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摘要

之前的研究已有弱解的小盤面圍棋解法，在此基礎上，我們希望能

找到小盤面圍棋的強解，做為更深入的分析。我們應用圍棋的特性來

壓縮狀態的儲存空間，並用回溯分析以找出所有可能狀態的最佳解，

也設計出一個儲存於硬碟的資料庫以供後續存取。為了儲存及更新大

量的狀態，使用壓縮後並儲存分割的資料區塊於記憶體而非硬碟，在

需要使用的時候再解壓，可達到速度和記憶體用量的平衡。此方法亦

可應用於巨量資料的處理。此外，我們由結果觀察並證明正確一路圍

棋的最佳簡單著手規則。

關鍵字： 小盤面圍棋,狀態空間搜尋,回溯分析,記憶體內運算
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Abstract

Previously studies haveweakly solved the problem of playing small-board-

sized Go, but this study determines a strongly-solved solution and a database

to access afterward.

State reduction is applied by the features of Go; and then retrograde anal-

ysis is used to find the optimal answer of every possible state of small-board-

sized Go.

Dealing with large state information, an in-memory method is used to

search the states for small-board-sized Go. Saving separated compressed data

in the memory, instead of on a disk, and decompressing this data on demand,

to balance performance and memory usage, in order to solve the problem

efficiently. This method can also be applied to large scale data processing.

A method is also determined that obtains the optimal result for boards with a

single row.

Keywords: Small-board-Go, State Space Search, Retrograde Analysis, In-

Memory Computing
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Chapter 1

Motivation

This study determines all possible states for a small rectangular Go board. It is treated

as a sub problem of a 9×9Go or 19×19Go board, so the search method for small boards

may be applied to larger boards. In addition, the fair Komi and opening (see Figure1.1)

are determined by solving the small-board-sized Go problem, the optimal result of fair

opening is the draw. It is a better way to study the strategy and properties for small-board-

sized Go, and may extend to bigger board. By solving small-board-sized Go, we can find

the relation between boundary and intersections, which is the important feature of Go.

In order to solve all possible states for small-board-sized Go, a great number of state

information is needed to be accessed. A memory-efficient method with acceptable per-

formance is required to solve this task.

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

(a) Black’s turn

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

(b) Black’s turn

Figure 1.1: Fair opening examples of 4× 4 Go board
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Chapter 2

Related Work

2.1 Previous Works

Small boards are used for beginners to learn Go. Because 19 × 19 Go requires a

long search time, many studies address a smaller Go board and extend the result to larger

boards.

Using an Alpha-Beta search with optimization, the problem can be weakly solved for

a small rectangular board with less than 30 intersections. For example, the optimal game

result and the optimal first move are found in 5× 5, the optimal first move is the center of

the board (C3 as Go board coordinate) and the optimal game result is Black fully win (25

points) [1, 2].

Using Meta-MonteCarlo-Tree-Search to build a huge opening book for 7×7Go, and

defeat professional Go players [3].

The variation in a game of Go is a challenge, such as atari-Go and kill-all Go. In atari-

Go, the winner is the player that first captures the stone(s), and playing pass is prohibited.

The 5× 5 atari-Go game result is determined as Black’s win [4].

Other studies use a proof-number search to determine the result for specific 7 × 7

kill-all Go opening positions [5]. In kill-all Go, Black plays two stones first, and White

wins if there’s a white live string, Black wins if there’s no legal move for both players.

The number of legal states for square Go boards are calculated for size up to 17× 17

and give the boundary of the legal state count for 19 × 19 Go [6], the result is shown in

3
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Table 2.1.

Board Size Digit Legal State Number
1 1 1
2 2 57
3 5 12675
4 8 24318165
5 12 414295148741
6 17 62567386502084877
7 23 83677847847984287628595
8 30 990966953618170260281935463385
9 39 103919148791293834318983090438798793469
10 47 96498428501909654589630887978835098088148177857
11 57 793474866816582266820936671790189132321673383112185151899
12 68 577742584895132389982379703074839993272872107569911896559426

51331169
13 80 372497923076863964422949047670245176742491579482087175332547

99550970595875237705
14 93 212667732900366224249789357650440598098805861083269127196623

872213228196352455447575029701325
15 107 107514643083613831187684137548661238097337888203278444027646

01662870883601711298309339239868998337801509491
16 121 481306696382275541642905602248429964648687410096724926394471

959997560745985050222203959114933143180552465546745306704237
7

17 137 190793889196281992046057261818504652201510583381479222439672
692319440591872147679971059923417352092306672884621790900736
59712583262087437

Table 2.1: Legal State Count for square board Go

2.2 Retrograde Analysis

Retrograde analysis is widely used for searching endgames in chess-like game pro-

gramming [7], such as Chinese chess [8] and shogi [9]. This method can be also applied to

solve the full games when the state-space complexity of the game is small, like awari [10].

Previous study use this method to analyze patterns in Go [11].

[12] categorizes four major regretrograde analysis algorithms by their implementa-

tions. Our study use the fourth method, which is the refined method to implement the

retrograde analysis algorithm.

4
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2.3 4× 4 Problems

These 4× 4 problems and solutions are from [13], as shown at Figure 2.1 and Figure

2.2, which is for beginners to learn Go.
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D
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2 2
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(a) Initial state, black’s turn

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

3

1 2

(b) Answer

Figure 2.1: 4× 4 problem 1
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(a) Initial state, black’s turn
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(b) Answer move 1 to 8
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910
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13
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1819

(c) Answer move 9 to 19

Figure 2.2: 4× 4 problem 2
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Chapter 3

Problem Definition

3.1 The Rules of Go

Go is an ancient game that originated in China. Black and white stones are used to

secure territory on the board and to surround the opponent. The basic rules are shown in

Figure 3.1.

3.1.1 Basic Rules

Initially, the board is empty and there are vertical and horizontal lines. Each player

places black or white stones at the intersections of these lines.

We look the connected set of stones in the same color as a string. The liberty of a

string is the number of connected empty intersections. There are many different Go rules,

mainly different between rules of Ko and scoring.

We look the connected set of stones in the same color as a string. The liberty of a

string is the number of connected empty intersections.

There are many different Go rules, mainly different between rules of Ko and scoring

rules.

7
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1. The black player plays first.

2. Black and white players place stones with the corresponding color in order.

3. If the opponent’s string is out of liberty, it is captured and moved off the board.

4. A player cannot play a Ko move.

5. A player cannot play a suicidal move, which is the move that makes his or her string
liberty become 0, unless this move involves the capture of an opponent’s string.

6. A player can pass a move. If two players pass continuously, the game is ended and
the score is calculated.

Figure 3.1: Basic rules of Go

3.1.2 Rules of Ko

Ko is the rule that prevents a loop in the game. The some commonly used Ko rules

are [14] :

1. Basic Ko

2. Positional Superko

3. Situational Superko

Define the board position to be the positions of stones on the board; and the board

configuration to be the board position and player’s turn.

Basic Ko

Basic Ko only forbids a move that recreates the position from two moves before, but

allows a longer cycle.

Positional Superko

Positional superko prevents the repeat of a board position.

