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中文摘要 

資訊理論中最基本的問題之一是刻劃三個重要參數的取捨—資訊處理的品質優

劣、錯誤更正碼的區塊長度、以及傳輸率。錯誤率指數分析即為一個強大且有

效的方法來研究當傳輸率固定時錯誤概率如何隨著編碼區塊增大進而指數遞

減。在本論文中，我們討論兩個重要的量子資訊處理協定—經由量子資訊的協

助來壓縮經典數據、以及經典數據經由量子信道傳輸—之錯誤率指數分析。 

我們首先證明錯誤指數函數的諸多重要性質，使我們得以更深刻理解量子資訊

協定的錯誤率行為模式。第二、在有限的區塊編碼長度下我們對研究的兩種量

子資訊協定求得精確的錯誤率分析，為次世代量子資訊科技的設計提供了更佳

的品質估計準則。最後，我們研究當傳輸率趨近一些重要的閾值時的錯誤概率

行為—當壓縮率緩慢逼近條件滳值被時壓縮的經典數據得以被完美恢復、以及

當傳輸率緩慢逼近信道容量時數據傳輸得以無暇傳輸。 

此論文呈現方式力求以經典資訊理論的架構來撰寫，因此者不限於具有量子資

訊理論的學者。工程司、科技設計者以及任何對量子資訊理論有興趣者皆能藉

由閱讀此論文來探索此豐富且深邃的研究課題。 

關鍵字：錯誤指數分析、中偏差分析、大偏差分析、量子資訊理論、經典量子

信道、量子輔助資訊、可靠度函數、矩陣分析 
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Abstract

One of the fundamental problems in information theory is to clarify the trade-o�s between the per-

formance of an information task, the size of the coding scheme, and the coding rate that determines

the e�ciency of the task. Error exponent analysis was proposed as a powerful methodology to study

how rapidly the error probability exponentially decays with an increase of coding blocklength when the

rate is �xed. In this thesis, we give an exposition of error exponent analysis to two important quan-

tum information processing protocols�classical data compression with quantum side information, and

classical communications over quantum channels.

We �rst prove substantial properties of various exponent functions, which allow us to better charac-

terize the error behaviors of the tasks. Second, we establish accurate achievability and optimality �nite

blocklength bounds for the optimal error probability, providing useful and measurable benchmarks for

future quantum information technology design. Finally, we study the error probability under the sce-

nario that the coding rate converges to certain limits, a research topic known as moderate deviation

analysis. In other words, we show that the data recovery can be perfect when the compression rate

approaches the conditional entropy slowly, and the reliable communication over a classical-quantum

channel is possible as the transmission rate approaches channel capacity slowly.

The audience of this thesis are not restricted to researchers with backgrounds in quantum infor-

mation theory. Engineers, technology providers, and people who interest in information processing are

welcome to explore the frontiers along this line of research.

Keywords: error exponent analysis, moderate deviation analysis, quantum information theory, classical-

quantum channel, Slepian-Wolf coding, quantum side information, reliability function, large deviation

theory, matrix analysis.
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Chapter 1

Introduction

Information processing and transmission with the assistance of quantum mechanics has emerged as

a promising technology in the forthcoming future. For example, Bennett and and Brassard [1, 2]

proposed a quantum key distribution protocol, which provides us a secure way for sharing secret keys

between two parties. The task of quantum teleportation is to noiselessly transfer a quantum state to

a remote user [3] and it has become a key ingredient of quantum computation [4, 5]. In view of the

latest and most signi�cant achievements of communicating quantumly from a launched satellite with

base stations [6], it is generally believed that the laboratory testing of novel quantum communication

experiments will soon be complete.

To practically implement such quantum information processing (QIP) technologies, it would require

universal quantum computation as the principle component (e.g. to perform the decoding strategies).

Nevertheless, the state-of-the-art quantum computers, at least for the near future, is limited to around

50 qubits. Thus, evaluating how well a QIP system in practical domains only with �nite resources

becomes a pressing matter [7, 8]. The goal of this thesis is to investigate two fundamental QIP tasks

and characterize their performance benchmarks, providing invaluable guidance to the design of the

next-generation quantum technology.

In this thesis, we are interested in the QIP protocols that bene�ts and advances current information

processing systems. Namely, we study the problems of (1) information storage with a quantum helper,

and (2) information transmission over a quantum channel. Due to the non-cloning and probabilistic

nature of quantum mechanics, the processing errors are inevitable. Therefore, our ultimate goal is to

provide an accurate error analysis for theses QIP protocols. In Section 1.1, we give the backgrounds

and literature review of this research topic. In Section 1.2, we introduce the mathematical formalisms

of the studied QIP protocols. Our contributions are listed in Section 1.3. Lastly, we illustrate the

structure of the thesis in Section 1.4.

1.1 Backgrounds

One of the core purposes in information theory is to protect the information when compressing and

transmitting. In Shannon's seminal work [9], it was shown that the reliable communication over a

channel is possible, provided that the transmission rate is below the channel capacity C, and an

arbitrary large coding scheme is given. On the other hand, Sleipian and Wolf [10] studied a source

compression scenario with an assistance of the side information. Let X denote the random variable

1  doi:10.6342/NTU201800597



1. Introduction 2

of the source and Y be that of the side information. They showed that the perfect source recovery

is feasible as long as the compression rate is above the conditional entropy H(X|Y ) and an arbitrary

large block code is provided.

Therefore, investigating the interplay between the compression/transmission rate, coding block-

length and the probability of error is one of the fundamental problems in information theory. Based

on di�erent ranges of the error probability, analysis of the information processing performance roughly

falls into the following three categories: (i) large error probability or non-vanishing error probability

regime; (ii) medium error probability regime; and (iii) small error probability regime.

In the non-vanishing error probability regime, the largest code rate, given a coding length n and an

error probability no more than ε, is one of the main research focuses. Strassen [11] �rst demonstrated

that the maximum size of an n-blocklength code through a discrete memoryless channel (DMC) W,

denoted by M∗(Wn, ε), yields an asymptotic expansion to the order
√
n, and hence this is called

second-order analysis:

logM∗(Wn, ε) = nC +
√
nV Φ−1(ε) +O(log n), (1.1)

where the quantities C and V denote the capacity [9] and the dispersion [12] of the channel, and Φ is the

cumulative distribution function of a standard normal random variable. Equivalently, Eq. (1.1) yields

the following relationship between the optimal decoding error with blocklength n and rate C −A/
√
n

for any constant A:

lim
n→+∞

ε∗
(
n,C −A/

√
n
)

= Φ

(
A√
V

)
. (1.2)

Strassen's result relied on the Gaussian approximation or the central limit theorem (CLT), and is also

called the small deviation regime. His work was latter re�ned by Hayashi [13], Polyanskiy et al. [12],

and extended to quantum channels [14, 15, 16, 7]. The results for higher-order asymptotics are referred

to Refs. [17, 18, 19].

In the small error probability regime, Shannon [20] introduced the reliability function E(R) as the

optimal error exponent:

lim
n→+∞

− 1

n
log ε∗ (n,R) = E(R), (1.3)

for rate R below the channel capacity1 C. The quantity E(R) then provides a measure of how rapidly

the error probability approaches zero with an increase in blocklength. This characterization of the

reliability function is hence called the reliability function analysis or the error exponent analysis. This

seminal work entails the analysis of a broad class of channels [22, 21, 23, 24, 25, 26]. The exponential

decay of the error probability in Eq. (1.3) is a consequence of the large deviation principle (LDP) [27].

In summary, the errors in Eqs. (1.2) and (1.3), respectively, fall into the CLT regime and large-deviation

regime.

Given a classical channel, lower bounds for the reliability function (termed achievability), can

be established by random coding arguments [28, 22, 29, 21]. However, upper bounds (also called

1To the best of our knowledge, the reliability function E(R) is only known in the high rate regime, i.e. at rates above
a critical rate (see e.g. [21, p. 160]).
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1. Introduction 3

optimality) require di�erent techniques since the code-dependent bounds on the error probability need

to be optimized over all codebooks. The �rst result�the sphere-packing bound E(R) ≤ Esp(R)�was

developed by Shannon, Gallager, and Berlekamp [30]. The sphere-packing exponent Esp(R) is de�ned

as

Esp(R) := sup
s≥0

{
max
P

E0(s, P )− sR
}
, (1.4)

where P is maximized over all probability distributions on the input alphabet, and E0(s, P ) is the

auxiliary function or Gallager's function [29]. Unlike Shannon-Gallager-Berlekamp's technique which

relates channel coding to binary hypothesis testing, Haroutunian [31, 24] employed a combinatorial

method and obtained an upper bound for the reliability function in terms of the following expression

Ẽsp(R) := max
P

min
W̄

{
D
(
W̄‖W|P

)
: I(P, W̄) ≤ R

}
, (1.5)

where W̄ is minimized over all dummy channels with the same output alphabet as W, D(W̄‖W|P ) is

the conditional relative entropy between the dummy channel W̄ and the true channel W, and I(P, W̄)

is the mutual information of the channel W̄ (the detailed de�nitions are given in Chapter 3). It was

later realized that the two quantities in Eqs. (1.4) and (1.5) are equivalent: they are related by convex

program duality [32, 33, 25]. Therefore, these two expressions, Eqs. (1.4) or (1.5), are both called

sphere-packing exponents.

Error exponent analysis in classical-quantum (c-q) channels is more challenging because of the

noncommutative nature of quantum mechanics. Burnashev and Holevo [34] introduced a quantum

version of the auxiliary function [35, 36] and initialized the study of reliability functions in c-q channels.

However, the random coding bound (i.e. achievability) for c-q channels is still unsolved. Winter [37]

derived a sphere-packing bound (i.e. optimality) for c-q channels in the form of Ẽsp(R) in Eq. (1.5),

generalizing Haroutunian's idea [31]. Dalai [38] employed Shannon-Gallager-Berlekamp's approach [30]

to establish a sphere-packing bound with Gallager's exponent in Eq. (1.4). In the follow-up work [39],

Dalai and Winter pointed out that these two exponents are not equal in c-q channels. We remark that

both Dalai and Winter's results are asymptotic and not �nite blocklength.

The Slepian-Wolf coding with quantum side information (QSI) was studied by Devetak and Winter

[40]. They generalized Slepian and Wolf's result [10] to the quantum case: the optimal probability

of error asymptotically vanishes as the compression rate is above the quantum conditional entropy

H(X|B)ρ, where B denotes the quantum system. Similar to the role of channel capacity in channel

coding, we term H(X|B)ρ the Slepian-Wolf limit. The non-vanishing error probability regime was later

studied by Renes and Renner [41], and Tomamichel and Hayashi [14]. A second-order asymptotics

similar Eq. (1.1) was established.

The most paragraph of this thesis will focus on the error exponent analysis for both Slepian-Wolf

coding with QSI and classical-quantum channel coding. We especially focus on the �nite blocklegnth

characterizations of the optimal error probability. In Chapters 6 and 7, we establish �nite blocklength

bounds for Slepian-Wolf coding with QSI. In Chapters 10 and 11, we review the best-to-date achiev-

ability bound for c-q channel coding, and prove a tight sphere-packing bound in �nite blocklengths.

The study of the medium error probability regime was pioneered by Altu§ and Wagner [42, 43].

They investigated the asymptotic behavior of the optimal decoding error when the coding rate con-
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verges to capacity su�ciently slowly. Speci�cally, they studied under which conditions the error is

asymptotically equal to2

ε∗ (n,C − an) ∼ Φ

(√
nan√
v

)
∼ e

−na2
n

2v , (1.6)

where the sequence of positive numbers (an)n∈N satis�es

(i) lim
n→+∞

an = 0;

(ii) lim
n→+∞

an
√
n = +∞.

(1.7)

Evidently, the transmission rate in Eq. (1.6) approaches capacity slower than 1/
√
n. A DMC with

errors satisfying Eq. (1.6) possesses a moderate deviation property (MDP) [27, Section 3.7], and hence

it is also called themoderate deviation regime. The constant v in Eq. (1.6) equals the channel dispersion

V when both the limit in Eq. (1.2) and MDP hold [44, Theorem 1]. We refer the interested readers to

Refs. [44, 45, 46, 47, 43] for further results in classical channel coding.

As an application of our established error exponent bounds, we extend our techniques to the

moderate deviation regime. In Chapters 8 and 12, we demonstrate that the optimal error probability

of the both two QIP tasks vanishes when the compression rate approaches the Slepian-Wolf limit and

the transmission rate approaches the channel capacity, respectively. Speci�cally, we show that

lim
n→+∞

log ε∗(n,H(X|B)ρ + an)

na2
n

= − 1

2V
; (1.8)

lim
n→+∞

log ε∗(n,C − an)

na2
n

= − 1

2V
, (1.9)

where (an)n∈N is any sequence satisfying Eq. (1.7).

We remark that these error probability regime described above�(i), (ii), and (iii)�all have the-

oretical signi�cance and practical value. The non-vanishing error probability regime, (i), has been

relatively well studied in the quantum scenario, while the small and medium error probability, (ii) and

(iii), are rarely explored, which is the ultimate goal and purpose of this thesis. We summarize the error

behaviors in these three regimes in Table 1.1.

Our methodology contains a varieties of matrix inequalities and matrix calculus. Moreover, we

employ the sharp concentration inequalities�Bahadur-Ranga Rao's concentration inequality [48] and

Chaganty-Sethuraman's concentration inequality [49]�in strong large deviation theory to establish our

�nite blocklength bounds. We collect the mathematical tools of matrix analysis and large deviation

theory in Chapter 2.

1.2 Quantum Information Processing Protocols

In the following, we introduce two quantum information processing protocols studied in this thesis�(1)

information storage with a quantum helper, and (2) information transmission over a quantum channel.

The interested readers can refer to the books [5, 50] for more detailed and various quantum information

processing protocols.

2We denote fn ∼ gn if and only if limn→+∞
fn
gn

= 1.
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1. Introduction 5

Error Regimes Concentration Phenomena Hypothesis Testing Source \ Channel Coding

Large Error CLT: Pr (Sn ≥
√
nx)→ 1− Φ

(
x√
v

)
α̂

exp
{
−n
[
D− A√

n

]} → Φ
(

A√
V

) ε∗
(
n,H + A√

n

)
→ Φ

(
A√
V

)
ε∗
(
n,C − A√

n

)
→ Φ

(
A√
V

)

Medium Error MDP: Pr (Sn ≥ nanx) = e−
na2
n

2v
x+o(na2

n) α̂exp{−n[D−an]} = e−
na2
n

2V
+o(na2

n)
ε∗(n,H + an) = e−

na2
n

2V
+o(na2

n)

ε∗(n,C − an) = e−
na2
n

2V
+o(na2

n)

Small Error LDP: Pr (Sn ≥ nx) = e−nΛ∗(x)+o(n) α̂exp{−nr} = e−nφ(r)+o(n) ε∗(n,R) = e−nE(R)+o(n)

Table 1.1: This table compares the asymptotic error behaviors of quantum hypothesis testing and classical-
quantum channel coding in three error probability regimes: (i) large error (central limit theorem), (ii) medium
error (moderate deviation principle), and (iii) small error (large deviation principle). The quantity Sn denotes
the sum of n independent and identically distributed random variables with zero mean and variance v. The
exponent Λ∗ is the Legendre-Fenchel transform of the normalized cumulant generating function of Sn [27]. The
error α̂exp{−nr} is de�ned as the minimum type-I error with the type-II error smaller than exp{−nr}. The
quantities D and V in the hypothesis testing column denote the quantum relative entropy and the relative
entropy variance, respectively. The optimal error probability with blocklength n and rate R is denoted by
ε∗(n,R). The quantities C and V in the channel coding column indicate the channel capacity and the channel
dispersion, respectively. The sequence (an)n∈N satis�es Eq. (1.7). The quantity E(R) is the reliability function
of the classical-quantum channel [35], and has not been fully characterized yet.

1.2.1 Information Storage with a Quantum Helper (Source Coding)

We consider a source of classical information which is produced with some quantum side information.

That is, for some �nite alphabet X , with some probability p(x), the source produces the classical

information x ∈ X , along with a quantum state ρxB on a �nite-dimensional Hilbert space HB. Such a

source is characterized by a classical-quantum (c-q) state

ρXB :=
∑
x∈X

p(x)|x〉〈x| ⊗ ρxB. (1.10)

where {|x〉}x∈X is an orthonormal basis of a Hilbert space HX of dimension |X |. We note that the

quantum state ρB on a �nite Hilbert space HB can be characterized by a density operator (or density

matrix ) such that ρB is positive semide�nite ρB ≥ 0 and has unit trace Tr[ρB] [5, 51, 50].

The task is to compress the classical information produced by the source to a smaller index set

I and to later decompress the information with the assistance of the quantum side information as a

helper. For convenience, we also term this task Slepian-Wolf coding with quantum side information.

A deterministic encoder is map E : X → I where the alphabet I has size |I|. A decoder, denoted

by D, receives the compressed symbol E(x) along with the quantum state ρxB, and produces x̂ ∈ X ,
aiming to achieve x̂ = x.

Thus, the decoding is a map

I × S(B) 3 (w, ρB)→ D(w, ρB) ∈ X . (1.11)

If we �x the �rst argument as w ∈ W, we have that the decoder D(w, ·) is a map from S(B) → X ,
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1. Introduction 6

i.e. is a positive operator-valued measurement (POVM), and we denote by S(B) the set of quantum

states on Hilbert space HB. Thus, we can represent the decoding by a collection of POVMs {Pw}w∈W ,

where Pw = {Π(w)
x̂ }x̂∈X with Π

(w)
x̂ ≥ 0 and

∑
x̂∈X Π

(w)
x̂ = 1, for each w ∈ I. That is, if the message x

is sent, the decoder receives E(x), and measures the state ρxB with the POVM {Π(E(x))
x̂ }x̂∈X .

A random encoding F from X to W is one which maps x to w with some probability p(w|x). We

can see the random encoding therefore as applying the deterministic encoding

(x1, . . . , x|X |) 7→ (i1, . . . , i|X |) (1.12)

with probability p(i1|x1)p(i2|x2) · · · p(i|X ||x|X |). Let us write F =: {Ej : j = 1, . . . , |F|} for the

collection of deterministic encoders. Then a random encoding F applies Ej with some probability Pj .

An (1, R)-Slepian-Wolf code for the c-q state ρXB is an ordered pair C = (F ,D) consisting of a

(possibly random) encoder F and decoder D, such that the alphabet I has size R = log |W|. R is

called the compression rate of the code C.Using the above notation, the probability of success of C is

given by

Ps(C) =
∑
x∈X

p(x)

|F|∑
j=1

Pj Tr[ρxBΠ
(Ej(x))
x ] (1.13)

where C := (F ,D) for the possibly random encoding F which gives the deterministic encoding Ej
with probability Pj , and decoding D which is de�ned via the collection of POVMs {Pw}w∈W , and

Pw = {Π(w)
x }x∈X . We may likewise de�ne the probability of error of the code C by

Pe(C) := 1− Ps(C) (1.14)

In the following, we de�ne the optimal one-shot compression rate:

R∗(1, ε) = inf
{
R : for some R′ ≤ R, ∃ (1, R′)-Slepian Wolf code C for ρXB s.t. Pe(C) ≤ ε

}
(1.15)

Similarly, the optimal one-shot probability of error for ρXB is de�ned as:

ε∗(1, R) := inf
{

Pe(C) : C is an (1, R′)-Slepian Wolf code for ρXB for some R′ ≤ R
}
. (1.16)

The Slepian-Wolf coding can be easily applied to the n-shot case when the underlying c-q state

ρXB ∈ S(XB) has an independent an identically distributed extension ρXnBn = ρ⊗nXB. In this case, an

(n,R)-Slepian Wolf code for the state ρXB is de�ned as a (1, nR)-Slepian Wolf code for the state ρ⊗nXB.

We de�ne the optimal n-shot probability of error for ρXB as

ε∗(n,R) := inf
{

Pe(C) : C is an (n,R′)-Slepian Wolf code for ρXB for some R′ ≤ R
}
, (1.17)

and likewise the optimal n-shot compression rate for ρXB as

R∗(n, ε) = inf
{
R : for some R′ ≤ R, ∃ (n,R′)-Slepian Wolf code C for ρXB s.t. Pe(C) ≤ ε

}
. (1.18)

We illustrate the protocol of Slepian-Wolf coding with QSI Figure 1.1 below.
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1. Introduction 7

Figure 1.1: We are given n copies of a classical source X which is correlated with a quantum system
B. We compress the source into an index set In via the encoder En, and then perform a decoding
via Dn which has access to the side information ρBn . This yields the output X̂n with associated
alphabets X n. The decoder Dn here is a family of positive operator-valued measurement (POVM){

Π
(wn)
Xn

}
wn∈In

. The red-dotted lines indicate classical information, while the blue-solid lines stand for

quantum information.

1.2.2 Information Transmission over a Quantum Channel (Channel Coding)

Let M be a �nite alphabetical set with size M = |M|. An (n-blocklength) encoder is a map Fn :

M → X n that encodes each message m ∈ M to a codeword xn(m) := x1(m)x2(m) . . . xn(m) ∈ X n.
Here, we assume that the input alphabet X is �nite. The codeword xn(m) is then mapped to a state

ρnxn(m) in the n-fold of Hilbert space H. The decoder is described by a POVM Πn = {Πn,1, . . . ,Πn,M}
on H⊗n, where Πn,i ≥ 0 and

∑M
i=1 Πn,i = 1. Throughout this thesis, we assume that the channel

output state ρnxn(m) has a tensor product structure. That is, ρnxn(m) can be presented as

W⊗nxn(m) = Wx1(m) ⊗Wx2(m) ⊗ · · · ⊗Wxn(m) ∈ S(H⊗n). (1.19)

Then, this protocol is equivalent to a c-q channel coding with a c-q channel W : X → S(H). We leave

the scenarios of classical message communications over general quantum channels as future work; see

also the open problems in Chapter 13.

The pair (Fn,Πn) =: Cn is called a code with coding rate (or called transmission rate) R =
1
n log |Cn| = 1

n logM . The error probability of sending a message m with the code Cn is given by

the Born rule εm(Cn) := 1 − Tr
(

Πn,mW
⊗n
xn(m)

)
. We use εmax(Cn) = maxm∈M εm(Cn) and ε̄(Cn) =

1
M

∑
m∈M εm(Cn) to denote the maximal error probability and the average error probability, respec-

tively. Given a sequence xn ∈ X n, we denote by

Pxn(x) :=
1

n

n∑
i=1

1 {x = xi} (1.20)

the empirical distribution of xn, where xi is the i-th position of xn. A constant composition code with

a composition Pxn refers to a codebook whose codewords all have the same distribution Pxn .

Denote by ε∗ (n,R) the smallest average probability of error among all the coding strategies with a
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blocklengh n and coding rate R. Our goal in this thesis is then to characterize ε∗ (n,R) as a function

of (n,R); see Part II. Figure 1.2 below depicts the protocol of c-q channel coding.

Figure 1.2: We encode the (classical) message m to an n-blocklength sequence xn. Then, input
sequence will be mapped to an n-product channel output state W⊗nxn . Lastly, the decoder, a positive
operator-valued measurement (POVM), measures the channel output state to obtain the estimated
message m̂. The red-dotted lines indicate classical information, while the blue-solid lines stand for
quantum information.
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1.3 Main Contributions

Although the aim of this thesis is to give an exposition to the current development of the error exponent

analysis in quantum information theory, we list our contributions in the following. The results can also

be found in the papers [36, 26, 52, 53].

(I) We prove major properties of error exponent functions and auxiliary functions for both Slepian-

Wolf coding with QSI (Chapter 5) and classical-quantum channel coding (Chapter 9). Speci�-

cally,

(a) We show that the error exponent functions introduced by Blahut [32, 23], Haroutunian

[31, 24], and Csiszár-Körner [54, 55, 25] have variational representations (Theorems 5.1 and

9.1). Theses representations are equivalent to the Gallager's expressions [29, 21, 56] in the

classical case. However, in the quantum case, they are expressed by the log-Euclidean Rényi

divergence [57, 58], while Gallager's expressions correspond to Petz's Rényi divergence [59].

As a consequence of the Golden-Thompson inequality [60, 61], the variational representa-

tions are weaker than Gallager's expressions in the optimality part, i.e. the converse (see

Theorem 9.1). Nevertheless, they have applications in the strong converse domain3 [58, 53]

and the moderate deviation analysis (see Section 12.2)

(b) Since the error exponent functions are the Lengendre-Fenchel transform of the auxiliary

functions , the properties of the auxiliary functions immediately characterize that of the

error exponent functions. We prove the concavity properties, which solves an open problem

addressed by Holevo [35], and the �rst-order/second-order derivatives (Propositions 5.1, 5.2,

9.1, 9.2, and 9.3).

(c) We prove the continuity and the saddle-point property of the error exponent functions,

which is one of the crucial steps of establishing �nite blocklength results (Propositions 5.3

and 9.5).

(d) An asymptotic expansion of error exponent functions when the compression rate (resp. trans-

mission rate) approaches the Slepian-Wolf limit (resp. channel capacity) is shown in Proposi-

tions 8.1 and 12.2. This property results in the moderate deviation analysis (see Chapters 8

and 12).

(II) We establish a �nite blocklength achievability bound of the Slepian-Wolf coding with QSI (The-

orem 6.1), which has the following applications:

(a) recovering Devetak and Winter's asymptotic achievability result, i.e. any compression rate

larger than the Slepian-Wolf limit is achievable;

(b) achievability of the moderate deviation analysis (Theorem 8.1);

(c) proof ingredient in the achievability of strong converse domain [53].

(III) For the optimality part, we establish a series of following results:

3The strong converse domain means that the compression rate (resp. transmission rate ) is smaller (resp. larger) than
the Slepian-Wolf limit (resp. channel capacity). In this case, the optimal probability of success exponentially decays
[37, 62, 63, 57, 58, 64, 53]. This thesis does not include contents of the strong converse part.
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(a) a sharp converse Hoe�ding bound (see Theorem 4.4 and Corollary 4.1) for binary quantum

hypothesis testing, which is the main ingredient for the �nite blocklength error exponent

analysis and moderate deviation analysis in quantum information theory;

(b) By proving an one-shot converse bound to relate the source coding problem to hypothesis

testing (Proposition 7.1), we employ the above sharp converse Hoe�ding bound to show the

�nite blocklength sphere-packing bound of Slepian-Wolf coding with QSI (Theorem 7.1).

(c) With an one-shot converse bound reducing the channel coding problem to hypothesis test-

ing (Proposition 11.3), we prove the �nite blocklength sphere-packing bound of classical-

quantum channel coding. Under the assumption of using constant composition codes, i.e. the

composition for each codeword in the codebook is the same, we derive the exact prefactor

(see Theorem 11.1). For general codes, the obtained prefactor is signi�cantly improved from

the previous result of subexponential [38] to polynomial (see Corollary 11.1). We remark

that the exact prefactor for general codes remains open even in the classical case.

(IV) For the moderate deviation regime, we discuss the trade-o�s between the rate, optimal probability

of error, and the blocklength.

(a) When the exponential decaying rate of the type-II error in quantum hypothesis testing

approaches the relative entropy from below with the speed not faster than O(1/
√
n), we

show that the optimal type-I error vanishes asymptotically (Theorems 4.5 and 4.6):

lim
n→+∞

1

na2
n

log α̂exp{−n[D(ρ‖σ)−an]}
(
ρ⊗n‖σ⊗n

)
= − 1

2V (ρ‖σ)
, (1.21)

where α̂µ denotes the smallest type-I error when the type-II error does not exceed µ; D(ρ‖σ)

and V (ρ‖σ) denote the relative entropy and relative variance of ρ and σ, respectively.

(b) When the compression rate approaches the Slepian-Wolf limit from above with the speed

not faster than O(1/
√
n), we show that the optimal probability vanishes asymptotically

(Theorem 8.1):

lim
n→+∞

log ε∗(n,H(X|B)ρ + an)

na2
n

= − 1

2V
. (1.22)

(c) When the transmission rate approaches the channel capacity from below with the speed

not faster than O(1/
√
n), we show that the optimal probability vanishes asymptotically

(Theorems 12.1 and 12.2):

lim
n→+∞

log ε∗(n,C − an)

na2
n

= − 1

2V
. (1.23)

1.4 Structure of the Thesis

Organization.

The thesis is divided into three parts. Part I: Fundamentals collects the necessary mathematical

tools�matrix analysis and large deviation theory (Chapter 2), the notation of all quantum entropic

quantities and their properties (Chapter 3), and the error exponent analysis for quantum hypothesis
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testing (Chapter 4). The two quantum information tasks investigated in this thesis are presented in

Parts II and III, respectively.

Part II: Information Storage with a Quantum Helper discusses the source coding scenario�the

error exponent analysis for Slepian-Wolf coding with QSI. We introduce the error exponent functions

in Chapter 5 and prove their properties. The achievability and optimality are studied in Chapters 6

and 7. Next, we move on to the moderate deviation regime in Chapter 8, which heavily relies on the

established results in achievability and optimality.

Part III: Information Transmission over a Quantum Channel investigates the channel coding

scheme�the error exponent analysis for communications over classical-quantum channels. The orga-

nization is similar to Part II: the error exponent function, achievability, optimality, and the moderate

deviation analysis are presented in Chapters 9, 10, 11, and 12, respectively. Lastly, we conclude this

thesis in Chapter 13 and provide open problems for future study.

Structure.

The structure of the thesis is depicted in Figure 1.3. The matrix mathematics provided in Chapter 2.1

will be useful in proving properties of the quantum entropic quantities in Chapter 3, properties of error

exponent functions in Chapters 5 and 9, and the achievability in Chapters 4, 6 and 10. The techniques

of large deviation theory in chapter 2.2 will be applied in the optimality part in Chapters 4, 7, and 11.

The optimality in Chapters 7 and 11 requires the sharp converse bound of quantum hypothesis testing

in Chapter 4. In either Part II or Part III, the moderate deviation analysis (Chapters 8 and 12) relies

on the properties of error exponent functions (Chapters 5 and 9), achievability (Chapters 6 and 10),

and optimality (Chapters 7 and 11).

Figure 1.3: Structure of the thesis.
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Chapter 2

Mathematical Tools

We provide preliminaries mathematical tools in this Chapter. The introductory matrix analysis is

given in Section 2.1. In Section 2.2, we present the backgrounds of large deviation theory.

2.1 Matrix Analysis

In this section, we provide backgrounds of matrix analysis. For a general treatment of this topic,

interested readers can refer to [65, Section 2.1], [66, Chapter 17], [67, Section X.4], [68, Section 5.3],

and [69, Chapter 3].

We denote by Msa the set of self-adjoint operators, and by Msa
d (I) the set of Hermitian d × d

matrices with eigenvalues contained in I. Similarly, let M+
d and M++

d be the set of d × d positive

semi-de�nite matrices and positive de�nite matrices, respectively.

Let U ,W be real Banach spaces. The Fréchet derivative of a function f : U → W at a point X ∈ U ,
if it exists1, is a unique linear mapping Df [X] : U → W such that

‖f(X + E)− f(X)− Df [X](E)‖W
‖E‖U

→ 0 as E ∈ U and ‖E‖U → 0,

or, equivalently,

‖f(X + E)− f(X)− Df [X](E)‖W = o(‖E‖U ),

where ‖ · ‖U(W) is a norm in U (resp. W). The notation Df [X](E) then is interpreted as �the Fréchet

derivative of f at X in the direction E�. Furthermore, the Fréchet derivative implies the Gâtaux

derivative such that the di�erentiation of f(X + tE) with respect to the real variable t is

f(X + tE)− f(X)

t
→ Df [X](E) as t→ 0.

For example, if the operator-valued function is the inversion f(X) = X−1 for each invertible matrix

X, then (see e.g. [67, Example X.4.2])

Df [X](Y ) = −X−1Y X−1. (2.1)

1We assume the functions considered in the paper are Fréchet di�erentiable. The readers can refer to, e.g. [70, 71],
for conditions for when a function is Fréchet di�erentiable.

13  doi:10.6342/NTU201800597
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The Fréchet derivative also satis�es several properties similar to conventional derivatives of real-

valued functions (see e.g. [69, Theorem 3.4]):

Proposition 2.1 (Properties of Fréchet Derivatives). Let U ,V and W be real Banach spaces.

1. (Sum Rule) If f1 : U → W and f2 : U → W are Fréchet di�erentiable at A ∈ U , then so is

f = αf1 + βf2 and Df [A](E) = α · Df1[A](E) + β · Df2[A](E).

2. (Product Rule) If f1 : U → W and f2 : U → W are Fréchet di�erentiable at A ∈ U and assume

the multiplication is well-de�ned in W, then so is f = f1 · f2 and Df [A](E) = Df1[A](E) ·
f2(A) + f1(A) · Df2[A](E).

3. (Chain Rule) Let f1 : U → V and f2 : V → W be Fréchet di�erentiable at A ∈ U and f1(A)

respectively, and let f = f2 ◦ f1 (i.e. f(A) = f2 (f1(A)). Then f is Fréchet di�erentiable at A

and Df [A](E) = Df2[f1(A)] (Df1[A](E)).

Similarly, the m-th Fréchet derivative Dmf [X] is a unique multi-linear map from Um , U ×· · ·×U
(m times) to W that satis�es

‖Dm−1f [X + Em](E1, . . . ,Em−1)− Dm−1f [X](E1, . . . ,Em−1)

− Dmf [X](E1, . . . ,Em)‖W = o(‖Em‖U )

for each Ei ∈ U , i = 1, . . . ,m. If Dmf [X] is continuous at X, then the m-th Fréchet derivative can be

expressed as a mixed partial derivative [72, Section 9] (see also [73, Theorem 2.3.1]).

Dmf [X](E1, . . . ,Em) =
∂

∂s1
· · · ∂

∂sm

∣∣∣∣
s1=...=sm=0

f (X + s1E1 + · · ·+ smEm) .

We can observe, from the above equation, that the m-th Fréchet derivative is symmetric about all Ei;

see [74, Theorem 8], [67, p. 313], and [75, Theorem 4.3.4]. We refer to Refs. [76, Section 8.12], [66,

Chapter 17], [75, Section 4.3], and [77] for further information about higher order Fréchet derivatives.

The following proposition relates the second order Fréchet derivative with the convexity of a matrix-

valued function, i.e. f(tA) + f((1− t)B) � f(tA + (1− t)B) for all 0 ≤ t ≤ 1.

Proposition 2.2 (Convexity of twice Fréchet di�erentiable matrix functions [78, Proposition 2.2]).

Let U be an open convex subset of a real Banach space U , and W is also a real Banach space. Then

a twice Fréchet di�erentiable function f : U →W is convex if and only if D2f(X)(h,h) � 0 for each

X ∈ U and h ∈ U .

The partial Fréchet derivative of multivariate functions can be de�ned as follows [68, Section 5.3].

Let U ,V and W be real Banach spaces, f : U × V → W. For a �xed v0 ∈ V, f(u,v0) is a function

of u whose derivative at u0, if it exists, is called the partial Fréchet derivative of f with respect to u,

and is denoted by Duf [u0,v0]. The partial Fréchet derivative Dvf [u0,v0] is de�ned similarly.

The Fréchet derivative and the partial Fréchet derivative can be related as follows.

Proposition 2.3 (Partial Fréchet derivative [68, Proposition 5.3.15]). If f : U × V → W is Fréchet

di�erentiable at (X,Y ) ∈ U × V, then the partial Fréchet derivatives DXf [X,Y ] and DY f [X,Y ]

exist, and

Df [X,Y ](h,k) = DXf [X,Y ](h) + DY f [X,Y ](k).
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Now let f : Un →W and assume it is a holomorphic function (i.e. Fréchet di�erential in a neighbor-

hood of every point in its domain), then the Taylor expansion f (X + E) at X , (X1, . . . ,Xn), E ,

(E1, . . . ,En) ∈ Un can be expressed as

f (X + E) = f (X) +
∞∑
k=1

1

k!
Dkf [X] (E, . . . ,E︸ ︷︷ ︸

k

)

= f (X) +

n∑
j=1

DXjf [X] (Ej) +
1

2!

n∑
j=1

n∑
k=1

D2
XjXk

(Ej ,Ek) + Remaining terms. (2.2)

For any map f : U → W and an operator X ∈ U , we de�ne the induced norm of the Fréchet

derivative Df [X] as

‖Df [X]‖ , sup
E 6=0

‖Df [X](E)‖
‖E‖

, (2.3)

where the norm can be any consistent norm (e.g. ‖Df [X]‖2 = supE 6=0 ‖Df [X](E)‖2 / ‖E‖2).
The norm of the Fréchet derivative is closely related to the condition numbers, which measure

the sensitivity of an operator-valued function to perturbations in the variables. Hence, the absolute

condition number is de�ned by

condabs(f ,X) , lim
ε→0

sup
‖E‖≤ε

‖f(X + E)−X‖
ε

. (2.4)

Then the norm of the Fréchet derivative can be expressed by the absolute condition number [79]

condabs(f ,X) = ‖Df [X]‖ .

We note that there are several algorithms and software packages that can compute the absolute con-

dition number; see [69, Section 3], [80] and references therein.

Next, we introduce the standard matrix functions. For each self-adjoint and bounded operator

A ∈Msa with the spectrum σ(A) and the spectral measure E, the spectral decomposition is given as

A =

∫
λ∈σ(A)

λdE(λ). (2.5)

Hence, each scalar function can be extended to a standard matrix function as follows.

De�nition 2.1 (Standard Matrix Function). Let f : I → R be a real-valued function on an interval

I of the real line. Suppose that A ∈Msa(I) has the spectral decomposition (2.5). Then

f(A) ,
∫
λ∈σ(X)

f(λ) dE(λ).

From this equation, it is clear that σ(f(A)) = f(σ(A)), which is called the spectral mapping theorem.

A function f : I → R is called operator convex if for each A,B ∈Msa(I) and 0 ≤ t ≤ 1,

f(tA) + f((1− t)B) ≤ f(tA + (1− t)B).
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Similarly, a function f : I → R is called operator monotone if for each A,B ∈Msa(I),

A ≤ B ⇒ f(A) ≤ f(B).

It is remarkable that not all convex (resp. monotone) functions are operator convex (resp. monotone).

For example, the exponential function is not operator convex nor operator monotone on [0,∞); the

power functions that are operator convex are f(x) = xp for p ∈ [−1, 0] ∪ [1, 2] and f(x) = −xp for

p ∈ [0, 1]. However, the trace function on Msa given by A → Tr[f(A)] preserves the convexity or

monotonicity.

Proposition 2.4 (Convexity and Monotonicity for Trace Functions [81, Section 2.2]). Consider a real-

valued function f : I → R. If f is convex (resp. monotone) on U ⊆ I, then the function A→ Tr[f(A)]

is convex (resp. monotone) on Msa(U).

We refer the readers to Refs. [73] and [82] for general expositions to operator convex and monotone

functions.

If the scalar function is continuously di�erentiable, then it is convenient to introduce the following

two properties for the trace function of Fréchet derivatives.

Proposition 2.5 ([82, Theorem 3.23]). Let A,X ∈ Msa and t ∈ R. Assume f : I → R is a

continuously di�erentiable function de�ned on interval I and assume that the eigenvalues ofA+tX ⊂ I.
Then

d

dt
Tr f(A + tX)

∣∣∣∣
t=t0

= Tr[Xf ′(A + t0X)].

In the following, we collect necessary matrix inequalities that will be employed later in this thesis.

Let x := (x1, . . . , xd) ∈ Rd be a d-dimensional vector with positive elements. Denote by x↓ :=

(x↓1, . . . , x
↓
d) the decreasing arrangement of x, i.e. x↓1 ≥ · · · ≥ x↓d. We say that x is weak majorized by

y, denoted by x ≺w y, if

k∑
j=1

x↓j ≤
k∑
j=1

y↓j , 1 ≤ k ≤ d. (2.6)

The weak log-majorization x ≺wlog y is de�ned when log x ≺w log y, where we denote by log x the vector

whose components equal to the logarithm of the components of x. It is well-known that x ≺wlog y
implies x ≺w y [67, Example II.3.5]. Let λ(X) denote the vector of eigenvalues of the matrix X. For

two positive semi-de�nite matrices A and B, the weak majorization λ(A) ≺w λ(B) is equivalent to

|||A||| ≤ |||B||| for all unitarily-invariant norm ||| · ||| [82, Theorem 6.23].

Lemma 2.1 ([83, Theorem 2.10]). For any A,B ∈M++
d , and 0 ≤ τ ≤ 1. Then

λ(A#τB) ≺wlog λ
(
A1−τBτ

)
. (2.7)

Lemma 2.2 (Araki-Lieb-Thirring Inequality [84]; see also [67, Theorem IX.2.10]). Let A,B ∈ M+
d .

Then, we have

λ
(
BtAtBt

)
≺w λ

(
(BAB)t

)
, for t ∈ [0, 1], (2.8)

λ
(
BtAtBt

)
�w λ

(
(BAB)t

)
, for t ≥ 1. (2.9)
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Lemma 2.3 ([67, Example II.3.5]). Let x, y ∈ Rd≥0 (the set of d-dimensional vectors of non-negative

real numbers). Then

x ≺w y implies xt ≺w yt (2.10)

for all t ≥ 1.

Lemma 2.4 (See, e.g. [81, Section 2.2]). Let f be a monotonically increasing function on the real line.

Then A � B implies

Tr [f(A)] ≤ Tr [f(B)] . (2.11)

Lemma 2.5 (Matrix Hölder's Inequality [67, Corollary IV.2.6]). Let A,B ∈M+
d . Then

Tr [AB] ≤
(

Tr
[
A

1
θ

])θ (
Tr
[
B

1
1−θ
])1−θ

(2.12)

for all 0 ≤ θ ≤ 1.

Lemma 2.6. Let A,B ∈M++
d . Then, for every t ≥ 1 and 0 ≤ τ ≤ 1, we have

Tr
[
(A#τB)t

]
≤ Tr

[
At(1−τ)Btτ

]
. (2.13)

Proof of Lemma 2.6. From Lemma 2.1, we have

λ (A#τB) ≺w λ
(
A1−τBτ

)
(2.14)

= λ
(
A

1−τ
2 BτA

1−τ
2

)
(2.15)

≺w λ
((

A
t(1−τ)

2 BtτA
t(1−τ)

2

) 1
t

)
, (2.16)

where we employ the fact that λ(XY ) = λ(Y X) for any two square matrices X,Y in Eq. (2.15) (see e.g.

