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摘要

含計數量詞的二階邏輯 (C2)有著許多應用，特別像是本體知識語

言的應用，例如用於語意網的 OWL。一個著名的結果是：C2 的可滿

足性問題可以在非確定性指數時間 (NEXPTIME)內決定，而且這樣的

複雜度是最佳的。然而，目前已知的解決技巧較為複雜，通常必須去

猜測一個滿足目標式子結構或表示方法，而導致難以實作。

在這篇論文中，我們關注於具有反向關係封閉性並且是 Scott’s正

規型態的 C2 句子 (RCS)。直觀上，如果一個句子 φ是 Scott’s正規型

態而且其使用的二元關係具有反向封閉性，φ就屬於 RCS。我們基

於 Kopczyński和 Tan的技巧 [9]，針對 RCS 的可滿足性問題及有限

可滿足性問題提出一個新的決策程序，利用將 RCS 的式子轉換成

Presburger的存在量化式來解決問題。雖然此方法的時間複雜度比最佳

時間高：2-NEXPTIME，但其有幾個優勢：

1. 刻劃出 RCS 式子模型的特性，亦即任一 RCS 式子的模型皆是由

正則圖及二分正則圖組成。

2. 顯示出一RCS 式子的頻譜是否為有限是可決定的。

3. 此方法為解決可滿足性問題及有限可滿足性問題的簡單決策程

序。

當原式為 Scott’s正規型態並且詞彙表固定時，我們演算法的時間複雜

度為 NEXPTIME。我們期待我們的結果能提供討論 C2 式子的另類技

巧，並擴展至其他諸多的本體知識語言。

關鍵字： 含計數量詞的二階邏輯；可滿足性；Presburger算數；整數

規劃；正則圖
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Abstract

Two variable logic with counting quantifiers (C2) has found many appli-

cations, especially in ontology language such as OWL used in semantic web.

It is well known that the satisfiability problem for C2 is decidable in nonde-

terministic exponential time (NEXPTIME), and the complexity is optimal.

However, the known techniques are quite complicated and they typically in-

volve guessing a structure or a representation that satisfies the input formula,

which can be hard to implement.

In this thesis, we consider a subclass of C2 formulas, which we call Re-

versal closed C2 formulas in Scott’s normal form (RCS). Intuitively, a C2

formula φ is in RCS , if it is in Scott’s normal form and the binary relations

used in φ are closed under reversal. We present a decision procedure for the

satisfiability and finite satisfiability problems for RCS formulas, which is

based on the technique by Kopczyński and Tan [9]. Our approach is by con-

verting an RCS formula into an existential Presburger formula. Though the

complexity is higher: 2-NEXPTIME (double exponential time), it has a few

advantages:

1. It provides a characterization of models of RCS formulas, i.e., every

model of anRCS formula is a collection of regular digraphs and bireg-

ular graphs.

2. It implies the decidability of checking whether the spectrum of anRCS

formula is infinite.

3. It gives simple decision procedures for satisfiability and finite satisfia-

xi
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bility problems.

When the input is in Scott’s normal form and the vocabulary is fixed, our

algorithm yields time complexity NEXPTIME. We hope that our result can

be used to provide an alternative technique to reason about C2 formula, thus

many other ontology languages.

Keywords: two variable logic with counting quantifiers; satisfiability; Pres-

burger arithmetics; integer programming; regular graphs
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Chapter 1

Introduction

Many areas in computer science and information technology utilize first-order logic (FO)

and its variances. For example, the currently booming artificial intelligence research uses

FO as the basis of knowledge and data representation. Typically, FO sentences are used

to describe the knowledge, so it is important to check the consistency of a sentence. By

Gödel’s completeness theorem, consistency and satisfiability are equivalent [4].

Formally, the satisfiability problem (SAT) for a class C ⊆ FO is defined as follows.

Given an input formula φ ∈ C, decide whether there is a model that satisfies φ. The finite

satisfiability problem (FIN-SAT) for C is to decide whether there is a finite model that

satisfies φ.

However, the generalFO is known to be undecidable [2, 1, 20, 18]. Hence, researchers

are looking for restricted but decidable classes of FO. In this paper, we discuss one such

class: the C2 logic, i.e., the FO formulas using only two variables but allowing counting

quantifiers.

1.1 Related works

From the classical work of Church [2, 1], Turing [20] and later, Trakhtenbrot [18], the

satisfiability problem of FO is known to be undecidable, and it is necessary to find com-

promises in order to achieve more practical results. Some FO classes of interest are de-

rived by restricting the number of variables. It was shown that the satisfiability problem

1
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of FO with only two variables (FO2) is decidable [11], whereas the three variable class is

undecidable [8].

Another widely discussed class is C2, which is a more generalized class of FO2 by

allowing counting quantifiers. The decidability of C2 was first proved by Grädel, Otto

and Rosen [7]. However, the proof is done by showing both the satisfiability problem

and its complement are recursively enumerable. Thus, its complexity cannot be deduced.

The time complexity for both SAT and FIN-SAT problem is proved to be double ex-

ponential time by Pacholski, Szwast and Tendera [13], and later to be NEXPTIME by

Pratt-Hartmann [15]. An immediate implication from this is that C2 is NEXPTIME-

complete, since FO2 is already known to be NEXPTIME-hard [10, 3]. As a side note,

the algorithms proposed in both [13, 15] involve many non-trivial guessing that would be

difficult to implement.

It is worth to note that FO2 has finite model property. More precisely, if an FO2

formula φ is satisfiable, then it is satisfied by a model with cardinalityO(2|φ|) [5]. On the

other hand, C2 lacks such property. There are some C2 sentences that are only satisfiable

by infinite structures. This is one such example:

ψ := ∀x∃≥2yE(x, y) ∧ ∀x¬∃≥2yE(y, x)

Intuitively, ψ states that each vertex in the model has at least two out-going edges but

has only one or none in-coming edge. Therefore, the satisfiability problem and finite

satisfiability problem for C2 are not equivalent, unlike for FO2.

1.2 Summary of contributions

In this paper, we take another approach to the satisfiability and finite satisfiability problem

for C2.

It has been proved that for a sentence ϕ of C2, there is a corresponding Presburger

formula PREBϕ such that there exists a complete structure A with A |= ϕ if and only

if PREBϕ(|A|) holds as long as |A| is finite [9]. However, the conversion to Presburger

2
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formula make use of the conversion to QMLC and yields a sextuple exponential time

complexity.

Here, we will utilize the Scott’s normal form to simplify the conversion from a C2

sentence to an existential Presburger formula to achieve a less complicated algorithm in

terms of both the procedure and the time complexity under the assumption that the binary

relations used in Scott’s normal form are closed under reversal. Moreover, we prove

such conversion retains its properties even when we allow the structure to be infinite by

allowing the Presburger formula to admit infinity∞ in the solution.

On inputRCS formula ϕ, our algorithm does the following.

1. Convert it into an instance of Linear Integer Programming (LIP).

2. Solve the LIP problem.

Step 1 is of non-deterministic double exponential time, while step 2 is of non-deterministic

polynomial time (in the size of the input). So, overall, our algorithm for both SAT and

FIN-SAT runs in 2-NEXPTIME.

1.3 Outline

We will go through some definitions related to C2 and RCS in chapter 2, and the def-

initions and theorems regarding Presburger arithmetics and its extension to infinity are

discussed in chapter 3. In chapter 4, we introduce some important tools for the conversion

betweenRCS formulas and Presburger formulas. These tools primarily consist of regular

and biregular graphs and their corresponding Presburger formula expressions. Our main

result is derived in chapter 5, where we utilize the tools in chapter 4 to convert an RCS

formula to a corresponding existential Presburger formula that preserves its satisfiability,

and then solve the satisfiability problem for the Presburger formula with theorems derived

from LIP in chapter 3. We conclude chapter 5 by analyzing the complexity for the algo-

rithm. In chapter 6, we show some other results that can be inferred from our algorithm.

3
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Chapter 2

Two variable logic with counting

In this chapter, we introduce the formal definition of two-variable logic with counting,

which we denote by C2. We start by reviewing the syntax and semantics of first order

logic in section 2.1. Then, in section 2.2 we formally define the class C2.

2.1 First order logic (FO)

We fix a setR of relation symbols. EachR ∈ R is associatedwith a positive integer, which

is called its arity and denoted by ar(R). We also fix a set VAR of first order variables.

For simplicity, letR = {R1, . . . , Rk}. 1

The syntax of first order logic The syntax of first order logic sentence is defined in-

ductively as follows:

• For any x, y ∈ VAR, x = y is an FO formula.

• IfR ∈ R is of arity n and x1, . . . , xn ∈ VAR, thenR(x1, . . . , xn) is an FO formula.

• If α and β are FO formulas, then so are ¬α, α ∧ β and α ∨ β.

• If α is an FO formula and x ∈ VAR, then ∃xα and ∀xα are FO formulas as well.

