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Abstract

Two variable logic with counting quantifiers (C?) has found many appli-
cations, especially in ontology language such as OWL used in semantic web.
It is well known that the satisfiability problem for C? is decidable in nonde-
terministic exponential time (NEXPTIME), and the complexity is optimal.
However, the known techniques are quite complicated and they typically in-
volve guessing a structure or a representation that satisfies the input formula,
which can be hard to implement.

In this thesis, we consider a subclass of C? formulas, which we call Re-
versal closed C? formulas in Scott’s normal form (RCS). Intuitively, a C?
formula ¢ is in RCS, if it is in Scott’s normal form and the binary relations
used in ¢ are closed under reversal. We present a decision procedure for the
satisfiability and finite satisfiability problems for RCS formulas, which is
based on the technique by Kopczynski and Tan [9]. Our approach is by con-
verting an RCS formula into an existential Presburger formula. Though the
complexity is higher: 2-NEXPTIME (double exponential time), it has a few

advantages:

1. It provides a characterization of models of RCS formulas, i.e., every
model of an RCS formula is a collection of regular digraphs and bireg-

ular graphs.

2. It implies the decidability of checking whether the spectrum of an RCS

formula is infinite.
3. It gives simple decision procedures for satisfiability and finite satisfia-
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bility problems.

When the input is in Scott’s normal form and the vocabulary is fixed, our
algorithm yields time complexity NEXPTIME. We hope that our result can
be used to provide an alternative technique to reason about C? formula, thus

many other ontology languages.

Keywords: two variable logic with counting quantifiers; satisfiability; Pres-

burger arithmetics; integer programming; regular graphs
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Chapter 1

Introduction

Many areas in computer science and information technology utilize first-order logic (FO)
and its variances. For example, the currently booming artificial intelligence research uses
FO as the basis of knowledge and data representation. Typically, FO sentences are used
to describe the knowledge, so it is important to check the consistency of a sentence. By
Godel’s completeness theorem, consistency and satisfiability are equivalent [4].

Formally, the satisfiability problem (SAT) for a class C' C FO is defined as follows.
Given an input formula ¢ € C, decide whether there is a model that satisfies ¢. The finite
satisfiability problem (FIN-SAT) for C' is to decide whether there is a finite model that
satisfies (.

However, the general FO is known to be undecidable [2, |1, 20, 18]. Hence, researchers
are looking for restricted but decidable classes of FO. In this paper, we discuss one such
class: the C? logic, i.e., the FO formulas using only two variables but allowing counting

quantifiers.

1.1 Related works

From the classical work of Church [2, |1]], Turing [20] and later, Trakhtenbrot [[18], the
satisfiability problem of FO is known to be undecidable, and it is necessary to find com-
promises in order to achieve more practical results. Some FO classes of interest are de-

rived by restricting the number of variables. It was shown that the satisfiability problem

1
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of FO with only two variables (FO?) is decidable [[1 1], whereas the three variable class is
undecidable [8].

Another widely discussed class is C2, which is a more generalized class of FO? by
allowing counting quantifiers. The decidability of C? was first proved by Gridel, Otto
and Rosen [7]. However, the proof is done by showing both the satisfiability problem
and its complement are recursively enumerable. Thus, its complexity cannot be deduced.
The time complexity for both SAT and FIN-SAT problem is proved to be double ex-
ponential time by Pacholski, Szwast and Tendera []13], and later to be NEXPTIME by
Pratt-Hartmann [15]. An immediate implication from this is that C? is NEXPTIME-
complete, since FO? is already known to be NEXPTIME-hard [[10, B]. As a side note,
the algorithms proposed in both []13, 15] involve many non-trivial guessing that would be
difficult to implement.

It is worth to note that FO? has finite model property. More precisely, if an FO?
formula ¢ is satisfiable, then it is satisfied by a model with cardinality O(2/¢!) [5]. On the
other hand, C? lacks such property. There are some C? sentences that are only satisfiable

by infinite structures. This is one such example:
Y = Va32yE(z,y) AVa-32yE(y, x)

Intuitively, 1 states that each vertex in the model has at least two out-going edges but
has only one or none in-coming edge. Therefore, the satisfiability problem and finite

satisfiability problem for C? are not equivalent, unlike for FO?.

1.2 Summary of contributions

In this paper, we take another approach to the satisfiability and finite satistiability problem
for C2.

It has been proved that for a sentence ¢ of C?, there is a corresponding Presburger
formula PREB,, such that there exists a complete structure 2 with % = ¢ if and only

if PREB4(|2(]) holds as long as |2(| is finite [9]. However, the conversion to Presburger

2
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formula make use of the conversion to QMLC and yields a sextuple exponential time
complexity.

Here, we will utilize the Scott’s normal form to simplify the conversion from a C?
sentence to an existential Presburger formula to achieve a less complicated algorithm in
terms of both the procedure and the time complexity under the assumption that the binary
relations used in Scott’s normal form are closed under reversal. Moreover, we prove
such conversion retains its properties even when we allow the structure to be infinite by
allowing the Presburger formula to admit infinity oo in the solution.

On input RCS formula ¢, our algorithm does the following.

1. Convert it into an instance of Linear Integer Programming (LIP).

2. Solve the LIP problem.

Step 1 is of non-deterministic double exponential time, while step 2 is of non-deterministic
polynomial time (in the size of the input). So, overall, our algorithm for both SAT and

FIN-SAT runs in 2-NEXPTIME.

1.3 Outline

We will go through some definitions related to C? and RCS in chapter [, and the def-
initions and theorems regarding Presburger arithmetics and its extension to infinity are
discussed in chapter [J. In chapter i, we introduce some important tools for the conversion
between RCS formulas and Presburger formulas. These tools primarily consist of regular
and biregular graphs and their corresponding Presburger formula expressions. Our main
result is derived in chapter [§, where we utilize the tools in chapter f to convert an RCS
formula to a corresponding existential Presburger formula that preserves its satisfiability,
and then solve the satisfiability problem for the Presburger formula with theorems derived
from LIP in chapter . We conclude chapter [§ by analyzing the complexity for the algo-

rithm. In chapter [, we show some other results that can be inferred from our algorithm.
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Chapter 2

Two variable logic with counting

In this chapter, we introduce the formal definition of two-variable logic with counting,
which we denote by C2. We start by reviewing the syntax and semantics of first order

logic in section R.1|. Then, in section 2.2 we formally define the class C?.

2.1 First order logic (FO)

We fix a set R of relation symbols. Each R € R is associated with a positive integer, which
is called its arity and denoted by ar(R). We also fix a set VAR of first order variables.

For simplicity, let R = {Ry, ..., Rg}.

The syntax of first order logic The syntax of first order logic sentence is defined in-
ductively as follows:
* Forany z,y € VAR, x = y is an FO formula.
* If R € Risofaritynandzy,...,z, € VAR, then R(xy, ..., x,)isan FO formula.
* If @ and S are FO formulas, then so are ~a, a A § and ' V 3.
e If avis an FO formula and x € VAR, then Jz« and Vx« are FO formulas as well.

A formula is existential if it is of the form 3z . .. Jx,, 0 (x, . . ., ) Where (21, .. ., Xp)

is quantifier-free, and a formula is universal if it is of the form Vx; .. . Va0 (21, . .., Tp).

! For the sake of simplicity, we do not consider function and constant symbols for the vocabulary.