[82, Example 1.19]). The last inequality (2.16) follows from Eq. (2.8) in Lemma 2.2. Next, applying

Lemma 2.3 on the above inequality yields

λ
(
(A#τB)t

)
≺w λ

(
A
t(1−τ)

2 BtτA
t(1−τ)

2

)
. (2.17)

Finally, since the trace function is the summation of eigenvalues, the weak majorization in Eq. (2.17)

implies the trace norm inequality in Eq. (2.13).

Lemma 2.7 (Golden-Thompson Inequality [60, 61]). For any two For any two operators A,B ≥ 0, it

follows that

Tr
[
eA+B

]
≤ Tr

[
eA eb

]
. (2.18)

Moreover,
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Lemma 2.8 ( [85, Theorem 1], [86, Theorem 2] ). For any two operators A,B ≥ 0, and t ∈ [0, 1], we

have

Tr
[
AtB1−t] ≥ Tr [{A−B > 0}B] + Tr [{A−B ≤ 0}A] (2.19)

= Tr [A+B − |A−B|] /2. (2.20)

Lemma 2.9 (Hayashi-Nagaoka Inequality [87, Lemma 2] ). For operators 0 ≤ S ≤ 1, and T ≥ 0, we

have

I − (S + T )−
1
2S(S + T )−

1
2 ≤ 2(1− S) + 4T. (2.21)

Lemma 2.10 ( [88, Lemma 1]). For any two operators A,B ≥ 0, and t ∈ [0, 1/2], we have

Tr
[
AtB1−t] ≥ Tr

[{
A1−t −B1−t > 0

}
B
]

+ Tr
[{
A1−t −B1−t ≤ 0

}
A
]
. (2.22)

Lemma 2.11 ([82, Theorem 3.23]). Let A,X be d × d Hermitian matrices, and t ∈ R. Assume

f : I → R is a continuously di�erentiable function. Then

d

dt
Tr f(A + tX)

∣∣∣∣
t=t0

= Tr[Xf ′(A + t0X)].

Lemma 2.12. For all positive semi-de�nite operators A,B s ∈ [0, 1] and γ > 0,

‖(A+ γ1)s − (B + γ1)s‖∞ ≤ (‖A−B‖∞ + γ)s − γs. (2.23)

Proof of Lemma 2.12. The proof follows similar argument in Ref. [89]. Since the claim holds trivially

for s ∈ {0, 1}, we only prove the case of s ∈ (0, 1). Recall the integral representation: for s ∈ (0, 1),

(A+ γ1)s =
sin sπ

π

∫ ∞
0

ts−1 A+ γ1

A+ (γ + t)1
dt, (2.24)

=
sin sπ

π

∫ ∞
0

ts−1

[
1− t1

A+ (γ + t)1

]
dt. (2.25)

Then, it su�ces to prove∥∥∥∥ t1

B + (γ + t)1
− t1

A+ (γ + t)1

∥∥∥∥
∞
≤ t

γ + t
− t

‖A−B‖∞ + γ + t
. (2.26)

We �rst show Eq. (2.26) with the assumption A − B =: C ≥ 0. Replacing B and C by B/t and C/t

respectively and denoting x := 1 + γ/t, Eq. (2.26) is equivalent to∥∥∥(B + x1)−1 − (B + C + x1)−1
∥∥∥
∞
≤ x−1 − (‖C‖∞ + x)−1 (2.27)

=
∥∥∥x−1

1− (C + x1)−1
∥∥∥
∞
. (2.28)

Since

(B + x1)−1 − (B + C + x1)−1

= (B + x1)−
1
2

(
1−

[
(B + x1)−

1
2 C (B + x1)−

1
2 + 1

])−1
(B + x1)−

1
2 , (2.29)
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the sub-multiplicativity of operator norm thus yields∥∥∥(B + x1)−1 − (B + C + x1)−1
∥∥∥
∞

(2.30)

≤
∥∥∥(B + x1)−

1
2

∥∥∥
∞

∥∥∥∥1− ((B + x1)−
1
2 C (B + x1)−

1
2 + 1

)−1
∥∥∥∥
∞

∥∥∥(B + x1)−
1
2

∥∥∥
∞

(2.31)

≤ x−1

∥∥∥∥1− ((B + x1)−
1
2 C (B + x1)−

1
2 + 1

)−1
∥∥∥∥
∞
. (2.32)

Further, the fact

C
1
2 (B + x1)−1C

1
2 ≤ x−1C. (2.33)

implies that

x−1

∥∥∥∥1− ((B + x1)−
1
2 C (B + x1)−

1
2 + 1

)−1
∥∥∥∥
∞

= x−1

∥∥∥∥1− (C 1
2 (B + x1)−1C

1
2 + 1

)−1
∥∥∥∥
∞

(2.34)

≤ x−1
∥∥∥1− (x−1C + 1

)−1
∥∥∥
∞

(2.35)

=
∥∥∥x−1

1− (C + x1)−1
∥∥∥
∞
, (2.36)

which establishes Eq. (2.28).

Lastly, we consider the general case A,B ≥ 0. Denoting by f(u) := (u + γ)s. It is clearly that

u 7→ f(u) is an operator monotone function (see e.g. [67, Theorem V.1.9]). Then, the inequality

0 ≤ A ≤ B + (A−B)+ implies

f(A)− f(B) ≤ f(B + (A−B)+)− f(B), (2.37)

which in turn yields

∥∥(f(A)− f(B))+

∥∥
∞ ≤ ‖f(B + (A−B)+)− f(B)‖∞ . (2.38)

On the other hand, the established Eq. (2.23) with the pair {B + (A−B)+, B} leads to

‖f(B + (A−B)+)− f(B)‖∞ ≤ f(‖(A−B)+‖∞)− f(0) (2.39)

= ‖f((A−B)+)− f(0)1‖∞ . (2.40)

Combing Eqs. (2.38) and (2.40) gives

∥∥(f(A)− f(B))+

∥∥
∞ ≤ ‖f((A−B)+)− f(0)1‖∞ . (2.41)

Exchanging the role of A and B, we have

∥∥(f(B)− f(A))+

∥∥
∞ ≤ ‖f((B −A)+)− f(0)1‖∞ . (2.42)
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Then, our claim holds as follows:

‖f(A)− f(B)‖∞ = ‖ |f(A)− f(B)| ‖∞ (2.43)

=
∥∥(f(A)− f(B))+ ⊕ (f(B)− f(A))+

∥∥
∞ (2.44)

≤ ‖[f((A−B)+)− f(0)1]⊕ [f((B −A)+)− f(0)1]‖∞ (2.45)

= ‖f(|A−B|)− f(0)1‖∞ (2.46)

= f (‖A−B‖∞)− f(0). (2.47)

Lemma 2.13. [90, Corollary 3.6] Let Ai be m × m positive semi-de�nite matrix and Zi be n × m
matrix for i = 1, . . . , k. Then, for all unitarily invariant norms ‖ · ‖ and γ > 0, the map

(p, t) 7→

∥∥∥∥∥
(

k∑
i=1

Z∗i A
t/p
i Zi

)γp∥∥∥∥∥ (2.48)

is jointly log-convex on (0,+∞)× (−∞,+∞).

2.2 Large Deviation Theory

In this section, we will see that the Lengendre-Fenchel transform is closely related to the error-exponent

function of hypothesis testing and channel coding. Consider the following binary classical hypotheses:

H0 : pn := px1 ⊗ px2 ⊗ · · · pxn ,

H1 : qn := qx1 ⊗ qx2 ⊗ · · · qxn ,
(2.49)

where pxi , qxi are probability mass functions; and xi belongs to some �nite alphabet X and n ∈ N be

�xed. Given any r ≥ 0, recall the de�nition of the error-exponent function in Eq. (4.7):

φn(r) = φn(r|pn‖qn) = sup
α∈(0,1]

{
1− α
α

(
1

n
Dα (pn‖qn)− r

)}
. (2.50)

Without loss of generality, we assume that pn � qn have the same support since elements of qxi , that

do not lie in the support of pxi , do not contribute to φn(r).

Let Z be a random variable with probability measure µ. Further, we assume Z is �nite on supp(µ).

The cumulant generating function (c.g.f.) of Z is de�ned as

Λ(t) := logEµ
[
etZ
]
, t ∈ R. (2.51)

The Lengendre-Fenchel transform of Λ(t) is

Λ∗(z) := sup
t∈R
{zt− Λ(t)} . (2.52)

Such a transform plays a signi�cant role in concentration inequalities, convex analysis, and large

deviation theory [27].
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Let Pxn be the empirical distribution of the sequence xn = x1x2 . . . xn. Let Z0 = log qn

pn with

probability measure pn, Z1 = log pn

qn with probability measure qn, and denote

Λ0,Pxn
(t) :=

1

n
logEpn

[
etZ0

]
=
∑
x∈X

Pxn(x)Λ0,xi(t),

Λ1,Pxn
(t) :=

1

n
logEqn

[
etZ1

]
=
∑
x∈X

Pxn(x)Λ1,xi(t);

(2.53)

where

Λ0,xi(t) := logEpxi

[
e
t log

qxi
pxi

]
, Λ1,xi(t) := logEqxi

[
e
t log

pxi
qxi

]
. (2.54)

Rewrite the right-hand side of Eq. (2.50) with α = 1
1+s , and observe that

∑
x∈X

Pxn(x)sD 1
1+s

(px‖qx) = −(1 + s)Λ0,Pxn

(
s

1 + s

)
(2.55)

=: E
(2)
0 (s, Pxn). (2.56)

Then the error-exponent function in Eq. (2.50) can also be viewed as a Lengendre-Fenchel transform

of E
(2)
0 (s, Pxn):

φn(r) = sup
s≥0

{
E

(2)
0 (s, Pxn)− sr

}
. (2.57)

The following lemma relates φn(r) to Λ∗j,Pxn
(z), the Lengendre-Fenchel transform of Eq. (2.53):

Λ∗j,Pxn
(z) := sup

t∈R
{tz − Λj,Pxn

(t)} , j ∈ {0, 1}. (2.58)

Lemma 2.14 (Regularity). Let pn and qn, n ∈ N, be described as above. Assume r > 1
nD0 (pn‖qn)

and φn(r) > 0. The following hold:

(a) Λ′′0,Pxn
(t) > 0 for all t ∈ [0, 1].

(b) Λ∗0,Pxn
(φn(r)− r) = φn(r).

(c) Λ∗1,Pxn
(r − φn(r)) = r.

(d) Let t? := t?r,Pxn
be the optimizer of Λ∗0,Pxn

(z) in Eq. (2.58), and s? := s?r,Pxn
be the optimizer of

φn(r) in Eq. (2.57). The optimizer t? ∈ (0, 1) is unique, and satis�es Λ′0,Pxn
(t?) = φn(r) − r.

In particular, one has t? = s?

1+s? ; s
? = −∂φn(r)

∂r ; and ∂2φn(r)
∂r2 = −

(
∂2E

(2)
0 (s,Pxn )

∂s2

∣∣∣∣
s=s?

)−1

=(
1+s?r,Pxn

)3

Λ′′0,Pxn
(t?)

> 0.
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Before proving Lemma 2.14, we will need the following partial derivatives with respect to t:

Λ′0,xi(t) = Eq̂xi,t

[
log

qxi
pxi

]
, Λ′1,xi(t) = Eq̂xi,1−t

[
log

pxi
qxi

]
; (2.59)

Λ′′0,xi(t) = Varq̂xi,t

[
log

qxi
pxi

]
, Λ′′1,xi(t) = Varq̂xi,1−t

[
log

pxi
qxi

]
, (2.60)

where we denote the tilted distributions for every i ∈ [n] and t ∈ [0, 1] by

q̂xi,t(ω) :=
pxi(ω)1−tqxi(ω)t∑

ω∈supp(pxi )
pxi(ω)1−tqxi(ω)t

, ω ∈ supp(pxi). (2.61)

It is also easy to verify that

Λ0,xi(t) = Λ1,xi(1− t), Λ′0,xi(t) = −Λ′1,xi(1− t), Λ′′0,xi(t) = Λ′′1,xi(1− t). (2.62)

This lemma closely follows Ref. [91, Lemma 9]; however, the major di�erence is that we prove the

claim using φn(r|ρn‖σn) in Eq. (4.7) instead of the discrimination function: min {D (τ‖ρ) : D (τ‖σ) ≤ r}
in Eq. (9.20). This expression is crucial to obtaining the sphere-packing bound in Theorem 11.1 in the

strong from, cf. Eq. (1.4), instead of the weak form, cf. Eq. (1.5).

Proof of Lemma 2.14.

(2.14-(a)) We will prove this statement by contradiction. Let t ∈ [0, 1], Assuming that Λ′′0,Pxn
(t) = 0,

implies Λ′′0,x(t) = 0, ∀x ∈ supp(Pxn). Recall from Eq. (2.60)

0 = Λ′′0,x(t) = Varq̂x,t

[
log

qx
px

]
, (2.63)

which is equivalent to

px(ω) = qx(ω) · e−Λ′0,x(t), ∀ω ∈ supp(px). (2.64)

Summing both sides of Eq. (2.64) over ω ∈ supp(px) gives

1 = Tr
[
p0
xqx
]

e−Λ′0,x(t). (2.65)

Then, Eqs. (2.64) and (2.65) imply that

φn(r) = sup
0<α≤1

α− 1

α

(
r −

∑
x∈X

Pxn(x)Dα (px‖qx)

)
(2.66)

= sup
0<α≤1

α− 1

α

(
r +

∑
x∈X

Pxn(x) log Tr
[
p0
xqx
])

(2.67)

= 0, (2.68)

where Eq. (2.68) follows since r > 1
nD0(pn‖qn) = − 1

n

∑
x∈X Pxn(x) log Tr

[
p0
xqx
]
by assumption.

However, this contradicts with the assumption φn(r) > 0. Hence, we conclude item (a).

 doi:10.6342/NTU201800597



2. Mathematical Tools 23

(2.14-(b)) Observe that E
(2)
0 (s, Pxn)− sr in Eq. (2.57) is strictly concave in s ∈ R≥0 since

∂2E
(2)
0 (s, Pxn)

∂s2
= − 1

(1 + s)3
Λ′′0,Pxn

(
s

1 + s

)
< 0, (2.69)

owing to Eqs. (2.56), (2.60), and Lemma (a). Moreover, s = 0 cannot be an optimum in

Eq. (2.57); otherwise, it will violate the assumption φn(r) ≥ 0. Thus a unique maximizer

s? ∈ R>0 exists such that

φn(r) = −s?r + E
(2)
0 (s?, Pxn) (2.70)

=
s?

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
. (2.71)

where in the second equality we use Eq. (2.56) and

r =
∂E

(2)
0 (s, Pxn)

∂s

∣∣∣∣∣
s=s?

(2.72)

= − 1

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
. (2.73)

Comparing Eq. (2.71) with (2.73) gives

Λ′0,Pxn

(
s?

1 + s?

)
= φn(r)− r, (2.74)

which is exactly the optimum solution to Λ∗0,Pxn
(z) in Eq. (2.58) with

t? =
s?

1 + s?
∈ (0, 1), (2.75)

z = φn(r)− r. (2.76)

Hence, we obtain

Λ∗0,Pxn
(φn(r)− r) = t?z − Λ0,Pxn

(t?) (2.77)

=
s?

1 + s?
(φn(r)− r)− Λ0,Pxn

(
s?

1 + s?

)
(2.78)

=
s?

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
(2.79)

= φn(r), (2.80)

where Eqs. (2.74) and (2.71) are used in the third and last equalities.

(2.14-(c)) This proof follows from similar arguments in item (b) and Eq. (2.62). Eqs. (2.74) and (2.62) lead

to

Λ′1,Pxn

(
1

1 + s?

)
= r − φn(r), (2.81)
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which satis�es the optimum solution to Λ1,Pxn
(z) in Eq. (2.58) with t? = 1

1+s? ∈ (0, 1) and

z = r − φn(r). Then,

Λ∗1,Pxn
(r − φn(r)) = t?z − Λ1,Pxn

(t?) (2.82)

=
1

1 + s?
(r − φn(r))− Λ1,Pxn

(
s?

1 + s?

)
(2.83)

=
1

1 + s?
Λ′1,Pxn

(
1

1 + s?

)
− Λ1,Pxn

(
1

1 + s?

)
(2.84)

= r, (2.85)

where the third equality is due to Eq. (2.81), and the last equality follows from Eqs. (2.62) and

(2.73).

(2.14-(d)) The fact that a unique optimizer t? ∈ (0, 1) exists such that Λ′0,Pxn
(t?) = φn(r) − r follows

directly from Eqs. (2.74), (2.75) and Λ′′0,Pxn
(t) > 0, for t ∈ [0, 1].

Moreover, Eqs. (2.70), (2.72), and (2.69) yield

−∂φn(r)

∂r
= s?, (2.86)

∂2φn(r)

∂r2
= −∂s

?

∂r
= −

(
∂2E

(2)
0 (s, Pxn)

∂s2

)−1
∣∣∣∣∣∣
s=s?

=
(1 + s?)3

Λ0,Pxn

(
s?

1+s?

) , (2.87)

which completes the claim in item (d).

Let (Zi)
n
i=1 be a sequence of independent, real-valued random variables with probability measures

(µi)
n
i=1. Let Λi(t) := logE

[
etZi

]
and de�ne the Legendre-Fenchel transform of 1

n

∑n
i=1 Λi(·) to be:

Λ∗n(z) := sup
t∈R

{
zt− 1

n

n∑
i=1

Λi(t)

}
, ∀z ∈ R. (2.88)

Then there exists a real number t? ∈ (0, 1] for every z ∈ R such that

z =
1

n

n∑
i=1

Λ′i(t
?); (2.89)

Λ∗n(z) = zt? − 1

n

n∑
i=1

Λi(t
?). (2.90)

De�ne the probability measure µ̃i via

dµ̃i
dµi

(zi) := et
?zi−Λi(t

?), (2.91)

and let Z̄i := Zi − Eµ̃i [Zi]. Furthermore, de�ne m2,n :=
∑n

i=1 Varµ̃i
[
Z̄i
]
, m3,n :=

∑n
i=1Eµ̃i

[∣∣Z̄i∣∣3],
and Kn(t?) :=

15
√

2πm3,n

m2,n
. With these de�nitions, we can now state the following sharp concentration
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inequality for 1
n

∑n
i=1 Zi:

Theorem 2.1 (Bahadur-Ranga Rao's Concentration Inequality [91, Proposition 5], [48]). Provided

that
√
m2,n ≥ 1 + (1 +Kn (t?))2, then

Pr

{
1

n

n∑
i=1

Zi ≥ z

}
≥ e−nΛ∗n(z) e−Kn(t?)

2
√

2πm2,n
. (2.92)

Chaganty and Sethuraman in Ref. [49, Theorem 3.3] considered a more general sequence of random

variables {Zn}n∈N, which are not necessarily the sum of random variables.

Let (Xi)i∈N be a sequence of independent, real-valued random variables with probability measures

(µi)
n
i=1. Let Zn :=

∑n
i=1Xi and let Λn(t) := logE

[
etZn

]
. De�ne the Legendre-Fenchel transform of

1
nΛn(·) by:

Λ∗n(z) := sup
t∈R

{
zt− 1

n
Λn(t)

}
, ∀z ∈ R. (2.93)

Let (Tn)n∈N be a bounded sequence of real numbers and (t?n)n∈N be a sequence satisfying for all n ∈ N

t?n ∈ (0, 1); Tn =
1

n
Λ′n(t?n); Λ∗n(Tn) = Tnt

?
n −

1

n
Λn(t?n). (2.94)

With these de�nitions, we can now state the following sharp concentration inequality for 1
nZn:

Theorem 2.2 (Chaganty-Sethuraman's Concentration Inequality [49, Theorem 3.3] ). For any η ∈
(0, 1), there exists an N0 ∈ N such that, for all n ≥ N0,

Pr

{
1

n
Zn ≥ Tn,

}
≥ 1− η
t?n
√

2πnm2,n
exp{−nΛ∗n(Tn)}, (2.95)

where m2,n := 1
n

∑n
i=1 Varµ̃n,i [Xi], and the measure µ̃n,i is de�ned via

dµ̃n,i
dµi

(y) :=
eyt

?
n

E [et?nXi ]
. (2.96)

Remark 2.1. Chaganty and Sethuraman proved Theorem 2.2 provided that the following condition is

satis�ed: there exists δ0 > 0 such that for any δ and λ with 0 < δ < δ0 < λ, supδ<|t|≤λt?n |exp{Λn(t?n + it)}/ exp{Λn(t?n)}| =
o(1/
√
n), where the supremum is de�ned to be 0 if {t : δ < |t| ≤ λt?n} is empty. In the case of Zn being

a sum of random variables, exp{Λn(t?n+it)}/ exp{Λn(t?n)} is the product of the characteristic functions
of {Xi}ni=1. Since the supremum of a characteristic function on a compact interval not containing 0 is

less than 1, this condition is thus satis�ed.

We note that the lower bound in Theorem 2.2 for the general sequence of random variables (Xi)i∈N
su�ces to establish the converse bound in moderate deviation analysis for c-q channel coding, The-

orem 12.2 in Chapter 12 later. We do not particularly consider the case of lattice valued random

variables (see e.g. [49, Theorem 3.5]). 3
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Chapter 3

Quantum Entropic Quantities and

Notation

In this chapter, we introduce necessary notation in quantum information theory. In Section 3.1, we

present various quantum generalizations of the classical Rényi divergence [92], and their mathematical

properties. As we will see in quantum hypothesis testing discussed in Chapter 4, some speci�c de�ni-

tions of the quantum Rényi divergence naturally arise in the exponent function. In Sections 3.2 and

3.3, we de�ne the conditional Rényi entropies and Rényi mutual information, which play signi�cant

roles in th Parts II and III, respectively. We refer the interested readers to books [93, 50, 8] for more

comprehensive discussions.

Notation. Throughout this thesis, we consider a �nite-dimensional Hilbert space H. The set of density
operators (i.e. positive semi-de�nite operators with unit trace) and the set of full-rank density operators

on H are de�ned as S(H) and S(H)>0. For ρ, σ ∈ S(H), we write ρ � σ if the support of ρ is

contained in the support of σ. The identity operator on H is denoted by 1H. If there is no possibility

of confusion, we will skip the subscript H. We use Tr [ · ] as the standard trace function. Let N, R,

R≥0, and R>0 denote the set of integers, real numbers, non-negative real numbers, and positive real

numbers, respectively. De�ne [n] := {1, 2, . . . , n} for n ∈ N.
For a positive semi-de�nite operator A whose spectral decomposition is A =

∑
i aiPi, where (ai)i

and (Pi)i are the eigenvalues and eigenprojections of A, its power is de�ned as: Ap :=
∑

i:ai 6=0 a
p
iPi.

In particular, A0 denotes the projection onto the support of A. We use supp(A) to denote the support

of the operator A. Further, A ⊥ B means supp(A) ∩ supp(B) = ∅.

Given a pair of positive semi-de�nite operators ρ, σ ∈ S(H), we de�ne quantum relative entropy

[94, 95] as

D(ρ‖σ) := Tr [ρ (logρ− logσ)] . (3.1)

We de�ne two types of the quantum relative entropy variances [14, 15, 16] by

V (ρ‖σ) := Tr
[
ρ (log ρ− log σ)2

]
−D(ρ‖σ)2 (3.2)

Ṽ (ρ‖σ) :=

∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2. (3.3)
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They are de�ned to be +∞ when ρ 6� σ We note that when ρ and σ commute, D(ρ‖σ) reduces to the

classical Kullback-Leibler divergence [96]. It is well-known that both the quantities are non-negative,

and D(ρ‖σ) = 0 if and only if ρ = σ, which in turn shows that

V (ρ‖σ) > 0 implies D(ρ‖σ) > 0. (3.4)

3.1 Quantum Rényi divergence

For density operators ρ, σ ∈ S(H)>0, and every α ∈ [0, 1), we de�ne the following two families of

quantum Rényi divergences [59, 57, 58]:

Dα(ρ‖σ) :=
1

α− 1
logQα(ρ‖σ), Qα(ρ‖σ) := Tr

[
ρασ1−α] ; (3.5)

D[
α(ρ‖σ) :=

1

α− 1
logQ[α(ρ‖σ), Q[α(ρ‖σ) := Tr

[
eα log ρ+(1−α) log σ

]
. (3.6)

We term the above quantities as the (Petz) α-Rényi divergence, and the log-Euclidean α-Rényi diver-

gence, respectively. The log-Euclidean Rényi divergence arises from the log-Euclidean operator mean

(also called the chaotic mean): A3αB := exp ((1− α) logA+ α logB) for 0 ≤ α ≤ 1. For general

density operators ρ, σ ∈ S(H), the above de�nitions can be extended as

Qα(ρ‖σ) := lim
δ↘0

Qα(ρ+ δ1‖σ + δ1) and Q[α(ρ‖σ) := lim
δ↘0

Q[α(ρ+ δ1‖σ + δ1). (3.7)

For α = 1, we de�ne (see e.g. [58, Lemma III.4]):

Q1(ρ‖σ) := Tr
[
ρσ0
]

and Q[1(ρ‖σ) := Tr
[
ρσ0
]

; (3.8)

D1(ρ‖σ) := lim
α→1

Dα(ρ‖σ) = D(ρ‖σ) and D[
1(ρ‖σ) := lim

α→1
D[
α(ρ‖σ) = D(ρ‖σ). (3.9)

In addition, these two quantities are related by the Golden-Thompson inequality given in Lemma 2.7:

Q[α(ρ‖σ) ≤ Qα(ρ‖σ), ∀α ∈ [0, 1]. (3.10)

The log-Euclidean Rényi divergence is closely related to the quantum version of the Hellinger arc

in statistics [97, 98], [58, Seciont III]. Lemma 3.1 will useful to prove the variational representations in

Sections 5.1 and 9.1 later.

Lemma 3.1 ([58, Theorem III.5]). Let ρ, τ ∈ S(H) with ρ� τ . For all s > −1, it follows that

min
σ∈S(H)

D(σ‖ρ) + sD(σ‖τ) = sD[
1

1+s

(ρ‖τ). (3.11)

In the following, we provide useful mathematical properties. Most of them can be found in Refs. [99,

58, 100].
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Lemma 3.2. Let ρ, σ ∈ S(H). Then,

α 7→ logQα(ρ‖σ) and α 7→ logQ[α(ρ‖σ) are convex on (0, 1); (3.12)

α 7→ Dα (ρ‖σ) is continuous and monotone increasing on [0, 1]; (3.13)

∀α ∈ (0, 1), (ρ, σ) 7→ Q[α(ρ‖σ) is jointly concave on S(H)× S(H); (3.14)

∀α ∈ [0, 1], σ 7→ Dα(ρ‖σ) is convex and lower semi-continuous on S(H). (3.15)

For every ρ ∈ S(H) and γ > 0, the map

(α, σ) 7→ Qα (ρ‖σ + γ1) is continuous on [0, 1]× S(H). (3.16)

Moreover, for every ρ ∈ S(H), the map

(α, σ) 7→ −Qα (ρ‖σ) is lower-semicontinuous on [0, 1]× S(H), (3.17)

and the same argument holds for Dα.

Proof of Lemma 3.2. We note that Eqs. (3.12), (3.13), (3.14), and (3.15) are proved in [99], [58, Lemma

III.3, Lemma III.11, Theorem III.14, Corollary III.25], [100, Corollary 2.2]1. We only prove Eqs. (3.16)

and (3.17).

Fix arbitrary γ > 0, α1 ∈ [0, 1], ρ, σ1 ∈ S(H), ‖σ1 − σ2‖∞ ≤ ε1, and |α1 − α2| ≤ ε2. Triangle

inequality implies that

|Qα1(ρ‖σ1 + γ1)−Qα2(ρ‖σ2 + γ1)| ≤ |Qα1(ρ‖σ2 + γ1)−Qα2(ρ‖σ2 + γ1)|

+ |Qα1(ρ‖σ1 + γ1)−Qα1(ρ‖σ2 + γ1)| .
(3.18)

In the following, we upper bound the two terms in the right-hand side of Eq. (3.18), respectively.

Without loss of generality, we assume α1 ≤ α2. Direct calculation shows that

|Qα1(ρ‖σ2 + γ1)−Qα2(ρ‖σ2 + γ1)| =
∣∣∣Tr
[
ρα1 (σ2 + γ1)1−α1 − ρα2 (σ2 + γ1)1−α2

]∣∣∣ (3.19)

=
∣∣∣Tr
[
ρα1

(
ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)

)
(σ2 + γ1)1−α1

]∣∣∣
(3.20)

≤ d
∥∥∥ρα1

(
ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)

)
(σ2 + γ1)1−α1

∥∥∥
∞
(3.21)

≤ d ‖ρα1‖∞
∥∥∥ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)

∥∥∥
∞

∥∥∥(σ2 + γ1)1−α1

∥∥∥
∞

(3.22)

≤ d(1 + γ)
∥∥∥ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)

∥∥∥
∞
. (3.23)

For su�ciently small ε2, it follows that∥∥∥ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)
∥∥∥
∞

= 1− λ̃min

(
ρα2−α1 (σ2 + γ1)−(α2−α1)

)
, (3.24)

1It was shown in [58, Lemma III.22] that the map σ 7→ Dα(ρ‖σ) is lower semi-continuous on S(H) for all α ∈ (0, 1).
The argument can be extended to the range α ∈ [0, 1] by the same method in [58, Lemma III.22].
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where we denote by λ̃min the smallest non-zero eigenvalue. Further, using [67, Problem III.6.14], we

have

λ̃min

(
ρα2−α1 (σ2 + γ1)−(α2−α1)

)
≥ λ̃min

(
ρα2−α1

)
λ̃min

(
(σ2 + γ1)−(α2−α1)

)
(3.25)

≥

[
λ̃min (ρ)

1 + γ

]α2−α1

. (3.26)

Combining Eqs. (3.24) and (3.26) yields

∥∥∥ρ0 − ρα2−α1 (σ2 + γ1)−(α2−α1)
∥∥∥
∞
≤ 1−

[
λ̃min (ρ)

1 + γ

]α2−α1

(3.27)

= (α2 − α1)

[
λ̃min (ρ)

1 + γ

]
+ o(α2 − α1) (3.28)

≤ ε2

[
λ̃min (ρ)

1 + γ

]
+ o(ε2). (3.29)

Hence, Eqs. (3.23) and (3.29) give

|Qα1(ρ‖σ2 + γ1)−Qα2(ρ‖σ2 + γ1)| ≤ ε2d(1 + γ)

[
λ̃min (ρ)

1 + γ

]
+ o(ε2). (3.30)

Next, we upper bound the second term in Eq. (3.18). Hölder's inequality given in Lemma 2.5 leads

to ∣∣∣Tr
[
ρα1

(
(σ1 + γ1)1−α1 − (σ2 + γ1)1−α1

)]∣∣∣ ≤ ‖ρα1‖1
∥∥∥(σ1 + γ1)1−α1 − (σ2 + γ1)1−α1

∥∥∥
∞

(3.31)

≤ d
∥∥∥(σ1 + γ1)1−α1 − (σ2 + γ1)1−α1

∥∥∥
∞
. (3.32)

Then, we apply Lemma 2.12 in Section 2.1 on Eq. (3.32) to obtain

|Qα1(ρ‖σ1 + γ1)−Qα1(ρ‖σ2 + γ1)| ≤ d
[
(ε1 + γ)1−α1 − γ1−α1

]
. (3.33)

Eqs. (3.18), (3.24) and (3.33) thus give

|Qα1(ρ‖σ1 + γ1)−Qα2(ρ‖σ2 + γ1)| ≤ ε2

[
λ̃min (ρ)

1 + γ

]
+ d

[
(ε1 + γ)1−α1 − γ1−α1

]
+ o(ε2). (3.34)

This implies that, for any α1 ∈ [0, 1] the left-hand side becomes arbitrary small as ε1, ε2 → 0, which

concludes the continuity of (α, σ) 7→ Qα(ρ‖σ + γ1). The assertion for Dα follow immediately.

Let X = {1, 2, . . . , |X |} be a �nite alphabet, and let P(X ) be the set of probability distributions

on X . Let W : X → S(H) be a c-q channel. We denote a c-q state by:

P ◦W :=
∑
x∈X

P (x)|x〉〈x| ⊗Wx. (3.35)

We also express the input distribution P ∈ P(X ) as a diagonalized matrix with respect to the compu-

 doi:10.6342/NTU201800597



3. Quantum Entropic Quantities and Notation 30

tational basis (|x〉)x∈X , i.e. P =
∑

x∈X P (x)|x〉〈x|.
We de�ne the conditional quantum relative entropy of two sets of density operators W̄,W and

P ∈ P(X ) as

D
(
W̄‖W|P

)
:=
∑
x∈X

P (x)D
(
W̄x‖Wx

)
. (3.36)

Similarly, we de�ne the following conditional entropic quantities for σ ∈ S(H) and P ∈ P(X ):

D (W‖σ|P ) :=
∑
x∈X

P (x)D (Wx‖σ) , (3.37)

Dα (W‖σ|P ) :=
∑
x∈X

P (x)Dα (Wx‖σ) , (3.38)

V (W‖σ|P ) :=
∑
x∈X

P (x)V (Wx‖σ) , (3.39)

Ṽ (W‖σ|P ) :=
∑
x∈X

P (x)Ṽ (Wx‖σ) . (3.40)

3.2 Conditional Rényi Entropy

For ρAB ∈ S(AB), α ≥ 0 and t = { }, or {[}, the quantum conditional Rényi entropies are given by

Ht,↑
α (A|B)ρ := sup

σB∈S(B)
−Dt

α (ρAB‖1A ⊗ σB) ,

Ht,↓
α (A|B)ρ := −Dt

α (ρAB‖1A ⊗ ρB) .

(3.41)

In (3.41) When α = 1 and t = { }, {[}, or {∗}, both quantities coincide with the usual quantum

conditional entropy :

Ht,↑
1 (A|B)ρ = Ht,↓

1 (A|B)ρ = H(A|B)ρ := H(AB)ρ −H(B)ρ, (3.42)

where H(A)ρ := −Tr[ρA log ρA] denotes the von Neumann entropy [5].

Proposition 3.1 (Properties of α-Rényi Conditional Entropy). Given any classical-quantum state

ρXB ∈ S(XB), the following holds:

(a) The map α 7→ H↑α(X|B)ρ is continuous and monotonically decreasing on [0, 1].

(b) The map α 7→ 1−α
α H↑α(X|B)ρ is concave on (0, 1).

Proof of Proposition 3.1.

(3.1)-(a) Fix an arbitrary sequence (αk)k∈N such that αk ∈ [0, 1] and limk→+∞ αk = α∞ ∈ [0, 1]. Let

σ?k ∈ arg min
σ∈S(H)

Dαk (ρXB‖1X ⊗ σ) , ∀k ∈ N ∪ {+∞}. (3.43)
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The de�nition in Eq. (3.41) implies that

lim sup
k→+∞

H↑αk(X|B)ρ = − lim inf
k→+∞

Dαk (ρXB‖1X ⊗ σ?k) (3.44)

≤ −Dα∞

(
ρXB

∥∥∥∥1X ⊗ ( lim
k→+∞

σ?k

))
(3.45)

≤ − min
σ∈S(H)

Dα∞ (ρXB‖1X ⊗ σ) (3.46)

= H↑α∞(X|B)ρ, (3.47)

where, in order to establish (3.45), we used the lower semi-continuity of the map σ 7→ Dαk(ρXB‖1X⊗
σ) (see Eq. (3.15) in Lemma 3.2) and the continuity of α 7→ Dα (ρXB‖1X ⊗ σ?k) (Eq. (3.13) in

Lemma 3.2).

Next, we let

σk := (1− εk)σ?∞ + εk
1

d
, ∀k ∈ N, (3.48)

where (εk)k∈N is an arbitrary positive sequence that converges to zero. Then, it follows that

lim inf
k→+∞

H↑αk(X|B)ρ ≥ − lim sup
k→+∞

{Dαk (ρXB‖1X ⊗ σk)} (3.49)

= −Dα∞ (ρXB‖1X ⊗ σ?∞) (3.50)

= H↑α∞(X|B)ρ. (3.51)

Here, equality (3.50) holds because 1X ⊗ σk � ρXB for all k ∈ N ∪ {+∞}. Thus, the map

(αk, σk) 7→ Dαk(ρXB‖1X ⊗σk) is continuous for k ∈ N∪{+∞}. Hence, we prove the continuity.

Now, we show the monotonicity. For all σB ∈ S(B), Eq. (3.15) in Lemma 3.2 implies that

−Dα(ρXB‖1 ⊗ σB) is monotonically decreasing in α ≥ 0. Since H↑α(X|B)ρ is the pointwise

supremum of the above function, we conclude that H↑α(X|B)ρ is monotonically decreasing in

α ≥ 0. Hence, item (a) is proven.

(3.1)-(b) For convenience, we make a substitution α = 1/(1 + s). The concavity for s ≥ 0 can be proved

with the geometric matrix means in [36]. Here, we present another proof by the following matrix

inequality. Let ρXB =
∑

x∈X P (x)|x〉〈x| ⊗Wx, t = γ = 1, i = x, k = |X |, Ai = P (x)Wx, and

Zi = In,m. We obtain the log-convexity of the map by applying Lemma 2.13:

p 7→ Tr

(∑
x∈X

(P (x)Wx)
1
p

)p
, ∀p > 0, (3.52)

which is exactly the concavity of the map s 7→ sH↑1/(1+s)(X|B)ρ for all s > 0.
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3.3 Rényi Mutual Information

The mutual information of a c-q channel W : X → S(H) with a prior distribution P ∈ P(X ) is de�ned

by

I(P,W) := D (P ◦W‖P ⊗ PW) = D (W‖PW|P ) , (3.53)

where P ◦W :=
∑

x∈X P (x)|x〉〈x| ⊗Wx and PW :=
∑

x∈X P (x)Wx. Hence, the information radius or

information capacity2 of W : X → S(H) is

CW := sup
P∈P(X )

I(P,W). (3.54)

The conditional information variance and the unconditional information variance of W : X → S(H)

with a prior distribution P ∈ P(X ) are de�ned, respectively, by

V (P,W) := V (W‖PW|P ) ,

U(P,W) := V (P ◦W‖P ⊗ PW) .
(3.55)

Note that V (P ?,W) = U(P ?,W) for every capacity-achieving distribution P ? ∈ P(X ), i.e. I(P ?,W) =

CW, can be easily veri�ed from the similar argument in [12, Lemma 62]. We also de�ne the uncondi-

tional information variance in terms of Ṽ (ρ‖σ):

Ṽ (P,W) := Ṽ (W‖PW|P ) . (3.56)

The minimal peripheral information variance and its variant are de�ned by

VW := inf
P∈P(X ): I(P,W)=CW

V (P,W), (3.57)

ṼW := inf
P∈P(X ): I(P,W)=CW

Ṽ (P,W). (3.58)

Furthermore, one can easily verify that

VW > 0 implies CW > 0. (3.59)

In the following, We de�ne two related information quantities: for every α ∈ [0, 1],

I(1)
α (P,W) := inf

σ∈S(H)
Dα (P ◦W‖P ⊗ σ) ; (3.60)

I(2)
α (P,W) := inf

σ∈S(H)
Dα (W‖σ|P ) . (3.61)

The term I
(1)
α (P,W) is called the α-Rényi mutual information [104, 64, 58, 105] or the generalized

Holevo quantity. The second term I
(2)
α (P,W) can be viewed as a variant of the α-Rényi mutual infor-

mation, called α-Augustin mutual information [106, 107]. It can be veri�ed that these two functions

2We note that CW equals to the capacity of classical communications over quantum channels [101, 102, 103]. It is
usually term classical capacity [50], though it is a quantity in quantum information processing.
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are related by Jensen's inequality:

I(1)
α (P,W) ≤ I(2)

α (P,W). (3.62)

For the case of α = 1, they both equal conventional mutual information, i.e. I
(1)
1 (P,W) = I

(2)
1 (P,W) =

I(P,W). Mosonyi and Ogawa [58, Proposition IV.2] showed that for all α ∈ [0, 1],

Cα,W := sup
P∈P(X )

I(1)
α (P,W) = sup

P∈P(X )
I(2)
α (P,W), (3.63)

and it is termed the Rényi radius or the Rényi capacity of order α. Moreover, Proposition 3.2 below

and the compactness of P(X ) show that the suprema in Eq. (3.63) can be replaced with maxima.

We note that I
(1)
α admits a closed form for α ∈ (0, 1] due to the quantum Sibson's identity below.

The minimizer in Eq. (3.61) will be studied in Proposition 3.2.

Lemma 3.3 (Quantum Sibson's Identity [108]). Fix an α ∈ (0, 1]. Let ρAB ∈ S(AB) and let σ?B be

the minimizer of minσB∈S(B)Dα (ρAB‖ρA ⊗ σB). Then, one has

σ? =
(TrA [ραAB])

1
α

Tr
[(

TrA
[
ραAB

]) 1
α

] . (3.64)

The following proposition presents important properties of α-Rényi mutual information and radius.

Proposition 3.2 (Properties of α-Mutual Information and Radius). Given any classical-quantum

channel W : X → S(H), the following holds:

(a) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1], and I

(2)
α (P,W) ≤

log min{|X |, d} for all α ∈ [0, 1].

(b) The map (α, P ) 7→ I
(2)
α (P,W) is continuous on [0, 1]× P(X ).

(c) For every (α, P ) ∈ (0, 1]× P(X ), there exists a unique σα,P ∈ S(H) such that

I(2)
α (P,W) = Dα (W‖σα,P |P ) , (3.65)

and

Tα,P (σ) = σ and σ � PW if and only if σ = σα,P , (3.66)

where the map Tα,P : SP,W(H)→ S(H) is de�ned as

Tα,P (σ) =
∑
x∈X

P (x)
σ

1−α
2 Wα

x σ
1−α

2

Tr [Wα
x σ

1−α]
. (3.67)

(d) The map (α, P ) 7→ σα,P is continuous on (0, 1]× P(X ).

(e) The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].

