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Abstract

Nowadays, the bulk of these road collisions is caused by human unaware-

ness or distraction. Since the most important thing is your safety and the

safety of others, ADAS is developed to support enhanced vehicle system for

safety and better driving. AEBS as an important part of the ADAS has be-

come a hot research topic. Computer vision, together with Radar and Lidar, is

at the forefront of technologies that enable the evolution of AEBS. Since the

cost of long range radar and lidar is very high, we want to use camera-based

system to construct AEBS. Instead of using a single monocular camera, we

propose a heterogeneous camera-based system to use sensor fusion to com-

bine the strengths of all the difference FoV cameras. Also, We use a heuristic

false positive removal method to decrease the false positive rate that caused

by the sensor fusion method. We optimize the sensor fusion method Because

of the the limitation of computing resource on embedded system. As a result,

the recall of YOLO can be increased up to 10% through our heterogeneous

camera-based system.

Keywords - Heterogeneous Sensing Fusion, Heterogeneous Camera-Based

Sytem, Tri-focal camera, AEBS, Object Detection
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Chapter 1

Introduction

1.1 Motivation

Vehicle accidents are unfortunately very common for a long time. The bulk of these

road collisions is caused by human unawareness or distraction. The National Highway

Traffic Safety Administration (NHTSA) issued that 35,092 people died in vehicle crashes

in 2015. Research shows that 94% of crashes were tied to human choices or error [1].

Since the most important thing is the safety of passenger and driver, advanced driver-

assistance systems (ADAS) is developed to support enhanced vehicle system for safety

and better driving. The purpose of ADAS is to enhance traffic safety and efficiency.

For example, ADAS are composed of autonomous emergency braking system (AEBS),

adaptive cruise control (ACC), lane departure warning (LDW), speed limit monitoring

(SLM), rear cross traffic alert (RCTA), blind spot detection system (BST).

These subsytems provide different effects for better driving. Lane departure warn-

ing warns the driver if ADAS detects that the vehicle is departing from the current lane.

Adaptive cruise control is used to handle the vehicle speed adaptively based on the dis-

tance between your vehicle and leading vehicle, your current speed, the road condition,

and prediction of the leading vehicle’s speed change. Automatic emergency braking sys-

tem is a system that automatically detect a potential forward collision and trigger the ve-

hicle braking system to decelerate the vehicle with the purpose of avoiding or mitigating

1
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Figure 1.1: ADAS functions1

a collision if the driver fails to react to an emergency situation.

Nowadays, computer vision, together with radar and Lidar, is at the forefront of tech-

nologies that enable the evolution of AEBS. Figure 1.2 shows an example of ADAS sen-

sors. Radar offers some advantages, such as long detection range (up to 200 m) and

capability to operate under extreme weather conditions. However, it acts awful on false

positives, especially around road curves, because it is not able to recognize objects. Lidar,

which is commonly spelled LiDAR and also known as LADAR or laser altimetry, is an

acronym for light detection and ranging. It is a surveying method that measures distance

to a target by illuminating that target with a pulsed laser light, and measuring the reflected

pulses with a sensor. Although both radar and lidar are precise and have long range, lidar

has more resolution than radar sensors. So lidar is popularly used to make high-resolution

maps in these days [2] [3] [4]. For example, Google’s self-driving car [5] relies on lidar to

provide it with a 360 degree of what is happening around the vehicle. It has a lidar sensor

attached to the top of a car where it spins and shoots out lasers to create high-resolution

maps of the car’s surroundings. Camera-based systems also have their own limitations.

They are very sensitivity to weather conditions, and they are not as reliable as radar when

obtaining depth information. On the other hand, they have a wider field of view, and more

importantly, they can recognize and categorize objects.

However, the cost of long range radar or lidar is very high. Lidar is the most expensive
1Source: http://www.conti-engineering.com/CMSPages/GetFile.aspx?guid=cf6d6925-8148-46e9-

b59a-6eed8c23a0f6
2Source: Advanced Driver Assistant System - Intel, https://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/advanced-driver-assistant-system-paper.pdf

2
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This system is considered as a close-loop control system, where the vehicle control actuation actions are computed based 
on received data from sensors. And the outcome of the ADAS actuation actions is fed back in the loop as sensor input. All the 
computing units in ADAS of the vehicular system are generally referred to as electronic control units (ECUs). The sensing and 
actuation ECUs are relatively resource constrained units, compared with the central processor of ADAS.

One of the key advancements in ADAS design is the concept of “sensor fusion.” This is the process by which the internal pro-
cessing takes input from the multiplicity of external sensors and creates a map of possible impediments around the vehicle. The 
map then facilitates the computation that creates a series of possible actions and reactions through situational analysis. Figure 3 
shows an example ADAS-enabled vehicle with a collection of sensors to enable sensor fusion and actions. 

Figure 2. Conceptual Hardware Block Diagram for ADAS System

Figure 3. Example ADAS Sensors
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Figure 1.2: An example of ADAS sensors.2

component in these sensors. A single unit of lidar cost 75,000 US dollars just a few years

ago. Although Google’s self-driving car project-turned-spinoff company claim to slash

the price of lidar by 90%, it stills cost 7,500 US dollars per vehicle [6]. Therefore, we

want to study by using only camera-based system to construct AEBS system. There

are many kinds of camera now, like short/long focal length, digital/optical zooming...etc.

Choosing a suitable camera plays an important role in our camera-based system. The

wide-angle camera (wide field of view) eventually reaching the super wide-angle range,

which capture an even broader scope. On the other hand, the object will be very small

when it is far from the camera. The telephoto camera restricts the angle of view, but it is

capable to capture faraway objects at a larger size. If we use only wide-angle camera to

detect the objects, we may miss some vehicles which are far from us. On the other hand,

we may miss vehicles in a traffic jam (only the part of vehicles in the FoV) if we choose

telephoto camera.