5
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A variable z is quantified if ¥V or 3 preceded x in the formula. Free variables are the
variables that are not quantified. For instance, in the formula 32VyR(z,y, 2), «,y are

quantified and z is a free variable. Formulas without free variables are called sentences.

The semantics of first order logic A structure is A = (A, RY, ..., R}), where

» Ais a set of elements, called the domain , or the universe of 2.

« each R is a relation over A of arity ar(R;), i.e., R} C A&(F),

Let2A = (A, R}, ..., R}) be a structure. A valuation in A is a mapping from VAR to
A. An model is a pair (2, val) where 2 is a structure and val is a valuation.

Given an FO formula ¢, and a model (2, val), we define (2, val) to be a model of ¢,
denoted by (2, val) = ¢, inductively as follows.

* (A, val) | x =y, ifand only if val(x) = val(y).

« (A,val) = R(xy, ..., x,),ifand only if (val(x,), ..., val(xz,)) € R™.

* (A, val) = —a, if and only if it is not true that (A, val) = a.

* (A, val) = a A p,ifand only if (A, val) = « and (A, val) = .

* (A, val) | aV p,ifand only if (A, val) = « or (A, val) = B.

(2, val) = 3z a, if and only if there is some a € A such that (2, val’) = o where

val’ is the valuation defined as follows:

* (%, val) = Vz a, if and only if for every a € A, (A, val') = « where val’ is the

valuation defined as follows:

val(z), ifz#x
val'(z) = =) 7
a, ifz=x

doi:10.6342/N'TU201802560



When ¢ is a sentence, i.e., there is no free variable in ¢, we can omit the valuation and
write A = .
An FO formula ¢ is said to be satisfiable if o has a model, and ¢ is finitely satisfiable

if ¢ has a finite model. We define the following two problems.

SAT(FO)

Input: An FO formula ¢

Task:  Output TRUE, if ¢ is satisfiable. Otherwise, output FALSE.

FIN-SAT(FO)

Input: An FO formula ¢

Task:  Output TRUE, if ¢ is finitely satisfiable. Otherwise, output FALSE.

It is well known that in general satisfiability problem of FO is undecidable.

Theorem 2.1.1 [2, 1, 20, 18] SAT(FO) is undecidable.
Theorem 2.1.2 [18] FIN-SAT(FO) is undecidable.

Therefore, we are not considering the general FO in this thesis.

2.2 Two variable logic with counting quantifiers (C?)

The syntax of C? is defined inductively as follows:

¢ v= z=z | R(zz) | ¢ | ¢A¢ | Fz9¢

where 2 ranges over x,y, R € R, and k is a nonnegative integer. Here, 3% 2¢)(z) seman-
tically means there exists at least & instances of z’s such that ¢(z) holds. Observe that V
is well-defined, since Vx ¢ is equivalent to =3dx—¢ for any formula . We note that x and
y can be reused, for example, Va(Jy(Jzp1(x,y))) A Vy(Vepe(x,y)) where ¢4 (x,y) and
¢2(,y) are quantifier-free formulas is an instance of C? formula.

Similar to FO we define SAT(C?) and FIN-SAT(C?) below.

7
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SAT(C?)

Input: A C? formula

Task:  Output TRUE, if ¢ is satisfiable. Otherwise, output FALSE.

FIN-SAT(C2)

Input: A C? formula ¢

Task:  Output TRUE, if ¢ is finitely satisfiable. Otherwise, output FALSE.

Theorem 2.2.1 [7, 13,15, 3, 10] SAT(C?) is NEXPTIME-complete.

Theorem 2.2.2 [7,15] FIN-SAT(C?) is NEXPTIME-complete.

2.2.1 The class RCS

The following is a standard normalization lemma, which is often used in the decision

procedures for FO? and C? formulas [[17, 6, [15].

Lemma 2.2.3 (Scott’s normal form) For every C? sentence ¢, there is a formula

¢t = (Vza)A (VaVy (BVz=y)) A /\ VeI=y (fulz,y) Az #y) (2.1)

1<h<p

that can be constructed in polynomial time in the length of ¢, and satisfies the following

conditions:

(C1l) « is quantifier-free and equality-free.

(C2) B is quantifier-free and equality-free.

(C3) pis a positive integer.

(C4) Forany h € {1,...,p}, fn is a binary predicate and C}, is a positive integer.

(C5) For any positive integer [n > K := maxX;<j<p Ch,

¢ has a model of size 1 if and only if ™ has a model of size |i.

A C? sentence of the form .1| is called Scott s normal form. In this thesis, we assume

the set of binary relations used is closed under reversal. Formally, it is stated as follows.

8
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Definition 2.2.4 A C? formula ¢ is an RCS formula, if it is in Scott’s normal form as

in (2.1)) and for every binary relation f;, appearing in /\1gh§p Vo 3=Chy(fulm, y) Az £ 5),

there is some A’ such that f, is the reversal of fj.

As mentioned before, the proofs in [[7, [13, [15] are rather complicated and involve
a lot of guessing. In this thesis, we will present decision procedures for SAT(C?) and
FIN-SAT(C?) problems, when the input formulas are restricted to RCS formulas with an

entirely different technique. As mentioned earlier, our approach yields a few advantages:
1. It provides a characterization of models of RCS formulas, i.e., every model of an
RCS formula is a collection of regular digraphs and biregular graphs.

2. It implies the decidability of checking whether the spectrum of an RCS formula is

infinite.

3. Ityields a simple decision procedures for satisfiability and finite satisfiability prob-

lems.

Remark 2.2.5 It is worth stating that the satisfiability and finite satisfiability problems

for three-variable logic are already undecidable. [8]

doi:10.6342/N'TU201802560
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Chapter 3

Presburger arithmetics

In this chapter, we introduce the formal definition of Presburger arithmetic and its exten-

sion with infinity. We will also discuss the satisfiability problem in both cases.

3.1 Standard Presburger arithmetic

We define the following structure N := (N, +, <, 0), where +, <, 0 are interpreted in the
standard way. A formula on Presburger arithmetic is an FO formula over the vocabulary
{+ <0}

The satisfiability problem for Presburger arithmetic is defined as follows.

SAT (Presburger)

Input: A Presburger formula ¢

Task: Output TRUE, if N = ¢. Otherwise, output FALSE.

It is known that SAT(Presburger) is decidable[16, [12], and the algorithm given by Pres-
burger has nonelementary time complexity. The following theorem states that, in fact, the

problem SAT(Presburger) is elementary.

Theorem 3.1.1 [12] SAT(Presburger) with input length n can be decided in 0(222m)

for some constant ¢ > 1.

However, the result above is not efficient enough for our need. So, we turn into a subclass

of Presburger formulas.

11
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Theorem 3.1.2 When the input Presburger formula o is restricted to existential formula,

then SAT(Presburger) is in NP.

Theorem follows from Papadimitriou’s result for LIP [[14], and the detailed discus-

sion can be found in section B.3.

3.2 Presburger arithmetic with infinity

Presburger arithmetic can in fact be further extended to include infinity in its domain. Let

Ny := NU {oo}. We denote the following structure N, := (N, +, <, 0).

* The constant 0 is interpreted as the standard zero.

* The operator + on N is interpreted in the standard way, and when oo is involved, it

1s defined as follows.

Foreverya € N, a+4+o00=004+a=00+00=00

* The relation < on N is interpreted in the standard way, and when oo is involved, it

is defined as follows.

Foreverya € N, a < ooand oo < 00

Notice that the definition above is consistent with our intuition on infinity. We now define

the following problem.

