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中文摘要 

我們考慮估計內含物大小(D)的反問題，在有殘餘應力的彈性系統中

(Ω, D ⊂ Ω)，由於存在殘餘應力，所以該彈性系統的結構方程式不

是各方向同性的，我們證明，透過量測Ω邊界之應力與位移量，可得

內含物尺寸上下界的估計。 

關鍵詞：反問題、檢測內在異質物體、彈性系統、殘餘應力、卡爾

曼估計、三球不等式、利普希茨之小的傳播 
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Abstract

We only consider the inverse problem for estimating the size of
an inclusion D, D ⊂ Ω, in an elastic body with residual stress. The
constitutive equation of this elasticity system is not isotropic, due
to the presence of residual stresses. We prove that the size of the
inclusion can be estimated both from above and below by using only
one pair of traction-displacement measurement on the boundary of Ω.

Keywords: Inverse Problem, Detecting inclusions, Elasticity system, Resid-
ual stress, Carleman estimate, Three-Sphere inequality, Lipschitz propaga-
tion of smallness
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1 Introduction

1.1 Elasticity system with residual stress

We consider the three dimension problem, so we assume n = 3. In linear
elastic systems, the general equation for linear elasticity with residual stress
is given by

σ = T + (∇u)T + L(∇̂u), (1.1)

where L(∇̂u) is the incremental elasticity tensor and

∇̂u =
1

2
(∇u+ (∇u)t) (1.2)

the residual stress T should satisfy

∇T = 0, T = T t [9].

Applying Hartig’s law in three dimensions we can write

L(∇̂u) = H(∇̂u) +D(T, ∇̂u). (1.3)

Then using the result in [12], we can express L(∇̂u) as

L(ε) = λ̄(tr∇̂u)I + 2µ̄∇̂u+ β1(tr∇̂u)(trT ) + β2(trT )∇̂u
+β3((tr∇̂u)T + tr(∇̂uT )I) + β4(∇̂uT + T ∇̂u),

(1.4)

where λ̄, ν̄ are Lamé parameters and β1, β2, β3, β4 are material parameters.
Now we have the equation

σ = T + (∇u)T + λ̄(tr∇̂u)I + 2µ̄∇̂u
+β1(tr∇̂u)(trT ) + β2(trT )∇̂u
+β3((tr∇̂u)T + tr(∇̂uT )I) + β4(∇̂uT + T ∇̂u)

(1.5)

In this thesis, we will mainly focus on Equation (1.5). This equation is
much closer to the real elastic system than Lamé System. The results we
derive can be applied to a wider range.

1.2 Inverse problem

Now we begin by defining our mathematical model and present the results of
this paper from the point of view of Inverse Problem. We let λ = λ̄+β1(trT )
and µ = µ̄+ 1

2
β2(trT ). We can rewrite (1.5) as

σ = T + (∇u)T + λ(tr∇̂u)I + 2µ∇̂u
+β3((tr∇̂u)T + tr(∇̂uT )I) + β4(∇̂uT + T ∇̂u)

(1.6)

4
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To simplify our derivation, we take β3 = β4 = 0. We consider the equation

σ(x) = T (x) + (∇u)T (x) + λ(x)(tr∇̂u)I + 2µ(x)∇̂u. (1.7)

Figure 1: Ω

Let u be the displacement in elasticity system with general residual stress

0 = ∇ ·
[
λ(x)tr(∇̂u)I + 2µ(x)∇̂u+ T (x) + (∇u)T (x)

]
. (1.8)

We can re-express (1.8) in another format. If we define the elasticity
tensor C = (Cijkl)

3
i,j,k,l=1 by

Cijkl = λδijδkl + µ(δikδjl + δjkδil) + tjlδik, (1.9)

then (1.8)) is equivalent to

∇ · (C∇u) = ∂xj(Cijkl∂xluk) = 0 in Ω. (1.10)

However C loses some symmetry properties, so that it maybe

Cijkl 6= Cjikl, Cijkl 6= Cijlk. (1.11)

Let C̃ be the elasticity tensor field of D. First we use (1.8) as our model
and introduce Neumann boundary conditions so that we have

5
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Figure 2: two condition

∇ · ((χΩ\DC + χDC̃)∇u) = 0
(C∇u)ν = ϕ

Ω
∂Ω

∇ · (χΩC∇u0) = 0
(C∇u0)ν = ϕ

(1.12)

here we set
∫

Ω
u =

∫
Ω
u0 = 0 for uniqueness.

For inverse problem, we assume we don’t know whether D really exists,
and the position and size of D are unknown. Consequently we assume the real
elastic coefficient of the known substance Ω is C and the elastic coefficient of
the substance D is C̃.

Our inverse problem is that: Can we estimate the size of the unknown
inclusion D without breaking Ω?

In order to achieve this goal, we can try to measure the stress, ϕ, and
deformation, g, of the surface after giving appropriate external force without
destroying the material. We infer the size of D by the measurement results.

6
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∇ · ((χΩ/ DC + χDC̃)∇u) = 0
(C∇u)ν = ϕ

u = g

Ω
∂Ω
∂Ω

∇ · (χΩC∇u0) = 0
(C∇u0)ν = ϕ

g0 := u0

where
∫

Ω
u0 = 0. This is our inverse system.

1.3 Estimate size of an inclusion in an elastic body
with residual stress

In this research, the focus is on an inverse problem for the elasticity with
residual stresses (1.14). The main purpose is to estimate the size of an
unknown embedded domain in an elastic body. This embedded domain could
represent the region in which the defect occurs. In order to better define the
problem, we consider an elastic body with residual stresses. The residual
stresses are the remainder after the original cause of the stresses, e.g. thermal
treatment, has been removed. The existence of residual stresses may cause
premature failure of a structure. For the development of detecting inclusion
of elasticity system issue for this kind of inverse problems, we refer to [4], [3]
and [5].

To define our problem more precisely, let Ω be a connected open set in
R3 with smooth boundary ∂Ω. Assuming that u(x) = (ui(x))3

i=1 is a three-
dimensional vector field. We consider the following equilibrium equation for
u:

∇ · σ = 0 in Ω, (1.13)

where σ = (σij)
3
i,j=1 is the stress tensor field given by

σ(x) = T (x) + (∇u)T (x) + λ(x)(tr∇̂u)I + 2µ(x)∇̂u, (1.14)

7
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where ∇̂u(x) = (∇u +∇ut)/2 is the infinitesimal strain and λ, µ are Lamé
parameters. The tensor T (x) = (tjl(x))3

j,l=1 represents the residual stress,
which satisfies ∇ · T = 0 and tjl = tlj for all 1 ≤ j, l ≤ 3.

The expression (1.14) is a simple constitutive equation modeling the linear
elasticity with residual stress, which has been considered in existing literature
[18], [8], [15] and [16]. We consider (1.14) because for (1.13) with (1.14) we
have the three spheres inequalities, which are an essential tool in this research.

We already know we can express (1.14) into the new form

∇ · (C∇u) = ∂xj(Cijkl∂xluk) = 0 in Ω. (1.15)

It is rather important to notice that, for this elasticity system, the minor
symmetry properties, i.e., Cijkl = Cjikl and Cijkl = Cijlk, may not hold.
However, it still satisfies the major symmetry property, Cijkl = Cklij, mean-
ing that (1.13) is a hyper elasticity system.

Now let D ⊂ Ω represent an unknown domain embedded in Ω. Let C̃
denote the elasticity tensor in D. We consider the equilibrium system

∇ · ((χΩ\DC + χDC̃)∇u) = 0 in Ω, (1.16)

where χE denotes the characteristic function of domain E. Let u be the
solution for (1.16) satisfying the Neumann condition

(C∇u)ν = ϕ on ∂Ω, (1.17)

where ν is the unit exterior normal to ∂Ω. Here we investigate the following
inverse problem: assuming that the background media C is known, we would
like to estimate the size of D using the knowledge of {ϕ, u|∂Ω} only.

The ultimate goal for this inverse problem is to retrieve all geometric
information of D by one pair of {ϕ, u|∂Ω} only. Detecting size of an inclu-
sion has been studied using various models but yields similar results. We
give three significant examples: modelling electrically conducting body [17],
modelling the Lamé system of elasticity [4] and modelling the elastic plates
[13].

In existing literature, the proof of important result is often based on three
spheres inequalities for (1.13), (1.14). The qualitative unique continuation
property (UCP) for (1.13), (1.14) has been proved in [18]. Our task here
is to derive a quantitative estimate of the UCP and three-sphere inequality
for (1.13) and (1.14). The main tool for deriving such quantitative estimate
is the Carleman estimate. Unfortunately, we can not apply the Carleman
estimate in [18] directly to our problem here. To overcome this difficulty,
we borrow some ideas in [14] to derive the estimates we need. The estimate

8
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of |D| is described in Theorem 3.1, which shows that |D| can be bounded
both from above and below by the difference of power for the unperturbed
system (without D) and the perturbed system (with D) under the fatness
condition (Assumption 4 of section 2). Of course, it is more informative to
study the problem without the fatness condition. To do this, we need the
quantitative form of the strong unique continuation property (SUCP) for
(1.13) and (1.14), i.e. doubling inequalities. However, whether the SUCP
holds for (1.13) and (1.14) or not is still an unsolved problem.

9
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2 Elementary concepts and notations

If you are already familiar with most PDE notations, you may skip this
section.

The next two sections will supplement some basic theories and their
proofs. The basic knowledge required for the whole article is as follows:
1. Basic measure theory 2. Basic theorem of calculus 3. Basic inequali-
ties, such as ab ≤ εa2 + b2

ε
, etc. If you are already familiar with the above

mentioned mathematical skills, you may skip this section.
We will first define the notations we use, then briefly introduce the con-

cept of Sobolev Space and Weak Solution, and finally use Fourier transform
and dual space to generalize the differential concept to any real number.

2.1 Notations

Let U ∈ Rn be open.

Definition 2.1. We define the following notations:
1. If f : U → Rm,

f(U) := {f(x)|x ∈ U}
2. Let v, u ∈ Rn,

viu
i :=

n∑
i=1

viui = v · u.

3. If u ∈ Rn,
|u| := (uiu

i)
1
2

4.

δij :=

{
1 if i = j,
0 otherwise.

5. If 1 ≤ p <∞,

Lp(U) := {f |f is measureable and satisfy

∫
U

|f |p <∞}

and

‖f‖Lp(U) := (

∫
U

|f |p)
1
p

6.