Situational Superko

Situational superko does not allow a play that repeats a board’s configuration.

The rules that are used in professional games are a variant of these three Ko rules.

8
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3.1.3 Scoring Rules

The two main scoring methods involve area scoring and territory scoring [15].

Area Scoring

The player’s score is the number of empty intersections only his color surround and

the number of its stones on the board. Area scoring is used in Chinese rules. It’s easier

rule to implement in computer Go.

Territory Scoring

Dead stones and stones that are captured are looked as another color’s player’s pris-

oners.

The player’s score is calculated in terms of his or her territory and the number of

prisoners. Territory is the empty intersections that are controlled by one color. Its detailed

definition is different for each set of rules. Territory scoring is used in Japanese rule and

Korean rule.

In general, area scoring and territory scoring give the same result or one or two points

difference. For example, in Figure 3.2, if there’s no stone captured in the game, the result

of territory scoring is draw (Black 3 points, White 3 points), and the result of area scoring

is Black win one point (Black 13 points, White 12 points).

A

A

B

B

C

C

D

D

E

E

1 1

2 2

3 3

4 4

5 5

End of the game

Figure 3.2: Different results when applying different scoring rules
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3.2 Seki

Seki is a special case for the scoring rule for Go. It literally means mutual life. Two

player’s strings share liberties, if one player fills the liberty, his or her string is captured by

another player. However, these strings are alive if they do not occupy the shared liberties.

An example is shown at Figure 3.3. Some rules do not count the score for strings which

are Seki [16].

A

A

B

B

C

C

1 1

2 2

3 3

Figure 3.3: An example of Seki

3.3 The Rules that are used for this study

This study uses basic Ko and area scoring without komi. Because komi is not used,

the white player does not get compensation when he or she scores.

The basic Ko rule states that when the game falls into a loop, the result of the game

is considered to be draw.

It is worthy of note that the Benson algorithm [17] is not used to check dead strings

because it only affects the result for unfinished boards, so both players pass when one of

the players makes a legal move that does not fill his or her eye. Dead stones are considered

to be alive if the opponent does not capture them before game ends.

In summary, the rules that this study uses allow superko and loops whose lengths are

longer than 2, stones that seem dead are considered to be alive and the stones in Seki are

also included in the score.

10
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3.4 Goal

This study solves the game result (which player wins the game) and the score (the

difference in points between the winner and the loser) for all possible states on a small-

board-sized Go. These are strongly solved for small-board-sized Go using the criteria for

solving two-player zero-sum games with perfect information [18].

11
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Chapter 4

Method

4.1 Encoding of States

Go’s state includes the information about a stone’s position, the Ko position, the pass

count and the turn. The degree, the game result and the score are required for the search

process.

Let the number of rows on the board be R and the number of columns on the board

be C. Ternary representation is sued to map intersections on the board. If an intersection

is empty, it is assigned a value of 0 and a black stone and a white stone are respectively

assigned values of 1 and 2, so the range of board position values is from 0 to 3R×C .

The Ko position can be represented using a simple position index. Including the

situation where there is no Ko, there areR×C+1 different Ko positions. The pass count

includes 0, 1 and 2. The turn indicates the player that can play a move in the current state.

In this implementation, it is reduced (See Section 4.2).

Ko and pass can be combined to reduce the number of bits that are used. When the

pass is 1 or 2, there is definitely no Ko, so Ko and the pass have R × C + 3 different

combinations.

The degree (the number of legal next states), the game result and the score are saved

and all information is encoded into a bit array, to reduce the amount of memory that is

used.

The 5× 5 board that shown at Figure 4.1(a) can be encoded to Table 4.2.
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Feature Maximum Dif-
ferent Values

Bit Used Description

Board Position 3R×C 40
Ko and Pass R × C + 3 5 Pass is 0with all intersections, pass is 1with Ko

is 0, pass is 2 with Ko is 0
Turn 2 0 Reduced

Degree R × C + 1 5 All possible move in the board and pass
Game Result 4 2 (black)win, draw, lose, and undetermined

Score 2R × C + 2 6 −R× C to R× C, and undetermined

Table 4.1: List of features and used bits in 5× 5 board state

Feature Value Binary Representation Description
Board Position 4091124856 100111000011001101

01101110111000010
00020000100020102121010103

Ko and Pass 3 00011 Ko at position 3, pass is 0
Degree 13 01101 Empty intersections with-

out position 1 and Ko
Game Result 3 11 Undetermined

Score 51 110011 Undetermined, 2×R×C+1 = 51

Table 4.2: Encoding of state in Figure 4.1(a)

Feature Value Binary Representation Description
Board Position 72664314 10001010100110

0010011111010
00000000120012012012002203

Ko and Pass 11 01011 Ko at position 11, pass is 0
Degree 13 01101 Doesn’t change after reduction

Game Result 3 11 Doesn’t change after reduction
Score 51 110011 Doesn’t change after reduction

Table 4.3: Encoding of state in Figure 4.1(b)
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C
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E
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5 5

White’s turn

(a) A 5× 5 state without reduction

A

A

B

B

C

C

D

D

E

E

1 1

2 2

3 3

4 4

5 5

Black’s turn

(b) A 5× 5 state with reduction

Figure 4.1: A 5× 5 state reduction example, the triangle symbol is Ko move

A 5 × 5 board uses 58 bits per state. Because the memory must be aligned, 64 bits

are used for each state.

4.2 Legal States and Reduction

Only legal states are searched, which are the states that follow the rules. Illegal

states, such as a string with no liberty or an impossible Ko position, are discarded in the

preprocessing phase.

4.2.1 Terminal States

Terminal states are the set of states that can directly determine the result of the game

without processing, such as a state whereby one player cannot make any legal move and

the other player is currently winning (see Figure 4.2). A move is legal when the position

of the move has an empty intersection that can be occupied by the player’s stone without

breaking the rules.

Terminal states are not saved in the memory because the result can be calculated

when it is needed.

Obviously, all states for which pass is 2 are terminal states.
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A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

Black Lose

Figure 4.2: A terminal state example. Black has no legal move, so white can simply pass
to win the game.

4.2.2 State Reduction

States with symmetrical board configuration have the same result and score. Thus,

these states can be reduced into one state.

The state that has the lowest value for symmetrical board positions is specified as

the reduced state. There are at most 8 different square board states that are considered to

be the same state. For a rectangular board, there are at most 4 different states that can be

reduced into one.

The Ko position can also be reduced by specifying the lowest index for Ko positions

in all symmetrical Ko positions.

Turn is reduced by changing the turn and the color of the stones on the board together.

The states are reduced to black’s turn, so it is not necessary to include turn information in

the reduced state.

Figure 4.1 is an example of state reduction.

We keep all the states reduced during the search phase. In this way, the number of

states that as shown in Table 4.4 must be searched is also reduced.