SAT (Presburger-inf)

Input: A Presburger formula ¢
Task:  Output TRUE, if N, E . Otherwise, output FALSE.

12
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3.3 The satisfiability of Presburger formula

In this section, we will only consider the existential Presburger sentences, i.e., the Pres-

burger sentences of the form:
QZ5 = HXIHXQ e Ean gO(Xl, XQ, Ce ,Xn)

where ¢ is quantifier-free. We will show that deciding whether N |= ¢ or N, = ¢ can
be solved using the technique of linear integer programming (LIP).

We first recall the following theorem proved by Christos H. Papadimitriou [14].

Theorem 3.3.1 [14] Let A be an m X n matrix and b an m-vector such that the absolute
value of every entry of A or b is no larger than a. Then if there exists a solution v € N"

for Ax = b, there is some y € {0,1,...n(ma)*" 1} such that Ay = .

From theorem B.3.1], we can obtain the following corollary.

Corollary 3.3.2 Let A be an m x n matrix and b an m-vector such that the absolute value
of any entry of A or b is no larger than a. Then if there exists a solution x € N" for Ax <D,

there is some y € {0,1,...(n + m)(ma)*" 1 }" such that Ay < b.

Proof. Let [,,, denoted the m x m identity matrix, in other words,

10 0

01 0
I, =

0 0 . 1

It follows immediately by letting

v (aln)

and noting that A’x’ = b has a solution if and only if Ax < b has the solution x where
x consists of the first n entries of 2. By theorem B.3.1|, 2’ exists if and only if there is
13
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y € {0,1,...(n +m)(ma)*T1}"*™ such that A’y’ = b. Finally, we can conclude that
if Az < b has a solution, there exists y € {0, 1,... (n +m)(ma)?>™ ™ }" where y consists

of the first n entries of 3y and Ay < b. [ |

Now we can prove the following theorem.

Theorem 3.3.3 Both SAT(Presburger) and SAT (Presburger-inf) are in NP when the in-

put formula  is restricted to existential formulas.

Proof. We will describe the polynomial time nondeterministic algorithm here.

Via nondeterminism, for each disjunction A V B in ¢(X1,..., X,,), we can eliminate
either A or B by guessing correctly, since p(X7, ..., X, ) is of quantifier free. Therefore,
we can assume (X, ..., X,) is of the form ¢ (X1, ..., X)) A .0 A op( X1, ..., X0)
where each ¢,(X1,...,X,) is a linear inequality, which can be converted into an LIP
instance Ax < b.

For SAT (Presburger), by corollary and nondeterminism, we can guess the value
of each X fori € {1,...,n} from {0, 1,... (n+k)(na)?* '} where a is the largest abso-
lute values of the coefficients in all linear equations ¢ (X1, ..., X,,), ..., ou( X1, ..., Xp)-
Then we check whether the guessed values satisfy all ¢1 (X, ..., X,,), ..., or( X1, ..., X,),
and conclude the Presburger formula is satisfiable if so, not satisfiable otherwise.

For SAT (Presburger-inf), it works similarly. [

14
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Chapter 4

Regular graphs

In this chapter, we will introduce some tools that we are going to use later on. In particular,
we introduce two classes of regular graphs: bipartite regular graphs (biregular graphs)
and regular directed graphs (regular digraphs). Intuitively, biregular graphs are bipartite
graphs where the degree of each vertex is already fixed, and regular digraphs are directed
graphs where the in-degree and out-degree of each vertex are already fixed.

We will show how to construct the existential Presburger formulas that characterize the
existence of biregular graphs and regular digraphs. We present the formal definitions in
section [4.1. The construction of the Presburger formulas for biregular graphs can be found

in section #.2. A similar construction for regular digraphs can be found in section %.3.

4.1 Definitions

Section contains the definition of biregular graphs and section contains the

definition of regular digraphs.

4.1.1 Biregular graphs

A undirected graph G is an (-type bipartite graph it G = (U,V, Ey, FEs, ..., Fy) is a
bipartite graph where U and V' are the partitions of the vertices and F, Fs, ..., E, are

the pairwise disjoint subset of U x V.

15
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For any vertex u, the degree of u, denoted by deg(u), is the number of edges adjacent
to u in GG. The degree of u in the edge set /; is denoted by deg, (u) foranyi € {1,...,/}.

In the following, for any set S and d, e € N, S%*¢ is defined to be the set of all d x e
matrices whose entries are in S. For C' € N*™ and D € N*", an (-type bipartite graph
G = (U,V,Ey, Es, ..., Ey)is (C, D)-biregular if there exists some partitions U, U. . .UU,,
of Uand V; U ... UV, of V such that:

* Foreveryi=1,...fandj = 1,...,m,and forany vertex u € Uj, degp (u) = C; ;.

* Foreveryi=1,...,flandj = 1,...,n,and forany vertex v € Vj,degy (v) = D ;.

We say a (C, D)-biregular graph G is of size (M, N) if M = (|Uy],...,|Uy|) and
N = (Vi],...,|Va]),and we call Uy U ... U U,, and Vi U ... UV, a witness of G.
Note that we do not restrict the graph to be finite. In which case, some entry in M or

N 1is infinite.

4.1.2 Regular digraphs

An (-type directed graph (digraph) G = (V, E4, Es, ..., Ey) is defined similarly, where
Ey, Es, ..., E, are pairwise disjoint directed edges. For convenience, we always assume
that the set £y U Ey U ... U Ej is asymmetric, i.e., if (u,v) € Ey U E; U ... U Ey, then
(v,u) ¢ EyUEyU...UE,.

Similar to how we define the degree of a vertex in an undirected graph, we define
the out-going degree and incoming degree of a vertex in a directed graph. The for-
mal definition is as follows: For any vertex u, the out-going degree of u, denoted by
out-deg(u), is the number of out-going edges from w, and the incoming degree of u, de-
noted by in-deg(u), is the number of incoming edges to u. The out-going degree of u in
the edge set £; is denoted by out-degy, (u), and the incoming degree of u in the edge set

E; is denoted by in-degy, (u) for any i € {1,...,¢}. Observe that for any vertex u in G,

geoey =1,...,

16
doi:10.6342/N'TU201802560



For C,D € N", an (-type digraph G = (V,Ey, Es, ..., E;) is a (C, D)-regular-
digraph if there exists a partition of V' = V; U ... U V,, such that for every i = 1,...,¢
and j = 1,...,n, and for any vertex v € V}, in-deg, (v) = C; j and out-degy, (v) = D, ;.

We say a (C, D)-regular digraph G is of size N if N = (|V4],...,|V,]), and we call
Viu...UV, awitness of G.

Observe that N has infinite entry if and only if the number of vertices in G is infinite.

4.2 Presburger characterization of the existence of bireg-

ular graph

In this section, we will prove the following theorem.

Theorem 4.2.1 For every two matrices C € N™™ and D € N", there is a (quantifier-
firee) Presburger formula BIREGo p(X,Y), where X = (Xy,..., X,,)andY = (Y1,...,Y,),
such that the followings hold: For any M € N and N € N, there is an (-type (C, D)-

biregular graph of size (M, N) if and only if BIREG¢,p(M, N) holds.
As a matter of fact, in the finite case, i.e., when M and N are over N instead of N,
theorem has already been proven by Kopczynski and Tan [9]. Our goal is to extend
it to infinite case. The proof is divided into parts. We discuss the case of one dimensional
matrices in subsection and extend it to all matrices in §.2.2.