For all these reasons, our proposed heterogeneous camera-based system on AEBS will

use sensor fusion to combine the strengths of all the difference field of view (FoV) cam-

eras. There are some purposes to fuse information from the heterogeneous camera sensors

3
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Figure 1.3: An example of different FoV camera. (a) wide-angle camera. (b) focal length
between wide-angle camera and telephoto camera. (c) telephoto camera.

of ADAS. First, to make content of some information more complete. Second, to improve

the accuracy of the sensor-detecting information. Final, to improve the robustness of the

sensor-detecting information. Although the true positive (shown in Figure 1.4(a)) of the

AEBS system will be increased by using sensor fusion to fuse all the different FoV cam-

eras, however, the false positive will be increased as well. As all the ADAS systems are

computer-based and depend on sensor technology, data fusion, and image analysis. False

positive instances (false alarms) or error of the system are unavoidable. Since the false

positives may cause a fatal malfunction of a vehicle, and it may result in dangerous acci-

dents. It is important to reduce the occurrences of false positives to improve the robustness

and reliability of the system. For example, Figure 1.4(c) shows a false positive detection.

In this case, the "car" rectangle is detected by vehicle detection algorithm. AEBS will

automatically stop the car to avoid the accident because of this false positive detection.

However, this unnecessary emergency brake activation doesn’t make sense since there is

no cars ahead. Further, this reaction may cause a rear-end accidents.

Because of the above mentioned, our work will develop a heterogeneous camera-based

system on AEBS, which has not only the advantage of all the different FoV cameras, but

also the lower false positive rate.

4
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Figure 1.4: An example of true positive, true negative, false positive, false negative.

1.2 Contribution

In this thesis, we propose a heterogeneous camera-based system for AEBS. Compare

to others camera-radar based system, the AEBS can be set up in a lower cost by using our

system. Also, the proposed system guarantees higher accuracy and lower false positive

rate than single monocular camera system. At last, we optimize the proposed sensor

fusion method because of the the limitation of computing resource on embedded system.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we present previous

existing fusion functions for heterogeneous sensors and related works. In Chapter 3, we

present our system architecture. In Chapter 4, we present our algorithm and we use R-tree

to reduce the search space. In Chapter 5, we evaluate our algorithm and present the results

of our experiments. Chapter 6 conclude our work in this thesis.

5
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Chapter 2

Background and Related Work

2.1 Autonomous Emergency Braking System

In recent years, Europe, America and other developed countries have spent enormous

efforts in developing ADAS, AEBS as an important part of the ADAS has become a popu-

lar research topic. To ensure safety, UNECE R131 [7] defines the functional requirements

of AEBS. Here are the definition in UNECE R131. The subject vehicle refers to the tested

vehicle which is the category M3 vehicle. The target refers to a high volume series pro-

duction passenger car of category M1 AA saloon1 or in the case of a soft target. Time to

collision (TTC) refers to the interval of time obtained by dividing the distance between

the subject vehicle and the target by the relative speed of the subject vehicle and the target,

at an instant in time.

The subject vehicle shall approach the stationary target in a straight line. The func-

tional part of the test shall start when the subject vehicle is traveling at a speed of 80

± 2 km/h and is at a distance of at least 120m from the stationary target. First, at least

one warning shall be issued no later than 1.4s before the start of emergency braking phase.

Second, at least two warnings shall be provided no later than 0.8s before the start of emer-

gency braking phase. Final, the emergency braking phase shall not start before the TTC

is equal to or less than 3.0 seconds.
1As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/-

TRANS/WP.29/78/Rev.2, para. 2.

6
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Since AEBS should have at least one warning no later than 1.4s before the start of

emergency braking phase and the emergency braking phase shall not start before the TTC

is equal to or less than 3.0 seconds by the regulation, AEBS should issue at least one

warning when TTC is equal to or less than 4.4s. In the same way, AEBS should issue at

least two warnings when TTC is equal to or less than 3.8s. As a result of above, we need

to detect if the stationary target vehicle exists when TTC is equal to or less than 4.4s and

TTC is equal to or less than 3.8s.

By the formula of constant velocity motion (s = v ⇤ t), we can obtain that the distance

between subject vehicle and stationary target is 97.78 meters when the speed of subject

vehicle is 80km/h and TTC is equal to or less than 4.4s.

4.4 s

97.78 m

3.8 s

84.44 m

3.0 s

66.67 m

0.0 s

0 m

The first stage

The second stage

The final stage

(t)

(m)

M3 bus is running

at 80 km/h.

M1 car is

stationary.

Figure 2.1: AEBS-TTC testing. (a) The first stage: at least one warning mode shall be
provided. (b) The second stage: at least two warning mode shall be provided. (c) The
final stage: the emergency braking phase shall start.

2.2 Vision-Based Vehicle Detection - YOLO

A large amount of researches which are computer vision based have been conducted

on vehicle detection from over the years. Many of them applied traditional methods,

such as background subtraction, frame difference, optical flow, etc. In [8], they applied

a median-based background subtraction method to detect vehicles. In [9], they proposed

a frame difference method to detect moving vehicles. However, our research targets a

7
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dynamic background, which is collected by a camera, meaning that traditional methods

such as frame difference, background subtraction cannot be used directly.

Since deep learning has become a powerful technology in image recognition, gaming,

information retrieval, and many other areas that need intelligent data processing. There

are several machine learning based approaches have been proposed on vehicle detection

in last few years. You Only Look Once (YOLO) [10] [11], a machine learning based

algorithm which is proposed by Joseph Redmon at 2016, is a new and effective method to

detect objects based on regression instead of classifying. Different from others machine

learning algorithm (like R-CNN), the image is only fed into the YOLO network just for

once and the network can output all the detect results. The workflow of YOLO detection

system is shown in Figure 2.2. First, the system resizes the input image to 416 × 416

pixels. Second, it runs a single convolutional network on the image. At last, it filters the

resulting detections by the model’s confidence. Compared to traditional methods of object

detection, processing images with YOLO is simple and straightforward. Also, YOLO is

extremely fast and it is capable to detect a wide variety of object classes. It can detect

over 9000 object categories and it runs at 67 frame per second (FPS) on a Geforce GTX

Titan X [11].