L∞(U) := {f |f is measureable and exists a constant K s.t. |f | ≤ K a.e. on U}

and
‖f‖L∞(U) := ess sup |f |.

10
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7.
L1
loc(U) := {f |f ∈ L1(V ) for all V b U}.

8. If α = (α1, α2, ..., αn) is a n-tuple of non-negative integer αi and x ∈ Rn,

xα := Πn
i=1x

αi
i

and

|α| :=
n∑
i=1

αi

9. Denote
Di := ∂/∂xi

and
Dα := Dα1Dα2 · · ·Dαn

First, we introduce the concept of weak differential.

Definition 2.2 (Weak partial derivative). Suppose f ∈ L1
loc(U) and α is a

multi-index. We say f is α weak partial derivative if there exist g ∈ L1
loc(U)

such that ∫
U

fDαηdx = (−1)|α|
∫
U

gηdx (2.1)

∀η ∈ C∞0 (U). We denote
Dαf := g. (2.2)

It is easy to check weak-derivative is unique. Now we can define Sobolev
space.

2.2 Sobolev spaces

Definition 2.3 (Sobolev Spac). For any k ∈ N and 1 ≤ p ≤ ∞, we denote

W k,p(U) := {f ∈ L1
loc(U)| weak derivativeDαf ∈ LP (U)∀|α| ≤ k} (2.3)

We also define its norm as

‖f‖Wk,p :=

{
(
∑
|α|≤k

∫
U
|Dαf |p)

1
p 1 ≤ p <∞,∑

|α|≤k ess supU |Dαf | p =∞.
(2.4)

We write Hk(U) = W k,2(U).

11
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Then we have the property

C∞(U) ∩W k,p(U) is dense in W k,p(u). (2.5)

For any k ∈ N, apply Fourier transform we know f ∈ L2(R) belongs to
Hk(Rn) if and only if

(1 + |y|k)f̂ ∈ L2(Rn). (2.6)

Moreover, there exists a constant c such that

1

c
‖f‖Hk(Rn) ≤ ‖(1 + |y|k)f̂)‖L2(Rn) ≤ c‖f‖Hk(Rn) (2.7)

for all f ∈ Hk(Rn). So we extend k to real number.

Definition 2.4. For any 0 ≤ s <∞ we define

Hs(Rn) := {f ∈ L2(Rn) | (1 + |y|k)f̂ ∈ L2(Rn)}. (2.8)

Although we can define W s,p, we choose not to do that because this article
does not need to use its properties. Finally to extend s to negative part by
dual space, we need the following notation.

Definition 2.5. We denote

W k,p
0 (U) := {f ∈ W k,p(U) | ∃{fk} ⊂ C∞0 (U) s.t. fk → f in W k,p} (2.9)

Definition 2.6. If s > 0 we denote

H−s(U) := dual space to Hs
0(U). (2.10)

12
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3 Assumptions and main result

3.1 Assumptions

First, we introduce some assumptions used in this paper. Our attention is
restricted to the dimension n = 3, which is physically relevant to elasticity.

Let Ω be a bound domain in R3, and unknown D ⊂ Ω. For convenience,
we order that C is the elasticity tensor if C satisfies the following conditions:

C = (Cijkl)
3
i,j,k,l=1 ∈ L∞(Ω),

Cijkl = Cklij for all i, j, k, l = 1, 2, 3.

Let C and C̃ be elasticity tensor relevant to Ω and D, respectively. We
assume that C, which will be explained in detail in Assumption 1, satisfies
the Legendre condition(strongly convex), which guarantees the existence of
the direct Neumann problem.

We measure the traction ϕ and displacement u|∂Ω = g from the boundary
of Ω. Here we assume that ϕ, g ∈ L2(∂Ω,R3) and ϕ satisfy the compatibility
conditions. Let u be the displacement and satisfies the following elasticity
system  ∇ · ((χΩ\DC + χDC̃)∇u) = 0 in Ω,

u = g on ∂Ω,
(C∇u) · ν = ϕ on ∂Ω.

(3.1)

Let u0 be the displacement with the same traction ϕ on the boundary and
satisfies {

∇ · (C∇u0) = 0 in Ω,
(C∇u0) · ν = ϕ on ∂Ω.

(3.2)

For any p ∈ R3, it can be easily shown that u0 + p also satisfies (3.2).
Therefore, we choose u0 such that

∫
Ω
u0 = 0. Set g0 := u0|∂Ω. Then we can

estimate the size of D from g, ϕ and g0. It is important that we only need
the measurements g and ϕ while the value of g0 is derived from the system
(3.1).

In order to obtain the estimation of inclusion, the following assumptions
are necessary.
Assumption 1. (Strongly convex with constant θ)
We assume that C is strongly convex and T is positive definite in Ω, meaning
that a positive constant θ exists such that

θ|A|2 ≤ C(x)A · A for a.e. x ∈ Ω

and
θ|η|2 ≤ T (x)η · η for a.e. x ∈ Ω,

13
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for any 3× 3 matrix A and η ∈ R3.
Assumption 2.(∂Ω ∈ C1,1 with constants r0 and M0)
For every x ∈ R3, we set x = (x′, x3), where x′ ∈ R2. We assume that ∂Ω
belongs to C1,1, with constants r0 and M0. In other word, for any x0 ∈ ∂Ω,
a rigid transformation of coordinates exists such that x0 = 0 and

Ω ∩Br0(0) = {x ∈ Br0(0)|x3 > φ(x́)},

where φ is C1,1 function on Br0(0) ⊂ R2 satisfying

φ(0) = |∇φ(0)| = 0

and
‖φ‖C1,1(Br0 (0)) ≤ r0M0.

Assumption 3.(Strictly contained with constant d0)
A positive constant d0 exists such that dist(D, ∂Ω) ≥ d0.
Assumption 4.(Fatness-condition with constant h1)

|{x ∈ D|dist(x, ∂D) > h1}| ≥
1

2
|D|,

for a given positive constant h1.
Assumption 5.(Bounds on the jump and uniform strong convexity for C̃
with constants δ and η)
We also need the relation between C̃ and C:
either there exist η > 0 and δ > 1 such that

ηC ≤ C̃−C ≤ (δ − 1)C a.e. in Ω, (3.3)

or there exists η > 0 and 0 < δ < 1 such that

−(1− δ)C ≤ C̃−C ≤ −ηC a.e. in Ω. (3.4)

Here we denote that C̃ ≤ C if C̃A · A ≤ CA · A for every 3× 3 matrix A.
Assumption 6.(C ∈ C3 ∩W 4,∞ with constant M .)
Let X be a norm space. We say that C ∈ X if λ, µ, tjl ∈ X for all j, l = 1, 2, 3,
and let

‖C‖X := ‖λ‖X + 2‖µ‖X +
3∑

j,l=1

‖tjl‖X .

We assume C ∈ C3 ∩W 4,∞. For convenience, denote M > 0 such that

‖C‖W 4,∞ ≤M.

14
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Remarks. 1). In this paper, the only assumption of C̃ is the elasticity tensor
which satisfies Assumption 5. It is a very mild assumption for an unknown
inclusion since the inclusion D may consist of any anisotropic material which
is either harder (case (3.3)) or softer (case (3.4)) than the surrounding mate-
rial in Ω, and no additional regularity assumption is required on the elasticity
tensor inside D. 2). D can be disconnected. 3). The existence of residual
stresses may cause the loss of several symmetry properties. To overcome this
difficulty, we make an additional the Assumption 6 for regularity.

3.2 Main result(theorem)

Now we have

Theorem 3.1. Let Ω be bounded domain in R3 and D be any measurable
subset of Ω. Let C and C̃ be elasticity tensors to Ω and D, respectively. If
Assumptions 1-6 hold and C satisfies (1.9):

if (3.3) holds, then we have

1

δ − 1
C+

1

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω
g0 · ϕ

≤ |D| ≤ δ

η
C+

2

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω
g0 · ϕ

,

if (3.4) holds, then we have

δ

1− δ
C−1

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω
g0 · ϕ

≤ |D| ≤ 1

η
C−2

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω
g0 · ϕ

,

where C+
1 , C−1 only depend on d0, |Ω|, θ, M , r0 and M0, and C+

2 , C−2 only
depend on d0, |Ω|, θ, M , r0, M0, h1 and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).

3.3 Strategy

We will introduce our basic analysis tools in section 4. Starting from sec-
tion 5, we will derive the main result according to the strategy listed in the
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following chart.

Carleman Estimate
for Second Order

(section 6.1)

⇓

New System for The
Product of Two

Elliptic Operators
(section 5.2)

Carleman Estimate
for The Product

Operators
(section 6.3)

⇓ ⇓

Three Spheres Inequalities - Differential Type
(section 7.2)

Boundary Estimate
(section 8.1)

⇓ ⇓

Three Auxiliary Equations
(section 9.1)

Lipschitz Propagation of Smallness
(section 8.2)

⇓ ⇓

Estimate Boundary Energy
(section 9.2)

⇓

⇓ ⇓

Main Result : Inclusion Estimate
(section 10)
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4 Standard estimate tools

The main purpose of this section is to try to make this article as self-contained
as possible. This section contains some inequalities that we will use in our
derivation of our new systems. You may skip this section at first reading.

4.1 Interior estimate

First, we recall the following standard regularity proposition which can be
found in [6]. First, we recall the following standard regularity proposition
which can be found in [6].

Proposition 4.1. Let u ∈ W 1,2(Ω;R3) be a weak solution of (1.15). Assume
that C ∈ C1,1(Ω) satisfies strong convexity condition, then u ∈ W 4,2

loc (Ω;R3).

Proposition 4.2. Let C ∈ L∞(Ω) be strongly convex and F = (F i
j )

3
i,j=1 ∈

L2(Ω,R3×3). If V ∈ W 1,2
loc (Ω;R3) satisfies∫

(Cijkl∂lVk)∂jϕi =

∫
F i
j∂jϕi

for all ϕ = (ϕi)
3
i=1 ∈ C∞0 (Ω,R3), then for any r > 0 we have∫

a1r≤|x|≤a2r

|∇V |2 ≤ C

∫
a3r≤|x|≤a4r

|x|−2|V |2 + C

∫
a3r≤|x|≤a4r

|F |2, (4.1)

where 0 < a3 < a1 < a2 < a4 <
R
r

and C = C(θ, a1, a2, a3, a4, ‖C‖L∞).