From now on, for any matrix or vector M, we denote the sum of all entries of M by

>~ M, and we denote the maximum among the sums of the columns of M by MC(M),

ie, MC(M) :=max;{>_, M, ,}.

4.2.1 1-type biregular graphs

We will first prove the simpler case of theorem where C' and D both only have one

row. We will make use of the following notation: For any m,n,¢ € N and any two
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matrices C' € N™*“ and D € N"*¢,

| SSM+> N <20-MC(C) - MC(D) + 3¢ and
Hep = (M, N) 1)

there exists a (C, D)-biregular graph of size (M, N)

Below is the special case of theorem }.2.1, where the matrices consist of a single row.

Lemma 4.2.2 For every two vectors ¢ € N and d € N'*", there is a (quantifier-free)

Presburger formula BiREGE’J<X, Y), where X = (X1,..., X)) andY = (Y,...,Y,),

such that the followings hold: For any M € N and N € N, there exists a (¢,d)-

biregular graph of size (M, N) if and only if BIREG, 4(M, N) holds.

Proof. Leté = (c1,...,¢m), and d = (dy,...,d,). Let I := {i|¢; = 0} and J :=
{j | d; = 0}, i.e., the zero entries in ¢ and d. Let & and X' be ¢ and X without entries in
I,and d and Y’ be d and Y without entries in .J. Observe that both & and d do not have

Zero entry.

Now define BIREG; 4(X,Y) as follows.

BiREG, (X, Y ( Y x > 2. MC(@) - MC(d) +3 A (X' - :Y"d’))

v ( \/ X=M A Y=N) 42)

_)EH ’.q
where
o M+3 N <2-MC(@)-MC(d) + 3 and
m, — | anm > > (@) (d) o
there exists a (&, d )-biregular graph of size (M, N)

by definition in [.1].

The set H, y can be obtained by checking whether there exists a (¢, d')-biregular
graph of size (M, N) for every (M, N) such that > M + 3" N < 2-MC(@)-MC(d) +3
Note that BIREG, 4(X, Y) holds means the vertices corresponding to X' and Y’ form
a (¢, d) -biregular graph while the rest of the vertices can be arbitrary, since they do not

have adjacent edges.
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Claim 1 For any two vectors M € N and N € N, there exists a (¢, d)-biregular

graph of size (M, N) if and only if BIREG, (M, N)) holds.

Proof of claim. By theorem 7.3 of Kopczynski and Tan [9], we know the claim is true
when M € N™ and N € N". Let M’ denote M without entries in I and N” denote N
without entries in .J. We can observe that if both A/’ and N’ only have finite entries, the
claim holds, since X; for 7 € I and Y; for j € J can be arbitrary. So,without loss of
generality, we can consider the case where there is some infinite entry in M.

To prove the “only if” direction, we assume there exists a (¢, d)-biregular graph of size
(M, N). Observe that it is trivial that 5" M’ + SN’ > 2. MC(&) - MC(d') + 3 holds.
Finally, both M ".@and N' - d are the number of edges in the biregular graph, implying
M'-@ =N'"-d = co. Hence, BIREG, 4(M, N) holds.

For the “if* direction, we first observe that (M', N') ¢ H, y since M’ has infinite
entry. Therefore, in order for BIREG, (M, N) to hold, M ".& = N'-d = oo must hold,
and we can conclude there is some infinite entry in N "as well. Let U = vu...uU,
be a partition where |U;| = M; and let V = V; U ... UV, be a partition where |V;| = ;.

Now we can construct a (¢, d) biregular graph recursively by repeating the steps below.

* Assume the vertices in each U; and V; are ordered, and we iterate through the sets

U, ... U Vi, ... Vi

» Suppose the set we are currently at is U;. We find the first vertex u such that its
current degree is less than ¢;. Since N has at least one infinite entry, say N; = oo,
we can always find a vertex v in V; with its number of edges less than d; during the

construction, and we connect v and v with an edge.

+ Similarly, suppose the set we are currently at is ;. We find the first vertex v such
that its current degree is less than d;. Since M " has at least one infinite entry, say
M; = oo, we can always find a vertex u in U; with its number of edges less than ¢;

during the construction, and we connect u and v with an edge.

With such construction, we will achieve a (¢, d)-biregular graph in infinite steps.
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By symmetry, the claim also holds for the case where there is some infinite entry in

N'. Thus the claim holds. O

The claim concludes the proof for lemma §.2.2. ]

4.2.2 Proof of theorem

By deleting any zero column ¢; (or d;) of C (or D, respectively) and adding the constraint
X; > 0 (orY; > 0) to the resulting Presburger formula, we can assume both C'; D do not

contain any zero-column.

The formal construction of BIREG¢ p(X,Y) is as follows. First, we define the char-

acteristic function x : N* — {0, 1}* where N* := | J, ., N* and {0, 1}* := Up=1{0, 135

x(ai,...,ax) = (by,...,bx), where b; = 0 if a; = 0 and b; = 1 otherwise.

Also, let ¢, ¢, . . ., ¢ be the row vectors of C, and d;, ds, . . ., d; be the row vectors
of D. That is,
C1 Jl
C = 6.2 and D = &
& dy

Now we can construct BIREG¢ p(X,Y) inductively:

* When/ =1,

=~

=~

C

BiREGC,D( ) ) = BiREG_LJl( )
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* When ¢ > 2,

BiREGcp(X, V)= \/ X=M AN Y=N (4.3)

=

v\ ( X ox(@) 4V \(d) > 2 MC(Q) - MC(D) + 3

A BIREG, ; (X,7) )

where C'\ ¢ denotes the matrix C without &, and D \ d; denotes the matrix D without
d;. Observe that Hc p is defined with equation #.1] and can be greedily computed with the
same method as before.

Then we shall prove that there exists an ¢-type (C, D)-biregular graph of size (M, N)
if and only if BIREG¢ p(M, N) holds by induction. First, the case for ¢ = 1 is equivalent
to the statement in lemma #.2.2. Now suppose the induction hypothesis holds when C' and

D have no more than ¢ — 1 rows. We will prove for the case /.

* For the “if” direction, we assume BiREG ¢ p (M, N) holds. If the first part of for-
mula #.3 holds, that is \/( M,N)EH b X = M AY = N holds, the biregular graph

exists trivially. Therefore, we only have to consider the case where

M- (&) + N -x(d) > 2-MC(C) - MC(D) + 3

A

BiREG s, pva, (M, N) A BiREG,, g (M, N)

holds for some i € {1,...,¢}.

We first consider the case where |E;| # oo. By induction hypothesis, there exist a
(C\&;, D\d;)-biregular graph with edge partition F,U. . .UFE;_1UE;,,U...UE, and
a (¢, d;)-biregular graph with edge partition E; both of size (M, N). The vertices of
the two graphs can be merged one-to-one since they have the same size. However,
the edge set { F, . . ., E;} may not be pairwise disjoint, as there may be some some

edgein E;N(F1U...UE;_ 1UE;;1U...UE}), and suppose (u, v) is such an edge.