Proof of Proposition 3.2.
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(3.2)-(a) Recalling the de�nition of I
(2)
α given in Eq. (3.61). The statement immediately follows from

Eq. (3.13) (see also [58, Lemma IV.5]) because the minimization over σ ∈ S(H) preserves the

monotonicity. Hence, we have I
(2)
α (P,W) ≤ I1(P,W) ≤ log min{|X |, d}, where the last inequality

follows from the well-known upper bound for the Holevo quantity (see e.g. [5, Chapter 12]).

(3.2)-(b) Fix an arbitrary sequence (αk, Pk)k∈N such that αk ∈ [0, 1], Pk ∈ P(X ), and limk→+∞(αk, Pk) =

(α0, P0) ∈ [0, 1]× P(X ). Let

σk := σαk,Pk ∈ arg min
σ∈S(H)

Dαk (W‖σ|Pk) , ∀k ∈ N. (3.68)

We �rst choose a subsequence {kl}l∈N such that

lim inf
k→+∞

I(2)
αk

(Pk,W) = lim
l→+∞

I(2)
αkl

(Pkl ,W). (3.69)

Since S(H) is compact3, there exists a convergent subsubsequence {klm}m∈N such that limm→+∞ σklm =

σ0 for some σ0 ∈ S(H). Then, we have

lim inf
k→+∞

I(2)
αk

(Pk,W) = lim
m→+∞

Dαklm

(
W‖σklm |Pklm

)
(3.70)

= lim
m→+∞

Dαklm

(
W‖σklm |P0

)
(3.71)

+ lim
m→+∞

∑
x∈X

[
Pklm (x)− P0(x)

]
Dαklm

(
Wx‖σklm

)
(3.72)

≥ lim
m→+∞

Dαklm

(
W‖σklm |P0

)
(3.73)

≥ Dα0 (W ‖σ0 |P0) (3.74)

≥ min
σ∈S(H)

Dα0 (W‖σ|P0) (3.75)

= I(2)
α0

(P0,W), (3.76)

To see why inequality (3.73) holds, we observe that supp(P0) ⊆ supp(Pk) for all su�ciently

large k ∈ N Further, the upper bound of I
(2)
α (P,W) ≤ log min{|X |, d} (item (a)) implies that

Dαk(Wx‖σk) ≤ log min{|X |,d}
Pk(x) for all x ∈ supp(Pk). Hence, for x ∈ supp(P0) and for all su�ciently

large m ∈ N, one has Pklm (x) → P0(x) and Dαklm
(Wx‖σklm ) is bounded away from +∞. On

the other hand, Pklm (x)− P0(x) ≥ 0 for x /∈ supp(P0) and all su�ciently large m ∈ N. In order

to establish (3.74), we used the lower semi-continuity of the map (α, σ) 7→ Dα(Wx‖σ) for all

x ∈ supp(P0) in Eq. (3.17) in Lemma 3.2.

Next, we let

σ̃k := (1− εk)σα0,P0 + εk
1

d
, ∀k ∈ N; (3.77)

εk :=
‖Pk − P0‖1

2
. (3.78)

3Again, the compactness is with respect to the trace norm topology, we transit to the operator norm topology by the
�nite dimension of the Hilbert space.
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The de�nition of I
(2)
α yields

lim sup
k→+∞

I(2)
αk

(Pk,W) ≤ lim sup
k→+∞

{Dαk (W‖σ̃k|Pk)} (3.79)

= lim sup
k→+∞

{
Dαk (W‖σ̃k|P∞) +

∑
x∈X

[Pk(x)− P0(x)]Dαk (Wx‖σ̃k)

}
(3.80)

≤ lim sup
k→+∞

{Dαk (W‖σ̃k|P0)}

+ lim sup
k→+∞

{∑
x∈X

[Pk(x)− P0(x)]Dαk (Wx‖σ̃k)

}
,

(3.81)

where equality (3.80) follows from the de�nition I
(2)
α . Inequality (3.81) is due to the subadditivity

of superior limits. Then, the convexity of σ 7→ Dαk(W‖σ|P ) implies that

lim sup
k→+∞

{Dαk (W‖σ̃k|P0)} ≤ lim sup
k→+∞

{(1− εk)Dαk (W‖σα0,P0 |P0) + εk [Dαk (W ‖1/d|P0)]}

(3.82)

= Dα0 (W‖σα0,P0 |P0) = I(2)
α0

(P0,W), (3.83)

where the last line holds because of the continuity of α 7→ Dα(·‖·) on [0, 1] [58, Corollary III.13]and

the �niteness of Dαk (W ‖1/d|P0) for all k ∈ N.

It remains to show the second term in Eq. (3.81) is actually zero. Direct calculation shows that

lim sup
k→+∞

{∑
x∈X

[Pk(x)− P0(x)]Dαk (Wx‖σ̃k)

}
(3.84)

≤ lim sup
k→+∞

{
εk ·max

x∈X
Dαk(Wx‖σ̃k)

}
(3.85)

≤ lim sup
k→+∞

{
εk ·max

x∈X
Dαk

(
Wx

∥∥∥∥εk1d
)}

(3.86)

= lim sup
k→+∞

{
εk ·

[
log εk + max

x∈X
Dαk

(
Wx

∥∥∥∥1d
)]}

(3.87)

= lim sup
k→+∞

εk log εk (3.88)

= 0, (3.89)

where Eq. (3.86) follows from the dominance of α-Rényi divergence [8, Section 4]; equality (3.88)

follows the �niteness of Dα (Wx‖1/d) for all x ∈ X and α ∈ [0, 1]. in the last equality (3.89) we

use the convention limεk↓0 εk log εk = 0 as εk → 0 Hence, item (b) is proved.

(3.2)-(c) For α = 1, it is well-known that (see e.g. [101]) σ1,P = PW. Using the fact PW � Wx for all

x ∈ supp(P ), the statements are trivial.

We �x an arbitrary (α, P ) ∈ (0, 1) × P(X ) subsequently. Without loss of generality, we may
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further assume ⋃
x∈supp(P )

supp(Wx) = 1H, (3.90)

and hence PW has full support. We �rst show that the minimizer σα,P has full support too.

Second, we prove the �xed-point property Eq. (3.66). Finally, we establish the uniqueness of

σα,P . We remark that the uniqueness has been proven by Dalai and Winter [39, Appendix C].

Here, we provide an alternative proof for the completeness. Our approach follows closely from

Hayashi and Tomamichel [104, Appendix C].

De�ne

Mα(H) := arg min
σ∈S(H)

Dα (W‖σ|P ) = arg max
σ∈S(H)

gα(σ) = arg max
σ∈SP,W(H)

gα(σ) (3.91)

where

gα(σ) :=
∑
x∈X

P (x) log Tr
[
Wα
x σ

1−α] . (3.92)

To show that the optimizer of gα(·) has full support, we observe that the directional derivative
on the boundary of S(H) where at least one eigenvalue is zero in a direction that increases its

rank diverges to positive in�nite. Namely, it su�ces to show

lim
t→0

gα((1− t)σ + tσ⊥)− gα(σ)

t
= +∞, (3.93)

where σ ∈ SP,W(H) is some singular density operator, and σ⊥ := (1H−σ)
Tr[1H−σ] . For x ∈ supp(P )

with Wx � σ, we have Wx ⊥ σ⊥. It is not hard to see that

lim
t→0

P (x)
log Tr

[
Wα
x

(
(1− t)σ + tσ⊥

)1−α]− log Tr
[
Wα
x σ

1−α]
t

(3.94)

= lim
t→0

P (x)
log Tr

[
Wα
x

(
(1− t)1−ασ1−α + t1−α(σ⊥)1−α)]− log Tr

[
Wα
x σ

1−α]
t

(3.95)

= lim
t→0

P (x)
(1− α) log(1− t)

t
(3.96)

= lim
t→0

P (x)
−(1− α)

1− t
(3.97)

= −P (x)(1− α) (3.98)

> −∞ (3.99)

where Eq. (3.95) holds because σ ⊥ σ⊥; Eq. (3.96) is due to Wx ⊥ σ⊥; and Eq. (3.97) is owing

to L'Hôspital's rule.

On the other hand, since σ is singular, there must be some x ∈ supp(P ) such that Wx 6� σ.
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Hence, by denoting c :=
Tr[Wα

x (σ⊥)1−α]
Tr[Wα

x σ
1−α]

> 0, Eq. (3.95) leads to

lim
t→0

P (x)
log
{

(1− t)1−α + t1−αc
}

t
(3.100)

= lim
t→0

P (x)
−(1− α)(1− t)−α + (1− α)t−αc

(1− t)1−α + t1−αc
(3.101)

= +∞, (3.102)

where Eq. (3.101) is by L'Hôspital's rule again. Combining Eqs. (3.99) and (3.102) concludes

Eq. (3.93).

Next, we show the �xed-point property: Mα(H) = Fα(H), where Fα(H) := {σ ∈ S>0(H)}
denotes the �xed-points of the map: Tα,P : SP,W(H) → S(H). A necessary and su�cient

condition for σ to be an optimizer is

∂ωgα(σ) := Dgα(σ)[ω − σ] = 0, (3.103)

for all ω ∈ S(H), where Dgα(σ) denotes the Fréchet derivative of the map gα (see e.g. [104,

Appendix C]). Using the chain rule of Fréchet derivatives, it follows

∂ωgα(σ) = Tr

[∑
x∈X

P (x)
Wα
x

Tr [Wα
x σ

1−α]
∂ωσ

1−α

]
(3.104)

= Tr

[∑
x∈X

P (x)
σ
−α
2 Wα

x σ
−α
2

Tr [Wα
x σ

1−α]
σ
α
2 ∂ωσ

1−ασ
α
2

]
. (3.105)

We claim that the operators {
∆ω = σ

α
2 σ1−α∂ωσ

α
2 : ω ∈ S(H)

}
(3.106)

span the space of traceless Hermitian operators on S(H). Let σ =
∑

i λi|i〉〈i| with λi > 0 be the

eigenvalue decomposition. One can verify [82, Theorem 3.25] that

〈i|∆ω|j〉 =

(λiλj)
α
2
λ1−α
i −λ1−α

j

λi−λj 〈i|ω − σ|j〉, if λi 6= λj

(1− α)〈i|ω − σ|j〉, if λi = λj
. (3.107)

Therefore, ∆ω is Hermitian and Tr [∆ω] = 0 for all ω ∈ S(H). Moreover, the basis of the traceless

Hermitian operators is given by the operators

{
Γij = |i〉〈j|+ |j〉〈i|, Γ′ij = i|i〉〈j| − |j〉〈i|, Γ′′ij = |i〉〈i| − |j〉〈j|

}
i6=j . (3.108)

For every tuple (i, j) with i 6= j there exists an ε > 0 such that the state ω = σ + εΓij is still

in S(H). For this state, we �nd that ∆ω = ηΓij for some real η > 0. The similar argument

applies to Γ′ij and Γ′′ij . Hence, we have veri�ed that the operators {∆ω}ω∈S(H) span the space of

traceless Hermitian operators.

Armed with the above discussion, the condition that ∂ωgα(σ) = 0 for all ω ∈ S(H) is equivalent
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to the condition that the operators

∑
x∈X

P (x)
σ
−α
2 Wα

x σ
−α
2

Tr [Wα
x σ

1−α]
(3.109)

must be proportional to the identity. Thus, the optimum must be a �xed point of the map

Tα,P (·).

Lastly, to prove the uniqueness of the optimizer, it remains to show ∂2
ωgα(σ) : D2gα(σ)[ω−σ, ω−

σ] < 0 for all ω 6= σ and σ > 0. Continuing on Eq. (3.104), we have

∂2
ωgα(σ) = −Tr

[∑
x∈X

P (x)
Wα
x

Tr2 [Wα
x σ

1−α]
∂ωσ

1−α

]
+ Tr

[∑
x∈X

P (x)
Wα
x

Tr [Wα
x σ

1−α]
∂2
ωσ

1−α

]
(3.110)

< Tr

[∑
x∈X

P (x)
Wα
x

Tr [Wα
x σ

1−α]
∂2
ωσ

1−α

]
, (3.111)

where Eq. (3.111) holds by noting that ∂ωσ
1−α 6= 0 for all ω 6= σ. Further, ∂2

ωσ
1−α ≤ 0 since

u 7→ u1−α is operator concave. Thus, ∂2
ωgα(σ) < 0, item (c) is proved.

(3.2)-(d) We follow the notation in item (d). However, we restrict (αk, Pk)k∈N and (α0, P0) to be in the

set (0, 1]× P(X ). The continuity of (α, P ) 7→ I
(2)
α (P,W) in item (b) and Eq. (3.74) thus imply

lim
k→+∞

I(2)
αk

(Pk,W) = Dα0(W‖σ0|P0) = I(2)
α0

(P0,W) = Dα0(W‖σα0,P0 |P0). (3.112)

Then, the uniqueness of the minimizer σα,P in item (c) guarantees that σ0 = σα0,P0 . Hence,

lim
k→+∞

σαk,σk = σ0 = σα0,σ0 , (3.113)

which proves item (d).

(3.2)-(e) Berge's maximum theorem [109, Section IV.3], [110, Lemma 3.1] shows that the continuous map

(α, P ) 7→ I
(2)
α (P,W) maximized over the compact set P ∈ P(X ) is still continuous for α ∈ [0, 1].
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Chapter 4

Quantum Hypothesis Testing

The goal of this chapter is to provide an introduction to quantum hypothesis testing. In Parts II and

III later, our �nite blocklength bounds heavily rely on the results in this chapter. In Sections 4.1 and

4.2 below, we present the error exponent analysis, while the moderate deviation analysis is given in

Section 4.3.

The binary quantum hypothesis testing consists of a null hypothesis and an alternative hypothesis.

The null hypothesis and the alternative hypothesis are described by the quantum states ρ ∈ S(H) and

σ ∈ S(H), respectively. Given any test 0 ≤ Q ≤ 1 that determines the outcome to be null hypothesis

ρ, the type-I error and type-II error of the hypothesis testing are de�ned as follows:

α (Q; ρ) := Tr [(1−Q)ρ] , (4.1)

β (Q;σ) := Tr [Qσ] . (4.2)

Unless ρ ⊥ σ, one cannot make both the type-I and type-II errors arbitrary small given the above

de�nitions. Thus, we de�ne the minimum type-I error when the type-II error is below µ ∈ (0, 1) as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (4.3)

The following famous quantum Stein's lemma characterizes the trade-o� relation between these two er-

rors. That is, the quantum relative entropy D(ρ‖σ) serves as a benchmark to determine the asymptotic

error behaviors of the optimal type-I error.

Theorem 4.1 (Quantum Stein's Lemma [95], [57], [86]). Given a binary hypotheses: H0 : ρ and H1 : σ,

one has

lim
n→+∞

α̂exp{−nr}
(
ρ⊗n‖σ⊗n

)
=

{
0, r < D(ρ‖σ)

1, r > D(ρ‖σ)
. (4.4)

For an n-shot independent extension of the binary hypothesis:

H0 : ρn = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (4.5)

H1 : σn = σ1 ⊗ σ2 ⊗ · · · ⊗ σn, (4.6)
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we de�ne an error exponent function [86] by

φn (r|ρn‖σn) := sup
α∈(0,1]

{
α− 1

α

(
r − 1

n
Dα (ρn‖σn)

)}
, r ≥ 0. (4.7)

For the case ρn � σn, it is known that [86, Lemma 4]

φn(r|ρn‖σn) =

+∞, r ∈ [0,− 1
n log Tr

[
(ρn)0σn

]
),

− log Tr
[
ρn(σn)0

]
, r ≥ 1

nD (ρn‖σn) .
(4.8)

In the following Sections 4.1 and 4.2, we show that the exponent function φn will determine how fast

the optimal type-I error exponentially decay, i.e.

lim
n→+∞

− 1

n
log α̂exp{−nr}

(
ρ⊗n‖σ⊗n

)
= φ1(r|ρ‖σ) = sup

0≤α≤1

1− α
α

(Dα(ρ‖σ)− r) . (4.9)

4.1 Achievability

Quantum Stein's lemma, given in Theorem 4.1, states that if the exponential decay of the type-II

error is not faster than the relative entropy, i.e. r < D(ρ‖σ), then the optimal type-I error vanishes

asymptotically. The quantum Hoe�ding bound makes a step further to investigate the non-asymptotics:

how fast does the optimal type-I error decays? The achievability bound is then to give an exponential

upper bound for it. This result was �rst proved by Hayashi [88], and the upper bound can be expressed

as Petz's Rényi divergence. Together with the converse bound, discussed in Section 4.2 later, the error

exponent for the optimal type-I error in quantum hypothesis testing was solved; see Eq. (4.9).

For the convenience of readers, we provide the proof of the achievability in Theorem 4.2 below.

Theorem 4.2 (Achievability Hoe�ding Bound [88], [86, Section 5.5]). Given a binary hypotheses:

H0 : ρ and H1 : σ, and rate r < D(ρ‖σ), one has

− 1

n
log α̂exp{−nr}

(
ρ⊗n‖σ⊗n

)
≥ φ1(r|ρ‖σn), (4.10)

where φn is de�ned in Eq. (4.7).

Proof of Theorem 4.2. Fix an n ∈ N, α ∈ (0, 1), and let

A = e−nx σ⊗n (4.11)

B = ρ⊗n, (4.12)

where x will be determined later. Consider a sequence of test {(1−Qn, Qn)} with Qn := {B −A ≥ 0}.
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Then, Lemma 2.8 gives that

β(Qn;σ⊗n) = Tr
[
Qnσ

⊗n] (4.13)

= enx Tr [QnA] (4.14)

≤ enxαQα
(
ρ⊗n‖σ⊗n

)
(4.15)

= enxαQα (ρ‖σ)n (4.16)

α(Qn; ρ⊗n) = Tr
[
(1−Qn)ρ⊗n

]
(4.17)

= enx Tr [(1−Qn)B] (4.18)

≤ e−nx(1−α)Qα
(
ρ⊗n‖σ⊗n

)
(4.19)

= e−nx(1−α)Qα (ρ‖σ)n . (4.20)

Now, choose x such that xα+ logQα(ρ‖σ) = −r to have

β(Qn;σ⊗n) ≤ exp{−nr}. (4.21)

Further, it is not hard to see that

α(Qn; ρ⊗n) ≤ exp{−nφ1(r|ρ‖σ)}. (4.22)

4.2 Optimality

The optimality of the quantum Hoe�ding bound means to provide a lower bound to the optimal type-I

error. In other words, the performance of the hypothesis testing with any test cannot be improved.

This problem was solved by Nagaoka [111]�he showed that asymptotically the error exponent of the

optimal type-I error is upper bounded by Φ1(ρ‖σ); see Theorem 4.3 below. Hence, together with

the achievability bound in Theorem 4.2, the error exponent in Eq. (4.9) is fully characterized. The

method employed by Nagaoka was introduced by Nussbaum and Szkoªa [112], which is a crucial tool

to translate a pair of quantum density operators to a pair of classical distributions. This thus plays

a signi�cant role in almost all the converse problems in quantum information theory. We provide the

knowledge of the Nussbaum-Szkoªa mapping in Section 4.2.1 below.

Theorem 4.3 (Asymptotic Converse Hoe�ding Bound [111], [86, Section 5.4]). Given a binary hy-

potheses: H0 : ρ and H1 : σ, and rate r < D(ρ‖σ), one has

lim
n→+∞

− 1

n
log α̂exp{−nr}

(
ρ⊗n‖σ⊗n

)
≤ φ1(r|ρ‖σ), (4.23)

where φn is de�ned in Eq. (4.7).

Nagaoka's result in Theorem 4.3 is asymptotic, i.e. it holds when n → +∞. This motivates us to

derive a �nite blocklength converse bound. Moreover, we are interested in the tightest converse bound.

In the following Theorem 4.4, we establish a sharp converse bound for quantum binary hypothesis

testing, which serves as the fundamental tool to prove the sphere-packing bounds both in Slepian-Wolf
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coding with QSI (Chapter 7) and classical-quantum channel coding (Chapter 11), and the converse

bounds in moderate deviation analysis (see Chapters 8 and 12).

Before stating Theorem 4.4, we introduce some notation. Let

H0 : ρn = ρ1 ⊗ · · · ⊗ ρn; (4.24)

H1 : σn = σ1 ⊗ · · · ⊗ σn, (4.25)

where ρx, σx ∈ S(H) for x ∈ [n]. Further, denote by (pi, qi) be the Nussbaum-Szkoªa distribution of

(ρi, σi) [112]. For α ∈ [0, 1], de�ne

Bα(ρn‖σn) :=
1

n

∑
x∈[n]

Evx,α

[
log

px
qx

]
; (4.26)

Vα(ρn‖σn) :=
1

n

∑
x∈[n]

Evx,α

[∣∣∣∣log
px
qx
− Evα,x

[
log

px
qx

]∣∣∣∣2
]

; (4.27)

Tα(ρn‖σn) :=
1

n

∑
x∈[n]

Evx,α

[∣∣∣∣log
px
qx
− Evα,x

[
log

px
qx

]∣∣∣∣3
]
, (4.28)

where (px, qx) is the Nussbaum-Szkoªa distribution of (ρx, σx) for x ∈ [n], and the tilted distribution is

vx,α(i, j) :=
pαx(i, j)q1−α

x (i, j)∑
ı, p

α
x(ı, )q1−α

x (ı, )
, α ∈ [0, 1]. (4.29)

With the above notation, we have the following converse bound.

Theorem 4.4 (Sharp Converse Bound for Quantum Hypothesis Testing). Consider a binary hypothesis

testing: H0 : ρn =
⊗n

i=1 ρi and H1 : σn =
⊗n

i=1 σi given in Eq. (4.24) with ρn 6⊥ σn. Let r ∈ R be such

that there exists α? ∈ (0, 1) such that

φn (r|ρn‖σn) =
1− α?

α?

(
1

n
Dα? (ρn‖σn)− r

)
. (4.30)

Then, for any test Qn, either

α (Qn; ρn) ≥ e−nφ(r|ρn‖σn) e−Kn(α)

2
√

2πnVα?(ρn‖σn)

(
1− 1 + (1 +Kn(α?)2)

2
√
Vα?(ρn‖σn)

)
, (4.31)

or

β (Qn;σn) ≥ e−nr
e−Kn(1−η)

2
√

2πnV1−α?(ρn‖σn)

(
1− 1 + (1 +Kn(1− α?)2)

2
√
V1−α?(ρn‖σn)

)
, (4.32)

holds. Here, Kn(α) := 15
√

2πTα(ρn‖σn)
Vα(ρn‖σn) .

The proof is delayed to Section 4.2.2.

With the Theorem 4.4 at hand, one can employ the Taylor's expansion of the φn to obtain the

following sharp converse Hoe�ding bound, which is the �nite blocklength improvement of Nagaoka's

result in Theorem 4.3.
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Corollary 4.1 (Sharp Converse Hoe�ding Bound). Given a binary hypotheses: H0 : ρn and H1 : σn

as in Eq. (4.24), and rate:

1

n
D0(ρn‖σn) < r <

1

n
D(ρn‖σn), (4.33)

there exist K,N0 ∈ N such that for all n ≥ N0, the following holds

− log α̂exp{−nr}
(
ρ⊗n‖σ⊗n

)
≤ nφn(r|ρn‖σn) +

1

2

(
1 +

∣∣φ′n(r|ρn‖σn)
∣∣) log n+K. (4.34)

where φn is de�ned in Eq. (4.7), and φ′n denotes the �rst-order derivative of φn.

4.2.1 Nussbaum-Szkoªa Distributions

Assume the dimension of the Hilbert space H is d. Given density operators ρ, σ ∈ S(H) with spectral

decompositions

ρ =
∑
i∈[d]

λi|xi〉〈xi|, and σ =
∑
j∈[d]

γj |yj〉〈yj |, (4.35)

we de�ne the Nussbaum-Szkoªa distributions [112] pρ,σ, qρ,σ as

pρ,σ(i, j) := λi|〈xi|yj〉|2, qρ,σ(i, j) := γj |〈xi|yj〉|2. (4.36)

The distributions pρ,σ, qρ,σ have the same mathematical properties as the density operators ρ, σ in

some cases, and thus are useful in the sequel. First, one can verify that [112, 14],

Dα (ρ‖σ) = Dα (pρ,σ‖qρ,σ) , ∀α ∈ [0, 1]. (4.37)

Second, for product states ρ1 ⊗ ρ2 and σ1 ⊗ σ2, we have

pρ1⊗ρ2,σ1⊗σ2 = pρ1,σ1 ⊗ pρ2,σ2 , and qρ1⊗ρ2,σ1⊗σ2 = qρ1,σ1 ⊗ qρ2,σ2 . (4.38)

Third, ρ� σ if and only if pρ,σ � qρ,σ. Moreover, we usually use ω to represent the pair of indices (i, j)

in Eq.(4.36), and the distributions pρ,σ, qρ,σ can be thought of as diagonalized matrices, e.g. Tr [pρ,σ] =∑
ω∈[d]×[d] p

ρ,σ(ω).

4.2.2 Proofs of Theorem 4.4 and Corollary 4.1

Let (p̃i, q̃i) be the Nussbaum-Szkoªa distribution [112] of (ρi, σi) for every i ∈ [n]. Further, we de�ne

the (non-normalized) distributions pi := p̃iq
0
i , qi := q̃ip

0
i , for every i ∈ [n], and pn :=

⊗n
i=1 pi and

qn :=
⊗n

i=1 qi accordingly. Since Dα(ρi‖σi) = Dα(p̃i‖q̃i) = Dα(pi‖qi), for α ∈ (0, 1), we shorthand

φn(r) := φn (r|ρn‖σn) = φn(r|pn‖qn). (4.39)

Applying Nagaoka's argument [111] in Eq. (11.57) for any 0 ≤ Qn ≤ 1 and choosing δ = exp{nr−
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nφn(r)} yields

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α (U; pn) + enr−nφn(r)β (U; qn)

)
, (4.40)

where α (U; pn) :=
∑

ω∈Uc pn(ω), β (U; qn) :=
∑

ω∈U q
n(ω), and

U :=
{
ω : pn(ω)enφn(Rn) > qn(ω)enRn

}
. (4.41)

In the following, we will employ Bahadur-Ranga Rao's concentration inequality, Theorem 2.1 in

Section 2.2, to further lower bound α (U; pn) and β (U; qn). Before proceeding, we need to introduce

some notation. Let

Λ0,n(α) :=
1

n

∑
x∈[n]

logEqx

[
e
α log px

qx

]
, Λ1,n(α) :=

1

n

∑
x∈[n]

logEpx

[
e
α log qx

px

]
. (4.42)

Since pn and qn share the same support, both Λ0,n(α) and Λ1,n(α) are smooth functions in α ∈ R.
One can the calculate derivatives as follows

Λ′0,n(α) =
1

n

∑
x∈[n]

Evx,α

[
log

pn

qn

]
; Λ′1,n(α) =

1

n

∑
x∈[n]

Evx,1−α

[
log

qn

pn

]
(4.43)

Λ′′0,n(α) =
1

n

∑
x∈[n]

Varvx,α

[
log

pn

qn

]
; Λ′′1,n(α) =

1

n

∑
x∈[n]

Varvx,1−α

[
log

qn

pn

]
, (4.44)

T0,n(α) :=
1

n

∑
x∈[n]

Evx,α

[∣∣∣∣log
qx
px
− Λ′0,n(α)

∣∣∣∣3
]

; (4.45)

T1,n(α) :=
1

n

∑
x∈[n]

Evx,1−α

[∣∣∣∣log
px
qx
− Λ′1,n(α)

∣∣∣∣3
]
, (4.46)

where we denote the tilted distribution by

q̂nα :=
(pn)α(qn)1−α∑
ω p

n(ω)αqn(ω)1−α . (4.47)

Further, we de�ne the Lengendre-Fenchel transform:

Λ∗j,n(z) := sup
α∈R
{(1− α)z − Λj,n(α)} , j ∈ {0, 1}. (4.48)

The quantities Λ∗j,n(z) would appear in the lower bounds of α (U; pn) and β (U; qn) obtained by

Bahadur-Randga Rao's inequality as shown later.

Now, we are ready to derive the lower bounds for α (U; pn) and β (U; qn). Letting Zi = log pi−log qi

with probability measure µi = qi, and z = r − φn(r) in Theorem 2.1, the Bahadur-Randga Rao's
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inequality gives

α (U; pn) :=
∑
ω∈Uc

pn(ω) (4.49)

= Pr

{
1

n

n∑
i=1

Zi ≥ r − φn(r)

}
(4.50)

≥ exp
{
−nΛ∗0,n (φn(r)− r)

} e−Kn(α)√
2πΛ′′n(α)

(
1− 1 + (1 +Kn(α)2)

2
√

Λ′′n(α)

)
(4.51)

= exp {−nφn(r)} e−Kn(α)√
2πΛ′′n(α)

(
1− 1 + (1 +Kn(α)2)

2
√

Λ′′n(α)

)
(4.52)

Similarly, applying Theorem 2.1 with Zi = log qi − log pi, µi = pi, and z = φn(r)− r yields

β (U; qn) :=
∑
ω∈U

qn(ω) (4.53)

= Pr

{
1

n

n∑
i=1

Zi ≥ φn(r)− r

}
(4.54)

≥ exp
{
−nΛ∗1,n (r − φn(r))

} e−Kn(1−α)√
2πΛ′′n(1− α)

(
1− 1 + (1 +Kn(1− α)2)

2
√

Λ′′n(1− α)

)
(4.55)

= exp {−nr} e−Kn(1−α)√
2πΛ′′n(1− α)

(
1− 1 + (1 +Kn(1− α)2)

2
√

Λ′′n(1− α)

)
. (4.56)

Hence, by Eqs. (4.40), (4.52), and (4.56), we conclude our claim.

4.3 Moderate Deviation Analysis

In this section, we analyze quantum hypothesis testing in the moderate deviation regime. Speci�cally,

we will show that the optimal type-I error asymptotically vanish when the exponential rate of type-II

error approaches quantum relative entropy at a speed an. Here, (an)n∈N is any sequence satisfying

(i) lim
n→+∞

an = 0;

(ii) lim
n→+∞

an
√
n = +∞.

(4.57)

The achievability part is given in Theorem 4.5. In Section 4.3.1, we provide two proofs. The

�rst one follows from the Theorem 4.2 in Section 4.1, and an asymptotic expansions of the exponent

function φn. The second proof relies on a concentration inequality for noncommutative martingales

[113]. The converse part and its proof are provided in Theorem 4.6 and Section 4.3.2.

We remark that the moderate deviation analysis for classical hypothesis testing was studied by

Sason [45], and by Watanabe and Hayashi [114]. Moreover, a recent work by Rouzé and Datta [115]

formulated the quantum hypothesis problem into a martingale, which is similar to our approach for

proving the achievability.
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Theorem 4.5 (Achievability). Let ρ, σ ∈ S(H) be the density operators with non-zero and �nite infor-

mation variance V := V (ρ‖σ) > 0. For any sequence of real numbers {an}n∈N satisfying Eq. (12.1),

there exists a sequence rn := D (ρ‖σ)− an such that

lim sup
n→+∞

1

na2
n

log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≤ − 1

2V
. (4.58)

The proof is provided in Section 4.3.1

Theorem 4.6 (Converse). Let ρ, σ ∈ S(H) be the density operators with non-zero and �nite infor-

mation variance V := V (ρ‖σ) > 0. For any sequence of real numbers {an}n∈N satisfying Eq. (12.1),

there exists a sequence rn := D (ρ‖σ)− an such that

lim inf
n→+∞

1

na2
n

log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≥ − 1

2V
. (4.59)

The proof is provided in Section 4.3.2

4.3.1 Proof of Theorem 4.5

In this section, we present two proofs of Theorem 4.5. The �rst one relies on the quantum Hoe�ding

bound [86] and the Taylor's expansion of the function Eh.

The �rst proof of Theorem 4.5. We start the proof from recalling Audenaet et al.'s achievabilityof the

quantum Hoe�ding bound in Lemma 2.8:

α̂exp{−nr}
(
ρ⊗n‖σ⊗n

)
≤ exp

{
−n
[

sup
0<α≤1

{
α− 1

α
(r −Dα (ρ‖σ))

}]}
. (4.60)

Since D(ρ‖σ) > 0 (due to Eq. (3.4)), we have

D(ρ‖σ)− an > 0 (4.61)

for all su�ciently large n. Choose such n onwards. Then Eq. (4.60) implies that for all su�ciently

large n, there exists rn = D(ρ‖σ)− an and

1

na2
n

log α̂
(
ρ⊗n‖σ⊗

)
≤ 1

na2
n

− 1

a2
n

sup
0<α≤1

{
α− 1

α
(r −Dα (ρ‖σ))

}
(4.62)

=
1

na2
n

− 1

a2
n

sup
s≥0
{Es(s)− srn} , (4.63)

where we substitute s = 1−α
α and invoke Eq. (9.7):

Eh(s) := Eh(s, P ) = sD 1
1+s

(ρ‖σ) . (4.64)

with X = {x} and Wx = ρ.

Therefore, we apply Taylor's theorem, along with items (c) and (e) in Proposition 9.3, to obtain

Eh(s) = sD(ρ‖σ)− s2

2
V +

s3

6

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄

(4.65)
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for some s̄ ∈ [0, s] and all s ≥ 0. Now let sn = an/V , for all n ∈ N. Then for all su�ciently large n

and for some s̄n ∈ [0, sn], Eq. (4.65) yields

sup
s≥0
{Eh(s)− srn} ≥ Eh(sn)− snrn (4.66)

=
an
V

(D(ρ‖σ)− rn)− a2
n

2V
+

a3
n

6V 2

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.67)

=
a2
n

2V
+

a3
n

6V 2

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

, (4.68)

where we substitute rn = D(ρ‖σ)− an in Eq. (4.68).

Note that sn = an/V ≤ 1 for all su�ciently large n since limn→∞ an = 0 in Eq. (12.1) and the

assumption: V > 0. De�ne

Υ := max
s∈[0,1]

∣∣∣∣∂3Eh(s)

∂s3

∣∣∣∣ , (4.69)

From item (a) in Proposition 9.3, ∂
3Eh(s)
∂s3

is continuous over s ≥ 0. Hence the maximum in Eq. (4.69)

is well-de�ned and �nite. Therefore, (4.68) leads to

sup {Eh(s)− srn} ≥
a2
n

2V
+

a3
n

6V 2

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.70)

≥ a2
n

2V
− a3

n

6V 2

∣∣∣∣∣ ∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

∣∣∣∣∣ (4.71)

≥ a2
n

2V
− a3

n

6V 2
Υ (4.72)

for all su�ciently large n.

Substituting Eq. (4.72) into Eq. (4.63) yields

1

na2
n

log α̂exp{−nrn} (ρ‖σ) ≤ 1

na2
n

− 1

2V

(
1−Υ

an
3V 2

)
, (4.73)

which implies the desired achievability part:

lim sup
n→+∞

1

na2
n

log α̂exp{−nrn} (ρ‖σ) ≤ − 1

2V
. (4.74)

In the following, we give an alternative proof of Theorem 4.5 by employing a noncommutative

Bennett inequality [113].

The second proof of Theorem 4.5. It is well-known that the Neyman-Pearson (likelihood-ratio) test

achieves the optimum type-I error with the constraint of the type-II error. Hence, it su�ces to prove

that

lim sup
n→+∞

1

na2
n

log α̂exp{−nrn} (ρ‖σ) = lim
n→∞

1

na2
n

logαn (ηn) ≥ − 1

2V
, (4.75)
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where

ηn := D (ρ‖σ)− an, n ∈ N. (4.76)

For notational convenience, we �rst consider the non-identical case. Let the two hypotheses be

H0 : ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn (4.77)

H1 : σ1 ⊗ σ2 ⊗ · · · ⊗ σn, (4.78)

where ρi, σi ∈ S (Hi), for every i ∈ [n]. De�ne the operator

Ln := log

n⊗
i=1

ρi − log

n⊗
i=1

σi =

k∑
i=1

(log ρi − log σi) , (4.79)

which can be seen as the quantum generalization of the Neyman-Pearson log-likelihood ratio.

Next, we formulate the hypothesis testing problem in the noncommutative probability space [116,

117]. Let Mk be the von Neumann algebra on the Hilbert space
⊗k

i=1Hk with M0 = ∅, and (Mk)
n
k=0

forms a increasing �ltration (see e.g. [118]). The normal faithful tracial stae τ : Mn → C on Mn is

de�ned as τ : X 7→ Tr
[⊗n

j=1 ρjX
]
. Let E⊗n

j=1 ρj
[ · |Mk] : Mn →Mk be the conditional expectation

of Mn with respect to Mk. For every k ∈ {0, 1, . . . , n}, we let

Uk := E⊗n
j=1 ρj

[
Ln|Mk

]
(4.80)

= E⊗n
j=1 ρj

[
n∑
i=1

(log ρi − log σi)

∣∣∣∣∣Mk

]
(4.81)

=
k∑
i=1

(log ρi − log σi) +
n∑

i=k+1

E⊗n
j=1 ρj

[
log ρi − log σi

]
(4.82)

=
k∑
i=1

(log ρi − log σi) +
n∑

i=k+1

Tr

 n⊗
j=1

ρj (log ρi − log σi)

 (4.83)

=
k∑
i=1

(log ρi − log σi) +
n∑

i=k+1

D (ρi‖σi) . (4.84)

In particular, we have

U0 =

n∑
i=1

D (ρi‖σi) (4.85)

Un =

n∑
i=1

(log ρi − log σi) = Ln, (4.86)
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Hence, {Uk − Uk−1}nk=1 forms a martingale:

Uk − Uk−1 = log ρk − log σk −D(ρk‖σk); (4.87)

E⊗n
j=1 ρj

[Uk − Uk−1|Mk−1] = 0; (4.88)

E⊗n
j=1 ρj

[
(Uk − Uk−1)2

∣∣∣Mk−1

]
= V (ρk‖σk) =: vk. (4.89)

Denote by

bk := ‖log ρk − log σk −D(ρk‖σk)‖∞ , (4.90)

where ‖ · ‖∞ denotes the operator norm. The martingale is bounded by ‖Uk − Uk−1‖∞ ≤ bk for every
k ∈ [n].

Equipped with the notation above, the type-I error can be rephrased as:

αn (ηn) = Tr

[{
n⊗
i=1

ρi − enηn
n⊗
i=1

σi ≤ 0

}
n⊗
i=1

ρi

]
(4.91)

= Tr

[
n⊗
i=1

ρi

{
n∑
i=1

(log ρi − log σi) ≤ nηn

}]
(4.92)

= Tr

[
n⊗
i=1

ρi {Un − U0 ≤ −nan}

]
(4.93)

= τ
(
1(−∞,−nan) (Un − U0)

)
(4.94)

= τ
(
1(nan,∞) (Un − U0)

)
, (4.95)

where the third equality (4.93) follows from the de�nition of ηn in Eq. (4.76) and Eqs. (4.85) and

(4.86). The last line (4.95) is due to the symmetry of Un − U0, i.e. E⊗n
i=1

[Un − U0] = 0.

In the following, we borrow the idea from Sason [45] to employ the noncommutative Bennett

inequality to upper bound Eq. (4.95).

Theorem 4.7 (Noncommutative Bennett Inequality [113, Theorem 0.1]). Let (Xk)
n
k=1 be a self-adjoint

martingale with respect to the �ltration (Mk)
n
k=0 such that: (i) E [Xk|Mk−1] = 0; (ii) E

[
X2
k |Mk−1

]
=

vk; (iii) ‖Xk‖∞ ≤ bk. Then for any x > 0,

τ

(
1[x,∞)

(
n∑
k=1

Xk

))
≤ exp

{
−
∑n

k=1 vk
supk∈[n] b

2
k

ϕ

(
x supk∈[n] bk∑n

k=1 vk

)}
, (4.96)

where ϕ(u) := (1 + u) log(1 + u)− u.

By applying Theorem 4.7 to Eq. (4.95) with x = na and Xk = Uk − Uk−1 for ever k ∈ [n]:

αn (ηn) ≤ exp

{
−
∑n

k=1 vk
supk∈[n] b

2
k

ϕ

(
nan supk∈[n] bk∑n

k=1 vk

)}
(4.97)

= exp

{
−nv̄
B2

ϕ

(
anb

v̄

)}
, (4.98)
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where

b := sup
k∈[n]

bk, B2 := sup
k∈[n]

b2k, v̄ :=

∑n
k=1 vk
n

. (4.99)

By recalling ϕ(u) = (1 + u) log(1 + u)− u and using a scalar inequality [45, Lemma 1]:

(1 + u) log(1 + u) ≥ u+
u2

2
− u3

6
, u ≥ 0, (4.100)

Eq. (4.98) leads to

αn (ηn) = Tr

[{
n⊗
i=1

ρi − enηn
n⊗
i=1

σi ≤ 0

}
n⊗
i=1

ρi

]
(4.101)

≤ exp

{
−nv̄
B2

[
(anb)

2

2v̄2
− (anb)

3

6v̄3

]}
(4.102)

= exp

{
−n
[
a2
nb

2

2v̄B2

(
1− anb

3v̄2

)]}
. (4.103)

Now considering the identical case:

n⊗
i=1

ρi = ρ⊗n ∈ S
(
H⊗n

)
, and

n⊗
i=1

σi = σ⊗n ∈ S
(
H⊗n

)
(4.104)

with ρ� σ (otherwise αn(ηn) = 0 and Eq. (4.75) holds trivially), we have

v̄ = V, (4.105)

b = B = ‖log ρ− log σ −D(ρ‖σ)‖∞ <∞, (4.106)

where the �niteness of b comes from ρ � σ and the assumption that the Hilbert space H is �nite-

dimensional. From Eq. (4.103), the type-I error is upper bounded by

αn (ηn) ≤ exp

{
−n
[
a2
n

2V

(
1− anb

3V 2

)]}
. (4.107)

Finally, recall that limn→∞ an = 0 in Eq. (12.1). By letting n tend to in�nity, we prove the

achievability part:

lim
n→+∞

1

na2
n

logαn (ηn) ≤ − 1

2V
. (4.108)

4.3.2 Proof of Theorem 4.6

The converse part is a direct consequence of the sharp converse Hoe�ding bound, Theorem 4.3, in

Section 4.2.
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Let rn := D (ρ‖σ)− an, X = {x} and Wx = ρ. We apply Theorem 4.3 with r = rn to obtain

α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≥ A

s?n
√
n

exp

{
−n
[

sup
0<α≤1

1− α
α

(Dα (ρ‖σ)− (rn − cn))

]}
, (4.109)

for su�ciently large n ∈ N and some constant A > 0. Here

s?n := arg max
s≥0

{
sD 1

1+s
(ρ‖σ)− srn

}
. (4.110)

Now let

δn := an + cn, ∀n ∈ N, (4.111)

and invoke Proposition 12.2 with Wx = ρ, P (x) = 1, and substitute P ?W with σ to obtain

lim sup
n→+∞

sups≥0

{
−s (D (ρ‖σ)− δn) + sD 1

1+s
(ρ‖σ)

}
δ2
n

≤ 1

2V
. (4.112)

Moreover, Eq. (12.46) in Proposition 12.2 in Section 12.2 gives that limn→+∞
s?n
δn
≤ 1/V . Here, we

delay the proof of Proposition 12.2 to Section 12.3 for the reason that we unify the proofs for the

exponent in quantum hypothesis testing and c-q channel coding there.