A formula is existential if it is of the form ∃x1 . . . ∃xmψ(x1, . . . , xm)whereψ(x1, . . . , xm)

is quantifier-free, and a formula is universal if it is of the form ∀x1 . . . ∀xmψ(x1, . . . , xm).
1 For the sake of simplicity, we do not consider function and constant symbols for the vocabulary.

5
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A variable x is quantified if ∀ or ∃ preceded x in the formula. Free variables are the

variables that are not quantified. For instance, in the formula ∃x∀yR(x, y, z), x, y are

quantified and z is a free variable. Formulas without free variables are called sentences.

The semantics of first order logic A structure is A = (A,RA
1 , . . . , R

A
k ), where

• A is a set of elements, called the domain , or the universe of A.

• each RA
i is a relation over A of arity ar(Ri), i.e., RA

i ⊆ Aar(Ri).

Let A = (A,RA
1 , . . . , R

A
k ) be a structure. A valuation in A is a mapping from VAR to

A. An model is a pair (A, val) where A is a structure and val is a valuation.

Given an FO formula φ, and a model (A, val), we define (A, val) to be a model of φ,

denoted by (A, val) |= φ, inductively as follows.

• (A, val) |= x = y, if and only if val(x) = val(y).

• (A, val) |= R(x1, . . . , xn), if and only if (val(x1), . . . , val(xn)) ∈ RA.

• (A, val) |= ¬α, if and only if it is not true that (A, val) |= α.

• (A, val) |= α ∧ β, if and only if (A, val) |= α and (A, val) |= β.

• (A, val) |= α ∨ β, if and only if (A, val) |= α or (A, val) |= β.

• (A, val) |= ∃x α, if and only if there is some a ∈ A such that (A, val′) |= α where

val′ is the valuation defined as follows:

val′(z) =

 val(z), if z ̸= x

a, if z = x

• (A, val) |= ∀x α, if and only if for every a ∈ A, (A, val′) |= α where val′ is the

valuation defined as follows:

val′(z) =

 val(z), if z ̸= x

a, if z = x

6
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When φ is a sentence, i.e., there is no free variable in φ, we can omit the valuation and

write A |= φ.

An FO formula φ is said to be satisfiable if φ has a model, and φ is finitely satisfiable

if φ has a finite model. We define the following two problems.

SAT(FO)

Input: An FO formula φ

Task: Output Tඋඎൾ, if φ is satisfiable. Otherwise, output Fൺඅඌൾ.

FIN-SAT(FO)

Input: An FO formula φ

Task: Output Tඋඎൾ, if φ is finitely satisfiable. Otherwise, output Fൺඅඌൾ.

It is well known that in general satisfiability problem of FO is undecidable.

Theorem 2.1.1 [2, 1, 20, 18] SAT(FO) is undecidable.

Theorem 2.1.2 [18] FIN-SAT(FO) is undecidable.

Therefore, we are not considering the general FO in this thesis.

2.2 Two variable logic with counting quantifiers (C2)

The syntax of C2 is defined inductively as follows:

ϕ ::= z = z | R(z, z) | ¬ϕ | ϕ ∧ ϕ | ∃≥kz ϕ

where z ranges over x, y, R ∈ R, and k is a nonnegative integer. Here, ∃≥kzϕ(z) seman-

tically means there exists at least k instances of z’s such that ϕ(z) holds. Observe that ∀

is well-defined, since ∀xφ is equivalent to ¬∃x¬φ for any formula φ. We note that x and

y can be reused, for example, ∀x(∃y(∃xϕ1(x, y))) ∧ ∀y(∀xϕ2(x, y)) where ϕ1(x, y) and

ϕ2(x, y) are quantifier-free formulas is an instance of C2 formula.

Similar to FO we define SAT(C2) and FIN-SAT(C2) below.

7
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SAT(C2)

Input: A C2 formula φ

Task: Output Tඋඎൾ, if φ is satisfiable. Otherwise, output Fൺඅඌൾ.

FIN-SAT(C2)

Input: A C2 formula φ

Task: Output Tඋඎൾ, if φ is finitely satisfiable. Otherwise, output Fൺඅඌൾ.

Theorem 2.2.1 [7, 13, 15, 3, 10] SAT(C2) is NEXPTIME-complete.

Theorem 2.2.2 [7, 15] FIN-SAT(C2) is NEXPTIME-complete.

2.2.1 The classRCS

The following is a standard normalization lemma, which is often used in the decision

procedures for FO2 and C2 formulas [17, 6, 15].

Lemma 2.2.3 (Scott’s normal form) For every C2 sentence ϕ, there is a formula

ϕ∗ :=
(
∀x α

)
∧
(
∀x∀y (β ∨ x = y)

)
∧

∧
1≤h≤p

∀x∃=Chy (fh(x, y) ∧ x ̸= y) (2.1)

that can be constructed in polynomial time in the length of ϕ, and satisfies the following

conditions:

(C1) α is quantifier-free and equality-free.

(C2) β is quantifier-free and equality-free.

(C3) p is a positive integer.

(C4) For any h ∈ {1, . . . , p}, fh is a binary predicate and Ch is a positive integer.

(C5) For any positive integer µ ≥ K := max1≤h≤pCh,

ϕ has a model of size µ if and only if ϕ∗ has a model of size µ.

A C2 sentence of the form 2.1 is called Scott’s normal form. In this thesis, we assume

the set of binary relations used is closed under reversal. Formally, it is stated as follows.

8



doi:10.6342/NTU201802560

Definition 2.2.4 A C2 formula φ is an RCS formula, if it is in Scott’s normal form as

in (2.1) and for every binary relation fh appearing in
∧

1≤h≤p ∀x∃=Chy(fh(x, y)∧x ̸= y),

there is some h′ such that fh is the reversal of fh′ .

As mentioned before, the proofs in [7, 13, 15] are rather complicated and involve

a lot of guessing. In this thesis, we will present decision procedures for SAT(C2) and

FIN-SAT(C2) problems, when the input formulas are restricted toRCS formulas with an

entirely different technique. As mentioned earlier, our approach yields a few advantages:

1. It provides a characterization of models of RCS formulas, i.e., every model of an

RCS formula is a collection of regular digraphs and biregular graphs.

2. It implies the decidability of checking whether the spectrum of anRCS formula is

infinite.

3. It yields a simple decision procedures for satisfiability and finite satisfiability prob-

lems.

Remark 2.2.5 It is worth stating that the satisfiability and finite satisfiability problems

for three-variable logic are already undecidable. [8]

9
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Chapter 3

Presburger arithmetics

In this chapter, we introduce the formal definition of Presburger arithmetic and its exten-

sion with infinity. We will also discuss the satisfiability problem in both cases.

3.1 Standard Presburger arithmetic

We define the following structureN := ⟨N,+,≤, 0⟩, where +,≤, 0 are interpreted in the

standard way. A formula on Presburger arithmetic is an FO formula over the vocabulary

{+,≤, 0}.

The satisfiability problem for Presburger arithmetic is defined as follows.

SAT(Presburger)

Input: A Presburger formula φ

Task: Output Tඋඎൾ, if N |= φ. Otherwise, output Fൺඅඌൾ.

It is known that SAT(Presburger) is decidable[16, 12], and the algorithm given by Pres-

burger has nonelementary time complexity. The following theorem states that, in fact, the

problem SAT(Presburger) is elementary.

Theorem 3.1.1 [12] SAT(Presburger) with input length n can be decided in O(222
cn

)

for some constant c > 1.

However, the result above is not efficient enough for our need. So, we turn into a subclass

of Presburger formulas.

11
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Theorem 3.1.2 When the input Presburger formula φ is restricted to existential formula,

then SAT(Presburger) is in NP.

Theorem 3.1.2 follows from Papadimitriou’s result for LIP [14], and the detailed discus-

sion can be found in section 3.3.

3.2 Presburger arithmetic with infinity

Presburger arithmetic can in fact be further extended to include infinity in its domain. Let

N∞ := N ∪ {∞}. We denote the following structure N∞ := ⟨N∞,+,≤, 0⟩.

• The constant 0 is interpreted as the standard zero.

• The operator + on N is interpreted in the standard way, and when∞ is involved, it

is defined as follows.

For every a ∈ N, a+∞ =∞+ a =∞+∞ =∞

• The relation ≤ on N is interpreted in the standard way, and when∞ is involved, it

is defined as follows.

For every a ∈ N, a ≤ ∞ and∞ ≤∞

Notice that the definition above is consistent with our intuition on infinity. We now define

the following problem.

SAT(Presburger-inf)

Input: A Presburger formula φ

Task: Output Tඋඎൾ, if N∞ |= φ. Otherwise, output Fൺඅඌൾ.

12
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3.3 The satisfiability of Presburger formula

In this section, we will only consider the existential Presburger sentences, i.e., the Pres-

burger sentences of the form:

ϕ = ∃X1∃X2 . . . ∃Xn φ(X1, X2, . . . , Xn)

where φ is quantifier-free. We will show that deciding whether N |= ϕ or N∞ |= ϕ can

be solved using the technique of linear integer programming (LIP).

We first recall the following theorem proved by Christos H. Papadimitriou [14].