Figure 2.2: The YOLO detection system2

2Source: J. Redmon and A. Farhadi., “Yolo9000: Better, faster, stronger.” in Computer Vision and
Pattern Recognition, 2016.

8
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2.3 R-tree

R-tree is a hierarchical data structure proposed by Antonin Guttman [12] in 1984. It

is based on B-tree and can be used to search spatial objects efficiently. Similar to the

B-tree, the R-tree is also a balanced search tree, within which all leaf nodes are at the

same height. R-tree is a well known spatial indexing technique that has been widely used

in many geospatial applications, like indexing 2D or higher dimensional data. A common

real-world usage for R-tree is to store spatial objects such as restaurant locations, streets,

buildings informations, and then find answers to query such as "Find all restaurant within

1 km of my current location".

The main idea of R-tree is to group nearby objects and represent them by their min-

imum bounding rectangle (MBR) in the next higher level of the tree. The R-tree data

structure consists of intermediate nodes and leaf nodes, and each node consists of several

entries. Data objects are stored in leaf nodes and intermediate nodes are built by grouping

rectangles at the lower level. Each entry of intermediate node is associated with MBR

within which some rectangle completely encloses all rectangles that correspond to lower

level nodes. Intermediate nodes contain entries of the form (Rect, child-ptr) where child-

ptr is a pointer to a child node in the R-tree; Rect is the MBR that covers all rectangles of

the child node. Leaf nodes contain entries of the form (Rect, tuple-identifier) where tuple-

identifier is a pointer to the object description, and Rect is the MBR of the object. The

main innovation in the R-tree is that parent nodes are allowed to overlap. This way, the

R-tree can guarantee at least 50% space utilization and remain balanced [13]. In R-tree,

the MBR of root node covers all rectangles and the leaf nodes store the information of

data objects. Let us assume that M is the maximum number of entries that can fit in a leaf

or intermediate node, m is the minimum number of entries that must fit in an intermediate

node. The R-tree has the following properties:

(i) The root node has at least two children unless it is a leaf.

(ii) The entries number of entries on intermediate node should be no less than

m and no greater than M.

(iii) All leave nodes have the same depth level.
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The first step of constructing R-tree is to generate MBR for the data rectangles. The

next step is to group nearby rectangles and group them into a new MBR that is large

enough to cover the rectangles in the next higher level of the tree. This process will con-

tinue until the root of R-tree is found, which is the rectangle covering all data rectangles.

Figure 2.3 shows an example set of data rectangles. For example, at the first step, each

data rectangle (gray rectangle) generates its MBR. At the next step, the data rectangles are

divided into several groups, and the new MBRs (blue rectangles) are generated to cover

each group of data rectangles. In this case, R5 is the MBR which is created in this step

and it covers the data rectangle R11 and R12. The process will continue until the root of

R-tree is found, which are red rectangles in this case. The final result of this construction

is shown in Figure 2.4, which is the corresponding R-tree built on these data rectangles

(assuming a maximum branching number M = 3 and minimum branching number m =

2).

Figure 2.3: Data (gray rectangles) organized in a R-tree with M = 3, m = 2

Since the main idea of R-tree is to group nearby objects and represent them with their

minimum bounding rectangle (MBR) in the next higher level of the tree. The key idea

10
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Figure 2.4: R-tree (with M = 3, m = 2) for the data rectangles of Figure 2.3

of searching algorithm in R-tree is to use the bounding boxes to decide whether or not to

search inside a subtree. In this way, most of the nodes in the tree are never read during

a search. Like B-tree, this makes R-tree suitable for large data sets and databases, where

nodes can be paged to memory when needed, and the whole tree cannot be kept in main

memory. Assuming M is the maximum number of entries that can fit in a leaf or interme-

diate node, N is the number of leaf nodes. The time complexity of searching algorithm

is O(log

M

N). Due to the searching algorithm, the performance of R-tree depends on the

quality of the algorithm that clusters the data rectangles on a node. If the cluster algorithm

results in several overlapping between MBRs, the performance will degrade because of

the increasing of the searching subtrees.

In this thesis, we assume that the data rectangles are static (do not require dynamic

insertions or updates). The low-x packed R-tree [14] is a step towards to construct an

R-tree with 100% space utilization which will have as good response time as possible at

the same time. However, this method will result in degradation of performance for region

queries. Hilbert R-tree [15] is proposed by I. Kamel in order to cluster the region data

in a better way than the low-x packed R-tree. Instead of sorting the data on the x or y

coordinate, Hilbert R-trees use the Hilbert curve to impose a linear ordering on the data

rectangles. The basic Hilbert curve on 1x1, 2x2, 4x4 grid are shown in Figure 2.5. The

number in each grid presents Hilbert value. For example, on the 4x4 grid (denote by H2,

the (0,0) is at lower left corner), the point (0,0) on the H2 curve has a Hilbert value of

0, while the point (2,1) has a Hilbert value of 13. Also, the Hilbert value of a rectangle

needs to be defined. Following the experiments in [13], a good choice is that the Hilbert

11
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value of a rectangle is defined as the Hilbert value of its center.
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Figure 2.5: Hilbert curves of order 1, 2 and 3 [15]

The Hilbert R-tree claims that the overlapping between MBRs will decrease by using

the ascending Hilbert value to pack the rectangles during the construction of R-tree. Since

the performance of Hilbert R-tree is better and the construction cost is low (only change

the packing rules from the original R-tree), we will use Hilbert R-tree in this thesis.