Combining Eqs. (4.109) and (4.112) concludes our claim:

lim inf
n→+∞

log α̂exp{−nrn} (ρ⊗n‖σ⊗n)

nδ2
n

≥ − 1

2V
. (4.113)
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Chapter 5

Error Exponent Functions (Source

Coding)

In this chapter, we de�ne di�erent versions of the exponent functions and auxiliary functions for

Slepian-Wolf coding with QSI. We prove a variational representation in Section 5.1. The properties of

the auxiliary function and exponent functions are provided in Sections 5.2 and 5.3, respectively.

For t = { }, { ∗ } or {[}, we de�ne

Etr(R) := max
0≤s≤1

{
Et0(s) + sR

}
; (5.1)

Etsp(R) := sup
s≥0

{
Et0(s) + sR

}
; (5.2)

Etsc(R) := sup
−1<s<0

{
Et0(s) + sR

}
; (5.3)

Et0(s) := −sHt,↑
1

1+s

(X|B)ρ, (5.4)

where Ht,↑
α is the Rényi conditional entropy de�ned in Section 3.2. For t = { }, i.e. the Petz's Rényi

conditional entropy, quantum Sibson's identity given in Lemma 3.3 shows that the auxiliary function

E0(s) admits an closed-form:

E0(s) = − log Tr

[(
TrX ρ

1
1+s

XB

)1+s
]

(5.5)

We also de�ne another version of the exponent function via H↓α:

E↓r (R) := max
0≤s≤1

{
E↓0(s) + sR

}
, (5.6)

E↓0(s) := −sH↓1−s(X|B)ρ. (5.7)

The Golden-Thompson inequality given in Lemma 2.7 implies that

Esp(R) ≤ E[sp(R) (5.8)

Er(R) ≤ E[r(R). (5.9)

Esc(R) ≤ E[sc(R). (5.10)
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Further, since H↑α(X|B)ρ ≤ H↓
2− 1

α

(X|B)ρ for α ∈ [1/2,+∞] [119, Corollary 4], [8, Corollary 5.3]. For

R ∈ [H↑1 (X|B)ρ, H
↑
1/2(X|B)ρ], together with Proposition 5.3-(a) below, we have

E↓r (R) ≤ Er(R) = Esp(R) ≤ E[sp(R) = E[r(R). (5.11)

In Chapter 6 later, we obtain an achievability bound of the optimal error in terms of E↓r . We conjecture

that it can be further improved by Er.

5.1 Variational Representations

In Theorem 5.1 below, we show that the exponent functions de�ned in terms ofD[ admit the variational

representations as introduced by Csiszár and J. Körner's [54, 55, 25].

Theorem 5.1 (Variational Representations). Let ρXB be a classical-quantum state. Then,

E[r(R) = min
σXB∈S(XB)

{
D (σXB‖ρXB) + |R−H(X|B)σ|+

}
, (5.12)

E[sp(R) = min
σXB∈S(XB)

{D (σXB‖ρXB) : R ≤ H(X|B)σ} , (5.13)

E[sc(R) = min
σXB∈S(XB)

{
D (σXB‖ρXB) + |H(X|B)σ −R|+

}
. (5.14)

Proof of Theorem 5.1. We only provide the proof for Eq (5.13) since Eqs. (5.12) and (5.14) follow

similarly. The method of Lagrange multipliers gives that

min
σXB∈S(XB)

{D (σXB‖ρXB) : R ≤ H(X|B)σ} (5.15)

= sup
s≥0

min
σXB∈S(XB)

{D (σXB‖ρXB) + s [R−H(X|B)σ]} (5.16)

= sup
s≥0

min
σXB∈S(XB)

{
D (σXB‖ρXB) + min

τB∈S(B)
sD (σXB‖1B ⊗ τB) + sR

}
(5.17)

= sup
s≥0

min
τB∈S(B)

min
σXB∈S(XB)

{D (σXB‖ρXB) + sD (σXB‖1B ⊗ τB) + sR} (5.18)

= sup
s≥0

min
τB∈S(B)

{
sD[

1
1+s

(ρXB‖1B ⊗ τB) + sR

}
(5.19)

= sup
s≥0

{
E[0 (s, ρXB) + sR

}
, (5.20)

where we use the representation H(X|B)σ = maxτB∈S(B)−D (σXB‖1X ⊗ τB) in Eq. (5.17); Eq. (5.19)

follows the Lemma 3.1 in Section 3.1, which was proved by Mosonyi and Ogawa [58]; in the last line

(5.20) we recall the de�nition E[0 (s, ρXB) := −sH[,↑
1

1+s

(X|Y )ρ.

5.2 Properties of Auxiliary Functions

In the following, we collect some useful properties of the auxiliary functions E0(s) and E↓0(s).
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Proposition 5.1 (Properties of E0). Let ρXB be a classical-quantum state with H(X|Y )ρ > 0, the

auxiliary function E0(s) de�ned in Eq. (5.5) admits the following properties.

(a) (Continuity) The function s 7→ E0(s) is smooth for all s ∈ (−1,+∞).

(b) (Negativity)

E0(s) ≤ 0, s ≥ 0 (5.21)

with E0(0) = 0.

(c) (Concavity) The function s 7→ E0(s) is concave in s for all s ∈ (−1,+∞).

(d) (First-order Derivative)

∂E0(s)

∂s

∣∣∣∣
s=0

= −H(X|B)ρ. (5.22)

(e) (Second-order Derivative)

∂2E0(s)

∂s2

∣∣∣∣
s=0

= −V (X|B)ρ. (5.23)

The proof is provided in Section 5.2.1 below.

Proposition 5.2 (Properties of E↓0). Let ρXB be a classical-quantum state with H(X|Y )ρ > 0, the

auxiliary function E↓0(s) de�ned in Eq. (5.7) admits the following properties.

(a) (Continuity) The function s 7→ E0(s) is smooth for all s ∈ [0,+∞).

(b) (Negativity)

E↓0(s) ≤ 0, s ≥ 0 (5.24)

with E↓0(0) = 0.

(c) (Concavity) The function s 7→ E↓0(s) is concave in s for all s ∈ (−1,+∞).

(d) (First-order Derivative)

∂E↓0(s)

∂s

∣∣∣∣∣
s=0

= −H(X|B)ρ. (5.25)

(e) (Second-order Derivative)

∂2E↓0(s)

∂s2

∣∣∣∣∣
s=0

= −V (X|B)ρ. (5.26)

The proof is provided in Section 5.2.2 below.
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5.2.1 Proof of Proposition 5.1

Proof of Proposition 5.1.

(5.1)-(a) (Continuity) Since E0(s) admits a closed-form

− log Tr

[
TrX ρ

1
1+s

XB

]1+s

, ∀s > −1. (5.27)

It is clearly smooth for all s > −1.

(5.1)-(b) (Negativity) The negativity of E0(s) directly follows from the non-negativity of the conditional

Rényi entropy and the de�nition, Eq. (5.4).

(5.1)-(c) (Concavity) The concavity for s ≥ 0 can be proved with the geometric matrix means in [36].

Here, we present another proof by the following matrix inequality.

Let ρXB =
∑

x∈X P (x)|x〉〈x| ⊗Wx, t = γ = 1, i = x, k = |X |, Ai = P (x)Wx, and Zi = In,m. We

obtain the log-convexity of the map by applying Lemma 2.13:

p 7→ Tr

(∑
x∈X

(P (x)Wx)
1
p

)p
, ∀p > 0, (5.28)

which is exactly the concavity of the map s 7→ E0(s) for all s > −1.

(5.1)-(d) (First-order derivative) By the de�nition of E0(s),

∂E0(s)

∂s

∣∣∣∣
s=0

= −H↑1
1+s

(X|B)ρ − s
∂H↑1

1+s

(X|B)ρ

∂s

∣∣∣∣∣∣
s=0

= −H(X|B)ρ. (5.29)

(5.1)-(e) (Second-order derivative) Similar to Item (d), it follows that

∂2E0(s)

∂s2

∣∣∣∣
s=0

= −2
∂H↑1

1+s

(X|B)ρ

∂s
− s

∂2H↑1
1+s

(X|B)ρ

∂s2

∣∣∣∣∣∣
s=0

. (5.30)

The above equation indicates that we need to evaluate the �rst-order derivative of H↑1
1+s

(X|B)ρ

at 0. In the following, we directly deal with the closed-form expression, Eq. (5.5).

To ease the burden of derivations, we denote some notation:

f(s) := TrX ρ
1/(1+s)
XB , (5.31)

g(s) := f(s)(1+s), (5.32)

F (s) := Tr [g(s)] , (5.33)
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Then,

∂E0(s)

∂s
= −F

′(s)

F (s)
(5.34)

∂2E0(s)

∂s2
= −F

′′(s)

F (s)
−
(
∂E0(s)

∂s

)2

. (5.35)

Direct calculation shows that

f ′(s) = − 1

(1 + s)2
TrX ρ

1/(1+s)
XB logρXB, (5.36)

f ′′(s) =
1

(1 + s)3
TrX ρXBlogρXB ·

[
2 +

logρXB
(1 + s)

]
. (5.37)

Note that1 g(s) = e(1+s)logf(s). By applying the chain rule of the Fréchet derivatives, one can

show

g′(s) = D exp [logg(s)]
(
(1 + s)Dlog [f(s)]

(
f ′(s)

)
+ logf(s)

)
. (5.38)

Further, we employ Lemma 2.11 and Eqs.(5.33), (5.38), to obtain

F ′(s) = Tr
[
g′(s)

(
(1 + s)D log[f(s)](f ′(s)) + log f(s)

)]
, (5.39)

F ′′(s)|s=0 = Tr
[
g′(s)

(
(1 + s)Dlog [f(s)]

(
f ′(s)

)
+ logf(s)

)]∣∣
s=0

+ Tr
[
g(s)

(
2Dlog [f(s)]

(
f ′(s)

)
+ (1 + s)

{
Dlog [f(s)]

(
f ′′(s)

)
+ D2log [f(s)]

(
f ′(s)

)})]∣∣
s=0

. (5.40)

Before evaluating F ′′(s) at s = 0, note that Eqs. (5.31), (5.32), (5.36), (5.37), and (5.38) yield

f(0) = g(0) = ρB, (5.41)

f ′(0) = −TrX ρXB log ρXB, (5.42)

f ′′(0) = 2 TrX ρXB log ρXB + TrX ρXB log2 ρXB, (5.43)

g′(0) = D exp [logg(0)]
(
(1 + 0)Dlog [f(0)]

(
f ′(0)

)
+ logf(0)

)
(5.44)

= D exp [logf(0)]
(
Dlog [f(0)]

(
f ′(0)

)
+ logf(0)

)
(5.45)

= f ′(0) + f(0) log f(0) (5.46)

= −TrX ρXB log ρXB + ρB log ρB. (5.47)

From Eqs. (5.46), (5.39), the �rst term in Eq. (5.40) leads to

Tr
[
g′(0)

(
(1 + 0)Dlog [f(0)]

(
f ′(0)

)
+ logf(0)

)]
(5.48)

= Tr
[
f ′(0)Dlog [f(0)]

(
f ′(0)

)
+ 2f ′(0)logf(0) + f(0)log2f(0)

]
(5.49)

= Tr
[
f ′(0)Dlog [f(0)]

(
f ′(0)

)
− 2 TrX ρXB log ρXB · logρB + ρBlog2ρB

]
(5.50)

1Here, let's assume ρXB has full support on S(XB) for brevity. The general case should hold with more technical
derivations.
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Further, from Eqs. (5.37), (5.42), and (5.43), the second term in Eq. (5.40) leads to

Tr
[
f(0)

(
2Dlog [f(0)]

(
f ′(0)

)
+
{
Dlog [f(0)]

(
f ′′(0)

)
+ D2log [f(0)]

(
f ′(0)

)})]
(5.51)

= Tr
[
2f ′(0) + f ′′(0)− f ′(0)Dlog [f(0)]

(
f ′(0)

)]
(5.52)

= Tr
[
TrX ρXB log2 ρXB − f ′(0)Dlog [f(0)]

(
f ′(0)

)]
. (5.53)

Combining Eqs. (5.40), (5.50), (5.53) gives

F ′′(0) = Tr
[
ρXB (log ρXB − log1X ⊗ ρB)2

]
. (5.54)

Finally, Eqs. (5.35) and (5.54) conclude our result:

∂E0(s)

∂s

∣∣∣∣
s=0

= −V (ρXB‖1X ⊗ σB) = −V (X|Y )ρ. (5.55)

Moreover, Eq. (5.30) gives

∂H↑α(X|B)ρ
∂α

∣∣∣∣∣
α=0

=
1

2
V (X|B)ρ. (5.56)

5.2.2 Proof of Proposition 5.2

Proof of Proposition 5.2.

(5.2)-(a) (Continuity) Since E↓0(s) = − log Tr
[
ρ1−s
XB (1X ⊗ ρB)s

]
− log Tr

[(
TrX ρ

1
1+s

XB

)1+s
]
, ∀s > −1. (5.57)

It is smooth for all s ≥ 0.

(5.2)-(b) (Negativity) The negativity of E↓0(s, ρXB) directly follows from the non-negativity of the condi-

tional Rényi entropy and the de�nition, Eq. (5.4).

(5.2)-(c) (Concavity) The claim follows from the concavity of the map s 7→ sD1−s( · ‖ · ), Eq. (3.12) in
Lemma 3.2.
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(5.2)-(d) (First-order derivative) One can verify that

∂E↓0(s, ρXB)

∂s

∣∣∣∣∣
s=0

= D1−s (ρXB‖1X ⊗ ρB)− sD′1−s (ρXB‖1X ⊗ ρB)
∣∣
s=0

(5.58)

= D1−s (ρXB‖1X ⊗ ρB)|s=0 (5.59)

= D(ρXB‖1X ⊗ ρB) (5.60)

= −H(X|B)ρ. (5.61)

(5.2)-(e) (Second-order derivative) Continuing from item (d), one obtain

∂2E↓0(s)

∂s2

∣∣∣∣∣
s=0

= −2D′1−s (ρXB‖1X ⊗ ρB) + sD′′1−s (ρXB‖1X ⊗ ρB)
∣∣
s=0

(5.62)

= −2D′1−s (ρXB‖1X ⊗ ρB)
∣∣
s=0

(5.63)

= −V (ρXB‖1X ⊗ ρB) (5.64)

= V (X|B)ρ, (5.65)

where in equality (5.64) we use the fact D′1/1+s(·‖·)|s=0 = V (·‖·)/2 [120, Theorem 2].
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5.3 Properties of Error Exponent Functions and Saddle-Point

Proposition 5.3 (Properties of the Exponent Function). Let ρXB be a classical-quantum state with

H(X|B)ρ > 0, the following holds.

(a) Esp(·) is convex, di�erentiable, and monotonically increasing on [0,+∞]. Further,

Esp(R) =


0, R ≤ H↑1 (X|B)ρ

Er(R), H↑1 (X|B)ρ ≤ R ≤ H↑1/2(X|B)ρ

+∞, R > H↑0 (X|Y )ρ

. (5.66)

(b) De�ne

FR(α, σB) :=


1− α
α

(R+Dα (ρXB‖1X ⊗ σB)) , α ∈ (0, 1),

0, α = 1,
(5.67)

on (0, 1]× S(B). For R ∈ (H↑1 (X|B)ρ, H
↑
0 (X|B)ρ), there exists a unique saddle-point (α?, σ?) ∈

(0, 1)× S(B) of FR(·, ·) such that

FR(α?, σ?) = sup
α∈[0,1]

inf
σB∈S(B)

FR(α, σB) = inf
σB∈S(B)

sup
α∈[0,1]

FR(α, σB) = Esp(R). (5.68)

(c) Any saddle-point (α?, σ?) of FR(·, ·) satis�es

1X ⊗ σ? � ρXB. (5.69)

Proof of Proposition 5.3.

(5.3)-(a) Item (a) in Proposition 3.1 shows that the map α 7→ H↑α(X|B)ρ is monotonically decreasing on

[0, 1]. Hence, from the de�nition:

Esp(R) := sup
α∈(0,1]

1− α
α

(
R−H↑α(X|B)ρ

)
, (5.70)

it is not hard to verify that Esp(R) = +∞ for allR > H↑0 (H|B)ρ; �nite for allR < H↑0 (H|B)ρ; and

ESWsp (R) = 0, for allR ≥ H↑1 (H|B)ρ. Moreover, Esp(R) = Er(R) forR ∈ [H↑1 (X|Y )ρ, H
↑
1/2(X|Y )ρ]

by the de�nition in Eq. (5.1).

For every α ∈ (0, 1], the function 1−α
α (R−H↑α(X|B)ρ) is an non-decreasing, convex, and continu-

ous function in R ∈ R>0. Since Esp(R) is the pointwise supremum of the above function, Esp(R)

is non-decreasing, convex, and lower semi-continuous function for all R ≥ 0. Furthermore, since

a convex function is continuous on the interior of the interval if it is �nite [121, Corollary 6.3.3],

thus Esp(R) is continuous for all R < H↑0 (X|B)ρ, and continuous from the left at R = H↑0 (X|B)ρ.
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(5.3)-(b) Let

Sρ(B) := {σB ∈ S(B) : ρXB 6⊥ 1X ⊗ σB} . (5.71)

Fix an arbitrary R ∈ (H↑1 (X|B)ρ, H
↑
0 (X|B)ρ). In the following, we �rst prove the existence of a

saddle-point of FR(·, ·) on (0, 1]×Sρ(B). Ref. [122, Lemma 36.2] states that (α?, σ?) is a saddle

point of FR(·, ·) if and only if the supremum in

sup
α∈(0,1]

inf
σ∈Sρ(B)

FR(α, σ) (5.72)

is attained at α? ∈ (0, 1], the in�mum in

inf
σ∈Sρ(B)

sup
α∈(0,1]

FR(α, σ) (5.73)

is attained at σ? ∈ Sρ(B), and the two extrema in Eqs. (9.150), (5.73) are equal and �nite. We

�rst claim that, ∀α ∈ (0, 1],

inf
σ∈Sρ(B)

FR(α, σ) = inf
σ∈S(B)

FR(α, σ). (5.74)

To see this, observe that for any α ∈ (0, 1), Eqs. (3.5) yield

∀σ ∈ S(B)\Sρ(B), Dα (ρXB‖1X ⊗ σ) = +∞, (5.75)

which, in turn, implies

∀σ ∈ S(B)\Sρ(B), FR(α, σ) = +∞. (5.76)

Further, Eq. (5.74) holds trivially when α = 1. Hence, Eq. (5.74) yields

sup
α∈(0,1]

inf
σ∈Sρ(B)

FR(α, σ) = sup
α∈(0,1]

inf
σ∈S(B)

FR(α, σ) (5.77)

Owing to the fact R < H↑0 (X|B)ρ and Eq. (5.2), we have

Esp(R) = sup
α∈(0,1]

inf
σ∈S(B)

FR(α, σ) < +∞, (5.78)

which guarantees the supremum in the right-hand side of Eq. (5.78) is attained at some α ∈ (0, 1].

Namely, there exists some ᾱR ∈ (0, 1] such that

sup
α∈(0,1]

inf
σ∈Sρ(B)

FR(α, σ) = max
α∈[ᾱR,1]

inf
σ∈S(B)

FR(α, σ) < +∞. (5.79)

Thus, we complete our claim in Eq. (5.72). It remains to show that the in�mum in Eq.(9.151)

is attained at some σ? ∈ Sρ(B) and the supremum and in�mum are exchangeable. To achieve

this, we will show that ([ᾱR, 1],Sρ(B), FR) is a closed saddle-element (see De�nition 5.1 below)

and employ the boundness of [ᾱR, 1]× Sρ(B) to conclude our claim.
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De�nition 5.1 (Closed Saddle-Element [122]). We denote by ri and cl the relative interior and the

closure of a set, respectively. Let A,B be subsets of a real vector space, and F : A×B → R ∪ {±∞}.
The triple (A,B, F ) is called a closed saddle-element if for any x ∈ ri (A) (resp. y ∈ ri (B)),

(i) B (resp. A) is convex.

(ii) F (x, ·) (resp. F (·, y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say yo (resp. xo)

satis�es limy→yo F (x, y) = +∞ (resp. limx→xo F (x, y) = −∞).

Fix an arbitrary α ∈ ri ([ᾱR, 1]) = (ᾱR, 1). We check that (Sρ(B), FR(α, ·)) ful�lls the three

items in De�nition 9.1. (i) The set Sρ(B) is clearly convex. (ii) Eq. (3.15) in Lemma 3.2 implies

that σ 7→ Dα(Wx‖σ) is convex and lower semi-continuous. Since convex combination preservers

the convexity and the lower semi-continuity, Eq. (5.67) yields that σ 7→ FR(α, σ) is convex and

lower semi-continuous on Sρ(B). (iii) Due to the compactness of S(B), any accumulation point

of Sρ(B) that does not belong to Sρ(B), say σo, satis�es σo ∈ S(B)\Sρ(B). Eqs. (5.75) and

(5.76) then show that FR(α, σo) = +∞.

Next, �x an arbitrary σ ∈ ri (Sρ(B)). Owing to the convexity of Sρ(B), it follows that ri (Sρ(B))

= ri (cl (Sρ(B))) (see e.g. [123, Theorem 6.3]). We �rst claim cl (Sρ(B)) = S(B). To see this,

observe that S>0(B) ⊆ Sρ(B) since a full-rank operator is not orthogonal with ρXB. Hence,

S(B) = cl (S>0(B)) ⊆ cl (Sρ(B)) . (5.80)

On the other hand, the fact Sρ(B) ⊆ S(B) leads to

cl (Sρ(B)) ⊆ cl (S(B)) = S(B). (5.81)

By Eqs. (9.158) and (5.81), we deduce that

ri (Sρ(B)) = ri (cl (Sρ(B))) = ri (S(B)) = S>0(B), (5.82)

where the last equality in Eq. (5.82) follows from [124, Proposition 2.9]. Hence, we obtain

∀σ ∈ ri (Sρ(B)) and 1X ⊗ σ � ρXB. (5.83)

Now we verify that ([ᾱR, 1], FR(·, σ)) satis�es the three items in De�nition 9.1. Fix an arbitrary

σ ∈ ri (Sρ(B)). (i) The set (0, 1] is obviously convex. (ii) From Eq. (3.13) in Lemma 3.2, the

map α 7→ FR(α, σ) is continuous on (0, 1). Further, it is not hard to verify that FR(1, σ) =

0 = limα↑1 FR(α, σ) from Eqs. (5.83), (9.142), and (3.5). Item (b) in Proposition 3.1 implies

that α 7→ FR(α, σ) on [ᾱR, 1) is concave. Moreover, the continuity of α 7→ FR(α, σ) on [ᾱR, 1)

guarantees the concavity of α 7→ FR(α, σ) on [ᾱR, 1]. (iii) Since [ᾱR, 1] is closed, there is no

accumulation point of [ᾱR, 1] that does not belong to [ᾱR, 1].

We are at the position to prove the saddle-point property. The closed saddle-element, along with

the boundness of Sρ(B) and Rockafellar's saddle-point result [122, Theorem 8], [123, Theorem
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37.3] imply that

−∞ < sup
α∈[ᾱR,1]

inf
σ∈Sρ(B)

FR(s, σ) = min
σ∈Sρ(B)

sup
α∈[ᾱR,1]

FR(s, σ). (5.84)

Then Eqs. (9.157) and (5.84) lead to the existence of a saddle-point of FR(·, ·) on (0, 1]×Sρ(B).

Next, we prove the uniqueness. The rate R and item (a) in Proposition 5.3 shows that

sup
0<α≤1

min
σ∈S(B)

FR(α, σ) ∈ R>0. (5.85)

Note that α? = 1 will not be a saddle point of FR,P (·, σ) because FR(1, σ) = 0, ∀σ ∈ S(B),

contradicting Eq. (5.85).

Now, �x α? ∈ (0, 1) to be a saddle-point of FR(·, ·). Eq. (3.15) in Lemma 3.2 implies that the

map σ 7→ Dα?(ρXB‖1X ⊗ σ) is strictly convex, and thus the minimizer of Eq. (5.85) is unique.

Next, let σ? ∈ Sρ(B) be a saddle-point of FR(·, ·). Then,

FR(α, σ?) =
1− α
α

(
R−H↑α(X|B)ρ

)
. (5.86)

Item (b) in Proposition 3.1 then shows that 1−α
α H↑α(X|B)ρ is strictly concave on (0, 1), which in

turn implies that FR(·, σ?) is also strictly concave on (0, 1). Hence, the maximizer of Eq. (9.163)

is unique, which completes item (b) of Proposition 5.3.

(5.3)-(c) As shown in the proof of item (b), α? = 1 is not a saddle point of FR(·, ·) for any R < H↑0 (X|B)ρ.

We assume (α?, σ?) is a saddle-point of FR(·, ·) with α? ∈ (0, 1), it holds that

FR(α?, σ?) = min
σ∈SB

FR(α?, σ) =
1− α?

α?
R+

1− α?

α?
min

σ∈S(B)
Dα?(ρXB‖1X ⊗ σ). (5.87)

By quantum Sibson's identity given in Lemma 3.3 (see also [125], [119, Lemma 1], [8, Lemma

5.1]), the minimizer of Eq. (5.87) is

σ? =

(
TrX

[
ρα

?

XB

]) 1
α?

Tr
[(

TrX
[
ρα

?

XB

]) 1
α?
] . (5.88)

From this expression, it is clear that 1X ⊗ σ? � ρXB, and thus item (c) is proved.
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Chapter 6

Achievability (Source Coding)

The goal of this chapter is to prove a �nite blocklength upper bound for the optimal probability error

for Slepian-Wolf coding with QSI.

Theorem 6.1 (n-Shot Achievability Bound). Consider a Slepian-Wolf coding with a joint classical-

quantum state ρXB ∈ S(XB) with H(X|B)ρ > 0. Let R < H(X|B)ρ. The following holds for every

n ∈ N,
− 1

n
log ε∗(n,R) ≥ E↓r (R)− log 4

n
, (6.1)

where

E↓r (R) := sup
1
2
≤α≤1

1− α
α

(
R−H↓

2− 1
α

(X|B)ρ

)
, (6.2)

and H↓α(X|B)ρ := −Dα(ρXB‖1X ⊗ ρB) for Dα being Petz's Rényi divergence, see Eq. (3.5).

Proof. Our technique it to use a random coding argument to prove Theorem 6.1. The idea originates

from Gallager [56] and later studied by Renes and Renner [41].

We �rst present an one-shot achievability. It is not hard to extend to the n-tuple cases. Let

f : X → I be a random encoder that encodes every source x ∈ X into some index i ∈ I with equal

probability 1/M = 1/|I|. Then, the optimal probability of error can be upper bounded by

ε∗(1, logM) ≤ ExEi [ε(x, i)] , (6.3)

= ExEi Tr
[
ρ

(x)
B

(
1B − Λ(i)

x

)]
, (6.4)

where we denote by ε(xn, i) the error probability conditioned on xn being the source and it is encoded

into i. Here, the adopted decoder is a pretty good measurement:

Λ(i)
x :=

 ∑
x̄:f(x̄)=i

Πx̄

−1/2

Πx

 ∑
x̄:f(x̄)=i

Πx̄

−1/2

, (6.5)

where 0 � Λ
(i)
x � 1B for each i ∈ I will be speci�ed later. Applying the Hayashi-Nagaoka inequality

64  doi:10.6342/NTU201800597



6. Achievability (Source Coding) 65

[87, Lemma 2] to obtain

1X − Λ(i)
x � 2 (1B −Πx) + 4

∑
x̄6=x

1f(x̄)=iΠx̄, (6.6)

where 1f(x̄)=i denotes the indicator function when the event f(x̄) = i is true. Combining Eqs. (6.4)

and (6.6) gives

ε(x, i) ≤ 2 Tr
[
ρ

(x)
B (1B −Πx)

]
+ 4 Tr

ρ(x)
B

∑
x̄6=x

1f(x̄)=iΠx̄

 . (6.7)

Taking average over i and using the assumption Pr {f(x̄) = i} = 1/M yield

Ei [ε(x, i)] ≤ 2 Tr
[
ρ

(x)
B (1B −Πx)

]
+ 4 Pr {f(x̄) = i}Tr

ρ(x)
B

∑
x̄6=x

Πx̄

 (6.8)

= 2 Tr
[
ρ

(x)
B (1B −Πx)

]
+

4

M
Tr

ρ(x)
B

∑
x̄6=x

Πx̄

 (6.9)

≤ 2 Tr
[
ρ

(x)
B (1B −Πx)

]
+

4

M
Tr

[
ρ

(x)
B

∑
x̄∈X

Πx̄

]
. (6.10)

By taking average over x we obtain

ε∗(1, logM) ≤ 2
∑
x∈X

P (x) Tr
[
ρ

(x)
B (1B −Πx)

]
+

4

M
Tr

[
ρB
∑
x̄∈X

Πx̄

]
, (6.11)

= 2 Tr [ρXB (1XB −ΠXB)] +
4

M
Tr [1X ⊗ ρBΠXB] , (6.12)

where ΠXB :=
∑

x∈X |x〉〈x| ⊗ Πx. Next, we invoke Audenaert et al.'s inequality [85, 86]: for every

X,Y � 0 and s ∈ [0, 1],

Tr [{X − Y � 0}Y + {Y −X ≺ 0}X] ≤ Tr
[
X1−sY s

]
. (6.13)

Letting X = ρXB, Y = 1
M 1X ⊗ ρB, ΠXB =

{
ρXB − 1

M 1X ⊗ ρB � 0
}
, we have one-shot achievability:

ε∗(1, logM) ≤ 4 min
s∈[0,1]

M−s Tr
[
ρ1−s
XB (1X ⊗ ρB)s

]
. (6.14)

Finally, we consider the n-tuple case. Note that ρXnBn = ρ⊗nXB, and let M = exp{nR}. Eqs. (6.14)
and (5.6) lead to

ε∗(n,R) ≤ 4 exp
{
−nE↓r (R)

}
, (6.15)

which completes the proof
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Conjecture 6.1 (Random Coding Bound for Slepian-Wolf Coding with Quantum Side Information).

Consider a Slepian-Wolf coding with a joint classical-quantum state ρXB ∈ S(XB) with H(X|B)ρ > 0.

Let R < H(X|B)ρ. The following holds for every n ∈ N,

− 1

n
log ε∗(n,R) ≥ Er(R), (6.16)

where

Er(R) := sup
1
2
≤α≤1

1− α
α

(
R−H↑α(X|B)ρ

)
, (6.17)

and H↑α(X|B)ρ := maxσB∈S(B)−Dα(ρXB‖1X⊗σB) for Dα being Petz's Rényi divergence, see Eq. (3.5).
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Chapter 7

Optimality (Source Coding)

The main result of this section is the �nite blocklength converse bound for the optimal error probability�

Theorem 7.1. We termed this the sphere-packing bound for Slepian-Wolf coding with QSI, as a coun-

terpart of the sphere-packing bound in classical-quantum channel coding; see Chapter 11. The proof

technique relies on an one-shot converse bound in Proposition 7.1 below, and a sharp n-shot converse

bound, Theorem 4.3, given in Section 4.2.

Theorem 7.1 (Sphere-Packing Bound for Slepian-Wolf Coding). theospSW Consider a Slepian-

Wolf coding with a joint classical-quantum state ρXB ∈ S(XB) with H(X|B)ρ > 0. Let R ∈
(H(X|B)ρ, H

↑
0 (X|B)ρ). Then, there exist N0,K ∈ N, such that for all n ≥ N0, the following holds:

− 1

n
log ε∗(n,R) ≤ Esp(R) +

1

2

(
1 +

∣∣∣∣ ∂Esp(r)

∂r

∣∣∣∣
r=R

∣∣∣∣) log n

n
+
K

n
, (7.1)

where

Esp(R) := sup
0≤α≤1

1− α
α

(
R−H↑α(X|B)ρ

)
, (7.2)

and H↑α(X|B)ρ := maxσB∈S(B)−Dα(ρXB‖1X ⊗ σB).

The proof is provided in Section 7.2

7.1 One-Shot Converse Bound (Hypothesis Testing Reduction)

Proposition 7.1 (One-Shot Converse Bound for Error). Consider a Slepian-Wolf coding with a joint

classical-quantum state ρXB ∈ S(XB) and the index size M < |X |. Then,

− log ε∗(1, logM) ≤ min
σB∈S(B)

− log α̂ M
|X|

(ρXB‖τX ⊗ σB) , (7.3)

where τX denotes the uniform distribution on the input alphabet X ; and α̂µ(·‖·) is de�ned in Eq. (4.3).

Proof of Proposition 7.1. We �rst claim that we can reduce to the case of determinstic encoders as

follows. Assume for any deterministic encoder E : X → W with index size |W| = M , any decoder D,
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and any state σB ∈ S(B), we have

1−
∑
x∈X

p(y) Tr[Π(E(y))
y ρyB] ≥ α̂ M

|X|
(ρXB‖τX ⊗ σB) (7.4)

for τX = 1
|X | 1X . Then given a random encoding F , we may average over its constituent deterministic

encoders to obtain

1−
∑
x∈X

p(y)

|F|∑
j=1

Pj Tr[Π
(Ej(y))
y ρyB] ≥ α̂ M

|X|
(ρXB‖τX ⊗ σB) (7.5)

using that (7.4) holds for each Ej . Then, since the RHS does not depend on the encoding or deocoding,

we may minimize over random encodings F and decodings D to �nd

ε∗ ≥ α̂ M
|X|

(ρXB‖τX ⊗ σB). (7.6)

Thus

− log ε∗(1, logM) ≤ − log α̂ M
|X|

(ρXB‖τX ⊗ σB). (7.7)

Since the LHS does not depend on σ, we may minimize over it, yielding

− log ε∗(1, logM) ≤ inf
σB∈S(B)

− log α̂ M
|X|

(ρXB‖τX ⊗ σB) (7.8)

which is the conjecture, (7.3).

Fix deterministic encoding E and a decoding strategy, i.e. a collection of POVMs {Pw}w∈W , given

by Pw = {Π(w)
x̂ }x̂∈X . Consider the map Λ : XB → XB such that

Λ(|x〉〈x| ⊗ σB) = |x〉〈x| ⊗
∑
x̂

Tr[Π
(E(x))
x̂ σB]|x̂〉〈x̂|. (7.9)

This is the map that encodes in the second register the probability of each measurement outcome of

the POVM {Π(E(x))
x̂ }x̂∈X , when x is in the �rst register. To see that Λ is completely positive (CP), let

us de�ne for each x ∈ X the measure-and-prepare map Λx : B → B given by

Λx : σB 7→
∑
x̂

Tr[Π
(E(x))
x̂ σB]|x̂〉〈x̂|, (7.10)

which is CP (see e.g. [50]). Then writing L|x〉〈x| for left-multiplication by the projector |x〉〈x| and
similarly R|x〉〈x| for right-multiplication, we have that

Λ =
∑
x∈X

L|x〉〈x|R|x〉〈x| ⊗ Λx. (7.11)

Since LARA is CP for self-adjoint A (since A is its only Kraus operator), and the sum of CP maps is

CP, we have that Λ is CP.

We de�ne α̂ε(ρ‖σ) as the minimum type I error for a binary test discriminating between ρ and σ,

with type II error bounded by ε. The type I error of a test T here is Tr[(1−T )ρ] and the type II error
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is Tr[Tσ], and therefore

α̂ε(ρ‖σ) = inf
T :0≤T≤1
Tr[Tσ]≤ε

Tr[(1−T )ρ] (7.12)

By writing the optimal type-I error into the hypothesis testing relative entropy [14],

− log α̂ε(ρ‖σ) = Dε
H(σ‖ρ). (7.13)

Since the hypothesis testing relative entropy satis�es the DPI, we have

Dε
H(ρ‖σ) ≥ Dε

H(Φ(ρ)‖Φ(σ)) (7.14)

for any CP map Φ. Therefore,

α̂ε(ρ‖σ) = exp(−Dε
H(σ‖ρ)) ≤ exp(−Dε

H(Φ(σ)‖Φ(ρ))) = α̂ε(Φ(ρ)‖Φ(σ)). (7.15)

We set τX = 1
|X | 1X = 1

|X |
∑

x∈X |x〉〈x| as the completely mixed state on X and σB ∈ S(B)

arbitrary. Then for any ε > 0,

α̂ε(ρXB‖τX ⊗ σB) ≤ α̂ε(Λ(ρXB)‖Λ(τX ⊗ σB)). (7.16)

Let us consider these two states:

Λ(τX ⊗ σB) =
1

|X |
∑
x∈X

Λ(|x〉〈x| ⊗ σB) =
1

|X |
∑
x∈X
|x〉〈x| ⊗

∑
x̂

Tr[Π
(E(x))
x̂ σB]|x̂〉〈x̂|, (7.17)

and

Λ(ρXB) =
∑
x∈X

p(x)Λ(|x〉〈x| ⊗ ρxB) =
∑
x∈X

p(x)|x〉〈x| ⊗
∑
x̂∈X

Tr[Π
(E(x))
x̂ ρxB]|x̂〉〈x̂|. (7.18)

Now, take a two element POVM (the test) as T =
∑

y |y〉〈y| ⊗ |y〉〈y|. Then,

Tr[TΛ(ρXB)] =
∑
y

p(y) Tr[Π(E(y))
y ρyB], (7.19)

so this test has type I error of 1−
∑

y p(y) Tr[Π
(E(y))
y ρyB].

On the other hand,

Tr[TΛ(τX ⊗ σB)] =
∑
y

1

|X |
Tr[Π(E(y))

y σB] =
1

|X |
∑
w∈W

∑
y∈X :E(y)=w

Tr[Π(E(y))
y σB]. (7.20)

Since ∑
y∈X :E(y)=w

Tr[Π(E(y))
y σB] ≤

∑
y∈X

Tr[Π(w)
y σB] = Tr[σB] = 1, (7.21)

we have

Tr[TΛ(τX ⊗ σB)] ≤ M

|X |
. (7.22)

 doi:10.6342/NTU201800597



7. Optimality (Source Coding) 70

That is, this test achieves type II error of M
|X | . As the in�mum over all such tests, we have that

1−
∑
y

p(y) Tr[Π(E(y))
y ρyB] ≥ α̂ |W|

|X|
(Λ(ρXB)‖Λ(τX ⊗ σB)) ≥ α̂ |W|

|X|
(ρXB‖τX ⊗ σB) (7.23)

where the second inequality is by (7.16). Then taking the in�mum over E and D,

α̂ M
|X|

(ρXB‖τX ⊗ σB) ≤ ε∗SW(1, log |W|). (7.24)

Thus,

− log ε∗(1, logM) ≤ − log α̂ |W|
|X|

(ρXB‖τX ⊗ σB). (7.25)

Since this holds independently of σB ∈ S(B), we may minimize over σB to �nd

− log ε∗(1, logM) ≤ min
σB∈S(B)

− log α̂ M
|X|

(ρXB‖τX ⊗ σB),

which complete our claim.

7.2 Proof of Theorem 7.1

Proof of Theorem 7.1. The proof is split into two parts. We �rst invoke an one-shot converse bound

in Proposition 7.1 to relate the optimal error of Slepian-Wolf coding to a binary hypothesis testing

problem. Second, we employ a sharp converse Hoe�ding bound in Theorem 4.3 to asymptotically

expand the optimal type-I error, which yields the desired result in Eq. (7.1).

Applying Proposition 7.1 with ρXnBn ∈ S(XnBn) and M = exp{nR} gives

log

(
1

ε∗
SW

(n,R)

)
≤ min

σnB∈S(Bn)
− log α̂ M

|Xn|
(ρXnBn‖UXn ⊗ σnB) (7.26)

≤ − log α̂ M
|Xn|

(
ρXnBn‖UXn ⊗ (σ?B)⊗n

)
, (7.27)

= − log α̂ M
|X|n

(
ρ⊗nXB‖ (UX ⊗ σ?B)⊗n

)
, (7.28)

where we invoke the saddle-point property in Proposition 5.3-(b) to denote by

σ?R := min
σB∈S(B)

sup
α∈[0,1]

1− α
α

(R+Dα (ρXB‖1X ⊗ σB)) . (7.29)

Next, we show that the exponent φn > 0, and thus we can exploit Theorem 4.3 to expand the

right-hand side of Eq. (7.28). Let r = log |X | −R, and note that item (c) in Proposition 5.3 implies

ρXB � UX ⊗ σ?R. (7.30)
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One can verify that

φn
(
r|ρ⊗nXB‖ (UX ⊗ σ?R)⊗n

)
= sup

α∈(0,1]

1− α
α

(Dα (ρXB‖UX ⊗ σ?R)− r) (7.31)

= sup
α∈(0,1]

1− α
α

(Dα (ρXB‖1X ⊗ σ?R)− log |X | − r) (7.32)

= Esp(R) (7.33)

> 0, (7.34)

where φn is de�ned in Eq. (2.50); equality (7.33) follows from the saddle-point property, item (b) in

Proposition 5.3, and the de�nition of Esp(R) in Eq. (5.2); the last inequality (7.34) is due to item (a) in

Proposition 5.3 and the given range of R. Further, the positivity of φn
(
r|ρ⊗nXB‖ (τX ⊗ σ?R)⊗n

)
implies

that r > D0(ρXB‖τX ⊗ σ?R). By choosing ε = r −D0(ρXB‖τX ⊗ σ?R) > 0, ρ = ρXB and σ = τX ⊗ σ?R,
Eq. (7.31) guarantees the positivity of φn. Hence, we apply Theorem 4.3 on Eq. (7.28) to obtain

log

(
1

ε∗(n,R)

)
≤ nφn

(
r|ρ⊗nXB‖ (τX ⊗ σ?R)⊗n

)
+

1

2

(
1 +

∣∣∣∣∣ ∂φn
(
r̃|ρ⊗nXB‖ (τX ⊗ σ?R)⊗n

)
∂r̃

∣∣∣∣∣
r̃=r

∣∣∣∣∣
)

log n+K, (7.35)

where K > 0 is some �nite constant independent of n. Finally, combining Eqs. (7.33) and (7.35)

completes the proof.
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Chapter 8

Moderate Deviation Analysis (Source

Coding)

In this chapter, we provide the moderate deviation analysis for Slepian-Wolf coding with QSI. As we

have shown in Chapters 6 and 7, the optimal probability of error exponentially decay to zero as the

compression rate is above the Slepian-Wolf limit H(X|B)ρ. In Theorem 8.1 below, we consider the

scenario that the compression rate approaches H(X|B)ρ from above at a speed an, which satis�es

(i) lim
n→+∞

an = 0;

(ii) lim
n→+∞

an
√
n = +∞.