Theorem 3.3.1 [14] Let A be anm× n matrix and b anm-vector such that the absolute

value of every entry of A or b is no larger than a. Then if there exists a solution x ∈ Nn

for Ax = b, there is some y ∈ {0, 1, . . . n(ma)2m+1}n such that Ay = b.

From theorem 3.3.1, we can obtain the following corollary.

Corollary 3.3.2 LetA be anm×nmatrix and b anm-vector such that the absolute value

of any entry ofA or b is no larger than a. Then if there exists a solution x ∈ Nn forAx ≤ b,

there is some y ∈ {0, 1, . . . (n+m)(ma)2m+1}n such that Ay ≤ b.

Proof. Let Im denoted them×m identity matrix, in other words,

Im :=



1 0 . . . 0

0 1 0

... . . . ...

0 0 . . . 1


It follows immediately by letting

A′ :=

(
A Im

)

and noting that A′x′ = b has a solution if and only if Ax ≤ b has the solution x where

x consists of the first n entries of x′. By theorem 3.3.1, x′ exists if and only if there is

13
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y′ ∈ {0, 1, . . . (n +m)(ma)2m+1}n+m such that A′y′ = b. Finally, we can conclude that

if Ax ≤ b has a solution, there exists y ∈ {0, 1, . . . (n+m)(ma)2m+1}n where y consists

of the first n entries of y′ and Ay ≤ b. �

Now we can prove the following theorem.

Theorem 3.3.3 Both SAT(Presburger) and SAT(Presburger-inf) are in NP when the in-

put formula φ is restricted to existential formulas.

Proof. We will describe the polynomial time nondeterministic algorithm here.

Via nondeterminism, for each disjunction A ∨B in φ(X1, . . . , Xn), we can eliminate

either A or B by guessing correctly, since φ(X1, . . . , Xn) is of quantifier free. Therefore,

we can assume φ(X1, . . . , Xn) is of the form ϕ1(X1, . . . , Xn) ∧ . . . ∧ ϕk(X1, . . . , Xn)

where each ϕℓ(X1, . . . , Xn) is a linear inequality, which can be converted into an LIP

instance Ax ≤ b.

For SAT(Presburger), by corollary 3.3.2 and nondeterminism, we can guess the value

of eachXi for i ∈ {1, . . . , n} from {0, 1, . . . (n+k)(na)2n+1}where a is the largest abso-

lute values of the coefficients in all linear equations ϕ1(X1, . . . , Xn), . . . , ϕk(X1, . . . , Xn).

Thenwe checkwhether the guessed values satisfy allϕ1(X1, . . . , Xn), . . . , ϕk(X1, . . . , Xn),

and conclude the Presburger formula is satisfiable if so, not satisfiable otherwise.

For SAT(Presburger-inf), it works similarly. �

14
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Chapter 4

Regular graphs

In this chapter, we will introduce some tools that we are going to use later on. In particular,

we introduce two classes of regular graphs: bipartite regular graphs (biregular graphs)

and regular directed graphs (regular digraphs). Intuitively, biregular graphs are bipartite

graphs where the degree of each vertex is already fixed, and regular digraphs are directed

graphs where the in-degree and out-degree of each vertex are already fixed.

Wewill show how to construct the existential Presburger formulas that characterize the

existence of biregular graphs and regular digraphs. We present the formal definitions in

section 4.1. The construction of the Presburger formulas for biregular graphs can be found

in section 4.2. A similar construction for regular digraphs can be found in section 4.3.

4.1 Definitions

Section 4.1.1 contains the definition of biregular graphs and section 4.1.2 contains the

definition of regular digraphs.

4.1.1 Biregular graphs

A undirected graph G is an ℓ-type bipartite graph if G = (U, V,E1, E2, . . . , Eℓ) is a

bipartite graph where U and V are the partitions of the vertices and E1, E2, . . . , Eℓ are

the pairwise disjoint subset of U × V .
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For any vertex u, the degree of u, denoted by deg(u), is the number of edges adjacent

to u inG. The degree of u in the edge setEi is denoted by degEi
(u) for any i ∈ {1, . . . , ℓ}.

Observe that for vertex u in G, deg(u) =
∑

i=1,...,ℓ degEi
(u).

In the following, for any set S and d, e ∈ N, Sd×e is defined to be the set of all d× e

matrices whose entries are in S. For C ∈ Nℓ×m and D ∈ Nℓ×n, an ℓ-type bipartite graph

G = (U, V,E1, E2, . . . , Eℓ) is (C,D)-biregular if there exists some partitionsU1∪. . .∪Um

of U and V1 ∪ . . . ∪ Vn of V such that:

• For every i = 1, . . . ℓ and j = 1, . . . ,m, and for any vertex u ∈ Uj , degEi
(u) = Ci,j .

• For every i = 1, . . . , ℓ and j = 1, . . . , n, and for any vertex v ∈ Vj , degEi
(v) = Di,j .

We say a (C,D)-biregular graph G is of size (M̄, N̄) if M̄ = (|U1|, . . . , |Um|) and

N̄ = (|V1|, . . . , |Vn|), and we call U1 ∪ . . . ∪ Um and V1 ∪ . . . ∪ Vn a witness of G.

Note that we do not restrict the graph to be finite. In which case, some entry in M̄ or

N̄ is infinite.

4.1.2 Regular digraphs

An ℓ-type directed graph (digraph) G = (V,E1, E2, . . . , Eℓ) is defined similarly, where

E1, E2, . . . , Eℓ are pairwise disjoint directed edges. For convenience, we always assume

that the set E1 ∪ E2 ∪ . . . ∪ Eℓ is asymmetric, i.e., if (u, v) ∈ E1 ∪ E2 ∪ . . . ∪ Eℓ, then

(v, u) /∈ E1 ∪ E2 ∪ . . . ∪ Eℓ.

Similar to how we define the degree of a vertex in an undirected graph, we define

the out-going degree and incoming degree of a vertex in a directed graph. The for-

mal definition is as follows: For any vertex u, the out-going degree of u, denoted by

out-deg(u), is the number of out-going edges from u, and the incoming degree of u, de-

noted by in-deg(u), is the number of incoming edges to u. The out-going degree of u in

the edge set Ei is denoted by out-degEi
(u), and the incoming degree of u in the edge set

Ei is denoted by in-degEi
(u) for any i ∈ {1, . . . , ℓ}. Observe that for any vertex u in G,

out-deg(u) =
∑

i=1,...,ℓ out-degEi
(u) and in-deg(u) =

∑
i=1,...,ℓ in-degEi

(u).
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For C,D ∈ Nℓ×n, an ℓ-type digraph G = (V,E1, E2, . . . , Eℓ) is a (C,D)-regular-

digraph if there exists a partition of V = V1 ∪ . . . ∪ Vn, such that for every i = 1, . . . , ℓ

and j = 1, . . . , n, and for any vertex v ∈ Vj , in-degEi
(v) = Ci,j and out-degEi

(v) = Di,j .

We say a (C,D)-regular digraph G is of size N̄ if N̄ = (|V1|, . . . , |Vn|), and we call

V1 ∪ . . . ∪ Vn a witness of G.

Observe that N̄ has infinite entry if and only if the number of vertices in G is infinite.

4.2 Presburger characterization of the existence of bireg-

ular graph

In this section, we will prove the following theorem.

Theorem 4.2.1 For every two matrices C ∈ Nℓ×m and D ∈ Nℓ×n, there is a (quantifier-

free) Presburger formulaBiREGC,D(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ = (Y1, . . . , Yn),

such that the followings hold: For any M̄ ∈ Nm
∞ and N̄ ∈ Nn

∞, there is an ℓ-type (C,D)-

biregular graph of size (M̄, N̄) if and only if BiREGC,D(M̄, N̄) holds.

As a matter of fact, in the finite case, i.e., when M̄ and N̄ are over N instead of N∞,

theorem 4.2.1 has already been proven by Kopczyński and Tan [9]. Our goal is to extend

it to infinite case. The proof is divided into parts. We discuss the case of one dimensional

matrices in subsection 4.2.1 and extend it to all matrices in 4.2.2.

From now on, for any matrix or vectorM , we denote the sum of all entries ofM by∑
M , and we denote the maximum among the sums of the columns of M by MC(M),

i.e., MC(M) := maxj{
∑

iMi,j}.

4.2.1 1-type biregular graphs

We will first prove the simpler case of theorem 4.2.1 where C and D both only have one

row. We will make use of the following notation: For any m,n, ℓ ∈ N and any two

17
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matrices C ∈ Nm×ℓ and D ∈ Nn×ℓ,

HC,D :=

 (M̄, N̄)

∑
M̄ +

∑
N̄ < 2ℓ ·MC(C) ·MC(D) + 3ℓ and

there exists a (C,D)-biregular graph of size (M̄, N̄)

 ,(4.1)

Below is the special case of theorem 4.2.1, where the matrices consist of a single row.