Proof of Proposition 4.2. Let η ∈ C∞0 (R3) satisfy 0 ≤ η ≤ 1,

η(x) =


0 |x| ≤ a3r,
1 a1r ≤ |x| ≤ a2r,
0 a4r ≤ |x|,

and |∇αη| ≤ C|x|−|α| for any multi-index α, where C is independent of r.
From the strong convexity condition, we obtain
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λ

∫
η2|∇V |2 ≤

∫
η2(Cijkl∂lVk)∂jVi (4.2)

=

∫
(Cijkl∂lVk)∂j(η

2Vi)− 2η(Cijkl∂lVk)Vj∂jη (4.3)

=

∫
F i
j∂j(η

2Vi)− 2η(Cijkl∂lVk)Vj∂jη (4.4)

=

∫
η2F i

j∂jVi +

∫
2ηF i

j∂jηVi − 2η(Cijkl∂lVk)Vj∂jη (4.5)

≤ ε

∫
η2|∇V |2 +

C

ε

∫
η2|F |2 +

∫
a3r≤|x|≤a4r

C

ε

|V |2

|x|2
. (4.6)

When ε is small, we obtain (4.1).

Corollary 4.3 (Interior estimate). Let u ∈ W 1,2(Ω;R3) be a weak solution
of (1.15) . Assume that C ∈ C3(Ω) satisfies strong convexity condition, then
u ∈ W 4,2

loc (Ω;R3) and

4∑
k=1

∫
a1r≤|x|≤a2r

|x|l+2k|∇ku|2 ≤ C

∫
a3r≤|x|≤a4r

|x|l|u|2, (4.7)

for all r > 0, where 0 < a3 < a1 < a2 < a4 <
R
r

and
C = C(l, θ, a1, a2, a3, a4, ‖C‖W 3,∞).

Proof of Corollary 4.3. 1. By Proposition 4.2, we have∫
a1r≤|x|≤a2r

|∇u|2 ≤ C

∫
a3r≤|x|≤a4r

|x|−2|u|2.

For any ϕi ∈ C∞0 (Ω) and t ∈ {1, 2, 3}, we have

0 =

∫
(Cijkl∂luk)∂j(∂tϕi) (4.8)

= −
∫
∂tCijkl∂luk∂jϕi −

∫
(Cijkl∂l(∂tuk))∂jϕi. (4.9)

(4.10)

Apply Proposition 4.2 with F i
j = F i

j,t = −∂tCijkl∂luk, we have∫
a1r≤|x|≤a2r

|∇(∂tu)|2 ≤ C

∫
a3r≤|x|≤a4r

|x|−2|∂tu|2 + C

∫
a3r≤|x|≤a4r

|Ft|2,
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where Ft = (F i
j,t)

3
i,j=1. Sum up with respect to t = 1, 2, 3, we have∫
a1r≤|x|≤a2r

|∇2u|2 ≤ C

∫
a3r≤|x|≤a4r

|x|−2|∇u|2,

where C = C(θ, a1, a2, a3, a4, ‖C‖W 1,∞).
2. Similarly, we obtain∫

a1r≤|x|≤a2r

|∇3u|2 ≤ C

∫
a3r≤|x|≤a4r

(|x|−2|∇2u|2 + |x|−4|∇u|2)

and∫
a1r≤|x|≤a2r

|∇4u|2 ≤ C

∫
a3r≤|x|≤a4r

(|x|−2|∇3u|2 + |x|−4|∇2u|2 + |x|−6|∇u|2),

where C = C(θ, a1, a2, a3, a4, ‖C‖W 3,∞).
3. By Proposition 4.2, we have∫

a1r≤|x|≤a2r

|∇u|2 ≤ C

∫
a3r≤|x|≤a4r

|x|−2|u|2.

If l ≥ 0, then ∫
a1r≤|x|≤a2r

|x|l|∇u|2 (4.11)

≤
∫
a1r≤|x|≤a2r

(a2r)
l|∇u|2 (4.12)

≤ C(a2r)
l

∫
a3r≤|x|≤a4r

|x|−2|u|2 (4.13)

≤ C(a2r)
l

∫
a3r≤|x|≤a4r

(
|x|
a3r

)l|x|−2|u|2 (4.14)

≤ C(
a2

a3

)l
∫
a3r≤|x|≤a4r

|x|l−2|u|2. (4.15)

Similarly, if l < 0, then∫
a1r≤|x|≤a2r

|x|l|∇u|2 ≤ C(
a4

a2

)l
∫
a3r≤|x|≤a4r

|x|l−2|u|2,

where C = C(l, θ, a1, a2, a3, a4, ‖C‖W 1,∞).
4. We redo steps 1-3 with suitable range, then we have∫

a1r≤|x|≤a2r

|x|l|∇ku|2 ≤ C

∫
a3r≤|x|≤a4r

|x|l−2k|u|2

for k = 2, 3, 4, where C = C(l, θ, a1, a2, a3, a4, ‖C‖W 3,∞).
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4.2 Caccioppoli-type inequality

We introduce the following notation and definition.

Definition 4.4. Let

{Cαβ
ij (x)}1≤α,β≤n

1≤ı,≤m ∈ L∞(Ω) (4.16)

which is said to satisfy Legendre condition(strongly convex), if there exists
a Λ > 0 such that

Cαβ
ij A · A ≥ Λ|A|2, ∀A ∈ Rm×n (4.17)

Theorem 4.5 (General type of Caccioppoli’s inequality for Elliptic Sys-
tems). Let u ∈ W 1,2(Ω; Rm) be a solution of

Dα(Cαβ
ij Dβu

j) = Dαf
α
i − fi (4.18)

where Dαf
α
i , fiinL

2, and Cαβ
ij Dβu

j satisfy the Legendre condition. Then for
any ball βr(x0) ⊂ Ω and 0 < r < R we have∫

βr(x0)

|Du|2dx ≤ c

(R− r)2

∫
βR(x0)

|u− η|2dx (4.19)

+cR2

∫
BR(x0)

∑
1≤i≤m

f 2
i dx+ c

∫
βr(x0)

∑
1≤i≤m,1≤α≤n

(fαi )2dx (4.20)

∀η ∈ Rm, where c = c(n,m,Λ, sup |A|)

Proof. For convenience let x0 = 0. First we construct a cut-off function
ξ ∈ C∞0 (Rn) where ξ satisfy 0 ≤ ξ ≤ 1 and

ξ(x) =


1, |x| ≤ r,
H(|x|), r ≤ |x| ≤ R,
0, R ≤ |x|

(4.21)

where 0 ≤ H ≤ 1 and |∇αH| ≤ C|x|−|α| for any multi-index α. From
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Legendre condition we have,

Λ

∫
BR

ξ2|Du|2dx ≤
∫
BR

ξ2Cαβ
ij Dαu

iDβu
jdx

=

∫
BR

ξ2Cαβ
ij Dα(ui − ηi)Dβu

jdx

= −
∫
BR

2ξ(ui − ηi)Cαβ
ij Dβu

jDαξdx

+

∫
BR

ξ2(uu − ηi)Dα(Cαβ
ij Dβu

j)dx

= −
∫
BR

2ξ(ui − ηi)Cαβ
ij Dβu

jDαξdx

+

∫
BR

ξ2(uu − ηi)Dαf
α
i dx−

∫
BR

ξ2(uu − ηi)fidx

= −
∫
BR

2ξ(ui − ηi)Cαβ
ij Dβu

jDαξdx

+

∫
BR

ξ2(uu − ηi)Dαf
α
i dx−

∫
BR

ξ2 1

R
(uu − ηi)Rfidx

= −
∫
BR

2ξ(ui − ηi)Cαβ
ij Dβu

jDαξdx

−
∫
BR

2ξfαi (uu − ηi)Dαξdx−
∫
BR

2ξ2fαi Dαu
udx

−
∫
BR

ξ2 1

R
(uu − ηi)Rfidx

≤ ε

∫
BR

ξ2|Du|2dx+
c

R2

∫
BR

|u− η|2dx+ c

∫
BR

|f |2

≤ ε

∫
BR

ξ2|Du|2dx+
c

(R− r)2

∫
BR

|u− η|2dx+ c

∫
BR

|f |2

where c = c(n,m, ε, sup |C|). If ε is small enough we can remove
∫
BR
ξ2|Du|2dx

into

Λ

∫
Br

ξ2|Du|2dx ≤ Λ

∫
BR

ξ2|Du|2dx (4.22)

≤ c

(R− r)2

∫
BR

|u− η|2dx+ c

∫
BR

|f |2. (4.23)

where c = c(n,m,Λ, sup |C|).

Let n = m = 3 and fαi = fi = 0, we can reduce it to the simple form.
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Lemma 4.6. (Caccioppoli-type inequality) If C is strongly convex with form
(1.9) and u ∈ W 1,2(Ω,R3) is a solution to (1.15), then for any ball BR ⊂ Ω
and 0 < r < R the the following Caccioppoli inequality holds∫

Br

|∇u|2 ≤ C

(R̂− r)2

∫
BR

|u|2 (4.24)

where C = C(θ, ||C||L∞).

Given u ∈ W 1,p(Ω) and S be any measurable subset of Ω, set uS :=
1/|S|

∫
S
u.

4.3 Poincaré inequality

In mathematics, Poincaré inequality allows us to get bounds only using its
derivatives and the geometry domain. This inequality is very important in
modern analysis. In general, there are two versions of poincare inequalities,
one is the compact support version, and the other is the subtracted average
version.

Theorem 4.7 (Poincaré inequality - boundary support). If domain U has
finite width, there exists a constant Q = Q(p, diam(U)) such that for all
f ∈ C∞0 (U), we have

‖f‖Lp(U) ≤ c‖Df‖Lp(U). (4.25)

Proof. For convenience we assume that U lies between hyperplanes xn = 0
and xn = c > 0. Given f ∈ C∞0 . Let (x′, xn) = x ∈ U , we have

f(x) =

∫ xn

0

Dnf(x′, t)dt. (4.26)
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So that

‖f‖pLp(U) =

∫
Rn−1

∫ c

0

|f(x′, xn)|pdxndx′

=

∫
Rn−1

∫ c

0

|
∫ xn

0

Dnf(x′, t)dt|pdxndx′

≤
∫
Rn−1

∫ c

0

|(
∫ xn

0

|Dnf(x′, t)|pdt)
1
p (xn)

p−1
p |pdxndx′

=

∫
Rn−1

∫ c

0

(

∫ xn

0

|Dnf(x′, t)|pdt)(xn)p−1dxndx
′

≤
∫
Rn−1

∫ c

0

|(
∫ xn

0

|Dnf(x′, t)|pdt)
1
p (xn)

p−1
p |pdxndx′

≤
∫
Rn−1

∫ c

0

(xn)p−1

∫ c

0

|Dnf(x′, t)|pdtdxndx′

≤ cp

p

∫
U

|Dnf(x)|pdx

≤ Q(p, diam(U))p‖Dnf‖pLp(U)

where Q(p, diam(U)) =
diam(U)

p
1
p

.