4.2.3 Sort Order

Serial Order

The states are sorted in terms of features in the order: board position > Ko position

> pass count. An example is shown in Figure 4.3.
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Property Value
Possible States 320 × 21× 3 = 219667417263
Legal States 1840058693

Legal States Ratio in Possible States 0.837%
Ko States 22418691

Ko States Ratio in Legal States 1.22%
Reduced States 460114319

Reduced States Ratio in Legal States 25.01%

Table 4.4: State statistics of 4× 5 board

(a)
board0
ko0
pass0

(b)
board0
ko0
pass1

(c)
board1
ko0
pass0

(d)
board1
ko0
pass1

(e)
board2
ko0
pass0

(f)
board2
ko0
pass1

(g)
board3
ko0
pass0

(h)
board3
ko0
pass1

(i)
board4
ko0
pass0

(j)
board4
ko0
pass1

Figure 4.3: First 10 states of 4× 4 board in serial order

Piece Order

Another sorting method is used to obtain a better locality in performing sorting.

Sorting using the order: total number of stones on the board> number of black stones

on the board> board position>Ko position> pass count. An example is shown in Figure

4.4.

The former sorting method is called “serial order” and the latter sorting method is

called “piece order”.

Let Stotal and Sblack be the total number of stones and the total number of black stones

for the current states. The total number of stones and the total number of black stones for

previous states are S ′
total and S ′

black. If there is no previous capture, S ′
total = Stotal − 1

and S ′
black = Sblack − 1. Thus, previous states are concentrated into a smaller range in

state array. By using piece order, the frequency of a memory block being compressed and

decompressed is then decreased. Details will be described in Section 4.4.
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(a)
board0
ko0
pass0

(b)
board0
ko0
pass1

(c)
board2
ko0
pass0

(d)
board2
ko0
pass1

(e)
board6
ko0
pass0

(f)
board6
ko0
pass1

(g)
board486
ko0
pass0

(h)
board486
ko0
pass1

(i)
board1
ko0
pass0

(j)
board1
ko0
pass1

Figure 4.4: First 10 states of 4× 4 board in piece order

4.3 Search Algorithm

Algorithm 1 states the main processes for the algorithm to solve small-board-sized

Go.

Algorithm 1:Main Processes of Search Algorithm
1 FunctionMain():
2 Preprocessing()

// Section 4.3.1
3 SearchGameResult()

// Section 4.3.2
4 SearchScore()

// Section 4.3.3
5 SaveSearchResult()

// Section 4.3.4
6 Validation()

// Section 4.3.5

Preprocessing is required before the search and the process is described in Section

4.3.1. The search game result involves searching the game results for all legal states, as

described in Section 4.3.2. The search score involves searching the score for all legal

states, as described in Section 4.3.3. The search result is saved by saving the game result

and the score into the database, as described in Section 4.3.4. Validation is an optional

process that verifies that the result is correct and is described in Section 4.3.5.
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4.3.1 Preprocessing

The legal states are calculated, sorted and saved in the preprocessed files. The data

can be directly dumped into the memory as an array.

4.3.2 Algorithm to Search the Game Result

Concept

The main concepts of the search result algorithm are:

1. Let S be the state with undetermined result

2. Let S ′ be the state that supersedes S

3. If there exists a state for which the result is lose in S ′, the result for S is a win

4. If for all states in S ′, the result is a win, the result for S is a loss

5. Repeat steps 1 to 4 until there is no undetermined state that can be updated as win

or lose

6. The remaining undetermined states are considered to be draws

If there is an undetermined state S, such that the result for its next states has at least

one undetermined state S ′ and has no loss state, then S ′ is the optimal next state. Because

S ′ is also an undetermined state, there is also an undetermined state S ′′ in the next states

of S ′, so the game does not end and the result is draw.

Retrograde Analysis Algorithm

LetWi be the states that wins in i moves, Li be the states that loses in i moves.

The fourth method in [12], which is called “Layered Backward Propagation with

Unknown-children counting”, is used to categorize the states in terms of the game result

and the depth of the search, and the result is propagated to the previous states, asWi→Li+1,

and Li→Wi+1.

In this algorithm, every possible state propagates its value only once. When the result

is a loss, it is necessary to check that all of its next states are wins, so information about

undetermined next states is retained to determine whether the state is a loss.
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The detailed algorithm is shown in Algorithm 2.

Algorithm 2: Retrograde Analysis Search Result Algorithm
/* Wi is the set of states that will win in i turn */
/* Li is the set of states that will lose in i turn */

1 W0 ← terminal states that result is win
2 L0 ← terminal states that result is lose
3 i← 0
4 whileWi ̸= ϕ or Li ̸= ϕ do
5 S ←Wi

6 S ′ ← findPreviousStates(S)
7 sort S ′

8 foreach State s ∈ S do
9 if s.result ̸= undetermined then
10 S.remove(s)

11 remove duplicate states in S
12 foreach State s ∈ S do
13 s.result← lose

14 Li+1 ← S
15

16 S ← Li

17 S ′ ← findPreviousStates(S)
18 sort S ′

19 foreach State s ∈ S do
20 if s.result ̸= undetermined then
21 S.remove(s)

22 count the number of duplicate states in S
23 foreach State s ∈ S do
24 s.degree← s.degree - count of s in S
25 if s.degree = 0 then
26 s.result← win
27 add s intoWi+1

28 foreach State s ∈ Sarr do
29 if s.result = undetermined then
30 s.result← draw

Determining previous States

PreviousState is the class that stores the intermediate data structure. This is tem-

porarily saved in a cache in order to determine actual states. One PreviousState can

represent multiple legal states that have the same board position, but a different Ko or
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pass.

Algorithm 3: Find Previous States
1 Function findPreviousStates(State s):
2 if s has Ko then
3 similar to the part of s.pass = 0, but check previous states can generate

Ko
4 else if s.pass = 0 then
5 foreach white stone w ∈ s do
6 find possible captured strings from 4 directions
7 foreach combination c ∈ possible capture strings combination do
8 previousBoard← s.board + captured strings in c− w
9 append previousBoard to possibleBoardSet

10 return (PreviousState(possibleBoard, pass = 0 or 1)) for each
possibleBoard ∈ possibleBoardSet

11 else if s.pass = 1 then
12 return PreviousState(s, pass = 0 or 1)
13 else if s.pass = 2 then
14 s.pass← 1
15 return s

4.3.3 Algorithm to Find the Score

Retrograde analysis is also used to search the score, but a different algorithm is used.

The states for which pass is 2 and which win and lose the most are initially determined.

Their score is then propagated to their previous states. This search method is repeated

to search for the states in decreasing order of the absolute value of the score. Figure 4.5

shows the wrong result for a search in non-decreasing order of the absolute value of the

score.

This method ensures for a state S, all of its next states S ′ are propagated to S no more

than once. This implies that the state does not get a score that is better than its real score

during the search phase. The details are shown in Algorithm 4 and Algorithm 5.

4.3.4 Data Structure used to save the Search Result

Because many differently sized boards are saved in the database, not all of the infor-

mation is saved in the memory when there is a database query. The state results are saved
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L1(real L2)

W1(real W2)

L2 L1

W3

W1

L1

Figure 4.5: Using increasing order of score to update cause wrong result.