2.4 Related Work

Various approaches are taken to build ADAS platforms nowadays, with focus being

reliability, high performance, low cost and low power consumption. These platforms usu-

ally contain a few processing units with different purposes on the same system on chip

(SoC). There are several research focus on heterogeneous sensing fusion. That is, they

use camera and radar or other sensors together [16] [17] [18] [19]. In [16], they propose

a vehicle recognize algorithm base on radar and vision sensors with the application to

automatic emergency braking. Since the radar is sensitive, there are a lot of false detec-

tion caused by radar. To improve this, they propose a vehicle recognition method which

is based on shape and motion attribute. The motion attribute is designed to determine

whether the object is either stationary or dynamic and the shape attribute aims to identity

12
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whether the objective is a vehicle or not by sensor fusion. In [17], they use mobile smart

phone as a computing platform because the mobile smart phones today are equipped with

numerous sensors that can help to aid in safety enhancements for drivers on the road.

In [18], they use informations that are provided by in-vehicle Lidar and monocular vi-

sion to present a detect, track and classify entities in semi-structured outdoor scenarios.

In [19], they use radar and camera to recognize whether the detected object is either ve-

hicle or non-vehicle with the application of AEBS. Most of the researches use different

type of sensors simultaneously on AEBS. Different from them, we use only camera-based

system to construct AEBS system.
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Chapter 3

System Architecture and Problem

Definition

3.1 System Architecture

Safety-critical embedded systems are undergoing an evolution towards greater auton-

omy. In this thesis, we use the recently released NVIDIA Jetson TX2 as our computing

platform. Since we use a GPU-based deep learning (YOLO) as our vehicle detection algo-

rithm and several different FoV cameras simultaneously, the computing platform we used

must have GPU to run YOLO system and suppors for multiple cameras module. Also, this

computing platform should be portable because the ADAS is running on moving vehicles.

Moreover, this computing platform should have low power consumption since the energy

on vehicle is limited. Thus, NVIDIA Jetson TX2 is one of the most suitable computing

platform for us due to these limitation.

NVIDIA Jetson is the world’s leading AI computing platform for GPU-accelerated

parallel processing in mobile embedded systems and is called for "autonomous every-

thing" [20]. NVIDIA Jetson TX2 is part of the Jetson family of embedded computers.

It shares a common GPU architecture with the higher-end NVIDIA Drive PX2, which

is currently available only to automotive companies and suppliers. It is one of the most

outstanding GPU-enabled platforms marketed today for autonomous systems. It has two
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important attributes for embedded use cases. First, it provides significant computing ca-

pacity. Second, it meets pratical limits on monetary cost as well as size, weight, and power

consumption. It doubles the performance of its predecessor. And it can run at more than

twice the power efficiency, while drawing less than 7.5 watts of power [21]. Figure 3.1

shows the capability of NVIDIA Jetson TX1 and TX2.

Figure 3.1: The ability of NVIDIA Jetson TX1 and TX21

We set up three different FoV cameras at the same view direction on this platform.

Figure 3.2 shows the proposed heterogeneous camera-based system on vehicle with a

collection of sensors to enable sensor fusion and actions. For simplicity, we use normal

camera to represent the camera which focal length between wide-angle camera and tele-

photo camera. In the rest of this thesis, the term "wide-angle camera", "normal camera"

and the term "telephoto camera" will be used frequently. The horizontal angle of wide-

angle camera is 150�, which covers all two lanes next to the vehicle. The horizontal angle

of normal camera is 52�, which covers part of two lanes next to the vehicle and the lane

that the moving vehicle is traveling at. The horizontal angle of telephoto camera is 28�,

which only cover the lane that the moving vehicle is traveling at.
1Source: http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
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wide-angle camera 150o

normal camera 52
o

telephoto camera 28
o

Figure 3.2: The architecture of the proposed heterogeneous camera-based system

In this thesis, we assume that the real-time clocks of all the cameras are synthesized,

and all the camera frames are merged into a single frame in advance. Figure 4.2 shows

the single frame composed by three different FoV camera. The frame at lower left corner

comes from wide-angle camera, the frame at upper half comes from normal camera, and

the frame at lower right corner comes from telephoto camera. The red rectangls are the

region of interest (ROI) since AEBS only concern the target vehicles in front of the subject

vehicle.

3.2 Problem Definition

The target problem is to increase the recall of vehicle detection algorithm (YOLO

system) by using sensor fusion for heterogeneous camera-based system and optimize the

sensor fusion method since the computing resource on embedded system is limited. Ac-

cording to the regulation of UNECE R131 [7], AEBS should start the emergency braking

phase before a TTC equal to or less than 3.0 seconds. As shown in Figure 2.1, when the
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distance between the target vehicle and the subject vehicle equal to or less than 66.67m,

the final stage should start the emergency braking phase. Thus, the proposed heteroge-

neous camera-based system should have the ability to detect the target vehicle when the

distance between the target vehicle and the subject vehicle equal to or less than 66.67m.

Another problem is to decrease the false positive rate since there are some false detections

that caused by the sensor fusion method.

17
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Chapter 4

Design and Implementation

In this chapter, we design the heterogeneous camera-based system and implement

sensor fusion method and false positive removal method on it. Figure 4.1 shows the

data flow of the heterogeneous camera-based system. First, we discuss the impact of

input image size on YOLO system in Section 4.1. Second, we need to transform all the

detected vehicle rectangles from different FoV cameras into the same coordinate system

before we design the sensor fusion method to fuse all the detected vehicle rectangles

from different FoV cameras. We use linear transformation to transform the coordinate

system in Section 4.2. After that, we use existed sensor fusion method into the system in

Section 4.3. However, the effect of existed sensor fusion method in the night scenario is

not significant enough. Thus, we proposed an advanced sensor fusion method in Section

4.4. Unfortunately, we may increase the false positive rate during the sensor fusion. The

higher false positive rate may cause the system do more illogical operations during car

driving. Thus, we proposed a false positive removal method to decrease the false positive

rate in Section 4.5. Finally, since the computing resource on embedded system is limited,

we need to reduce the search space of the proposed sensor fusion method. The discussion

of reducing search space is in Section 4.6.
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Wide-angle camera video 
(1920x1080 pixels)