The following standard inequality can be found in [7].

Lemma 4.8 (Poincaré inequality - subtract mean). If U is convex and u ∈
W 1,2(U), then we have

||u− uS||L2(U) ≤ (
ω3

|S|
)1−1/3d3||∇V ||L2(U), (4.27)

where d = diam(U) and uS =
∫
S u

|S| for any measurable S ⊂ U .

Proof. Since we know C1(U) is dense in W 1,2(U), it is enough to show u ∈
C1(U). We have

u(x)− u(y) = −
∫ |x−y|

0

Dru(x+ rη)dr (4.28)

where η = y−x
|y−x| . Then integrate both sides of (4.28) over S, we obtain

|S|(u(x)− uS) =

∫
S

(u(x)− u(y))dy = −
∫
S

∫ |x−y|
0

Dru(x+ rη)drdy. (4.29)
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Let

V (x) =

{
|Dru(x)|, x ∈ U
0, otherwise

we have

|u(x)− us|

≤ 1

S

∫
S

∫ |x−y|
0

V (x+ rη)drdy

≤ 1

S

∫
|x−y|<d

∫ ∞
0

V (x+ rη)drdy

=
1

|S|

∫ ∞
0

∫
|x−y|<d

V (x+ rη)dydr

=
1

|S|

∫ ∞
0

∫
|η|=1

∫ d

0

V (x+ rη)ρn−1dρdηdr

=
dn

n|S|

∫ ∞
0

∫
|η|=1

V (x+ rη)dηdr

=
dn

n|S|

∫
Rn
|x− y|1−nV (y)dy

=
dn

n|S|

∫
U

|x− y|1−n|Dru(y)|dy (4.30)

Let µ ∈ (0, 1], we have n(µ − 1) ≤ 0. Let R > 0 such that |U | = |BR(x)| =
wnR

n. It is easy to find ∫
U

|x− y|n(µ−1)dy

≤
∫
BR(x)

|x− y|n(µ−1)dy

=

∫ R

0

∫
∂B(x,r)

rn(µ−1)dsdr

=

∫ R

0

rn(µ−1)nwnr
n−1dr

=

∫ R

0

rnµ−1nwnr
n−1dr

=
1

µ
Rnµwn

=
1

µ
w1−µ
n |U |µ.
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Let µ = 1
n
, then ∫

U

|x− y|1−ndy ≤ nw
1− 1

n
n |U |

1
n . (4.31)

Since |x − y|1−n|Dru(y)| = |x − y| 1−n2 |x − y| 1−n2 |Dru(y)|, then apply Holder
inequality to obtain∫

U

|x− y|1−n|Dru(y)|dy ≤ (

∫
U

|x− y|1−n|Dru(y)|2dy)
1
2 (

∫
U

|x− y|1−ndy)
1
2

(4.32)
So that ∫

U

(

∫
U

|x− y|1−n|Dru(y)|dy)2dx

≤
∫
U

(

∫
U

|x− y|1−n|Dru(y)|2dy)(

∫
U

|x− y|1−ndy)dx

≤ nw
1− 1

n
n |U |

1
n

∫
U

∫
U

|x− y|1−n|Dru(y)|2dydx

≤ nw
1− 1

n
n |U |

1
n

∫
U

|Dru(y)|2
∫
U

|x− y|1−ndxdy

≤ n2w
2− 2

n
n |U |

2
n

∫
U

|Dru(y)|2.

Combine the last inequality and (4.30) with n = 3, we complete the proof.

Now, if u ∈ W 1,2(Ω,R3), R̂ < 1, S = Br and E = BR̂, we obtain∫
BR̂

|u− ur|2 ≤ C(
R̂

r
)6−2R2

∫
BR̂

|∇u|2, (4.33)

where ur = 1
|Br|

∫
Br
u.

4.4 Sobolev inequality

In mathematics, there is a class of Sobolev inequalities for analysis of norms in
Sobolev spaces. These inequalities can be used to prove the Sobolev embed-
ding theorem, giving the inclusion relations of some Sobolev spaces. Further,
the Rellich-Kondrachov theorem states that under slightly stronger condi-
tions, some Sobolev spaces can be tightly embedded into another space.

Sobolev inequalities is really a big and important class of tools. Here we
only present the Theorem and reference.
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Theorem 4.9 (Sobolev inequality). When mp < n, there exists a finite
constant K such that for every u ∈ C∞0 (Rn)∫

Rn
|u(x)|qdx ≤ Kq(

∑
|α|=m

∫
Rn
|Dαu(x))pdx)

q
p (4.34)

if and only if q = np
n−mp .

The detailed proof can be found in ([1]).
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5 Transformation of the original system into

two new systems

In order to obtain the three spheres inequalities for solution u to system
(1.15), we need a suitable form of Carleman estimate. For this purpose, we
transform system (1.15) with C satisfying (1.9) into a new system with the
uncoupled principal part. To begin with, we recall a standard property.

5.1 Auxiliary new system

Proposition 5.1. Let C be of the form (1.9) and satisfies Assumption 1.
We have {

Σjltjlξjξl + µ|ξ|2 ≥ θ|ξ|2,
Σjltjlξjξl + (λ+ 2µ)|ξ|2 ≥ θ|ξ|2, (5.1)

which means that
A1(x,D) := Σjl(µδjl + tjl)∂

2
xjxl

and
A2(x,D) := Σjl((λ+ 2µ)δjl + tjl)∂

2
xjxl

are both uniform elliptic operators.

We assume that λ, µ, tjk ∈ W 2,∞(Ω). Then we can rewrite (1.15) in the
form

A1(x,D)u+ (λ+ µ)∇(∇ · u) = P̃1(x,D)(u), (5.2)

where P̃1 is the first order differential operator with W 1,∞(Ω) coefficients.
We denote two auxiliary functions v(x) := ∇ · u(x) and w(x) := ∇ × u(x).
The equation becomes

A1(x,D)u = P1(x,D)(u, v). (5.3)

Take the divergence on (5.3), we derive the equation

A2(x,D)v = Q2(x,D)(u) +Q1(x,D)(u, v), (5.4)

where Q2(x,D)(u) = −2(∂iµ)4ui− (∂itjl)∂jlui and Q1 is first order differen-
tial operator with L∞(Ω) coefficients. Take the curl on (5.3), and we have

A1(x,D)w = R2(x,D)(u) +R1(x,D)(u, v, w), (5.5)

where R2(x,D)(u) = −(∇tjl) × (∂jlu) − ∇µ ×4u and R1 is the first order
differential operator with L∞(Ω) coefficients. Now, we have the following
property.

27

doi:10.6342/NTU201804025



Proposition 5.2. If u satisfies (1.15) and λ, µ, tjl ∈ W 2,∞(Ω) for all j, l =
1, 2, 3, then u also satisfies

A1u = P1(u, v),
A2v = Q1(u, v) +Q2(u),
A1w = R1(u, v, w) +R2(u)

(5.6)

where v := ∇ · u and w := ∇× u.

5.2 New system for the product of two elliptic opera-
tors

We assume that λ, µ, tjl ∈ W 4,∞(Ω) for all j, l = 1, 2, 3. Take 4 on system
(5.6). Since 4u = ∇(∇ · u) − ∇ × (∇ × u) = ∇v − ∇ × w, we have the
following proposition.

Proposition 5.3 (New system for the product of two elliptic operators). If
u satisfies (1.15) and λ, µ, tjl ∈ W 4,∞(Ω) for all j, l = 1, 2, 3, then u also
satisfies 

4(A1(x,D)u) = Q3
1(x,D)(u, v, w),

4(A2(x,D)v) = Q3
2(x,D)(u, v, w),

4(A1(x,D)w) = Q3
3(x,D)(u, v, w),

(5.7)

where v := ∇ · u, w := ∇× u and Q3
j is third order differential operator with

L∞(Ω).
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6 Carleman estimates

In general, we need a suitable Carleman estimate to derive Three sphere
inequality. In order to make a long story short, we directly use Theorem of
[14] to obtain the suitable Carleman estimate we need. Because the theorem
involves many symbols, so we first explain the symbols used in it.

Let g = {gij(x)}3
i,j=1 be positive definite. So there exists g−1(x) =

{gij(x)}3
i,j=1, which is the inverse matrix of g(x). We know g−1(x) is positive

definite.
For convenience, we shall use the following notations. Let g1(x) = {gij1 (x)}3

i,j=1

and g2(x) = {gij2 (x)}3
i,j=1 be two symmetric matrix real value functions which

satisfy:
1).Let a, b ∈ Rn we denote

(a, b) :=
n∑
i=1

aibi, |a|2 := (a, a) (6.1)

2).
λ|ξ|2 ≤ gijk (x)ξiξj ≤ λ−1|ξ|2 (6.2)

for every x, ξ ∈ R3;
3).

3∑
i,j=1

|gijk (x)− gijk (y)| ≤ Λ|x− y| (6.3)

for every x, y ∈ R3.
Set Λ1 := maxk∈{1,2}

∑3
i,j=1 ‖g

ij
k ‖W 2,∞(R3). Let Lk :=

∑3
i,j=1 g

ij
k ∂i∂j be the

second order differential operator for k =1,2 and set L := L2(L1).
4).

|g| := (
3∑

i,j=1

(gij)2)
1
2

5).Let Γ = {γij}ni,j=1 be a matrix. Let m∗ and m∗ be the minimum and the
maximum eigenvalue of Γ such that

m∗|x|2 ≤ (Γx, x) ≤ m∗|x|2 for everyx ∈ Rn. (6.4)

Sometimes we omit the lower index and obtain the following notations

∇gu(x) = g−1∇gu(x), (6.5)

4gu = div(∇gu(x)). (6.6)
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Note that 4gk 6= Lk. Let f ∈ C∞0 (Bσ
r0
\ {0}) but we have

|4gkf | ≤ |Lkf |+ c|∇f | (6.7)

where c = c(Λ).

