans. We
design a navigation system, which is trained by human-controlled navigating records
along with instructions. Instructions are split and then classified into ten basic classes,
and each navigating record is collected according to one of these basic instruction
classes. During the training process, we propose a validating method to evaluate the
effectiveness of our models.

Finally, we put our system to the test under both simulation and real environments.
We implement the system on a warehouse robot called ‘Penguin’, and test whether it
can get to desired positions according to different given instructions. We compare the
navigation paths of our mobile robot with those of humans following the same verbal
instructions. The results show that our mobile robot can achieve similar performance to

that of humans.

doi:10.6342/NTU201703341

Keywords: service robotics, mobile robotics, semantic navigation, deep learning in

robotics and automation, human-robot interaction

doi:10.6342/NTU201703341

CONTENTS

Er ot OSSR SR i
PR BB s ii
AB ST RACT ettt sttt e et e et et beenree s ii
CONTENTS ettt b et b et e bt et e e sbe e e nb e e s be e e nne e nneeeneas Y
LIST OF FIGURES. ...ttt bbb viii
LIST OF TABLES ...ttt X
Chapter 1 INErOAUCTION ... e 1
1.1 Problem Statement..........cccooiiiiiiiiieee e 1
1.2 RElAtEd WOTKS.......oiiiiiieiicieie e 4
1.3 ReSEArCh ODJECTIVEccuiiiiiiiieiierieeee e 6
1.4 TRESIS STFUCLUIE ..ottt bbb 7
Chapter 2 SyStemM AFCRITECTUNE ..o, 8
2.1 Hardware SPeCITICAIONSuiiiieiiieiie sttt 8
2.1 1 IMIOEOTS ...ttt bbbt 9
212 SBNISOK ottt 10
2.1.3 Central Control COMPULETccoiiiiiiiiiieieeee s 14
2.1.4 POWeEr SUPPIY SYSEM ..ot 16
2.2 SOTtware ArChItECIUIEoiiiiiieiee e 18
2.2.1 OVEIVIBW ..ottt bbbt 18
2.2.2 Laser Range FINAer LAYErcccooeiiiiiiiiiiiieiee e 20
2.2.2.1 INtErpolationcccooiiiiiiieiee e 20
2.2.2.2 PIrEPIrOCESSING ..oviiviiieiieiieieie ettt sttt 22

\'

doi:10.6342/NTU201703341

2.2.3 INSEIUCKION LAYcuiiieiiieie ettt et e iba s 23

2.2.3.1 Speech RECOGNITION........cccvciiiieiecieie et en e are e 24

2.2.3.2 CONVEISION ...ttt bbb 24

2.2.4 Neural Network Model ... 25

2.2.5 POSt-ProCeSSING LAYEccoveiiiieiieeie s esie et 26

2.2.5.1 Speed Adjusting FUNCLIONcccooviiieiicic e 26

2.2.5.2 Halting COUNLEcoeiieiice e 27

Chapter 3 Training Data Set ..o 29

3L INSEIUCTION ...ttt 29

3.2 BaSIC INSIIUCLION SELScuviiiiiiciiiierieie e 32

3.3 Human-Controlled Navigating ReCOrdScccevveiveveiiieieeiece e 36

331 DaAtADASE......ceiieiiitieee e 36

3.3.2 Teleoperation PrOgramcccccceeieeiieieesieeieeseese e seesre e e sae e 37

3.4 Features and AQVANTAGESccceiiririeieiie ettt 39

Chapter 4 Training and EXPeriments.........ccocoe i 41

4.1 Training MOEIS......cooiiii s 41

411 IMPIEMENTALIONc.eoviiiiiciceieeee e 41

4.1.2 ValidatioNn.......cooiiiiiiiiieeee s 42

A.1.3 MONITOIS ...t sb bbbt 43

4.2 EXperiments and RESUILS..........cooiiiiiiie s 45

421 SIMUIALTION. ..ot e 45

4.2.2 Real ENVIFONMENT.......coiiiiiiiiiiee s 45

4.2.3 INEErpOlationccooiviiiiiiiiiic e 46

4,24 COMPATISONSeiveirieteitesieete ettt ettt sttt sb bbbt nes 52

Chapter 5 Conclusions and FUture WOFKS.........cccccveieirerrsiesieeseee e 55
Vi

doi:10.6342/NTU201703341

Vil

doi:10.6342/NTU201703341

LIST OF FIGURES

Fig. 1.1.1 Navigating under unknown indoor ENVIFONMENTccccuerieiirivimresiere i e 2
Fig. 1.1.2 Example of expressing a navigation path by different instructions................... 3
Fig. 2.1.1 iCeiR A warehouse robot ‘Penguin’cccccveiiiiiiiiiiiniiiieiesee e 8
Fig. 2.1.2 Servomotors and motion CONLrOHErSc.ooveiieieiiiieee e 9
Fig. 2.1.3 Different environment structures observed from laser range finder 11
Fig. 2.1.4 Two series of Laser Range Finder being used in our research............c.......... 14
Fig. 2.1.5 Control diagram of navigation SYSTEMccccovviririiiene e, 16
Fig. 2.1.6 The overall circuit diagram implemented onboardcccoceverininiiicnienen, 17
Fig. 2.1.7 DR-UPS40 by Mean Well.........cccoiiiiiiieeeee e 18
Fig. 2.2.1 Structure of our Navigation Programcoeeerieieeiierenenesie e 19
Fig. 2.2.2 Executing process of our navigation SYStEMcccerererirereneneneneeeeeans 20
Fig. 2.2.3 Modified saturation fUNCHION ..o 23
Fig. 2.2.4 Structure of neural network model............c.ccoooveiieii i 25
Fig. 3.1.1 Ten paths corresponding to ten classes of simple instructions........................ 31
Fig. 3.1.2 Example of executing a complex inStruCtionccccvvveveeiieceevesee e 32
Fig. 3.2.1 Process of generating a complete instruction sentencec.cccceeeevevvenenne. 33
Fig. 3.3.1 Example of the recording fileScccooeiieiiiiie e 37
Fig. 3.3.2 Control method of teleop_twist_keyboardcccccoeviiieiieiicieiie e 38
Fig. 3.3.3 Control keys of our teleoperation programcccceeveveerecieeseesesee e 39
Fig. 4.1.1 Loss monitor and validation Mmonitorcccceveiiieiie i 44
Fig. 4.2.1 Floor plans of Building for Research Excellenceccccooovevvieiiiiinciinnne, 47
Fig. 4.2.2 Screenshot of the demonstration VId€0cccccvveieeiiiiiiic e 48
Fig. 4.2.3 Experiment results of Class 1 and Class 2 inStructions.............cccceeveevveiveanne. 49
viii

doi:10.6342/NTU201703341

file:///C:/Users/CJ-Chen/Desktop/0810%20Master%20Thesis/CJChen%20-%20MasterThesis%20-%20Draft.docx%23_Toc490229413

Fig. 4.2.4 Experiment results of Class 3 and Class 4 inStructions............ccc.civeuieeeeeriinns 50

Fig. 4.2.5 Experiment results of Class 5 and Class 6 inStructions..........c.cc.ecceiveeiieennenne. 51
Fig. 4.2.6 Experiment results of Class 7 and Class 8 inStructions...............ccoceeveeveneenne 52
iX

doi:10.6342/NTU201703341

LIST OF TABLES

Table 2.1-1 Technical specifications of HOkuyo UTM-30LXccccooiiiieiinnienniiiennns 12

Table 2.1-2 Technical specifications of Hokuyo URG-04LXccccccoiviiiiiinnceiniiniinnn, 13

Table 3.1-1 Class of SIMple INSIUCTIONS..........ccoviiiiieieic e 30

Table 4.2-1 Success rate of each basiC INSIUCIONc.cooviiiiiiiicie e 48
X

doi:10.6342/NTU201703341

Chapter 1 Introduction

1.1 Problem Statement

Suppose you are attending an interview in an office building. During the break you
need to go to the restroom. However, since it is the first time you have been to this
location, you do not know the direction. You might look for a floor plan or signs to find
your way, or ask someone for directions. In the latter case, you may receive
straightforward instructions, such as ‘You just go down this aisle and turn left at the
second corner, and you will see it.” Even though you had never walked along this path,
nor had you seen the map, you are still able to reach the destination by following the
instruction. In our daily life, we often ask for directions to find out how to get to
specific locations. Humans possess the ability to navigate through unfamiliar
environment according to simple instructions. By contrast, can robots achieve the same
thing?

To execute a variety of tasks, service robots often need to have the ability of
navigating and avoiding obstacles under different environments. Many methods have
been developed to achieve this, including the effective simultaneous localization and
mapping (SLAM) algorithms. Although these kinds of algorithms can make mobile
robots navigate to destinations properly, they all depend on the understanding of the
entire environment. In other words, robots need to construct the map of environment
before starting to conduct their missions. On the other hand, exploration algorithms let
robots able to navigate and construct maps under unknown environments. However,
these algorithms cannot command robots to explore specific locations. Therefore, there
has not been any algorithm that can have robots move to desired locations to execute
tasks right after they enter a new, unknown space.

1

doi:10.6342/NTU201703341

Go down this aisle, and turn

right at the second corner.»

Where can I find
the restroom?

Fig. 1.1.1 Navigating under unknown indoor environment

In addition to the necessity of building maps for navigation, to let robots
understand the navigating instructions from human, the efficient communication
between human and robots is also a critical issue. Maps that robots use for localization
and navigation, such as occupancy grid map, lack semantic information. Meanwhile, it
is not easy to express natural language by mathematical models. To solve these
problems, researches have been done to construct semantic maps for users. Robots
classify their positions into different locations, such as corridors, halls or room 302,
adding semantic information to the maps. Other researches establish probabilistic

models for the instructions written in commonly verbal expressions, helping the control

doi:10.6342/NTU201703341

system of robots handle the uncertainty and ambiguity inside human verbal instructions.
Nonetheless, due to the variety and complexity of verbal instructions, it is hard to
express all the possible patterns of instructions in mathematical models. For example,
we can clearly see that the following two instructions refer to the same navigation path
according to the map shown in Fig. 1.1.2, although they are expressed in such different
ways:
e (o straight to the end, turn right, and then enter the second room on your left hand
side.
e You just turn right at the end of this aisle, and then turn left at the second entry.
It is proper to claim that there are thousands of ways to express a same navigation
path, and building models for all of them is impossible. Therefore, constructing an
efficient algorithm for mobile robots to understand instructions received from human

and execute navigation is never a simple work.