Algorithm 4: Search Score Algorithm
Input : State array which result is known
Output: State array which result and score is known

1 State queue q
/* from win R× C and lose R× C to win 1 and lose 1 */

2 for score← R× C to 1 do
/* find terminal states which score equals to current score */

3 foreach State s ∈ compressedStates do
4 if s.pass = 2 and s.score = score then
5 q.push(s)

6 while q ̸= ϕ do
7 state s← queue.top()
8 q.pop()
9 foreach State ps ∈ previous states of s do
10 if updateScore(ps, s.result, s.score) then

// if update success, ps.score = score, so it should also
propagate to its previous states

11 q.push(ps)
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Algorithm 5: Update Score
Input : State and current score to update
Output: Update success or not

1 Function updateScore(State s, int result, int score)
2 if s is already updated then
3 return false
4 if result = lose and s.result = win then

// Because we search from high score to low score and state result is
win, so it is the best result, the score of s is determined

5 s.degree← 0

6 else
7 s.degree← s.degree-1
8 if -score > s.score or s.score = undetermined then

// update to currently best score
9 setScore(-score)

// degree is 0 means score is found
10 return s.degree = 0

on disk to save time.

The scores for each state’s next states are stored in a file. The result is accessed by

specifying the index of the state and then reading the information directly from the file.

Each state has at most (R × C + 1) next states, including pass. Each score is saved

using 5 bits (see Section 4.1). Let the number of legal states be N. The size of the result

file is 5×N × (R× C + 1) bits.

The following is the process to determine the result for a state.

1. When there is a query, the state is transformed to the reduced state.

2. The index of the state in the state file is then obtained. The state file contains the

same data as the legal state array.

3. The result is then accessed from the result file using the index.

For each query of a state, a binary search of the file and random access disk is con-

ducted to determine the game result for the state and its next states.

The state file is separated into multiple files, which have the same number of states

as the memory blocks, so less time is required for a binary search.

23



doi:10.6342/NTU201802448

4.3.5 Validation

This is an optional process to check whether the search result is reasonable, as shown

in Algorithm 6.

Algorithm 6: Function for validating the result
Output: the final result is reasonable or not

1 Function validate():
2 foreach legal state S do
3 S ′← possible next states of state S
4 flag← false
5 if S.result is draw then
6 foreach state s ∈ S ′ do
7 if s.result is win then
8 return false
9 if s.result is draw then
10 flag← true

11 else if S.result is win then
12 k← S.score
13 foreach state s ∈ S ′ do
14 if s.result is win then
15 if s.score > k then
16 return false
17 if s.score is k then
18 flag← true

19 else if S.result is loss then
20 foreach state s ∈ S ′ do
21 if s.result is win or draw then
22 return false
23 if s.result is loss then
24 if s.score < k then
25 return false
26 if s.score is k then
27 flag← true

28 if flag is false then
29 return false
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4.3.6 Misc

The in-memory data is transferred to the disk after each iteration, so the process can

be continued if an error occurs.

4.4 In-Memory Method

When the size of board increases, the number of legal states increases exponentially.

Thus, the state data cannot all be stored in the memory. Unused states can be temporarily

saved to disk, but the I/O operation is time-consuming, so an in-memory method is used

for the proposed program.

This study uses zlib [19, 20] library to compress or decompress data in the memory.

The state array is divided into several fixed-sized memory blocks and these blocks are

compressed by zlib if they are not in use.

In general, the greater the number of uncompressed memory blocks the better. The

number of uncompressed memory blocks depends on the size of the available memory.

Larger memory blocks are used to allow more uncompressed states at a given time.

0 1 2 3 4

0− 1 1− 1 1− 2 3− 1 4− 1 4− 2

0 1 2 3 4 5 6 7 8

Memory Block

Compressed State Data(Fixed Size)

Memory Chunk

Uncompressed
State Array

uncompressed block

compressed block

assign

Figure 4.6: Memory usage of state array using memory block and memory chunk

Data is compressed or decompressed at the level of the memory block and data is

saved or read at the level of the memory chunk. The relationship is shown in Figure 4.6.
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The algorithm is shown as Algorithm 7.

4.5 Memory Issues

As well as the legal state array, additional information is stored in the memory to

accelerate the search process.

A state is represented by its index in the state array. Flags are saved in the memory

as Boolean arrays to allow quick access. The information includes the result of whether

state has already been searched, or current states in Wi or Li. These Boolean arrays are

the same size as the number of legal states. For a 5×5 Go board, each Boolean array uses

19.59 GB. Directly saving the states into the array requires a maximum of 187 GB, which

is too large to save several these data in the memory.

The following are lists of Boolean arrays.

• hasResult: already searched states (Wk, Lk, k < i)
• win: currently searched win states (Wi)
• lose: currently searched lose states (Li)
• newwin: win states to be searched in the next iteration (Wi+1)
• newlose: lose states to search in next iteration (Li+1)

A temporary state array is used as a cache to save states and will be transformed into

array indices on batch when the cache is full. The size of cache is flexible, but the larger

the cache, the better the performance. In general, the cache must be able to contain at least

one uncompressed memory block.

4.6 Performance Issues

State data can be used to find previous states that have Ko, to obtain or to set a result,

a score or a degree of a state.

There is a bottleneck because a binary search of the uncompressed memory block is

required to obtain the index of a state in the array. If the state is in the compressed memory

block, it must be decompressed before it can be used.
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When the cache is full, a binary search is used to determine the indices, or a seg-

mental scan over the array is needed to determine the index. If the number of states in

a memory block is more than log2(state per block), this method is better than the binary

search method in terms of time complexity.
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Algorithm 7:Memory Related Functions
1 In-memory block index queue q
/* fixed size memory array to read/write, pre-allocated */

2 MemoryChunk array chunks
3 MemoryBlock array blocks
4 State array blockFirstState
/* record first state of each memory blocks */

5 Function decompressBlock(blockindex)
6 if blockindex ∈ q then
7 return
8 if number of uncompressed block is up to limit then
9 block lastUsedBlock← blocks[q.front()]
10 q.pop()
11 lastUsedBlock.compress()
12 blocks[blockindex].decompress()
13 q.push(blockindex)
14 Function getStateIndex(State s)
15 blockIndex← blockFirstState.binarySearch(s)
16 if blocks[blockIndex] not uncompressed then
17 decompressBlock(blockIndex)
18 stateIndex← blocks[blockIndex].binarySearch(s)
19 return blockIndex × STATEPERBLOCK + stateIndex
20 Function getState(index)
21 blockIndex← index ÷ STATEPERBLOCK
22 stateIndex← index mod STATEPERBLOCK
23 if blocks[blockIndex] not uncompressed then
24 decompressBlock(blockIndex)
25 return blocks[blockIndex].getState(stateIndex)
26 Function compress()

/* compress a memory block */
27 compressedArray← zlib.compress(stateArray)
28 stateArray.clear()
29 distribute compressArray to multiple memory chunks
30 Function decompress()

/* decompress a memory block */
31 combine memory chunks to form compressedArray
32 clear used memory chunks
33 stateArray← zlib.decompress(compressedArray)
34 compressedArray.clear()
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Chapter 5

Result

5.1 Configuration

The following experiments were run on FreeBSD Clang version 3.4.1 using cpu In-

tel(r) Xeon(r) cpu E5-2699 v3 @ 2.30 ghz (2300.05-mhz K8-class cpu), 64 cores with an

available memory of 512 GB. Experiments for smaller boards are run on Linux 4.14.15-

1-arch using cpu Intel(r) Xeon(r) cpu E5-2620 0 @ 2.00ghz, 24cores with an available

memory of 128 GB. The former is called Machine 1 and the latter is called Machine 2.