6.1 Second order type Carleman estimate

The following Carleman estimate is from Theorem 4.5 of [14].

Theorem 6.1 (Original second order type Carleman estimate). Let β be a
number such that β > w0, let

ϕ(s) = exp−s
−τ

(6.8)

and let w(x) = ϕ(σ(x)) and σ(x) = (Γx, x)
1
2
n . There exist constant C, τ1 and

r0, (C ≥ 1, τ1 ≥ 1, 0 < r0 ≤ 1) depending only on λ,Λ,m∗,m
∗ and β such

that for every u ∈ C∞0 (Bσ
r0
\{0}) and for every τ ≥ τ1 the following inequality

holds true

β3

∫
σ−τ−2w−2βu2 + β

∫
στw−2β|∇gu|2 ≤ C

∫
σ2τ+2w−2β(4gu)2. (6.9)

Then using our notations, we deduce for this inequality the following
lemma.

Lemma 6.2 (Carleman estimate for second order elliptic operator). There
exist C, β0 and r0 (C ≥ 1, β0 ≥ 1, 0 < r0 ≤ 1) depending only on λ and Λ
such that for every u ∈ C∞0 (Br0\{0}) and for every β > β0 we have

β3

∫
r−τ−2ϕ2

β|u|2 + β

∫
rτϕ2

β|∇u|2 ≤ C

∫
r2τ+2ϕ2

β|Liu|2 (6.10)

where ϕβ = ϕβ(|x|) = exp(β|x|−τ ).

Proof. Let Γ := I, so that m∗ = m∗ = 1 and σ(x) = |x| 12 . In addition, we
have

ϕ2
β(x) = exp(2β|x|−τ ) = ϕ−2β(|x|) = w−2β(x).

So that (6.9) reduces to

β3

∫
r−τ−2ϕ2

βu
2 + β

∫
rτϕ2

β|∇gu|2 ≤ C

∫
r2τ+2ϕ2

β(4gu)2. (6.11)

Applying (6.2) and (6.3), we have

|∇u| ≤ c|∇gu| (6.12)
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and use (6.7) we obtain

β3

∫
r−τ−2ϕ2

β|u|2 + β

∫
rτϕ2

β|∇u|2 (6.13)

≤ β3

∫
r−τ−2ϕ2

βu
2 + cβ

∫
rτϕ2

β|∇gu|2 (6.14)

≤ C

∫
r2τ+2ϕ2

β(4gu)2 (6.15)

≤ C

∫
r2τ+2ϕ2

β|Lku|2 + C

∫
r2τ+2ϕ2

β|∇u|2 (6.16)

We cancel the last term of (6.16) and completes the proof.

6.2 Auxiliary Carleman estimate form

We need the following standard proposition to derive a new Carleman esti-
mate (Theorem 6.4). This proposition can be found in [14], and we include
the proof in Appendix A for reader’s convenience.

Proposition 6.3. Given a ∈ C1(R3 \ {0}) and u ∈ C∞0 (R3 \ {0}), we have
the following inequalities∫

a2|∇2u|2 ≤ C(

∫
a2|Liu|2 +

∫
(a2 + |∇a|2)|∇u|2), i = 1, 2, (6.17)∫

a2|∇3u|2 ≤ C(

∫
a2|Lu||∇2u|+

∫
(a2 + |∇a|2)|∇2u|2), (6.18)

where C = C(λ,Λ).

Proof of Proposition 6.3. To simplify the notation, we omit the index k in
Lk. For any l ∈ {1, 2, 3}, we have∫

Lu∂2
llua

2 = −
∫
∂l(a

2gij∂2
iju)∂lu

= −
∫
a2gij∂3

ijlu∂lu− 2

∫
a∂lag

ij∂2
iju∂lu−

∫
a2(∂lg

ij)∂2
iju∂lu

=

∫
a2gij∂2

ilu∂
2
jlu+ ∂j(a

2gij)∂2
ilu∂lu− 2

∫
a∂lag

ij∂2
iju∂lu

−
∫
a2(∂lg

ij)∂2
iju∂lu

≥ λ
∑
l

∫
a2|∇∂lu|2 − C

∫
(|a|+ |∇a|)|a||∇u||∇2u|,
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where C = C(λ,Λ). Summing up the last inequality with respect to l
and applying the inequality 2xy ≤ εx2 + 1

ε
y2 yield (6.17).

Let v ∈ C∞0 (R3 \ {0}). Observe that

λ

∫
a2|∇v|2 ≤

∫
a2gij∂iv∂jv

= −
∫
a2gij∂2

ijvv − 2

∫
a∂jag

ij∂ivv −
∫
a2∂jg

ij∂ivv,

we have ∫
a2|∇v|2 ≤ C

(∫
a2|L2v||v|+

∫
(a2 + |∇a|2)v2

)
, (6.19)

where C = C(λ,Λ). Apply the inequality,

|L1(∂lu)| ≤ |∂l(L1u)|+ C|∇2u|,

and take v = L1u to the inequality (6.19), we have∫
a2|L1(∂lu)|2 ≤ C

(∫
a2|Lu||∇2u|+

∫
(a2 + |∇a|2)|∇2u|2

)
,

where C = C(λ,Λ). Summing up with respect to l and applying inequality
(6.17) yield inequality (6.18).

6.3 Production of two second order type Carleman es-
timate

By Lemma 6.2 and Proposition 6.3, we can derive a new Carleman estimate.
We include the proof of the following Theorem in Appendix A.

Theorem 6.4 (Carleman estimate for the product of two elliptic operators).
There exist C, β∗ and r∗ (C ≥ 1, β∗ ≥ 1, 0 < r∗ ≤ 1) depending only on λ,Λ
and Λ1 such that for every V ∈ C∞0 (Br∗\{0}) and for every β > β∗, we have

3∑
k=0

β6−2k

∫
r−τ−2+k(2τ+2)ϕ2

β|∇kV |2 ≤ C

∫
r5τ+6ϕ2

β|LV |2. (6.20)

Proof of Theorem 6.4. We will prove this theorem using arguments similar
to [14]. We recall the constant τ = λ−2 and the function ϕβ = expβ|x|

−τ
as in
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section 4. By applying inequality (6.10) with the function V = r
3
2
τ+2v, we

have

β3

∫
r2τ+2ϕ2

β|v|2 = β3

∫
r−τ−2ϕ2

β|r
3
2
τ+2v|2 ≤ C

∫
r2τ+2ϕ2

β|L2(r
3
2
τ+2v)|2

(6.21)
for every β ≥ β0. Since

|L2(r
3
2
τ+2v)| ≤ r

3
2
τ+2|L2v|+ Cr

3
2
τ+1|∇v|+ Cr

3
2
τ |v|, (6.22)

we have

β3

∫
r2τ+2ϕ2

β|v|2 ≤ C

∫
r5τ+6ϕ2

β|L2v|2 + C

∫
r5τ+4ϕ2

β|∇v|2 (6.23)

for every β ≥ β1, where C only depends on λ and Λ. Apply inequality (6.10)
again with V = r2τ+2v, we have

β

∫
rτϕ2

β|∇(r2τ+2v)|2 ≤ C

∫
r2τ+2ϕ2

β|L2(r2τ+2v)|2. (6.24)

By

|∇(r2τ+2v)|2 + Cr4τ+2v|v|2 ≥ 1

2
r4τ+4v|∇v|2,

(6.24) and

|L2(r2τ+2v)| ≤ r2τ+2|L2v|+ Cr2τ+1|∇v|+ Cr2τ |v|,

we have

β

2

∫
r5τ+4ϕ2

β|∇v|2

≤ β

∫
rτϕ2

β|∇(r2τ+2v)|2 + Cβ

∫
r5τ+2ϕ2

β|v|2

≤ C

∫
r2τ+2ϕ2

β|L2(r2τ+2v)|2 + Cβ

∫
r5τ+2ϕ2

β|v|2

≤ C

∫
r6τ+6ϕ2

β|L2v|2 + C

∫
r6τ+4ϕ2

β|∇v|2 + Cβ

∫
r5τ+2ϕ2

β|v|2.

Reduce the last inequality to

β

∫
r5τ+4ϕ2

β|∇v|2 ≤ C

∫
r6τ+6ϕ2

β|L2v|2 + Cβ

∫
r5τ+2ϕ2

β|v|2 (6.25)
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for every β ≥ β2. Combining (6.23) and (6.25) gives

β3

∫
r2τ+2ϕ2

β|v|2 ≤ C

∫
r5τ+6ϕ2

β|L2v|2 (6.26)

for every β ≥ β3. Let v = L1u, then

β3

∫
r2τ+2ϕ2

β|L1u|2 ≤ C

∫
r5τ+6ϕ2

β|L2(L1u)|2. (6.27)

Apply (6.10) with V = u and (6.27), we have

β6

∫
r−τ−2ϕ2

β|u|2 + β4

∫
rτϕ2

β|∇u|2 ≤ C

∫
r5τ+6ϕ2

β|L2(L1u)|2. (6.28)

Apply inequality (6.17) with a = r
3
2
τ+1ϕβ, then∫

r3τ+2ϕ2
β|∇2u|2 ≤ C(

∫
r3τ+2ϕ2

β|L1u|2 + β2

∫
rτϕ2

β|∇u|2). (6.29)

Combine (6.27), (6.28) and (6.29), we have

β2

∫
r3τ+2ϕ2

β|∇2u|2 ≤ C

∫
r5τ+6ϕ2

β|L2(L1u)|2 (6.30)

for every β ≥ β4.
Apply inequality (6.18) with a = r−

5
2
τ+2ϕβ, then∫

r5τ+4ϕ2
β|∇3u|2 ≤ C

∫
r5τ+4ϕ2

β|L2(L1u)||∇2u|+ Cβ2

∫
r3τ+2ϕ2

β|∇2u|2.
(6.31)

Since

r5τ+4|L2(L1u)||∇2u|
= r

3
2
τ+1|∇2u|r

7
2
τ+3|L2(L1u)|

≤ 1

2
r3τ+2|∇2u|2 +

1

2
r7τ+6|L2(L1u)|2,

we have∫
r5τ+4ϕ2

β|∇3u|2 ≤ C

∫
r7τ+6ϕ2

β|L2(L1u)|2 + Cβ2

∫
r3τ+2ϕ2

β|∇2u|2. (6.32)

Combining (6.30) and (6.32) gives∫
r5τ+4ϕ2

β|∇3u|2 + β2

∫
r3τ+2ϕ2

β|∇2u|2 ≤ C

∫
r5τ+6ϕ2

β|L2(L1u)|2 (6.33)

for every β ≥ β5. By (6.28) and (6.33), we obtain the claimed result.
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7 Three spheres inequalities

In this section, we derive the main tool: three spheres inequalities for solution
u to system (1.15), the elasticity system with residual stress. The idea used
in [10] plays a key role in our arguments here. According to [10], we shall
need two suitable auxiliary tools interior estimate (Corollary 4.3) and the
Carleman estimate (Theorem 6.4) for our system.