Q Goal Position

Turn right at the Please go to the

end...

Fig. 1.1.2 Example of expressing a navigation path by different instructions

Go straight to the

end and... end of...

doi:10.6342/NTU201703341

The problem we want to solve in our research has two aspects. First, robots cannot
navigate to a certain location before constructing a map of the unknown environment.
Second, it is hard for robots to follow human commands due to the complexity and
variety of verbal instructions. Therefore, our question is: Given an indoor environment
which is unknown to a mobile robot, can the robot navigate to a certain location by
following human verbal instructions?

Before we describe the detailed objectives of this research and our method for the
above question, we will first discuss some previous researches related to this topic in the

next section.
1.2 Related Works

Moving to a specific location according to semantic instructions is a very intuitive
way of navigation for mobile robots. However, this is never an easy task. To have robots
efficiently use semantic information, a method using topological-semantic-metric map
and Bayesian models is proposed to construct semantic maps for human-like navigation
[1]. The direction of moving is computed from probabilistic models, and obstacles are
avoided during semantic navigation. This research shows a great success in navigating
robots to goal positions using symbolic descriptions.

An abstract map is implemented to represent unseen environments for mobile
robots to navigate using only symbolic language phrases [2]. In addition, another
research aims to plan semantic paths for human by integrating multiple sensors and
using results from simultaneous localization and mapping (SLAM) algorithms [3].
These researches all try to bridge the gap between verbal instructions human use for
instructing and mathematical models machines use for executing tasks.

To construct efficient communication between human and robots, many researches

doi:10.6342/NTU201703341

use the methods of machine learning to do semantic mapping under indoor
environments, classifying positions into different locations for human to understand
easily. A supervised learning algorithm—Adaboost, has been used to classify each
position into corridor, room or doorway [4]. They use 2D laser range finders as sensors,
and have the system recognize environmental shapes around the position. Some
researches afterward improve the performance of it. K-means and Learning Vector
Quantization methods, as well as the Markov model have been used to improve the
classification rate of door [5]. A learning algorithm using the classification results from
SVM and CRF is proposed, and experiments have been conducted on various
environments to demonstrate its performance over real-world task [6]. In addition,
different kinds of sensors are used to classify the location more precisely. A place
categorization system is built upon convolutional network, and its accuracy has been
evaluated using 3 different types of cameras [7]. The convolutional neural network is
also applied to classify places, where LIDAR sensor is used to create occupancy grids
data [8]. These efforts are all successful in adding semantic information to known or
new environments.

While moving to unknown places, predicting the location we are about to enter
helps us decide the next action to be taken. For example, if we want to go to room 305,
and we have seen room 301, 302 sequentially, we may assume that our direction is
correct, and we need to walk through the aisle and pass by two more rooms before
seeing our destination. This predicting ability allows us to avoid wasting time on
searching more information about the environments, such as entering room 304 to check
whether it is the correct one. Researchers implement this predicting ability on mobile
robots to improve the performance of mapping, localization and navigation. An

algorithm called P-SLAM is introduced to look-ahead mapping [9]. This algorithm uses
5

doi:10.6342/NTU201703341

the built map of explored regions to decide whether there is a similar structure inside the
unexplored regions. Besides, similarities between current surroundings and built map
have been used to actively predict close loops in unexplored areas and reduce the

uncertainty during exploration [10].

1.3 Research Objective

In this research, our motivation is to make the robot ‘understand’ human verbal
instructions used in navigation instructions, and move to the corresponding destinations
without having any pre-knowledge about the indoor environment. We now specify the

detailed objectives we aim to achieve, as well as the methods we plan to use.

We design a navigation system, which can be applied on our mobile platform. This
system receives verbal instructions from humans, and controls the robot to
navigate through unknown environments in both simulation and real world.

e We use the method of machine learning to construct the main body of our
navigation system. The neural network model is trained to learn the way human
navigate according to some instructions.

e The neural network model takes instructions and data acquired by sensor as its
input, and outputs moving and rotating velocity commands to the mobile robot,
instead of local or global goal positions in the environment.

e e give restrictions to the instructions applied in this research. They need to be a

certain type of instructions, and they should be legal. A legal instruction is defined

to be an instruction that can be successfully execute under the given environment.

For example, if you cannot turn right ahead, then an instruction telling you to turn

right at the front is not legal. We will explain the type of instructions we consider

in Chapter 3.

doi:10.6342/NTU201703341

e Sensor we choose should be able to recognize the structures of indoor
environments. We choose to use 2D laser range finder as our sensor, and we will
explain our reasons in Chapter 2.

e We use navigation records to train our neural network model. These records, called
human-controlled navigating records, are generated by manually control robots to
navigate by different people.

e \We train our model using data collected in simulation, and the navigation system
should be able to apply in real environment.

By achieving the above objectives, we aim to give a proper solution to the stated

question.

1.4 Thesis Structure

In Chapter 2, we introduce the system architecture, including the specifications of
hardware components we use on our experiment platform, and the structure of presented
software. Chapter 3 describes the training data set we use to train our neural network
model. We will also describe the categories of instructions we consider in our research,
as well as our method of collecting training data.

In Chapter 4, we introduce the process of training our neural networks, and the
method we use to validate the efficiency of models. Next, we describe the details of
experiments conducted under simulation and real environments. We will analyze the
results and do some comparisons to examine the performance of our navigation system.
Finally, Chapter 5 provides conclusions to our effort, explains the contributions of this

research, and discusses the future works.

doi:10.6342/NTU201703341

Chapter 2 System Architecture

In this chapter, we first introduce the hardware we use to test our navigation system. We
will describe the specification of each component on the mobile platform, including
motors, sensors, control computer and the power supply system. We will also explain
the reasons for choosing these components, as well as our concerns while designing this
platform. In the second part of this chapter, we describe the software architecture. Our
navigation system consists of several functional layers and the recursive neural network
model. We will introduce the function of each layer, and how we implement these layers.

The structure of our neural network model will also be discussed.
2.1 Hardware Specifications

In this research, we implement our navigation system on the warehouse robot
called ‘Penguin’, which is shown in Fig. 2.1.1. This robot is equipped with two
differential wheels, one laser range finder mounted at the top, an Xtion Pro Live RGB-D
camera, and a central control computer. In the following paragraphs, we will describe

the specifications of these components.

Fig. 2.1.1 iCeiRA warehouse robot ‘Penguin’

doi:10.6342/NTU201703341

2.1.1 Motors

The warehouse robot has two differential wheels and two omnidirectional wheels
served as passive wheels. The former are driven by two Faulhaber 4490H048B
Brushless DC-Servomotors with reduction of 66:1. Each servomotor is connected to a
corresponding MCBL 3006 Motion controller. The motion controllers are connected via
a RS232-USB signal cable to the CPU’s USB port.

We set the maximum speed of two motors to be 10000rpm via motion
controllers. The gear ratios of two differential wheels are both 3, thus the overall gear
ratio is equal to 200. Radius of the differential wheel is 0.075m. Therefore, the
theoretical maximum velocity of our robot is approximately 0.4m/s. However, due to
robot’s weight the maximum velocity will be smaller in practice. This specification is
used when collecting training data and training our neural network models.

The wheel odometry is attached on the servomotor. We are not completely certain
which kind of encoder has been mounted on the servomotors, but the documentation
suggests the servomotor model type can co-operate with two-channel or three-channel

optical or magnetic encoders.

(a) Faulhaber 4490H048B (b) MCBL 3006

Fig. 2.1.2 Servomotors and motion controllers

doi:10.6342/NTU201703341

2.1.2 Sensor

We only use the laser range finder to gather information form the environment. The
RGB-D camera is not used in our research. We now explain why we choose to use laser
range finder as the main sensor.

To get a well-trained neural network model, it is essential to prepare a sufficient
amount of training data. However, collecting data in real environments is
time-consuming and difficult, especially when we want to record the entire navigation
process. Therefore, we aim to collect our training data under simulation environment. In
such case, using laser range finder as sensor has many advantages.

First of all, the amount of data returned by a laser range finder is much less than
that by other sensors, such as camera. As a result, speed of calculation become faster,
and delay of navigation system is prevented.

Next, although the amount of data is small, it is sufficient to realize the structure of
indoor environment through laser range finder. We take Fig. 2.1.3 as an example. A
mobile robot is navigating through an indoor environment, and the collected sensor data
is visualized in rviz, a 3D visualization tool of ROS. From Fig. 2.1.3 (a), we can tell that
the robot is moving along a corridor, while Fig. 2.1.3 (b) shows that there is a crossroad
in front of the robot. Thus, robots and humans can decide their actions according to the
sensor measurements.

Last but not least, the effect of noise on laser range finder is small. The sensor
measurements collected from simulation environments have similar performance to
those from real environments. Therefore, it is appropriate to train our system using the
records collected in simulation, and test it in the real world. In contrast, if we use

camera as the main sensor, the training process will be completely different. We cannot

10

doi:10.6342/NTU201703341

use simulation images to train out navigation model, since the situation varies a lot in
real world due to several factors, such as influence of light.

To sum up, we consider laser range finder an appropriate sensor to achieve this
navigation task. The structures of indoor environments can be observed, and training
can be done using simulation data without considering the effect of noise.

The laser range finder we use in our research is Hokuyo UTM-30LX. Table 2.1-1
describes its technical specifications. It should be noticed that UTM-30LX has a
scanning range of 270 degrees. If we place the laser range finder at the front of our
warehouse robot, both sides of it will be blocked by the robot. This will results in being
unable to get the full scanning range. Therefore, we mount the laser range finder on top

of the mobile robot. Height of the sensor is 45cm from ground.

(@) Corridor (b) Crossroad

Fig. 2.1.3 Different environment structures observed from laser range finder

11

doi:10.6342/NTU201703341

Table 2.1-1 Technical specifications of Hokuyo UTM-30LX

Model No.