Lemma 4.2.2 For every two vectors c̄ ∈ N1×m and d̄ ∈ N1×n, there is a (quantifier-free)

Presburger formula BiREGc̄,d̄(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ = (Y1, . . . , Yn),

such that the followings hold: For any M̄ ∈ Nm
∞ and N̄ ∈ Nn

∞, there exists a (c̄, d̄)-

biregular graph of size (M̄, N̄) if and only if BiREGc̄,d̄(M̄, N̄) holds.

Proof. Let c̄ = (c1, . . . , cm), and d̄ = (d1, . . . , dn). Let I := {i | ci = 0} and J :=

{j | dj = 0}, i.e., the zero entries in c̄ and d̄. Let c̄′ and X̄ ′ be c̄ and X̄ without entries in

I , and d̄′ and Ȳ ′ be d̄ and Ȳ without entries in J . Observe that both c̄′ and d̄′ do not have

zero entry.

Now define BiREGc̄,d̄(X̄, Ȳ ) as follows.

BiREGc̄,d̄(X̄, Ȳ ) :=
( ∑

X̄
′
+
∑

Ȳ
′ ≥ 2 ·MC(c̄′) ·MC(d̄

′
) + 3 ∧ (X̄

′ · c̄′ = Ȳ
′ · d̄′)

)
∨

( ∨
(M̄,N̄)∈Hc̄′,d̄′

X̄ = M̄ ∧ Ȳ = N̄
)

(4.2)

where

Hc̄′,d̄
′ =

 (M̄, N̄)

∑
M̄ +

∑
N̄ < 2 ·MC(c̄′) ·MC(d̄

′
) + 3 and

there exists a (c̄′, d̄′)-biregular graph of size (M̄, N̄)


by definition in 4.1.

The set Hc̄′,d̄
′ can be obtained by checking whether there exists a (c̄′, d̄

′
)-biregular

graph of size (M̄, N̄) for every (M̄, N̄) such that
∑
M̄+

∑
N̄ < 2 ·MC(c̄′) ·MC(d̄

′
)+3.

Note that BiREGc̄,d̄(X̄, Ȳ ) holds means the vertices corresponding to X̄ ′ and Ȳ ′ form

a (c̄′, d̄′) -biregular graph while the rest of the vertices can be arbitrary, since they do not

have adjacent edges.
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Claim 1 For any two vectors M̄ ∈ Nm
∞ and N̄ ∈ Nn

∞, there exists a (c̄, d̄)-biregular

graph of size (M̄, N̄) if and only if BiREGc̄,d̄(M̄, N̄) holds.

Proof of claim. By theorem 7.3 of Kopczyński and Tan [9], we know the claim is true

when M̄ ∈ Nm and N̄ ∈ Nn. Let M̄ ′ denote M̄ without entries in I and N̄ ′ denote N̄

without entries in J . We can observe that if both M̄ ′ and N̄ ′ only have finite entries, the

claim holds, since Xi for i ∈ I and Yj for j ∈ J can be arbitrary. So,without loss of

generality, we can consider the case where there is some infinite entry in M̄ ′.

To prove the “only if” direction, we assume there exists a (c̄, d̄)-biregular graph of size

(M̄, N̄). Observe that it is trivial that
∑
M̄
′
+

∑
N̄
′ ≥ 2 ·MC(c̄′) ·MC(d̄

′
) + 3 holds.

Finally, both M̄ ′ · c̄′ and N̄ ′ · d̄′ are the number of edges in the biregular graph, implying

M̄
′ · c̄′ = N̄

′ · d̄′ =∞. Hence, BiREGc̄,d̄(M̄, N̄) holds.

For the “if” direction, we first observe that (M̄ ′
, N̄
′
) /∈ Hc̄′,d̄

′ since M̄ ′ has infinite

entry. Therefore, in order for BiREGc̄,d̄(M̄, N̄) to hold, M̄ ′ · c̄′ = N̄
′ · d̄′ =∞must hold,

and we can conclude there is some infinite entry in N̄ ′ as well. Let U = U1 ∪ . . . ∪ Um

be a partition where |Ui| =Mi and let V = V1 ∪ . . . ∪ Vn be a partition where |Vj| = Nj .

Now we can construct a (c̄, d̄) biregular graph recursively by repeating the steps below.

• Assume the vertices in each Ui and Vj are ordered, and we iterate through the sets

U1, . . . , Um, V1, . . . , Vn.

• Suppose the set we are currently at is Ui. We find the first vertex u such that its

current degree is less than ci. Since N̄
′ has at least one infinite entry, say Nj =∞,

we can always find a vertex v in Vj with its number of edges less than dj during the

construction, and we connect u and v with an edge.

• Similarly, suppose the set we are currently at is Vj . We find the first vertex v such

that its current degree is less than dj . Since M̄
′ has at least one infinite entry, say

Mi =∞, we can always find a vertex u in Ui with its number of edges less than ci

during the construction, and we connect u and v with an edge.

With such construction, we will achieve a (c̄, d̄)-biregular graph in infinite steps.
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By symmetry, the claim also holds for the case where there is some infinite entry in

N̄
′. Thus the claim holds. �

The claim concludes the proof for lemma 4.2.2. �

4.2.2 Proof of theorem 4.2.1

By deleting any zero column c̄i (or d̄i) of C (orD, respectively) and adding the constraint

Xi ≥ 0 (or Yi ≥ 0) to the resulting Presburger formula, we can assume both C,D do not

contain any zero-column.

The formal construction of BiREGC,D(X̄, Ȳ ) is as follows. First, we define the char-

acteristic function χ : N∗ → {0, 1}∗ where N∗ :=
∪

k≥1N
k and {0, 1}∗ :=

∪
k≥1{0, 1}k.

χ(a1, . . . , ak) := (b1, . . . , bk), where bi = 0 if ai = 0 and bi = 1 otherwise.

Also, let c̄1, c̄2, . . . , c̄ℓ be the row vectors of C, and d̄1, d̄2, . . . , d̄ℓ be the row vectors

of D. That is,

C =



c̄1

c̄2
...

c̄ℓ


and D =



d̄1

d̄2
...

d̄ℓ


.

Now we can construct BiREGC,D(X̄, Ȳ ) inductively:

• When ℓ = 1,

BiREGC,D(X̄, Ȳ ) := BiREGc̄1,d̄1(X̄, Ȳ ).
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• When ℓ ≥ 2,

BiREGC,D(X̄, Ȳ ) :=
∨

(M̄,N̄)∈HC,D

X̄ = M̄ ∧ Ȳ = N̄ (4.3)

∨
∨

i=1,...,ℓ

(
X̄ · χ(c̄i) + Ȳ · χ(d̄i) ≥ 2 ·MC(C) ·MC(D) + 3

∧ BiREGC\c̄i,D\d̄i(X̄, Ȳ )

∧ BiREGc̄i,d̄i
(X̄, Ȳ )

)

where C \ c̄i denotes the matrix C without c̄i, and D \ d̄i denotes the matrix D without

d̄i. Observe thatHC,D is defined with equation 4.1 and can be greedily computed with the

same method as before.

Then we shall prove that there exists an ℓ-type (C,D)-biregular graph of size (M̄, N̄)

if and only if BiREGC,D(M̄, N̄) holds by induction. First, the case for ℓ = 1 is equivalent

to the statement in lemma 4.2.2. Now suppose the induction hypothesis holds whenC and

D have no more than ℓ− 1 rows. We will prove for the case ℓ.

• For the “if” direction, we assume BiREGC,D(M̄, N̄) holds. If the first part of for-

mula 4.3 holds, that is
∨

(M̄,N̄)∈HC,D
X̄ = M̄ ∧ Ȳ = N̄ holds, the biregular graph

exists trivially. Therefore, we only have to consider the case where

M̄ · χ(c̄i) + N̄ · χ(d̄i) ≥ 2 ·MC(C) ·MC(D) + 3

∧

BiREGC\c̄i,D\d̄i(M̄, N̄) ∧ BiREGc̄i,d̄i(M̄, N̄)

holds for some i ∈ {1, . . . , ℓ}.

We first consider the case where |Ei| ̸= ∞. By induction hypothesis, there exist a

(C\c̄i, D\d̄i)-biregular graphwith edge partitionE1∪. . .∪Ei−1∪Ei+1∪. . .∪Eℓ and

a (c̄i, d̄i)-biregular graph with edge partitionEi both of size (M̄, N̄). The vertices of

the two graphs can be merged one-to-one since they have the same size. However,

the edge set {E1, . . . , Eℓ}may not be pairwise disjoint, as there may be some some

edge inEi∩ (E1∪ . . .∪Ei−1∪Ei+1∪ . . .∪Eℓ), and suppose (u, v) is such an edge.
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Observe that there are at most 2 ·MC(C) ·MC(D) + 2 vertices that can be reached

within 2 edges in E1 ∪ . . . ∪ Eℓ from either u or v, including u and v themselves.