All experiments that were run on Machine 1 are specified and the other experiments

were run on Machine 2. Table 5.4 shows the configurations of these two machines.

This study used g++ 8.1.0 as the compiler and zlib 1.2.11 to compress and decompress

memory blocks.

Machine
Number

Operating
System

CPU Core
Num-
bers

Memory

1 FreeBSD
Clang version
3.4.1

Intel(r) Xeon(r) cpu E5-2699
v3 @ 2.30ghz (2300.05-mhz
K8-class cpu)

64 512 GB

2 Linux 4.14.15-
1-arch

Intel(r) Xeon(r) cpu E5-2620
0 @ 2.00ghz

24 128 GB

Table 5.1: List of machines used for the experiment
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5.2 Experimental Results

Define Edge Count to be the sum of the number of the next states for all states. The

results for rectangular Go boards are listed in Table 5.2, the biggest size board searched is

2× 11.

The relation between search time and edge count is positive relative. Because we use

less ratio of cache in 2× 11, it cost far more time to search.

5.3 Performance Considerations

Experiments were conducted to determine the factors that affect search performance.

5.3.1 Memory Block Size and Memory Chunk Size

The memory block must be neither too small nor too large. If the memory block is

too small, the frequency of compression and decompression is increased. If the memory

block is too large, the time to compress and decompress is increased.

Because the size of the memory chunk only affects the segmentation of compressed

blocks, it has no obvious effect on performance. The results are shown in Table 5.3 and

Table 5.4.

In order to optimize the search process, the maximum number of uncompressed states

not exceeding the memory limit is first computed and then the best memory block size is

decided to minimize the running time.

If the memory block size is larger, the total number of states that must be decom-

pressed during an iteration is greater, but there is a greater compression ratio. If the mem-

ory block size is smaller, the total number of states that must be decompressed during an

iteration is smaller because it is not necessary to access some compressed memory block.

However, we need to use more total memory.
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Size Depth Compressed
State Number

Edge Count Time Best
Result

Best
First
Move

1× 1 – – – – draw pass
1× 2 – – – – draw pass
1× 3 – – – – B + 03 B1
1× 4 – – – – B + 04 B1

1×n
n ≤ 20 and

n ≥ 5
– – – – draw –

2× 2 2 26 72 0.164 second draw A1
2× 3 11 293 963 0.167 second draw A1,

B1
2× 4 18 2169 8591 0.234 second B + 08 A1,

B1
2× 5 30 18205 84906 0.791 second B + 10 B1,

C1
2× 6 32 152887 821342 3.944 second B + 12 B1,

C1
2× 7 35 1304472 7934582 1.1 minute B + 14 C1,

D1
2× 8 41 11122653 75585864 10.61 minute B + 16 D1
2× 9 49 141646333 713466331 107.43 minute B + 18 E1
2× 10 54 1206719025 6673830049 18.0 hour B + 04 E1
2× 11 63 6941794698 61972960096 32.6 day B + 06 F1
3× 3 26 3696 15884 0.462 second B + 09 B2
3× 4 46 166358 884980 4.121 second B + 04 B2
3× 5 46 4200206 26752878 3.8 minute B + 15 B2,

C2
3× 6 54 106590386 790892022 152.2 minute B + 18 B3
3× 7 59 2715285034 23000866733 1.93 day B + 21 B3
4× 4 56 9276006 41786050 5.9 minute B + 01 B2
4× 5 70 1402761648 7637285055 951.4 minute B + 20 C2

Table 5.2: Result of small-board-sized Go, result B + n means Black win n stones, best
move is the coordinate label on the board
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Size Block Size Number of Block Number
of Uncom-

pressed Block

Time
(minutes)

Used Mem-
ory of Mem-
ory Blocks

2× 9 256 MB 3 3 94.7 768 MB
2× 9 256 MB 3 1 410.4 376 MB
3× 6 1024 MB 1 1 99.1 1024 MB
3× 6 256 MB 4 1 407.1 427 MB

Table 5.3: Performance and memory usage with different memory size used

Size Block Size State per Block Number
of Block

Number
of Uncom-

pressed Block

Time
(minutes)

2× 9 256 MB 32000000 3 1 410.4
2× 9 64 MB 8000000 12 4 380.2
2× 9 16 MB 2000000 48 16 380.9
3× 6 256 MB 32000000 4 1 407.1
3× 6 64 MB 8000000 16 4 389.6
3× 6 16 MB 2000000 64 16 389.6

Table 5.4: Performance in different memory block size with the same memory used

5.3.2 Sort Order

We describe piece order in Section 4.2.3. The result is shown in Table 5.5.

Piece ordering achieves a better data locality when sorting is performed, but much

more time is required for sorting than is required to determine the original sort order be-

cause of the additional time to calculate the number of stones, compared to serial order.

Size Piece
Order

Total
Blocks

Avg. of it-
erate blocks

Std. of iter-
ate blocks

Time
(minutes)

4 × 5 No 30 26.02 6.25 951.4
4 × 5 Yes 30 19.24 9.79 3372.9
3 × 6 No 13 11.82 2.72 152.2
3 × 6 Yes 13 9.99 4.31 310.2

Table 5.5: Influence of sort locality and performance by applying piece order
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Figure 5.1: Correlation between time and edge count

5.3.3 Number of Edges

Figure 5.1 shows the correlation between time and edge count (total number of legal

next states) for a Go board with between 15 and 18 intersections. We know each edge at

most update one time by using Algorithm 2, there is a high positive correlation between

edge count and time.

5.3.4 Search Depth

Figure 5.2 shows that most of the states can be determined in less thanR×C moves.

There’s some difference between Black-non-fully-win Go and Black-fully-win Go in

Figure 5.3 and Figure 5.4. Black-non-fully-win Go will take more ratio of time at deeper

search depth, and Black-fully-win Go will mostly solved at the front part of the searching

depth.
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Figure 5.2: Time distribution of search depth in different size of Go boards

Figure 5.3: Time distribution of search depth in different size of Black-non-fully-win Go
boards

34



doi:10.6342/NTU201802448

Figure 5.4: Time distribution of search depth in different size of Black-fully-win Go
boards
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5.3.5 Data Saving Method

Figure 5.5, Table 5.6 and Table 5.7 show the performance for different zlib com-

pression levels and for I/O and zlib for different sizes of block. This implementation has

almost the same number of compressions and decompressions during the search because

the number of uncompressed memory blocks is constant. Although the compression time

for zlib is slow, the total time required is less than that for the I/O. For different imple-

mentations in compression levels 1..3 and levels 4..10 [21], we found zlib may run faster

at level 4 than level 3. In general, we use level 1 compression for better performance.