UTM-30LX

Power Source

12VDC+10%

(Current consumption: Max: 1A, Normal 0.7A)

Light Source

Semiconductor laser diode(A=905nm)

Laser safety Class 1(FDA)

Detection Range

0.1 to 30m (White Square Kent Sheet 500nm

or more), Max. 60m 2700C

Accuracy

0.1 to 10m:£30mm, 10 to 30m: +50mm =1

Angular Resolution

0.25°(360 /1,440 steps)

Scan Time 25msec/scan
Sound Level Less than 25 dB
Interface USB2.0(Full speed)

Synchronous output

NPN open collector

Command system

Exclusively designed command SCIP Ver. 2.0

Connection

Power and Synchronous output: 2m flying lead wire

USB:2m cable with type-A connector

Ambient

(Temperature/Humidity)

-10 to +50 ° C, less than 85%RH(without drew and frost)

Vibration Resistance

Double amplitude 1.5mm 10 to 55Hz,

2 hours each in XY, and Z direction

Impact Resistance

196m/s2, 10 times in X, Y, and Z direction

Weight

Approx. 370g (with cable attachment)

12

doi:10.6342/NTU201703341

Table 2.1-2 Technical specifications of Hokuyo URG-04LX

Model No. URG-04LX-UG01

Power Source 5VDC+5%(USB Bus Power)

Semiconductor laser diode (A=785nm),
Light Source

laser safety class 1

20 to 5600nm (white paper
Measuring area

with 70nmx70nm), 240 degrees

60 to 1,000nm: £30nm
Accuracy

1,000 to 4,095nm: £3% of measurement

Step angle: approx. 0.36¢
Angular resolution

(360°/1,024 steps)

Scanning time 100 ms/scan

Noise 25 dB or less

Interface USB2.0/1.1 [Mini B] (Full speed)

Command System SCIP Ver. 2.0

Halogen/Mercury lamp: 10,000Lux
Ambiance Illuminance *1

or less, Florescent: 6000 Lux (Max.)

-10 to +50 °C, 85% or less
Ambient temperature/Humidity

(Not condensing, not icing)

10 to 55Hz, double amplitude 1.5mm
Vibration resistance

each 2 hours in X, Y, and Z directions

196m/s2, Each 10 times
Impact Resistance

in X, Y, and Z directions

Weight Approx 160g

13

doi:10.6342/NTU201703341

To verify that our navigation system could be implemented on different mobile
platform, we conduct experiments in simulation using mobile robot equipped with other
type of laser range finder. The laser range finder we use here is URG-04LX. Table 2.1-2
describes its technical specifications. It should be noticed that the scanning range and
the number of measurement steps of URG-04LX are different from those of
UTM-30LX. To make our neural network model work properly, some efforts need to be
done to eliminate this difference. We will describe the method we use in the software

section.

(@) Hokuyo UTM-30LX (b) Hokuyo URG-04LX
Fig. 2.1.4 Two series of Laser Range Finder being used in our research

2.1.3 Central Control Computer

Our central control computer is the Jetson TX1 Developer Board. Its main function
is to control the robot movement and receive sensor data. On the central control
computer we run the Robot Operating System (ROS) [11]. Two major ROS nodes are
used to achieve such tasks.
e ros_control [12]

In brief, it controls the rotation of two wheel motors. Our navigation program, as

well as the teleoperation program, publishes the command velocity to this node.

14

doi:10.6342/NTU201703341

And then, ros_control calculates the corresponding rotational speeds of two

differential wheels and the driving servomotors.
e hokuyo _node [13]

This node handles the sensor data acquired from 2D laser range finder. Some

parameters in this node can be adjusted to deal with the situation of using different

laser range finders, where the detection ranges and angular resolutions are both
different.

In addition to these two nodes, the ROS node teleop_twist_keyboard is used to
remotely control the robot while our navigation program is not running [14]. It serves as
a teleoperation program, however in the next chapter we will mention that we design
our own teleoperation program and the reason for doing that.

To conduct our experiments more efficiently, we run our navigation program on a
remote computer so that we can modify our program immediately. The central control
computer and the remote computer are connected to the same local area network.
Through the network ROS node hokuyo node publishes readings of the laser range
finder to the remote laptop, and after computation our navigation program publishes the
command velocity back to ros_control node. Our program is packaged in a ROS node,
and the exchange of messages is achieved through ROS topics.

The local area network can be provided by a cellphone. Fig. 2.1.5 shows the

control diagram of our navigation system.

15

doi:10.6342/NTU201703341

W @ y

Network

Navigation- rostopic

System _/

laser_scan

Remote Laptop Penguin Robot

Fig. 2.1.5 Control diagram of navigation system
2.1.4 Power Supply System

The electric circuit used on-board consumes exclusively DC current, which means
that any AC flow should be converted to DC flow previous to usage, and thus we deploy
a DC Power Supply unit to import appropriate voltage and current flow. Normally the
power system is supplied no more than 30V and 6A. If the supplied current exceeds that
upper bound, fuse and UPS may serve as buffers and safety measure. The power system
is designed under the following prerequisites:

e Safety first

e Ease of maintenance. All input/output ports are located at the rear of the robot.

e The circuit should be as precise and succinct as possible containing only necessary
components.

e When connected to external power supply, the circuit works as one single close-
loop. Such design ensures that the batteries are safely and efficiently charged and

discharged.
16

doi:10.6342/NTU201703341

e When the external power source is unplugged, there should be two independently

functional close-loops circuits. One loop supplies power exclusively to the

computer, while another loop to the motors and the controllers.

e Ensure that the batteries would not discharge and charge simultaneously, making

sure to extend the batteries life-span.

e An emergency stop button is placed in the motor’s power supply circuit to cut the

power toward the motor if the robot runs into problems. Likewise, a toggle switch

is placed at the computer’s power circuit for ease of maintenance.

e The circuit implementation needs to follow industrial standards and convention.

e \bltmeters and Ammeters are placed to monitor on-board power supply level in

real-time scale.

Following the mentioned demands, the designed circuit is shown in Fig. 2.1.6.

Emergency Stop

.|

=

—— UPS
Battery —

|

MCBL3006

Servomotor

I

MCBL3006

Servomotor

|

MCBL3006

i

Servomotor

Power Supply Unit

CPU, SSD

Transformer

Ny
T

J]

LIDAR

=

Access
Point

Fig. 2.1.6 The overall circuit diagram implemented onboard

We use relay as an automated and analogue switch to link and break both loops of

the circuit. Once an external power source is connected, the current pass through the

main switchboard, where all grounds are connected with the physical ground, while two

17

doi:10.6342/NTU201703341

live wires supply the current for sub-loops with roughly the same voltage. For each loop,
the first node to connect with the main power supply is located at the Uninterrupted
Power Supply (UPS). By connecting in a redundant manner, the UPS not only serves as
an intermediary hub for supplying the load, but also to charge and discharge the batteries,
hence playing an intermediary and buffer role of power regulator between the main power
source, the battery and the load. Considering the reliability, robustness, and durability of

such key role, we utilized one DR-UPS40 for each sub-circuit.

/174 pR-ups40

oc WPUT: 2047V HA
BATTERY WOUT. 6404

C€

st

qu“

‘ 229 D
Fig. 2.1.7 DR-UPS40 by Mean Well

2.2 Software Architecture

2.2.1 Overview

Fig. 2.2.1 shows the overall structure of our navigation program. It is composed of
one neural network model and several processing layers. We will describe functions of
these components later.

Fig. 2.2.2 shows the executing process of our navigation system. At a certain time
step, the navigation system takes the current laser range finder readings, as well as the
instruction given by user as its input. After computing it outputs the desired moving and
rotating velocity of mobile robot. The robot will navigate in the given speed for a time

period, entering a different position. This leads to different readings of the laser range
18

doi:10.6342/NTU201703341

Readings of

Laser Range Finder

Fig. 2.2.1 Structure of our navigation program

Command

Velocity

19

do0i:10.6342/NTU201703341

finder at the next time step. Thus, the model will take the new readings and the same
instruction as its new input, and decide velocity of the next time step.

In the following sections, we will introduce the function of each layer as well as
the structure of our neural network.

Updating New Moving to
Position E——

enter the third room.

|
|
|
|
|
|
|
|
{ \ |
/" Readings of laser *, 1
range finder / :
~ Navigation e T~
_________________ 1 . W
| mmmm) | Velocity Commands | !
l System N P
I R
— |
Go straight till the Instructions : 1
end. turn left. and E—) :
|
|

Fig. 2.2.2 Executing process of our navigation system
2.2.2 Laser Range Finder Layer

This layer consists of two stages: the interpolation stage, and the preprocessing
stage.
2.2.2.1 Interpolation

We use Hokuyo UTM-30LX as our main sensor in this research. However, in order
to expand the usage of our system to different mobile robots, we need to consider the
cases when different laser range finders are used.

Different laser range finders have different detection ranges and angular
resolutions. If our system use the entire scanning range of UTM-30LX, changing the
sensor to a laser range finder with smaller scanning range, such as Hokuyo URG-04LX,

will be difficult. The reason is that even if we disregard the difference between their

20

doi:10.6342/NTU201703341

maximum measuring distances, getting measurements from angles that are beyond the
scanning range of URG-04LX is impossible. Therefore, we only use 220 degrees of
UTM-30LX’s scanning range. Since this value is larger than 180, objects behind the left
part and right part of the robot can be detected. It is thus sufficient for our system to
recognize the environment structures using such scanning range.

However, due to the difference between angular resolutions, sometimes we cannot
get measurement from a particular angle using other sensors. Interpolation stage is thus
designed to solve this problem. As its name implies, in this stage we use the method of
linear interpolation to calculate the desired measurements. Details of our method are
described as follows:

Consider two different laser range finders A and B. Assume B is the original sensor
we use on the mobile robot, and A is the substitute. Now, we want to get the
measurements of sensor B using sensor A. Since some angle measurements of B cannot
be obtained by A, we apply the following interpolation method:

We define A; and By to be the measurements of A and B. Here

0 < j < number of measurement steps of A (2.2-1)
0 < k < number of measurement steps of B (2.2-2)

For example, the number of measurement steps of UTM-30LX is 1440, while that
of URG-04LX is 683. We define A,,;, and B,,;, as the minimal measuring angles of
A and B. For instance, the minimal measuring angle of Hokuyo UTM-30LX is —135°.
Next, we define Agirr and Bg;rr to be angular resolutions of A and B. Bgps is the
number of measurements we want to obtain, while B+ IS the starting step. For
example, if we take Hokuyo URG-04LX as sensor B, and we want to discard the

leftmost and rightmost 30 steps of the measurements, then we will let Bg;,,+ = 30 and

21

doi:10.6342/NTU201703341

Bsteps = 623.
Now, for all the steps we consider, we first calculate their angles:
angle = Bmin + (Bstare + 1) * Bairs, 0 <1 < Bgieps (2.2-3)
Here every angle is guaranteed to lie in the scanning range of sensor A. Next, the

following two variables are calculated for each of the steps:

SAMP; = [wj 0 < i < Byreps (2.2-4)
Aaiff
INTER; = (angle — Apin) mod Agirr, 0 < i < Bgeps (2.2-5)

Finally, given all the measurements A; obtained from sensor A, we calculate the

measurement for each step we consider by the following equation:

INTER;

Bi = Asamp, + (Asamp,,, — Asamp,) * Aairr 0 <i<Bseps (2.2-6)

By applying the linear interpolation method, we obtain the measurements B; of
sensor B from measurements A; of sensor A. We do some experiments to verify the
effectiveness of our interpolation stage. The results will be discussed in Chapter 4.
2.2.2.2 Preprocessing

Before applying input data to the neural network, we preprocess data obtained by
laser range finder to improve the performance of our neural network.