21
doi:10.6342/N'TU201802560



Observe that there are at most 2 - MC(C') - MC(D) + 2 vertices that can be reached
within 2 edges in £ U ... U Ej from either v or v, including » and v themselves.
Since M - x (&) + N - x(d;) > 2 - MC(C) - MC(D) + 3, there exists some edge
(u',0") € E; such that (u, ), (v/,v) ¢ EyU...UE;,_1UE U...UE,. By
removing (u,v), (v, v") from E; and adding (u, v'), (v/,v) to E;, the resulting edge

set ! will still be an edge partition for a (¢;, d;)-biregular graph. Moreover,
|[E;N(EyU...UE; 1 UE; 1 U...UE)|>|EiN(E1U...UE,_1UE;1U...UEy)]

holds. Hence, by repeating the step of replacing the edges in £;, we will eventually
getaset £ suchthat |[E/N(E V.. .UE;,_1UE; 1 U...UE,)| = 0 when |E;| # occ.

This completes the construction of (C, D)-biregular graph for finite F;.

Now, we assume |FE;| = co. Observe that in this case, M - x(¢;) + N - x(d;) = oo,

and hence M - (&) = N - x(d;) = oo.

By induction hypothesis, we can let G = (U,V, Ey,...,E;_1,F;yq,...,E;) be a
(C'\ &, D\ d;)-biregular graph, andlet U = U; U...UU,,and V = Vi U... UV,
be a witness of G. We will construct the (C, D)-biregular graph recursively by

repeating the steps below.

— Assume the vertices in each U;; and V} are ordered, and then we can iterate

through the sets Uy, ..., U, Vi, ..., V,.

— Suppose the set we are currently at is U;;. We find the first vertex u such that
its current degree in E; is less than C; ;. Since N - x(d;) = oo, N has at least
one infinite entry, say N;; = oo, such that D, ;; > 0, so we can always find a
vertex v in Vj» with its number of edges less than D; ;» during the construction,
and we add (u, v) into E;.

— Similarly, suppose the set we are currently at is ;. We find the first vertex
v such that its current degree in £ is less than D, ;. Since M - x(&) = oo,
M has at least one infinite entry, say M;; = oo, such that Ciiv > 0, so we can

always find a vertex w in U, with its number of edges less than C; ; during the
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construction, and we add (u, v) into E;.

By repeating the steps above, we will obtain a (C, D)-biregular graph over infinite

steps.

* Finally, we prove the “ only if ” direction. Suppose there is a (C, D)-biregular graph
G=(UV,E,...,E)ofsize(M,N). If Y. M+>_ N < 2(-MC(C)-MC(D)+3¢,
then (M, N) € H¢,p and BIREG¢, p(M, N) holds trivially.

Consider the case where >_ M + >N > 2¢ - MC(C) - MC(D) + 3¢. Since
C and D both do not have zero-column, we can find some ¢ € {1,...,/¢} such
that M - x(¢;) + N - x(d;) > 2 - MC(C) - MC(D) + 3. Also, we notice that
Gy :=UV,Ey,....,Ei_1,Ei1,...,E)isa(C\ ¢, D\ d;)-biregular graph and

Gy = (U,V, E;) is a (¢;, d;)-biregular graph. Therefore, by induction hypothesis,
BiREGe\,, p\g, (M, N) and BIREG,, 4, (M, N) both hold.

This completes our proof.

4.3 Presburger characterization of the existence of regu-
lar digraph

Using similar technique, regular digraphs can be characterized by Presburger formulas as

well as stated in the following theorem.

Theorem 4.3.1 For every two matrices C, D € N™, there is a (quantifier-free) Pres-
burger formula REG¢o p(X), where X = (Xy,..., X,,), such that the following holds:
Forany M € N™, there exists a (C, D)-regular-digraph of size M if and only if REG¢,p (M)
holds.

Before proving theorem }.3.1], we first prove some auxiliary lemmas.

Lemma 4.3.2 Let ¢,d € N™™ be one-row vectors. For every M € N™ that satisfies the

inequality 2 - > M > 2 - MC(c) - MC(d) + 3, the following holds.
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There is a (¢, d)-regular-digraph of size M if and only of there exists a (¢, d)-

biregular graph of size (M, M).

Proof. For the “only if” direction, we assume there exists a (¢, d)-regular-digraph G =
(V, E) of size M. Then we “split” each vertex in V as follows.
e LetV ={vy,v9,...,0,} (or V = {vy,vy,...} when V has infinite vertices).

o Let V' :={v}, v}, ..., v} (or V' := {v},v},...} when V has infinite vertices) be a

set where there is an one-to-one correspondence between the elements in V/ and V.

o B = {(v3,0}) | (v,00) € E.

The following figure describe the intuitive meaning. Each vertex v; is split into two:

one has all the out-going edges and the other has all the incoming edges.

O ———— >

/ N

/ Split into \ Uz,' U/

The resulting graph is a biregular graph of size (M, M).

For the “if” direction, we assume there exists a (¢, d)-biregular graph G' = (U, V, E)
of size (M, M) with witness U = U; U ... UU,, and V = V; U ... U V,,. Note that
\U;| = |V;| for all 4. Suppose U; = {u |0 < i < |U;|}and V; = {v/ | 0 < i < |V;]}. To
construct a regular digraph, we first merge the vertex set U; and V; forallt = 1,...,m
into a new set V' = {v/7 | 0 < i < |V}|} by considering u/ and v/ as the same vertex v/
forall 0 < j < |U;|. Then we construct the directed edge set £’ in the new directed graph

by defining

E ={0 v ]|1<i<m1<i<m0<j<]|U],0<j <|Ujand (ul,0)) € E}.

24
doi:10.6342/N'TU201802560



ENEPZAN,

We note here the new graph G’ := (V’, E’) might not be a regular digraph since there could
be self-loop or inverse edges in G’. However, since 2 - 5. M > 2 - MC(¢) - MC(d) + 3
holds, we can eliminate them with the technique as in lemma §.2.2. Specifically, for any
self-loop (v, v) € F, there exists an edge (u, ') € E that is not adjacent to v, and we can
replace the edges (v, v), (u,w’) with (u,v), (v,u’). Likewise, for any two inverse edges
(v,v"), (V',v) € E, there is an edge (u, u') that is not adjacent to both v and v/, and we can
replace (v, v’) and (u, v) with (v, u") and (u, v’) to eliminate the inverse edges. Therefore,

we conclude that there is a (¢, d)-biregular graph of size (M, M). [ |

We require another lemma as stated below.

Lemma 4.3.3 Let C, D € N™™ be matrices of same size. When M € N™ satisfies the
inequality M - x(¢;) + M - x(d;) > 2-MC(C) - MC(D) + 3 for some i € {1,...,(}, the

following two statements are equivalent.
(1) Thereis a (C, D)-regular-digraph of size M.
(2) There exist a (¢;, d;)-regular digraph and a (C'\ &, D \ d;)-regular digraph both of

size M.

Proof. The direction from the first to second follows immediately from the structure of
regular digraph.
To prove the direction from the second to first, we first construct a directed graph

G = (V,E,..., Ey) such that
« G = (V, E;)isa(¢;,d;)-regular digraph of size M, and
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« G=(V,Ey,....,Ei_\,Ei1,...E)isa(C\ ¢, D\ d;)-regular digraph of size M.

Although there might be parallel edges with this construction, they can be eliminated with
the same technique in theorem since M - x(¢;)+ M -x(d;) > 2-MC(C)-MC(D)+3.

This completes our proof. |

Before proving theorem |.3.1, we define the following set

/ | 23 M < 20-MC(C) - MC(D) + 3¢ and there
Hep = (M, M) o (4.4)
exists a (C, D)-regular digraph of size (M, M)

for any m,n,¢ € N and any two matrices C € N™** and D € N"*‘. Notice the dif-
ference between H(, , and He p in equation is that H, f, is defined with respect to

biregular graphs whereas H, , is defined with respect to regular digraphs. The proof of

theorem follows.

