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Abstract

Nowadays, the bulk of these road collisions is caused by human unaware-
ness or distraction. Since the most important thing is your safety and the
safety of others, ADAS is developed to support enhanced vehicle system for
safety and better driving. AEBS as an important part of the ADAS has be-
come a hot research topic. Computer vision, together with Radar and Lidar, is
at the forefront of technologies that enable the evolution of AEBS. Since the
cost of long range radar and lidar is very high, we want to use camera-based
system to construct AEBS. Instead of using a single monocular camera, we
propose a heterogeneous camera-based system to use sensor fusion to com-
bine the strengths of all the difference FoV cameras. Also, We use a heuristic
false positive removal method to decrease the false positive rate that caused
by the sensor fusion method. We optimize the sensor fusion method Because
of the the limitation of computing resource on embedded system. As a result,
the recall of YOLO can be increased up to 10% through our heterogeneous
camera-based system.

Keywords - Heterogeneous Sensing Fusion, Heterogeneous Camera-Based

Sytem, Tri-focal camera, AEBS, Object Detection
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Chapter 1

Introduction

1.1 Motivation

Vehicle accidents are unfortunately very common for a long time. The bulk of these
road collisions is caused by human unawareness or distraction. The National Highway
Traffic Safety Administration (NHTSA) issued that 35,092 people died in vehicle crashes
in 2015. Research shows that 94% of crashes were tied to human choices or error [1].
Since the most important thing is the safety of passenger and driver, advanced driver-
assistance systems (ADAS) is developed to support enhanced vehicle system for safety
and better driving. The purpose of ADAS is to enhance traffic safety and efficiency.
For example, ADAS are composed of autonomous emergency braking system (AEBS),
adaptive cruise control (ACC), lane departure warning (LDW), speed limit monitoring
(SLM), rear cross traffic alert (RCTA), blind spot detection system (BST).

These subsytems provide different effects for better driving. Lane departure warn-
ing warns the driver if ADAS detects that the vehicle is departing from the current lane.
Adaptive cruise control is used to handle the vehicle speed adaptively based on the dis-
tance between your vehicle and leading vehicle, your current speed, the road condition,
and prediction of the leading vehicle’s speed change. Automatic emergency braking sys-
tem is a system that automatically detect a potential forward collision and trigger the ve-

hicle braking system to decelerate the vehicle with the purpose of avoiding or mitigating

1 doi:10.6342/NTU201800542



ADAS Functions

ACC LDW EBA SLM RCTA BSD

Adaptive Lane Departure Emergency Speed Limit Rear Cross Blind Spot
Cruise Control Warning Brake Assist Monitoring Traffic Alert Detection

Figure 1.1: ADAS functions'

a collision if the driver fails to react to an emergency situation.

Nowadays, computer vision, together with radar and Lidar, is at the forefront of tech-
nologies that enable the evolution of AEBS. Figure 1.2 shows an example of ADAS sen-
sors. Radar offers some advantages, such as long detection range (up to 200 m) and
capability to operate under extreme weather conditions. However, it acts awful on false
positives, especially around road curves, because it is not able to recognize objects. Lidar,
which is commonly spelled LiDAR and also known as LADAR or laser altimetry, is an
acronym for light detection and ranging. It is a surveying method that measures distance
to a target by illuminating that target with a pulsed laser light, and measuring the reflected
pulses with a sensor. Although both radar and lidar are precise and have long range, lidar
has more resolution than radar sensors. So lidar is popularly used to make high-resolution
maps in these days [2] [3] [4]. For example, Google’s self-driving car [5] relies on lidar to
provide it with a 360 degree of what is happening around the vehicle. It has a lidar sensor
attached to the top of a car where it spins and shoots out lasers to create high-resolution
maps of the car’s surroundings. Camera-based systems also have their own limitations.
They are very sensitivity to weather conditions, and they are not as reliable as radar when
obtaining depth information. On the other hand, they have a wider field of view, and more
importantly, they can recognize and categorize objects.

However, the cost of long range radar or lidar is very high. Lidar is the most expensive

'Source: http://www.conti-engineering.com/CMSPages/GetFile.aspx ?guid=cf6d6925-8148-46¢e9-
b59a-6eed8c23a0f6

2Source: Advanced Driver Assistant System - Intel, https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/advanced-driver-assistant-system-paper.pdf
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Figure 1.2: An example of ADAS sensors.?

component in these sensors. A single unit of lidar cost 75,000 US dollars just a few years
ago. Although Google’s self-driving car project-turned-spinoff company claim to slash
the price of lidar by 90%, it stills cost 7,500 US dollars per vehicle [6]. Therefore, we
want to study by using only camera-based system to construct AEBS system. There
are many kinds of camera now, like short/long focal length, digital/optical zooming...etc.
Choosing a suitable camera plays an important role in our camera-based system. The
wide-angle camera (wide field of view) eventually reaching the super wide-angle range,
which capture an even broader scope. On the other hand, the object will be very small
when it is far from the camera. The telephoto camera restricts the angle of view, but it is
capable to capture faraway objects at a larger size. If we use only wide-angle camera to
detect the objects, we may miss some vehicles which are far from us. On the other hand,
we may miss vehicles in a traffic jam (only the part of vehicles in the FoV) if we choose
telephoto camera.

For all these reasons, our proposed heterogeneous camera-based system on AEBS will
use sensor fusion to combine the strengths of all the difference field of view (FoV) cam-

eras. There are some purposes to fuse information from the heterogeneous camera sensors

3 doi:10.6342/NTU201800542



Figure 1.3: An example of different FoV camera. (a) wide-angle camera. (b) focal length
between wide-angle camera and telephoto camera. (c) telephoto camera.

of ADAS. First, to make content of some information more complete. Second, to improve
the accuracy of the sensor-detecting information. Final, to improve the robustness of the
sensor-detecting information. Although the true positive (shown in Figure 1.4(a)) of the
AEBS system will be increased by using sensor fusion to fuse all the different FoV cam-
eras, however, the false positive will be increased as well. As all the ADAS systems are
computer-based and depend on sensor technology, data fusion, and image analysis. False
positive instances (false alarms) or error of the system are unavoidable. Since the false
positives may cause a fatal malfunction of a vehicle, and it may result in dangerous acci-
dents. Itis important to reduce the occurrences of false positives to improve the robustness
and reliability of the system. For example, Figure 1.4(c) shows a false positive detection.
In this case, the "car" rectangle is detected by vehicle detection algorithm. AEBS will
automatically stop the car to avoid the accident because of this false positive detection.
However, this unnecessary emergency brake activation doesn’t make sense since there is
no cars ahead. Further, this reaction may cause a rear-end accidents.