Size File Size Method Write(com
press)time
(seconds)

Read(deco
mpress)tim
e(seconds)

Compress
level

5× 5 32 GB I/O 5920.6 111.4 none
5× 5 32 GB zlib 4379.1 1105.1 1
5× 5 16 GB I/O 2810.6 47.5 none
5× 5 16 GB zlib 2200.5 535.4 1
5× 5 8 GB I/O 1404.2 24.3 none
5× 5 8 GB zlib 1101.0 275.4 1
5× 5 4 GB I/O 680.7 12.5 none
5× 5 4 GB zlib 550.1 132.8 1
5× 5 2 GB I/O 318.4 6.5 none
5× 5 2 GB zlib 274.1 66.2 1

Table 5.6: Average I/O and zlib performance by testing 13 different memory blocks which
is 5× 5

Size File Size Method Compressed
Ratio

( originalsize
compressedsize

)

Write(com
press)time
(seconds)

Read(deco
mpress)tim
e(seconds)

Compress
level

5× 5 32 GB I/O 1 5920.6 111.4 none
5× 5 32 GB zlib < 1 387.7 247.6 0 (no com-

pression)
5× 5 32 GB zlib 4.541 4379.1 1105.1 1
5× 5 32 GB zlib 4.761 4735.9 1056.2 2
5× 5 32 GB zlib 4.921 7520.9 1020.3 3
5× 5 32 GB zlib 4.975 6589.2 1033.5 4
5× 5 32 GB zlib 4.975 11878.8 1034.5 5
5× 5 32 GB zlib 5.104 22732.9 1014.4 6
5× 5 32 GB zlib 5.136 33677.1 988.7 7

Table 5.7: Average zlib performance with different compression levels in 5× 5 Go.
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Figure 5.5: Comparison of zlib and I/O performance in different memory block size.

5.4 Variation: Circular Board

The rules for Go are also varied. We define the circular board have the rule that the

first column of the board be the neighbor of the last column in the same row. For this rule,

there are a maximum of 2× 2× C symmetry boards in a rectangular board. An example

of a 2× 3 board is shown in Figure 5.6.

(a) 1 (b) 2 (c) 3

Figure 5.6: Three board positions can be compressed to one in circular board

There are special cases when the column size is 7, for 1 × N and 2 × N circular

boards. The results are different to those for other boards with the same row size, as

shown in Table 5.8.
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Size Result
1× 2 to 1× 6 draw

1× 7 B + 01
1× 8 to 1× 20 draw
2× 2 to 2× 5 draw

2× 6 B + 01
2× 7 B + 14
2× 8 B + 02
2× 9 B + 04
2× 10 B + 03

Table 5.8: Result of small-board-sized circular Go board

5.5 Properties of Go

5.5.1 Seki

Seki is determined by searching the states for which

1. Current state has no pass.

2. Playing pass is the only best move (or it is defeated).

3. There is more than one legal move (as when liberties are shared).

4. The next states for which pass is 1 must satisfy the following rules:

(a) Pass is the only best move.
(b) There is more than one legal move.

By these constraints, there are 1887 Sekis for a 4 × 4 Go board. Figure 5.7 shows

several such examples.

5.5.2 Strongly Connected Component

There are cycles in the game tree for Go that exist in basic Ko rules. In state graph,

these cycles can be represented as strongly connected components (SCC) with more than

one states. For example, Figure 5.8 shows a superko and Figure 5.9 shows a cycle example.
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D

1 1
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4 4

(a) Example 1

A

A

B
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C

D

D

1 1
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3 3

4 4

(b) Example 2

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

(c) Example 3

Figure 5.7: Seki example in 4× 4 Go board

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

Black to play

(a) SCC: initial state

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 41

2

34

6

7

8

5 at 1 9 at 3 10 at 4

(b) Repeat the state after 10 moves, the
state is still the same as Figure 5.8(a)

Figure 5.8: cycle example 1: superKo
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Figure 5.9: cycle example 2: states in SCC
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1 2 3 4 5 · · · n− 1 n

(a) Black plays at position 2

n n− 1 n− 2 n− 3 n− 4 · · · 2 1

(b) Count position from another side, this state is the
same as Figure 5.10(a)

Figure 5.10: Position can be count from another side.

5.6 Strategy for 1× n Go

A general move-generating rule for all 1×n boards is verified for 1×6 to 1×20 Go

boards. Let the number of board intersections for 1×n be {1, 2, 3, · · · , n− 1, n}. Define

board[i] as the stone color at position i. board[i] ∈ {black, white, empty}. board[i] =

empty means that neither a black nor a white stone occupies position i. A special case

is defined for which position 0 and position n + 1 are a fixed boundary and board[0] =

board[n+ 1] = boundary.

White’s Move-Generating Rule. Find the first black stone (firstblack) from position

4 to position n. If first black stone exists at position w, firtblack = w; otherwise,

firstblack = n + 1. If board[w − 1] = white and board[w − 2] = empty, the move at

position w − 2 is played.

Otherwise, play at the first empty intersection k from position 2 to position n. When

it is White’s first move, changing the order of position ensures that board[2] ̸= black and

board[3] ̸= black (Figure 5.10) . If k does not exist, play pass.

For example, in Figure 5.11,White plays at position k, using step 1which is described

in Algorithm 8.

By applying White’s Move-Generating Rule, which is described in Algorithm 8, the

result for White is at least a draw (Theorem 4).

Define Sw be the set of states that are White’s turn, and can be accessed by applying

White’s Move-Generating Rule.
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1 2 3 · · · k k + 1 k + 2 · · ·

Figure 5.11: An example of White’s Move-Generating Rule

Algorithm 8:White’s Move Generating Rule
Input : A state S that is in Sw

Output: A legal move that can play at S which generates optimal result
1 Determine the position by the fact that board[2] = white, or board[2] ̸= black

and board[3] ̸= black
2 firstblack← minimum position that board[firstblack] = black
3 if firstblack not exist then
4 firstblack← n+ 1

5 if firstblack > 3 and board[firstblack − 1] = white and
board[firstblack − 2] = empty then

// Step 1
6 return firstblack-2
7 else
8 firstempty← first empty intersection from position 2 to position n which is

legal
9 if firstempty exist then

// Step 2: if there’s no suitable move in step 1
10 return firstempty

// Step 3: if there’s no suitable move in step 1 and 2
11 return pass move

42



doi:10.6342/NTU201802448

Define R(s) as the move that is generated by White’s Move-Generating Rule when

the state is s.

R(s) : S → N , S = Sw, N = [1, n].

By the definition in the basic Go rules (Section 3.1 and Section 3.3):

Suicidal move and capture move is defined in Figure 3.1.

Definition 1. An empty intersection is a legal move if and only if it is neither a suicidal

move nor a Ko move.

Definition 2. Let the initial state be S0, the current state to be Sc, the previous state to be

Sc−1, and so on. Let Sc+1 be the state after a player plays at position k in state Sc. When

c ≥ 1, position k is a Ko move if and only if Sc−1 = Sc+1.

Definition 3. A move k is not a suicidal move if it is a capture move. A move k is not a

capture move if it is a suicidal move.