Normal camera video 
(1920x1080 pixels)

Telephotoc amera video 
(1920x1080 pixels)

Wide-angle camera video 
(416x416 pixels)

Telephoto camera video 
(416x416 pixels)

Normal camera video 
(416x416 pixels)

Coordinate System Transformation

Crop

Search Space Reducation

Sensor Fusion

False Positive Removal

Result

Figure 4.1: Data flow of the heterogeneous camera-based system.
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4.1 The Impact of Input Image Sizes

As we mentioned at section 2.2 , YOLO will resize the input image to 416 x 416

pixels before it feeds the input image into the convolution network. If the system uses a

single frame which frame size is 1920 x 1080 pixels as an input image, YOLO will resize

it into 416 x 416 pixels in advance. Consequently, the recall of using frame that frame

size is 1920 x 1080 pixels as input image is worse than using frame that frame size is 416

x 416 pixels as input image. Table 4.1 shows the result of it. To solve this problem, the

system crops the frame into several images which size are 416 x 416 pixels before the

system invokes the YOLO system. As shown in Figure 4.2, the system crops a 416 x 416

pixels image (denote to the red rectangles) from each camera. These red rectangles are

the region of interest (ROI) of wide-angle camera, normal camera, and telephoto camera

since AEBS only concerns the target vehicles in front of the subject vehicle.

Size of input image (pixel) Recall
1920 x 1080 45%
416 x 416 94.5%

Table 4.1: Recall of object detection using YOLO

Figure 4.2: The frame that composed by three different FoV camera and the ROI of each
camera.
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4.2 Coordinate System Transformation

In order to fuse all the vehicle rectangles that detected by different FoV cameras, we

demand to transform these rectangles into the same coordinate system, which is "global

coordinate system". In this chapter, we use N1 to represent for wide-angle camera, N2

to represent for normal camera, and N3 to represent for telephoto camera. We use the

linear function to transform the position of the detection rectangles into global coordinate

system, and it can be shown as follows:

x
i

0
=

x
i

mag
i

+Xo↵set

i

y
i

0
=

y
i

mag
i

+ Y o↵set

i

(4.1)

where x
i

and y
i

represent the position in the coordinate system of camera N
i

; x
i

0 and y
i

0

represent the position in the global coordinate system; mag
i

represents the magnification

of camera N
i
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i
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offset of y
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= H ⇤ (1� 1
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i

)

(4.2)

W represents the width of croped input image of YOLO, and H represents the height of

croped input image of YOLO.

4.3 Existed Sensor Fusion Method

As we mentioned at Section 2.2, YOLO filters the resulting detections by the model’s

confidence after it runs a single convolutional network. In YOLO, the confidence thresh-

old of vehicle is 0.2. Therefore, if the confidence of the detection is lower than 0.2, this

detection will be filtered out by YOLO. However, there are some detections that are true

positive but its confidence is lower than the threshold. These detections will be filtered out
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by YOLO although they are true positive. If we integrate the low confidence detections

from different FoV cameras, we can keep the true positives that are filtered out by YOLO

system. Thus, we use an existed sensor fusion method, De Morgan’s law, to fuse the low

confidence detections from different FoV cameras into a new detection. Once the confi-

dence of the new detection is higher than the threshold, YOLO will not filter out this true

positive detection. And the recall will be increased because of the increasing number of

the true positive detections. The De Morgan’s law for three sensors A, B, C can be written

formally as

A [ B [ C = A \ B \ C (4.3)

and the probability of the event detected by three sensors is defined as

P (A [ B [ C) = 1� (1� A) ⇤ (1� B) ⇤ (1� C)

(4.4)

where P (A [ B [ C) denotes to the probability of A [ B [ C.

First of all, we use the method at Section 4.2 to transform all the vehicle rectangles

that detected by different FoV cameras into global coordinate system. Second, we test if

the detections from different FoV cameras denote to the same vehicle or not. Assume that

the detection R1 is detected by camera N1, the detection R2 is detected by camera N2,

and the detection R3 is detected by camera N3. In order to determine that the detections

denote to the same vehicle, the overlap testing is defined as follows:

Overlap(R1, R2, R3) =

8
>><

>>:

true , area of intersection

area of union

> Overlap threshold

false , otherwise

(4.5)

and the value of Overlap threshold is 0.5 in this thesis. Once the detection R1, R2, R3 from

differents FoV cameras pass the overlap testing, we ensure that the detections R1, R2, R3

denote to the same vehicle. At last, we use De Morgan’s law to fuse these detections

R1, R2, R3 into a new detection, which is R4. The position of R4 is determined by the

intersection rectangle of R1, R2, R3, and we can obtain the confidence of R4 by using De

Morgan’s law:
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C4 = P (C1 [ C2 [ C3) = 1� (1� C1) ⇤ (1� C2) ⇤ (1� C3) (4.6)

where C1 represents the confidence of R1, C2 represents the confidence of R2, C3 repre-

sents the confidence of R3, and C4 represents the confidence of R4.

4.4 Proposed Sensor Fusion Method

In this section, we propose a sensor fusion method that is based on De Morgan’s

law, which is "Weighted De Morgan’s law". The significant difference between Weighted

De Morgan’s law and De Morgan’s law is that we add a weighted function on it. The

recall of different FoV cameras are different when the distance between the target vehicle

and the subject vehicle is the same. For instance, as shown in Figure 4.3, the recall of

telephoto camera is higher than wide-angle camera when the distance between the target

vehicle and the subject vehicle is 60 meters at night. At this distance, the confidence of

detected vehicle rectangles from telephoto camera are more reliable than the rectangles

that detected by wide-angle camera. On the other hand, the recall of wide-angle camera

is higher than telephoto camera when the distance between the target vehicle and the

subject vehicle is 10 meters at night. Because the capability of different FoV cameras

under different distances are variaty, the weighted function in our proposed sensor fusion

method will concern the capability of each camera.