First, to deal with the difference in maximum measuring distances between
different laser range finders, we set a threshold value to the received measurements.
Readings exceeding 5 meters will be modified to 5. That is, objects 5 meters away from
the sensor will not be detected due to this saturation function. However, to create greater
difference between empty spaces and barriers, we change the modified value from 5 to

10 meters.

22

doi:10.6342/NTU201703341

To sum up, we modify the input data as follows:
Xi, X <5
fx) = (2.2-7)
10, X; >5
Here x; represents the sensor measurements.
0 < i < number of measurement steps (2.2-8)
Fig. 2.2.3 explains our saturation function more clearly.

After applying the modified saturation function, we normalize the input data using

the following equation:

g = Lo (2.2-9)

L
/21;2':1 f(xi)?

We use the normalization function provided by Scikit-learn [15]. Finally, the

preprocessed data is fed into our neural network.

12.5

10

7.5
output reading

(m)

2.5

0 1 2 3 4 5 6 7 8 9 10

input reading (m)

Fig. 2.2.3 Modified saturation function
2.2.3 Instruction Layer

This layer also consists of two stages: the speech recognition stage, and the

conversion stage.

23

doi:10.6342/NTU201703341

2.2.3.1 Speech Recognition

We implement the speech recognition stage to make our robot receive human
instructions directly. Users can command the robot verbally instead of typing
instructions into the remote computer.

In this research, we use the python package, SpeechRecognition, to implement our
speech recognition function [16]. This package supports seven speech recognition
engines and APIs, namely CMU Sphinx, Google Speech Recognition, Google Cloud
Speech API, Wit.ai, Microsoft Bing Voice Recognition, Houndify API, and IBM Speech
to Text. We choose to use Google Speech Recognition due to its ease of implementation
and high recognition accuracy.

Verbal instruction inputted will be converted into text in this stage.
2.2.3.2 Conversion

The conversion stage first splits the input instruction into several shorter ones to
handle the situation where the given instruction is too long and complex. The split
instructions are called simple instructions, and they are inputted into the neural
network sequentially. We will explain the method of splitting in the next chapter.

Before inputting a simple instruction into the neural network, the conversion stage
converts each word in the instruction into vector. A pre-trained Global Vectors for Word
Representation (GloVe) model is used here, and we decide to use a 100-dimension
vector to represent one word [17]. We use the concept of word vectors to have our
program consider the semantic information contained in user instructions.

For each simple instruction, we sequentially fed its word vectors into our neural
network. The set of all word vectors of a simple instruction is called the sentence

vector of that instruction.

24

doi:10.6342/NTU201703341

2.2.4 Neural Network Model

Fig. 2.2.4 shows the structure of our neural network model. It consists of two
stages. The red box in Fig. 2.2.4 indicates the first one.
velocity pair (moving, rotating)
Y1 Va2 @ Vi
ho 1 hy 1 h, hs hje—a 1
el LSTM fused [reeip! LSTM fused [meeipl LSTM fused [melpennnnnnmmmm—)pl [STM fused

Zy + Zgy Zy + Zsy W Zyy + Zgy

b
Jo 91 g2 k-1 ! i
—| LSTM o LSTAM. R —p| LT fully-connected meural network
F 3 3 r 3
T T EEEEEEEN T T
wi Wy Wn l3,1 ZS,N
Go straight right laser range finder data

Fig. 2.2.4 Structure of neural network model

The first stage is a Long short-term memory (LSTM) layer LSTM,,. It takes the
sequence of word vectors (wy, ws, ..., wy,), Which is generated from a simple instruction,
as input, and outputs the instruction vector Z, to the second stage. Here n is variant
since the length of each simple instruction is not fixed.

LSTM,, serves as an instruction classifier. We aim to use vector Z,, to represent
the class of the given simple instruction. We define ten basic instruction classes in our
research. Each simple instruction will be classified into one of these classes, and the
navigation system will decide the actions to take according to the obtained class. We
will give a definition of basic instruction class, and explain how we classify instructions
into ten classes in Chapter 3.

Since we aim to classify simple instructions into different classes, Softmax

activation function is used in LSTM,,,:

eZi

TRoqe%k

o(Z); = (2.2-11)

25

doi:10.6342/NTU201703341

The second stage combines a fully-connected neural network with another LSTM
layer LSTMpys0q. At time step i, the fully-connected neural network uses the sensor
data (li1, Lz, ..., l;y) from laser range finder to calculate its output Z ;. N denotes the
number of measurement steps, and 1;; represents the k™ sampling point. Next, Z,, and
Z; are concatenated and fed into LSTMy,s.q. The second LSTM layer will then
calculate the velocity pair (moving, rotating) for controlling the mobile robot.

As for the activation functions, we choose to use ReLU in the fully-connected
neural network, since all the input data from laser range finder are positive:

0(Z); = max(0, z;) (2.2-11)

In LSTMpyseq, We simply choose linear activation function since the outputs
represent speeds and can be either positive or negative.

It should be noticed that the output of our neural network model will affect the
input of it. That is, different velocity commands will lead the robot to different positions,
and thus readings of the laser range finder will be different.

2.2.5 Post-processing Layer

The post-processing layer is composed of two functions: the speed adjusting
function, and the halting counter.
2.25.1 Speed Adjusting Function

The speed adjusting function consists of two sub-functions. It is unlikely that the
neural network will output pure zero. Therefore, when the output is below a certain
value, we assume that the neural network is intending to stop the robot. We define the
minimum value v,,;, to be 1073, The first sub-function changes either the moving
velocity or rotating velocity to 0 when its absolute value is smaller than v,,;,.

The second sub-function prevents the navigation program from outputting

26

doi:10.6342/NTU201703341

velocities which are too slow for the mobile robot to move with. Due to the physical
constraints, such as friction, in real world, it is not possible for the robot to move with a
speed which is below some certain value. However, when the output is above the
minimum value v,,;,, we assume that the neural network is intending to move the robot.
Therefore, we need to increase the output velocity when the output lies in this range in
order to make the robot move. We define the minimum moving velocity v,,,,. t0 be
2 * 1072, When the absolute value of output velocity is above v,,;,, and below v,y
the second sub-function will pull it up to v,,,,.. This prevents the robot from getting
stuck at the same position while the network is telling the robot to move.

To sum up, the speed adjusting function can be expressed by the following
equation:

0, [v] < vmin
f() =5gn(V) * Vimover Vmin < V| < Vnmove (2.2-12)

v, otherwise

Here v,,;, = 1073 and v, = 2* 1072, and v represents the moving or
rotating velocity outputted by the neural network model.
2.2.5.2 Halting Counter

This counter decides when the program stops. When completing the navigation
process, the mobile robot should stop at its final position. Therefore, if the neural
network model is trained well, our program should constantly output (moving,
rotating) = (0,0) after the robot reach its destination. We can assume that the robot
has completed its navigation if the program continuously outputs (0,0) for a number
of time steps.

The halting counter counts the number of continuous zero outputs. If this number

is above a certain value, the counter sends a stopping signal back to the neural network

27

doi:10.6342/NTU201703341

layer and the conversion stage inside the instruction layer. The former will clear its
memory, preparing to execute a new navigation task. The latter will load the next
instruction into the network model. After that, the counter is set to zero, and the
program continues the navigation. If there is no instruction left, the entire program
stops.

In this research, we set the number of time steps to stop the process to be 50, which

is approximately 5 seconds.

28

doi:10.6342/NTU201703341

Chapter 3 Training Data Set

In this chapter, we will describe the training data set we use to train our neural network
model. The training data set is composed of two parts: basic instruction sets, and human
controlled navigating records. We will first describe the type of instructions we consider
in our research. Next, we explain our method of generating the instruction training data
set and that of collecting the navigation records. We will also introduce the teleoperation
program we design for this research, and discuss the advantages of using such data

structure for our training database.
3.1 Instruction

In the previous chapter, we have mentioned that we use laser range finder as the
main sensor of our system. Despite the advantages we discussed, some information
cannot be acquired by the laser range finder. For example, it is not easy to achieve
object recognition using such sensor. Room number cannot be detected, either. Thus, we
have to specify the instructions we consider in our research more clearly.

In short, we only consider instructions describing the structure of indoor
environments. That is, aisles, corners and rooms are to be discussed. Higher level
semantic instructions are not considered, such as room or aisle number, which needs
more sensors to get enough information.

In our application, most of the given instructions are short and simple, like “Turn
right, and then go straight to the end of the aisle.” However, for cases with complex
indoor environments, the longer the path that instructors command the robot to move,
the more complex their instructions become. We consider it difficult for the robot to

complete such complicated instructions, since it is not possible for the neural network to

29

doi:10.6342/NTU201703341

‘remember’ so much information contained in the instruction. Therefore, our method is

to split the original instruction into several shorter, simpler instructions.

After we divide the original instruction into many simple instructions, the goal of

our navigation system is to make the mobile robot move to specific positions according

to these simple instructions in sequence. To decide what actions to take for each simple

instruction, we classify instructions into several classes. A basic instruction class is

defined to be a set of simple instructions that have similar meanings. Each class has a

basic instruction that represents the class. Fig. 3.1.1 and Table 3.1-1 show the ten basic

instruction classes we define in this research, as well as their representative basic

instructions.

Path / Class Number

Representative Basic Instructions

10

Go straight to the end

Turn right

Turn left

Go back (turn around)

Turn right at the second corner
Turn left at the second corner

Turn right at the third corner

Turn left at the third corner

Go straight to the end and turn right

Go straight to the end and turn left

Table 3.1-1 Class of simple instructions

30

doi:10.6342/NTU201703341

10
A

_')"""
—\ 1.7

Fig. 3.1.1 Ten paths corresponding to ten classes of simple instructions

O €

It should be noticed that the second basic instruction contains two different
meanings: ‘Turn right immediately’, and ‘Turn right at the first corner’. So is the third
instruction.