(8.1)

Then, the optimal probability of error still goes to zero asymptotically.

Theorem 8.1 (Moderate deviations for the error). theomodlarge Consider a Slepian-Wolf coding with

a joint classical-quantum state ρXB ∈ S(XB) and V (X|B)ρ > 0. For any sequence (an)n∈N satisfying

Eq. (1.7),

lim
n→+∞

1

na2
n

log ε∗ (n,H(X|B)ρ + an) = − 1

2V (X|B)ρ
, (8.2)

where the conditional information variance is de�ned by V (X|B)ρ := V (ρXB‖1X⊗ρB) and V (ρ‖σ) :=

Tr[ρ (log ρ− log σ)2]−D(ρ‖σ)2.

Proof of Theorem 8.1. We shorthand H = H(X|B)ρ, V = V (X|B)ρ for notational convenience. We

�rst show the achievability, i.e. the �≥" in Eq. (8.2). Let {an}n≥1 be any sequence of real numbers

satisfying Eq. (8.1). For every n ∈ N, Theorem 6.1 implies that there exists a sequence of n-block

codes with rates Rn = H + an such that

ε∗(n,Rn) ≤ 4 exp

{
−n
[

max
0≤s≤1

{
E↓0(s) + sRn

}]}
. (8.3)

Applying Taylor's theorem to E↓0(s) at s = 0 together with Proposition 5.2 gives

E↓0 (s) = −sH − s2

2
V +

s3

6

∂3E↓0 (s)

∂s3

∣∣∣∣∣
s=s̄

, (8.4)
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for some s̄ ∈ [0, s]. Now, let sn = an/V . Then, sn ≤ 1 for all su�ciently large n by the assumption in

Eq. (8.1) and V > 0. For all sn ≤ 1, Eq. (8.4) yields

max
0≤s≤1

{
E↓0 (s) + sRn

}
≥ E↓0 (sn) + snRn (8.5)

=
an
V

(−H +Rn)− a2
n

2V
+

a3
n

6V 3

∂3E↓0 (s)

∂s3

∣∣∣∣∣
s=s̄n

(8.6)

=
a2
n

2V
+

a3
n

6V 3

∂3E↓0 (s)

∂s3

∣∣∣∣∣
s=s̄n

(8.7)

≥ a2
n

2V
− a3

n

6V 3

∣∣∣∣∣ ∂3E↓0 (s)

∂s3

∣∣∣∣∣
s=s̄n

∣∣∣∣∣ (8.8)

≥ a2
n

2V
− a3

n

6V 3
Υ, (8.9)

where s̄n ∈ [0, sn]; Eq. (8.7) holds since Rn = H + an; we denote by

Υ = max
s∈[0,1]

∣∣∣∣∣∂3E↓0 (s)

∂s3

∣∣∣∣∣ . (8.10)

This quantity is �nite due to the compact set [0, 1] and the continuity, item (a) in Proposition 5.2.

Therefore, substituting Eq. (8.9) into Eq. (8.3) gives for all su�ciently large n ∈ N,

1

na2
n

log

(
1

ε∗(n,Rn)

)
≥ − log 4

na2
n

+
1

2V

(
1−Υ

an
3V 2

)
. (8.11)

Recall Eq. (1.7) and let n→ +∞, which completes the achievability:

lim inf
n→+∞

1

na2
n

log

(
1

ε∗(n,Rn)

)
≥ 1

2V
. (8.12)

We move on to show the converse, i.e. the �≤" in Eq. (8.2). Let N1 ∈ N be an integer such

that Rn = H + an ∈ (H1(X|B)ρ, H0(X|B)ρ) for all n ∈ N1 Invoke the one-shot converse bound,

Proposition 7.1, with M = exp{nRn} to obtain for all n ≥ N1,

log

(
1

ε∗(n,Rn)

)
≤ min

σnB∈S(Bn)
− log α̂ M

|Xn|
(ρXnBn‖τXn ⊗ σnB) (8.13)

≤ − log α̂ M
|Xn|

(
ρXnBn‖τXn ⊗ (σ?Rn)⊗n

)
(8.14)

= − log α̂ M
|X|n

(
ρ⊗nXB‖(τX ⊗ σ

?
Rn)⊗n

)
, (8.15)

where we denote by (α?Rn , σ
?
Rn

) the unique saddle-point of 1−α
α (Rn −H↑α(X|B)ρ).

Next, we verify that we are able to employ Theorem 4.4 to asymptotically expand Eq. (8.15).

Equation (8.27) in Proposition 8.1 below shows that limn→+∞ αRn = 1. This together with the closed-
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form expression of σ?Rn [125], [119, Lemma 1], [8, Lemma 5.1] shows that

lim
n→+∞

σ?Rn = lim
n→+∞

(
TrX

[
ρ
α?Rn
XB

]) 1
α?
Rn

Tr

[(
TrX

[
ρ
α?Rn
XB

]) 1
α?
Rn

] = ρB. (8.16)

Since V = V (ρ‖1X ⊗ ρB) > 0, by the continuity of V (·‖·) (c.f. (3.55)), for every κ ∈ (0, 1) there exists

N2 ∈ N such that for all n ≥ N2,

V
(
ρXB‖τX ⊗ σ?Rn

)
= V

(
ρXB‖1X ⊗ σ?Rn

)
≥ (1− κ)V =: ν > 0. (8.17)

Hence, we apply Theorem 4.4 with rn = log |X | − Rn, ρ = ρXB and σ = τX ⊗ σ?Rn to obtain for all

n ≥ max{N1, N2},

− log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≤ n sup

α∈(0,1]

1− α
α

(Dα (ρ‖σ)− rn + γn) + log
(
s?n
√
n
)

+K, (8.18)

= nEsp(H + an + γn) + log
(
s?n
√
n
)

+K, (8.19)

for some constant K > 0, and s?n := (1 − α?Rn)/α?Rn . Now, let δn := an + γn, and notice that

γn = O( logn
n ) = o(an). We invoke Proposition 8.1 below to have

lim sup
n→+∞

Esp(H(X|B)ρ + δn)

a2
n

= lim sup
n→+∞

Esp(H(X|B)ρ + δn)

δ2
n

≤ 1

2V
. (8.20)

Moreover, Eq. (8.27) in Proposition 8.1 gives that limn→+∞
s?n
δn

= 1/V . Combining Eqs. (1.7), (8.15),

(8.19) and (8.20) to conclude our claim

lim sup
n→+∞

1

na2
n

log

(
1

ε∗(n,Rn)

)
≤ lim sup

n→+∞
−

log α̂exp{−nrn} (ρ⊗n‖σ⊗n)

na2
n

(8.21)

≤ 1

2V
+ lim sup

n→+∞

log (s?n
√
n)

na2
n

(8.22)

=
1

2V
+ lim sup

n→+∞

log (s?n
√
n)

nδ2
n

(8.23)

=
1

2V
+ lim sup

n→+∞

1
2 log

(
nδ2

n

)
− log V

nδ2
n

(8.24)

=
1

2V
, (8.25)

where the last line follows from limn→+∞ nδ
2
n = +∞. Hence, Eq (8.12) together with Eq. (8.25)

completes the proof.
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Proposition 8.1 (Error Exponent around Slepian-Wolf Limit). Let (δn)n∈N be a sequence of positive

numbers with limn→+∞ δn = 0. The following hold:

lim sup
n→+∞

Esp (H(X|B)ρ + δn)

δ2
n

≤ 1

2V (X|B)ρ
; (8.26)

lim sup
n→+∞

s?n
δn

=
1

V (X|B)ρ
, (8.27)

where

s?n := arg max
s≥0

{
s (H(X|B)ρ + δn)− sH↑1

1+s

(X|B)ρ

}
. (8.28)

The proof of Proposition 8.1 is provided in Section 8.1.

8.1 Asymptotic Expansion of Error Exponent around Slepian-Wolf

Limit

Proof of Proposition 8.1. For notational convenience, we denote by H := H(X|B)ρ, V := V (X|B)ρ..

Thus,

Esp (R) = sup
s≥0
{sR+ E0(s)} , (8.29)

(8.30)

Let a critical rate to be

rcr :=
∂E0(s)

∂s

∣∣∣∣
s=1

. (8.31)

Let N0 be the smallest integer such that H(X|B)ρ+δn < rcr, for all n ≥ N0. Since the map r 7→ Esp(r)

is non-increasing by item (a) in Proposition 5.3, the maximization over s in Eq. (8.29) can be restricted

to the set [0, 1] for any rate below rcr, i.e.,

Esp (H + δn) = max
0≤s≤1

{s (H + δn) + E0(s)} . (8.32)

For every n ∈ N, let s?n attain the maxima in Eq. (8.32) at a rate of H + δn. It is not hard to observe

that s?n > 0 for all n ≥ N0 since s?n = 0 if and only if H + δn < H, which violates the assumption of

δn > 0 for �nite n. Now, we will show Eq. (8.27) and

lim
n→+∞

s?n = 0. (8.33)

Let (s?nk)k∈N be arbitrary subsequences. Since [0, 1] are compact, we may assume that

lim
k→∞

s?nk = so, (8.34)

for some so ∈ [0, 1].
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Since s 7→ E0(s) is strictly concave from item (c) in Proposition 5.1, the maximizer s?n must satisfy

∂E0(s)

∂s

∣∣∣∣
s=s?nk

= −(H + δnk), (8.35)

which together with item (a) in Proposition 5.1 implies

lim
k→+∞

∂E0(s)

∂s

∣∣∣∣
s=s?nk

=
∂E0(s)

∂s

∣∣∣∣
s=so

= −H. (8.36)

On the other hand, item (d) in Proposition 5.1 gives

∂E0(s)

∂s

∣∣∣∣
s=0

= −H. (8.37)

Since item (d) in Proposition 5.1 guarantees

∂2E0 (s)

∂s2

∣∣∣∣
s=0

= −V < 0, (8.38)

which implies that the �rst-order derivative ∂E0 (s) /∂s is strictly decreasing around s = 0. Hence, we

conclude so = 0. Because the subsequence is arbitrary, Eq. (8.34) is shown.

Next, from Eqs. (8.35) and Eqs. (8.37), the mean value theorem states that there exists a number

ŝnk ∈
(
0, s?nk

)
, for each k ∈ N, such that

− ∂2E0 (s)

∂s2

∣∣∣∣
s=ŝnk

=
−H + (H + δnk)

s?nk
=
δnk
s?nk

. (8.39)

When k approaches in�nity, items (a) and (e) in Proposition 5.1 give

lim
k→+∞

∂2E0 (s)

∂s2

∣∣∣∣
s=ŝnk

=
∂2E0 (s)

∂s2

∣∣∣∣
s=0

= −V. (8.40)

Combining Eqs. (8.39) and (8.40) leads to

lim
k→+∞

s?nk
δnk

=
1

V
. (8.41)

Since the subsequence was arbitrary, the above result establishes Eq. (8.27).

Finally, denote by

Υ = max
s∈[0,1]

∣∣∣∣∂3E0 (s)

∂s3

∣∣∣∣ < +∞. (8.42)

For every su�ciently large n ≥ N0, we apply Taylor's theorem to the map s?n 7→ E0 (s?n) at the original
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point to obtain

Esp (H + δn) = s?n (H + δn) + E0 (s?n) (8.43)

= s?nδn −
(s?n)2

2
V +

(s?n)3

6

∂3E0(s, Pn)

∂s3

∣∣∣∣
s=s̄n

(8.44)

≤ s?n (H + δn −H)− (s?n)2

2
V +

(s?n)3Υ

6
(8.45)

≤ sup
s≥0

{
sδn −

s2

2
V

}
+

(s?n)3Υ

6
(8.46)

=
δ2
n

2V
+

(s?n)3Υ

6
, (8.47)

where s̄n is some number in [0, s?n]. Then, Eqs. (8.27), (8.34), (8.47), and the assumption limn→+∞ δn =

0 imply that the desired inequality

lim sup
n→+∞

Esp (H + δn)

δ2
n

≤ 1

2V
. (8.48)
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Chapter 9

Error Exponent Functions (Channel

Coding)

In this chapter, we introduce the auxiliary functions and the exponent functions for classical-quantum

channel coding. Thee major properties of those functions are provided in Sections 9.2 and 9.3. Sec-

tion 9.1 presents the variational representations for the weak sphere-packing exponent.

The random coding exponent [35] and strong sphere-packing exponent [38] of a c-q channel W :

X → S(H) and a rate R ≥ 0 are de�ned by

Er(R) := max
P∈P(X )

Er(R,P ), (9.1)

Esp(R) := max
P∈P(X )

Esp(R,P ), (9.2)

where

Er(R,P ) := sup
s≥0
{E0(s, P )− sR} , (9.3)

Esp(R,P ) := sup
s≥0
{E0(s, P )− sR} , (9.4)

and E0 is the auxiliary function of the c-q channel W (see [34, 35, 36]):

E0(s, P ) := − log Tr

(∑
x∈X

P (x) ·W 1/(1+s)
x

)1+s
 (9.5)

for all P ∈ P(X ) and s ≥ 0.

We will require three variants of the above auxiliary function: ∀s ≥ 0 and σ ∈ S(H),

E↓0(s, P, σ) := sD1−s (P ◦W‖P ⊗ σ) (9.6)

Eh(s, P, σ) := sD 1
1+s

(W‖σ|P ) , (9.7)

E[h(s, P, σ) := sD[
1

1+s

(W‖σ|P ) . (9.8)
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With this, we de�ne another version fo the random coding exponent:

E↓r (R,P ) := sup
0≤s≤1

{
E↓0(s, P, PW)− sR

}
(9.9)

This quantity will appear in the achievability (see Theorem 12.1 in Chapter 10), and Chapter 12.

The weak sphere-packing exponent [37] is de�ned as

Ẽsp(R) := max
P∈P(X )

Ẽsp(R,P ), (9.10)

where

Ẽsp(R,P ) := min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R} . (9.11)

We also need the following de�nitions: for any R ≥ 0 and P ∈ P(X ),

E(1)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(1)
α (P,W)−R

)
; (9.12)

E(2)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(2)
α (P,W)−R

)
, (9.13)

Eq. (3.62) implies that (see also Theorem 9.1) E
(1)
sp (R,P ) ≤ E

(2)
sp (R,P ). By quantum Sibson's

identity [125], one �nds

E(1)
sp (R,P ) = Esp(R,P ). (9.14)

Proposition 3.2 and Eq. (3.63) imply that the two quantities given in Eqs. (9.12) and (9.13) are equal

to the strong sphere-packing exponent by maximizing over the input distributions:

Esp(R) = max
P∈P(X )

E(1)
sp (R,P ) = max

P∈P(X )
E(2)
sp (R,P ). (9.15)

Further, we de�ne [25, p. 152], [38, Theorem 6]:

R∞ := C0,W. (9.16)

From the de�nitions in Eqs. (3.54) and (9.16), it can be veri�ed that R∞ ≤ CW for all c-q channels

W. In Proposition 9.6 below, one has Esp(R) = +∞ for R < R∞, and Esp(R) = 0 as R > CW.

Throughout this paper, we further assume that the considered c-q channel W satis�es R∞ < CW.

Lastly, we de�ne

Ẽsp(R,P, σ) := min
W̄:X→S◦

{
D
(
W̄‖W|P

)
: D
(
W̄‖σ|P

)
≤ R

}
(9.17)

for all R > 0, P ∈ P(X ), and σ ∈ S>0(H). From the de�nitions in Eq. (9.17), it is not hard to see that

[86]

Ẽsp(R,P, σ) = 0, ∀R ≥ D (W‖σ|P ) . (9.18)
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and

E(2)
sp (R,P, σ) =

+∞, R < D0 (W‖σ|P ) ,

0, R ≥ D (W‖σ|P ) .
(9.19)

As we will show in Chapter 11, the quantity E
(2)
sp (R,P ) plays a signi�cant role in the connection

between hypothesis testing and channel coding. Moreover, Proposition 9.5 in Section 9.3 below shows

that the the optimizer in Eqs. (3.61) and (9.13) forms a saddle-point.

9.1 Variational Representations

This section derives alternative formulations of the strong and weak sphere-packing exponents of

Eqs. (9.4)-(9.17), and provides a relation between these two exponents. As we will show later, the

derived formulations are essentially optimization problems in the primal domain, while the expressions

in Eqs. (9.4) and (9.17) are corresponding dual representations.

We �rst consider the following convex optimization problem and then exploit it to establish vari-

ational formulations of the sphere-packing exponents. Let ρ, τ ∈ S(H) be two density operators.

Consider the following convex optimization problem:

(P) e(r) := inf
σ∈S(H)

D (σ‖ρ) ,

subject to D (σ‖τ) ≤ r.
(9.20)

The above primal problem is interpreted as �nding the optimal operator σ? that achieves the minimum

relative entropy e(r) to ρ, within r-radius to τ . The following result shows the dual representation of

problem (P) via Lagrangian duality.

Lemma 9.1 ([93, Section 3.7], [111], [58, Theorem III.5]). The dual problem of (P) is given by

(D) sup
s≥0

{
−(1 + s) logQ[ 1

1+s

(ρ‖τ)− sr
}
. (9.21)

Proof. By the method of Lagrange multipliers, the primal problem in Eq. (9.20) can be rewritten as

sup
s≥0

inf
σ∈S(H)

{D(σ‖ρ) + s (D(σ‖τ)− r)} (9.22)

= sup
s≥0

{
(1 + s) inf

σ∈S(H)

{
1

1 + s
D(σ‖ρ) +

s

1 + s
D(σ‖τ)

}
− sr

}
(9.23)

= sup
s≥0

{
−(1 + s) logQ[ 1

1+s

(ρ‖τ)− sr
}
, (9.24)

where the last equality follows from Lemma 3.2.
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Theorem 9.1 (Variational Representations of the Sphere-Packing Exponents). Let W : X → S(H) be

a classical-quantum channel. For any R > R∞, we have

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(
D[
α (W‖σ|P )−R

)}
, and (9.25)

Esp(R,P ) ≤ sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(Dα (W‖σ|P )−R)

}
, (9.26)

where Ẽsp(R,P ) and Esp(R,P ) are de�ned in Eqs. (9.17) and (9.4), respectively.

Moreover, equality in Eq. (9.26) is attained when maximizing over all prior distributions, i.e.,

Esp(R) = max
P∈P(X )

Esp(R,P ) = max
P∈P(X )

sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(Dα (W‖σ|P )−R)

}
. (9.27)

Proof. We start with the proof of Eq. (9.25). Observe that

min
σ∈S(H)

D (V‖σ|P ) = min
σ∈S(H)

∑
x∈X

P (x) Tr [Vx (log Vx − log σ)] (9.28)

= I(P,V). (9.29)

We �nd

Ẽsp(R,P ) = min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R} (9.30)

= min
V:X→S(H)

{
D (V‖W|P ) : min

σ∈S(H)
D (V‖σ|P ) ≤ R

}
(9.31)

= sup
s≥0

min
V:X→S(H)

{
D (V‖W|P ) + s

(
min

σ∈S(H)
D (V‖σ|P )−R

)}
(9.32)

= sup
s≥0

min
σ∈S(H)

min
V:X→S(H)

{
−sR+

∑
x∈X

P (x)D (Vx‖Wx) + s ·D (Vx‖σ)

}
(9.33)

= sup
s≥0

min
σ∈S(H)

{∑
x∈X

P (x) min
Vx∈S(H)

[D (Vx‖Wx) + s ·D (Vx‖σ)− sR]

}
(9.34)

= min
σ∈S(H)

{∑
x∈X

P (x) min
Vx∈S(H)

{D (Vx‖Wx) : D (Vx‖σ) ≤ R}

}
. (9.35)

In Eq. (9.32) we introduced the constraint into the objective function via the Lagrange multiplier

s ≥ 0; and Eq. (9.34) follows from the linearity of the convex combination. By Lemma 9.1, the inner

minimum over Vx ∈ S(H) can be represented as its dual problem:

Ẽsp(R,P ) = min
σ∈S(H)

sup
s≥0

{
−(1 + s)

∑
x∈X

P (x) log

[
Q[ 1

1+s

(Wx‖σ)

]
− sR

}
(9.36)

= min
σ∈S(H)

sup
0<α≤1

{
−
∑

x∈X P (x) log
[
Q[α (Wx‖σ)

]
− (1− α)R

α

}
, (9.37)

where we substitute α = 1/(1 + s). From Lemma 3.2, the numerator in the bracket of Eq. (9.37) is a

concave-convex saddle function for every σ ∈ S(H) and every α ∈ (0, 1]. Hence, we invoke the minimax
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theorem, Lemma 9.2 below, to exchange the order of min-sup in Eq. (9.37):

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
−
∑

x∈X P (x) log
[
Q[α (Wx‖σ)

]
− (1− α)R

α

}
(9.38)

= sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(
D[
α (W‖σ|P )−R

)}
, (9.39)

where in (9.39) we recall the de�nition of the log-Euclidean α-Rényi divergence, Eq. (3.6), and hence

prove the �rst claim in Eq. (9.25).

Next, we will prove Eq. (9.26). From Jensen's inequality and the concavity of the logarithm, the

right-hand side of Eq. (9.26) implies that

sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(∑
x∈X

P (x)Dα (Wx‖σ)−R

)}
(9.40)

= sup
0<α≤1

min
σ∈S(H)

{
− 1

α

∑
x∈X

P (x) log Tr
[
Wα
x σ

1−α]− 1− α
α

R

}
(9.41)

≥ sup
0<α≤1

min
σ∈S(H)

{
− 1

α
log Tr

[∑
x∈X

P (x)
[
Wα
x σ

1−α]]− 1− α
α

R

}
(9.42)

= Esp(R,P ), (9.43)

where the last equality follows from Eq. (9.14).

Finally, Eq. (9.27) follows from the following identity proved by Mosonyi and Ogawa [58, Proposition

IV.2]:

max
P∈P(X )

min
σ∈S(H)

Dα (W‖σ|P ) = max
P∈P(X )

min
σ∈S(H)

Dα (P ◦W‖P ⊗ σ) , (9.44)

Note that the above relation also holds for D[
α.

Lemma 9.2 ([104, Proposition 21]). Let A ⊂ R≥0 be a convex set and let B be a compact Hausdor�

space. Further, let f : A× B → R be concave on A as well as convex on B. Then

sup
x∈A

inf
y∈B

f(x, y)

x
= inf

y∈B
sup
x∈A

f(x, y)

x
. (9.45)

The following corollary is a simple consequence of the variational representations of the sphere-

packing exponents in Theorem 9.1 and the Golden-Thompson inequality, Lemma 2.7.

Corollary 9.1. For any classical-quantum channel W : X → S(H), R > R∞, and P ∈ P(X ), it holds

that

Esp(R,P ) ≤ Ẽsp(R,P ). (9.46)
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9.2 Properties of Auxiliary Functions

In the following, we list the properties of the auxiliary functions E0, E
↓
0 , Eh, and E

[
h in Propositions 9.1,

9.2, 9.3, and 9.4, respectively. Our ingredients come from properties of Petz's quantum Rényi divergence

[59] (see also [126, 120, 8]) and the theory of matrix geometric means.

Proposition 9.1 (Properties of E0(s, P )). The auxiliary function E0(s, P ), de�ned in Eq. (9.5), admits

the following properties.

(a) The partial derivatives ∂E0(s, P )/∂s, ∂2E0(s, P )/∂s2, ∂3E0(s, P )/∂s3, and E0(s, P ) are all con-

tinuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function E0(s, P ) is concave in s for all s ∈ R≥0.

(c) For every P ∈ P(X ),

∂E0(s, P )

∂s

∣∣∣∣
s=0

= I(P,W). (9.47)

(d) For every P ∈ P(X ),

lim
s→+∞

∂E0(s, P )

∂s
≤ ∂E0(s, P )

∂s
≤ I(P,W), ∀s ∈ R≥0. (9.48)

(e) For every P ∈ P(X ),

∂2E0(s, P )

∂s2

∣∣∣∣
s=0

= −V (P,W). (9.49)

The proof is provided in Section 9.2.1.
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Proposition 9.2 (Properties of E↓0(s, P, σ)). Consider a classical-quantum channel W : X → S(H),

a distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then E↓0(s, P, σ)

de�ned in Eq. (9.6) enjoys the following properties.

(a) E↓0(s, P, σ) and its partial derivatives ∂E↓0(s, P, σ)/∂s, ∂2E↓0(s, P, σ)/∂s2, ∂3E↓0(s, P, σ)/∂s3 are

all continuous in (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function E↓0(s, P, σ) is concave in s ∈ R≥0.

(c) For every P ∈ P(X ),

∂E↓0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (P ◦W‖P ⊗ σ) . (9.50)

(d) For every P ∈ P(X ),

lim
s→+∞

∂E↓0(s, P, σ)

∂s
≤ ∂E↓0(s, P, σ)

∂s
≤ D (P ◦W‖P ⊗ σ) , ∀s ∈ R≥0. (9.51)

(e) For every P ∈ P(X ),

∂2E↓0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −V (P ◦W‖P ⊗ σ) . (9.52)

The proof is provided in Section 9.2.2.

Properties of Eh and E[h will be crucial in the analysis of the converse part of our main result.

Proposition 9.3 (Properties of Eh(s, P, σ)). Consider a classical-quantum channel W : X → S(H),

a distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Eh(s, P, σ)

de�ned in Eq. (9.7) enjoys the following properties.

(a) Eh(s, P, σ) and its partial derivatives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2, ∂3Eh(s, P, σ)/∂s3 are

continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is concave in s for all s ∈ R≥0.

(c) For every P ∈ P(X ),

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (9.53)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Eh(s, P, σ)

∂s
≤ ∂Eh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (9.54)

(e) For every P ∈ P(X ),

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (9.55)
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The proof is provided in Section 9.2.3.

Proposition 9.4 (Properties of E[h(s, P, σ)). Consider a classical-quantum channel W : X → S(H),

a distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then E[h(s, P, σ)

de�ned in Eq. (9.8) enjoys the following properties.

(a) E[h(s, P, σ) and its partial derivatives ∂E[h(s, P, σ)/∂s, ∂2E[h(s, P, σ)/∂s2, ∂3E[h(s, P, σ)/∂s3 are

all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function E[h(s, P, σ) is concave in s for all s ∈ R≥0.

(c) For every P ∈ P(X ),

∂E[h(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (9.56)

(d) For every P ∈ P(X ),

lim
s→+∞

∂E[h(s, P, σ)

∂s
≤
∂E[h(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (9.57)

(e) For every P ∈ P(X ),

∂2E[h(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (9.58)

The proof is provided in Section 9.2.4.

9.2.1 Proof of Proposition 9.1

Fix any c-q channel W : X → S(H). To ease the burden of derivations, we denote some notation:

f(s, P ) :=
∑
x∈X

P (x)W 1/(1+s)
x ∈ B(H)+, (9.59)

g(s, P ) := f(s, P )(1+s) ∈ B(H)+, (9.60)

F (s, P ) := Tr [g(s, P )] ∈ R≥0, (9.61)

for all (s, P ) ∈ R≥0 × P(X ). Clearly, f(·, ·) is continuous on R≥0 × P(X ). Direct calculation shows

that

f ′(s, P ) :=
∂f(s, P )

∂s
= − 1

(1 + s)2

∑
x∈X

P (x)W 1/(1+s)
x l̂ogWx, (9.62)

f ′′(s, P ) :=
∂2f(s, P )

∂s2
=

1

(1 + s)3

∑
x∈X

P (x)W 1/(1+s)
x l̂ogWx

[
2 +

l̂ogWx

(1 + s)

]
, (9.63)

f ′′′(s, P ) :=
∂3f(s, P )

∂s3
= − 1

(1 + s)4

∑
x∈X

P (x)W 1/(1+s)
x l̂ogWx

[
6 +

6l̂ogWx

(1 + s)
+

l̂og
2
Wx

(1 + s)2

]
, (9.64)
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where we denote l̂og by

l̂ogx =

log x, x > 0,

0, x = 0.
(9.65)

From Eqs. (9.62), (9.63), and (9.64), we infer that f ′(s, P ), f ′′(s, P ), and f ′′′(s, P ) share the same

support as f(s, P ), and are continuous for all (s, P ) ∈ R≥0 × P(X ) (in the strong topology).

Observe that for all (s, P ) ∈ R≥0 × P(X ),

g(s, P )0 = f(s, P )0. (9.66)

Hence, the operator g(s, P ) admit the expression:

g(s, P ) = g(s, P )0e(1+s)l̂ogf(s,P )g(s, P )0. (9.67)

By applying the chain rule of the Fréchet derivatives, one can calculate that

g′(s, P ) :=
∂g(s, P )

∂s

= g(s, P )0D exp
[
l̂ogg(s, P )

] (
(1 + s)Dl̂og [f(s, P )]

(
f ′(s, P )

)
+ l̂ogf(s, P )

)
g(s, P )0, (9.68)

g′′(s, P ) :=
∂2f(s, P )

∂s2

= g(s, P )0D2 exp
[
l̂ogg(s, P )

] (
(1 + s)Dl̂og [f(s, P )]

(
f ′(s, P )

)
+ l̂ogf(s, P )

)
g(s, P )0

+ g(s, P )0D exp
[
l̂ogg(s, P )

] (
2Dl̂og [f(s, P )]

(
f ′(s, P )

)
+ (1 + s)

{
Dl̂og [f(s, P )]

(
f ′′(s, P )

)
+ D2 l̂og [f(s, P )]

(
f ′(s, P )

)})
g(s, P )0, (9.69)

where we use the following integral formulas (see e.g. [82, Example 3.22, Excersize 3.24])

Dl̂og[A](B) =

∫ +∞

0
(t1+A)−1B (t1+A)−1 dt, (9.70)

D2 l̂og[A](B) := D2 l̂og[A](B,B) = −2

∫ +∞

0
(t1+A)−1B (t1+A)−1B (t1+A)−1 dt (9.71)

for all 0 ≤ B � A, and (see e.g. [82, Theorem 3.10])

D exp[A](B) =

∫ 1

0
e(1−t)ABetA dt, (9.72)

D2 exp[A](B) := D2 exp[A](B,B) = 2

∫ 1

0

∫ t1

0
e(1−t1)ABe(t1−t2)ABet2A dt2 dt1 (9.73)

for all self-adjoint operators A and B. Further, by [77, Theorem 3.5] D exp[ · ]( · ), D2 exp[ · ]( · ) are

continuous for all self-adjoint operators, and Dl̂og[A](B), D2 l̂og[A](B) are continuous for all 0 ≤ B �
A.

In the following, we will show that g′(s, P ) is continuous for all (s, P ) ∈ R≥0×P(X ). However, the

operation Dl̂og[ · ]( · ) in Eq. (9.68) is only continuous for positive de�nite operators (see [69, Theorem
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3.8]). We need to do little more work to circumvent this problem.

Let {sk, Pk}k≥1 be an arbitrary sequence with limit (sk, Pk)→ (so, Po). Observe that if f(sk, Pk)�
f(so, Po) for some k ∈ N, we can only focus on the support of f(so, Po) and treat f(so, Po) as a positive

de�nite operator without loss of generality. Consider any subsequence {skn , Pkn}n≥1. Suppose all but

a �nite number of (skn , Pkn) satisfy

f(skn , Pkn)� f(so, Po). (9.74)

Then Eq. (9.68), and the continuity of f(·, ·), f ′(·, ·), Dl̂og[f(·, ·)]( · ) (recall that it is continuous for

positive de�nite operators), and D exp[l̂ogf(·, ·)]( · ) (see [69, Theorem 3.8], [77, Theorem 3.5]) imply

that g′(·, ·) is continuous at (so, Po). If this is not the case, we de�ne

ωmin := min
x∈X

λ̃min(Wx), (9.75)

ωmax := max
x∈X

λmax(Wx), (9.76)

where λ̃min(X) denotes the minimum non-zero eigenvalue of an operator X. From Eqs. (9.59), (9.62),

(9.75), and (9.76), one can verify that

f ′(s, P ) ≤ f(s, P )

(1 + s)2
log

1

wmin
, (9.77)

f ′(s, P ) ≥ f(s, P )

(1 + s)2
log

1

wmax
. (9.78)

Then for any subsequence that f(skn , Pkn) 6� f(so, Po), Eq.s (9.70), (9.77) and (9.78) imply

R≥0 3
1

(1 + so)2
log

1

ωmax
≤ lim inf

n→+∞
Dl̂og [f(skn , Pkn)]

(
f ′(skn , Pkn)

)
≤ lim sup

n→+∞
Dl̂og [f(skn , Pkn)]

(
f ′(skn , Pkn)

)
≤ 1

(1 + so)2
log

1

ωmin
∈ R≥0.

(9.79)

Invoking the continuity of f(·, ·), g(·, ·)0, combined with Eqs. (9.68) and (9.79), we infer that1

lim
n→+∞

∂g(s, Pk)

∂s

∣∣∣∣
s=sk

= g′(so, Po). (9.80)

Hence, we complete the claim of the continuity of g′(·, ·). By following the same approach, one can

also verify the continuity of g′′(·, ·) and g′′′(·, ·).
Recall the de�nition of E0(s, P,W ) in Eq. (9.5) and Eq. (9.61), we have E0(s, P,W ) = − logF (s, P ).

1More precisely, f(skn , Pkn) and f(so, Po) share some disjoint support since f(skn , Pkn) 6� f(so, Po). However, owing
to the �niteness of Eq. (9.79), the projection g(so, Po)

0 �nulli�es" those disjoint support, and hence we can only consider

the joint support of f(skn , Pkn) and f(so, Po). The continuity of the operation Dl̂og[f(·, ·)]( · ) on the support of f(so, Po)
follows from the previous argument.
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By denoting F ′(s, P ) := ∂F (s, P )/∂s, direct calculation shows that

∂E0(s, P )

∂s
= −F

′(s, P )

F (s, P )
(9.81)

∂2E0(s, P )

∂s2
= −F

′′(s, P )

F (s, P )
−
(
∂E0(s, P )

∂s

)2

, (9.82)

∂3E0(s, P )

∂s3
= −F

′′′(s, P )

F (s, P )
+ 3

∂E0(s, P )

∂s

∂2E0(s, P )

∂s2
−
(
∂E0(s, P )

∂s

)3

. (9.83)

Now we are at the position to prove Proposition 9.1:

(9.1-(a)) Recalling from Eq. (9.60), the continuity of E0(s, P ), ∂E0(s, P )/∂s, ∂2E0(s, P )/∂s2,

and ∂3E0(s, P )/∂s3 follow from the continuity of g(·, ·), g′(·, ·), g′′(·, ·), and g′′′(·, ·).

(9.1-(b)) To prove the concavity of the map s 7→ E0(s, P ) for s ≥ 0, we �rst provide some useful lemmas

and the de�nition of geometric means. De�ne the �s-weighted geometric mean" of positive

de�nite matrices A and B by

A#sB := A1/2
(
A−1/2BA−1/2

)s
A1/2. (9.84)

It is known that the geometric mean is jointly concave in the matrix partial order (see e.g. [127]):

(θA+ (1− θ)B) #s (θC + (1− θ)D) � θ (A#sC) + (1− θ) (B#sD) (9.85)

for all θ, s ∈ [0, 1].

Now we begin the proof of item (b). Since the geometric means, Eq. (9.84), are de�ned for

positive de�nite matrices, we �rst present the proof that only works when all {Wx}x∈X are full

rank. The proof can then be extended to include the non-invertible case.

Let X be a random variable with the distribution P , and denote by EX the expectation with

respect to P . Then it su�ces to prove the convexity of the map:

f : t 7→ log Tr

[(
EXW

1
t
X

)t]
(9.86)

for all t ≥ 1.

Let l, r, and θ be arbitrary numbers 1 ≤ l ≤ r, 0 ≤ θ ≤ 1, and de�ne

t = θl + (1− θ)r. (9.87)

Let t ≡ 1 + s ≥ 1. Then we prove the convexity of the map f from Eq. (9.86), i.e.

f(t) ≤ θf(l) + (1− θ)f(r). (9.88)

De�ne the number τ ∈ [0, 1] by

τ =
lθ

t
; 1− τ =

r(1− θ)
t

. (9.89)
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Then it follows that

1

t
=
θ

t
+

1− θ
t

=
τ

l
+

1− τ
r

. (9.90)

The concavity of the geometric means (see Eq. (9.85)) implies that

EX

[
W

1/t
X

]
= EX

[
W

τ/l
X W

(1−τ)/r
X

]
(9.91)

= EX

[
W

1/l
X #1−τW

1/r
X

]
(9.92)

� EX
[
W

1/l
X

]
#1−τEX

[
W

1/r
X

]
. (9.93)

Now let A ≡ EX
[
W

1/l
X

]
and B ≡ EX

[
W

1/r
X

]
. Since x 7→ xt for t ≥ 1 is a monotone function,

Lemma 2.4 in Section 2.1 leads to

Tr

[(
EX

[
W

1/t
X

])t]
≤ Tr

[
(A#1−τB)t

]
(9.94)

≤ Tr
[
AtτBt(1−τ)

]
(9.95)

= Tr
[
AlθBr(1−θ)

]
, (9.96)

where Eq. (9.95) follows from Lemma 2.6. Finally, applying the matrix Hölder's inequality,

Lemma 2.5, in Section 2.1 on the right-hand side of Eq. (9.96), we have

Tr

[(
EX

[
W

1/t
X

])t]
≤
(

Tr
[
Al
])θ

(Tr [Br])1−θ

=

(
Tr
(
EX

[
W

1/l
X

])l)θ (
Tr
(
EX

[
W

1/r
X

])r)1−θ
.

Taking the logarithm of the above inequality leads to f(t) ≤ θf(l) + (1− θ)f(r). This completes

the proof for the special case of invertible channel outputs.

The above proof assumes that every realization of the density operator Wx, x ∈ X , is positive
de�nite. Hence, each density operator W

τ/l
x W

(1−τ)/r
x can be expressed as a geometric mean

W
1/l
x #1−τW

1/r
x . However, if Wx is not invertible for some x ∈ X , then consider a sequence of

positive de�nite operators Wx,ε := Wx + εI that approximate Wx, i.e., limε↘0Wx,ε = Wx. The

geometric mean of W
1/l
x and W

1/r
x is then de�ned by(

W 1/l
x

)
#s

(
W 1/r
x

)
:= lim

ε↘0

(
W 1/l
x,ε

)
#s

(
W 1/r
x,ε

)
, (9.97)

by the continuity of the geometric means. Note that the concavity of the geometric means, and

Lemmas 2.1 and 2.6 in Section 2.1 still hold if we use the de�nition in Eq. (9.97). We can thus

obtain a complete the proof of item (b).

(9.1-(c)) This item was discovered by Ogawa and Nagaoka [63, Eq. (12)]. For the sake of completeness,

we provide the proof here. Note that

g(0, P ) = f(0, P ). (9.98)
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The continuity of g′(·, ·) and Eq. (9.68) imply that

g′(s, P )
∣∣
s=0

= g(0, P )0D exp
[
l̂ogg(0, P )

] (
(1 + 0)Dl̂og [f(0, P )]

(
f ′(0, P )

)
+ l̂ogf(0, P )

)
g(0, P )0

= D exp
[
l̂ogf(0, P )

] (
Dl̂og [f(0, P )]

(
f ′(0, P )

)
+ f(0, P )l̂ogf(0, P )

)
(9.99)

= f ′(s, P ) + l̂ogf(s, P )
∣∣∣
s=0

(9.100)

= −
∑
x∈X

Wx logWx +WP l̂ogWP . (9.101)

Therefore,

∂E0(s, P,W )

∂s

∣∣∣∣
s=0

= −F
′(0, P )

F (0, P )
= −Tr

[
g′(0, P )

]
= I(P,W ). (9.102)

(9.1-(d)) The concavity of the map s 7→ E(s, P ) in item (b) ensures that ∂E(s, P )/∂s is decreasing in s.

Along with item (c) concludes Eq. (9.48).