The distance between the subject vehicle and the target vehicle is a significant infor-

mation in the Weighted De Morgan’s law. Since our AEBS architecture is camera-based

system, we apply a camera-based method to observe the distance between the subject

vehicle and the target vehicle rather than using radar or lidar sensors to measure the

distance. The distance measurement method is to utilize the length of vehicle width in

camera to measure the distance. The length of the target vehicle width in camera de-

pends on the distance between the target vehicle and the subject vehicle. For instance,

Figure 4.4 shows that the target vehicle is place at different distances between the subject

vehicle. In this thesis, we assume the minimum vehicle width is 1.5 meters. Figure 4.5
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Figure 4.3: The recall of different FoV camera when the target vehicle is placed at differ-
ent distance at night.

Figure 4.4: The target vehicle is placed at different distances. (a) The distance is 10
meters. (b) The distance is 40 meters.
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Figure 4.5: The length of the target vehicle width at different distances. The input frame
size is 1920x1080 pixels and we assume the target vehicle width is 1.5 meters.

shows the experiment of the length of the target vehicle width at different distances be-

tween the subject vehicle. The weight in the Weighted De Morgan’s law is a function

to the recall of each camera under the certain distance. For instance, when the distance

between the target vehicle and the subject vehicle is 60 meters, the recall of wide-angle

camera is 4.5, the recall of normal camera is 42.3 and the recall of telephoto camera is

83.3. Thus, the weight of wide-angle camera is 4.5/(4.5 + 42.3 + 83.3) ⇤ 3, the weight

of normal camera is 42.3/(4.5 + 42.3 + 83.3) ⇤ 3 and the weight of telephoto camera is

83.3/(4.5 + 42.3 + 83.3) ⇤ 3.

The Weighted De Morgan’s law for three sensors A, B, C can be written formally as

↵A [ �B [ �C = ↵A \ �B \ �C (4.7)

and the probability of the event detected by three sensors is defined as

P (↵A [ �B [ �C) = 1� (1� A)↵ ⇤ (1� B)

� ⇤ (1� C)

� (4.8)
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where P (↵A [ �B [ �C) denotes to the probability of ↵A [ �B [ �C. ↵, �, and �

represents the weight of each camera.

The fusion step is the same as De Morgan’s law. Once the detections R1, R2, R3 from

different FoV cameras pass the overlap testing, we use Weighted De Morgan’s law to fuse

these detections R1, R2, R3 into a new detection, which is R4
0. The position of R4

0 is

determined by the intersection rectangle of R1, R2, R3, and we can obtain the confidence

of R4
0 by using Weighted De Morgan’s law:

C4
0
= P (↵C1 [ �C2 [ �C3) = 1� (1� C1)

↵ ⇤ (1� C2)
� ⇤ (1� C3)

� (4.9)

where C4
0 represents the confidence of R4

0, ↵ represents the weight of the confidence

C1 , � represents the weight of the confidence C2, and � represents the weight of the

confidence C3. The value of ↵, �, � are defined as follows:

↵ =

r
D,N

1P
T

k=1 rD,Nk

⇤ T

� =

r
D,N

2P
T

k=1 rD,Nk

⇤ T

� =

r
D,N

3P
T

k=1 rD,Nk

⇤ T

(4.10)

where D represents the distance between the target vehicle and the subject vehicle, T

represents the total number of cameras, r
D,Nk

represents the recall of camera N
k

when

the distance between the target vehicle and the subject vehicle is D.

4.5 False Positive Removal

Since the target vehicle will not change its position significantly between consequently

frames, we can use the information from previous frames to remove the false positive

noise. We use a heuristic algorithm to solve the problem of increasing false positive rate.

The main idea of this algorithm is using the information from previous frames to remove
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the false positive in current frame. Here we use a buffer to store the information from

previous frames. Once the detection R appears (no matter this detection R is produced by

YOLO or Weighted De Morgan’s law) in current frame, we will check the buffer. If there

are no others detections that confidence greater than 0.2 in previous frames appear at the

same position, the detection R is considered as a noise and we will filter out the detection

R as a noise in current frame. Otherwise, the detection R will be kept in current frame.

At last, we add all the detections into our buffer. If the a new detection R0 appears at the

same position as R in the next frame, the new detection R0 will be considered as a true

positive since the detection R appeared at the same position before. Also, the buffer will

update the information of the new frame and discard the information that past for a long

time. The number of the stored frames depends on the buffer size.

Algorithm 1 False Positive Removal
1: R.lx/R.ly : the left up corner x/y of detection R.
2: R.rx/R.ry : the right down corner x/y of detection R.
3: R.confidence : the confidence of detection R.
4: Buff [x][y][Buff_SIZE] : the array buffer to store the information of previous frames.
5: for each detection R in current frame do
6: int pixels = 0;
7: for y = R.ly; y < R.ry; y++ do
8: for x = R.lx; x < R.rx; x++ do
9: int buff_count = 0;

10: for j = 0; j < Buff_SIZE; j++ do
11: if Buff[y][x][j] == true then
12: buff_count++;
13: end if
14: if buff_count > FrequencyThreshold then
15: pixels++;
16: end if
17: if R.confidence > 0.2 then
18: Buff[y][x][frame_id%Buff_SIZE] = true;
19: end if
20: end for
21: end for
22: end for
23: float IntersectArea = pixels / [(R.rx-R.lx) * (R.ry-R.ly)];
24: if IntersectArea < AreaThreshold then
25: ignore the detection R
26: end if
27: end for
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4.6 Search Space Reducation