Because of the above mentioned, our work will develop a heterogeneous camera-based
system on AEBS, which has not only the advantage of all the different FoV cameras, but

also the lower false positive rate.

4 doi:10.6342/NTU201800542



(c) False Positive (d) False Negative

Figure 1.4: An example of true positive, true negative, false positive, false negative.

1.2 Contribution

In this thesis, we propose a heterogeneous camera-based system for AEBS. Compare
to others camera-radar based system, the AEBS can be set up in a lower cost by using our
system. Also, the proposed system guarantees higher accuracy and lower false positive
rate than single monocular camera system. At last, we optimize the proposed sensor

fusion method because of the the limitation of computing resource on embedded system.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we present previous
existing fusion functions for heterogeneous sensors and related works. In Chapter 3, we
present our system architecture. In Chapter 4, we present our algorithm and we use R-tree
to reduce the search space. In Chapter 5, we evaluate our algorithm and present the results

of our experiments. Chapter 6 conclude our work in this thesis.
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Chapter 2

Background and Related Work

2.1 Autonomous Emergency Braking System

In recent years, Europe, America and other developed countries have spent enormous
efforts in developing ADAS, AEBS as an important part of the ADAS has become a popu-
lar research topic. To ensure safety, UNECE R131 [7] defines the functional requirements
of AEBS. Here are the definition in UNECE R131. The subject vehicle refers to the tested
vehicle which is the category M3 vehicle. The target refers to a high volume series pro-
duction passenger car of category M1 AA saloon' or in the case of a soft target. Time to
collision (TTC) refers to the interval of time obtained by dividing the distance between
the subject vehicle and the target by the relative speed of the subject vehicle and the target,
at an instant in time.

The subject vehicle shall approach the stationary target in a straight line. The func-
tional part of the test shall start when the subject vehicle is traveling at a speed of 80
+ 2 km/h and is at a distance of at least 120m from the stationary target. First, at least
one warning shall be issued no later than 1.4s before the start of emergency braking phase.
Second, at least two warnings shall be provided no later than 0.8s before the start of emer-
gency braking phase. Final, the emergency braking phase shall not start before the TTC

is equal to or less than 3.0 seconds.

' As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/-
TRANS/WP.29/78/Rev.2, para. 2.

6 doi:10.6342/NTU201800542



Since AEBS should have at least one warning no later than 1.4s before the start of
emergency braking phase and the emergency braking phase shall not start before the TTC
is equal to or less than 3.0 seconds by the regulation, AEBS should issue at least one
warning when TTC is equal to or less than 4.4s. In the same way, AEBS should issue at
least two warnings when TTC is equal to or less than 3.8s. As a result of above, we need
to detect if the stationary target vehicle exists when TTC is equal to or less than 4.4s and
TTC is equal to or less than 3.8s.

By the formula of constant velocity motion (s = v *t), we can obtain that the distance
between subject vehicle and stationary target is 97.78 meters when the speed of subject

vehicle is 80km/h and TTC is equal to or less than 4.4s.

The final stage

M3 bus is running
at 80 km/h. The second stage

M1 car is
stationary.
The first stage §I i
> 1 '] ']
| | |
4.4 s 3.8s 3.0s 0.0s (t)
97.78 m 84.44m 66.67 m Om (m)

Figure 2.1: AEBS-TTC testing. (a) The first stage: at least one warning mode shall be
provided. (b) The second stage: at least two warning mode shall be provided. (c) The
final stage: the emergency braking phase shall start.

2.2 Vision-Based Vehicle Detection - YOLO

A large amount of researches which are computer vision based have been conducted
on vehicle detection from over the years. Many of them applied traditional methods,
such as background subtraction, frame difference, optical flow, etc. In [8], they applied
a median-based background subtraction method to detect vehicles. In [9], they proposed

a frame difference method to detect moving vehicles. However, our research targets a

7 doi:10.6342/NTU201800542



dynamic background, which is collected by a camera, meaning that traditional methods
such as frame difference, background subtraction cannot be used directly.

Since deep learning has become a powerful technology in image recognition, gaming,
information retrieval, and many other areas that need intelligent data processing. There
are several machine learning based approaches have been proposed on vehicle detection
in last few years. You Only Look Once (YOLO) [10] [11], a machine learning based
algorithm which is proposed by Joseph Redmon at 2016, is a new and effective method to
detect objects based on regression instead of classifying. Different from others machine
learning algorithm (like R-CNN), the image is only fed into the YOLO network just for
once and the network can output all the detect results. The workflow of YOLO detection
system is shown in Figure 2.2. First, the system resizes the input image to 416 x 416
pixels. Second, it runs a single convolutional network on the image. At last, it filters the
resulting detections by the model’s confidence. Compared to traditional methods of object
detection, processing images with YOLO is simple and straightforward. Also, YOLO is
extremely fast and it is capable to detect a wide variety of object classes. It can detect
over 9000 object categories and it runs at 67 frame per second (FPS) on a Geforce GTX

Titan X [11].

Horse: 0.28

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.2: The YOLO detection system?

2Source: J. Redmon and A. Farhadi., “Yolo9000: Better, faster, stronger.” in Computer Vision and
Pattern Recognition, 2016.
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2.3 R-tree

R-tree is a hierarchical data structure proposed by Antonin Guttman [12] in 1984. It
is based on B-tree and can be used to search spatial objects efficiently. Similar to the
B-tree, the R-tree i1s also a balanced search tree, within which all leaf nodes are at the
same height. R-tree is a well known spatial indexing technique that has been widely used
in many geospatial applications, like indexing 2D or higher dimensional data. A common
real-world usage for R-tree is to store spatial objects such as restaurant locations, streets,
buildings informations, and then find answers to query such as "Find all restaurant within
1 km of my current location".