(9.1-(e)) By using Lemma 2.11 in Section 2.1, we have

F ′′(s, P )
∣∣
s=0

= Tr
[
g′(s, P )

(
(1 + s)Dl̂og [f(s, P )]

(
f ′(s, P )

)
+ l̂ogf(s, P )

)]∣∣∣
s=0

+ Tr
[
g(s, P )

(
2Dl̂og [f(s, P )]

(
f ′(s, P )

)
+ (1 + s)

{
Dl̂og [f(s, P )]

(
f ′′(s, P )

)
+ D2 l̂og [f(s, P )]

(
f ′(s, P )

)})]∣∣∣
s=0

. (9.103)

From Eqs. (9.100), (9.101), the �rst term in Eq. (9.103) yields

Tr
[
g′(0, P )

(
Dl̂og [f(0, P )]

(
f ′(0, P )

)
+ l̂ogf(0, P )

)]
(9.104)

= Tr
[
f ′(0, P )Dl̂og [f(0, P )]

(
f ′(0, P )

)
+ 2f ′(0, P )l̂ogf(0, P ) + f(0, P )l̂og

2
f(0, P )

]
. (9.105)

Similarly, from Eqs. (9.98),(9.63) the second term in Eq. (9.103) leads to

Tr
[
f(0, P )

(
2Dl̂og [f(0, P )]

(
f ′(0, P )

)
+
{
Dl̂og [f(0, P )]

(
f ′′(0, P )

)
+ D2 l̂og [f(0, P )]

(
f ′(0, P )

)})]
(9.106)

= Tr

[∑
x∈X

P (x)Wx log2Wx − f ′(0, P )Dl̂og [f(0, P )]
(
f ′(0, P )

)]
. (9.107)

Equation (9.103) combined with Eqs. (9.105), (9.107) gives

F ′′(0, P ) = Tr

[∑
x∈X

Wx (logWx − logWP )2

]
. (9.108)

Recalling Eq. (9.82) completes the proof.
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9.2.2 Proof of Proposition 9.2

(9.2-(a)) The continuity can be proved by the standard approach of functional calculus (see e.g. [126,

Lemma III.1] and [120, Section 4.2]). Let F̃ (s) :=
∑

x∈X P (x) Tr
[
W 1−s
x σs

]
. Direct calculation

shows that

∂E↓0(s, P, σ)

∂s
= − F̃

′(s)

F̃ (s)
, (9.109)

∂2E↓0(s, P, σ)

∂s2
= − F̃

′′(s)

F̃ (s)
+

(
∂E↓0(s, P, σ)

∂s

)2

, (9.110)

∂3E↓0(s, P, σ)

∂s3
= − F̃

′′′(s, P )

F̃ (s, P )
+ 3

∂E↓0(s, P, σ)

∂s

∂2E↓0(s, P, σ)

∂s2
−

(
∂E↓0(s, P, σ)

∂s

)3

, (9.111)

and

F̃ ′(s) =
∑
x∈X

P (x) Tr
[
−W 1−s

x (logWx)σs +W 1−s
x σslogσ

]
, (9.112)

F̃ ′′(s) =
∑
x∈X

P (x) Tr
[
W 1−s
x (log2Wx)σs −W 1−s

x (logWx)σslogσ

−W 1−s
x (logWx)σslogσ +W 1−s

x σslog2σ
]
,

(9.113)

F̃ ′′′(s) =
∑
x∈X

P (x) Tr
[
−W 1−s

x (log3Wx)σs +W 1−s
x (log2Wx)σslogσ

+2W 1−s
x (log2Wx)σslogσ − 2W 1−s

x (logWx)σslog2σ

−W 1−s
x (logWx)σslog2σ +W 1−s

x σslog3σ
]
.

(9.114)

Since the matrix power function is continuous (with respect to the strong topology; see e.g. [69,

Theorem 1.19]), we conclude the continuity of the partial derivatives Eqs. (9.109)-(9.111) in item

(a).

(9.2-(b)) The claim follows from the concavity of the map s 7→ sD1−s( · ‖ · ) (see e.g. [58, Lemma III.11]).

(9.2-(c)) The results can be derived from evaluating Eqs. (9.109) and (9.112) at s = 0. We provide an

alternative proof here. One can verify

∂E↓0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D1−s (P ◦W‖P ⊗ σ)− sD′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(9.115)

= D1−s (P ◦W‖P ⊗ σ)|s=0 (9.116)

= D(P ◦W‖P ⊗ σ). (9.117)

(9.2-(d)) The concavity of the map s 7→ E↓0(s, P, σ) in item (b) ensures that ∂E↓0(s, P, σ)/∂s is non-

increasing in s. Along with Eq. (9.117), we conclude Eq. (9.51).

 doi:10.6342/NTU201800597



9. Error Exponent Functions (Channel Coding) 93

(9.2-(e)) Following from item (c), one obtain

∂2E↓0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −2D′1−s (P ◦W‖P ⊗ σ) + sD′′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(9.118)

= −2D′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(9.119)

= −V (P ◦W‖P ⊗ σ), (9.120)

where the last equality (9.120) follows from the fact D′1/1+s(·‖·)|s=0 = V (·‖·)/2 [120, Theorem

2].

9.2.3 Proof of Proposition 9.3

(9.3-(a)) Direct calculation yields that

∂Eh(s, P, σ)

∂s
= D 1

1+s
(W‖σ|P )− s

(1 + s)2
D′ 1

1+s

(W‖σ|P ) (9.121)

∂2Eh(s, P, σ)

∂s2
= − 2

(1 + s)3
D′ 1

1+s

(W‖σ|P ) +
s

(1 + s)4
D′′1

1+s

(W‖σ|P ) (9.122)

∂3Eh(s, P, σ)

∂s3
=

6

(1 + s)4
D′ 1

1+s

(W‖σ|P ) +
3− 3s

(1 + s)5
D′′1

1+s

(W‖σ|P )

− s

(1 + s)6
D′′′1

1+s

(W‖σ|P ) . (9.123)

From Eqs. (9.121)-(9.123) and the fact that D1/(1+s) (W‖σ|P ), D′1/(1+s) (W‖σ|P ),

D′′1/(1+s) (W‖σ|P ), and D′′′1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the

continuity property in item (a).

(9.3-(b)) The proof strategy follows closely with [58, Appendix B]. Let ψ(α) =
∑

x∈X P (x) log Tr
[
Wα
x σ

1−α].
Since α 7→ ψ(α) is convex for all α ∈ (0, 1] [58, Lemma III.11], it can be written as the supremum

of a�ne functions, i.e.

ψ(α) = sup
i∈I
{ciα+ di} (9.124)

for some index set I. Hence,

−Eh(s, P, σ) = (1 + s)ψ

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (9.125)

The right-hand side of Eq. (9.125), in turn, implies that the map s 7→ Eh(s, P, σ) is concave for

all s ∈ R≥0.

(9.3-(c)) From Eqs. (9.121), one �nds

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (9.126)
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(9.3-(d)) The concavity of the map s 7→ Eh(s, P, σ) in item (b) ensures that ∂Eh(s, P, σ)/∂s is non-

increasing in s. Along with Eq. (9.126) in item (c), we conclude Eq. (9.54).

(9.3-(e)) Applying D′1/1+s(·‖·)|s=0 = V (·‖·)/2 [120, Theorem 2], it holds that

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (9.127)

9.2.4 Proof of Proposition 9.4

This proof follows similarly from Proposition 9.3.

(9.4-(a)) Direct calculation yields that

∂E[h(s, P, σ)

∂s
= D[

1
1+s

(W‖σ|P )− s

(1 + s)2
D[′

1
1+s

(W‖σ|P ) (9.128)

∂2E[h(s, P, σ)

∂s2
= − 2

(1 + s)3
D[′

1
1+s

(W‖σ|P ) +
s

(1 + s)4
D[′′

1
1+s

(W‖σ|P ) (9.129)

∂3E[h(s, P, σ)

∂s3
=

6

(1 + s)4
D[′

1
1+s

(W‖σ|P ) +
3− 3s

(1 + s)5
D[′′

1
1+s

(W‖σ|P )

− s

(1 + s)6
D[′′′

1
1+s

(W‖σ|P ) . (9.130)

From Eqs. (9.128)-(9.130) and the fact that D[
1/(1+s) (W‖σ|P ), D[′

1/(1+s) (W‖σ|P ),

D[′′
1/(1+s) (W‖σ|P ), and D[′′′

1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the

continuity property in item (a).

(9.4-(b)) The proof strategy follows closely with [58, Appendix B]. Let

ψ̃(α) =
∑
x∈X

P (x) log Tr
[
eα logWx+(1−α) log σ

]
. (9.131)

Since α 7→ ψ̃(α) is convex for all α ∈ (0, 1] [58, Lemma III.11], it can be written as the supremum

of a�ne functions, i.e.

ψ̃(α) = sup
i∈I
{ciα+ di} (9.132)

for some index set I. Hence,

−E[h(s, P, σ) = (1 + s)ψ̃

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (9.133)

The right-hand side of Eq. (9.133), in turn, implies that the map s 7→ E[h(s, P, σ) is concave for

all s ∈ R≥0.
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(9.4-(c)) From Eqs. (9.128), one �nds

∂E[h(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (9.134)

(9.4-(d)) The concavity of the map s 7→ E[h(s, P, σ) in item (b) ensures that ∂E[h(s, P, σ)/∂s is non-

increasing in s. Along with Eq. (9.134) in item (c), we conclude Eq. (9.57).

(9.4-(e)) Following similar steps in [120, Proposition 4], it can be veri�es that

D[′
α(ρ‖σ)

∣∣∣
α=1

= lim
α↑1

1

2

d2

dα2
log f(α) =

f(1)f ′′(1)− (f ′(1))2

2(f(1))2
, (9.135)

where f(α) := Tr
[
eα log ρ+(1−α)σ

]
. Further, the Fréchet derivative of the exponential (see e.g. [67,

Example X.4.2]) gives

f ′(α) = Tr
[
eα log ρ+(1−α) log σ (log ρ− log σ)

]
, (9.136)

f ′′(α) =

∫ 1

0
dtTr

[
et(α log ρ+(1−α) log σ) (log ρ− log σ) e(1−t)(α log ρ+(1−α) log σ) (log ρ− log σ)

]
,

(9.137)

Therefore, Eq. (9.135) equals

D[′
α(ρ‖σ)

∣∣∣
α=1

=
1

2

(∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2

)
(9.138)

=
1

2
Ṽ (ρ‖σ). (9.139)

Finally, combining with Eq. (9.129) yields

∂2E[h(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (9.140)

9.3 Properties of Error Exponent Functions and Saddle-Point

As we will show in Chapter 11, the quantity E
(2)
sp (R,P ) plays a important role in the connection

between hypothesis testing and channel coding. Moreover, in the last Section 9.1, we observe that the

error-exponent functions can be represented as a sup-min formulation. In the following Proposition 9.5

we show that the pair of the optimizers in the error-exponent functions form a saddle-point.
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Proposition 9.5 (Saddle-Point). Consider a classical-quantum channel W : X → S(H), any R ∈
(R∞, CW), and P ∈ P(X ). Let

SP,W(H) := {σ ∈ S(H) : ∀x ∈ supp(P ), Wx 6⊥ σ} . (9.141)

De�ne

FR,P (α, σ) :=


1− α
α

(Dα (W‖σ|P )−R) , α ∈ (0, 1)

0, α = 1
, (9.142)

on (0, 1]× S(H), and denote by

PR(X ) :=

{
P ∈ P(X) : sup

0<α≤1
inf

σ∈S(H)
FR,P (α, σ) ∈ R>0

}
. (9.143)

The following holds

(a) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point on (0, 1]× SP,W(H) with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,P ). (9.144)

(b) If P ∈ PR(X ), the saddle-point is unique.

(c) Fix P ∈ PR(X ). Any saddle-point (α?R,P , σ
?
R,P ) of FR,P (·, ·) satis�es α?R,P ∈ (0, 1) and

σ?R,P �Wx, ∀x ∈ supp(P ). (9.145)

The proof is provided in Section 9.3.1.

The following Proposition 9.6 discusses the continuity and di�erentiability of the error-exponent

functions. The proof is shown in Section 9.3.2.
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Proposition 9.6 (Properties of Error-Exponent Functions). Consider a classical-quantum channel

W : X → S(H) with R∞ < CW. We have

(a) Given every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞], and continuous on[

I
(2)
0 (P,W),+∞

]
. For every R > R∞, E

(2)
sp (R, ·) is continuous on P(X ). Further,

E(2)
sp (R,P ) =

+∞, R < I
(2)
0 (P,W)

0, R ≥ I(2)
1 (P,W)

. (9.146)

(b) Esp(·) is convex and non-increasing on [0,+∞], and continuous on [R∞,+∞]. Further,

Esp(R) =

{
+∞, R < R∞

0, R ≥ CW

. (9.147)

(c) Consider any R ∈ (R∞, CW) and P ∈ PR(X ) (see Eq. (9.143)). The function E
(2)
sp (·, P ) is

di�erentiable with

s?R,P = − ∂E
(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∈ R>0, (9.148)

where s?R,P := (1− α?R,P )/α?R,P , and α
?
R,P is the optimizer in Eq. (9.13).

(d) s?R,(·) in Eq. (9.148) is continuous on PR(X ).

Given any R ∈ (R∞, CW) and P ∈ PR(X ), we denote a maximum absolute value subgradient of the

sphere-packing exponent at R by

∣∣E′sp(R)
∣∣ := max

P :E
(2)
sp (R,P )=Esp(R)

s?R,P . (9.149)

Note that the term
∣∣E′sp(R)

∣∣ in Eq. (9.149) is well-de�ned and �nite by item (d) in Proposition 9.6.

Figure 9.1 below depicts di�erent cases of the Esp(R) over rate R.

9.3.1 Proof of Proposition 9.5

(9.5-(a)) Fix arbitrary R > R∞ and P ∈ P(X ). In the following, we prove the existence of a saddle-point

of FR,P (·, ·) on (0, 1]×SP,W(H). Ref. [122, Lemma 36.2] states that (α?, σ?) is a saddle point of

FR,P (·, ·) if and only if the supremum in

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) (9.150)

is attained at α? ∈ (0, 1], the in�mum in

inf
σ∈SP,W(H)

sup
α∈(0,1]

FR,P (α, σ) (9.151)
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+∞

CW

(a) 0 = R∞ < CW.

+∞

R∞ CW

(b) 0 < R∞ < CW.

+∞

CW

(c) 0 < R∞ = CW.

Figure 9.1: This �gure illustrates three cases of the strong sphere-packing exponent Esp(R) over R ≥ 0.
In the �rst case 0 = R∞ < CW (the left �gure), Esp(R) is only in�nite at R = 0 and �nite otherwise.
In the second case 0 < R∞ < CW (the central �gure), Esp(R) = +∞ for R < R∞, and Esp(R) < +∞
for R ≥ R∞. In the third case 0 < R∞ = CW (the right �gure), Esp(R) = +∞ for R < CW , and
Esp(R) = 0 for R ≥ CW . Without loss of generality, we assume R∞ < CW to exclude the last case
throughout this paper.

is attained at σ? ∈ SP,W(H), and the two extrema in Eqs. (9.150), (9.151) are equal and �nite.

We �rst claim that, ∀α ∈ (0, 1],

inf
σ∈SP,W(H)

FR,P (α, σ) = inf
σ∈S(H)

FR,P (α, σ). (9.152)

To see this, observe that for any α ∈ (0, 1), Eqs. (3.5) and (3.38) yield

∀σ ∈ S(H)\SP,W(H), Dα (W‖σ|P ) = +∞, (9.153)

which, in turn, implies

∀σ ∈ S(H)\SP,W(H), FR,P (α, σ) = +∞. (9.154)

Further, Eq. (9.152) holds trivially when α = 1. Hence, Eq. (9.152) yields

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = sup
α∈(0,1]

inf
σ∈S(H)

FR,P (α, σ) (9.155)

Owing to the fact R > R∞ and Eq. (9.13), we have

E(2)
sp (R,P ) = sup

α∈(0,1]
inf

σ∈S(H)
FR,P (α, σ) < +∞, (9.156)

which guarantees the supremum in the right-hand side of Eq. (9.156) is attained at some α ∈ (0, 1].

Namely, there exists some ᾱR,P ∈ (0, 1] such that

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = max
α∈[ᾱR,P ,1]

inf
σ∈S(H)

FR,P (α, σ) < +∞. (9.157)
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Thus, we complete our claim in Eq. (9.150). It remains to show that the in�mum in Eq.(9.151)

is attained at some σ? ∈ SP,W(H) and the supremum and in�mum are exchangeable. To achieve

this, we will show that
(
[ᾱR,P , 1],SP,W(H), FR,P

)
is a closed saddle-element (see De�nition 9.1

below) and employ the boundness of [ᾱR,P , 1]× SP,W(H) to conclude our claim.

De�nition 9.1 (Closed Saddle-Element [122]). We denote by ri and cl the relative interior and the

closure of a set, respectively. Let A,B be subsets of a real vector space, and F : A×B → R ∪ {±∞}.
The triple (A,B, F ) is called a closed saddle-element if for any x ∈ ri (A) (resp. y ∈ ri (B)),

(i) B (resp. A) is convex.

(ii) F (x, ·) (resp. F (·, y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say yo (resp. xo)

satis�es limy→yo F (x, y) = +∞ (resp. limx→xo F (x, y) = −∞).

Fix an arbitrary α ∈ ri ([ᾱR,P , 1]) = (ᾱR,P , 1). We check that
(
SP,W(H), FR,P (α, ·)

)
ful�lls

the three items in De�nition 9.1. (i) The set SP,W(H) is clearly convex. (ii) Eq. (3.15) in

Lemma 3.2 implies that σ 7→ Dα(Wx‖σ) is convex and lower semi-continuous. Since convex

combination preservers the convexity and the lower semi-continuity, Eq. (9.142) yields that σ 7→
FR,P (α, σ) is convex and lower semi-continuous on SP,W(H). (iii) Due to the compactness of

S(H), any accumulation point of SP,W(H) that does not belong to SP,W(H), say σo, satis�es

σo ∈ S(H)\SP,W(H). Eqs. (9.153) and (9.154) then show that FR,P (α, σo) = +∞.

Next, �x an arbitrary σ ∈ ri
(
SP,W(H)

)
. Owing to the convexity of SP,W(H), it follows that

ri
(
SP,W(H)

)
= ri

(
cl
(
SP,W(H)

))
(see e.g. [123, Theorem 6.3]). We �rst claim cl

(
SP,W(H)

)
=

S(H). To see this, observe that S>0(H) ⊆ SP,W(H) since a full-rank density operator is not

orthogonal with every Wx, x ∈ X . Hence,

S(H) = cl (S>0(H)) ⊆ cl
(
SP,W(H)

)
. (9.158)

On the other hand, the fact SP,W(H) ⊆ S(H) leads to

cl
(
SP,W(H)

)
⊆ cl (S(H)) = S(H). (9.159)

By Eqs. (9.158) and (9.159), we deduce that

ri
(
SP,W(H)

)
= ri

(
cl
(
SP,W(H)

))
= ri (S(H)) = S>0(H), (9.160)

where the last equality in Eq. (9.160) follows from [124, Proposition 2.9]. Hence, we obtain

∀σ ∈ ri
(
SP,W(H)

)
and ∀x ∈ X , σ �Wx. (9.161)

Now we verify that ([ᾱR,P , 1], FR,P (·, σ)) satis�es the three items in De�nition 9.1. Fix an

arbitrary σ ∈ ri
(
SP,W(H)

)
. (i) The set (0, 1] is obviously convex. (ii) From Eq. (3.13) in

Lemma 3.2, the map α 7→ FR,P (α, σ) is continuous on (0, 1). Further, it is not hard to ver-

ify that FR,P (1, σ) = 0 = limα↑1 FR,P (α, σ) from Eqs. (9.161), (9.142), and (3.5). Item (c) in
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Proposition 3.2 implies that α 7→ FR,P (α, σ) on [ᾱR, 1) is concave. Moreover, the continuity of

α 7→ FR,P (α, σ) on [ᾱR,P , 1) guarantees the concavity of α 7→ FR,P (α, σ) on [ᾱR,P , 1]. (iii) Since

[ᾱR,P , 1] is closed, there is no accumulation point of [ᾱR,P , 1] that does not belong to [ᾱR,P , 1].

We are at the position to prove item (a) of Proposition 9.5. The closed saddle-element, along with

the boundness of SP,W(H) and Rockafellar's saddle-point result [122, Theorem 8], [123, Theorem

37.3] imply that

−∞ < sup
α∈[ᾱR,P ,1]

inf
σ∈SP,W(H)

FR,P (s, σ) = min
σ∈SP,W(H)

sup
α∈[ᾱR,P ,1]

FR,P (s, σ). (9.162)

Then Eqs. (9.157) and (9.162) lead to the existence of a saddle-point of FR,P (·, ·) on (0, 1] ×
SP,W(H). Hence, item (a) is proved.

(9.5-(b)) Fix arbitrary R ∈ (R∞, CW) and P ∈ PR(X ). We have

sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) ∈ R>0. (9.163)

First note that α? = 1 will not be a saddle point of FR,P (·, σ) because FR,P (1, σ) = 0, ∀σ ∈ S(H),

contradicting Eq. (9.163).

Now, �x α? ∈ (0, 1) to be a saddle-point of FR,P (·, ·). Eq. (3.15) in Lemma 3.2 implies that the

map σ 7→ Dα?(W‖σ|P ) is strictly convex, and thus the minimizer of Eq. (9.163) is unique. Next,

let σ? ∈ SP,W(H) be a saddle-point of FR,P (·, ·). Then,

FR,P (α, σ?) =
1− α
α

(
I(2)
α (P,W)−R

)
. (9.164)

Item (c) in Proposition 3.2 then shows that 1−α
α I

(2)
α (P,W) is strictly concave on (0, 1), which in

turn implies that FR,P (·, σ?) is also strictly concave on (0, 1). Hence, the maximizer of Eq. (9.163)

is unique.

(9.5-(c)) As shown in the proof of item (b), α? = 1 is not a saddle point of FR,P (·, ·) for any R > R∞ and

P ∈ PR(X ). We assume (α?, σ?) is a saddle-point of FR,P (·, ·) with α? ∈ (0, 1), it holds that

FR,P (α?, σ?) = min
σ∈S(H)

FR,P (α?, σ) =
α? − 1

α?
R+

1− α?

α?
min

σ∈S(H)
Dα?(W‖σ|P ). (9.165)

Then, it is clear from Proposition 3.2-(c) in Section 3.3 that

σ? �Wx, ∀x ∈ supp(P ), (9.166)

and thus item (c) is proved.

9.3.2 Proof of Proposition 9.6

(9.6-(a)) Fix any arbitrary P ∈ P(X ). Item (b) in Proposition 3.2 shows that the map α 7→ I
(2)
α (P,W) is

monotone increasing on [0, 1]. Hence, from the de�nition in Eq. (9.13), it is not hard to verify that
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E
(2)
sp (R,P ) = +∞ for all R ∈ (0, I

(2)
0 (P,W)); �nite for all R > I

(2)
0 (P,W); and E

(2)
sp (R,P ) = 0,

for all R ≥ I(2)
1 (P,W).

For every α ∈ (0, 1], the function 1−α
α (I

(2)
α (P,W)−R) in Eq. (9.13) is an non-increasing, convex,

and continuous function in R ∈ R>0. Since E
(2)
sp (R,P ) is the pointwise supremum of the above

function, E
(2)
sp (R,P ) is non-increasing, convex, and lower semi-continuous function for all R ≥ 0.

Furthermore, since a convex function is continuous on the interior of the interval if it is �nite

[121, Corollary 6.3.3], thus E
(2)
sp (R,P ) is continuous for all R > I

(2)
0 (P,W), and continuous from

the right at R = I
(2)
0 (P,W).

To establish the continuity of E
(2)
sp (R,P ) in P ∈ P(X ), we �rst claim that there exists some

ᾱR ∈ (0, 1] such that for every P ∈ P(X ),

sup
α∈(0,1]

1− α
α

(
I(2)
α (P,W)−R

)
= sup

α∈[ᾱR,1]

1− α
α

(
I(2)
α (P,W)−R

)
. (9.167)

Recall that R > R∞ = maxP∈P(X ) I
(2)
0 (P,W). The continuity, item (a) in Proposition 3.2, implies

that there is an ᾱR > 0 such that

R ≥ I(2)
ᾱR(P,W), ∀P ∈ P(X ). (9.168)

Then, Eq. (9.168) and the monotone increases of the map α 7→ I
(2)
α (P,W) yield that,

1− α
α

(
I(2)
α (P,W)−R

)
< 0, ∀P ∈ P(X ), and α ∈ (0, ᾱR). (9.169)

The non-negativity of E
(2)
sp (R,P ) ≥ 0 ensures that the maximizer α? will not happen in the

region (0, ᾱR), and thus Eq. (9.167) is evident. Finally, Berge's maximum theorem [109, Section

IV.3], [110, Lemma 3.1] coupled with the compactness of [ᾱR, 1] and item (a) in Proposition 3.2

complete our claim:

P 7→ E(2)
sp (R,P ) = sup

α∈[ᾱR,1]

1− α
α

(
I(2)
α (P,W)−R

)
is continuous on P(X ). (9.170)

(9.6-(b)) The statement follows since item (a) holds for any P ∈ P(X ).

(9.6-(c)) For any R ∈ (R∞, CW) and P ∈ PR(X ), item (b) in Proposition 9.5 shows that the optimizer

α?R,P is unique. Moreover, Eq. (9.148) follows from in Lemma 2.14-(d) in Section 2.2.

(9.6-(d)) The proof of this item is similar to [91, Proposition 3.4]. Fix any Po ∈ PR(X ) and consider

arbitrary {Pk}k∈N such that Pk ∈ PR(X ), ∀k ∈ N, and limn→+∞ Pk = Po. Following from

Eq. (9.148), we have

s?R,Pk = − ∂E
(2)
sp (r, Pk)

∂r

∣∣∣∣∣
r=R

. (9.171)
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Given any R ∈ (R∞, CW), the continuity of E
(2)
sp (R, ·) (see item (a)) implies that

lim
k→+∞

E(2)
sp (R,Pk) = E(2)

sp (R,Po). (9.172)

Then, continuity of the �rst-order derivative in [128, Corollary VI.6.2.8], we have

lim
k→+∞

s?R,Pk = lim
k→+∞

− ∂E
(2)
sp (r, Pk)

∂r

∣∣∣∣∣
r=R

= − ∂E
(2)
sp (r, Po)

∂r

∣∣∣∣∣
r=R

= s?R,Po , (9.173)

which completes the proof.
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Chapter 10

Achievability (Channel Coding)

In the error exponent regime (i.e. large deviation regime), the achievability for information transmis-

sions means that one has to construct a coding strategy and show the probability of error achieves the

desired upper bound given a �xed transmission rate. The �nite blocklength achievability bound for

classical-quantum channel exponent was �rst studied by Burnashev, Holevo [34, 35], and Winter [37].

Speci�cally, Burnashev and Holevo [34] introduced the following random coding exponent Er(R) and

the auxiliary function E0(s, P ) (see also Eqs. (9.1) and (9.5)):

Er(R) = sup
0≤s≤1

sup
P∈P(X )

{E0(s, P )− sR} ; (10.1)

E0(s, P ) = − log Tr

(∑
x∈X

P (x)W
1

1+s
x

)1+s
 . (10.2)

By quantum Sibson's identity given in Lemma 3.3, it is easy to show that the random coding exponent

can be expressed the Rényi capacity with Petz's version (see Eqs. (3.63) and (3.5)):

Er(R) = sup
1
2
≤α≤1

1− α
α

(
Cα,W −R

)
. (10.3)

Further, they showed that [34, 35] for pure-state c-q channels (i.e. the channel outputs are all rank-one

density operators), there exists a random coding strategy and some decoder (POVM) such that the

average error probability over the ensemble, denoted by Pe(n,R), can be upper bounded as

Pe(n,R) ≤ 4 exp{−nEr(R)}, ∀R < CW, n ∈ N. (10.4)

However, for general c-q channels (i.e. the channel outputs are possibly non-rank-one density operators),

the random coding bound by the exponent function in Eq. (10.3) is still open.

The slightly weaker and the best to date achievability bound was later proven by Hayashi [87, 88,

129]:

Pe(n,R) ≤ 4 exp{−nE↓r (R)}, ∀R < CW, n ∈ N. (10.5)

103  doi:10.6342/NTU201800597



10. Achievability (Channel Coding) 104

The above bound holds for all c-q channels. However, it can be shown that

E↓r (R) ≤ Er(R), ∀R < CW. (10.6)

Recently, Dalai [130] proposed a method to prove Eqs. (10.3) and (10.5). For the sake of complete-

ness, we provide the proof below.

Theorem 10.1 (Dalai [130]). Given any classical-quantum channels W : X → S(H), and any random

codes with size M and distribution P ∈ P(X ), we have the one-shot bound:

Pe(1, logM) ≤ 6(M − 1)s exp
{
−E↓0(s, P )

}
, ∀s ∈ [0, 1]. (10.7)

Let the transmission rate be R := 1
n logM < CW. The n-shot bound is then:

Pe(n,R) ≤ 6 exp
{
−nE↓r (R,P )

}
, ∀n ∈ N. (10.8)

For pure-state classical-quantum channels,

Pe(1, logM) ≤ 6(M − 1)s exp {−E0(s, P )} , ∀s ∈ [0, 1]. (10.9)

Proof of Theorem 10.1. Assume the channel output of a random code is {Wx1 , · · · ,WxM } where xi
has an i.i.d. P (xi). Construct a POVM {Πxi}i∈[M ] by

Πxi :=

∑
j

πxj

− 1
2

πxi

∑
j

πxj

− 1
2

, (10.10)

where

πxi :=

Wαs
xi −

∑
j 6=i

Wα
xj

s

> 0

 , α ∈ (0, 1], s ∈ (0, 1]. (10.11)

Using Hayashi-Nagaoka inequality, Lemma 2.9, we have

1−Πxi ≤ 2(1− πxi) + 4
∑
j 6=i

πxj . (10.12)

Hence, the average probability of error given realizations (x1, . . . , xM ) can be upper bounded as

Pr {error|(x1, . . . , xM )} =
1

M
Tr [Wxi(1−Πxi)] (10.13)

≤ 2
1

M

∑
i

Tr

Wxi

Wαs
xi −

∑
j 6=i

Wα
xj

s

≤ 0




+ 2
1

M

∑
i

Tr

Wxi

Wαs
xi −

∑
j 6=i

Wα
xj

s

> 0


 .

(10.14)
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For 0 < α ≤ 1 and 0 < s ≤ 1, using 2.10 to bound the �rst term in Eq. (10.14) as

Tr

Wxi

Wαs
xi −

∑
j 6=i

Wα
xj

s

≤ 0


 ≤ Tr

W 1−αs
xi

∑
j 6=i

Wα
xj

s . (10.15)

Recalling the operator concavity of u 7→ us, we take expectation of the random code to obtain

2ETr

W 1−αs
xi

∑
j 6=i

Wα
xj

s = 2 Tr

Ex [W 1−αs
x

]
E

∑
j 6=i

Wα
xj

s (10.16)

≤ 2 Tr

Ex [W 1−αs
x

]E
∑
j 6=i

Wα
xj

s (10.17)

= 2(M − 1)s Tr
[
Ex

[
W 1−αs
x

]
Ex [Wα

x ]s
]
. (10.18)

For the second term in Eq. (10.14), we re-index it to have

4
1

M

∑
i

Tr

∑
j 6=i

Wxj

Wαs
xi

∑
j 6=i

Wα
xj

s
 . (10.19)

Again, using Lemma 2.10 yields

Tr

∑
j 6=i

Wxj

Wαs
xi

∑
j 6=i

Wα
xj

s
 ≤ Tr

∑
j 6=i

Wα
xj

s

W 1−αs
xi

 . (10.20)

Taking expectation and combining with Eq. (10.18), we have

Pe(n,R) ≤ 6(M − 1)s Tr
[
Ex

[
W 1−αs
x

]
Ex [Wα

x ]s
]
. (10.21)

Invoking the de�nition of E↓r (R) and choosing α = 1/(1 + s), we obtain Eq. (10.7).

For pure-state c-q channels, Eq. (10.21) can be rewritten as

Pe(n,R) ≤ 6(M − 1)s Tr [Ex [Wx]]1+s , (10.22)

because W p
x = Wx for p ≥ 0 for pure-state c-q channels. The above expression equals to Eq. (10.9),

which completes the proof.

Remark 10.1. To obtain the Eq. (10.9) for general c-q channels, one possible way of the above method

is to employ the inequality ∑
j 6=i

Wxj

α

≤
∑
j 6=i

Wα
xj , ∀α ∈ [0, 1], (10.23)
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which in turn implies

∑
j 6=i

Wxj ≤

∑
j 6=i

Wα
xj

 1
α

. (10.24)

Unfortunately, the operator inequality in Eq. (10.23) does not hold for general density operators Wxi .

The inequality only holds under the weak majorization. 3

Lastly, the following Conjecture 10.1 was posed by Holevo [35]. Note that to achieve Eq. (10.26),

the right-hand side of Eq. (10.25) allows to have any sub-exponential prefactors exp{o(n)}.

Conjecture 10.1 (Random Coding Bound for Classical-Quantum Channels). Given any classical-

quantum channels W : X → S(H), transmission rate R < CW, and random codes with distribution

P ∈ P(X ), one has

Pe(n,R) ≤ exp{−nEr(R,P )}, ∀n ∈ N. (10.25)

In particular,

ε∗(n,R) ≤ exp{−nEr(R)}, ∀n ∈ N. (10.26)
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Chapter 11

Optimality (Channel Coding)

In this chapter, we present the weak and strong sphere-packing bounds for c-q channels. In Section 11.1,

we �rst review existing approaches of proving classical sphere-packing bound. In Section 11.2, we

provide the proof of a weak sphere-packing bound by using Wolfowitz strong converse. This bound

is new in the quantum scenario and will be used in the moderate deviation analysis in Section 12.

In Section 11.3, we prove our main result of a �nite blocklength strong sphere-packing bound for

c-q channels, see Theorem 11.1 below, which improve Dalai's prefactor [38, 39] from the order of

subexponential eO(
√
n) to polynomial. Lastly, in Section 11.4, we obtain exact asymptotics (i.e. exact

prefactors) of the strong sphere-packing bound for a symmetric c-q channels, which can be seen as a

generalization of classical symmetric channels [21].

Theorem 11.1 (Finite Blocklength Strong Sphere-Packing Bound of Constant Composition Codes).

Consider a classical-quantum channel W : X → S(H) and R ∈ (R∞, CW). For every γ > 0, there exist

an N0 ∈ N and a constant A > 0 such that for all constant composition codes Cn of length n ≥ N0

with message size |Cn| ≥ exp{nR}, we have

ε̄ (Cn) ≥ A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp(R)} . (11.1)

The following corollary generalizes the re�ned sphere-packing bound for constant composition codes

to arbitrary codes by using the standard argument [30, p. 95]. We delay the proof to the end of Section

11.3.5.

Corollary 11.1 (Finite Blocklength Strong Sphere-Packing Bound of General Codes). Consider a

classical-quantum channel W : X → S(H) and R ∈ (R∞, CW). There exist some t > 1/2 and N0 ∈ N
such that for all codes of length n ≥ N0, we have

ε∗ (n,R) ≥ n−t exp {−nEsp(R)} . (11.2)

Theorem 11.1 yields

log
1

ε̄(Cn)
≤ nEsp(R) +

1

2

(
1 +

∣∣E′sp(R)
∣∣) log n+ o(log n), (11.3)

where the term 1
2

(
1 +

∣∣E′sp(R)
∣∣) can be viewed as a second-order term (see the discussions in [18,
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Section 4.4]). On the other hand, for the case of classical non-singular channels1, it was shown that

[131, Theorem 3.6], for all constant composition codes Cn and rate R ∈ (C1/2,W, CW),

log
1

ε̄(Cn)
≥ nEr(R) +

1

2

(
1 +

∣∣E′r(R)
∣∣) log n+ Ω(1), (11.4)

where Er(R) is the random coding exponent de�ned in Eq. (9.1), and note that Er(R) = Esp(R) for

all R ≥ C1/2,W [21, p. 160], [36]. Hence our result, Theorem 11.1, matches the achievability up to the

logarithmic order. We note that whether the third order o(log n) in Eq. (11.3) can be improved to

O(1) is still unknown even for the classical case.

11.1 Literature Review of Classical Sphere-Packing Bound

This section reviews existing proof approaches of classical sphere-packing bounds:

ε∗ (n,R) ≥ f(n) exp {−n [Esp(R− g(n))]} , (11.5)

ε∗ (n,R) ≥ f(n) exp
{
−n
[
Ẽsp(R− g(n))

]}
, (11.6)

where f(n) is the pre-factor of the bound, and g(n) is the back-o� from the rate. We remark that Esp

coincides with Ẽsp in the classical case. The reason why we distinguish the notation Esp and Ẽsp here

is because of their possible quantum generalizations (recalling that they are not equal in the quantum

case, i.e. Theorem 9.1 in Section 9.1). Table 11.1 below summarizes the comparisons of existing results.

Finite Composition Pre-factor Rate back-o� Classical-quantum
TightnessBounds\Settings

blocklength dependent f(n) g(n) channels

Shannon-Gallager-
No Yes e−O(

√
n) O

(
logn
n

)
Dalai [38] Strong(a)

Berlekamp [30]

Haroutunian [31]
No Yes e−o(n) o(1) Winter [37] WeakOmura [133](b)

Csisár-Korner [25]

(c) Blahut [32] No No e−O(
√
n) O

(
n−

1
2

)
Eqs. (11.148) & (11.153) Strong

Yes Yes n−
1
2(1+|E′sp(R)|+o(1)) 0 Theorem 11.1 Strong(d) Altu§-Wagner [91]

(e) Elkayam-Feder [134] Yes Yes O
(
n−t
)

O
(

logn
n

)
Unknown Unknown

Agustin-Nakibo§lu
Yes No O

(
n−t
)

0 Unknown Unknown(f)
[135, 106, 105, 136]

Table 11.1: Di�erent sphere-packing bounds are compared by (i) the bound is �nite blocklength or
asymptotical; (ii) whether or not they are dependent on the constant composition codes; (iii) & (iv)
the asymptotics of f(n) and g(n); (v) the corresponding c-q generalizations. The parameter t in rows
(e) and (f) is some value in the range t > 1/2; and (vi) whether their error exponent expressions for
c-q channels are in the strong form (Eq. (1.4)) or weak form (Eq. (12.51)).

(a) Shannon, Gallager and Berlekamp obtained the �rst classical sphere-packing bound Eq. (11.5),

1For classical singular channels, one has log 1
ε̄(Cn)

≥ nEr(R) + 1
2

logn+ Ω(1) [131]. Further, it was conjectured that

[132] that log 1
ε̄(Cn)

≤ nEsp(R)+ 1
2

logn+o(logn), for all asymmetric classical singular channels and constant composition
codes. However, such a result remains open.
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where [30, Theorem 5]

f(n) = e−O(
√
n); g(n) = O

(
log n

n

)
. (11.7)

Their method is based on distinguishing two codewords, followed by Chebyshev's inequality. The

works [137] and [138] further improved the coe�cients in f(n) and g(n) for short to moderate

blocklengths.

Remarkably, Shannon-Gallager-Berlekamp's result can be extended to c-q channels with almost

the same asymptotics in Eq. (11.7) [38]. See also the result by Dalai and Winter for constant

composition codes [39].

(b) Haroutunian [31], Omura [133], Csiszár and Körner [25], Ahlswede [139] subsequently proposed

a sphere-packing exponent using discrimination functions (i.e. the relative entropy function in

Eq. (1.5)), and obtained the following classical sphere-packing bound for constant composition

codes Cn:

ε̄(W, Cn) ≥ 1

2
exp

{
−nẼsp(R− δ)(1 + δ)

}
, (11.8)

for all δ > 0 and all su�ciently large n ∈ N, and ε̄(W, Cn) denotes the average error of the code

Cn. The idea is to apply strong converse bounds [140, 141, 142, 133, 25] to a dummy channel,

and then use a data-processing inequality for the discrimination function between the dummy

and true channels. Recently, Altu§ and Wagner employed a particular strong converse result,

Wolfowitz's strong converse result [143], and obtained a form of Eq. (11.6) with [43, Lemma 3]:

g(n) = O

(
1√
n

)
. (11.9)

Following the arguments in [139, Theorem 49], Winter proved a weak sphere-packing bound

Eq. (11.8) for constant composition codes in c-q channels [37, Theorem II.20]. We remark that

Altu§ and Wagner's result [43] can also be extended to a weak sphere-packing bound for c-

q channels when combining Winter's approach [37] with Sharma and Warsi's strong converse

result [125, Theorem 3].

(c) Blahut related the channel coding problem to hypothesis testing [32, Theorem 20] (see also [23,

Theorem 10.2.1]) and independently obtained a weak sphere-packing bound Eq. (11.6) with

f(n) = e−O(
√
n); g(n) = O

(
1√
n

)
. (11.10)

In Section 11.3, we generalize Blahut's result to a strong sphere-packing bound for c-q channels.

(d) In Ref. [48], Altu§ and Wagner applied a sharp concentration inequality to re�ne the sphere-

packing bound Eq. (11.7) with

f(n) = e−O(
√
n); g(n) = O

(
log n

n

)
, (11.11)
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for some t > 1/2 and all su�ciently large n ∈ N.

(e) Elkayam and Feder [134] established a general expression for the error probability in terms of

the cumulative distribution function [144, Theorem 6]. Combined with the method of types and

Polyanskiy's minimax meta-converse [145, Theorem 3], they proved a classical sphere-packing

bound for constant composition codes with

f(n) = Θ
(
n−t
)

; g(n) = O

(
log n

n

)
, (11.12)

for some t > 1/2. This sphere-packing bound also had a polynomial pre-factor; however, it is

unknown whether this method can be extended to c-q channels.

11.2 A Weak Sphere-Packing Bound via Wolfowitz Strong Converse

Theorem 11.2 (Weak Converse Bound with Polynomial Prefactors). Consider a classical-quantum

channel W : X → S(H) with S◦ := im(W), an arbitrary rate R ≥ 0, and σ ∈ S>0(H). For any

η ∈ (0, 1
2) and c > 0, let N0 ∈ N such that for all n ≥ N0,

c · e−ξ
√
n ≤ η

2
, (11.13)

where ξ =
√

2A/η and A := maxρ∈S◦ V (ρ‖σ). Then, it holds that for all n ≥ N0,

α̂exp{−nR}
(
W⊗nxn ‖σ⊗n

)
≥ f(η) exp

−n
Ẽsp

(
R− 2ξ√

n
, Pxn , σ

)
1− η

 , (11.14)

where f(η) = exp
{
−h(1−η)

1−η

}
and h(p) := −p log p− (1− p) log(1− p) is the binary entropy function.