Since M̄ · χ(c̄i) + N̄ · χ(d̄i) ≥ 2 ·MC(C) ·MC(D) + 3, there exists some edge

(u′, v′) ∈ Ei such that (u, v′), (u′, v) /∈ E1 ∪ . . . ∪ Ei−1 ∪ Ei+1 ∪ . . . ∪ Eℓ. By

removing (u, v), (u′, v′) from Ei and adding (u, v′), (u′, v) to Ei, the resulting edge

set E ′i will still be an edge partition for a (c̄i, d̄i)-biregular graph. Moreover,

|Ei ∩ (E1 ∪ . . . ∪ Ei−1 ∪ Ei+1 ∪ . . . ∪ Eℓ)| > |E′i ∩ (E1 ∪ . . . ∪ Ei−1 ∪ Ei+1 ∪ . . . ∪ Eℓ)|

holds. Hence, by repeating the step of replacing the edges in Ei, we will eventually

get a setE ′′i such that |E ′′i ∩(E1∪ . . .∪Ei−1∪Ei+1∪ . . .∪Eℓ)| = 0when |Ei| ̸=∞.

This completes the construction of (C,D)-biregular graph for finite Ei.

Now, we assume |Ei| =∞. Observe that in this case, M̄ · χ(c̄i) + N̄ · χ(d̄i) =∞,

and hence M̄ · χ(c̄i) = N̄ · χ(d̄i) =∞.

By induction hypothesis, we can let G = (U, V,E1, . . . , Ei−1, Ei+1, . . . , Eℓ) be a

(C \ c̄i, D \ d̄i)-biregular graph, and let U = U1 ∪ . . .∪Um and V = V1 ∪ . . .∪ Vn

be a witness of G. We will construct the (C,D)-biregular graph recursively by

repeating the steps below.

– Assume the vertices in each Ui′ and Vj′ are ordered, and then we can iterate

through the sets U1, . . . , Um, V1, . . . , Vn.

– Suppose the set we are currently at is Ui′ . We find the first vertex u such that

its current degree in Ei is less than Ci,i′ . Since N̄ · χ(d̄i) =∞, N̄ has at least

one infinite entry, say Nj′ = ∞, such that Di,j′ > 0, so we can always find a

vertex v in Vj′ with its number of edges less thanDi,j′ during the construction,

and we add (u, v) into Ei.

– Similarly, suppose the set we are currently at is Vj′ . We find the first vertex

v such that its current degree in Ei is less than Di,j′ . Since M̄ · χ(c̄i) = ∞,

M̄ has at least one infinite entry, sayMi′ =∞, such that Ci,i′ > 0, so we can

always find a vertex u in Ui′ with its number of edges less than Ci,i′ during the
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construction, and we add (u, v) into Ei.

By repeating the steps above, we will obtain a (C,D)-biregular graph over infinite

steps.

• Finally, we prove the “ only if ” direction. Suppose there is a (C,D)-biregular graph

G = (U, V,E1, . . . , Eℓ) of size (M̄, N̄). If
∑
M̄+

∑
N̄ < 2ℓ·MC(C)·MC(D)+3ℓ,

then (M̄, N̄) ∈ HC,D and BiREGC,D(M̄, N̄) holds trivially.

Consider the case where
∑
M̄ +

∑
N̄ ≥ 2ℓ · MC(C) · MC(D) + 3ℓ. Since

C and D both do not have zero-column, we can find some i ∈ {1, . . . , ℓ} such

that M̄ · χ(c̄i) + N̄ · χ(d̄i) ≥ 2 · MC(C) · MC(D) + 3. Also, we notice that

G1 := (U, V,E1, . . . , Ei−1, Ei+1, . . . , Eℓ) is a (C \ c̄i, D \ d̄i)-biregular graph and

G2 := (U, V,Ei) is a (c̄i, d̄i)-biregular graph. Therefore, by induction hypothesis,

BiREGC\c̄i,D\d̄i(M̄, N̄) and BiREGc̄i,d̄i(M̄, N̄) both hold.

This completes our proof.

4.3 Presburger characterization of the existence of regu-

lar digraph

Using similar technique, regular digraphs can be characterized by Presburger formulas as

well as stated in the following theorem.

Theorem 4.3.1 For every two matrices C,D ∈ Nℓ×m, there is a (quantifier-free) Pres-

burger formula REGC,D(X̄), where X̄ = (X1, . . . , Xm), such that the following holds:

For any M̄ ∈ Nm, there exists a (C,D)-regular-digraph of size M̄ if and only ifREGC,D(M̄)

holds.

Before proving theorem 4.3.1, we first prove some auxiliary lemmas.

Lemma 4.3.2 Let c̄, d̄ ∈ N1×m be one-row vectors. For every M̄ ∈ Nm that satisfies the

inequality 2 ·
∑
M̄ ≥ 2 ·MC(c̄) ·MC(d̄) + 3, the following holds.
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There is a (c̄, d̄)-regular-digraph of size M̄ if and only of there exists a (c̄, d̄)-

biregular graph of size (M̄, M̄).

Proof. For the “only if” direction, we assume there exists a (c̄, d̄)-regular-digraph G =

(V,E) of size M̄ . Then we “split” each vertex in V as follows.

• Let V = {v1, v2, . . . , vn} (or V = {v1, v2, . . .} when V has infinite vertices).

• Let V ′ := {v′1, v′2, . . . , v′n} (or V ′ := {v′1, v′2, . . .} when V has infinite vertices) be a

set where there is an one-to-one correspondence between the elements in V ′ and V .

• E ′ := {(vj, v′k) | (vj, vk) ∈ E}.

The following figure describe the intuitive meaning. Each vertex vi is split into two:

one has all the out-going edges and the other has all the incoming edges.
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Q
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�
�
��3

vir��
�
��3

-
Q
Q
Q
QQs

Split into
====⇒

Q
Q

Q
QQs-

�
�

�
��3

v′ir vir��
�

��3

-
Q

Q
Q

QQs

The resulting graph is a biregular graph of size (M̄, M̄).

For the “if” direction, we assume there exists a (c̄, d̄)-biregular graph G = (U, V,E)

of size (M̄, M̄) with witness U = U1 ∪ . . . ∪ Um and V = V1 ∪ . . . ∪ Vm. Note that

|Ui| = |Vi| for all i. Suppose Ui = {uji | 0 ≤ i < |Ui|} and Vi = {vji | 0 ≤ i < |Vi|}. To

construct a regular digraph, we first merge the vertex set Ui and Vi for all i = 1, . . . ,m

into a new set V ′ = {v′ji | 0 ≤ i < |Vi|} by considering uji and v
j
i as the same vertex v′ji

for all 0 ≤ j < |Ui|. Then we construct the directed edge set E ′ in the new directed graph

by defining

E ′ := {(v′ji , v′
j′

i′ ) | 1 ≤ i ≤ m, 1 ≤ i′ ≤ m, 0 ≤ j < |Ui|, 0 ≤ j′ < |Ui| and (uji , v
j′

i′ ) ∈ E}.
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Wenote here the new graphG′ := (V ′, E ′)might not be a regular digraph since there could

be self-loop or inverse edges in G′. However, since 2 ·
∑
M̄ ≥ 2 ·MC(c̄) ·MC(d̄) + 3

holds, we can eliminate them with the technique as in lemma 4.2.2. Specifically, for any

self-loop (v, v) ∈ E, there exists an edge (u, u′) ∈ E that is not adjacent to v, and we can

replace the edges (v, v), (u, u′) with (u, v), (v, u′). Likewise, for any two inverse edges

(v, v′), (v′, v) ∈ E, there is an edge (u, u′) that is not adjacent to both v and v′, and we can

replace (v, v′) and (u, u′)with (v, u′) and (u, v′) to eliminate the inverse edges. Therefore,

we conclude that there is a (c̄, d̄)-biregular graph of size (M̄, M̄). �

We require another lemma as stated below.

Lemma 4.3.3 Let C,D ∈ Nℓ×m be matrices of same size. When M̄ ∈ Nm satisfies the

inequality M̄ · χ(c̄i) + M̄ · χ(d̄i) ≥ 2 ·MC(C) ·MC(D) + 3 for some i ∈ {1, . . . , ℓ}, the

following two statements are equivalent.

(1) There is a (C,D)-regular-digraph of size M̄ .

(2) There exist a (c̄i, d̄i)-regular digraph and a (C \ c̄i, D \ d̄i)-regular digraph both of

size M̄ .

Proof. The direction from the first to second follows immediately from the structure of

regular digraph.

To prove the direction from the second to first, we first construct a directed graph

G = (V,E1, . . . , Eℓ) such that

• G = (V,Ei) is a (c̄i, d̄i)-regular digraph of size M̄ , and
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• G = (V,E1, . . . , Ei−1, Ei+1, . . . Eℓ) is a (C \ c̄i, D \ d̄i)-regular digraph of size M̄ .

Although there might be parallel edges with this construction, they can be eliminated with

the same technique in theorem 4.2.1 since M̄ ·χ(c̄i)+M̄ ·χ(d̄i) ≥ 2 ·MC(C) ·MC(D)+3.