The main idea of R-tree is to group nearby objects and represent them by their min-
imum bounding rectangle (MBR) in the next higher level of the tree. The R-tree data
structure consists of intermediate nodes and leaf nodes, and each node consists of several
entries. Data objects are stored in leaf nodes and intermediate nodes are built by grouping
rectangles at the lower level. Each entry of intermediate node is associated with MBR
within which some rectangle completely encloses all rectangles that correspond to lower
level nodes. Intermediate nodes contain entries of the form (Rect, child-ptr) where child-
ptr is a pointer to a child node in the R-tree; Rect is the MBR that covers all rectangles of
the child node. Leaf nodes contain entries of the form (Rect, tuple-identifier) where tuple-
identifier is a pointer to the object description, and Rect is the MBR of the object. The
main innovation in the R-tree is that parent nodes are allowed to overlap. This way, the
R-tree can guarantee at least 50% space utilization and remain balanced [13]. In R-tree,
the MBR of root node covers all rectangles and the leaf nodes store the information of
data objects. Let us assume that M is the maximum number of entries that can fit in a leaf
or intermediate node, m is the minimum number of entries that must fit in an intermediate

node. The R-tree has the following properties:

(1) The root node has at least two children unless it is a leaf.
(i1) The entries number of entries on intermediate node should be no less than
m and no greater than M.
(ii1) All leave nodes have the same depth level.

9 doi:10.6342/NTU201800542



The first step of constructing R-tree is to generate MBR for the data rectangles. The
next step is to group nearby rectangles and group them into a new MBR that is large
enough to cover the rectangles in the next higher level of the tree. This process will con-
tinue until the root of R-tree is found, which is the rectangle covering all data rectangles.
Figure 2.3 shows an example set of data rectangles. For example, at the first step, each
data rectangle (gray rectangle) generates its MBR. At the next step, the data rectangles are
divided into several groups, and the new MBRs (blue rectangles) are generated to cover
each group of data rectangles. In this case, R; is the MBR which is created in this step
and it covers the data rectangle Ry; and R;5. The process will continue until the root of
R-tree is found, which are red rectangles in this case. The final result of this construction
is shown in Figure 2.4, which is the corresponding R-tree built on these data rectangles

(assuming a maximum branching number M = 3 and minimum branching number m =

2).

l_ ________ '_T_T_T_T_T_T_T_T_T_T_T_T_T_T_T_T_.I—

R2 'R6 R17 |

F—————————— R S 1

' 'R5 ! RI15 | |

l i | ! R18 |

| (R13 | | |

| : - [R14 | !

| I ) S | ::

| | I

'R16 :

_____________ L |

:;FR7 R19 o t
|_ _— || - |- — — :_ _: - - - - — — 7T _I_T_T_T_T_T_T_T_'{:"_T_T_T_T_T_TI|
|R'I |: R20 : : :R4 RM :l :l
| I o R10 ! |
| ] | e === === -l |
| I ! | | :I
| [ If_ i [ l R12 :|
|;— ———————————————————————————— | i
k " R i 1
! 1
| |

Figure 2.3: Data (gray rectangles) organized in a R-tree with M = 3, m = 2

Since the main idea of R-tree is to group nearby objects and represent them with their

minimum bounding rectangle (MBR) in the next higher level of the tree. The key idea

10 doi:10.6342/NTU201800542
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Figure 2.4: R-tree (with M = 3, m = 2) for the data rectangles of Figure 2.3

of searching algorithm in R-tree is to use the bounding boxes to decide whether or not to
search inside a subtree. In this way, most of the nodes in the tree are never read during
a search. Like B-tree, this makes R-tree suitable for large data sets and databases, where
nodes can be paged to memory when needed, and the whole tree cannot be kept in main
memory. Assuming M is the maximum number of entries that can fit in a leaf or interme-
diate node, N is the number of leaf nodes. The time complexity of searching algorithm
is O(log ps V). Due to the searching algorithm, the performance of R-tree depends on the
quality of the algorithm that clusters the data rectangles on a node. If the cluster algorithm
results in several overlapping between MBRs, the performance will degrade because of
the increasing of the searching subtrees.

In this thesis, we assume that the data rectangles are static (do not require dynamic
insertions or updates). The low-x packed R-tree [14] is a step towards to construct an
R-tree with 100% space utilization which will have as good response time as possible at
the same time. However, this method will result in degradation of performance for region
queries. Hilbert R-tree [15] is proposed by 1. Kamel in order to cluster the region data
in a better way than the low-x packed R-tree. Instead of sorting the data on the x or y
coordinate, Hilbert R-trees use the Hilbert curve to impose a linear ordering on the data
rectangles. The basic Hilbert curve on 1x1, 2x2, 4x4 grid are shown in Figure 2.5. The
number in each grid presents Hilbert value. For example, on the 4x4 grid (denote by Ha,
the (0,0) is at lower left corner), the point (0,0) on the Hy curve has a Hilbert value of
0, while the point (2,1) has a Hilbert value of 13. Also, the Hilbert value of a rectangle

needs to be defined. Following the experiments in [13], a good choice is that the Hilbert

11 doi:10.6342/NTU201800542



value of a rectangle is defined as the Hilbert value of its center.

; 6 o y | I ||
4 . 8 11 — |——
1 2 |__| |
3 2 13 12 |_
0 3 0 1 14 15 I —
H H H
1 2 3

Figure 2.5: Hilbert curves of order 1, 2 and 3 [15]

The Hilbert R-tree claims that the overlapping between MBRs will decrease by using
the ascending Hilbert value to pack the rectangles during the construction of R-tree. Since
the performance of Hilbert R-tree is better and the construction cost is low (only change

the packing rules from the original R-tree), we will use Hilbert R-tree in this thesis.