In order to simplify the derivations and notations in this section, we only
consider Ω = BR := {x ∈ R3 : |x| < R}. Moreover, if X is a norm space
and C is an elasticity tensor, we shall denote C ∈ X if λ, µ, tjl ∈ X for all
j, l = 1, 2, 3, and let

‖C‖X := ‖λ‖X + 2‖µ‖X +
3∑

j,l=1

‖tjl‖X .

7.1 Three spheres inequality - normal type

Now we have all the tools to obtain three spheres inequalities. By system
(5.7) with w = ∇× u and v = ∇ · u, we rewrite

U(x) :=

 u(x)
w(x)
v(x)

 : Ω→ R7,

R(U(x)) :=

 L1
3(u, v, w)

L3
3(u, v, w)

L2
3(u, v, w)

 : Ω→ R7.

Let Li := 4(A1) for i = 1, · · · , 6 and L7 := 4(A2), (5.7) can be rewritten in
the form

LiUi = Ri(U) (7.1)

for i = 1, · · · , 7, where Ri is the third order differential operator with L∞(Ω)
coefficients. Now, we have the following inequality

|LiUi| ≤ C
3∑

k=0

|∇kU | (7.2)

for every i = 1, 2, · · · , 7, where C = C(M).

Theorem 7.1 (Three spheres inequalities). If C is a elasticity tensor satis-
fying (1.9) and Assumption 1 and 6, there exists a positive number r∗ < 1
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depending only on θ,M , such that for every 0 < r1 < r2 < r3 = 2r2 <
min{R, r∗} and for every u satisfying (1.15) in BR, we have

∫
Br2

|u|2 ≤ C

(∫
Br1

|u|2
)δ(∫

Br3

|u|2
)1−δ

, (7.3)

where the constants C = C(θ,M, r1, r2), δ = δ(θ,M, r1, r2).

Proof of Theorem 7.1. From Assumption 1 and 6, we know that the constant
λ, Λ and Λ1 in Theorem 6.4 depend only on θ and M .

Let ξ ∈ C∞0 (R3) satisfy 0 ≤ ξ ≤ 1

ξ(x) =


0, |x| ≤ r1

4
,

1, r1
2
≤ |x| ≤ 3r2

2
,

0, 2r2 ≤ |x|

and |∇αξ| ≤ C|x|−|α| for any multi-index α. Apply Theorem 6.4 with u =
ξ4Ui, then

3∑
k=0

β6−2k

∫
{ r1

2
≤|x|≤ 3r2

2
}
r−τ−2+k(2τ+2)ϕ2

β|∇kUi|2

≤ C

∫
r5τ+6ϕ2

β|Li(ξ4Ui)|2

= C

∫
{ r1

4
≤|x|≤ r1

2
}∪{ 3r2

2
≤|x|≤2r2}

r5τ+6ϕ2
β|Li(ξ4Ui)|2 + C

∫
{ r1

2
≤|x|≤ 3r2

2
}
r5τ+6ϕ2

β|LiUi|2

for i = 1, · · · , 7. Sum up with respect to i = 1, · · · , 7, then

3∑
k=0

β6−2k

∫
{ r1

2
≤|x|≤ 3r2

2
}
r−τ−2+k(2τ+2)ϕ2

β|∇kU |2

≤ C

7∑
i=1

∫
{ r1

4
≤|x|≤ r1

2
}∪{ 3r2

2
≤|x|≤2r2}

r5τ+6ϕ2
β|Li(ξ4Ui)|2

+ C

7∑
i=1

∫
{ r1

2
≤|x|≤ 3r2

2
}
r5τ+6ϕ2

β|LiUi|2.

Let β be large enough and r2 be small enough (β > β∗, r2 <
r∗
2

, where β∗ and
r∗ are the constants in Theorem 6.4) and apply the inequality (7.2), and we
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can remove the second term on the right hand side and obtain the following
simpler inequality:

3∑
k=0

β6−2k

∫
{ r1

2
≤|x|≤ 3r2

2
}
r−τ−2+k(2τ+2)ϕ2

β|∇kU |2

≤ C

7∑
i=1

∫
{ r1

4
≤|x|≤ r1

2
}∪{ 3r2

2
≤|x|≤2r2}

r5τ+6ϕ2
β|Li(ξ4Ui)|2.

Since ϕβ(r) is decreasing with r, the last inequality yields

β6

∫
{ r1

2
≤|x|≤r2}

r−τ−2ϕ2
β(r2)|u|2

≤ C
7∑
i=1

∫
{ r1

4
≤|x|≤ r1

2
}
r5τ+6ϕ2

β(
r1

4
)|Li(ξ4Ui)|2

+ C
7∑
i=1

∫
{ 3r2

2
≤|x|≤2r2}

r5τ+6ϕ2
β(

3r2

2
)|Li(ξ4Ui)|2.

We reduce the last inequality to∫
{ r1

2
≤|x|≤r2}

ϕ2
β(r2)|u|2

≤ C
3∑

k=0

∫
{ r1

4
≤|x|≤ r1

2
}
r5τ−2+2kϕ2

β(
r1

4
)|∇kU |2

+ C
3∑

k=0

∫
{ 3r2

2
≤|x|≤2r2}

r5τ−2+2kϕ2
β(

3r2

2
)|∇kU |2.

Apply Corollary 4.3(Interior estimate) to last inequality, and we get∫
{ r1

2
≤|x|≤r2}

ϕ2
β(r2)|u|2

≤ C

∫
{ r1

8
≤|x|≤r1}

r5τ−4ϕ2
β(
r1

4
)|u|2

+ C

∫
{r2≤|x|≤3r2}

r5τ−4ϕ2
β(

3r2

2
)|u|2.

We reduce it to∫
{ r1

2
≤|x|≤r2}

|u|2

≤ C

∫
{ r1

4
≤|x|≤ r1

2
}
φ1(β)|u|2 + C

∫
{ 3r2

2
≤|x|≤2r2}

φ2(β)|u|2
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for all β > β∗, where φ1(β) =
ϕ2
β(r1/4)

ϕ2
β(r2)

> 1, φ2(β) =
ϕ2
β(3r2/2)

ϕ2
β(r2)

and C =

C(θ,M, r1, r2). Adding
∫
|x|< r1

2
|u|2 to both sides leads to∫

|x|<r2
|u|2 ≤ Cφ1(β)

∫
|x|<r1

|u|2 + Cφ2(β)

∫
|x|<2r2

|u|2. (7.4)

We observe that φ1 is increasing with β and that φ2 is decreasing with β.
If
∫
|x|<r1 |u|

2 = 0, then
∫
|x|<r2 |u|

2 = 0 as β → ∞. If
∫
|x|<r1 |u|

2 6= 0 and

φ1(β∗)
∫
|x|<r1 |u|

2 < φ2(β∗)
∫
|x|<2r2

|u|2, there exists β1 > β∗ such that

φ1(β1)

∫
|x|<r1

|u|2 = φ2(β1)

∫
|x|<1

|u|2.

Set β = β1 in (7.4), then we obtain

∫
|x|<r2

|u|2

≤ 2Cφ1(β1)

∫
|x|<r1

|u|2

= 2C(

∫
|x|<r1

|u|2)1−δ(

∫
|x|<2r2

|u|2)δ,

where

δ =
( r1

4
)−τ − (r2)−τ

( r1
4

)−τ − (3r2
2

)−τ
∈ (0, 1).

If
∫
|x|<r1 |u|

2 6= 0 and φ1(β∗)
∫
|x|<r1 |u|

2 ≥ φ2(β∗)
∫
|x|<2r2

|u|2, we have∫
|x|<r2

|u|2

≤
∫
|x|<2r2

|u|2

=(

∫
|x|<2r2

|u|2)1−δ(

∫
|x|<2r2

|u|2)δ

≤(
φ1(β∗)

φ2(β∗)
)1−δ(

∫
|x|<r1

|u|2)1−δ(

∫
|x|<2r2

|u|2)δ

≤C(

∫
|x|<r1

|u|2)1−δ(

∫
|x|<2r2

|u|2)δ,

where δ can be chosen as above. This completes the proof.
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7.2 Three spheres inequality - differential type

Corollary 7.2 (Three spheres inequalities - differential type). If C is an
elasticity tensor satisfying (1.9) and Assumptions 1 and 6, there exists a
positive number r∗ < 1 depending only on θ,M , such that, for every 0 <
r1 < r2 < r3 = 3r2 < min{R, r∗} and for every u satisfying (1.15) in BR, we
have ∫

Br2

|∇u|2 ≤ C

(∫
Br1

|∇u|2
)δ(∫

Br3

|∇u|2
)1−δ

, (7.5)

where the constants C = C(θ,M, r1, r2), δ = δ(θ,M, r1, r2).

Proof of Corollary 7.2. Let ur := 1
|Br|

∫
Br
u and v := u − ur, then v satisfies

the hypothesis of Theorem 7.1 and ∇v = ∇u. We apply Caccioppoli’s in-
equality with r = r2, R̂ = 3r2

2
, Theorem 7.1 and Poincaré inequality twice

with r = R̂ = r1 and r = r1, R̂ = 2r2, respectively, then∫
Br2

|∇u|2 =

∫
Br2

|∇v|2

≤ C

(r2)2

∫
B 3r2

2

|v|2

≤ C

(r2)2
(

∫
Br1

|v|2)1−δ(

∫
B3r2

|v|2)δ

≤ C

(r2)2
(r2

1

∫
Br1

|∇u|2)1−δ((
3r2

r1

)6−2(3r2)2

∫
B3r2

|∇u|2)δ

≤ C(
3r2

r1

)2δ(
r3

r1

)6δ(

∫
Br1

|∇u|2)1−δ(

∫
B3r2

|∇u|2)δ.
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8 Lipschitz propagation of smallness

8.1 Boundary estimate

We prove the main theorem(Theorem 3.1) with the following auxiliary lem-
mas, which are the analogues of the lemmas in [4]. The proofs of the following
lemmas are shown in Appendix B.