Remark 11.1. Consider a constant composition code with common type Pxn on a �nite input alphabet

X . Recall the de�nition of the weak sphere-packing exponent [37, 26]:

Ẽsp(R,Pxn) := min
W̄:X→S(H)

{
D
(
W̄‖W|Pxn

)
: I(Pxn , W̄) ≤ R

}
. (11.15)

Theorem 11.2, along with the one-shot converse bound (see Proposition 11.2 in Section 11.3.1 later),

establishes a weak sphere-packing bound with polynomial prefactors, which generalizes Altu§ and

Wagner's result [43, Lemma 3] to c-q channels: for any η ∈ (0, 1
2) and for all su�ciently large n such

that Eq. (11.13) holds, we have

εmax(W, Pxn) ≥ max
σ∈S(H)

α̂exp{−nR}
(
W⊗nxn ‖σ⊗n

)
(11.16)

≥ α̂exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
(11.17)

≥ f(η) exp

−n
Ẽsp

(
R− 2ξ√

n
, Pxn

)
1− η

 , (11.18)

where σ? := PxnW̄
? and W̄? is an arbitrary minimizer in Eq. (11.15). Moreover, Eq. (11.18) im-
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proves the prefactor of Winter's weak sphere-packing bound [37] from the order of subexponential to

polynomial. 3

Proof of Theorem 11.2. Consider an arbitrary sequence xn ∈ X n and a test Qn on H⊗n. For two c-q

channels W̄,W : X → S◦, the data-processing inequality implies that

D
(
W̄⊗nxn ‖W⊗nxn

)
≥
[
1− α(Qn; W̄⊗nxn )

]
log

1− α(Qn; W̄⊗nxn )

1− α(Qn;W⊗nxn )
+ α(Qn; W̄⊗nxn ) log

α(Qn; W̄⊗nxn )

α(Qn;W⊗nxn )
(11.19)

= −h
(
α(Qn; W̄⊗nxn )

)
− α(Qn; W̄⊗nxn ) logα(Qn;W⊗nxn )

−
[
1− α(Qn; W̄⊗nxn )

]
log
(
1− α(Qn;W⊗nxn )

)
(11.20)

≥ −α(Qn; W̄⊗nxn ) logα(Qn;W⊗nxn )− h
(
α(Qn; W̄⊗nxn )

)
, (11.21)

where the last inequality (11.21) follows since the third term in (11.20) is non-negative. Continuing

from Eq. (11.21), we have

α(Qn;W⊗nxn ) ≥ exp

{
−
D
(
W̄⊗nxn

∥∥W⊗nxn
)

+ h
(
α(Qn; W̄⊗nxn )

)
α(Qn; W̄⊗nxn )

}
(11.22)

= exp

{
−
nD

(
W̄
∥∥W∣∣Pxn

)
+ h

(
α(Qn; W̄⊗nxn )

)
α(Qn; W̄⊗nxn )

}
, (11.23)

where Eq. (11.23) follows from the additivity of the relative entropy and the empirical distribution

Pxn .

The next step is to replace α(Qn; W̄⊗nxn ) with a lower bound that does not depend on the dummy

channel W̄ , provided that W̄ satis�es certain conditions. This can be done using Proposition 11.1,

Wolfowitz's strong converse bound. We delay its proof in Section 11.2.1 below.

Proposition 11.1 (Wolfowitz's Strong Converse). Let S◦ ⊆ S(H) be closed and let W̄ : X → S◦ be an

arbitrary classical-quantum channel. Consider the binary hypothesis testing:

H0 : W̄⊗nxn , (11.24)

H1 : σ⊗n, (11.25)

where xn ∈ X n and σ ∈ S>0(H). For any test Qn such that β(Qn;σ⊗n) ≤ e−nR and D
(
W̄xn‖σ|Pxn

)
≤

R− 2κ, it holds that

α
(
Qn; W̄⊗nxn

)
> 1− A

nκ2
− e−nκ, (11.26)

where A := maxρ∈S◦ V (ρ‖σ).

Fix 0 < η < 1
2 , and let ξ2 := 2A

η . Note that ξ
2 is �nite because A < +∞. For all n ≥ N0, we have

c · e−ξ
√
n ≤ η

2
(11.27)

by assumption in Theorem 11.2. Choose κ = ξ/
√
n. For any W̄ : X → S◦ with D

(
W̄‖σ|Pxn

)
≤ R− 2ξ√

n

and any test Qn such that β(Qn;σ⊗n) ≤ e−nR, Proposition 11.1 gives a lower bound to the type-I
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error:

α(Qn; W̄⊗nxn ) ≥ 1− A

nκ2
− e−nκ ≥ 1− η. (11.28)

Hence, combining Eqs. (11.23) and (11.28) yields that, for any β(Qn;σ⊗n) ≤ ce−nR,

α(Qn;W⊗nxn ) ≥ max
W̄:D(W̄‖σ|Pxn)≤R− 2ξ√

n

exp

{
−
nD

(
W̄
∥∥W∣∣Pxn

)
+ h (1− η)

1− η

}
, (11.29)

= exp

{
−h (1− η)

1− η

}
exp

−n Ẽsp

(
R− 2ξ√

n
, Pxn , σ

)
1− η

 , (11.30)

which concludes Theorem 11.2.

11.2.1 Proof of Wolfowitz's Strong Converse, Proposition 11.1

This proof follows similar steps by Sharma and Warsi [125, Theorem 3], which uses generalized diver-

gences to prove Wolfowitz's strong converse.

To prove our claim, we �rst introduce notation for generalized divergences. For any ρ, σ ∈ S(H),

and γ > 0, de�ne the hockey-stick divergence by

Dγ(ρ‖σ) := Tr
[
(ρ− γσ)+

]
, (11.31)

where A+ := A{A ≥ 0} denotes the positive part of A. This divergence satis�es the data-processing
inequality (DPI):

Tr
[
(ρ− γ%)+

]
≥ Tr

[
(N (ρ)− γN (%))+

]
, (11.32)

for any completely positive and trace-preserving map N : S(Hin)→ S(Hout) [125, Lemma 4]. Let

ρp := p|0〉〈0|+ (1− p)|1〉〈1|, and σq := q|0〉〈0|+ (1− q)|1〉〈1|, (11.33)

for 0 ≤ p, q ≤ 1 and some orthonormal basis {|0〉, |1〉}, and de�ne

dγ (p‖q) := Dγ (ρp‖σq) . (11.34)

Note that the quantity dγ (p‖q) is independent of the choice of the basis {|0〉, |1〉}. Now we are ready

to prove Proposition 11.1.

Proof of Proposition 11.1. Fix an arbitrary test Qn on H⊗n. For notational convenience, we shorthand
ρn = W̄⊗nxn , τ

n = σ⊗n, α = α(Qn; ρn) and β = (Qn; τn). Further, we assume β(Qn; τn) ≤ e−nR. From

the de�nition of the classical divergence, Eqs. (11.31) and (11.34), and any γ > 0, we �nd

dγ(1− α‖β) = (1− α− γβ)+ + (α− γ [1− β])+ (11.35)

≥ 1− α− γβ (11.36)

≥ 1− α− γe−nR. (11.37)

 doi:10.6342/NTU201800597



11. Optimality (Channel Coding) 113

On the other hand, DPI for the measurement map Tr[Qn(·)]|0〉〈0|+ (1− Tr[Qn(·)])|1〉〈1| implies that

Dγ (ρn‖τn) ≥ dγ (Tr[Qnρ
n]‖Tr[Qnτ

n]) = dγ(1− α‖β). (11.38)

Hence, Eqs. (11.37) and (11.38) lead to

α ≥ 1−Dγ (ρn‖τn)− γe−nR. (11.39)

Since

Dγ (ρn‖τn) = Tr [{ρn − γτn ≥ 0} (ρn − γτn)] (11.40)

≤ Tr [{ρn − γτn ≥ 0} ρn] , (11.41)

Eq. (11.39) gives

α ≥ 1− Tr [{ρn − γτn ≥ 0} ρn ]− γe−nR. (11.42)

Next, invoking Lemma 11.1 below, for all log γ > D (ρn‖τn), we have

α ≥ 1− V (ρn‖τn)

[log γ −D (ρn‖τn)]2
− γe−nR (11.43)

= 1−
V
(
W̄‖σ|Pxn

)
n
[

log γ
n −D

(
W̄‖σ|Pxn

)]2 − γe−nR (11.44)

Finally, recall D
(
W̄‖σ|Pxn

)
≤ R−2κ and A := maxρ∈S◦ V (ρ‖σ) and choose log γ = nD

(
W̄‖σ|Pxn

)
+

nκ. Then, Eq. (11.44) yields, for any test Qn and β(Qn;σ⊗n) ≤ e−nR,

α
(
Qn; W̄⊗nxn

)
≥ 1−

V
(
W̄‖σ|Pxn

)
nκ2

− e−nκ (11.45)

≥ 1− A

nκ2
− e−nκ, (11.46)

which concludes the proof.

Lemma 11.1 (Quantum Chebyshev's Inequality [108, Lemma 6]). Let ρ, σ ∈ S(H) and assume log γ >

D(ρ‖σ). Then

Tr [ρ {ρ− γσ ≥ 0}] ≤ V (ρ‖σ)

[log γ −D(ρ‖σ)]2
. (11.47)

11.3 A Strong Sphere-Packing Bound

The goal the section is to prove Theorem 11.1, the strong sphere-packing bound for c-q channels with

a polynomial pre-factor. To establish this result, we combine Blahut's insight of relating a channel

coding problem to binary hypothesis testing [32, 23] with a sharp concentration inequality introduced

in Section 2.2. Our proof consists of three major steps: (i) reduce the channel coding problem to
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binary hypothesis testing (Proposition 11.2 in Section 11.3.1); (ii) bound its type-I error from below

(Propositions 11.3 and 11.5 in Sections 11.3.2 and 11.3.3); (iii) employ Theorem 9.1 in Section 9.1

to relate the derived bound to the strong sphere-packing exponent. The proof of Theorem 11.1 and

Corollary 11.1 will be give in Section 11.3.5.

11.3.1 One-Shot Converse Bound (Hypothesis Testing Reduction)

We �rst present a proof that relates the decoding error of a code to binary hypothesis testing. Propo-

sition 11.2 below is similar to the meta-converse in Ref. [12]. However, the idea dates back to Blahut

[32].

Proposition 11.2. For any classical-quantum channel W : X → S(H) and any code Cn with message

size M , it follows that

εmax (Cn) ≥ max
σ∈S(H)

min
xn∈Cn

α̂ 1
M

(
W⊗nxn ‖σ⊗n

)
. (11.48)

Proof of Proposition 11.2. Let xn(m) be the codeword encoding the message m ∈ {1, . . . ,M}. De�ne
a binary hypothesis testing problem:

H0 : W⊗nxn(m), (11.49)

H1 : σn :=

n⊗
i=1

σi, (11.50)

where σn ∈ S (H⊗n) can be viewed as a dummy channel output. Since
∑M

m=1 β (Πn,m;σn) = 1 for any

POVM Πn = {Πn,1, . . . ,Πn,M}, and β (Πn,m;σn) ≥ 0 for every m ∈ M, there must exist a message

m ∈M for any code Cn such that β (Πn,m;σn) ≤ 1
M . Fix xn := xn (m). Then

εmax (Cn) ≥ εm (Cn) = α
(
Πn,m;W⊗nxn

)
≥ α̂ 1

M

(
W⊗nxn ‖σn

)
. (11.51)

Since the above inequality (11.51) holds for every σn ∈ S (H⊗n), it follows that

εmax (Cn) ≥ max
σ∈S(H)

min
xn∈Cn

α̂ 1
M

(
W⊗nxn ‖σ⊗n

)
. (11.52)

11.3.2 Chebyshev's Type Converse Bound

In the following Proposition, we generalize Blahut's one-shot converse Hoe�ding bound [32, Theorem

10] to the quantum setting. This result is essentially a Chebyshev-type bound. We will employ it to

lower bound the error of �bad sequences" that yield smaller error exponent in Section 11.3.5.
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Proposition 11.3 (Chebyshev's Type Converse Hoe�ding Bound). Consider the following binary

hypothesis testing problem: H0 : ρ versus H1 : σ, where ρ, σ ∈ S(H). For every r ≥ 0 and ν > 0, we

have

α̂ 1
4

exp{−(r+ν)} (ρ‖σ) ≥ 1

2

(
1

2
− K(ρ, σ)

ν2

)
exp {−ν − φ (r|ρ‖σ)} (11.53)

where

φ (r|ρ‖σ) := sup
α∈(0,1]

{
1− α
α

(Dα (ρ‖σ)− r)
}
, (11.54)

and

K(ρ, σ) := V (q̂t‖q) + V (q̂t‖p) ∈ R≥0, (11.55)

where (p, q) are the Nussbaum-Szkoªa distributions of (ρ, σ), and

q̂t(ω) =
p1−t(ω)qt(ω)∑

ω∈supp(p)∩supp(q) p
1−t(ω)qt(ω)

, ω ∈ supp(p) ∩ supp(q) (11.56)

for some t ∈ [0, 1].

Proof of Prosition 11.3. If ρ and σ have disjoint supports, then Eq. (11.53) trivially holds sinceDα(ρ‖σ) =

+∞ for all α ∈ [0, 1]. Hence, we assume ρ and σ have non-disjoint support in the following. Let B :=

supp(p)∩ supp(q) be the intersection of the joint support of p and q. Fix φ(r) := φ(r|ρ‖σ) = φ(r|p‖q)
since Dα(ρ‖σ) = Dα(p‖q).

For any test 0 ≤ Q ≤ 1, Nagaoka showed that [111, Lemma 1] (see also [86, Proposition 2], [112]):

α (Q; ρ) + δβ (Q;σ) ≥ 1

2

 ∑
ω:p(ω)≤δq(ω)

p(ω) +
∑

ω:p(ω)>δq(ω)

δq(ω)

 , ∀δ ≥ 0. (11.57)

Let r > 0, δ = er−φ(r), and µ ≥ 0 that will be speci�ed later. Eq. (11.57) implies that

α̂µ (ρ‖σ) ≥ 1

2

 ∑
ω:p(ω)eφ(r)≤q(ω)er

p(ω) +
∑

ω:p(ω)eφ(r)>q(ω)er

er−φ(r)q(ω)

− er−φ(r)µ (11.58)

≥ 1

2

 ∑
ω∈U1(ν)

p(ω) +
∑

ω∈U2(ν)

er−φ(r)q(ω)

− er−φ(r)µ, (11.59)

where in the last line we introduce the decision regions for some ν > 0:

U1(ν) :=
{
ω : q̂t(ω)e−ν < p(ω)eφ(r) ≤ q(ω)er

}
, U2(ν) :=

{
ω : q̂t(ω)e−ν < q(ω)er < p(ω)eφ(r)

}
,

(11.60)
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and q̂t is the tilted distribution (see [32, Theorem 4]):

q̂t(ω) =
p1−t(ω)qt(ω)∑
ω∈B p

1−t(ω)qt(ω)
, ω ∈ B (11.61)

for some t ∈ [0, 1] such that q̂t satis�es

D (q̂t‖p) = φ (r) and D (q̂t‖q) = r. (11.62)

In the following, we are going to lower bound the right-hand side of Eq. (11.59) in terms of q̂t.

From Eq. (11.60), we �nd ∑
ω∈U1(ν)

p(ω) ≥ e−(φ(r)+ν)
∑

ω∈U1(ν)

q̂t(ω);

∑
ω∈U2(ν)

q(ω) ≥ e−(r+ν)
∑

ω∈U2(ν)

q̂t(ω).
(11.63)

Next, we estimate the error in the union:
∑

ω∈U1(ν)∪U2(ν) q̂t(ω). Let

UA :=
{
ω : q̂t(ω)e−ν < q(ω)er

}
, UB :=

{
ω : q̂t(ω)e−ν < p(ω)eφ(r)

}
. (11.64)

Observe that U1(ν) ∪ U2(ν) = UA ∩ UB and∑
ω∈UA∩UB

q̂t(ω) ≥ 1−
∑
ω∈Uc

A

q̂t(ω)−
∑
ω∈Uc

B

q̂t(ω). (11.65)

Denote by

UT :=

{
ω :

∣∣∣∣log
q̂t(ω)

q(ω)
e−r
∣∣∣∣ ≥ ν} (11.66)

=

{
ω :

∣∣∣∣∣log
q̂t(ω)

q(ω)
−
∑
ω∈B

q̂t(ω) log
q̂t(ω)

q(ω)

∣∣∣∣∣ ≥ ν
}
, (11.67)

where the last equality follows from Eq. (11.62). Since Uc
A ⊆ UT , we apply Chebyshev's inequality to

obtain ∑
ω∈Uc

A

q̂t(ω) ≤
∑
ω∈UT

q̂t(ω) ≤ V (q̂t‖q)
ν2

. (11.68)

Similarly,

∑
ω∈Uc

B

q̂t(ω) ≤ V (q̂t‖p)
ν2

. (11.69)

Let K = K(ρ, σ) := V (q̂t‖q) + V (q̂t‖p). Equation (11.65), along with (11.68) and (11.69) yields that

∑
ω∈U1(ν)∪U2(ν)

q̂t(ω) =
∑

ω∈UA∩UB

q̂t(ω) ≥ 1− K

ν2
. (11.70)
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Hence, from Eqs. (11.59), (11.63), and (11.70), we obtain the lower bound of the type-I error:

α̂µ (ρ‖σ) ≥ 1

2

 ∑
ω∈U1(ν)

p(ω) +
∑

ω∈U2(ν)

er−φ(r)q(ω)

− er−φ(r)µ, (11.71)

≥ 1

2
e−(φ(r)+ν)

 ∑
ω∈U1(ν)

q̂t(ω) +
∑

ω∈U2(ν)

q̂t(ω)

− er−φ(r)µ (11.72)

≥ 1

2
e−(φ(r)+ν)

 ∑
ω∈U1(ν)∪U2(ν)

q̂t(ω)

− er−φ(r)µ (11.73)

≥ 1

2
e−(φ(r)+ν)

(
1− K

ν2

)
− er−φ(r)µ. (11.74)

Choose µ = 1
4 exp{−(r + ν)}. Eq. (11.74) further gives

α̂ 1
4

exp{−(r+ν)} (ρ‖σ) ≥ 1

2
e−(φ(r)+ν)

(
1− K

ν2

)
− 1

4
e−(φ(r)+ν) (11.75)

=
1

2

(
1

2
− K

ν2

)
e−(φ(r)+ν), (11.76)

which completes the proof.

Applying Proposition 11.3 to product states yields the following result.

Proposition 11.4 (Chebyshev-Type Converse Bound for Classical-Quantum Channels). Let W : X →
S(H) be a classical-quantum channel, and let R ∈ (R∞, CW). Consider the binary hypothesis testing

with sequences

H0 : ρn = W⊗nxn ; (11.77)

H1 : σn =
(
σ?R,Pxn

)⊗n
, (11.78)

where xn ∈ X n and σ?R,P ∈ arg minσ∈S(H) sup0<α≤1
1−α
α (Dα (W‖σ|Pxn)−R). Then, for every c > 0,

there exist N0 ∈ N and κ1, κ2 ∈ R>0 such that for all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ κ1 exp
{
−κ2

√
n− nE(2)

sp (R,Pxn)
}
, (11.79)

Remark 11.2. Consider independent and identically distributed (i.i.d.) extensions H0 : ρ⊗n and H1 :

σ⊗n. Proposition 11.4 then recovers the converse proof of the quantum Hoe�ding bound (see [111] and

[85, Section 5.4]): for r ∈ (0, D(ρ‖σ)),

lim
n→+∞

− 1

n
log α̂exp{−nr}

(
ρ⊗n‖σ⊗n

)
≤ sup

0<α≤1

1− α
α

(Dα(ρ‖σ)− r) . (11.80)

3

Proof of Proposition 11.4. Denote by pn =
⊗n

i=1 pxi , q
n =

⊗
i=1 qxi Nussbaum-Szkoªa distributions of

ρn and σn [112] with joint supports Bxi := supp(pxi) ∩ supp(qxi), i ∈ [n]. Let Rn := R − γn, where
γn := ν+log 4c

n . Fix an arbitrary R0 ∈ (R∞, R). Choose an N0 ∈ N such that Rn ≥ R0 for all n ≥ N0.
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Consider n ≥ N0 onwards. Then, Proposition 11.3 implies that

α̂c exp{−nR} (ρn‖σn) ≥ 1

2

(
1

2
− K(ρn, σn)

ν2

)
exp {−ν − nφn (Rn|ρn‖σn)} (11.81)

=
1

2

(
1

2
− K(ρn, σn)

ν2

)
exp

{
−ν − nE(2)

sp (Rn, Pxn)
}
, (11.82)

where the second equality (11.82) follows from the saddle-point property, item (a) in Proposition 9.5.

Since the coe�cient K(ρn, σn) in Eq. (11.55) is additive for product states, one has

K (ρn, σn) = V (q̂nt ‖pn) + V (q̂nt ‖qn) (11.83)

= n
∑
x∈X

Pxn(x) [V (q̂x,t‖px) + V (q̂x,t‖qx)] , (11.84)

where Pxn is the empirical distribution for the sequence xn, and q̂nt :=
⊗n

i=1 q̂xi,t is the tilted distribu-

tion (see Eqs. (11.56) and (11.61)). Note that q̂nt � pn and q̂nt � qn for all t ∈ [0, 1]. This guarantees

that the quantity K(ρn, σn) is �nite.

Let

Vmax := max
t∈[0,1], Pxn∈P(X )

∑
x∈X

Pxn(x) [V (q̂x,t‖px) + V (q̂x,t‖qx)] ∈ R>0, (11.85)

we obtain

K (ρn, σn) ≤ nVmax. (11.86)

By choosing ν =
√

4nVmax, Eqs. (11.82) and (11.86) give

α̂c exp{−nR} (ρn‖σn) ≥ 1

8
exp

{
−
√

4nVmax − nE(2)
sp (R− γn, Pxn)

}
. (11.87)

Finally, we will remove the rate back-o� term γn in Eq. (11.87). Recall item (a) in Proposition 9.6

that the map r 7→ E
(2)
sp (r, Pxn) is convex and monotone decreasing. Further, we assume E

(2)
sp (R0, Pxn) >

0 and thus the E
(2)
sp (·, Pxn) is di�erentiable at R0 by item (c) in Proposition 9.6. Otherwise, the

monotone decreases imply that E
(2)
sp (R,Pxn) = E

(2)
sp (R0, Pxn) = 0, which already completes the proof.

Denoting by ∂− the left derivative, the convexity then implies that

E(2)
sp (R− γn, Pxn) ≤ E(2)

sp (R,Pxn)− γn∂−E(2)
sp (R− γn, Pxn), (11.88)

≤ E(2)
sp (R,Pxn)− γn

∂E
(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R0

, (11.89)

where the last inequality (11.89) follows from the monotone decreases. Let

Υ := max
Pxn∈P(X )

∣∣∣∣∣ ∂E(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R0

∣∣∣∣∣ . (11.90)

Note that Υ ∈ R≥0 due to R0 > R∞ and item (d) of Proposition 9.6. Then, Eqs. (11.87), (11.89), and
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(11.90) lead to

α̂c exp{−nR} (ρn‖σn) ≥ 1

8
exp

{
−
√

4nVmax − γnΥ− nE(2)
sp (R,Pxn)

}
. (11.91)

Setting κ1 = 1/8 and choosing a constant κ2 ∈ R>0 such that
√

4nVmax + γnΥ ≤ κ2
√
n for all n ≥ N0

conclude this corollary.

11.3.3 A Sharp Converse Bound

Proposition 11.5 (Sharp Converse Hoe�ding Bound). Let W : X → S(H) be a classical-quantum

channel, and let R ∈ (R∞, CW). Consider the following binary hypothesis testing problem with se-

quences

H0 : ρn = W⊗nxn ; (11.92)

H1 : σn =
(
σ?R,Pxn

)⊗n
, (11.93)

where xn ∈ X n, and σ?R,P := arg minσ∈S(H) sup0<α≤1
1−α
α (Dα (W‖σ|Pxn)−R) satisfying

E(2)
sp (R,Pxn) ∈ [ν,+∞) (11.94)

for some positive ν > 0. For every c > 0, there exists a constant N0 ∈ N, independent of the sequences
ρn and σn, such that for all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ A

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)
}
, (11.95)

where s?R,P := − ∂E
(2)
sp (r,P )
∂r

∣∣∣∣
r=R

, and A ∈ R>0 is a �nite constant depending on R, ν and W.

Proof. Let pn :=
⊗n

i=1 pxi and q
n :=

⊗n
i=1 qxi , where (pxi , qxi) are Nussbaum-Szkoªa distributions [112]

of (Wxi , σ
?) for every i ∈ [n]. Since Dα(ρxi‖σxi) = Dα(pxi‖qxi), for α ∈ (0, 1], again we shorthand

φn(r) := φn (r|ρn‖σn) = φn(r|pn‖qn) = E(2)
sp (r,W, Pxn) , (11.96)

where the last equality in Eq. (11.96) follows from the saddle-point property, item (i) in Proposition 9.5.

Moreover, item (iii) in Proposition 9.5 implies that the state σ? dominants all the states: σ? � Wx,

for all x ∈ supp(Pxn), Hence, we have pn � qn. In the following, we set zero all element of qxi that do

not lie in the support of pxi , i.e. qxi(ω) = 0, ω 6∈ supp(pxi), i ∈ [n].

Repeating Nagaoka's argument [111] in Eq. (11.57) for any 0 ≤ Qn ≤ 1 and choosing δ = exp{nr−
nφn(r)} yield:

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α (U; pn) + enr−nφn(r)β (U; qn)

)
, (11.97)
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where

α (U; pn) :=
∑
ω∈Uc

pn(ω) (11.98)

β (U; qn) :=
∑
ω∈U

qn(ω) (11.99)

and

U :=
{
ω : pn(ω)enφn(r) > qn(ω)enr

}
. (11.100)

In the following, we

In the following, we will relate the Fenchel-Legendre transform Λ∗j,Pxn
(z) to the desired error-

exponent function φn(r). Such a relationship was presented Lemma 2.14 in Section 2.2. Since the

Lemma 2.14 (a) in Section 2.2 shows that the optimizer t in Eq. (4.48) always lies in the compact set

H := [0, 1], by invoking Eq. (11.173) we de�ne the following quantities:

Vmax(r, ν) := max
t∈H,Pxn∈Pr,ν

Λ′′0,Pxn
(t); (11.101)

Vmin(r, ν) := min
t∈H,Pxn∈Pr,ν

Λ′′0,Pxn
(t); (11.102)

Kmax(r, ν) := 15
√

2πM0,max; (11.103)

Mmax := max
t∈H,Pxn∈Pr,ν

T0,Pxn
(t)

Λ′′0,Pxn
(t)

; (11.104)

T0,Pxn
(t) :=

∑
x∈X

Pxn(x)Eq̂x,t

[∣∣∣∣log
qx
px
− Λ′0,x(t)

∣∣∣∣3
]
, (11.105)

where we de�ne Pr,ν := {Pxn ∈ P(X ) : V (W‖σ|Pxn) ∈ [ν,+∞)} for condition in Eq. (11.94) or de�ne

Pr,ν := {Pxn ∈ P(X ) : φn(r) ∈ [ν,+∞)} for condition in Eq. (11.94). Either way, Pr,ν is a compact set.

The uniform continuity, Proposition 11.6, in Section 11.3.4 below shows that Λ′′0,(·)(·) and T0,(·)(·) are
continuous functions in (0, 1]×Pr,0. Hence, the maximization and minimization in the above de�nitions

are well-de�ned and �nite. Further, the quantity Vmin(r, ν) is bounded away from zero owing to Lemma

2.14 (a) in Section 2.2.

Now, we are ready to derive the lower bounds to α (U; pn) and β (U; qn). If n ∈ N is su�ciently

large such that

√
n ≥ N0(r, ν) :=

1 + (1 +Kmax(ν, r))2√
Vmin(r, ν)

(11.106)

applying Bahadur-Randga Rao's inequality (Theorem 2.1) to Zi = log qi − log pi with probability
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measure λi = pi, and z = r − φn(r) gives

α (U; pn) :=
∑
ω∈Uc

pn(ω) (11.107)

= Pr

{
1

n

n∑
i=1

Zi ≥ r − φn(r)

}
(11.108)

≥ A(r, ν)√
n

exp
{
−nΛ∗0,Pxn

(φn(r)− r)
}

(11.109)

where

A(r, ν) :=
e−Kmax(r,ν)

2
√

4πVmax(r, ν)
. (11.110)

Similarly, applying Theorem 2.1 to Zi = log pi − log qi with probability measure λi = qi, and z =

φn(r)− r yields

β (U; qn) :=
∑
ω∈U

qn(ω) (11.111)

= Pr

{
1

n

n∑
i=1

Zi ≥ φn(r)− r

}
(11.112)

≥ A(r, ν)√
n

exp
{
−nΛ∗1,Pxn

(r − φn(r))
}
. (11.113)

Continuing from Eq. (11.109) and item (ii) in Lemma 2.14 gives

α (U; pn) ≥ A(r, ν)√
n

e−nφn(r). (11.114)

Eq. (11.113) together with item (iii) in Lemma 2.14 yields

β (U; qn) ≥ A(r, ν)√
n

e−nr. (11.115)

Thus we can bound the left-hand side of Eq. (11.97) from below by A(r,ν)√
n

e−nφn(r). For any test 0 ≤
Qn ≤ 1 such that

β(Qn;σn) ≤ A(r, ν)

2
√
n

e−nr, (11.116)

we have that

α(Qn; ρn) ≥ A(r, ν)

2
√
n

e−nφn(r). (11.117)

By letting A′(r, ν) = A(r, ν)/2 and r′ = r + 1
n log(

√
n/A′(r, ν)), we conclude that

α̂exp{−nr′} (ρn‖σn) ≥ A′(r, ν)√
n

exp

{
−nφn

(
r′ − 1

n
log

√
n

A′(r, ν)

∣∣∣∣ ρn∥∥∥∥σn)} (11.118)

=
A′(r, ν)√

n
exp

{
−nE(2)

sp

(
r′ − 1

n
log

√
n

A′(r, ν)
,W, Pxn

)}
. (11.119)
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11.3.4 Uniform Continuity

In this section, we prove a uniform continuity property, which is crucial to establish the �nite block-

length bounds in error exponent analysis.

We �rst introduce necessary notation. Fix R ∈ (C0,W, C1,W), and denote by (α?R,P , σ
?
R,P ) the

saddle-point of F (R,P ) for any P ∈ PR(X ). De�ne

Bα(P,W) :=
∑
x∈X

P (x)Evα,x

[
log

px
qx

]
; (11.120)

Vα(P,W) :=
∑
x∈X

P (x)Evα,x

[∣∣∣∣log
px
qx
− Evα,x

[
log

px
qx

]∣∣∣∣2
]

; (11.121)

Tα(P,W) :=
∑
x∈X

P (x)Evα,x

[∣∣∣∣log
px
qx
− Evα,x

[
log

px
qx

]∣∣∣∣3
]
, (11.122)

where (px, qx) is the Nussbaum-Szkoªa distribution of (Wx, σ
?
R,P ), and the tilted distribution is

vα,x(i, j) :=
pαx(i, j)q1−α

x (i, j)∑
ı, p

α
x(ı, )q1−α

x (ı, )
, α ∈ [0, 1]. (11.123)

Inspired by Ref. [12, Lemma 62], we show the following continuity property, which are crucial for

establishing the large deviation bounds in �nite blocklength regime.

Proposition 11.6 (Uniform Continuity). The functions Bα(P,W), Vα(P,W), and Tα(P,W) are jointly

continuous on (α, P ) ∈ [0, 1]× P(X ).

Proof of Proposition 11.6. It is not hard to see that the quantities Bα(P,W), Vα(P,W), and Tα(P,W)

are sums of �nitely many terms. We thus show that each term is continuous. Fix an arbitrary

x ∈ X onwards. Let (αk, Pk)k∈K be an arbitrary sequence such that (αk, Pk) ∈ [0, 1] × P(X ), and

limk→+∞(αk, Pk) = (α0, P0) ∈ [0, 1]× P(X ). Given the eigenvalue decompositions Wx =
∑

i λi|ei〉〈ei|
and σ?R,Pk =

∑
j µj(σ

?
R,Pk

)|fkj 〉〈fkj |, we have the Nussbaum-Szkoªa distribution px(i, j) = λi|〈ei|fkj 〉|2

and qx(i, j) = µj(σ
?
R,Pk

)|〈ei|fkj 〉|2. Here, we write fkj and µj(σ
?
R,Pk

) to emphasize the dependence on

Pk.

To prove the continuity of Bα(P,W), it su�ces to show

Pk(x)
1

Tr
[
Wαk
x (σ?R,Pk)1−αk

]λαki µ1−αk
j (σ?R,Pk)|〈ei|fkj 〉|2 log

λi
µj(σ?R,Pk)

→P0(x)
1

Tr
[
Wα0
x (σ?R,P0

)1−α0

]λα0
i µ

1−α0
j (σ?R,P0

)|〈ei|f0
j 〉|2 log

λi
µj(σ?R,P0

)
.

(11.124)

If λi = 0, then it is obvious (recalling that the power function is only acting on the support). We

assume λi > 0. If P0(x) > 0, then Wx � σ?R,Pk for all su�ciently large k ∈ N and k = 0. Further, if

µj(σ
?
R,Pk

)|〈ei|fkj 〉| = 0, we have λi|〈ei|fkj 〉| = 0 by the absolute continuity, which in turn implies the

convergence of Eq. (11.124). Considering the other case, we can deduce that µj(σ
?
R,Pk

) is bounded away

from zero. Using the continuity of P 7→ σ?R,P and logarithm, log λi/µj(σ
?
R,Pk

) tends to log λi/µj(σ
?
R,P0

).

 doi:10.6342/NTU201800597



11. Optimality (Channel Coding) 123

It remains to show the case of P0(x) = 0. To that end, we want to show log[λi/µj(σ
?
R,Pk

)] =

O(log 1/Pk). We may assume Pk(x) > 0 and µj(σ
?
R,Pk

) > 0 for all k ∈ N. The saddle-point property
guarantees that σ?R,Pk must satisfy

σ?R,Pk =

∑
x̄∈X

Pk(x)
W

α?R,Pk
x̄

Tr

[
W

α?R,Pk
x̄ (σ?R,Pk)

1−α?R,Pk

]


1
α?
R,Pk

. (11.125)

Further, noting that α?R,P ∈ (0, 1] for all P ∈ P(X ), the continuity of P 7→ α?R,P and the compact-

ness of P(X ) imply that

ᾱR := min
P∈P(X )

α?R,P > 0 (11.126)

Therefore,

µj(σ
?
R,Pk

) ≥ λ̃min(σ?R,Pk) (11.127)

≥ λ̃
1

α?
R,Pk

min

∑
x̄

Pk(x̄)
W

α?R,Pk
x̄

Tr

[
W

α?R,Pk
x̄ (σ?R,Pk)

1−α?R,Pk

]
 (11.128)

≥ λ̃
1

α?
R,Pk

min

(∑
x̄

Pk(x̄)W
α?R,Pk
x̄

)
(11.129)

≥ λ̃
1

α?
R,Pk

min

(
Pk(x)W

α?R,Pk
x

)
(11.130)

= P

1
α?
R,Pk

k (x)λ̃min (Wx) (11.131)

≥ P
1

ᾱmin
k (x)λ̃min (Wx) . (11.132)

where we denote by λ̃min the smallest non-zero eigenvalue, and Eq. (11.129) holds because for any Pk,

Tr

[
W

α?R,Pk
x (σ?R,Pk)

1−α?R,Pk

]
∈ [0, 1]. (11.133)

Note that µj(σ
?
R,Pk

) ≤ 1. Eq. (11.132) then implies∣∣∣∣∣log
λi

µj(σ?R,Pk)

∣∣∣∣∣ ≤ log
1

λi
− logP

1
ᾱmin
k (x)λ̃min (Wx) (11.134)

≤ 2 log
1

λ̃min (Wx)
− logP

1
ᾱmin
k (x). (11.135)
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Using Eq. (11.135), we are able show that the left-hand side of Eq. (11.124) converges to 0:

Pk(x)
1

Tr
[
Wαk
x (σ?R,Pk)1−αk

]λαki µ1−αk
j (σ?R,Pk)|〈ei|fkj 〉|2

∣∣∣∣∣log
λi

µj(σ?R,Pk)

∣∣∣∣∣ (11.136)

≤ Pk(x)

∣∣∣∣∣log
λi

µj(σ?R,Pk)

∣∣∣∣∣ (11.137)

≤ 2Pk(x) log
1

λ̃min (Wx)
− Pk(x) logP

1
ᾱmin
k (x)λ̃min (Wx) (11.138)

→ 0, (11.139)

which proves the continuity of Bα(P,W).

Next, we show the continuity of Vα(P,W) and Tα(P,W). Denote byBα(Wx‖σ?R,P ) := Evα,x [log px/qx]

for convenience. For P0(x) > 0, µj(σ
?
R,Pk

) is bounded away from zero. Then, log λi/µj(σ
?
R,Pk

) tends

to log λi/µj(σ
?
R,P0

), and it is not hard to see that Bαk(Wx‖σσ?R,Pk)→ Bα0(Wx‖σσ?R,P0
). It su�ces to

prove the convergence when Pk(x)→ 0. Eq. (11.135) immediately implies that

Bαk(Wx‖σ?R,Pk) =
∑
i,j

1

Tr
[
Wαk
x (σ?R,Pk)1−αk

]λαki µ1−αk
j (σ?R,Pk)|〈ei|fkj 〉|2 log

λi
µj(σ?R,Pk)

(11.140)

≤ 2 log
1

λ̃min (Wx)
− logP

1
ᾱmin
k (x). (11.141)

Using the inequality |a+ b|2 ≤ 2(|a|2 + |b|2), we obtain

Pk(x)

∣∣∣∣∣log
λi

µj(σ?R,P )
−Bαk(Wx‖σ?R,Pk)

∣∣∣∣∣
2

≤ 2Pk(x)

∣∣∣∣∣log
λi

µj(σ?R,Pk)

∣∣∣∣∣
2

+ 2Pk(x)B2
αk

(Wx‖σ?R,Pk).

(11.142)

Combining Eqs. (11.135), (11.141), and (11.142), we prove the continuity of Vα(P,W).

Similarly, using the inequality |a+ b|3 ≤ 4(|a|3 + |b|3) gives

Pk(x)

∣∣∣∣∣log
λi

µj(σ?R,P )
−Bαk(Wx‖σ?R,P )

∣∣∣∣∣
3

≤ 4Pk(x)

∣∣∣∣∣log
λi

µj(σ?R,P )

∣∣∣∣∣
3

+ 4Pk(x)B3
αk

(Wx‖σ?R,P ). (11.143)

Further, Eq. (11.135) implies∣∣∣∣∣log
λi

µj(σ?R,P )

∣∣∣∣∣
3

≤ −4 log3 λ̃min(Wx)− 4 log3 P
1

ᾱmin
k (x). (11.144)

Combining Eqs. (11.141), (11.143), and (11.144), proves the continuity of Tα(P,W).

11.3.5 Proofs of Theorem 11.1 and Corollary 11.1

We are ready to prove our main result�the re�ned strong sphere-packing bound in Theorem 11.1 for

constant composition codes and Corollary 11.1 for general codes.
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Proof of Theorem 11.1. Fix any rate C0,W < R < CW. First note that by Ref. [36, Proposition 10], we

�nd

Esp(R) ∈ R>0. (11.145)

By Proposition 11.2 and the standard expurgation method (see e.g. [30, p. 96], [32, Theorem 20], [23,

p. 395]), it holds for every constant composition code Cn with a common composition Pxn that

ε (Cn) ≥ 1

2
εmax

(
C′n
)
≥ max

σ∈S(H)

1

2
α̂1/|C′n|

(
W⊗nxn ‖σ⊗n

)
(11.146)

≥ max
σ∈S(H)

1

2
α̂2 exp{−nR}

(
W⊗nxn ‖σ⊗n

)
(11.147)

≥ 1

2
α̂2 exp{−nR}

(
W⊗nxn ‖(σ?)⊗n

)
, (11.148)

where C′n is an expurgated code with message size |C′n| = d|Cn|/2e ≥ 1
2 exp{nR}. Inequality (11.147)

holds because the map µ 7→ α̂µ is monotone decreasing. In the last line (11.148) we denote by

σ? = σ?R,Pxn
:= arg min

σ∈S(H)
sup

0<α≤1

{
1− α
α

(Dα (W‖σ|Pxn)−R)

}
(11.149)

a channel output state that depends on the coding rate R and the composition Pxn .

In the following, we deal with sequences of inputs that will yield di�erent lower bounds. Fix an

arbitrary δ ∈ (0, Esp(R)). Let ν := Esp(R)− δ > 0, and de�ne:

PR,ν(X ) :=
{
Pxn ∈ P(X ) : ν ≤ E(2)

sp (R,Pxn) ≤ Esp(R) < +∞
}
. (11.150)

The set PR,ν(X ) ensures that the error exponents of the input sequences xn with composition Pxn ∈
PR,ν(X ) are close to the sphere-packing exponent Esp(R).

For sequences xn with Pxn /∈ PR,ν(X ), we infer that

Esp(R)− E(2)
sp (R,Pxn) = δ > 0. (11.151)

We then apply the Chebyshev-type bound, Proposition 11.4, with c = 2 to obtain, ∀Pxn /∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ κ1 exp

{
−κ2

√
n− nE(2)

sp (R,Pxn)
}
, (11.152)

≥ κ1 exp
{
−κ2

√
n− n [Esp (R)− δ]

}
, (11.153)

for all su�ciently large n, say n ≥ N1 ∈ N. The equality in Eq. (11.152) follows from the saddle-point

property, item (a) in Proposition 9.5, and the constants κ1, κ2 are positive and �nite constants.

Next, we consider sequences xn with Pxn ∈ PR,ν(X ). Since such sequences satisfy Eq. (11.94), we

apply the sharp lower bound, Proposition 11.5, with c = 2 to obtain, ∀Pxn ∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)
}
, (11.154)

for all su�ciently large n, say n ≥ N2 ∈ N, and some A ∈ R>0. In the following, we will relate the
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11. Optimality (Channel Coding) 126

term s?R,Pxn
in Eq. (11.154) to

∣∣E′sp(R)
∣∣. The idea follows similar from [91, Eqs. (111)�(114)]. Let

P?R(X ) :=
{
P ∈ P(X ) : E(2)

sp (R,P ) = Esp(R)
}
, (11.155)

Pθ(X ) :=

{
P ∈ PR,ν(X ) : min

Q∈P?R(X )
‖P −Q‖1 ≥ θ

}
. (11.156)

Since s?R,(·) is uniformly continuous on the compact set P ∈ PR,ν(X ) (see item (d) of Proposition 9.6),

one has

∀γ ∈ R>0, ∃f(γ) ∈ R>0, such that ∀P,Q ∈ PR,ν(X ), ‖P −Q‖1 < f(γ)⇒
∣∣s?R,P − s?R,Q∣∣ < γ.