2.4 Related Work

Various approaches are taken to build ADAS platforms nowadays, with focus being
reliability, high performance, low cost and low power consumption. These platforms usu-
ally contain a few processing units with different purposes on the same system on chip
(SoC). There are several research focus on heterogeneous sensing fusion. That is, they
use camera and radar or other sensors together [16] [17] [18] [19]. In [16], they propose
a vehicle recognize algorithm base on radar and vision sensors with the application to
automatic emergency braking. Since the radar is sensitive, there are a lot of false detec-
tion caused by radar. To improve this, they propose a vehicle recognition method which
is based on shape and motion attribute. The motion attribute is designed to determine
whether the object is either stationary or dynamic and the shape attribute aims to identity

12 doi:10.6342/NTU201800542



whether the objective is a vehicle or not by sensor fusion. In [17], they use mobile smart
phone as a computing platform because the mobile smart phones today are equipped with
numerous sensors that can help to aid in safety enhancements for drivers on the road.
In [18], they use informations that are provided by in-vehicle Lidar and monocular vi-
sion to present a detect, track and classify entities in semi-structured outdoor scenarios.
In [19], they use radar and camera to recognize whether the detected object is either ve-
hicle or non-vehicle with the application of AEBS. Most of the researches use different
type of sensors simultaneously on AEBS. Different from them, we use only camera-based

system to construct AEBS system.

13 doi:10.6342/NTU201800542



Chapter 3

System Architecture and Problem

Definition

3.1 System Architecture

Safety-critical embedded systems are undergoing an evolution towards greater auton-
omy. In this thesis, we use the recently released NVIDIA Jetson TX2 as our computing
platform. Since we use a GPU-based deep learning (YOLO) as our vehicle detection algo-
rithm and several different FoV cameras simultaneously, the computing platform we used
must have GPU to run YOLO system and suppors for multiple cameras module. Also, this
computing platform should be portable because the ADAS is running on moving vehicles.
Moreover, this computing platform should have low power consumption since the energy
on vehicle is limited. Thus, NVIDIA Jetson TX2 is one of the most suitable computing
platform for us due to these limitation.

NVIDIA Jetson is the world’s leading Al computing platform for GPU-accelerated
parallel processing in mobile embedded systems and is called for "autonomous every-
thing" [20]. NVIDIA Jetson TX2 is part of the Jetson family of embedded computers.
It shares a common GPU architecture with the higher-end NVIDIA Drive PX2, which
is currently available only to automotive companies and suppliers. It is one of the most

outstanding GPU-enabled platforms marketed today for autonomous systems. It has two
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important attributes for embedded use cases. First, it provides significant computing ca-
pacity. Second, it meets pratical limits on monetary cost as well as size, weight, and power
consumption. It doubles the performance of its predecessor. And it can run at more than
twice the power efficiency, while drawing less than 7.5 watts of power [21]. Figure 3.1

shows the capability of NVIDIA Jetson TX1 and TX?2.

GPU NVIDIA Pascal™, 256 CUDA cores NVIDIA Maxwell ™, 256 CUDA cores
CPU HMQF:JEJ‘;‘R%%":;;//ZZ uBB tzz * Quad ARM® A57/2 MB L2
Video 4K x 2K 60 Hz Encode (HEVC) 4K x 2K 30 Hz Encode (HEVC)
4K x 2K 60 Hz Decode (12-Bit Support) 4K x 2K 60 Hz Decode (10-Bit Support)
Memory 8GB 15%87bgBLPDDR4 4 GB 64 bit LPDDR4
. /s 25.6 GB/s
Display 2x DSI, 2x DP 1.2/ HDMI 2.0/ eDP 1.4 2x DSI, 1x eDP 1.4/ DP 1.2/ HDMI
csl Up to 6 Cameras (2 Lane) Up to 6 Cameras (2 Lane)
CSI2 D-PHY 1.2 (2.5 Gbps/Lane) CSI2 D-PHY 1.1 (1.5 Gbps/Lane)
PCIE Gen 2 | 1x4 + 1x1 OR 2x1 + 1x2 Gen 2| 1x4 + 1x1
Data Storage 32 GB eMMC, SDIO, SATA 16 GB eMMC, SDIO, SATA
Other CAN, UART, SP, I12C, I12S, GPI0s UART, SPI, 12C, 12S, GPIOs
usB USB 3.0 + USB 2.0
Connectivity 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth
Mechanical 50 mm x 87 mm (400-Pin Compatible Board-to-Board Connector)

Figure 3.1: The ability of NVIDIA Jetson TX1 and TX2!

We set up three different FoV cameras at the same view direction on this platform.
Figure 3.2 shows the proposed heterogeneous camera-based system on vehicle with a
collection of sensors to enable sensor fusion and actions. For simplicity, we use normal
camera to represent the camera which focal length between wide-angle camera and tele-
photo camera. In the rest of this thesis, the term "wide-angle camera", "normal camera"
and the term "telephoto camera" will be used frequently. The horizontal angle of wide-
angle camera is 150°, which covers all two lanes next to the vehicle. The horizontal angle
of normal camera is 52°, which covers part of two lanes next to the vehicle and the lane
that the moving vehicle is traveling at. The horizontal angle of telephoto camera is 28°,

which only cover the lane that the moving vehicle is traveling at.

'Source: http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
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Figure 3.2: The architecture of the proposed heterogeneous camera-based system

In this thesis, we assume that the real-time clocks of all the cameras are synthesized,
and all the camera frames are merged into a single frame in advance. Figure 4.2 shows
the single frame composed by three different FoV camera. The frame at lower left corner
comes from wide-angle camera, the frame at upper half comes from normal camera, and
the frame at lower right corner comes from telephoto camera. The red rectangls are the
region of interest (ROI) since AEBS only concern the target vehicles in front of the subject

vehicle.