Proof of theorem The formula REG¢ p(X) can be similarly defined as in equa-
tions and {.3, by replacing any Her p with H! , pr for any matrices C’, D’ such that
Her pr is in the BIREG¢ p (X, X) formula. The correctness of the base case where C, D
are single-row matrices is ensured by lemma §.3.2. The correctness of the induction step

is ensured by lemma }#.3.3. This completes our proof. [ |
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Chapter 5

Satisfiability of RCS formulas via

Presburger arithmetics

For this chapter we will show that every RCS sentence can be converted effectively to a
Presburger formula that preserve satisfiability. The construction of such Presburger for-
mula can be found in section 5.1. The proof of correctness is in section 5.2, and the

complexity analysis is in section [.3.

5.1 Constructing Presburger formula from an RCS sen-

tence

In this section and the next, we will prove the following theorem.

Theorem 5.1.1 For every RCS sentence ¢, there is a Presburger formula PREB,, such

that
* ¢ has a finite model if and only if PREB,, is satisfiable in N

* ¢ has a model if and only if PREB is satisfiable in N.

Recall from Definition that a formula ¢ is an RCS formula, if it is in Scott’s
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normal form:

¢ = (Vea)A(Vavy (Bva=y)A N Va3% (fulz,y) ANz #y),

1<h<p
where « and (3 are quantifier-free and equality-free, and for every binary relation f;,, there

is some A’ such that f}, is the reversal of fj,.

The algorithm for SAT and FIN-SAT. Overall our algorithm for checking the satisfi-

ability and finite-satisfiability works as follows.

Algorithm 1 Algorithm for SAT and FIN-SAT
Input: An RCS sentence ¢
1: Convert ¢ into Presburger formula PREB,, according to theorem 5.1.1].
2: If PREB, holds, then output TRUE. Otherwise, output FALSE.

We will show that Step 2 is in 2-NEXPTIME and yields an instance of LIP of double
exponential size. Since the satisfiability of LIP is in NP, overall, our algorithm runs in
2-NEXPTIME. The crucial part is of course the construction of the Presburger formula.

We will explain it in the following.

The construction of PREB,;. Now given an RCS sentence ¢ as in 2.1f we will describe
the construction of the desired Presburger formula PREB, below.

We define a one-type to be a maximal consistent set of unary predicates in ¢ and their
negations, and a two-type to include (r # y) and a maximal consistent set of binary
predicates in ¢ and their negations.

Let7T = {T\,Ts,...,T,} bethesetofall one-typesand £ = {Ey, ..., Ey, %1, o %g},
where <Ez(x, y) = Ei(y,z) foralli = 1,..., ¢, be the set of the two-types of ¢ such that
forevery E € £, E |= (fu A (x # y)) forsome h € {1,...,p}. Notice £ is well-defined
since the set of binary predicates is closed under reversal. Observe that for an arbitrary
structure 2, the sets Ay, ..., A, where A; := {a € As.t. A a | T;} form a pairwise-
disjoint partition of A. For convenience, we sometimes refer to A; as T; when it won’t
cause confusion. (eg. writing an element of A; as an element of 7}). Also for simplicity,

we sometimes use S to represent /\ _ s forsome S € T UE.
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Observe that for any quantifier-free and equality-free subformula f of ¢, f A (x # y)
can be rewritten as \/,.¢ ' where £ C &. Also observe that £ is a pairwise disjoint
partition of a subset of {(z,y) € A x A |z # y}.

Afunctiong : T x € X T — {0,1,...,C} is said to be consistent if

 forany fixed 7€ T and h € {1,...,p},

> Y 9(T.ET) = C
E€E st. EE(fan(ay)) T'€T

LetG = {g1,92,--.,9m ) be the set enumerating all consistent functions.

Given a structure 2, an element a € A is called a (7, g)-element if it is of type 7'
and the number of its out-going F-edges towards the elements of any type 7" is exactly
g(T,E,T").

Our desired formula PREB,, will be defined as follows:

PREB, := 3X (1, 1) - - - 3X(7,..0,) FORALL; (X) A FORALLy(X) A CON(X) (5.1)

where X := (X711 g1), X(T1.92)s - - - » X(T.g0n))- Intuitively, X (T;,g;) T€present the number

of (T3, g;)-elements.
Now, we define FORALL;, FORALL, and CON below:

* The formula CON(X): We first define matrices Dg_,r, %S_g“ e N&™ as follows

forany Sand T € T.

g1(S, B, T)  go(S, B0, T) -+ gm(S, By, T)
gl(SyE27T) gQ(SaE27T) gm(S7E2aT)
gl(S7EfaT) 92(S7E€aT) gm(SaEfyT)
Ds_r = —
gl<57§17T) 92(5':%1771) gm(S7E17T>
— R
618, B2 T) 0o, B2, T) - gn(S, BaT)
—
91(57 EE7T) 92<S7%£7T) gm(S7§Z7T)
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and

§S—>T =

g1(T, %1, S)
a(T, B, )

<—
91(T7 Eﬁv S)
91(T> E17 S)
gl(Ta E27S)

91(T7 Efa S)

g2(T7 %Za S)
92(T7 Eb S)
92(Ta EQv S)

92(T7 Ef? S)

gm(Tv %1, S)
gm(Ta %27 S)

—
gm(T7 EZ) S)
gm(T7 Eb S)

gm(Ta E27 S)

gm<T7 E@v S)

Then forany T' € T, Dr, %T e N?™ ig defined as follows:

and

Let X7, denotes (X(7,.g,), - - -

Forthe part A\, -, Va23=Cny (f(z,y) Az # y) in ¢, CON ensures that the formula

g1 (Ta E17 T)

DT - gl(Ta E27T)

91(T7 Efa T)

g1 (T, %1, T)
g gl(T, gg,T)

—
91(T7 E@a T)

CON(X) :=

1<i<n

g2 (Ta E17 T)
g2 (T7 E27 T)

92(T7 Efa T)
g2(T7 %1, T)
—
g2 (T7 E27 T)

—
92(T, Eb T)

/\ REGp, 5, (Xz)

gm(Ta Ela T)
gm<T7 E27 T)

9m (Ta Ef? T)

—
gm<T) EZ) T)

, X(T;,9m))- Define CON as follows.

/\ /\ BiR‘EGDTi—»ijﬁTi—»Tj (XTN XTj)

1<i<j<n
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is satisfiable if and only if there exists a structure such that each of its subgraph
formed by any two distinct one-types is a biregular graph, each of its subgraph of a
one-type is a regular digraph, and the biregular graphs and regular digraphs are all

consistent with the formula.

¢ The formula FORALL; (X) is to capture the part Vxa in ¢. Note that Voo is equiv-

alent to ~3z—c. Thus, we can define FORALL; (X)) as follows:

FORALL,(X) := A N Xy, =0

TeT st. TE-a 1<j<m

* Similarly, the formula FORALL,(X) is to capture VaVy (5 V x = y) in ¢, which is

equivalent to =3z3y(—f A = # y). We first define the following set:

Forsome S € T and some F € & s.t.
H = (T,g) €T xG (5.4)

EE (A (z#y)),9(TE,S) >0

And FORALL, will be as follows:

FORALLy(X) = A Xy =0

(T,9)eH

This completes our construction of formula 5.1. The correctness of construction can be

found in section 5.9 and the complexity analysis can be found in section [5.3.