Since our application is under indoor environments, and we use laser range finder
as the sensor, we assume that these ten basic instructions suffice to describe the
sequential steps of conducting a complete navigation. That is, we can use these basic
instructions to construct all the legal instructions we consider in this research. Therefore,
all the simple instructions split out from the original instruction can be classified into
one of these basic instruction classes.

Now we explain our method of splitting user commands into simple instructions.
Since each basic instruction contains enough information, it is not possible that a person
may say such a long sentence containing more information than the basic instruction
without a pause. Therefore, we simply use punctuation marks to split sentences into
simple instruction.

The idea of splitting instruction into simple ones, converting each word into word
vector to construct the sentence vectors for each simple instruction, and executing them
sequentially can be described by Fig. 3.1.2. After completing the execution of some
simple instruction, the robot will enter a different position from its previous point. And

then, it will execute the next simple instruction to reach its next local destination. By
31

doi:10.6342/NTU201703341

executing these instructions sequentially, the robot will finally get to the location

indicated by the original instruction.

IYou turn around|,|and then turn right at the second corner|, |and go to the end of..l

|

Simple instructions 1 Simple instructions 2 Simple instructions 3
Sentence vector 1 Sentence vector 2 Sentence vector 3
K i &
-— -_— -—
(] —— o z o o O oo 5 5 oo 2 5 s o P (] —— o 2 o
L} L} L]
Start point Position 1 Position 2

Fig. 3.1.2 Example of executing a complex instruction
We collect ten sets of simple instructions corresponding to the above ten classes to
train our model. These ten sets are called basic instruction sets, and each of them
should be a subset of their corresponding basic instruction class. In the next section, we

describe how we construct these ten sets.
3.2 Basic Instruction Sets

In Chapter 2, we mention that we design a neural network model that classifies
verbal instructions into ten basic instruction classes. To construct a database for training
such a classification model, a straightforward approach is to collect thousands of
instructions and label them manually. However, there is no online instruction database
that can be direct used for training our model. Most of the commonly used databases
contain high-level semantic information, such as room numbers or features that can only
be captured by camera. These instructions cannot be classified into any of our
instruction classes. Besides, typing numerous different instructions will be a tedious
work. Therefore, we design an algorithm that can generate instructions using small

collections of phrases.
32

doi:10.6342/NTU201703341

To construct a sufficient training database, we first manually create sets of phrases.
Each of these sets plays a different role in constructing a complete instruction sentence.
While generating instructions, our algorithm chooses some of these sets, randomly picks
one phrase from every chosen set, combines these phrases to form an instruction
sentence, and labels the sentence according to the sets it chose. The process of
generating a complete instruction sentence is described by Fig. 3.2.1. Each of the boxes

represents a collection of phrases.

\ 4

Class 1

Prefix —> Class 4 Suffix

Prefix_turn > Class_turn > Suffix_turn

\ 4

Others

Fig. 3.2.1 Process of generating a complete instruction sentence
The sets of phrases are as follows:
1. Prefix: Phrases or words that can be attached to the beginning of instruction
sentences, without changing the meaning of instructions.
For example: ‘Please ...”, “Would you ...", ‘Ineed you to ...’
2. Suffix: Phrases or words that can be attached to the end of instruction sentences,
without changing the meaning of instructions.
For example: ... please.’, *... and stop.’, ‘... thank you.’
3. Class 1: Phrases used to construct Class 1 instruction sentences.

For example: ‘go straight to the end’, ‘walk down this aisle’
33

doi:10.6342/NTU201703341

4. Class Turn: Phrases used to construct Class 2, Class 3, and Class 5 to Class 10
instruction sentences. Phrases belonging to this set can be directly classified into
Class 2 or Class 3 basic instruction, and appending phrases from the Suffix Turn
set to their end may make them become Class 5 to Class 10 basic instruction.

For example: ‘turn right’, ‘make a left’

5. Prefix Turn: Phrases that can be attached to the front of phrases from Class Turn
without changing the meaning of constructed instruction sentences.
For example: “‘go straight and’, ‘walk down this way and’

6. Suffix Turn:

There are two kinds of phrases that belong to this set:

A. Phrases that can be attached to the end of phrases from Class Turn without
changing their classification. For instance, ‘turn right’ and ‘turn right at the corner’
both belong to Class 2 basic instruction.

For example: ‘at the corner’, ‘at the crossroad’

B. Phrases that can be attached to the end of phrases from Class Turn to change their
classification, making them become Class 5 to Class 10 basic instruction. For
instance, ‘turn right’ belongs to Class 2 basic instruction, but ‘turn right at the
second corner’ belongs to Class 5 basic instruction.

For example: ‘at the second corner’, ‘at the end of this aisle’
7. Class 4: Phrases used to construct Class 4 instruction sentences.
For example: ‘go back’, ‘turn around’
8. Others: Phrases that cannot be classified into any of the above sets.
For example: ‘go straight to the end and turn right’
It should be noticed that we convert each word in the instruction into word vector

by GloVe before importing into our neural network. Since word vector represents the
34

doi:10.6342/NTU201703341

meaning of that word to a certain extent, we assume that our model can be trained
successfully without having seen every word. Therefore, the collections of phrases do
not need to contain every possible phrase.

Now, we give some examples of generating instruction sentences for our training
database, i.e., the ten basic instruction sets.

e Prefix + Class 1 + Suffix — Class 1 basic instruction

‘Could you’ + “go straight till the end’ + ‘please’ = ‘Go straight to the end’

e Prefix Turn + Class Turn + Suffix — Class 2 basic instruction

‘Go straight and’ + ‘make a right turn’ + ‘please’ = ‘turn right’

e Prefix + Class Turn + Suffix Turn — Class 5 basic instruction

‘Please’ + ‘make a right turn’ + “at the second intersection’ = ‘Turn right at the

second corner’

For each basic instruction set, we consider all possible combinations of sets of
phrases that generate sentences for it. This method greatly increases the amount of
training data for training our neural network model. Experiments show that the
classification accuracy of our model, as well as the ability to handle new, unfamiliar
instructions is improved using such expanded database.

It should be noticed that some of the generated sentences are not grammatically
correct. For example, the sentence ‘Please turn right please’ is not proper since the word
‘please’ is used twice. However, we consider that including such sentences in our
training database is legal.

Our neural network model does not need to know what kinds of instructions are
grammatically correct. Its function is to classify instructions, extracting semantic

information from user commands. As long as the given sentence refers to the correct

35

doi:10.6342/NTU201703341

class of basic instruction, we consider it useful in training. Besides, people often use
incorrect grammar when speaking. Using such sentences in our training database gives

our model the ability to handle the variety and complexity of verbal instructions.

3.3 Human-Controlled Navigating Records

3.3.1 Database

A human-controlled navigating record is a set of recording sequences. Each
recording sequence contains hundreds of sampling data, where every sampling data
consists of the velocity of the robot and readings of its laser range finder at that
sampling moment. One recording sequence is considered as one training data sequence.
While collecting training data, we let a person remote robot to the destination according
to a specific basic instruction, and during the navigation we collect the (velocity,
measurement) pairs. By doing so we obtain a sequence that describe the expected
behavior of a robot after receiving an instruction.

Fig. 3.3.1 shows an example of our recording files. An indicator is added to the
beginning of every recording sequence, while another one is used at the end of each
sequence. In Fig. 3.3.1 we use red box and blue box to annotate the starting and ending
indicator. The starting indicator also shows the class of the recording sequence.

The yellow underline in Fig. 3.3.1 shows an example of a sampling data. The
former part is the (moving, rotating) velocity pair, while the latter part is the
measurements from laser range finder. After preprocessing the latter part is used as part
of the input of our neural network, while the former part serves as the referenced label

during training process.

36

doi:10.6342/NTU201703341

T. Z369827; -U. 00072308 0. UB 273095 2. T0876;2.69911; 2. 6936 2. 6882, 2. 68293, 2. 677 78; 2. 67275, 2.006783;2.60305:2.065837, 2. 653813 2.68937, 2. 64509, 2.
0.205536;-0.00150286;0.0827481;2.70479;2.69914;2.69363;2.68823;2.68296;2.67781;2.67278;2.66787;2.66308;2.6584;2.65384;2.6494;2.64507;2.6
©0.205582;-0.00113922;0.0827325;2.70496;2.69931;2.69379;2.68839;2.68312;2.67796;2.67293;2.66802;2.66322;2.65854;2.65398;2.64954;2.6452;2.
0.000110576;-0.000190968;2.71076;2.70499;2.69934;2.69382;2.68842;2.68315;2.67799;2.67296;2.66805;2.66325;2.65857;2.65401;2.64956;2.64523
0.000102767;-0.000195656;2.71096;2.70518;2.69953;2.69401;2.68861;2.68333;2.67817;2.67313;2.66822;2.66342;2.65874;2.65417;2.64972;2.64538
0.00124415;-0.000958927;2.71138;2.70559;2.69993;2.69439;2.68898;2.68369;2.67853;2.67348;2.66855;2.66375;2.65905;2.65448;2.65002;2.64568;
5.78742e-05;0.000124655;2.71129;2.7055;2.69984;2.69431;2.6889;2.68362;2.67845;2.67341;2.66848;2.66368;2.65899;2.65441;2.64996;2.64562;2.
3.36813e-05:-7.47657e-05.2.7113:2.70551:2.69985:2.69432:2.68891:2.68362:2.67846:2.67342:2.66849:2.66368:2.65899:2.65442:2.64996:2.64562:
3.25649e-05;-8.62397e-05.2.71132;2.70553;2.69987;2.69434;2.68893;2.68364;2.67848;2.67343;2.66851;2.6637;2.65901;2.65444;2.64998;2.64564;
3.24978e-05;-8.68992e-05,2.71133;2.70555;2.69989;2.69436;2.68895;2.68366;2.67849;2.67345;2.66852;2.66371;2.65902;2.65445;2.64999;2.64565
3.2488e-05;-8.69685e-05;2.71135;2.70557;2.69991;2.69437;2.68896;2.68367;2.67851;2.67346;2.66854;2.66373;2.65904;2.65446;2.65001;2.64566;
3.
3.
3.
3.
3.