3.2 Problem Definition

The target problem is to increase the recall of vehicle detection algorithm (YOLO
system) by using sensor fusion for heterogeneous camera-based system and optimize the
sensor fusion method since the computing resource on embedded system is limited. Ac-
cording to the regulation of UNECE R131 [7], AEBS should start the emergency braking

phase before a TTC equal to or less than 3.0 seconds. As shown in Figure 2.1, when the

16 doi:10.6342/NTU201800542



distance between the target vehicle and the subject vehicle equal to or less than 66.67m,
the final stage should start the emergency braking phase. Thus, the proposed heteroge-
neous camera-based system should have the ability to detect the target vehicle when the
distance between the target vehicle and the subject vehicle equal to or less than 66.67m.
Another problem is to decrease the false positive rate since there are some false detections

that caused by the sensor fusion method.
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Chapter 4

Design and Implementation

In this chapter, we design the heterogeneous camera-based system and implement
sensor fusion method and false positive removal method on it. Figure 4.1 shows the
data flow of the heterogeneous camera-based system. First, we discuss the impact of
input image size on YOLO system in Section 4.1. Second, we need to transform all the
detected vehicle rectangles from different FoV cameras into the same coordinate system
before we design the sensor fusion method to fuse all the detected vehicle rectangles
from different FoV cameras. We use linear transformation to transform the coordinate
system in Section 4.2. After that, we use existed sensor fusion method into the system in
Section 4.3. However, the effect of existed sensor fusion method in the night scenario is
not significant enough. Thus, we proposed an advanced sensor fusion method in Section
4.4. Unfortunately, we may increase the false positive rate during the sensor fusion. The
higher false positive rate may cause the system do more illogical operations during car
driving. Thus, we proposed a false positive removal method to decrease the false positive
rate in Section 4.5. Finally, since the computing resource on embedded system is limited,
we need to reduce the search space of the proposed sensor fusion method. The discussion

of reducing search space is in Section 4.6.
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Figure 4.1: Data flow of the heterogeneous camera-based system.
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4.1 The Impact of Input Image Sizes

As we mentioned at section 2.2 , YOLO will resize the input image to 416 x 416

pixels before it feeds the input image into the convolution network. If the system uses a

single frame which frame size is 1920 x 1080 pixels as an input image, YOLO will resize

it into 416 x 416 pixels in advance. Consequently, the recall of using frame that frame

size 1s 1920 x 1080 pixels as input image is worse than using frame that frame size is 416

x 416 pixels as input image. Table 4.1 shows the result of it. To solve this problem, the

system crops the frame into several images which size are 416 x 416 pixels before the

system invokes the YOLO system. As shown in Figure 4.2, the system crops a 416 x 416

pixels image (denote to the red rectangles) from each camera. These red rectangles are

the region of interest (ROI) of wide-angle camera, normal camera, and telephoto camera

since AEBS only concerns the target vehicles in front of the subject vehicle.

Size of input image (pixel) | Recall
1920 x 1080 45%
416 x 416 94.5%

Table 4.1: Recall of object detection using YOLO

Figure 4.2: The frame that composed by three different FoV camera and the ROI of each

camera.
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4.2 Coordinate System Transformation

In order to fuse all the vehicle rectangles that detected by different FoV cameras, we
demand to transform these rectangles into the same coordinate system, which is "global
coordinate system". In this chapter, we use V| to represent for wide-angle camera, N,
to represent for normal camera, and /N3 to represent for telephoto camera. We use the
linear function to transform the position of the detection rectangles into global coordinate

system, and it can be shown as follows:

xZ;
/ 7 offset
mag;

4.1)

yi, — Yi + Yioﬁ‘set
mag;

where x; and y; represent the position in the coordinate system of camera N;; ;" and v’
represent the position in the global coordinate system; mag; represents the magnification

of camera N; ( That is, mag, = 1, mag, = 2, and mags = 4 ); X5

; represents the

translation offset of x;” in global coordinate system, and Y;Oﬁset represents the translation

offset of y;’ in global coordinate system where

1
Xioﬁset — W * (1 . )
mag;
19 (4.2)
Y;oﬁset — I (1 . )
mag;

W represents the width of croped input image of YOLO, and H represents the height of

croped input image of YOLO.

4.3 Existed Sensor Fusion Method

As we mentioned at Section 2.2, YOLO filters the resulting detections by the model’s
confidence after it runs a single convolutional network. In YOLO, the confidence thresh-
old of vehicle is 0.2. Therefore, if the confidence of the detection is lower than 0.2, this
detection will be filtered out by YOLO. However, there are some detections that are true

positive but its confidence is lower than the threshold. These detections will be filtered out
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by YOLO although they are true positive. If we integrate the low confidence detections
from different FoV cameras, we can keep the true positives that are filtered out by YOLO
system. Thus, we use an existed sensor fusion method, De Morgan’s law, to fuse the low
confidence detections from different FoV cameras into a new detection. Once the confi-
dence of the new detection is higher than the threshold, YOLO will not filter out this true
positive detection. And the recall will be increased because of the increasing number of
the true positive detections. The De Morgan’s law for three sensors A, B, C can be written

formally as

AUBUC=ANnBNC (4.3)

and the probability of the event detected by three sensors is defined as

PAUBUC)=1-(1-A)«(1-B)x(1-0) (4.4)

where P(A U B U (') denotes to the probability of AU B U C.

First of all, we use the method at Section 4.2 to transform all the vehicle rectangles
that detected by different FoV cameras into global coordinate system. Second, we test if
the detections from different FoV cameras denote to the same vehicle or not. Assume that
the detection R, is detected by camera N, the detection R, is detected by camera N,
and the detection Rj3 is detected by camera N3. In order to determine that the detections

denote to the same vehicle, the overlap testing is defined as follows:

true 4reaof infersection — (yyerjap threshold

area of union

Overlap(Ry, Ry, R3) = 4.5)

false | otherwise

and the value of Overlap threshold is 0.5 in this thesis. Once the detection Ry, Ry, R3 from
differents FoV cameras pass the overlap testing, we ensure that the detections Ry, Ry, R
denote to the same vehicle. At last, we use De Morgan’s law to fuse these detections
Ry, Ry, R3 into a new detection, which is R,. The position of R, is determined by the
intersection rectangle of 1?1, Rs, 3, and we can obtain the confidence of R4 by using De

Morgan’s law:
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C,=P(CLUC,UC) =1—(1—=0C)* (1 —0C9) x(1—=Cs) (4.6)

where (' represents the confidence of R;, C5 represents the confidence of Ry, Cs repre-

sents the confidence of R3, and C, represents the confidence of R,.