5.2 'The preservation of satisfiability

Now that PREB,, is defined, we will prove the satisfiability of PREB,, is preserved in

both finite and infinite cases in this section.
Lemma 5.2.1 For any RCS sentence ¢, the following holds.

* ¢ has a model if and only if N, |= PREB,.
* ¢ has a finite model if and only if N' = PREB,.
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Proof. We will divide our proof into the “if” direction and the “only of” direction. For the

if direction:
Claim 2 For any RCS sentence ¢, the following holds.

* ¢ has a model if N, |= PREB,.

* ¢ has a finite model if N' = PREB,.

Proof of claim. Let M := (Mr, 4, My, 4, ..., Mr, ,.) be a vector such that

FORALL; (M), FORALLy (M) and CON(M) all holds. Our goal is to prove there exists

a structure 2 that satisfies Vx «, VaVy (fVa = y) and /\1gh§p Vo 3=Cry (fr(z, y) Az £ 7).
First, we will construct 2. Let Ap, ,, U Ap g, ... U A, 4, be a pair-wise disjoint

division of A, where |Ar, 4| = My, 4, forany 1 <7 < mnand1 < j < m. The set of

elements Ar, o, U Ap, g, ... U Aq 4. is denoted by Ar,, and (M1, 4, M7, 40, M1, 4,,)

591
by MTi'
Since CON(M) holds, we can apply theorem to construct a (D, %T) regular
digraph G* = (Ap, E{,Ef, ... E]) forany T € T, where Ay g U Ay, ... U Apy,. is
- T T T rer 5T BTy with B
a witness of G*. Let Gr = (A, Ef ,E5, ... E;, E{, E5, ..., E;) with E; defined to
be the inverse of £; forall i = 1,... (. Observe that in G for any a € Ar,, and any

ie{l,..., 0},

* in-degp. (a) = g;(T, E, T') by definition of regularity, which is consistent with
out-degg; (a), and
* out-degy, (a) = g;(T, E;, T) by definition of regularity, which is consistent with
in-degg (a).
Similarly, we can apply theorem to construct a (Dg_,7, % s—7) biregular graph
GST — (Ag, Ap, ES™T ES=T . ES-T E9=T ES-T  ES=T) forany S = Ty,
andT =T}, € T where ky < kyand Ag g UAg,, .. .UAg,, and Ap, UA7,, .. .UA7,,

are witness of G*. Now define

. . gy
« E5" to be the set that consists of the edges of 5~ and the inverse of E577,

and
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e . e .
s B ZS " to be the set that consists of the edges of F 52T and the inverse of E7 7.

ST ST ST 5ST 58T S,T g
Let Gsr = (As, Ar, BV E) L E, ,%1 , B ,...,%E ). Hence, in Ggp for

anya € Agy, andanyi € {1,...,(},
* in-degp (a) = g;(5, E, T') by definition of biregularity, which is consistent with
out-degs-(a), and
* out-degy (a) = g;(S, B, T) by definition of regularity, which is consistent with

in-degg; (a),

and vertices of A7 has consistent in-deg and out-deg by symmetry.

Finally, we can construct the graph G for 2( by combining all Gy and G, i.e., let
B, = U Eg U U E,?’Tj
TeT i<j
and
— — T
By = |J®rulEM"
TeT 1<j
forallk=1,... ¢

Now we will prove 2 = ¢:

* Proof of 2 = AlShngxElzchy (fn(x,y) Nz #y):

Let a € A be an arbitrary vertex. Since A = Ap 4 U Ap 4, ... U Ap, 4., there is

some (7', g) € T x G suchthata € Ar,.
Forevery h € {1,...,p}, we have
out-deg; (a) = Z out-deg . (a)
E€€ st EE(fan(ay))
and

out-degy(a) = Y g(T,E,T')

TeT
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Hence,

out-deg;, (a) = Z Z g(T,E, T = C

Ec€ st. EE(fan(z#y)) T'eT

by the definition of G.
We conclude that 2 is a model of A, , Vo3=Cry (fulz,y) Az # y).

* Proof of A = Vza:

Since FORALL; (M) holds, we have |Ag 4| = My, =0foranyg e GandT € T
such that 7' = —a. Itimplies |Ar| = 0 forall T € T such that T = —«. Therefore,
there does not exist any element a € A such that a(a) holds; in other words, Vza

holds in 2.
* Proof of 2l = VaVy (BV x =y):

Recall that forany 7' € 7,9 € G, E € £anda € Apy,

out-deg(a) = Zg(T, E,S).
SeT

Since FORALL, (M) holds, |[Ar | = Mr, = 0 for any (7', g) € T x G such that
g(T,E,S) > 0 for some F = (=8 A (z # y)). Therefore, for any a € A and

E = (=B A (x#vy)), out-deg(a) = 0, so there does not exist any —5-edge in 2.
We arrive at the conclusion that 2 is a model of =323y (=5 A (x # y)), which is

equivalent to VaVy (8 V (z = y)).

Thus, 2l = ¢. Notice that if the entries in M are all finite, then | A| is finite by construction.

OJ
Now for the “only if” direction, we have the following claim:

Claim 3 Forany RCS sentence ¢, PREB,, holds in N if ¢ has a finite model, and PREB,;
holds in N, if ¢ has a model.
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Proof of claim. Let 2 be a structure that 2{ = ¢. We can divide A into a pairwise dis-
joint partition Ag, o, U...UArg, 4. by letting Ag, ;- consist of all the (77, g;)-elements. Let
Mr, 4, := |Ar, g, foralli = 1,... ,nandallj =1,...,m. Let M := (Mg, gys -0y M7, 4.)
and Mr, := (Mz, 4,..., Mz, ,, ). We claim that FORALL,; (M), FORALL,(M) and
CON(M) all holds.

» FORALL; (M) holds: Since Vz « holds in 2, i.e., =3z -« holds, there does not

exist any element in any 7" € 7 such that 7' = ~«. We have > ,_, Mz, =0
forany 7' | —a.
Since all Mr.4 are nonnegative, Arcr i 7m0 Nicjom M7, = 0 holds.

* FORALLy(M) holds: We have VaVy 5V (x = y) holds in 2(, which is equivalent
to =3z3y (- A (z # y)) holds in . Therefore, there does not exist any F-edge
for F € £suchthat £ = —(=8 A (x # v)).

Recall

g(T,E,S) > 0forsome S € T
H = (T,9) €T xG
andsome F € Es.t. E = (28 A (xz #y)).

Suppose, to the contrary, there exists some non-empty A, with (T',g) € H. Let
a be a vertex in Ap 4. Then by the definition of [, there is some S € T and some
E E (=8 A (z # y)) such that g(T', E, S) > 0, and for such a, the number of out-
going E-edges towards the elements of S is g(7', E, S). Hence, there exist some b
of S such that (a,b) is an F-edge, and we get 2, a,b = (=8 A (x # y)), which

contradicts to 2 = ¢.

« CON(M) holds: We will divide this part into two, and prove that
BiREGp, ., %y . (M7, M1,) holds for any i < j and REGp, 5, (M7,) holds

for any i.