24813e-05;-8.70056e-05;2.71137;2.70558;2.69992;2.69439;2.68897;2.68369;2.67852;2.67347;2.66855;2.66374;2.65905;2.65447;2.65001;2.64567

24748e-05;-8.70411e-05;2.71139;2.70561;2.69994;2.69441;2.689;2.68371;2.67854;2.67349;2.66857;2.66376;2.65907;2.65449;2.65003;2.64569;2

24748e-05;-8.70411e-05;2.7114;2.70562;2.69996;2.69442;2.68901;2.68372;2.67855;2.67351;2.66858;2.66377;2.65908;2.6545;2.65004;2.6457;2.

24617e-05;-8.71121e-05;2.71142;2.70564;2.69998;2.69444;2.68903;2.68374;2.67857;2.67352;2.66859;2.66378;2.65909;2.65452;2.65005;2.64571

24552e-05;-8.71477e-05;2.71144;2.70566;2.69999;2.69446;2.68904;2.68375;2.67858;2.67354;2.66861;2.6638;2.65911;2.65453;2.65007;2.64572;
sTOP |

5
.12.608e-05; -
12538e-05; -

9.45645e-05;3.57306;3.56535;3.5578;3.55042;3.5432;3.53615;3.52926;3.52252;3.51595;3.50953;3.50327;3.49716;3.4912;3.48539;3.
9.46142e-05;3.57309;3.56537;3.55783;3.55045;3.54323;3.53617;3.52928;3.52255;3.51597;3.50955;3.50329;3.49718;3.49122;3.48541
12467e-05;-9.4664e-05;3.57311;3.56539;3.55784;3.55046;3.54325;3.53619;3.5293;3.52256;3.51599;3.50957;3.5033;3.49719;3.49123;3.48543;3.
12397e-85;-9.47139e-05;3.57314;3.56543;3.55788,3.5505;3.54328;3.53622;3.52933;3.52259;3.51602;3.5096;3.50333;3.49722;3.49126;3.48545;3
12327e-05;-9.47638e-05;3.57316;3.56545;3.5579;3.55052;3.5433;3.53624;3.52935;3.52261;3.51603;3.50961;3.50334;3.49723;3.49127;3.48547;3
12256e-05;-9.48139e-05;3.57319;3.56547;3.55792;3.55054;3.54332;3.53627;3.52937;3.52263;3.51605;3.50963;3.50337;3.49725;3.49129;3.48549
12186e-05;-9.4864e-05;3.57323;3.56551;3.55796;3.55058;3.54336;3.5363;3.5294;3.52266;3.51608;3.50966;3.50339;3.49728;3.49132;3.48551;3.
12116e-05;-9.49142e-05;3.57325;3.56553;3.55798;3.55059;3.54337;3.53631;3.52942;3.52268;3.5161;3.50968;3.50341;3.4973;3.49133;3.48552;3
12045e-05;-9.49644e-05;3.57332;3.5656;3.55805;3.55066;3.54344;3.53638;3.52948;3.52274;3.51616;3.50973;3.50346;3.49735;3.49139;3.48558;
0499561;-0.001026;3.5738;3.56607;3.5585;3.5511;3.54387;3.5368;3.52989;3.52314;3.51655;3.51011;3.50383;3.4977;3.49173;3.48591;3.48024;3
0500487;8.60791e-05;3.57387;3.56614;3.55857;3.55117;3.54393;3.53686;3.52995;3.52319;3.5166;3.51016;3.50388;3.49775;3.49178;3.48595;3.4
0500523;0.000126472;3.57386;3.56612;3.55856;3.55116;3.54392;3.53685;3.52993;3.52318;3.51659;3.51015;3.50387;3.49774;3.49176;3.48594;3.
0500497;9.57135e-05;3.57384;3.56611;3.55854;3,.55114;3.5439;3.53683;3.52992;3.52317;3.51657;3.51013;3.50385;3.49772;3.49175;3.48592;3.4
0500472;6.64798e-05;3.57383;3.56609;3.55853;3.55113;3.54389;3.53682;3.52991;3.52315;3.51656;3.51012;3.50384;3.49771;3.49173;3.48591;3.
150263;-0.00167264;0.0829142;3.56646;3.55888;3.55147;3.54423;3.53714;3.53022;3.52346;3.51686;3.51041;3.50412;3.49798;3.492;3.48616;3 .4
348235;0.0034921;3.57454;3.56678;3.5592;3.55178;3.54452;3.53743;3.53049;3.52372;3.51711;3.51065;3.50435;3.4982;3.49221;3.48636;3.48067

LORERC: OC0sNa AC:6 A010s44 cacor Crzen Crooa cazan Losn £a0a L2220 Lacos con2o La21a a0 an1na 40000 a

Poococooo@uwuwwwwwww

Fig. 3.3.1 Example of the recording files
3.3.2 Teleoperation Program

To collect human-controlled navigating records, we give users some basic
instructions and record the (velocity, measurement) pairs during their navigation. To
fulfill such task, a teleportation program is required to let the user control and navigate
the robot. Since we develop our navigation system on ROS, a straightforward method is
to use the ROS node teleop_twist_keyboard [14]. However, it is hard to perform natural
navigation using such program due to its maneuverability. To let the user navigate the
robot smoothly, we design our unique teleoperation program.

We first describe the disadvantages of using teleop_twist_keyboard as the
teleportation program. Fig. 3.3.2 shows the control method of teleop_twist_keyboard.
Eight keys are used to control the direction of moving, while six keys are used for
adjusting the speed. Some problems of using this program are as follows:

e If you want the robot to move continuously, you need to hold the keys. Pressing the
key once will make the robot move for a small distance and stop.

e It is hard to adjust the rotating velocity, i.e., the angular speed. That is, when the
37

doi:10.6342/NTU201703341

robot is moving straight, controlling it to rotate is difficult.

e Extra keys are needed to adjust the speed of moving. It will be tedious to gradually
slow down or speed up the robot.

e The control is not intuitive. Using arrow keys will be much better.

Eeading from the keyboard and Publishing to Twist!

u i o
J k 1
m r
g/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%

anything =lse : stop
CTRL-C to guit
Fig. 3.3.2 Control method of teleop_twist_keyboard

To solve the above questions, we develop our teleoperation program. Its control
method is shown in Fig. 3.3.3.

It should be noticed that the robot rotates only when the user is holding the Left or
Right key. For example, although the rotating velocity gradually increases when the user
holds the Left key, it will be set to 0 when user releases the button. Therefore, the robot
will not keep rotating once you press the arrow key.

The advantages of our program are as follows:

e Only five keys are used. Arrow keys are used to control the direction and speed of
the robot, and user can directly adjust the moving and rotating velocity. Therefore,
the control is more intuitive.

e When the user wants to accelerate the robot, he can hold the Up key to gradually
speed up. User can also slightly adjust robot’s moving speed.

e Pressing Left or Right key can slightly adjust the robot’s direction, while holding it
38

doi:10.6342/NTU201703341

can make the robot rotate and turn left or right. While rotating the robot, releasing
the Left or Right key will stop its rotation.
e You do not need to hold the keys to make the robot move continuously. After

pressing the Up key, the robot will continue moving until moving velocity is

decreased.
increase moving_velocity by 0.05
STOP |
set moving_velocity and rotate_velocity to 0 I I
SPACE I - 1 -
increase rotate_velocity by 0.2 decrease rotate_velocity by 0.2

decrease moving_velocity by 0.05

Fig. 3.3.3 Control keys of our teleoperation program
By using such teleoperation program, it will be much easier to control the robot
and collect the navigation records for training database. Natural navigation can also be

achieved.
3.4 Features and Advantages

As mentioned before, our training data set consists of the human-controlled
navigating records and ten basic instructions sets. All instructions in each basic
instruction set have similar meanings, and can be represented by the basic instruction of
that set. Each recording sequence contains a sequence of (velocity, measurement)
pairs, and is collected according to some basic instruction.

During training process, the neural network model uses measurement as part of the
input—the other part comes from basic instructions sets—and the velocity as referenced
labels. This model tries to make its outputs correspond to the reference velocities given
by human. Thus, by using this model, robots would adjust its velocity according to the

39

doi:10.6342/NTU201703341

readings of its sensor at that moment and the given initial instruction. It can be expected
that the robot will move smoothly as if there is a person controlling it.

While training neural network model, for instance if we want to train the ‘turn right’
instruction, our algorithm will randomly pick one instruction from the ‘turn right” basic
instruction set, convert it into sentence vector, and use the vector as part of the input.
For one training data sequence, this sentence vector will be fixed; however, for one
recording sequence, we may pick different instructions from the same set, and thus
would obtain different training input. By doing so, we make great use of the navigating
records. For example, supposing we records 1,000 sequences for the ‘turn left’
instructions, and we construct its instruction set to have 100 instructions. By combining
these two we obtain 100,000 different training sequences, and thus we could gather
huge amount of training data using fewer recording sequences.

Another benefit of using such data structure for our training database is that we can
easily add more instructions into the instruction sets to extend them, without having to
collect the training data sequences again. Also, when recording new training sequences,
there is no need to give a precise instruction. We will only need to specify the class of
basic instructions being executed. Therefore, it would be much easier to expand the
training data set. This method also gives good extensibility to the model. In this paper
we classify simple instructions into ten basic instruction classes. If we want to add more
classes of basic instructions into the original model, we only need to construct a new set

of instructions, and records new sequences to train the model.

40

doi:10.6342/NTU201703341

Chapter 4 Training and Experiments

In this chapter, we first describe how we implement and train our neural network model.
We will also discuss how we choose which model to use and how we validate the model.
Next, we describe the experiments conducted in simulation and real environment. We
analyze the effectiveness of our navigation system by observing the recorded navigation

paths and comparing the results with those of humans.

4.1 Training Models

4.1.1 Implementation

We use Keras to implement our neural network [18]. The network structure is as
described in Chapter 2. Since our application can be considered a regression problem,
we use mean squared error (MSE) function as the loss function. Our training program
consists of the following steps:

1. Load in the GloVe model for converting words into vectors.

2. Load in the training data set. For each recording sequence, a corresponding simple
instruction sentence is assigned.

3. Build the neural network model, or load in an old, pre-trained model for further
training.

4. Start training. The batch size is set to be the maximum value that the computer can
afford in memory

5. At the end of every epoch, the model is validated. Models with the lowest loss
value or the best validation result will be saved. We will describe this part in the
next section.