Lemma 8.1 (Boundary estimate). Let C be a elasticity tensor satisfying
(1.9) and Assumptions 1, 2 and 6. For any positive integer m. If u0 ∈
H1(Ω,R3) is solution of (1.15), then we have∫

Ω\Ω(3m+1)ρ

|∇u0|2 ≤ Cρ1/3||ϕ||2L2(∂Ω), (8.1)

where C = C(θ, ‖C‖W 2,∞ , r0,M0, |Ω|,m).

Proof of Lemma 8.1. For convenience, we suppress the subscript 0 in u0.
Apply Hölder’s inequality, we have∫

Ω\Ω(3m+1)ρ
|∇u|2 ≤ |Ω\Ω(3m+1)ρ|

1
3 (
∫

Ω\Ω(3m+1)ρ
|∇u|3)

2
3

= |Ω\Ω(3m+1)ρ|
1
3‖∇u‖2

L3(Ω\Ω(3m+1)ρ).

Apply Sobolev inequality (see [1]), we have

‖∇u‖2
L3(Ω) ≤ C‖∇u‖2

H
1
2 (Ω)
≤ C‖u‖2

H
3
2 (Ω)

.

Combine the last two inequalities, we obtain

‖∇u‖2
L2(Ω\Ω(3m+1)ρ) ≤ C|Ω\Ω(3m+1)ρ|

1
3‖u‖2

H
3
2 (Ω)

, (8.2)

where C = C(r0,M0, |Ω|). By the global estimates for the Neumann problem
(see [2]), we have

‖u‖H1(Ω) ≤ C1‖ϕ‖
H
−1
2 (∂Ω)

and
‖u‖H2(Ω) ≤ C2‖ϕ‖H 1

2 (∂Ω)
.

By interpolation (see [11]), we have

‖u‖
H

3
2 (Ω)
≤ C‖ϕ‖L2(∂Ω), (8.3)

where C = C(r0,M0, |Ω|,C). By (A.3) of [17], we obtain the inequality

|Ω\Ω(3m+1)ρ| ≤ Cρ, (8.4)

where C = C(r0,M0, |Ω|,m). Combining (8.2), (8.3) and(8.4) yields the
result.
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8.2 Theorem of Lipschitz propagation of smallness

Lemma 8.2. (Lipschitz propagation of smallness) Let C be an elasticity
tensor satisfying (1.9) and Assumptions 1, 2 and 6. If u0 ∈ H1(Ω,R3) is
solution of (1.15), we have∫

Bρ(x)

|∇u0|2 ≥ Cρ

∫
Ω

|∇u0|2 (8.5)

for any ρ > 0 and for every x ∈ Ω9ρ, where
Cρ = Cρ(θ,M, |Ω|, r0,M0, ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω), ρ).

Proof of Lemma 8.2. For convenience, we suppress the subscript 0 in u0. By
Assumption 2, there exists ρ0 such that Ω9ρ is connected for every ρ ≤ ρ0.
Without loss of generality, we may assume, for this proof, ρ ≤ ρ0. Given
any y ∈ Ω9ρ, let γ be an arc in Ω9ρ joining x and y. We define {xi}Li=1

as follows: Set x1 = x. If |xi − y| > 2ρ, we set xi+1 = γ(ti), where ti =
max{t : |γ(t)− xi| = 2ρ}. Otherwise let i = L and stop the process. Then,
by construction, the balls Bρ(xi) are pairwise disjoint, |xi+1 − xi| = 2ρ for
i = 1, · · · , L− 1, |xL − y| ≤ 2ρ.

By Corollary 7.2, we have
∫
Br2
|∇u|2 ≤ C(

∫
Br1
|∇u|2)δ(

∫
Br3
|∇u|2)1−δ with

xi, r1 = ρ, r2 = 3ρ, r3 = 9ρ, C = C(θ,M, ρ) and δ = δ(θ,M, ρ). Since

||∇u||L2(Bρ(xi+1)) ≤ ||∇u||L2(B3ρ(xi)) ≤ C||∇u||δL2(Bρ(xi))
||∇u||1−δL2(Ω),

we have
||∇u||L2(Bρ(xi+1))

||∇u||L2(Ω)

≤ C(
||∇u||L2(Bρ(xi))

||∇u||L2(Ω)

)δ.

Sum up with respect to i, then we derive

||∇u||L2(Bρ(y))

||∇u||L2(Ω)

≤ C(C(
||∇u||L2(Bρ(xL−2))

||∇u||L2(Ω)

)δ)δ (8.6)

≤ C1+δ+δ2+···(
||∇u||L2(Bρ(x))

||∇u||L2(Ω)

)δL. (8.7)

Since Bρ(xi) ∩ Bρ(xj) = ∅ if i 6= j, we have L ≤ |Ω|
w3ρ3 . Let us cover Ω10ρ

with non-overlapping closed cubes of side l = 2ρ√
3
. The number of the cubes

is controlled by N = |Ω|3
3
2

23ρ3 . Clearly, any such cube is contained in Bρ(y) for

some y ∈ Ω9ρ. Therefore, from (8.7) we have

||∇u||L2(Ω10ρ)

||∇u||L2(Ω)

≤ C

ρ
3
2

(
||∇u||L2(Bρ(x))

||∇u||L2(Ω)

)δL. (8.8)
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Clearly, we have the following identity

||∇u||2L2(Ω10ρ)

||∇u||2L2(Ω)

= 1−
||∇u||2L2(Ω/ Ω10ρ)

||∇u||2L2(Ω)

. (8.9)

By trace inequality, then

||ϕ||
H−

1
2 (∂Ω)

≤ C||∇u||L2(Ω).

By Lemma 8.1 and te last inequality, we have

||∇u||2L2(Ω/ Ω10ρ) ≤ Cρ
1
3 ||ϕ||2L2(∂Ω) (8.10)

≤ Cρ
1
3 ||ϕ||2L2(∂Ω)

||ϕ||2
H−

1
2 (∂Ω)

||ϕ||2
H−

1
2 (∂Ω)

(8.11)

≤ Cρ
1
3 ||∇u||2L2(Ω). (8.12)

From (8.9) and (8.12), there exists ρ̄ > 0 (ρ̄ ≤ ρ0) such that

||∇u||2L2(Ω10ρ)

||∇u||2L2(Ω)

≥ 1

2
(8.13)

for every 0 < ρ ≤ ρ̄.
From (8.8) and (8.13), we have

Cρ||∇u||2L2(Ω) ≤ ||∇u||2L2(Bρ(x))

for every 0 < ρ ≤ ρ̄ and for every x ∈ Ω9ρ. If ρ > ρ̄, we also have∫
Bρ(x)

|∇u|2 ≥
∫
Bρ̄(x)

|∇u|2 ≥ Cρ̄

∫
Ω

|∇u|2

for every x ∈ Ω9ρ. This completes the proof.
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9 Auxiliary lemmas

Below we will introduce two simple Lemma. With the help of these two
Lemma, we can prove that the main results are more concise and clear.

9.1 Three auxiliary equations

Lemma 9.1. [Three auxiliary equations] Let C and C̃ be elasticity tensors
and C also satisfy Assumption 1. If u , u0 ∈ H1(Ω,R3) are weak solutions
for the traction problems (3.1), (3.2), respectively, then we have the following
identities:∫

Ω

(χΩ\DC+χDC̃)∇(u−u0)·∇(u−u0)−
∫
D

(C̃−C)∇u0 ·∇u0 =

∫
∂Ω

(g−g0)·ϕ,

(9.1)

∫
Ω

C∇(u− u0) · ∇(u− u0) +

∫
D

(C̃−C)∇u · ∇u =

∫
∂Ω

(g0 − g) · ϕ, (9.2)

∫
D

(C̃−C)∇u · ∇u0 =

∫
∂Ω

(g0 − g) · ϕ, (9.3)

where g, g0 ∈ H1/2(∂Ω,R3) are the displacement of u and u0, respectively, on
∂Ω.

Proof of Lemma 9.1. Set H := C̃−C. Let D1 and D2 be two subsets of Ω.
Let u1 and u2 be functions such that{

div((χΩ\DiC + χDiC̃)∇ui) = 0 in Ω
(C∇ui) · ν = ϕ on ∂Ω

(9.4)

with gi := ui|∂Ω for i = 1, 2. For any w ∈ H1(Ω,R3), we have∫
Ω

(C + χD1H)∇u1 · ∇w

= −
∫

Ω

∇((C + χD1H)∇u1) · w +

∫
∂Ω

(C∇u1)ν · w

= 0 +

∫
∂Ω

ϕ · w

= −
∫

Ω

∇((C + χD2H)∇u2) · w +

∫
∂Ω

(C∇u2)ν · w

=

∫
Ω

(C + χD2H)∇u2 · ∇w.
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Subtract
∫

Ω
(C + χD1H)∇u2 · ∇w from both sides of the last equation, then

we have∫
Ω

(C + χD1H)∇(u1 − u2) · ∇w =

∫
Ω

(χD2 − χD1)H∇u2 · ∇w. (9.5)

Since Cijkl = Cklij, taking w = u1 in (9.5) yields∫
Ω

(χD2−χD1)H∇u2 ·∇u1 =

∫
Ω

(C+χD1H)∇(u1−u2)·∇u1 =

∫
∂Ω

ϕ·(g1−g2).

Combine the last identity and (9.5) with w = u1 − u2, we have∫
Ω

(C + χD1H)∇(u1 − u2) · ∇(u1 − u2)

=

∫
Ω

(χD2 − χD1)H∇u2 · ∇(u1 − u2)

=

∫
Ω

(χD1 − χD2)H∇u2 · ∇u2 +

∫
∂Ω

ϕ · (g1 − g2).