This completes our proof. �

Before proving theorem 4.3.1, we define the following set

H ′C,D :=

 (M̄, M̄)
2 ·

∑
M̄ < 2ℓ ·MC(C) ·MC(D) + 3ℓ and there

exists a (C,D)-regular digraph of size (M̄, M̄)

(4.4)
for any m,n, ℓ ∈ N and any two matrices C ∈ Nm×ℓ and D ∈ Nn×ℓ. Notice the dif-

ference between H ′C,D and HC,D in equation 4.1 is that H ′C,D is defined with respect to

biregular graphs whereas H ′C,D is defined with respect to regular digraphs. The proof of

theorem 4.3.1 follows.

Proof of theorem 4.3.1 The formula REGC,D(X̄) can be similarly defined as in equa-

tions 4.2 and 4.3, by replacing any HC′,D′ with H ′C′,D′ for any matrices C ′, D′ such that

HC′,D′ is in the BiREGC,D(X̄, X̄) formula. The correctness of the base case where C,D

are single-row matrices is ensured by lemma 4.3.2. The correctness of the induction step

is ensured by lemma 4.3.3. This completes our proof. �
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Chapter 5

Satisfiability ofRCS formulas via

Presburger arithmetics

For this chapter we will show that every RCS sentence can be converted effectively to a

Presburger formula that preserve satisfiability. The construction of such Presburger for-

mula can be found in section 5.1. The proof of correctness is in section 5.2, and the

complexity analysis is in section 5.3.

5.1 Constructing Presburger formula from an RCS sen-

tence

In this section and the next, we will prove the following theorem.

Theorem 5.1.1 For every RCS sentence ϕ, there is a Presburger formula PREBϕ such

that

• ϕ has a finite model if and only if PREBϕ is satisfiable in N

• ϕ has a model if and only if PREBϕ is satisfiable in N∞.

Recall from Definition 2.2.4 that a formula φ is an RCS formula, if it is in Scott’s
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normal form:

ϕ :=
(
∀x α

)
∧
(
∀x∀y (β ∨ x = y)

)
∧

∧
1≤h≤p

∀x∃=Chy (fh(x, y) ∧ x ̸= y),

where α and β are quantifier-free and equality-free, and for every binary relation fh, there

is some h′ such that fh is the reversal of fh′ .

The algorithm for SAT and FIN-SAT. Overall our algorithm for checking the satisfi-

ability and finite-satisfiability works as follows.

Algorithm 1 Algorithm for SAT and FIN-SAT
Input: AnRCS sentence ϕ

1: Convert ϕ into Presburger formula PREBϕ according to theorem 5.1.1.
2: If PREBϕ holds, then output Tඋඎൾ. Otherwise, output Fൺඅඌൾ.

We will show that Step 2 is in 2-NEXPTIME and yields an instance of LIP of double

exponential size. Since the satisfiability of LIP is in NP, overall, our algorithm runs in

2-NEXPTIME. The crucial part is of course the construction of the Presburger formula.

We will explain it in the following.

The construction of PREBϕ. Now given anRCS sentence ϕ as in 2.1 we will describe

the construction of the desired Presburger formula PREBϕ below.

We define a one-type to be a maximal consistent set of unary predicates in ϕ and their

negations, and a two-type to include (x ̸= y) and a maximal consistent set of binary

predicates in ϕ and their negations.

Let T = {T1, T2, . . . , Tn} be the set of all one-types and E = {E1, . . . , Eℓ,
←−
E 1, . . . ,

←−
E ℓ},

where
←−
E i(x, y) = Ei(y, x) for all i = 1, . . . , ℓ, be the set of the two-types of ϕ such that

for every E ∈ E , E |= (fh ∧ (x ̸= y)) for some h ∈ {1, . . . , p}. Notice E is well-defined

since the set of binary predicates is closed under reversal. Observe that for an arbitrary

structure A, the sets A1, . . . , An where Ai := {a ∈ A s.t. A, a |= Ti} form a pairwise-

disjoint partition of A. For convenience, we sometimes refer to Ai as Ti when it won’t

cause confusion. (eg. writing an element of Ai as an element of Ti). Also for simplicity,

we sometimes use S to represent
∧

s∈S s for some S ∈ T ∪ E .
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Observe that for any quantifier-free and equality-free subformula f of ϕ, f ∧ (x ̸= y)

can be rewritten as
∨

E∈Ê E where Ê ( E . Also observe that E is a pairwise disjoint

partition of a subset of {(x, y) ∈ A× A | x ̸= y}.

A function g : T × E × T → {0, 1, . . . , C} is said to be consistent if

• for any fixed T ∈ T and h ∈ {1, . . . , p},

∑
E∈E s.t. E|=(fh∧(x̸=y))

∑
T ′∈T

g(T,E, T ′) = Ch.

Let G = {g1, g2, . . . , gm} be the set enumerating all consistent functions.

Given a structure A, an element a ∈ A is called a (T, g)-element if it is of type T

and the number of its out-going E-edges towards the elements of any type T ′ is exactly

g(T,E, T ′).

Our desired formula PREBϕ will be defined as follows:

PREBϕ := ∃X(T1,g1) . . . ∃X(Tn,gm) FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄) (5.1)

where X̄ := (X(T1,g1), X(T1,g2), . . . , X(Tn,gm)). Intuitively, X(Ti,gj) represent the number

of (Ti, gj)-elements.

Now, we define FORALL1, FORALL2 and CON below:

• The formula CON(X̄): We first define matrices DS→T ,
←−
DS→T ∈ Nℓ×m as follows

for any S and T ∈ T .

DS→T :=



g1(S,E1, T ) g2(S,E1, T ) · · · gm(S,E1, T )

g1(S,E2, T ) g2(S,E2, T ) · · · gm(S,E2, T )

... ... . . . ...

g1(S,Eℓ, T ) g2(S,Eℓ, T ) · · · gm(S,Eℓ, T )

g1(S,
←−
E 1, T ) g2(S,

←−
E 1, T ) · · · gm(S,

←−
E 1, T )

g1(S,
←−
E 2, T ) g2(S,

←−
E 2, T ) · · · gm(S,

←−
E 2, T )

... ... . . . ...

g1(S,
←−
E ℓ, T ) g2(S,

←−
E ℓ, T ) · · · gm(S,

←−
E ℓ, T )


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and

←−
DS→T :=



g1(T,
←−
E 1, S) g2(T,

←−
E 1, S) · · · gm(T,

←−
E 1, S)

g1(T,
←−
E 2, S) g2(T,

←−
E 2, S) · · · gm(T,

←−
E 2, S)

... ... . . . ...

g1(T,
←−
E ℓ, S) g2(T,

←−
E ℓ, S) · · · gm(T,

←−
E ℓ, S)

g1(T,E1, S) g2(T,E1, S) · · · gm(T,E1, S)

g1(T,E2, S) g2(T,E2, S) · · · gm(T,E2, S)

... ... . . . ...

g1(T,Eℓ, S) g2(T,Eℓ, S) · · · gm(T,Eℓ, S)



Then for any T ∈ T , DT ,
←−
DT ∈ Nℓ×m is defined as follows:

DT :=



g1(T,E1, T ) g2(T,E1, T ) · · · gm(T,E1, T )

g1(T,E2, T ) g2(T,E2, T ) · · · gm(T,E2, T )

... ... . . . ...

g1(T,Eℓ, T ) g2(T,Eℓ, T ) · · · gm(T,Eℓ, T )


and

←−
DT :=



g1(T,
←−
E 1, T ) g2(T,

←−
E 1, T ) · · · gm(T,

←−
E 1, T )

g1(T,
←−
E 2, T ) g2(T,

←−
E 2, T ) · · · gm(T,

←−
E 2, T )

... ... . . . ...

g1(T,
←−
E ℓ, T ) g2(T,

←−
E ℓ, T ) · · · gm(T,

←−
E ℓ, T )



Let X̄Ti
denotes (X(Ti,g1), . . . , X(Ti,gm)). Define CON as follows.

CON(X̄) :=
∧

1≤i≤n

REGDTi
,
←−
DTi

(X̄Ti
) (5.2)

∧
∧

1≤i<j≤n

BiREGDTi→Tj
,
←−
DTi→Tj

(X̄Ti
, X̄Tj

) (5.3)

For the part
∧

1≤h≤p ∀x∃=Chy (fh(x, y)∧x ̸= y) in ϕ, CON ensures that the formula
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is satisfiable if and only if there exists a structure such that each of its subgraph

formed by any two distinct one-types is a biregular graph, each of its subgraph of a

one-type is a regular digraph, and the biregular graphs and regular digraphs are all

consistent with the formula.

• The formula FORALL1(X̄) is to capture the part ∀xα in ϕ. Note that ∀xα is equiv-

alent to ¬∃x¬α. Thus, we can define FORALL1(X̄) as follows:

FORALL1(X̄) :=
∧

T∈T s.t. T |=¬α

∧
1≤j≤m

X(T,gj) = 0

• Similarly, the formula FORALL2(X̄) is to capture ∀x∀y(β ∨ x = y) in ϕ, which is

equivalent to ¬∃x∃y(¬β ∧ x ̸= y). We first define the following set:

H :=

 (T, g) ∈ T × G
For some S ∈ T and some E ∈ E s.t.

E |= (¬β ∧ (x ̸= y)), g(T,E, S) > 0.