6. The training process stops only when user interrupts it. If the user interrupts the

program, current model is saved.
41

doi:10.6342/NTU201703341

Model with the lowest loss value is usually the best one. However, to prevent

overfitting, we need to validate the model using testing data.
4.1.2 Validation

We evaluate the effectiveness of our neural network during the training process
from two aspects. One is the value returned by loss function. Since we use moving and
rotating speeds as training labels, the overall problem should be considered as a
regression problem instead of classification. Thus, the loss value could present the
effectiveness of our models to a certain extent. However, to prevent overfitting, we
develop a validation function to evaluate our models over testing data.

The validation function aims to classify the velocity output of each time step into
‘correct’ or ‘wrong’ output. In the function, error between each label and the network
output is calculated. If the value is below a certain threshold, we consider the output a
correct one. Besides, if all outputs of an input sequence are correct, we assume that the
destination could be reached. During the training process, we count the number of
correct outputs in each sequence, and the number of destinations that could be reached.
These two values are used to evaluate the effectiveness of models.

However, it should be noticed that the outputs of our navigation system will affect
the input of it. That is, moving at different speeds may result in getting different sensor
data. If the output varies a lot from the label, input sequence after this output should be
considered invalid. Accumulation of small errors will also produce the same effect.
Thus, the validation function should stop counting the number of correct outputs after
the accumulation of errors exceeds a certain threshold. Whether the destination would
be reached should not be considered either.

To sum up, we define the error of moving and rotating speed at time step i as

follows:
42

doi:10.6342/NTU201703341

di = Virer — Viout (4.2-1)
€ = Wiref — Wiout (4.2-2)
Here d; and e; refer to the error of moving and rotating speed respectively. In
addition, v and w refer to moving velocity and angular velocity, while ref and out
denotes the velocity of labels and network outputs respectively.

Next, we define the accumulation of errors after i time steps as follows:

i 4
D; = Zk:l? (42'3)
E; =Yo7 (4.2-4)

Here f denotes the sampling frequency of the laser range finder, while D; and
E; represents the errors in distance and angles after i time steps respectively. At last,
we define four threshold values. They give restrictions to the maximum tolerable errors
at every time step, and the tolerable accumulated errors. For each testing sequence, the
validation function calculates d;, e;, D; and E; over each time step. If both d; and
e; are below their threshold values, the output is considered correct. Once D; or E;
exceeds the threshold value, the function stops testing on that sequence of data and
continue to the next one. Finally, we use the number of correct outputs and reached
destinations to evaluate our network model.

Each validated model has two validation values [correct,destination]. We
assume that models with higher destination values are better than those with lower
values. If two models have the same destination values, one with higher correct
value is considered better.

4.1.3 Monitors

To decide which model to use at last, we design two monitors to keep track on the

loss value and validation values.
43

doi:10.6342/NTU201703341

The first monitor is called loss monitor. While training, we can obtain the loss

value of current model. Loss monitor records the lowest loss value we had ever obtained.

It helps decide whether to save the current model. If the model’s loss value is lower than

that recorded in loss monitor, the model is saved and the monitor is updated.

The second monitor is called the validation monitor. Similarly, it records the best

validation values, and helps save the model with the best validation result.

Fig. 4.1.1 shows how these monitors work during training process. It can be seen

that both monitors are updated once, and thus two new models are saved.

Epoch 189/10000

loss: 0.00163046495047 , valid:

loss monitor: 0.00160666390696
Epoch 190/10000

loss: 0.88157700751253 , valid:

loss monitor: 0.00157700751253
Epoch 191/10800

344/344 [====

loss: 0.0015369077094 ,

loss monitor: 0.0015369077094

Epoch 192/10000

: 0.00153449492605 , valid
loss monitor: 0.00153449492605
Epoch 193/10800

: 0.001557773591 , valid:
loss monitor: 0.00153449492605
Epoch 194/10000

Fig. 4.1.1 Loss monitor and validation monitor

- 35 - loss:
[514, 5]
valid monitor: [617,

- 45 - loss:
[495, 7]
valid monitor: [617,

- 55 - loss:

: [629, 12]

0.0016
11]
0.0016
11]

0.0015

, valid monitor: [629, 12]

- 45 - loss:
: [631, 10]
, valid monitor: [629,

- 3s - loss:
[535, 7]
, valid monitor: [629,

- 3s - loss:

0.0015
12]
0.0016
12]

0.0016

To sum up, we keep 3 models during our training process. One is the current model,

which will be saved when the program stops. Another one is the model with the lowest

loss value. Its loss value is recorded by the loss monitor. The last one is the model with

the best validation result. Its validation values [correct, destination] are recorded by

the validation monitor.

We found that models with lower loss values often have better validation results.

That is, two monitors show consistency in our research.

44

doi:10.6342/NTU201703341

4.2 Experiments and Results

4.2.1 Simulation

We simulate our system under the Gazebo simulating environments [19]. We
choose twenty different starting positions among all the maps, and at each position we
let the robot execute 100 legal simple instructions. 80 of them are instructions recorded
in the basic instruction sets, while the rest are new instructions with similar meanings to
some basic instructions. If the robot stops its navigation at a proper position without
bumping into any obstacle, we consider it a successful navigation. The results show that
for each basic instruction, the robot can navigate to the desired positions.

To analyze the results and compare our navigation paths with human controlled
navigation path, we use rviz to record the paths and structures of environments
observed by laser range finder during navigation [20]. Fig. 4.2.3 to Fig. 4.2.6 shows
some examples of the success navigation paths and the indoor environment structures.
In these figures, the red paths represent results from our system, while green paths
indicate the paths produced by humans. The circles indicate the staring positions, while
triangles specify stopping positions. However, for the results of Class 4 instructions
“Turn around’, we use red arrows to indicate the starting positions and directions of the
robot, and green arrows to represent the stopping ones.

We will discuss the experiment results and comparisons in the Comparison section.
4.2.2 Real Environment

We test our navigation system on the first and third floors of National Taiwan

University Building for Research Excellence. We choose several different starting

positions, giving different simple instructions to the robot and observe its behaviors. It

turns out that the robot could end up at the proper positions as well. A demonstration

45

doi:10.6342/NTU201703341

video is provided to show our results.

Fig. 4.2.1 shows the environment in which we test our system. The red dots
indicate the staring positions, while the blue ones specify the destinations. Some
instructions are designed to make the robot navigate from these starting positions to
these particular destinations. We aim to have the robot move to these locations using
such instructions, instead of giving it a legal simple instruction and see whether it can
stop at a proper position. The results show that as long as the instruction is correct, our
robot is able to navigate to the desired location.

Fig. 4.2.2 shows a screenshot of our demonstration video. The sub-screen shows
the measurements obtained by the laser range finder, which are displayed in rviz. We
can observe the structure of environment from the sub-screen. Therefore, we can judge

whether our robot is taking the right action at that moment.
4.2.3 Interpolation

We use Hokuyo UTM-30LX on our warehouse robot ‘Penguin’. To verify the
effectiveness of our interpolation stage, we change the laser range finder to URG-04LX
in simulation. Their detection ranges, angular resolutions and maximum measuring
distance are all different. However, the results show that robot using URG-04LX as its
sensor has similar performance to that using the original sensor.

In each experiment, the starting position and the given instruction remain the same.
We only change the type of laser range finder to observe the changes in behavior during
navigation. In short, we find little difference between navigation paths generated by
UTM-30LX and those by URG-04LX. It is proper to say that our interpolation function

works well.

46

doi:10.6342/NTU201703341

s
[~| Start Positions
Destinations

|w|

: 1 T :_ i
""""" 2] L] 2] r'y Llf
T |
Start Positions —— | mu-Tﬂ
Destinations o | | [m:|
~ R nuzen | | |
s 6 © | | |
. o | e - i e A | H
= | . . T A
wm ||
e || | |
ITﬁ,- wx || ot o - —
— o || = = <= +z] . e) |
—#1:—::5:—:—::5:%}:? ————————— -[}— _______ L H AL . i .
LI T - 1
| | ' : : ! [T
| | e e [|

(b) Floor plan for 3 floor

Fig. 4.2.1 Floor plans of Building for Research Excellence

47

doi:10.6342/NTU201703341

Fig. 4.2.2 Screenshot of the demonstration video

Instruction Number | Testing Times | Success Times | Success Rate

263 242 0.9202

257 185 0.7198

264 177 0.6705

241 209 0.8672

178 74 0.4157

185 83 0.4486

76 17 0.2237

62 14 0.2258

0.5588

0.5932

0.6370

Table 4.2-1 Success rate of each basic instruction

48

doi:10.6342/NTU201703341

Class 1 Class 2
(a) (d) .
(b) (e)
(c) (f)
J — .
]

Fig. 4.2.3 Experiment results of Class 1 and Class 2 instructions

49

doi:10.6342/NTU201703341

Class 3

Class 4
(d)
(a)
(b) (e)
___‘_Ld\\ L
= T
| a\ |
7 (©))

Fig. 4.2.4 Experiment results of Class 3 and Class 4 instructions

50

doi:10.6342/NTU201703341

Class 5 Class 6
‘ - A (c)
| (| .
[| | ‘
] i ‘ e
‘ J { -
| - —
. ()
(b) » P
e <N
A ‘-/’/ S
(d) °

Fig. 4.2.5 Experiment results of Class 5 and Class 6 instructions
51

doi:10.6342/NTU201703341

Class 7 Class 8
(3) | ® 7
@ i ‘
- | |
|
P j t'. -
Y \ A
~—4A

Fig. 4.2.6 Experiment results of Class 7 and Class 8 instructions

4.2.4 Comparisons
We can compare the results of our system with those produced by humans in the

above figures. Table 4.2-1 shows the success rate of each basic instruction. Some

features and problems can be observed:

e In most cases, our system can navigate the robot smoothly. The generated paths are
straightforward and intuitive, and are very close to the shortest paths to complete
these instructions. Examples can be seen in Fig. 4.2.4 (b), Fig. 4.2.5 (b) and Fig.
4.2.6 (a). In such case, there is little difference between the path of our system and

52

doi:10.6342/NTU201703341

that of humans.

The paths generated by humans have sharper turns than those generated by our
navigation system.

While executing the ‘Go straight to the end’ instruction, our system usually stops
the robot at a closer distance than human does. This can be seen in Fig. 4.2.3 (a)
and Fig. 4.2.3 (b), where the red triangles are closer to the walls than the green
ones.

Compared with the robot controlled by humans, robot controlled by our system
often stops at a position closer to the side wall after performing a right or left turn.
This can be observed in Fig. 4.2.4 (c) and Fig. 4.2.5 (c).

While turning right or left, the robot often performs a two-stage turn in our system.
Fig. 4.2.4 (c) and Fig. 4.2.5 (c) shows some examples. This results in a longer
navigation path.