(11.157)

By choosing γ ∈ R>0 that satis�es Eq. (11.157), it follows that

s?R,Pxn
≤
∣∣E′sp(R)

∣∣+ γ, ∀Pxn ∈ PR,ν(X )\Pf(γ)(X ). (11.158)

Hence, Eqs. (11.154) and (11.158) further lead to, ∀Pxn ∈ PR,ν(X )\Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} . (11.159)

For the case Pxn ∈ PR,ν(X ) ∩ Pf(γ)(X ), we have

Esp(R)− max
P∈Pf(γ)(X )

E(2)
sp (R,Pxn) =: δ′ > 0. (11.160)

Then, Eqs. (11.154) and (11.160) give, ∀Pxn ∈ PR,ν(X ) ∩ Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2

(
1+s?R,Pxn

) exp
{
−n
[
Esp (R)− δ′

]}
. (11.161)

Finally, by comparing the bounds in Eqs. (11.153), (11.159) and (11.161), the �rst-order leading

term in the right-hand side of Eq. (11.159) decays faster than that of Eqs. (11.153) and (11.161).

Thus, for su�ciently large n, say n ≥ N3 ∈ N, we combine the bounds to obtain, for all compositions

Pxn ∈ P(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} . (11.162)

By combining Eqs. (11.148), (11.162), we conclude our result: for any γ > 0 and every n-blocklength

constant composition code Cn,

ε̄ (Cn) ≥ A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} , (11.163)

for all su�ciently large n ≥ N0 := max {N1, N2, N3}.

Proof of Corollary 11.1. For an n-blocklength code, there are at most
(n+|X |−1
|X |−1

)
< n|X | di�erent com-

positions. Hence, for any code with M = exp{nR} codewords, there exists some codewords M ′ of
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the same composition such that M ′ ≥ M/n|X |. Denote by C′n such constant composition codes with

composition Pxn .

Fix an arbitrary R0 ∈ (R∞, R), and choose N1 be an integer such that R − |X |n log n ≥ R0 for all

n ≥ N1. Consider such n ≥ N1 onwards. By following the similar steps in Theorem 11.1, we obtain

ε∗ (n,R) ≥ ε̄
(
C′n
)
≥ A

n
1
2

(
1+s?

R,Pnx

) exp

{
−nE(2)

sp

(
R− |X |

n
log n, Pxn

)}
, (11.164)

for all su�ciently large n, say n ≥ N2 ∈ N, and some s?R,Pxn
∈ R>0. Let

Υ := max
P∈P(X ):E

(2)
sp (R̄,P )=Esp(R̄)

∣∣∣∣∣ ∂E(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R0

∣∣∣∣∣ . (11.165)

Then, item (a) in Proposition 9.6 implies that

E(2)
sp

(
R− |X |

n
log n, Pxn

)
≤ E(2)

sp (R,Pxn) + Υ · |X |
n

log n (11.166)

≤ Esp(R) + Υ · |X |
n

log n, ∀n ≥ N2 (11.167)

Combining Eqs. (11.164) and (11.167) gives

ε∗ (n,R) ≥ A

n
1
2

(
1+s?R,Pxn

)
+Υ|X |

exp {−nEsp(R)} , ∀n ≥ max{N1, N2}. (11.168)

By choosing t ∈ R>0 such that n−t ≤ An
− 1

2

(
1+s?R,Pxn

)
−Υ|X |

, and letting N0 := max{N1, N2}, we
conclude our claim.

11.4 Symmetric Classical-Quantum Channels

In this section, we consider a symmetric c-q channels. By using the symmetric property of the chan-

nels, we show that the uniform distribution, denoted by UX , achieves the maximum of E
(1)
sp (R, ·) and

E
(2)
sp (R, ·). Then, by choosing the optimal output state σ?R = σ?R,UX , every input sequence in the code-

book is a good codeword and attains the sphere-packing exponent Esp(R). Hence, we can remove the

assumption of constant composition codes and apply Theorem 11.1 to obtain the exact pre-factor for

the sphere-packing bound (Theorem 11.3).

A c-q channel W : X → S(H) is symmetric if it satis�es

Wx := V x−1W1(V †)x−1, ∀x ∈ X , (11.169)

where W1 ∈ S(H) is an arbitrary density operator, and V satis�es V †V = V V † = V |X | = 1H.
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Theorem 11.3 (Exact Sphere-packing Bound for Symmetric Classical-Quantum Channels). For any

rate R ∈ (R∞, CW), there exist A > 0 and N0 ∈ N such that for all codes Cn of length n ≥ N0 with

message size |Cn| ≥ exp{nR}, we have

εmax (Cn) ≥ A

n
1
2(1+|E′sp(R)|) exp {−nEsp(R)} . (11.170)

Proof of Theorem 11.3. The proof consists of the following steps. First, we show that the distribution

UX satis�es E
(1)
sp (R,UX ) = E

(2)
sp (R,UX ) = Esp(R). Second, we show that E

(2)
sp (R,P ) = Esp(R) for all

P ∈ P(X ), which means that any codeword attains the sphere-packing exponent. Finally, we follow

Theorem 11.1 to complete the proof.

Fix any R ∈ (C0,W, CW). From the de�nition of the symmetric channels in Eq. (11.169), it is not

hard to verify that UXW
α = V UXW

αV † for all α ∈ (0, 1], where we denote by PWα :=
∑

x∈X P (x)Wα
x

for all α ∈ (0, 1]. Hence, it follows that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[V x−1Wα

1 V
†x−1(UXW

α)
1−α
α ] (11.171)

= Tr[Wα
1 (UXW

α)
1−α
α ] (11.172)

for all x ∈ X and α ∈ (0, 1]. Summing Eq. (11.172) over all x ∈ X and dividing by M yields

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[(UXW

α)
1
α ], (11.173)

for all x ∈ X and α ∈ (0, 1]. Recalling Proposition 11.7 below, the above equation shows that the

distribution UX indeed maximizes E0(s, P ), ∀s ∈ R≥0. Then we have

E(1)
sp (R,UX ) = sup

s≥0

{
max
P∈P(X )

E0(s, P )− sR
}

= Esp(R).

Further, Jensen's inequality shows that E
(2)
sp (R,UX ) ≥ E(1)

sp (R,UX ) = Esp(R), and thus, E
(2)
sp (R,UX ) =

Esp(R).

Next, let (α?R, σ
?
R) be the saddle-point of FR,UX (·, ·) (see Eq. (9.142)). One can observe from the

de�nition of E
(2)
sp and Eq. (11.173) that all the quantities Dα?R

(Wx‖σ?R), x ∈ X , are equal. Hence,

quantum Sibson's identity given in Lemma 3.3 shows that

σ?R =

(
UXW

α?R
)1/α?R

Tr
[(
UXW

α?R
)1/α?R] , (11.174)

which, in turn, implies that

E(2)
sp (R,P ) = sup

α∈(0,1]
FR,P (α, σ?R) = sup

s≥0
{E0(s, UX )− sR} = Esp(R), ∀P ∈ P(X ). (11.175)

Further, we have

∣∣E′sp(R)
∣∣ =

1− α?R
α?R

=

∣∣∣∣∣∂E(2)
sp (R,P )

∂R

∣∣∣∣∣ , ∀P ∈ P(X ). (11.176)

 doi:10.6342/NTU201800597



11. Optimality (Channel Coding) 129

Since Eqs. (11.175) and (11.176) indicates that every input sequence attains the sphere-packing expo-

nent, we apply the same arguments in the proof of Theorem 11.1 to conclude this theorem.

Proposition 11.7 ([35, Eq. (38)]). Let s ∈ R≥0 be arbitrary. The Necessary and su�cient condition

for the distribution P ? to maximize E0(s, P ) is

Tr

[
W 1/(1+s)
x ·

(∑
x∈X

P ?(x)W 1/(1+s)
x

)s]
≥ Tr

(∑
x∈X

P ?(x)W 1/(1+s)
x

)1+s
 , ∀x ∈ X (11.177)

with equality if P ?(x) 6= 0.
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Chapter 12

Moderate Deviation Analysis (Channel

Coding)

This section presents our main results�the error performance of classical-quantum channels satis�es

the moderate deviation property, Eq. (1.6). The achievability part is stated in Theorem 12.1, and its

proof is given in Section 12.1. Our proof strategy employs Hayashi's bound [88] and the properties

of the modi�ed auxiliary function (Proposition 9.2). Theorem 12.2 contains the converse part, and

is proved in Section 12.2. The proof involves a weak sphere-packing bound (Theorem 11.2), a sharp

converse lower bound (Theorem 11.1), and an approximation of the error-exponent function around

capacity (Proposition 12.2).

Let (an)n∈N be a sequence of real numbers satisfying

(i) an → 0, as n→ +∞,

(ii) an
√
n→ +∞, as n→ +∞.

(12.1)

Unlike our proof techniques relying on error exponent analysis (the LDP regime), a recent and

independent paper [146] obtained the same result, but proceeds from the second-order analysis (the

CLT regime). Their achievability proof follows from the one-shot capacity by Hayashi and Nagaoka

[87] (see also Hayashi [88], and Wang and Renner [147]); while the converse part reduces channel coding

to hypothesis testing [148, 87, 44], followed by Strassen's Gaussian approximation [11] and a powerful

inequality in probability [149] to the quantum scenario.

Theorem 12.1 (Achievability). For any W : X → S(H) with VW > 0 and any sequence (an)n≥1

satisfying Eq. (12.1), there exists a sequence of codes {Cn}n≥1 with rates Rn = CW − an so that

lim sup
n→+∞

1

na2
n

log ε̄ (W, Cn) ≤ − 1

2VW
. (12.2)

The proof is given in Section 12.1.

Theorem 12.2 (Converse). For any W ∈ W(X ) with V (W ) > 0, any sequence {an}n≥1 satisfying

Eq. (12.1), and any sequence of codes {Cn}n≥1 with rates Rn = C(W )− an, it holds that

lim inf
n→+∞

1

na2
n

log ε̄ (W, Cn) ≥ − 1

2V (W )
. (12.3)

130  doi:10.6342/NTU201800597



12. Moderate Deviation Analysis (Channel Coding) 131

The proof is given in Section 12.2.

Remark 12.1. Altu§ and Wagner [43] proved Theorem 12.2 for discrete classical channels by a weak

sphere-packing bound with the expression of Ẽsp. Although such a weak sphere-packing bound in-

deed holds for c-q channels (as we have shown in Theorem 11.2 and Remark 11.1 in Section 11.2),

Proposition 12.2 in Section 12.2 shows that it will lead to

lim sup
n→+∞

1

na2
n

log ε̄ (W, Cn) ≥ − 1

2ṼW
, (12.4)

where ṼW is de�ned in Eq. (3.58). Since Ṽ (ρ‖σ) ≤ V (ρ‖σ) [150, Theorem 1.2], it holds that ṼW ≤ VW
and the equality happens if and only if the channel reduces to classical. Hence, Altu§ and Wagner's

method yields a weaker result in quantum regime; namely, a gap between the achievability and the

converse. In Section 12.2, we will employ a sharp converse bound from strong large deviation theory

to achieve our result, Theorem 12.2.

12.1 Proof of Achievability, Theorem 12.1

Let W : X → S(H) satisfy VW > 0. Let {an}n≥1 be any sequence of real numbers satisfying Eq. (12.1).

Since VW > 0, Eq. (3.59) in Section 3.3 shows that CW > 0. Hence, we have CW − an > 0, for

all su�ciently large n. Fix such an integer n onwards. The achievability bound, Theorem 10.1, in

Chapter 10 implies that there exists a code Cn with Rn = CW − an so that

ε̄(W, Cn) ≤ 6 exp

{
−n
[

max
0≤s≤1

{
E↓0(s, P, PW)− sRn

}]}
, (12.5)

for all P ∈ P(X ). In the following, we denote by E↓0(s, P ) := E↓0(s, P, PW) for notational convenience.

Simple algebra yields

1

na2
n

log ε̄(W, Cn) ≤ log 6

na2
n

− 1

a2
n

max
0≤s≤1

{
E↓0(s, P )− sRn

}
, (12.6)

for all su�ciently large n and any P ∈ P(X ).

Let P̃(X ) be the set of distributions that achieve the minimum in Eq. (3.57), and let P̃ ∈ P̃(X ).

Note that Ref. [16, Lemma 3] implies that P̃(X ) is compact. Applying Taylor's theorem to E↓0(s, P̃ )

at s = 0 together with Proposition 9.2 gives

E↓0

(
s, P̃

)
= sCW −

s2

2
VW +

s3

6

∂3E↓0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄

, (12.7)

for some s̄ ∈ [0, s]. Let sn = an/VW. Then sn ≤ 1 for all su�ciently large n by the assumption in
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Eq. (12.1) and VW > 0. For all sn ≤ 1, Eq. (12.7) yields

max
0≤s≤1

{
E↓0

(
s, P̃

)
− sRn

}
≥ E↓0

(
sn, P̃

)
− snRn (12.8)

=
an
VW

(CW −Rn)− a2
n

2VW
+

a3
n

6V 3
W

∂3E↓0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

(12.9)

=
a2
n

2VW
+

a3
n

6V 3
W

∂3E↓0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

, (12.10)

where s̄n ∈ [0, sn] and Eq. (12.10) holds since Rn = CW − an.
De�ne

Υ = max
(s,P )∈[0,1]×P̃(X )

∣∣∣∣∣∂3E↓0 (s, P )

∂s3

∣∣∣∣∣ , (12.11)

which is �nite due to the compact set [0, 1] × P̃(X ) and item (a) in Proposition 9.2. Therefore,

Eq. (12.10) implies that

max
0≤s≤1

{
E↓0

(
s, P̃

)
− sRn

}
≥ a2

n

2VW
+

a3
n

6V 3
W

∂3E↓0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

(12.12)

≥ a2
n

2VW
−
a3
n

∣∣∣∣∣ ∂3E↓0(s,P̃)
∂s3

∣∣∣∣
s=s̄n

∣∣∣∣∣
6V 3

W

(12.13)

≥ a2
n

2VW
− a3

nΥ

6V 3
W

, (12.14)

for all su�ciently large n.

Substituting Eq. (12.14) into Eq. (12.6) gives

1

na2
n

log ε̄(W, Cn) ≤ log 4

na2
n

− 1

2VW

(
1− anΥ

3V 2
W

)
. (12.15)

Recall Eq. (12.1) and let n→ +∞, which completes the proof:

lim sup
n→+∞

1

na2
n

log ε̄(W, Cn) ≤ − 1

2VW
. (12.16)

12.2 Proof of Converse, Theorem 12.2

Our strategy consists of the following steps. First, we claim that it su�ces to prove Eq. (12.3) for the

maximal error probability of any code Cn, i.e. εmax(W, Cn). Recall the standard expurgation method

(see e.g. [30, p. 96], [32, Theorem 20], [23, p. 395]): by removing half codewords with highest error

probability to arrive at ε̄ (W, Cn) ≥ 1
2εmax (W, C′n) with |C′n| = d|Cn|/2e ≥ 1

2 exp{nRn} = exp{n(Rn −
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1
n log 2)}. Since the induced rate back-o� is only 1

n log 2 = o(an), one might de�ne another sequence

a′n := an − 1
n log 2 satisfying Eq. (12.1). Hence, without of loss generality, we only need to prove the

converse part for εmax.

Second, we employ the method of Ref. [26, Lemma 16] to relate the error probability εmax to the

minimum type-I error:

log εmax(W, Cn)

na2
n

≥ max
σn∈S(H⊗n)

min
xn∈Xn

log α̂exp{−nRn}(W
⊗n
xn ‖σn)

na2
n

(12.17)

≥ min
xn∈Xn

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

, (12.18)

where P ? ∈ P(X ) is an arbitrary capacity-achieving distribution, i.e. I(P ?,W) = CW.

Third, we divide the set of codewords into two groups. Fix an arbitrary η ∈ (0, 1
2). Let A :=

maxρ∈S◦ V (ρ‖P ?W) and let ξ =
√

2A/η. De�ne:

Ωgood := {xn ∈ X n : D(W‖P ?W|Pxn) > Rn} ; (12.19)

Ωbad := X n\Ωgood. (12.20)

For the codes in Ωbad, we employ a weak converse bound in Theorem 11.2, and apply a sharp converse

bound, Proposition 12.1 below, for Ωgood. Furthermore, we can assume an > 0 for all su�ciently large

n ∈ N owing to the assumption limn→+∞ an
√
n = +∞. Subsequently, we will consider such n onwards.

We remark that Proposition 12.1 follows the same argument as Proposition 11.5 in Section 11.3.3, and

Chaganty-Sethuraman's concentration inequality, Theorem 2.2 in Section 2.2. Thus, we skip the proof.

Proof of Theorem 12.2. We start the proof with the case Ωbad, and further consider two di�erent cases:

Ω
(1)
bad

:=

{
xn ∈ X n : D(W‖P ?W|Pxn) ≤ Rn −

2ξ√
n

}
; (12.21)

Ω
(2)
bad

:=

{
xn ∈ X n : Rn −

2ξ√
n
< D(W‖P ?W|Pxn) ≤ Rn

}
. (12.22)

We apply the weak converse bound, Theorem 11.2, in Section 11.2 with σ = P ?W to further lower

bound the right-hand side of Eq. (12.18).

Let η and ξ be de�ned as above, and let N1 be an integer satisfying Eq. (11.13). Then Eq. (11.14)

gives, for all n ≥ N1,

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

≥ −
Ẽsp

(
Rn − 2ξ√

n
, Pxn , P

?W
)

a2
n(1− η)

+
log f(η)

na2
n

. (12.23)

Further, Eq. (9.18) implies that for all xn ∈ Ω
(1)
bad,

Ẽsp

(
Rn −

2ξ√
n
, Pxn , P

?W

)
= 0. (12.24)
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Hence, we have for all xn ∈ Ω
(1)
bad,

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

≥ log f(η)

na2
n

(12.25)

≥ − 1

2VW
+

log f(η)

na2
n

, (12.26)

where the last inequality follows from VW > 0. Since f(η) < +∞, taking the in�mum limit of n→ +∞
and using Eq. (12.1) give, for all xn ∈ Ω

(1)
bad,

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n)

)
na2

n

≥ − 1

2VW
. (12.27)

Next, we move on to xn ∈ Ω
(2)
bad. In this case, Ẽsp in Eq. (12.23) is not equal to zero for any �nite

n, we employ Eq. (12.45) in Proposition 12.2 below with δn = an + 2ξ/
√
n and bn = an to arrive at

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n)

)
na2

n

≥ − lim
n→+∞

4ξ2

n
(
an + 2ξ√

n

)2 ·
1

2ṼW(1− η)
(12.28)

= 0 (12.29)

≥ − 1

2VW
, (12.30)

where the equality follows since limn→+∞ na
2
n = +∞.

In the last case of xn ∈ Ωgood, we employ a tighter bound, Proposition 12.1, to lower bound the

right-hand side of Eq. (12.18).

Proposition 12.1 (A Sharp Converse Bound). Consider a classical-quantum channel W : X → S(H)

and a state σ ∈ S(H). Suppose the sequence xn ∈ X n satis�es

ν ≤ V (W‖σ|Pxn) < +∞ (12.31)

for some ν > 0, and suppose the sequence of rates (Rn)n∈N satis�esa D0(W‖σ|Pxn) < Rn <

D(W‖σ|Pxn). Then, there exists an N0 ∈ N such that, for all n ≥ N0,

α̂exp{−nRn}(W
⊗n
xn ‖σ⊗n) ≥ A

s?n
√
n

exp
{
−nE(2)

sp (Rn − cn, Pxn , σ)
}
, (12.32)

where cn = K logn
n and A,K > 0 are �nite constants independent of the sequence xn, and

s?n := arg max
s≥0

{Eh(s, Pxn , σ)− sRn} . (12.33)

aNote that D0(W‖σ|P ) = D(W‖σ|P ) implies Wx = σ for all x ∈ supp(P ) [8, Collorary 4.1]. This further gives
V (W‖σ|P ) = 0. However, the assumption in Eq. (12.31) ensures that lim infn∈ND(W‖σ|Pxn) − D0(W‖σ|Pxn) > 0.
Hence, the intervals [D0(W‖σ|Pxn), D(W‖σ|Pxn)] for all xn satisfying Eq. (12.31) are not measure zero.

Before applying Proposition 12.1, we verify that the condition, Eq. (12.31), is satis�ed. De�ne

v(δ) := min
P∈P(X )

{V (W‖P ?W|P ) : D(W‖P ?W|P ) ≥ CW − δ} . (12.34)
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Note that the map δ 7→ v(δ) is monotone decreasing and continuous at 0 from above, i.e. limδ↓0 v(δ) =

v(0) = VW [16, Lemma 22]. For any κ ∈ (0, 1), we can choose a su�ciently small γ > 0 independent of

the sequence xn such that v(γ) ≥ (1 − κ)VW =: ν > 0. Further, let N2 ∈ N such that an ≤ γ for all

n ≥ N2. Then, one �nds, for all x
n ∈ Ωgood and n ≥ N2,

V (W‖P ?W|Pxn) ≥ v(γ) ≥ ν > 0. (12.35)

Moreover, since VW > 0 implies that CW = maxP∈P(X )D(W‖P ?W|P ) > maxP∈PD0(W‖P ?W|P ), one

can choose a su�ciently large n, say N3 ∈ N, such that Rn > D0(W‖P ?W|Pxn) for all n ≥ N3. Now,

we have for all xn ∈ Ωgood and n ≥ max{N2, N3} that

max
P∈P(X )

D0(W‖P ?W|P ) < Rn < D(W‖P ?W|Pxn); (12.36)

0 < ν ≤ V (W‖P ?W|Pxn). (12.37)

Together with Eqs. (12.18) and (12.35) and letting σ = P ?W, Proposition 12.1 yields, for all xn ∈ Ωgood

and all su�ciently large n, say n ≥ N4 ∈ N,

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ −E
(2)
sp (Rn − cn, Pxn , P

?W)

a2
n

− log s?n
√
n

na2
n

+
logA

na2
n

. (12.38)

Recall Eq. (12.46) in Proposition 12.2 below with bn = 0 and δn = an + cn that lim supn→+∞
s?n

an+cn
≤

1
VW

. Hence, one can �x an arbitrary ζ > 0 and there exists an N5 ∈ N such that s?n
√
n

(an+cn)
√
n
≤ 1

VW
+ζ for

all n ≥ N5. This then leads to for all su�ciently large n ≥ max{N2, N3, N4, N5} and all xn ∈ Ωgood,

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ −E
(2)
sp (Rn − cn, Pxn , P

?W)

a2
n

− log(an + cn)
√
n

na2
n

+

log A
1
VW

+ζ

na2
n

.

(12.39)

Taking n → +∞, the second and the third terms on the right-hand side of Eq. (12.39) vanish since

cn = K logn
n = o(an) and the assumption limn→+∞ an

√
n = +∞.

Next, we apply Eq. (12.44) in Proposition 12.2 again to bound the error-exponent function E
(2)
sp in

Eq. (12.38): for all xn ∈ Ω(3)

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ − lim sup
n→+∞

E
(2)
sp (CW − δn, Pxn , P

?W)

a2
n

(12.40)

= − lim sup
n→+∞

E
(2)
sp (CW − δn, Pxn , P

?W)

δ2
n

(12.41)

≥ − 1

2VW
. (12.42)

Finally, combining Eqs. (12.18), (12.27), (12.30) and (12.42) concludes the desired Eq. (12.3).
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Proposition 12.2 (Error Exponent around Capacity). Let (bn)n∈N be a sequence of real numbers with

limn→+∞ bn = 0 and let (δn)n∈N be a sequence of positive numbers with limn→+∞ δn = 0. Suppose the

sequence of distributions (Pn)n∈N satis�es

CW − δn < D(W‖P ?W|Pn) ≤ CW − bn. (12.43)

The following hold:

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2
n

; (12.44)

lim sup
n→+∞

Ẽsp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2ṼWδ2
n

; (12.45)

lim sup
n→+∞

s?n
δn
≤ 1

VW
, (12.46)

where

s?n := arg max
s≥0

{Eh(s, Pn, P
?W)− s (CW − δn)} . (12.47)

The proof of Proposition 12.2 is provided in Section 12.3 below.

12.3 Asymptotic Expansions of Error-Exponent around Capacity

Proof of Proposition 12.2. We only prove Eqs. (12.44) and (12.46), since Eq. (12.45) follows from the

same argument and Proposition 9.4.

Recall the error-exponent function E
(2)
sp :

E(2)
sp (CW − δn, P, P ?W) = sup

s≥0
{−s (CW − δn) + Eh(s, P, P ?W)} . (12.48)

In the following, we �x σ = P ?W in the de�nition of Eh (Eq. (9.7)) and denote by

Eh(s, P ) := Eh(s, P, P ?W) = sD 1
1+s

(W‖P ?W|P ) . (12.49)

for notational convenience. We de�ne a critical rate for a c-q channel W to be

rcr := max
P∈P(X )

∂Eh(s, P )

∂s

∣∣∣∣
s=1

. (12.50)

Let N0 be the smallest integer such that CW − δn > rcr, ∀n ≥ N0. Since the map r 7→ E
(2)
sp (r, ·, ·) is

non-increasing [86, Section 5], the maximization over s in Eq. (12.48) can be restricted to the set [0, 1]

for any rate above rcr, i.e.,

E(2)
sp (CW − δn, Pn, P ?W) = max

0≤s≤1
{−s (CW − δn) + Eh(s, Pn)} . (12.51)

For every n ∈ N, let s?n attain the maxima in Eq. (12.51) at a rate of CW − δn ≥ 0. In the following

lemma, we discuss the asymptotic behavior of {s?n}n∈N.
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Lemma 12.1. Let s?n attain the maxima in Eq. (12.51) and Pn satisfy Eq. (12.43). We have

(a) The limit point of {Pn}n∈N is capacity achieving.

(b) s?n > 0 for all n ∈ N and limn→+∞ s
?
n = 0.

Proof of Lemma 12.1. Let (Pnk)k∈N and (s?nk)k∈N be arbitrary subsequences. Since P(X ) and [0, 1]

are compact, we may assume that

lim
k→+∞

Pnk = Po, lim
k→∞

s?nk = so, (12.52)

for some Po ∈ P(X ) and so ∈ [0, 1].

(12.1-(a)) Let k → +∞. Eq. (12.43) implies that

D(W‖P ?W|Po) = CW, (12.53)

which guarantees that Po is capacity-achieving by the dual representation of the information

radius, see e.g. [151], [17, Theorem 2].

(12.1-(b)) One can observe from Eq. (12.51) that s?n = 0 if and only if CW−δn ≥ D(W‖P ?W|Pn). However,

this violates the assumption in Eq. (12.43). Hence, we have s?n > 0 for all n ∈ N.

Since Po is capacity achieving, the uniqueness of the divergence center implies that PoW = P ?W.

Item (c) in Proposition 9.3 shows that

∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (W‖P ?W|Po) = −V (Po,W) ≤ −VW < 0, (12.54)

where the last inequality follows since VW > 0. Then, Eq. (12.54) implies that the �rst-order

derivative ∂Eh (s, Po) /∂s is strictly decreasing around s = 0. Moreover, item (d) in Proposi-

tion 9.3 gives

∂Eh (s, Po)

∂s

∣∣∣∣
s=so

≤ D (W‖P ?W|Po) = CW, (12.55)

This, together with items (b) and (c) in Proposition 9.3, shows that the �rst inequality in

Eq. (12.55) becomes an equality if and only if so = 0. Since the subsequence was arbitrary, item

(b) is shown.

Now we are ready to prove this proposition. We start with proving Eq. (12.46). Since s 7→ Eh(s, ·)
is concave from item (b) in Proposition 9.3, the maximizer s?n must satisfy

∂Eh(s, Pnk)

∂s

∣∣∣∣
s=s?nk

= CW − δnk . (12.56)
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Further, item (c) in Proposition 9.3 gives

∂Eh

(
s, P ?nk

)
∂s

∣∣∣∣∣
s=0

= D
(
W‖P ?W|P ?nk

)
. (12.57)

The mean value theorem states that there exists a number ŝnk ∈
(
0, s?nk

)
, for each k ∈ N, such that

− ∂2Eh (s, Pnk)

∂s2

∣∣∣∣
s=ŝnk

=
D (W‖P ?W|Pnk)− CW + δnk

s?nk
(12.58)

≤ δnk
s?nk

, (12.59)

where the last inequality is again due to D
(
W‖P ?W|P ?nk

)
≤ CW. When k approaches in�nity, items

(a) and (e) in Proposition 9.3 give

lim
k→+∞

∂2Eh (s, Pnk)

∂s2

∣∣∣∣
s=ŝnk

=
∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (Po,W) ≤ −VW. (12.60)

Combining Eqs. (12.59) and (12.60) leads to

lim sup
k→+∞

s?nk
δnk
≤ 1

VW
. (12.61)

Since the subsequence was arbitrary, the above result establishes Eq. (12.46).

Next, for any su�ciently large n ≥ N0, we apply Taylor's theorem to the map s?n 7→ Eh (s?n, Pn) at

the original point to obtain

E(2)
sp (CW − δn, Pn, P ?W)

= −s?n (CW − δn) + Eh (s?n, Pn) (12.62)

= s?n (δn +D(W‖P ?W |Pn)− CW)− (s?n)2

2
V (Pn,W) +

(s?n)3

6

∂3Eh(s, Pn)

∂s3

∣∣∣∣
s=s̄n

(12.63)

for some s̄n ∈ [0, s?n]. Let

Υ = max
(s,P )∈[0,1]×P(X )

∣∣∣∣∂3Eh (s, P )

∂s3

∣∣∣∣ . (12.64)

Continuing from Eq. (12.63) gives

E(2)
sp (CW − δn, Pn, P ?W) ≤ s?n(δn − bn)− (s?n)2

2
V (Pn,W) +

(s?n)3Υ

6
(12.65)

≤ sup
s≥0

{
s(δn − bn)− s2

2
V (Pn,W)

}
+

(s?n)3Υ

6
(12.66)

=
(δn − bn)2

2V (Pn,W)
+

(s?n)3Υ

6
, (12.67)

where the �rst line follows from the assumption D (W‖P ?W|Pn) ≤ CW − bn in Eq. (12.43) and
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Eq. (12.64). Finally, Eq. (12.67), along with item (b) in Lemma 12.1 and Eq. (12.61), implies that

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2V (Pn,W)δ2
n

(12.68)

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2
n

, (12.69)

where the last inequality follows from the continuity of V ( · ,W) on P(X ) (Eq. (3.55)); the fact that

{Pn}n∈N is capacity achieving (item (a) in Lemma 12.1); and the de�nition of VW in Eq. (3.57).
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Chapter 13

Conclusions and Open problems

This thesis targets at characterizing the decoding error probability as a function of the coding block-

englth. We study two fundamental quantum information processing protocols�the classical data com-

pression (i.e. Slepian-Wolf coding) with quantum side information, and the classical-quantum channel

coding. We have proven varieties of properties for the error exponent functions, which enables us

to better understand the error behaviors of these information tasks. Then, we established numerous

�nite blocklength bounds for the optimal probability of error. Our results are not only of theoretical

interests but also of practical values�they serve as the performance benchmark for designing the next

generation quantum information technology. Lastly, we extend the derived �nite blocklength results

in the large deviation regime to the moderate deviation regime. We show that the optimal probability

error vanishes asymptotically as the rate approaches the Slepian-Wolf limit/channel capacity slowly.

It is interesting to observe that there is an elegant duality between the two tasks when expressing

the error exponent functions as conditional Rényi entropy and Rényi capacity. By exploiting this

duality, we are able to unify the technical proofs these two tasks under the same framework of quantum

hypothesis testing. Finally, we illustrate such relationship in Table 13.1 below, and depict the error

exponent functions in Figure 13.1.

Bounds\Settings Slepian-Wolf Coding with Quantum Side Information Classical-Quantum Channel Coding

Achievability Er(R) := max
0≤s≤1

{E0(s)− sR} Er(R) := max
0≤s≤1

{
max
P∈P(X )

E0(s, P )− sR
}

(R < CW or R > H(X|B)ρ ) = max
1/2≤α≤1

{
1− α
α

(
R−H↑α(X|Y )ρ

)}
= max

1/2≤α≤1

{
1− α
α

(
Cα,W −R

)}
Optimality Esp(R) := sup

s≤0
{E0(s)− sR} Esp(R) := sup

s≤0

{
max
P∈P(X )

E0(s, P )− sR
}

(R < CW or R > H(X|B)ρ ) = sup
0≤α≤1

{
1− α
α

(
R−H↑α(X|Y )ρ

)}
= sup

0≤α≤1

{
1− α
α

(
Cα,W −R

)}
Strong Converse E∗sc(R) := sup

−1<s<0

{
E*0 (s)− sR

}
E∗sc(R) := sup

−1<s<0

{
max
P∈P(X )

E∗0(s, P )− sR
}

(R > CW or R < H(X|B)ρ ) = sup
α>1

{
1− α
α

(
R−H∗,↑α (X|Y )ρ

)}
= sup

α>1

{
1− α
α

(
C∗α,W −R

)}

Auxiliary Function E0(s) := − log TrB

[(
TrX(ρXB)1/(1+s)

)1+s
]

E0(s, P ) := − log Tr

(∑
x∈X

P (x) ·W 1/(1+s)
x

)1+s


Table 13.1: The comparison of the error exponent analysis for Slepian-Wolf coding with quantum
side information and classical-quantum channel coding. We note that we only obtained suboptimal
achievability results (i.e. with the exponent E↓r (R) instead of Er(R)).
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(a) Slepian-Wolf coding with quantum side information (b) Classical-quantum channel coding

Figure 13.1: Sphere-packing exponents in two quantum information processing protocols.

13.1 Open Problems

There are still many open problems in the error exponent analysis. We divide them into the following

categories: (a) Properties of the error exponent functions and auxiliary functions; (b) Random coding

bound; (c) Sphere-packing bound; and (d) Moderate Deviation Analysis.

13.1.1 Properties of Error Exponent Functions and Auxiliary Functions

Problem 1 (Concavity). For any classical-quantum channel W : X → S(H), de�ne the sandwiched

auxiliary function:

E∗0(s, P ) := min
σ∈S(H)

sD∗ 1
1+s

(P ◦W‖P ⊗ σ) , (s, P ) ∈ (−1,+∞)× P(X ), (13.1)

where we denote by

Dα(ρ‖σ) :=
1

α− 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
, ∀α ≥ 0 (13.2)

the sandwiched α-Rényi divergence [152, 64, 8].

Then, the that map s 7→ E∗0(s, P ) is concave for all s ∈ (−1, 0).

Remark 13.1. We are able to show that the map s 7→ E0(s, P ) is concave for all s ∈ (−1, 0), where

E0(s, P ) is de�ned via Petz's Rényi divergence. However, the sandwiched α-Rényi divergence has been

shown the tightest entropic quantity in the strong converse domain [64, 58]. Hence, the concavity of

the sandwiched auxiliary function is the most relevant. 3

Problem 2 (Continuity of the Sphere-Packing Exponent). Let W : X → S(H) be a classical-quantum

channel, and �x R ∈ (C0,W, C1,W). For every ν > 0, there exists a constant c > 0 such that for all

P ∈ P(X ) with Esp(R,P ) ≥ ν and,

E(2)
sp (R,P ) ≤ Esp(R)− c‖σαR,P ,P − σαR,W‖

2
1, (13.3)
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where

E(2)
sp (R,P ) := sup

0≤α≤1

1− α
α

(
I(2)
α (P,W)−R

)
; (13.4)

I(2)
α (P,W) := inf

σ∈S(H)
Dα (W‖σ|P ) ; (13.5)

and σα,P , σα,W, αR,P , αR are the optimizers such that

I(2)
α (P,W) = Dα (W‖σα,P |P ) ; (13.6)

Cα,W = sup
P∈P(X )

Dα

(
W‖σα,W|P

)
; (13.7)

E(2)
sp (R,P ) =

1− αR,P
αR,P

(
I(2)
αR,P

(P,W)−R
)

; (13.8)

Esp(R) =
1− αR
αR

(
CαR,W −R

)
. (13.9)

13.1.2 Achievaibility: Random Coding Bound

We shorthand PRC(n) := ECn [ε̄(W, Cn)] the average probability of error for a n-blocklength random

codes with distribution P ∈ P(X ) on the input alphabet X . Moreover, the following conditional Rényi

entropies and Rényi divergences are de�ned via Petz's version [59]; see Eq. (3.5).

Problem 3 (Random Coding Bound for Slepian-Wolf Coding with Quantum Side Information). Con-

sider a Slepian-Wolf coding with a joint classical-quantum state ρXB ∈ S(XB) with H(X|B)ρ > 0.

Let R < H(X|B)ρ. The following holds for every n ∈ N,

ε∗(n,R) ≤ e−nEr(R), (13.10)

where

Er(R) := sup
1
2
≤α≤1

1− α
α

(
R−H↑α(X|B)ρ

)
; (13.11)

H↑α(X|B)ρ := sup
σB∈S(B)

−Dα(ρXB‖1X ⊗ σB). (13.12)

Problem 4 (Random Coding Bound for Classical-Quantum Channels). For any classical-quantum

channel W : X → S(H), rate R < CW, and any n ∈ N,

PRC(n) ≤ e−nEr(R,P ), (13.13)

where

Er(R,P ) := sup
1
2
≤α≤1

1− α
α

(
I(1)
α (P,W)−R

)
; (13.14)

I(1)
α (P,W) := inf

σ∈S(H)
Dα(P ◦W‖P ⊗ σ). (13.15)
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Moreover, the optimal probability of error can be upper bounded as

ε∗(n,R) ≤ e−nEr(R), (13.16)

where Er(R) := supP∈P(X )Er(R,P ).

Problem 5 (Exact Asymptotics of Random Coding Bound for Classical-Quantum Channels). For any

classical-quantum channel W : X → S(H) and any n-blocklength block codes,

PRC(n) =
1 + o(1)√

n
e−nEr(R,P ), R ≤ C1/2,W (13.17)

PRC(n) =
1 + o(1)

n
1
2

(
1+
∣∣∣ ∂Er(R,P )

∂R

∣∣∣) e−nEr(R,P ), C1/2,W < R < CW. (13.18)

Problem 6 (Random Coding Bound for Entanglement-Assisted Codes). Let N : S(A) → S(B) be a

quantum channel. Fix any rate below the entanglement-assisted classical capacity, i.e. R < Cea(N ) The

optimal probability of error over all n-blocklength entanglement-assisted codes can be upper bounded as

ε∗ea(n,R) ≤ e−nEr,ea(R), (13.19)

where

Er,ea(R) := sup
1
2
≤α≤1

sup
ψAA′

inf
σB∈S(B)

1− α
α

(Dα (NA→B(ψAA′)‖ρA′ ⊗ σB)−R) , (13.20)

and ψAA′ denotes the puri�cation of ρA.

13.1.3 Optimality: Sphere-Packing Bound

We remark that the exact asymptotics of the sphere-packing for general codes in classical channels is

still open. We do believe that the following Eq. (13.21) holds for both classical and c-q channels.

Problem 7 (Exact Asymptotics of Sphere-Packing Bound for Classical-Quantum Channels). For any

classical-quantum channel W : X → S(H) and any n-block codes (not necessary constant composition

codes)1,

ε∗ (n,R) ≥ 1

n
1
2

(
1+
∣∣∣ ∂Esp(R)

∂R

∣∣∣) e−nEsp(R), ∀R < C. (13.21)

where,

Esp(R) := sup
0≤α≤1

1− α
α

(
Cα,W −R

)
. (13.22)

The sphere-packing bound beyond c-q channels are still unknown. We conjecture that it holds for

an entanglement-breaking channel NEB, whose classical capacity is additive, i.e C(N⊗nEB ) = nC(NEB)

[64, Theorem 18]. For general quantum channels, we might need regularized Rényi capacity.

1We note that the sphere-packing exponent is not necessarily di�erentiable. Throughout this section, we write
∂Esp(R)/∂R to be the left derivative.
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Problem 8 (Sphere-Packing Bound beyond Classical-Quantum Channels). For any entanglement-

breaking channel NEB, and any n-block codes

ε∗ (n,R) ≥ 1

n
1
2

(
1+
∣∣∣ ∂Esp(R)

∂R

∣∣∣) e−nEsp(R), ∀R < C, (13.23)

where

Esp(R) := sup
0≤α≤1

1− α
α

(Cα(NEB)−R) . (13.24)

Moreover, for any quantum channel N , and any n-block codes

ε∗ (n,R) ≥ 1

n
1
2

(
1+

∣∣∣∣ ∂E∞sp (R)

∂R

∣∣∣∣) e−nE
∞
sp (R), ∀R < C, (13.25)

where

E∞sp (R) := sup
0≤α≤1

1− α
α

(
lim

n→+∞

1

n
Cα(N⊗n)−R

)
. (13.26)

Problem 9 (Sphere-Packing Bound for Entanglement-Assisted Codes). Let N : S(A) → S(B) be a

quantum channel. Fix any rate below the entanglement-assisted classical capacity, i.e. R < Cea(N ).

Then for any n-block codes

ε∗
ea

(n,R) ≥ 1

n
1
2

(
1+
∣∣∣ ∂Esp,ea(R)

∂R

∣∣∣) e−nEsp,ea(R), ∀R < C, (13.27)

where

Esp,ea(R) := sup
0≤α≤1

sup
ψAA′

inf
σB∈S(B)

1− α
α

(Dα (NA→B(ψAA′)‖ρA′ ⊗ σB)−R) , (13.28)

13.1.4 Moderate Deviation Analysis

Problem 10 (Moderate Deviation Analysis for Entanglement-Breaking Channels). Prove that any

quantum entanglement-breaking channel NEB satis�es moderate deviation principle, i.e.

lim
n→+∞

1

na2
n

log ε∗ (n,R) = − 1

2V (NEB)
, (13.29)

where the sequence (an)n∈N satisfy Eq. (12.1).
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