Lemma 1. If position k is a Ko move, playing move k can only result in the capture of

one stone that the opponent has recently played.

Proof. If move k captures multiple stones, then without loss of generality, if move k is

played by White and it captures m black stones, m ≥ 2. By Definition 2, Sc−1 = Sc+1.

Let the number of black stones in each state be Bc−1, Bc, and Bc+1, corresponding to

Sc−1, Sc and Sc+1. Because Sc−1 = Sc+1,

Bc−1 = Bc+1. (5.1)

In Sc−1, black plays one stone, so

Bc−1 + 1 = Bc. (5.2)

White capturesm stones when playing move k in Sc,

Bc −m = Bc+1. (5.3)
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By Equation 5.1, Equation 5.2, and Equation 5.3,

Bc = Bc+1 +m = Bc−1 + 1. (5.4)

, som = 1 , results in a conflict. Therefore, a Ko move does not capture multiple stones.

If move k does not capture a stone that was recently played by the opponent, let move

k capture position m, so the opponent recently played position p, p ̸= m. By Definition

2, Sc−1 = Sc+1. board[p] = empty in Sc−1 and Sc+1. In Sc, board[p] ̸= empty, because

move k only captured move m, board[p] ̸= empty in Sc+1, which results in a conflict.

Therefore, move k captures a stone that has been recently played by the opponent.

Define Step(s) as the step that generate a move in Algorithm 8.

Step(s) : S → N , S = Sw, N = {1, 2, 3}

We now prove properties of Step(s) by case analysis.

5.6.1 Step(s) = 1

Theorem 1. ∀s ∈ Sw, if Step(s) = 1, R(s) is legal.

Proof. Let R(s) = k, because k = firstblack − 2, there is no black stone near position

k, so move k is not a capture move, by Definition 3, so it is not a Ko move.

After playing move k, let move L be the minimum value for a position in the string

that includes k. It is obvious that board[L− 1] ̸= white by definition of L and board[L−

1] ̸= black because L− 1 < firstblack and because by White’s Move-Generating Rule,

White never plays at position 1, board[1] ̸= white and L ̸= 1, so board[L − 1] ̸=

boundary. Therefore, board[L − 1] = empty, move k is not a suicidal move because

there is a liberty in position L− 1.

By Definition 1, because move k is neither a Ko move nor a suicidal move, move k

is legal.

5.6.2 Step(s) = 3

Theorem 2. If Step(s) = 3, White does not lose after playing pass.
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1 2 3 · · · n− 1 n

(a) The only state that apply step 3

1 2 3 · · · n− 1 n

(b) Variation 1: Black plays pass, White
win

1 2 3 · · · n

(c) Variation 2: Black plays at position 1

1 2 3 · · · n

(d) Variation 2: White plays at position
2

Figure 5.12: State that apply step 3 and it’s variations

Proof. If Step(s) = 3, state s does not satisfy step 1 and step 2, so there is no empty

intersection from position 2 to position n, otherwise, step 2 is applied.

The only possible state is board[1] = empty and board[i] = white for i = 2..n, in

Figure 5.12. After White plays pass in this state, White can win when Black plays pass,

or White can continue playing using White’s Move-Generating Rule when Black plays

position 1.

5.6.3 Step(s) = 2

Lemma 2. ∀s ∈ Sw, if Step(s) = 2, board[1] = empty and board[2] = white after

White plays by White’s Move-Generating Rule.

Proof. After playing White’s first move, the statement is true. It is true that board[1] =

empty if board[2] = white, because by White’s Move-Generating Rule, White never

plays at position 1, and board[1] ̸= black if board[2] = white because position 1 has no

liberty.

If black’s move does not capture a white stone at position 2, this statement is always

true, so consider a move by Black to capture the white string that includes position 2. This

move can only be made position 1.

Figure 5.13 shows that White can capture back by playing position 2 using Step 2. If

Black plays at position 1 only one stone is captured, as shown in Figure 5.14. board[2] ̸=
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1 2 · · · k k + 1 · · ·

(a) Sc−1

1 2 · · · k k + 1 · · ·

(b) Sc

1 2 · · · k k + 1 · · ·

(c) Sc+1

Figure 5.13: Black plays at position 1 which capture multiple stones

white in Sc−2 because if board[2] = white, the black stone in position 3 is captured in

Sc−1.

We have already been shown that if Black does not capture a white stone in position

2, board[2] = white, so a white stone in position 2 is captured to become Sc−2. The

possible states for Sc−2 are shown in Figure 5.14(a).

In Figure 5.14(a), Sc−2 = Sc, so Black plays a Ko move at Sc−1, which results in a

conflict.

There is no legal Sc−2, so the situation whereby the black move plays at position 1

and only captures one stone does not exist.

Lemma 3. ∀s ∈ Sw, if Step(s) = 2, R(s) = k and k > 2, board[i] ̸= empty for

i = [2, k − 1]; if ∃ i board[i] = black such that i = [2, k − 1], there is at most one black

string between positions 2 to k − 1, which includes position k − 1.

Proof. If there exist m, such that 0 < m < k and board[m] = empty, White plays at m

using step 2 of White’s Move-Generating Rule, which results in a conflict, so position 2

to k − 1 are all non-empty.

Because k > 2, by Lemma 2, if board[2] = black, board[2] ̸= white after White

plays a move, which results in a conflict, so board[2] ̸= black, and board[i] ̸= empty for
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1 2 3 · · ·

(a) Sc−2

1 2 3 · · ·

(b) Sc−1

1 2 3 · · ·

(c) Sc, State after Black plays position 1

1 2 3 · · ·

(d) Sc+1, State after White plays by White’s Move-
Generating Rule

Figure 5.14: Black plays at position 1 and capture only one stone

1 2 3 · · · k − 1 k · · · n

Figure 5.15: More than two strings from position 2 to k− 1. In this example, black string
start from position 3 has no liberty

i = [2, k − 1], so board[2] = white.

If there are more than two strings, position 2 to k− 1 are all non-empty. The second

string that is in the middle has no liberty, so the board position is not legal, which results

in a conflict (Figure 5.15). There’s already a white string that includes position 2, so there

is at most one black string.

If there are two strings from position 2 to k−1, then the black string includes position

k − 1 because the white string includes position 2.

Lemma 4. ∀s ∈ Sw, if Step(s) = 2, R(s) is not suicidal move.

Proof. If move k is a capture move, by Definition 3, it’s not a suicidal move.

If move k is not a capture move, by Lemma 3, there are two possible situations:

1. There are are only white stones from position 2 to k − 1
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By Lemma 2, after playing move k, there is still a liberty at position 1, so move k

is not a suicidal move.

2. Positions fromm to k − 1 are black,m < k − 1

The liberty of the black string from positionsm to k− 1 is 1, so move k is a capture

move, which results in a conflict.

Therefore, move k is not a suicidal move.

Define NextState(s, k) as the state that is obtained from state s after making the

move at k.

NextState(s, k) : S ×K → S, S = {s | s is legal state}, K = [1, n]

Lemma 5. ∀s ∈ Sw, if Step(s) = 2, R(s) is not a Ko move.