It is hard for our system to control the robot to stay in the middle of the road. The
robot sometimes gradually moves close to the side walls, and ends up bumping
into them. This phenomenon can be observed in Fig. 4.2.4 (c) and Fig. 4.2.6 (b).
Therefore, when the distance of path become longer, the success rate drops.
Although it cannot be seen from the figure, the cost of time for these navigations
are all very low; sometimes the robot even moves with a faster speed than human
does, and the destination can still be reached successfully.

The system spends most of its time turning right and left. When performing a
two-stage turn, the robot often temporarily stops in the middle of the road.
However, the robot can still get to the correct position eventually.

The mobile robot may execute wrong instructions during navigation. For example,

while executing the ‘go straight to the end’ instruction, seldom it will choose to
53

doi:10.6342/NTU201703341

turn right when it observes that there is a way on its right hand side. We observe
that adding more training data to the training set would improve this situation to
some extent.

e From Table 4.2-1, we can observe that the success rate drops when the distance of
path become longer. We assume that when robots need to travel long distances, the
chance of making wrong decisions increases, and the accumulation of small errors
may result in failure. This is because the output of our program will affect its input,
and thus any small error in the output velocity has a great effect on the final result

of navigation.

Some of the above problems will affect the execution of the next instruction, such
as stopping at a position close to the wall, or executing wrong instructions. Therefore, to
make our robot execute more complex navigation instructions, we aim to find solutions

for these problems in the future.

54

doi:10.6342/NTU201703341

Chapter 5 Conclusions and Future Works

In this paper we present a neural network based model that make mobile robots
capable of navigating through unknown indoor environments according to the given
verbal instructions. The navigating system splits instructions expressed in natural
language into several simple instructions, and compute the sentence vector for each of
them. The sentence vector along with the readings of laser range finder mounted on the
mobile robots is given to the neural network as input data. The model will calculate the
moving and rotating speed of robot, leading it to new positions. New data acquired from
sensor will then be used to calculate the next movement of the robot. The process will
continue until the robot stops at one position for a time period—that is, the robot arrives
at the destination. And then, the next sentence vector will be executed.

The difference between our methods and others is that we do not decide local or
global goal positions for robots to navigate to, since the application is under unknown
environment. Instead we decide the velocity at the next time step. Moreover, we do not
aim to construct probabilistic models for keywords used in instructions. We use the
concept of word vector and machine learning to handle the complexity and variety of
instructions. We provide a unique solution to the problem of auto navigation under
unknown indoor environments, and experiments show that our system could make
mobile robots navigate to the correct positions under both simulation and real-world
environments.

For future work, we first plan to add more sensors to our system. Using visual
sensors will allow robots to handle higher level instructions. In addition, extra sensors
could also be used to detect dynamic objects. We plan to add different types of training

data into the training set gradually, including the records of avoiding obstacles and

55

doi:10.6342/NTU201703341

searching for the right directions. We expect that the model could learn to handle more
issues during navigation. Besides, we plan to increase complexity of the instructions,
adding and modifying the basic instruction sets. Problems proposed in Chapter 4, such

as decreasing of success rate under long traveling distances, are to be solved too.

56

doi:10.6342/NTU201703341

REFERENCE

[1] D. W. Ko, C. Yi and I. H. Suh, "Semantic mapping and navigation: A Bayesian
approach,” 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, 2013, pp. 2630-2636.

[2] B. Talbot, O. Lam, R. Schulz, F. Dayoub, B. Upcroft and G. Wyeth, "Find my
office: Navigating real space from semantic descriptions,” 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm, 2016,
pp. 5782-5787.

[3] X. Zhang, B. Li, S. L. Joseph, J. Xiao, Y. Sun, Y. Tian, J. P. Mufioz and C. Yi, "A
SLAM Based Semantic Indoor Navigation System for Visually Impaired Users,"
2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon,
2015, pp. 1458-1463.

[4] O. M. Mozos, C. Stachniss and W. Burgard, "Supervised Learning of Places from
Range Data using AdaBoost,” Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005, pp. 1730-1735.

[5] B. Kaleci, C. M. Senler, H. Dutagaci and O. Parlaktuna, "A probabilistic approach
for semantic classification using laser range data in indoor environments,” 2015
International Conference on Advanced Robotics (ICAR), Istanbul, 2015, pp.
375-381.

[6] L. Shi, R. Khushaba, S. Kodagoda and G. Dissanayake, "Application of CRF and
SVM based semi-supervised learning for semantic labeling of environments,”
2012 12th International Conference on Control Automation Robotics & Vision

(ICARCV), Guangzhou, 2012, pp. 835-840.

57

doi:10.6342/NTU201703341

[7] N. Sunderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth,
B. Upcroft and M. Milford, "Place categorization and semantic mapping on a
mobile robot,” 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, 2016, pp. 5729-5736.

[8] R. Goeddel and E. Olson, "Learning semantic place labels from occupancy grids
using CNNs," 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Daejeon, 2016, pp. 3999-4004.

[9 H. J. Chang, C. S. G. Lee, Y. H. Lu and Y. C. Hu, "P-SLAM: Simultaneous
Localization and Mapping With Environmental-Structure Prediction,” in IEEE
Transactions on Robotics, vol. 23, no. 2, pp. 281-293, April 2007.

[10] D. P. Strom, F. Nenci and C. Stachniss, "Predictive exploration considering
previously mapped environments,” 2015 IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 2761-2766.

[11] “ROS/Introduction - ROS Wiki?, http://wiki.ros.org/ROS/
Introduction, Accessed: 2017-07-12.

[12] “ros_control - ROS Wiki”, http://wiki.ros.org/ros control,
Accessed: 2017-07-10.

[13] “hokuyo_node - ROS Wiki”, http://wiki.ros.org/hokuyo node,
Accessed: 2017-07-10.

[14] “teleop_twist_keyboard - ROS Wiki”, http://wiki.ros.org/teleop
twist keyboard, Accessed: 2017-07-10.

[15] “sklearn.preprocessing.normalize — scikit-learn 0.18.2 documentation”,
http://scikit-learn.org/stable/modules/generated/sklear
n.preprocessing.normalize.html, Accessed: 2017-07-12.

[16] “SpeechRecognition 3.7.1: Python Package Index - PyPI”,
58

doi:10.6342/NTU201703341

http://wiki.ros.org/ros_control

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

https://pypi.python.org/pypi/SpeechRecognition/, Accessed:
2017-07-13.

J. Pennington, R. Socher, C. D. Manning, "Glove: Global vectors for word
representation”, Proceedings of the Empiricial Methods in Natural Language
Processing (EMNLP 2014), vol. 12, pp. 1532-1543, 2014.

“Keras Documentation”, https://keras.io/, Accessed: 2017-07-13.
“Gazebo”, http://gazebosim.org/, Accessed: 2017-07-14.

“rviz - ROS Wiki”, http://wiki.ros.org/rviz, Accessed: 2017-07-14.
Charly Huang, “## RS 43]8 > I E Bl 2 T2 EALR R A2 JRI%
AW B, TR I EBEFT TE =%, pp. 1- 159, 2016

H. M. Gross, H. J. Boehme, C. Schroeter, S. Mueller, A. Koenig, Ch. Martin, M.
Merten and A. Bley, "ShopBot: Progress in developing an interactive mobile
shopping assistant for everyday use,” 2008 IEEE International Conference on
Systems, Man and Cybernetics, Singapore, 2008, pp. 3471-3478.

V. Kulyukin, C. Gharpure and J. Nicholson, "RoboCart: toward robot-assisted
navigation of grocery stores by the visually impaired,” 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005, pp. 2845-2850.
W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-time loop closure in 2D LIDAR
SLAM," 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, 2016, pp. 1271-1278.

K. Sasaki, H. Tjandra, K. Noda, K. Takahashi and T. Ogata, "Neural network
based model for visual-motor integration learning of robot's drawing behavior:
Association of a drawing motion from a drawn image,” 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Hamburg,

59

doi:10.6342/NTU201703341

2015, pp. 2736-2741.

[26] G. Lidoris, F. Rohrmuller, D. Wollherr and M. Buss, "The Autonomous City
Explorer (ACE) project — mobile robot navigation in highly populated urban
environments,” 2009 IEEE International Conference on Robotics and Automation,
Kobe, 2009, pp. 1416-1422.

[27] Z. Zhao and X. Chen, "Semantic mapping for object category and structural
class,” 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, 2014, pp. 724-729.

[28] S. Hemachandra, T. Kollar, N. Roy and S. Teller, "Following and interpreting
narrated guided tours,"” 2011 IEEE International Conference on Robotics and
Automation, Shanghai, 2011, pp. 2574-2579.

[29] Jingchen Tong, Dong Chen, Yan Zhuang and Wei Wang, "Mobile robot indoor
semantic mapping using 3D laser scanning and monocular vision,” 2010 8th
World Congress on Intelligent Control and Automation, Jinan, 2010, pp.
1212-1217.

[30] W. Mei, W. Pan and L. Xie, "Semantic-understand-based landmark navigation
method of robots,” 2012 IEEE International Conference on Computer Science and
Automation Engineering (CSAE), Zhangjiajie, 2012, pp. 760-764.

[31] E. A. Antonelo and B. Schrauwen, "On Learning Navigation Behaviors for Small
Mobile Robots With Reservoir Computing Architectures,” in IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 763-780, April
2015.

[32] J. A. Caley, N. R. J. Lawrance and G. A. Hollinger, "Deep learning of structured
environments for robot search,” 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 3987-3992.
60

doi:10.6342/NTU201703341

[33] L. Tai, S. Li and M. Liu, "A deep-network solution towards model-less obstacle
avoidance,” 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Daejeon, 2016, pp. 2759-2764.

61

doi:10.6342/NTU201703341

VITA

A3 E R o#-FiH1ay 2 ¥

g
1 2R106# W@ PIpFATMEE
2
3 X 99 & ST rERBRY LY

»EFiT
Ren C. Luo and Chang-Jiun Chen, “Recursive Neural Network Based Semantic
Navigation of an Autonomous Mobile Robot through Understanding Human Verbal

Instructions”, accepted by 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2017), Vancouver, Canada, September 24-28, 2017 (EI).

TITE
NRI05E g TEAFRMEE L 2016 FRpE e f o Rk FE
VR 105 & 4 (2016 £ 2R EAAILEF L EBEATERY ML ¥

3

& &

62

doi:10.6342/NTU201703341