4.4 Proposed Sensor Fusion Method

In this section, we propose a sensor fusion method that is based on De Morgan’s
law, which is "Weighted De Morgan’s law". The significant difference between Weighted
De Morgan’s law and De Morgan’s law is that we add a weighted function on it. The
recall of different FoV cameras are different when the distance between the target vehicle
and the subject vehicle is the same. For instance, as shown in Figure 4.3, the recall of
telephoto camera is higher than wide-angle camera when the distance between the target
vehicle and the subject vehicle is 60 meters at night. At this distance, the confidence of
detected vehicle rectangles from telephoto camera are more reliable than the rectangles
that detected by wide-angle camera. On the other hand, the recall of wide-angle camera
is higher than telephoto camera when the distance between the target vehicle and the
subject vehicle is 10 meters at night. Because the capability of different FoV cameras
under different distances are variaty, the weighted function in our proposed sensor fusion
method will concern the capability of each camera.

The distance between the subject vehicle and the target vehicle is a significant infor-
mation in the Weighted De Morgan’s law. Since our AEBS architecture is camera-based
system, we apply a camera-based method to observe the distance between the subject
vehicle and the target vehicle rather than using radar or lidar sensors to measure the
distance. The distance measurement method is to utilize the length of vehicle width in
camera to measure the distance. The length of the target vehicle width in camera de-
pends on the distance between the target vehicle and the subject vehicle. For instance,
Figure 4.4 shows that the target vehicle is place at different distances between the subject

vehicle. In this thesis, we assume the minimum vehicle width is 1.5 meters. Figure 4.5

23 doi:10.6342/NTU201800542



-O- Wide-angle Camera - x- Normal Camera -[}- Telephoto Camera

100
90 |- =
O-------- ;ﬁ;:_\: ----- TF--=ziot [ O---cueo_ o,
80 B ,/, Il \\\\ \\\ IS ]
e l' AN \\\ ‘sss
70 B /// "’ O\\\ \X\ \\s\ -
X, " \\\ \\ U
< 60p ; |
é l’ \\ AY
— ! X \\
=  50f . Q ; |
g K \ N
0: 40 B l’ \\ x\\ ]
I' \\ \\
' \ N
30 B l’ \\\ ‘\ —
] \ N
! \
1 \ .
20 | 'l' AN ‘\ 1
mi O... '
10| |
“O-.
O L L L L L L TT=— .C
0 10 20 30 40 50 60 0

Distance (meter)

Figure 4.3: The recall of different FoV camera when the target vehicle is placed at differ-
ent distance at night.

Figure 4.4: The target vehicle is placed at different distances. (a) The distance is 10
meters. (b) The distance is 40 meters.
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Figure 4.5: The length of the target vehicle width at different distances. The input frame
size is 1920x1080 pixels and we assume the target vehicle width is 1.5 meters.

shows the experiment of the length of the target vehicle width at different distances be-
tween the subject vehicle. The weight in the Weighted De Morgan’s law is a function
to the recall of each camera under the certain distance. For instance, when the distance
between the target vehicle and the subject vehicle is 60 meters, the recall of wide-angle
camera is 4.5, the recall of normal camera is 42.3 and the recall of telephoto camera is
83.3. Thus, the weight of wide-angle camera is 4.5/(4.5 4+ 42.3 + 83.3) * 3, the weight
of normal camera is 42.3/(4.5 + 42.3 4 83.3) x 3 and the weight of telephoto camera is
83.3/(4.5 + 42.3 4 83.3) * 3.

The Weighted De Morgan’s law for three sensors A, B, C can be written formally as

aAUBBU~C = aANBBN~C 4.7)

and the probability of the event detected by three sensors is defined as

P(aAUBBUAC)=1—-(1—-A)*x(1—-B)’«(1-C) (4.8)
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where P(aA U B U ~yC') denotes to the probability of «A U B U yC. «, [, and vy
represents the weight of each camera.

The fusion step is the same as De Morgan’s law. Once the detections R, Ry, R3 from
different FoV cameras pass the overlap testing, we use Weighted De Morgan’s law to fuse
these detections R;, Ry, R3 into a new detection, which is R,". The position of R, is
determined by the intersection rectangle of R, Rs, 3, and we can obtain the confidence

of R4’ by using Weighted De Morgan’s law:

04/ = P(OéCl U 502 U ’}/Cg) =1- (1 — Cl)a * (1 — 02)5 * (1 — Cg)ﬂf (49)

where C}' represents the confidence of R4, o represents the weight of the confidence
(' , P represents the weight of the confidence C5, and ~ represents the weight of the

confidence Cj5. The value of «, 3, v are defined as follows:

D,N,

o = =7 T
> k=1 TD.N,
T'D,N,
B= DN
Zle DN, (4.10)
.
V= D,Ns x T
> k=1 TD.N,

where D represents the distance between the target vehicle and the subject vehicle, T'
represents the total number of cameras, rp y, represents the recall of camera /N, when

the distance between the target vehicle and the subject vehicle is D.

4.5 False Positive Removal

Since the target vehicle will not change its position significantly between consequently
frames, we can use the information from previous frames to remove the false positive
noise. We use a heuristic algorithm to solve the problem of increasing false positive rate.

The main idea of this algorithm is using the information from previous frames to remove
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the false positive in current frame. Here we use a buffer to store the information from
previous frames. Once the detection R appears (no matter this detection R is produced by
YOLO or Weighted De Morgan’s law) in current frame, we will check the buffer. If there
are no others detections that confidence greater than 0.2 in previous frames appear at the
same position, the detection R is considered as a noise and we will filter out the detection
R as a noise in current frame. Otherwise, the detection R will be kept in current frame.
At last, we add all the detections into our buffer. If the a new detection R’ appears at the
same position as R in the next frame, the new detection R’ will be considered as a true
positive since the detection 2 appeared at the same position before. Also, the buffer will
update the information of the new frame and discard the information that past for a long

time. The number of the stored frames depends on the buffer size.

Algorithm 1 False Positive Removal
1: R.Ix/R.ly : the left up corner x/y of detection R.