(5.4)

And FORALL2 will be as follows:

FORALL2(X̄) :=
∧

(T,g)∈H

X(T,g) = 0

This completes our construction of formula 5.1. The correctness of construction can be

found in section 5.2 and the complexity analysis can be found in section 5.3.

5.2 The preservation of satisfiability

Now that PREBϕ is defined, we will prove the satisfiability of PREBϕ is preserved in

both finite and infinite cases in this section.

Lemma 5.2.1 For anyRCS sentence ϕ, the following holds.

• ϕ has a model if and only if N∞ |= PREBϕ.

• ϕ has a finite model if and only if N |= PREBϕ.
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Proof. We will divide our proof into the “if” direction and the “only of” direction. For the

if direction:

Claim 2 For anyRCS sentence ϕ, the following holds.

• ϕ has a model if N∞ |= PREBϕ.

• ϕ has a finite model if N |= PREBϕ.

Proof of claim. Let M̄ := (MT1,g1 ,MT1,g2 , . . . ,MTn,gm) be a vector such that

FORALL1(M̄), FORALL2(M̄) and CON(M̄) all holds. Our goal is to prove there exists

a structureA that satisfies ∀xα, ∀x∀y (β∨x = y) and
∧

1≤h≤p ∀x∃=Chy (fh(x, y)∧x ̸= y).

First, we will construct A. Let AT1,g1 ∪ AT1,g2 . . . ∪ ATn,gm be a pair-wise disjoint

division of A, where |ATi,gj | = MTi,gj for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. The set of

elements ATi,g1 ∪ ATi,g2 . . . ∪ ATi,gm is denoted by ATi
, and (MTi,g1 ,MTi,g2 , . . . ,MTi,gm)

by M̄Ti
.

Since CON(M̄) holds, we can apply theorem 4.3.1 to construct a (DT ,
←−
DT ) regular

digraph GT = (AT , E
T
1 , E

T
2 , ..., E

T
ℓ ) for any T ∈ T , where AT,g1 ∪ AT,g2 . . . ∪ AT,gm is

a witness of GT . Let GT = (AT , E
T
1 , E

T
2 , ..., E

T
ℓ ,
←−
E T

1 ,
←−
E T

2 , ...,
←−
E T

ℓ ) with
←−
E i defined to

be the inverse of Ei for all i = 1, . . . , ℓ. Observe that in GT for any a ∈ AT,gj and any

i ∈ {1, . . . , ℓ},

• in-degEi
(a) = gj(T,

←−
Ei, T ) by definition of regularity, which is consistent with

out-deg←−
Ei
(a), and

• out-degEi
(a) = gj(T,Ei, T ) by definition of regularity, which is consistent with

in-deg←−
Ei
(a).

Similarly, we can apply theorem 4.2.1 to construct a (DS→T ,
←−
DS→T ) biregular graph

GS,T = (AS, AT , E
S→T
1 , ES→T

2 , ..., ES→T
ℓ ,

←−
E S→T

1 ,
←−
E S→T

2 , ...,
←−
E S→T

ℓ ) for any S = Tk1

and T = Tk2 ∈ T where k1 < k2 andAS,g1∪AS,g2 . . .∪AS,gm andAT,g1∪AT,g2 . . .∪AT,gm

are witness of GT . Now define

• ES,T
i to be the set that consists of the edges of ES→T

i and the inverse of
←−
E S→T

i ,

and
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•
←−
E S,T

i to be the set that consists of the edges of
←−
E S→T

i and the inverse of ES→T
i .

Let GS,T := (AS, AT , E
S,T
1 , ES,T

2 , ..., ES,T
ℓ ,
←−
E S,T

1 ,
←−
E S,T

2 , ...,
←−
E S,T

ℓ ). Hence, in GS,T for

any a ∈ AS,gj and any i ∈ {1, . . . , ℓ},

• in-degEi
(a) = gj(S,

←−
Ei, T ) by definition of biregularity, which is consistent with

out-deg←−
Ei
(a), and

• out-degEi
(a) = gj(S,Ei, T ) by definition of regularity, which is consistent with

in-deg←−
Ei
(a),

and vertices of AT has consistent in-deg and out-deg by symmetry.

Finally, we can construct the graph G for A by combining all GT and GS,T , i.e., let

Ek :=
∪
T∈T

ET
k ∪

∪
i<j

E
Ti,Tj

k

and

←−
E k :=

∪
T∈T

←−
E T

k ∪
∪
i<j

←−
E

Ti,Tj

k

for all k = 1, . . . , ℓ.

Now we will prove A |= ϕ:

• Proof of A |=
∧

1≤h≤p ∀x∃=Chy (fh(x, y) ∧ x ̸= y):

Let a ∈ A be an arbitrary vertex. Since A = AT1,g1 ∪ AT1,g2 . . . ∪ ATn,gm , there is

some (T, g) ∈ T × G such that a ∈ AT,g.

For every h ∈ {1, . . . , p}, we have

out-degfh(a) =
∑

E∈E s.t. E|=(fh∧(x̸=y))

out-degE(a)

and

out-degE(a) =
∑
T ′∈T

g(T,E, T ′)
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Hence,

out-degfh(a) =
∑

E∈E s.t. E|=(fh∧(x̸=y))

∑
T ′∈T

g(T,E, T ′) = Ch

by the definition of G.

We conclude that A is a model of
∧

1≤h≤p ∀x∃=Chy (fh(x, y) ∧ x ̸= y).

• Proof of A |= ∀xα:

Since FORALL1(M̄) holds, we have |AT,g| =MT,g = 0 for any g ∈ G and T ∈ T

such that T |= ¬α. It implies |AT | = 0 for all T ∈ T such that T |= ¬α. Therefore,

there does not exist any element a ∈ A such that α(a) holds; in other words, ∀xα

holds in A.

• Proof of A |= ∀x∀y (β ∨ x = y):

Recall that for any T ∈ T , g ∈ G, E ∈ E and a ∈ AT,g,

out-degE(a) =
∑
S∈T

g(T,E, S).

Since FORALL2(M̄) holds, |AT,g| = MT,g = 0 for any (T, g) ∈ T × G such that

g(T,E, S) > 0 for some E |= (¬β ∧ (x ̸= y)). Therefore, for any a ∈ A and

E |= (¬β ∧ (x ̸= y)), out-degE(a) = 0, so there does not exist any ¬β-edge in A.

We arrive at the conclusion that A is a model of ¬∃x∃y (¬β ∧ (x ̸= y)), which is

equivalent to ∀x∀y (β ∨ (x = y)).

Thus,A |= ϕ. Notice that if the entries in M̄ are all finite, then |A| is finite by construction.

�

Now for the “only if” direction, we have the following claim:

Claim 3 For anyRCS sentenceϕ,PREBϕ holds inN ifϕ has a finite model, andPREBϕ

holds in N∞ if ϕ has a model.
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Proof of claim. Let A be a structure that A |= ϕ. We can divide A into a pairwise dis-

joint partitionAT1,g1∪ . . .∪ATn,gm by lettingATi,gj consist of all the (Ti, gj)-elements. Let

MTi,gj := |ATi,gj | for all i = 1, . . . , n and all j = 1, . . . ,m. Let M̄ := (MT1,g1 , . . . ,MTn,gm)

and M̄Ti
:= (MTi,g1 , . . . ,MTi,gm). We claim that FORALL1(M̄), FORALL2(M̄) and

CON(M̄) all holds.

• FORALL1(M̄) holds: Since ∀x α holds in A, i.e., ¬∃x ¬α holds, there does not

exist any element in any T ∈ T such that T |= ¬α. We have
∑

j=1,...,mMT,gj = 0

for any T |= ¬α.

Since allMT,g are nonnegative,
∧

T∈T s.t. T |=¬α
∧

1≤j≤mM(T,gj) = 0 holds.

• FORALL2(M̄) holds: We have ∀x∀y β ∨ (x = y) holds in A, which is equivalent

to ¬∃x∃y (¬β ∧ (x ̸= y)) holds in A. Therefore, there does not exist any E-edge

for E ∈ E such that E |= ¬(¬β ∧ (x ̸= y)).

Recall

H =

 (T, g) ∈ T × G
g(T,E, S) > 0 for some S ∈ T

and some E ∈ E s.t. E |= (¬β ∧ (x ̸= y)).


Suppose, to the contrary, there exists some non-empty AT,g with (T, g) ∈ H . Let

a be a vertex in AT,g. Then by the definition of H , there is some S ∈ T and some

E |= (¬β ∧ (x ̸= y)) such that g(T,E, S) > 0, and for such a, the number of out-

going E-edges towards the elements of S is g(T,E, S). Hence, there exist some b

of S such that (a, b) is an E-edge, and we get A, a, b |= (¬β ∧ (x ̸= y)), which

contradicts to A |= ϕ.

• CON(M̄ ) holds: We will divide this part into two, and prove that

BiREGDTi→Tj
,
←−
DTi→Tj

(M̄Ti
, M̄Tj

) holds for any i < j and REGDTi
,
←−
DTi

(M̄Ti
) holds

for any i.