The last identity implies∫
Ω

(C + χD1H)∇(u1 − u2) · ∇(u1 − u2) +

∫
D2\D1

H∇u2 · ∇u2

=

∫
∂Ω

ϕ · (g1 − g2) +

∫
D1\D2

H∇u2 · ∇u2. (9.6)

1. We choose D1 = D and D2 = ∅, hence u1 = u and u2 = u0. Substitute
them into (9.6), then∫

Ω

(C+χDH)∇(u−u0)·∇(u−u0)+0 =

∫
∂Ω

ϕ·(g−g0)+

∫
D

(C̃−C)∇u0 ·∇u0.

This is identity (9.1).
2. We choose D1 = ∅ and D2 = D, hence u1 = u0 and u2 = u. Substitute

them into (9.6), then∫
Ω

C∇(u0 − u) · ∇(u0 − u) +

∫
D

(C̃−C)∇u · ∇u =

∫
∂Ω

ϕ · (g0 − g) + 0.

This is identity (9.2).
3. We choose w = u0 and w = u in the weak formulation of the traction

problems (3.2) and (3.1), respectively, then we have∫
Ω

(C + χDH)∇u · ∇u0 =

∫
∂Ω

g0 · ϕ (9.7)
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and ∫
Ω

C∇u0 · ∇u =

∫
∂Ω

g · ϕ. (9.8)

By subtracting (9.8) from (9.7) we obtain identity (9.3).

9.2 Estimate boundary energy of strongly elliptic sys-
tem

Lemma 9.2. [Estimate boundary energy] Let C and C̃ be elasticity tensors.
Let ξl and ξu, 0 < ξl < ξu, such that

ξl|A| ≤ C(x)A · A ≤ ξu|A| for a.e. x ∈ Ω, (9.9)

for any 3×3 matrix A, and let the jump C̃−C satisfies either (3.3) or (3.4).
Suppose that u, u0 ∈ H1(Ω,R3) are weak solutions to the traction problems
(3.1) and (3.2), respectively. If (3.3) holds, then we have

ηξl
δ

∫
D

|∇u0|2 ≤
∫
∂Ω

(g0 − g) · ϕ ≤ (δ − 1)ξu

∫
D

|∇u0|2; (9.10)

if (3.4) holds, then we have

ηξl

∫
D

|∇u0|2 ≤
∫
∂Ω

(g − g0) · ϕ ≤ 1− δ
δ

ξu

∫
D

|∇u0|2. (9.11)

Proof of Lemma 9.2. Set H = C̃−C.
1. If (3.3) holds, from identity (9.1), we have∫

∂Ω

ϕ·(g0−g) ≤
∫
D

H∇u0·∇u0 ≤ (δ−1)

∫
D

C∇u0·∇u0 ≤ (δ−1)ξu

∫
D

|∇u0|2.
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For the middle term, we observe∫
D

H∇u0∇u0

=

∫
H(∇u0 −∇u+∇u) · (∇u0 −∇u+∇u)

=

∫
D

H∇(u− u0) · ∇(u− u0) +

∫
D

H∇u · ∇u+

∫
D

H∇(u0 − u) · ∇u

+

∫
D

H∇u · ∇(u0 − u)

≤(1 + ε)

∫
D

H∇(u− u0) · ∇(u− u0) + (1 +
1

ε
)

∫
D

H∇u · ∇u

≤(1 + ε)(δ − 1)

∫
D

C∇(u− u0) · ∇(u− u0) +
ε+ 1

ε

∫
D

H∇u · ∇u

=(1 + ε)(δ − 1)

[∫
D

C∇(u− u0) · ∇(u− u0) +
1

ε(δ − 1)

∫
D

H∇u · ∇u
]

for every ε > 0. By ε = 1
δ−1

> 0 and identity (9.2), then we have∫
D

H∇u0 · ∇u0

≤δ
[∫

D

C∇(u− u0) · ∇(u− u0) +

∫
D

H∇u · ∇u
]

≤δ
[∫

Ω

C∇(u− u0) · ∇(u− u0) +

∫
D

H∇u · ∇u
]

= δ

∫
∂Ω

(g0 − g) · ϕ. (9.12)

From (3.3), we also have∫
D

H∇u0 · ∇u0 ≥ η

∫
D

C∇u0 · ∇u0 ≥ εlη

∫
D

|∇u0|2. (9.13)

Combine (9.12) and (9.13), we complete the proof of (9.10).
2. If (3.4) holds from identity (9.3), we have∫

∂Ω

(g − g0) · ϕ

=

∫
D

(−H)∇u · ∇u0
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≤ ε

2

∫
D

(−H)∇u · ∇u+
1

2ε

∫
D

(−H)∇u0 · ∇u0 (9.14)

for every ε > 0. By identity (9.1), (9.2) and inequality (3.4), observing
that

C̃ = χDC̃ + χΩ\DC̃ + χΩ\DC− χΩ\DC = (χΩ\DC + χDC̃) + χΩ\D(C̃−C),

we have ∫
D

(−H)∇u · ∇u

=

∫
∂Ω

(g − g0) · ϕ+

∫
Ω

C∇(u− u0) · ∇(u− u0)

≤
∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
Ω

C̃∇(u− u0) · ∇(u− u0)

≤
∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
Ω

(χΩ\DC + χDC̃)∇(u− u0) · ∇(u− u0)

=

∫
∂Ω

(g − g0) · ϕ+
1

δ

[∫
∂Ω

(g − g0) · ϕ+

∫
D

H∇u0 · ∇u0

]
=
δ + 1

δ

∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
D

H∇u0 · ∇u0.

So we have ∫
D

(−H)∇u · ∇u

≤ δ + 1

δ

∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
D

H∇u0 · ∇u0. (9.15)

From (9.14) and (9.15), we obtain∫
∂Ω

(g − g0) · ϕ

≤ ε

2

δ + 1

δ

∫
∂Ω

(g − g0) · ϕ+
ε

2

1

δ

∫
D

H∇u0 · ∇u0 +
1

2ε

∫
D

(−H)∇u0 · ∇u0

for every ε > 0. We take ε = δ > 0, then

1− δ
2

∫
∂Ω

(g − g0) · ϕ ≤ 1− δ
2δ

∫
D

(−H)∇u0 · ∇u0.
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Hence ∫
∂Ω

(g − g0) · ϕ

≤ 1

δ

∫
D

(−H)∇u0 · ∇u0

≤ 1

δ
(1− δ)

∫
D

C∇u0 · ∇u0

≤ 1− δ
δ

ξu

∫
D

|∇u0|2.

From identity (9.1) and (3.4), we get∫
∂Ω

(g − g0) · ϕ

≥
∫
D

(−H)∇u0 · ∇u0

≥ η

∫
D

C∇u0 · ∇u0

≥ ηξl

∫
D

|∇u0|2.
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10 Proof of main result

Proof of Theorem 3.1. From Assumption 1 and 6, we choose ξl = θ and
ξu = 3M , such that Lemma 9.2 holds.

1. By standard regularity estimates and Poincaré inequality, we have

‖∇u0‖L∞(D) ≤ C‖u0‖H1(Ωd0/2) ≤ C‖∇u0‖L2(Ω),

where C = C(d0, |Ω|). Since u0 is the solution for (3.2), we also have

‖∇u0‖2
L2(Ω) ≤ C

∫
Ω

C∇u0 · ∇u0 = C

∫
∂Ω

(C∇u0)ν · ∇u0 = C

∫
∂Ω

ϕ · g0,

where C = C(d0, θ, |Ω|). Apply Lemma (9.2) and the last two inequalities,
and we obtain the lower bound for |D| with C = C(d0, θ, |Ω|).

2. Let Dh1 = {x ∈ D|dist(x, ∂D) ≥ h1} and ε = min{ h1√
3
, 2d0

9
}. Because

of Assumption 4, there exists {Ql}Ll=1, which are the non-overlapping closed
cubes with side ε that cover Dh1 , and which are contained in D. Now we
have the estimate∫

D

|∇u0|2 ≥
∫
⋃L
l=1

|∇u0|2 ≥ L

∫
Q∗
|∇u0|2,

where Q∗ is the cube in {Ql}Ll=1 such that∫
Q∗
|∇u0|2 = min

l

∫
Ql

|∇u0|2.

Since Lε3 ≥ |Dh1 |, we have∫
D

|∇u0|2 ≥
|Dh1|
ε3

∫
Q∗
|∇u0|2 ≥

|Dh1|
ε3

∫
B(x̄,ε/2)

|∇u0|2, (10.1)

where x̄ is the center of Q∗. By Lemma 8.2 and Assumption 3, we obtain∫
D

|∇u0|2 ≥

|Dh1 |
ε3

∫
B(x̄,ε/2)

|∇u0|2

≥ |Dh1|
ε3

C ε
2

∫
Ω

|∇u0|2

≥ C|Dh1|
∫

Ω

C∇u0 · ∇u0

= C|Dh1|
∫

Ω

ϕ · g0

≥ C
|D|
2

∫
Ω

ϕ · g0,
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where C = C(θ, d0, |Ω|, r0,M0,M, h1, ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω)). By Lemma
9.2, we obtain the upper bound of D.
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11 Further work

The main contribution of our work is to overcome the need for loses some
symmetry properties(1.11) under elasticity system with residual stress. The
system we discussed has a wider range of applications and a closer physical
reality than Lamé system.

In general, we can complete our work, because we can derive the Lipschitz
propagation of smallness(8.2) with our Assumptions 1-6. And the key of this
derivation is that we obtain Three-Spheres Inequality(7.2), which is based on
we can transform the original elasticity system with residual stress(1.8) into
the product of two elliptic operators.

The work we have done is based on the assumption that β3 = β4 = 0 for
(1.6). In our future work, we can try to get rid of this hypothesis or assume
that some β3 or β4 are a very small value to get a similar estimate. The
biggest difficulty will be how to convert the equation into new system for the
product of two elliptic operators.

51

doi:10.6342/NTU201804025



Carleman Estimate
for Second Order

(section 6.1)

⇓

New System for The
Product of Two

Elliptic Operators
(section 5.2)

Carleman Estimate
for The Product

Operators
(section 6.3)

⇓ ⇓

Three Spheres Inequalities - Differential Type
(section 7.2)

Boundary Estimate
(section 8.1)

⇓ ⇓

Three Auxiliary Equations
(section 9.1)

Lipschitz Propagation of Smallness
(section 8.2)

⇓ ⇓

Estimate Boundary Energy
(section 9.2)

⇓

⇓ ⇓

Main Result : Inclusion Estimate
(section 10)
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