2: R.rx/R.ry : the right down corner x/y of detection R.
3: R.confidence : the confidence of detection R.
4: Buff [x][y][Buff_SIZE] : the array buffer to store the information of previous frames.
5: for each detection R in current frame do
6: int pixels = 0;
7: for y =R.ly; y <Rury; y++ do
8: for x = R.Ix; x < Rurx; x++ do
o: int buff_count = 0;
10: for j = 0; j < Buff _SIZE; j++ do
11: if Buff[y][x][j] == true then
12: buff count++;
13: end if
14: if buff_count > FrequencyThreshold then
15: pixels++;
16: end if
17: if R.confidence > 0.2 then
18: Buffly][x][frame_id%Buff_SIZE] = true;
19: end if
20: end for
21: end for
22: end for
23: float IntersectArea = pixels / [(R.rx-R.Ix) * (R.ry-R.ly)];
24: if IntersectArea < AreaThreshold then
25: ignore the detection R
26: end if
27: end for
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4.6 Search Space Reducation

Before we use Weighted De Morgan’s law to enhance the confidence of the detections
from different FoV cameras, we need to find out that which detections are denoted to the
same vehicles in all detections. This problem can be transform to maximal clique prob-
lem. We can transform the detections in global coordinate system into a simple undirected
graph. In the undirected graph, each node represents an entity (such as detection rectan-
gle) and each edge represents that these two nodes pass the overlap testing. Notice that if
the two nodes (denoted to the detection rectangles) are detected by the same camera, they
will not be connected by an edge even though they pass the overlap testing. Figure 4.6 (a)
shows an example of global coordinate system that the red rectangles represent the de-
tections of camera Ny, the blue rectangles represent the detections of camera N, and the
black rectangles represent the detections of camera N3. In this example, only (R, R3),
(R1, Rs5), (R3, Rs), (R1, R3, R5), (R2, R4) pass the overlap testing. That is, we will fuse
(R1, R3, Rs) and (Ry, R,) by using Weighted De Morgan’s law. As shown in Figure 4.6
(b), we transform the detection rectangles in global coordinate system into an undirected
graph. In undirected graph, (R, R3, R5) and (R», R,) are the maximal clique. The result
of maximal clique in the graph is the same as the overlap testing of all detection rectan-
gles in global coordinate system. Thus, we proof that the problem of finding detections
that are denoted to the same vehicles in all detections can be transform to maximal clique
problem.

However, the maximal clique problem is NP-complete, and it can not be solved in
the polynomial time. Since we want to construct a safety critical embedded real-time
systems, the shorter response time of the system is better. Thus, instead of constructing all
the detection rectangles in a large undirected graph, we construct several small undirected
graph to reduce the cost of time. In each iteration, we will focus on a detection rectangles
and construct an undirected graph for it. We only do the Weighted De Morgan’s law
for the maximal clique who covers the node that we focus on in this iteration. Assume
that we focus on R; in this iteration. R, only intersect to Ry ~ Rg in global coordinate

system as shown in Figure 4.7. If we use all the detection rectangles to construct the
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Figure 4.6: An example of transforming the detection rectangles in global coordinate
system into an undirected graph.
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Figure 4.7: An example of global coordinate system.
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undirected graph, there will be lots of nodes that don’t have the connection between R;
and itself. These nodes is invaluable when we are focus on R;. Thus, if we can use a
search algorithm to find out the detections that pass the overlap testing with R, before we
transform the detections from global coordinate system into an undirected graph, we can
reduce the number of invaluable nodes in the graph.

We can use the regional of the vehicle detections to reduce the search space although
we cannot solve the NP-complete problem in the polynomial time. Since the detected
vehicle rectangles denote to represent the position of the target vehicles, these detected
vehicle rectangles will appear closely in the global coordinate system. As shown in Fig-
ure 4.8, the red rectangles are detected by wide-angle camera, the yellow rectangles are
detected by normal camera, and the green rectangle is detected by telephoto camera. We
can observe that the overlap between vehicles is seldom. The reason of the situaction is
that light is straightforward in nature. Assume that there is another vehicle 7" in the front
of the target vehicle 7" in Figure 4.8. The YOLO system cannot detect 7" because of the
property of light. There will not have a detection that covers another detection under the
camera-based system. Thus, the overlap situation between all the detections is limited.
That is why we can use a search algorithm to filter out those who cannot pass the overlap

testing detections to reduce the search space to speed up the sensor fusion method.

Figure 4.8: An example of overlap situation.
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R-tree is a known solution for solving the multi-dimensional information searching
problem. It use hierarchical MBRs to obtain the better performance. For each frame, we
construct a R-tree to store the detections in the global coordinate system. We can obtain
the detection rectangles that the focused detection R intersect to by going through the R-
tree once. Figure 4.9 shows an example of using R-tree to speed up the searching problem.
Figure 4.9 (a) is the result of transforming all the detections from each FoV camera into
global coordinate system. The purple rectangles represent the detected vehicle rectangles.
Figure 4.9 (b) and (c) shows the progress of constructing R-tree for the detected vehicle
rectangles. We assume a maximum branching number M = 3 and minimum branching
number m = 2. The blue and green rectangles represent the MBRs of R-tree. Figure 4.9
(d) shows the constructed R-tree of this frame. Figure 4.9 (e) ~ (g) shows the progress
of finding the detections that intersect to the focused detection by using R-tree (assuming
we focus on the detection R,). We can observe that the nubmer of detections in the global
coordinater system in Figure 4.9 (g) is less than Figure 4.9 (a).

The Grid method is also a known solution for searching algorithm. The Grid method
divide the global coordinate system into several grids G. If a detection intersects to a
grid G, then the detection will be added to the list of grid ;. Different from R-tree,
the detection in Grid method may appear twice, or even three times, four times in the
lists of GG;. The usage of grids GG in Grid method is similar to the MBRs in R-tree. We
can obtain the detection rectangles that the focused detection IR intersect to by using
these grids GG. First, we will check whether the focused detection intersect to grid G;
or not. We only need to check the detections in the list of G; if the grid G; intersect
to the focused detection. Figure 4.10 shows an example of using Grid method to speed
up the searching problem. Figure 4.10 (a) is the result of transforming all the detections
from each FoV camera into global coordinate system. The purple rectangles represent
the detected vehicle rectangles. Figure 4.10 (b) shows that the global coordinate system
is divided into several grids (we assume the global coordinate system is divided into 9
grids in this example). Each detection will be added into the grid list G; if the detection

intersect to the grid G;. Figure 4.10 (c) shows all the content in grid lists from G ~ Gy.
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Figure 4.10 (d) and (e) shows the progress of finding the detections that intersect to the

focused detection by using Grid method(assuming we focus on the detection [74).