– For any i and j ∈ {1, . . . , n} such that i < j, we can partition ATi
with

ATi,g1 ∪ . . .∪ATi,gm , and ATj
with ATj ,g1 ∪ . . .∪ATj ,gm . LetGTi,Tj

denote the

subgraph ofA consisting of the vertices ofATi
∪ATj

and the edges betweenATi
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andATj
. For anyE ∈ E , g ∈ G and a ∈ ATi,g, degE(a) = g(Ti, E, Tj), and for

anyE ′ ∈ E , g′ ∈ G and a′ ∈ ATj ,g′ , degE′(a′) = g′(Tj, E
′, Ti) inGTi,Tj

. Thus,

GTi,Tj
is a (DTi→Tj

,
←−
DTi→Tj

)-biregular graph with witnessATi,g1∪. . .∪ATi,gm

and ATj ,g1 ∪ . . . ∪ ATj ,gm , and BiREGDTi→Tj
,
←−
DTi→Tj

(M̄Ti
, M̄Tj

) holds.

– For any i ∈ {1, . . . , n}, ATi,g1 ∪ . . . ∪ ATi,gm forms a partition of ATi
. Let

GTi
denote the subgraph of A consisting of the vertices of ATi

and the di-

rected edges between any two vertices in ATi
. Note that in GTi

, for any

a ∈ ATi
, j ∈ {1, . . . , ℓ} and g ∈ G, we have out-degEj

(a) = g(Ti, Ej, Ti)

and in-degEj
(a) = out-deg←−

Ej
(a) = g(Ti,

←−
Ej, Ti). Hence, GTi

is a (DTi
,
←−
DTi

)-

regular digraph with witnessATi,g1 ∪ . . .∪ATi,gm , and thus REGDTi
,
←−
DTi

(M̄Ti
)

holds.

Therefore, PREBϕ holds inN if |A| is finite, and PREBϕ holds inN∞ in either case. �

By the above two claims, corollary 5.2.1 follows. �

From corollary 5.2.1, we conclude the satisfiability is preserved in the conversion from ϕ

to PREBϕ, and thus theorem 5.1.1 is proved.

5.3 Complexity analysis

We are going to analyze the time complexity of obtainingPREBϕ from aRCS sentence ϕ.

Let r be the number of distinct predicates and k be the largest quantifier in ϕ. We denote

the length of a formula ψ by |ψ|. Define the length of a formula to be the summation of

the length of all the symbols in it with repeats, and the length of a formula ψ is defined

inductively as follows:

• |z = z| = O(1) where z ranges over {x, y}.

• |R(z, z)| = O(log r) where z ranges over {x, y} and R is an arbitrary binary pred-

icate.
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• |P (z, z)| = O(log r) where z ranges over {x, y} and P is an arbitrary unary predi-

cate.

• |¬ψ| = |ψ|+O(1) for any formula ψ.

• ψ1 ∧ ψ2 = |ψ1|+ |ψ2|+O(1) for any formula ψ1, ψ2.

• ∃≥czψ = |ψ|+O(log k) for any formula ψ.

We can easily see |T | = 2O(r) and |E| = 2O(r). Also, |G| = O(k|T |×|E|×|T |), and we get

|G| = 22
O(r log log k) . Since

ϕ = ∃X(T1,g1) . . . ∃X(Tn,gm) FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄),

there are |T | × |G| = 22
O(r log log k) variables in ϕ. For the subformula FORALL2(X̄), it

takes 2O(r) time to find the maximal subset S of E such that S |= (¬β ∧ x ̸= y), and the

setH defined as in formula 5.4 can be obtained by going through the set G × T × S × T

greedily in 22
O(r log log k) time, and thus FORALL2(X̄) is found. Similarly, FORALL1(X̄)

can be constructed in 22O(r log log k) time by computing greedily.

To analyze the part CON(X̄), we start with analyzing its subformulas. In particular,

we analyze BiREG, and REG has the same complexity by symmetry. Observe that equa-

tion 5.2, for each BiREGDTi→Tj
,
←−
DTi→Tj

(X̄Ti
, X̄Tj

), the subscripted matrices are of size

2|E| × |G|, and each entry is an integer between 1 to k. First, for the base case defined

as in equation 4.2 where the subscripted matrices of BiREG are of size 1 × |G|, we can

easily see the length of first two lines isO(|G|× log(|T ||G|)) = 22
O(r log log k) , and the largest

constant in them is no greater than 2k2|G|2+3 = 22
O(r log log k) . Now, for the third line, since

the length of X̄Ti
, X̄Tj

are |G| = 22
O(r log log k) , and each element of any (M̄, N̄) ∈ Hc̄,d̄ has

value between 0 and 2 ·MC(c̄) ·MC(d̄)+3, which is no greater than 2k2+3, the length of

theHc̄,d̄ as defined in equation 4.1 is (2k2+3)2
2O(r log log k)

= 22
2O(r log log k)

. Therefore, for the

base case, the length of the formula is bounded by 22
2O(r log log k)

. Now we consider the in-

ductive construction ofBiREG for matrices with 2|E| rows. Observe that, by equation 4.3,

in each induction step, the total length is the summation of H(C,D) and the multiplication

of |E| and the length of the previous step. Like the base case, we can conclude the largest
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constant is also no greater than 2×2|E|×k2(|G|×2|E|)2+3×2|E| = 22
O(r log log k) , the length

ofHC,D is also 222
O(r log log k)

, and thence the total length of BiREGDTi→Tj
,
←−
DTi→Tj

(X̄Ti
, X̄Tj

)

is bounded by 22O(r log log k) × 22
2O(r log log k)

= 22
2O(r log log k)

.

Therefore, the length of PREBϕ is bounded by 2O(r) × (2O(r))2 × 22
2O(r log log k)

=

22
2O(r log log k)

, and thus bounded by 22
2O(|ϕ|)

. Moreover, the largest constant in PREBϕ is

bounded by 22O(|ϕ|) . With nondeterminism, however, for eachHC,D, we can simply guess

the correct (M̄, N̄) ∈ HC,D and guess the order of rows in the induction step of equa-

tion 4.3, and therefore the length of PREBϕ should be bounded by 22
O(|ϕ|) .

Observe that FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄) is quantifier free and has

length less than |PREBϕ|. Therefore, by applying theorem 3.3.3. our algorithm runs

in nondeterministic double exponential time, which is stated formally in the following

theorem.

Theorem 5.3.1 There is a constant c and a nondeterministic algorithm A such that on

inputRCS sentence ϕ, A decide whether ϕ is (finitely) satisfiable in time O(22c|ϕ|).
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Chapter 6

Concluding remarks

In this thesis, we present new decision procedures for the satisfiability and finite satis-

fiability problems for RCS formulas. The decision procedures, which are based on the

technique by Kopczyński and Tan [9], are simple compared to existing procedures. It is

by converting anRCS formula into an existential Presburger formula. Furthermore, some

interesting remarks can be derived from our approach.

First, note that in PREBϕ we can assume the part FORALL1(X̄)∧ FORALL2(X̄)∧

CON(X̄) does not contain any disjunction by guessing via nondeterminism as in theo-

rem 3.3.3. Thus, the length of the resulting formula is still 22O(|ϕ|) , and the largest constant

a is no greater than 22O(|ϕ|) by the analysis in section 5.3.

Let us denote by φ(X̄) the part FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄) (which

is without any disjunction). By corollary 3.3.2, if there exists a solution X̄ ∈ N|T ||G|

for φ(X̄), there is also some solution Ȳ in {0, 1, . . . , (|T ||G| + |φ|)(|φ| · a)(2|φ|+1)}|T ||G|

such that φ(Ȳ ) holds. Notice that (|T ||G| + |φ|)(|φ| · a)(2|φ|+1) = (22
O(|ϕ|)

)2
2O(|ϕ|)

=

22
2O(|ϕ|)

and |T ||G| = 22
O(|ϕ|) . Therefore, if ϕ has a finite model, i.e., there is a solution

for FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄) in N|T ||G|, then there is also a solution

Ȳ such that
∑
Y = 22

2O(|ϕ|)
× 22

O(|ϕ|)
= 22

2O(|ϕ|)
, which implies there is a model of size

22
2O(|ϕ|)

for ϕ. This observation is stated formally as the following corollary.

Corollary 6.0.1 There is a constant c such that for everyRCS sentence ϕ, ϕ has a finite

model if and only if ϕ has a model of size O(222
c|ϕ|

).
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Second, note that we can also derive the decidability of checking whether the spectrum

of anRCS formula is infinite via the following formula:

φ := ∀y∃X̄
(
FORALL1(X̄) ∧ FORALL2(X̄) ∧ CON(X̄) ∧

∑
X̄ ≥ y

)
,

Since satisfiability of Presburger formula is decidable [12, 16], we obtain the following

corollary.

Corollary 6.0.2 Checking whether anRCS sentence has a infinite spectrum is decidable.

For future work, we plan to extend our result to the whole C2 class and provide an

alternative technique to reason about C2 formula, thus many other ontology languages.
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