Proof. Let the initial state be S0, the previous state be Sc−1 and the current state be Sc.

Let Sc+1 be the state whereby a player plays move k in state Sc.

Assume that move k is a Ko move. By Definition 2 and Lemma 1, only the situation

whereby move k captures exactly one move is considered and Sc−1 = Sc+1.

Let nextState(Sc−1,m) = Sc,m = k − 1 orm = k + 1.

If m = k − 1, board[k − 1] = black and board[k] = empty in Sc. board[k − 2] =

white, board[k−1] = empty and board[k] = white in Sc+1. Because Sc−1 = Sc+1, these

states are shown in Figure 5.16. Because board[k] = empty in Sc, board[k + 1] = black

in Sc−1, Sc, Sc+1.

Consider Sc−2. If nextState(Sc−2, k) = Sc−1, because board[k − 1] = empty in

Sc−1, then Sc−2 is shown in Figure 5.16(b) or 5.16(c).

However, in Figure 5.16(b), Sc−2 = Sc, so Black plays a Ko move in Sc−1 before

White plays move k, which results in a conflict. In Figure 5.16(c), White plays at position

k − 1, which results in a conflict.

If nextState(Sc−2, k) ̸= Sc−1, then board[k] = white and board[k− 1] = empty in

Sc−2 as shown at Figure 5.16(a), so Step(Sc−2) = 1 and R(Sc−2) = k− 1, but board[k−

1] = empty in Sc−1, which results in a conflict.
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If k = n, in Figure 5.16(d), Figure 5.16(e) and Figure 5.16(f), there is no legal Sc−2

that generates Sc−1 using White’s Move-Generating Rule, which results in a conflict.

If k = 2, board[2] = empty in Sc. By Lemma 2, if board[2] ̸= white, the initial

state must be S0, or Black captures it in previous move, but board[3] = black in Sc, so

Sc−2 ̸= S0. So Black capture white stone in position 2 at Sc−1, Sc−2 = Sc, as shown in

Figure 5.16(g). Therefore, Black plays a Ko move at Sc−1, which results in a conflict.

If m = k + 1, board[k] = empty and board[k + 1] = black in Sc, and board[k] =

white, board[k+1] = empty in Sc+1. Because a black stone in position k+1 is captured,

board[k+2] = white in Sc, Sc+1. Because Sc−1 = Sc+1, these states are shown in Figure

5.17.

By Sc−1 and Sc+1, the position k is captured in Sc, so board[k−1] ∈ {empty, black}

inSc. If board[k−1] = empty inSc, byWhite’sMove-GeneratingRule, whenStep(Sc) =

2, R(Sc) ̸= k, which results in a conflict. If board[k − 1] = black in Sc, because

Step(Sc) = 2, the black string in position k − 1 is captured by playing move k in Sc,

so move k captures multiple stones in Sc, which results in a conflict.

If k = n − 1, then in Figure 5.17(d) and Figure 5.17(e), there is no legal Sc−2 to

generate Sc−1 by White’s Move-Generating Rule, which results in a conflict.

Theorem 3. ∀s ∈ Sw, if Step(s) = 2, R(s) is a legal move.

Proof. By Definition 1, Lemma 4 and Lemma 5, move k is a legal move.

5.6.4 Conclusion

Theorem 4. ∀s ∈ Sw, if White plays the move using White’s Move-Generating Rule,

White will lose.

Proof. By Theorem 1, Theorem 2, and Theorem 3, except in step 3 – White may win in

some situations. There always exists at least one legal move, so the game does not finish

and White never loses.
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1 2 · · · k − 2 k − 1 k k + 1 · · ·

(a) one example of Sc−2 when nextState(Sc−2, k) ̸=
Sc−1

1 2 · · · k − 2 k − 1 k k + 1 · · ·

(b) possible Sc−2 when nextState(Sc−2, k) = Sc−1

1 2 · · · k − 2 k − 1 k k + 1 · · ·

(c) possible Sc−2 when nextState(Sc−2, k) = Sc−1

1 2 · · · k − 2 k − 1 k = n

(d) possible Sc−2 when k = n

1 2 · · · k − 2 k − 1 k = n

(e) possible Sc−2 when k = n

1 2 · · · k − 2 k − 1 k = n

(f) possible Sc−2 when k = n

k − 1 k = 2 k + 1 · · ·

(g) possible Sc−2 when k =
2

1 2 · · · k − 2 k − 1 k k + 1 · · ·

(h) Sc−1

1 2 · · · k − 2 k − 1 k k + 1 · · ·

(i) Sc

1 2 · · · k − 2 k − 1 k k + 1 · · ·

(j) Sc+1

Figure 5.16: m = k − 1
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1 2 3 · · · k k + 1 k + 2

(a) Sc−1

1 2 · · · k − 1 k k + 1 k + 2

(b) Sc when position k − 1 is black

1 2 · · · k − 1 k k + 1 k + 2

(c) Sc when position k − 1 is empty

1 2 · · · k − 1 k k + 1 = n

(d) Sc when k = n− 1 and position k− 1 is
black

1 2 · · · k − 1 k k + 1 = n

(e) Sc when k = n− 1 and position k− 1 is
empty

1 2 3 · · · k k + 1 k + 2

(f) Sc+1

Figure 5.17: m = k + 1
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Compared to previous works about weakly-solved small-board-sized Go problem

by alpha-beta search, we strongly solve the small-board-sized Go problem by retrograde

analysis. The biggest Go board solved is 2 × 11. And the final result can be accessed

using database. Using state reduction, changing the sort order and memory block size to

make the better performance.

A retrograde analysis method requires a vast amount of memory. Previous approach

solves this problem by either using parallelism [22], storing on disk [12] or advanced

indexing method [10].

This thesis proposed to use efficient in-memory compression scheme. With saving

separated compressed data in the memory instead on the disk, and decompressing this

data on demand, there is a balance between performance and memory usage that allows

the problem to be solved efficiently. This method can also be applied to large scale data

processing.

A method is also determined that obtains the optimal result for boards with a single

row.
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6.2 Future Work

6.2.1 Rule-Based 2×N Go

We successfully find the rule of the boards which row size is 1 and show that their

results are all draw when column size ≥ 5. But we cannot find a rule-based method that

allows an optimal result for a 2 × N Go by simply taking features from board, can not

even simply get the rule of the final result for 2×N Go. This method may be complicated

or it may have incomprehensible rules. We know that 2× 2 to 2× 9 are Black’s full win;

but Black only partially win in 2×10 and 2×11. If there’s a method can generate optimal

result for 2 × N Go, the method must to be applied in the boards which are bigger than

2× 9.

6.2.2 Other Sorting Criteria

This study uses serial order and piece order for sorting, but there may be some more

efficient sorting methods. The performance of a sorting method is significantly affected

by the data locality. The sorting performance is also the key to improve the performance

of the search algorithm.

For example, if we sort the states by the pass count at first, because the previous states

of state which pass is 2 always have pass = 1, and the previous states of state which pass

is 1 always have pass = 0, it may have better data locality to search.
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