RI6 | RI7
| R11 | R12 | RI3 | | R14 | RIS |
[ Rt [ R3 || R7 [ R8 || R2| R4 | | Rs|Re|[|RO[RIO]
(d)

)

Figure 4.9: An example of using R-tree to speed up the searching problem.
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Figure 4.10: An example of using Grid method to speed up the searching problem.
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Chapter 5

Performance Evaluation

In this chapter, we evaluate the experiment result of our design, including the recall
of the sensor fusion method, the precision of false positive removal method and the
performance measurement on NVIDIA TX2. Since the AEBS only concerns the target
vehicle, the recall and precision below represents the recall and the precision of the
target vehicle. Table 5.1 shows the definition of recall and precision. For the notation
T'P; and F'P;, we use intersection over union (IOU) to determine whether two rectangles
is the same. If the IOU of the detected rectangle and the ground truth rectangle is higher
than 0.5, we will count the detected rectangle into 7'F;. Otherwise, we will count it into

FP,.

Notation Definition

G, Ground truth rectangles of the target vehicles of frame ¢
D, Detected rectangles of frame ¢

FP D, —-G;,ND,
EF'N; G,—G,ND;

> size(TP;)
recall > size(TP;)+3" size(FN;)
precision 2ol )

>~ size(TP;)+) size(FP;)

Table 5.1: Notation table
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5.1 Evaluation of Sensor Fusion Method

In this section, we evaluate the recall of the sensor fusion method under different
scenarios. Figure 5.1 shows the recall of different FoV cameras, De Morgan’s law and
Weighted De Morgan’s law in the night scenario and Figure 5.2 shows the recall of differ-
ent FoV cameras, De Morgan’s law and Weighted De Morgan’s law in the sunny scenario.
We can observe that the De Morgan’s law and Weighted De Morgan’s law have a signif-
icant effect on recall in the night scenario. In the sunny scenario, we can observe that
the recall of telephoto camera is higher than 90% until the distance between the target
vehicle and the subject vehicle is greater than 140 meters. Thus, the effect of De Mor-
gan’s law and Weighted De Morgan’s law in the sunny scenario is smaller than the night
scenario. Luminous intensity is the reason of this phenomenon. A camera’s shutter deter-
mines when the camera sensor will be open or closed to incoming light from the camera
lens. The shutter speed specifically refers to how long this light is permitted to enter the
camera. "Shutter speed" and "exposure time" refers to the same concept, where a faster
shutter speed means a shorter exposure time. In general, the cameras need more exposure
time in the night scenario since the luminous intensity in the night scenario is lower than
the sunny scenario. Besides, the focal length of telephoto camera is higher than other
cameras. Therefore, the motion of a camera has a great effect on it during exposure. If
the camera moves quickly during exposure, the result image will turn into a blurred im-
age. Thus, the recall of telephoto camera in the night scenario is lower than the recall
in the sunny scenario. Because the motion of a camera has a little effect on wide-angle
camera and normal camera, the image will not be blurred so much as telephoto camera.
The non-blurred image from wide-angle camera and normal camera reinforcement the
blurred image from telephoto camera during the sensor fusion method. This is the reason
that why De Morgan’s law and Weighted De Morgan’s law have a signigicant effect in
the night scenario. In summary, the difference of exposure time between night and sunny
scenario results in the different effect on the recall of De Morgan’s law and Weighted De

Morgan’s law.
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Figure 5.1: The recall of different FoV cameras, De Morgan’s law, Weighted De Morgan’s
law when the target vehicle is placed at different distance at night.
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Figure 5.2: The recall of different FoV cameras, De Morgan’s law, Weighted De Morgan’s
law when the target vehicle is placed at different distance at sunny.
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5.2 Evaluation of False Positive Removal

Figure 5.3 shows the precision of Weighted De Morgan’s law and Weighted De Mor-
gan’s law with false positive removal method. We can observe that the precision of the
Weighted De Morgan’s law can be increased up to 8% by using the false positive removal
method. However, the precision increases 2% when the distance between the target vehi-
cle and the subject vehicle is 10 meters. The reason is described below. When the distance
between the target vehicle and the subject vehicle is 10 meters, the target vehicle will be
very large in telephoto camera that only the part of vehicle is in the ROI of telephoto
camera. Since the telephoto camera only see the part of vehicle, it is hard to determine
whether it is a vehicle or not. Therefore, the number of true positive and false positive of
telephoto camera will be decreased. Because the number of false positive is decreased,

the false positive removal method have smaller effect on it.
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Figure 5.3: The precision of different FoV cameras, Weighted De Morgan’s law and False
positive removal method
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5.3 Performance Measurement on NVIDIA TX2

In this section, we test our heterogeneous camera-based system, and evaluate the sys-
tem by time consumption. We test the system under night scenario and sunny scenario.
The maximum number of rectangles that generated by YOLO system is around 100 rect-
angles. Thus, the maximum number of all the detection rectangles in our system is around
350 rectangles since we use three different focal length cameras in our camera-based sys-
tem. Figure 5.4 shows the performance measurement on NVIDIA TX2. The time cost of
using R-tree to reduce the search space is minimum. The reason that why R-tree is faster
than Grid method is described below. Since the detections only appear once in R-tree,
we can get all the detections that the focused detection R intersects to by a single query.
However, the detections may appear twice, three times or four times in Grid method. As-
sume that the detections that the focused detection R intersects to are stored in the list L.
To avoid a repetitive adding the same detection into L, the Grid method needs to check L

at each iteration. That why the reason that the Grid method is slower than R-tree.
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Figure 5.4: Performance measurement on NVIDIA TX?2
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Chapter 6

Conclusion

In this thesis, we design and implement a heterogeneous camera-based system on
AEBS to enhance the recall of YOLO system by using sensor fusion method to combine
the strengths of the different FoV cameras. Also, we use a heuristic false positive removal
method to decrease the false positive rate that caused by the sensor fusion method. We
optimize the sensor fusion method because of the the limitation of computing resource on
embedded system. As a result, the recall of YOLO can be increased up to 10% through

our heterogeneous camera-based system.
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