Before we use Weighted De Morgan’s law to enhance the confidence of the detections

from different FoV cameras, we need to find out that which detections are denoted to the

same vehicles in all detections. This problem can be transform to maximal clique prob-

lem. We can transform the detections in global coordinate system into a simple undirected

graph. In the undirected graph, each node represents an entity (such as detection rectan-

gle) and each edge represents that these two nodes pass the overlap testing. Notice that if

the two nodes (denoted to the detection rectangles) are detected by the same camera, they

will not be connected by an edge even though they pass the overlap testing. Figure 4.6 (a)

shows an example of global coordinate system that the red rectangles represent the de-

tections of camera N1, the blue rectangles represent the detections of camera N2, and the

black rectangles represent the detections of camera N3. In this example, only (R1, R3),

(R1, R5), (R3, R5), (R1, R3, R5), (R2, R4) pass the overlap testing. That is, we will fuse

(R1, R3, R5) and (R2, R4) by using Weighted De Morgan’s law. As shown in Figure 4.6

(b), we transform the detection rectangles in global coordinate system into an undirected

graph. In undirected graph, (R1, R3, R5) and (R2, R4) are the maximal clique. The result

of maximal clique in the graph is the same as the overlap testing of all detection rectan-

gles in global coordinate system. Thus, we proof that the problem of finding detections

that are denoted to the same vehicles in all detections can be transform to maximal clique

problem.

However, the maximal clique problem is NP-complete, and it can not be solved in

the polynomial time. Since we want to construct a safety critical embedded real-time

systems, the shorter response time of the system is better. Thus, instead of constructing all

the detection rectangles in a large undirected graph, we construct several small undirected

graph to reduce the cost of time. In each iteration, we will focus on a detection rectangles

and construct an undirected graph for it. We only do the Weighted De Morgan’s law

for the maximal clique who covers the node that we focus on in this iteration. Assume

that we focus on R1 in this iteration. R1 only intersect to R2 ⇠ R6 in global coordinate

system as shown in Figure 4.7. If we use all the detection rectangles to construct the
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Figure 4.6: An example of transforming the detection rectangles in global coordinate
system into an undirected graph.
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Figure 4.7: An example of global coordinate system.

29



doi:10.6342/NTU201800542

undirected graph, there will be lots of nodes that don’t have the connection between R1

and itself. These nodes is invaluable when we are focus on R1. Thus, if we can use a

search algorithm to find out the detections that pass the overlap testing with R1 before we

transform the detections from global coordinate system into an undirected graph, we can

reduce the number of invaluable nodes in the graph.

We can use the regional of the vehicle detections to reduce the search space although

we cannot solve the NP-complete problem in the polynomial time. Since the detected

vehicle rectangles denote to represent the position of the target vehicles, these detected

vehicle rectangles will appear closely in the global coordinate system. As shown in Fig-

ure 4.8, the red rectangles are detected by wide-angle camera, the yellow rectangles are

detected by normal camera, and the green rectangle is detected by telephoto camera. We

can observe that the overlap between vehicles is seldom. The reason of the situaction is

that light is straightforward in nature. Assume that there is another vehicle T 0 in the front

of the target vehicle T in Figure 4.8. The YOLO system cannot detect T 0 because of the

property of light. There will not have a detection that covers another detection under the

camera-based system. Thus, the overlap situation between all the detections is limited.

That is why we can use a search algorithm to filter out those who cannot pass the overlap

testing detections to reduce the search space to speed up the sensor fusion method.

Figure 4.8: An example of overlap situation.
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R-tree is a known solution for solving the multi-dimensional information searching

problem. It use hierarchical MBRs to obtain the better performance. For each frame, we

construct a R-tree to store the detections in the global coordinate system. We can obtain

the detection rectangles that the focused detection R intersect to by going through the R-

tree once. Figure 4.9 shows an example of using R-tree to speed up the searching problem.

Figure 4.9 (a) is the result of transforming all the detections from each FoV camera into

global coordinate system. The purple rectangles represent the detected vehicle rectangles.

Figure 4.9 (b) and (c) shows the progress of constructing R-tree for the detected vehicle

rectangles. We assume a maximum branching number M = 3 and minimum branching

number m = 2. The blue and green rectangles represent the MBRs of R-tree. Figure 4.9

(d) shows the constructed R-tree of this frame. Figure 4.9 (e) ⇠ (g) shows the progress

of finding the detections that intersect to the focused detection by using R-tree (assuming

we focus on the detection R4). We can observe that the nubmer of detections in the global

coordinater system in Figure 4.9 (g) is less than Figure 4.9 (a).

The Grid method is also a known solution for searching algorithm. The Grid method

divide the global coordinate system into several grids G. If a detection intersects to a

grid G
i

, then the detection will be added to the list of grid G
i

. Different from R-tree,

the detection in Grid method may appear twice, or even three times, four times in the

lists of G
i

. The usage of grids G in Grid method is similar to the MBRs in R-tree. We

can obtain the detection rectangles that the focused detection R intersect to by using

these grids G. First, we will check whether the focused detection intersect to grid G
i

or not. We only need to check the detections in the list of G
i

if the grid G
i

intersect

to the focused detection. Figure 4.10 shows an example of using Grid method to speed

up the searching problem. Figure 4.10 (a) is the result of transforming all the detections

from each FoV camera into global coordinate system. The purple rectangles represent

the detected vehicle rectangles. Figure 4.10 (b) shows that the global coordinate system

is divided into several grids (we assume the global coordinate system is divided into 9

grids in this example). Each detection will be added into the grid list G
i

if the detection

intersect to the grid G
i

. Figure 4.10 (c) shows all the content in grid lists from G1 ⇠ G9.
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Figure 4.10 (d) and (e) shows the progress of finding the detections that intersect to the

focused detection by using Grid method(assuming we focus on the detection R4).