— Forany i and j € {1,...,n} such that i < j, we can partition Ay, with

ATi,gl U...u ATi and ATj with ATJ- g1 U...u ATj7g7n . Let GTi,Tj denote the

sgm?

subgraph of 2 consisting of the vertices of Az, UA7, and the edges between A7,
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and Ar,. Forany F € £,g € Ganda € Ar, 4, degp(a) = g(T;, E, T;), and for
any ' € £,9' € Gandd' € Ar, o, degp(a) = ¢'(1}, E', T;) in Gg, 1, Thus,
G, isa (Dr, 1y, gTﬁTj )-biregular graph with witness Az, ,U...UAp, o

and A7, g, U...UAq . ,and BIREGp, . %, ., (Mr, Mrz,) holds.

— Foranyi € {1,...,n}, A, ,, U... U Ar, ;. forms a partition of Az,. Let
G, denote the subgraph of 2 consisting of the vertices of Ay, and the di-
rected edges between any two vertices in Ap,. Note that in G, for any
a € Az, j € {l,...,(} and g € G, we have out-deg, (a) = ¢(T}, E;, T;)
and in-deg, (a) = out-deggj(a) = g(T;, E,Ti). Hence, Gr, isa (Dr,, 5:@)-
regular digraph with witness Ar, g, U...UAr, 4., and thus REGp,. 5,. (M)
holds.

Therefore, PREB,, holds in \V if | A]| is finite, and PREB, holds in NV, in either case. [J
By the above two claims, corollary follows. [

From corollary 5.2.1,, we conclude the satisfiability is preserved in the conversion from ¢

to PREBg, and thus theorem is proved.

5.3 Complexity analysis

We are going to analyze the time complexity of obtaining PREB,, from a RCS sentence ¢.
Let r be the number of distinct predicates and k be the largest quantifier in ¢. We denote
the length of a formula ) by |¢)|. Define the length of a formula to be the summation of
the length of all the symbols in it with repeats, and the length of a formula v is defined

inductively as follows:

* |z = z| = O(1) where z ranges over {z, y}.

* |R(z,2)| = O(logr) where z ranges over {z,y} and R is an arbitrary binary pred-

icate.
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* |P(z,2)| = O(logr) where z ranges over {z,y} and P is an arbitrary unary predi-

cate.

|=1| = 4| + O(1) for any formula 1.

1 Ay = [11] + 12| + O(1) for any formula 1)y, 1.

J2¢29p = || + O(log k) for any formula ).

We can easily see |T| = 2°0) and |£] = 2°0). Also, |G| = O(kITIXIEIXITT) and we get

|G| = 20(rElel) i e

¢ = 3IX(1g1)---3X(7,9,) FORALL; (X) A FORALL,(X) A CON(X),

there are | 7] x |G| = 22°""™"" variables in ¢. For the subformula FORALL,y(X), it
takes 2°(") time to find the maximal subset S of € such that S |= (=8 A = # y), and the
set H defined as in formula 5.4 can be obtained by going through the set G x T x S x T
greedily in 227" time, and thus FORALL,(X) is found. Similarly, FORALL;(X)

. O(rloglog k)
can be constructed in 227 ™

time by computing greedily.

To analyze the part CON(X), we start with analyzing its subformulas. In particular,
we analyze BIREG, and REG has the same complexity by symmetry. Observe that equa-
tion 5.2, for each BIREG Dryry 1y (X7, X 1), the subscripted matrices are of size
2|€| x |G|, and each entry is an integer between 1 to k. First, for the base case defined
as in equation 4.2 where the subscripted matrices of BIREG are of size 1 x |G|, we can
casily see the length of first two lines is O(|G| x log(|T|G|)) = 22°""*"**’ and the largest

O(rloglog k)
22

constant in them is no greater than 2k%|G|? + 3 = . Now, for the third line, since

the length of X1, X1, are |G| = 22900 “and each element of any (M, N) € H, s has
value between 0 and 2 - MC(¢) - MC(d) + 3, which is no greater than 2k2 + 3, the length of

220(r log log k) - 2220(r log log k)

the H, s as defined in equation @.1|is (2 +3) . Therefore, for the

220(r log log k) . .
. Now we consider the in-

base case, the length of the formula is bounded by 2
ductive construction of BIREG for matrices with 2| | rows. Observe that, by equation 4.3,
in each induction step, the total length is the summation of H(¢,py and the multiplication

of |€| and the length of the previous step. Like the base case, we can conclude the largest
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constant is also no greater than 2 x 2|&| x k2(|G| x 2|€|)2+3x 2|€| = 22°7™ ¥ the length

22O(rloglog k)

of He p isalso 2 , and thence the total length of BIREGp,. . 5. . (X7, XTj)

O(r loglog k) 22O(rlog log k) 220(7‘10g log k)
22 X 2 =2

is bounded by

220(rlog log k)

Therefore, the length of PREBy is bounded by 29 x (20()2 x 2 Fi

20(rloglog k) 20(l9l)

22 , and thus bounded by 22 . Moreover, the largest constant in PREB,; is
bounded by 22900 " yith nondeterminism, however, for each H¢ p, we can simply guess
the correct (M, N) € Hep and guess the order of rows in the induction step of equa-
tion .3, and therefore the length of PREB, should be bounded by 227"

Observe that FORALL; (X) A FORALLy(X) A CON(X) is quantifier free and has
length less than |PREB|. Therefore, by applying theorem B.3.3. our algorithm runs

in nondeterministic double exponential time, which is stated formally in the following

theorem.

Theorem 5.3.1 There is a constant ¢ and a nondeterministic algorithm A such that on

input RCS sentence ¢, A decide whether ¢ is (finitely) satisfiable in time O(22€|qSI ).
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Chapter 6

Concluding remarks

In this thesis, we present new decision procedures for the satisfiability and finite satis-
fiability problems for RCS formulas. The decision procedures, which are based on the
technique by Kopczynski and Tan [9], are simple compared to existing procedures. It is
by converting an RCS formula into an existential Presburger formula. Furthermore, some
interesting remarks can be derived from our approach.

First, note that in PREB,, we can assume the part FORALL; (X) A FORALLy(X) A
CON(X) does not contain any disjunction by guessing via nondeterminism as in theo-
rem B.3.3. Thus, the length of the resulting formula is still 220V "and the largest constant
a is no greater than 927D by the analysis in section 5.3.

Let us denote by ¢(X) the part FORALL;(X) A FORALLy(X) A CON(X) (which
is without any disjunction). By corollary B.3.2, if there exists a solution X € NI71l9l
for (X)), there is also some solution Y in {0, 1,.... (|T||G] + |¢|)(|¢]| - @)@leF DTG
such that o(¥") holds. Notice that (|T1|G| + ¢|)(|g| - a)@elD = (220090221 _
2220%) and |T||G| = 2270 " Therefore, if ¢ has a finite model, i.e., there is a solution
for FORALL;(X) A FORALLy(X) A CON(X) in NI71l9 then there is also a solution
Y such that .Y = 922717 o gaoteh _ 9227070 , which implies there is a model of size

1)
22* for ¢. This observation is stated formally as the following corollary.

Corollary 6.0.1 There is a constant c such that for every RCS sentence ¢, ¢ has a finite

)

20\4)\

model if and only if ¢ has a model of size O(2*
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Second, note that we can also derive the decidability of checking whether the spectrum

of an RCS formula is infinite via the following formula:

p = Vy3X (FORALL;(X) AFORALLy(X) A CON(X)A > X >y),
Since satisfiability of Presburger formula is decidable [12, [16], we obtain the following
corollary.

Corollary 6.0.2 Checking whether an RCS sentence has a infinite spectrum is decidable.

For future work, we plan to extend our result to the whole C? class and provide an

alternative technique to reason about C? formula, thus many other ontology languages.
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