Figure 4.9: An example of using R-tree to speed up the searching problem.
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Figure 4.10: An example of using Grid method to speed up the searching problem.
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Chapter 5

Performance Evaluation

In this chapter, we evaluate the experiment result of our design, including the recall

of the sensor fusion method, the precision of false positive removal method and the

performance measurement on NVIDIA TX2. Since the AEBS only concerns the target

vehicle, the recall and precision below represents the recall and the precision of the

target vehicle. Table 5.1 shows the definition of recall and precision. For the notation

TP
i

and FP
i

, we use intersection over union (IOU) to determine whether two rectangles

is the same. If the IOU of the detected rectangle and the ground truth rectangle is higher

than 0.5, we will count the detected rectangle into TP
i

. Otherwise, we will count it into

FP
i

.

Notation Definition

G
i

Ground truth rectangles of the target vehicles of frame i

D
i

Detected rectangles of frame i

TP
i

G
i

\D
i

FP
i

D
i

�G
i

\D
i

FN
i

G
i

�G
i

\D
i

recall
P

size(TPi)P
size(TPi)+

P
size(FNi)

precision
P

size(TPi)P
size(TPi)+

P
size(FPi)

Table 5.1: Notation table

34



doi:10.6342/NTU201800542

5.1 Evaluation of Sensor Fusion Method

In this section, we evaluate the recall of the sensor fusion method under different

scenarios. Figure 5.1 shows the recall of different FoV cameras, De Morgan’s law and

Weighted De Morgan’s law in the night scenario and Figure 5.2 shows the recall of differ-

ent FoV cameras, De Morgan’s law and Weighted De Morgan’s law in the sunny scenario.

We can observe that the De Morgan’s law and Weighted De Morgan’s law have a signif-

icant effect on recall in the night scenario. In the sunny scenario, we can observe that

the recall of telephoto camera is higher than 90% until the distance between the target

vehicle and the subject vehicle is greater than 140 meters. Thus, the effect of De Mor-

gan’s law and Weighted De Morgan’s law in the sunny scenario is smaller than the night

scenario. Luminous intensity is the reason of this phenomenon. A camera’s shutter deter-

mines when the camera sensor will be open or closed to incoming light from the camera

lens. The shutter speed specifically refers to how long this light is permitted to enter the

camera. "Shutter speed" and "exposure time" refers to the same concept, where a faster

shutter speed means a shorter exposure time. In general, the cameras need more exposure

time in the night scenario since the luminous intensity in the night scenario is lower than

the sunny scenario. Besides, the focal length of telephoto camera is higher than other

cameras. Therefore, the motion of a camera has a great effect on it during exposure. If

the camera moves quickly during exposure, the result image will turn into a blurred im-

age. Thus, the recall of telephoto camera in the night scenario is lower than the recall

in the sunny scenario. Because the motion of a camera has a little effect on wide-angle

camera and normal camera, the image will not be blurred so much as telephoto camera.

The non-blurred image from wide-angle camera and normal camera reinforcement the

blurred image from telephoto camera during the sensor fusion method. This is the reason

that why De Morgan’s law and Weighted De Morgan’s law have a signigicant effect in

the night scenario. In summary, the difference of exposure time between night and sunny

scenario results in the different effect on the recall of De Morgan’s law and Weighted De

Morgan’s law.

35



doi:10.6342/NTU201800542

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

90

100

Distance (meter)

R
e
c
a
l
l
(
%
)

Wide-angle Camera Normal Camera Telephoto Camera

Normal De Morgan’s law Weighted De Morgan’s law

Figure 5.1: The recall of different FoV cameras, De Morgan’s law, Weighted De Morgan’s
law when the target vehicle is placed at different distance at night.
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Figure 5.2: The recall of different FoV cameras, De Morgan’s law, Weighted De Morgan’s
law when the target vehicle is placed at different distance at sunny.
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5.2 Evaluation of False Positive Removal

Figure 5.3 shows the precision of Weighted De Morgan’s law and Weighted De Mor-

gan’s law with false positive removal method. We can observe that the precision of the

Weighted De Morgan’s law can be increased up to 8% by using the false positive removal

method. However, the precision increases 2% when the distance between the target vehi-

cle and the subject vehicle is 10 meters. The reason is described below. When the distance

between the target vehicle and the subject vehicle is 10 meters, the target vehicle will be

very large in telephoto camera that only the part of vehicle is in the ROI of telephoto

camera. Since the telephoto camera only see the part of vehicle, it is hard to determine

whether it is a vehicle or not. Therefore, the number of true positive and false positive of

telephoto camera will be decreased. Because the number of false positive is decreased,

the false positive removal method have smaller effect on it.
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Figure 5.3: The precision of different FoV cameras, Weighted De Morgan’s law and False
positive removal method
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5.3 Performance Measurement on NVIDIA TX2

In this section, we test our heterogeneous camera-based system, and evaluate the sys-

tem by time consumption. We test the system under night scenario and sunny scenario.

The maximum number of rectangles that generated by YOLO system is around 100 rect-

angles. Thus, the maximum number of all the detection rectangles in our system is around

350 rectangles since we use three different focal length cameras in our camera-based sys-

tem. Figure 5.4 shows the performance measurement on NVIDIA TX2. The time cost of

using R-tree to reduce the search space is minimum. The reason that why R-tree is faster

than Grid method is described below. Since the detections only appear once in R-tree,

we can get all the detections that the focused detection R intersects to by a single query.

However, the detections may appear twice, three times or four times in Grid method. As-

sume that the detections that the focused detection R intersects to are stored in the list L.

To avoid a repetitive adding the same detection into L, the Grid method needs to check L

at each iteration. That why the reason that the Grid method is slower than R-tree.
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Figure 5.4: Performance measurement on NVIDIA TX2
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Chapter 6

Conclusion

In this thesis, we design and implement a heterogeneous camera-based system on

AEBS to enhance the recall of YOLO system by using sensor fusion method to combine

the strengths of the different FoV cameras. Also, we use a heuristic false positive removal

method to decrease the false positive rate that caused by the sensor fusion method. We

optimize the sensor fusion method because of the the limitation of computing resource on

embedded system. As a result, the recall of YOLO can be increased up to 10% through

our heterogeneous camera-based system.
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