R B FLPFTAFTRIGC AT L AT
Lk
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Doctoral Dissertation

B3 FIEA S R A

Error Exponent Analysis in Quantum Information Theory

e o
Hao-Chung Cheng

hEREEFSEL
Advisor: Ping-Cheng Yeh, Ph.D.

PEA R 107 & 17
January, 2018



BV N Rl Y8
DREBEERE
FTFRENER VT HEBZR SN

Error Exponent Analysis in Quantum Information Theory

A xth¥ret v B (238 F99942118) AR EE AL TR
ﬂﬂnﬁmﬁi@(ﬁ)fﬁ& X HAEAI07E1 A9 BATZ
FREBELBHBROREAL B A

2REE -
v'g (%4)

(™ 34
ECRTTL

2 f@
. /ﬁj\ ?Jf\ (%4%)

doi:10.6342/NTU201800597



Acknowledgement (3% i)

I would like to thank my supervisor — Professor Ping-Cheng Yeh — for his valuable
guidance and being my life beacon. From my undergraduate in NTUEE, Prof. Yeh not
only supervised me how to do research, but also taught me to be a decent person with
integrity. I would also like to thank my co-supervisor — Professor Min-Hsiu Hsieh — for
teaching me all the knowledge in quantum information theory and leading me to
academics. I would like to thank all the staffs in NTUEE and GICE for your constant
helps. I would like to thanks all the members in BL515. So glad to be able to study,

play, and do research with you all.

I’m honored to be a part of National Taiwan University Chinese Orchestra (NTUCO).
Thanks all the members in NTUCO every year. It was a great time to play music with
you. Thanks for supporting me for my three concertos of Bamboo flute, Souna, and
Guan. Thanks for supporting me in semester 2012-2013 for my conducting. Thanks for
Little Giant Chamber Orchestra (-]* E A & 2 % @), Taipei Youth Chinese Orchestra
(4 #* 7 & B # @), and Youth Orchestra in Taipei Chinese Orchestra (4 #* & * [ &
M "3k 7 £ ®). You make my undergraduate and PhD life more colorful.

I would like to sincerely thank my family — both my parents and my senior brother.
Thank you for letting me pursue what [ want. I will be eternally grateful for all of your
supports.

Lastly, I would like to thank all the funding that support me through my study: Ministry
of Science and Technology Overseas Project for Post Graduate Research with Grant
105-2917-1-002-028 and 104-2221-E-002-072; Hua Gu scholarship (P @/ * & ¥ %
T4 ¢ e 8 £), E-Sun Bank scholarship (% L4273 7 B g1 A o 5 £),
Hsing Tian Kong scholarship (B4 Bz £ 7% ¥ F i 2 & ## 3% % ), and Ho Foundation
(A ims BB LE LS &)

d0i:10.6342/NTU201800597
i



FAZGY A ATz - L2312 BEL SR — T AR DT §
FoOBFLEAORERER U BES  BFEI RS TE - BR A
pren™ ‘J% KA L E B S R R RS e P S F Al R L 2 sgn*v a‘gﬁxzﬁ

B A Y At Fﬁl[%“é‘.@m;””j;‘%;@fwi
LA Mﬁﬁﬁ;,i LCNRE R S S TR R R L S i;]gu,,\ 35 o

=

-
|

AP LEP g s FER B RAPE N LREEEES T
PRI ST TR B s AT U RAGBERTAPHFAL O AT
F R AR EF AT A AR T AR RET &
mwglé?'—?ﬂ‘ o Bfd 0 NPT Y F 13;%] AR T — ﬁbéxg SRR (B P gE SR
Fe—3 REBFERBTHERFERPFREFNGS Byp i AR E IR~ 12

PORIERBTCE T IR OR T ERDE -

e RN Fuge F Pl I e fﬁj\#‘”?’j’ ) rﬂLL_—kz REN »}; i3 ?\
;%Ef'f’.;{r\nmﬁ;!z o 1 AEF ~ FLEE »,L—‘!zu}. FTREHEIF T LR g;;k,-g ?5;%%—

RSy RIERSER S aezmxzﬂ;,jaﬁ\»

MAET st P RAST S A BREAAIT 2 TR S FL S
B~ BTV AR SE BT

111 doi:10.6342/NTU201800597



Abstract

One of the fundamental problems in information theory is to clarify the trade-offs between the per-
formance of an information task, the size of the coding scheme, and the coding rate that determines
the efficiency of the task. Error exponent analysis was proposed as a powerful methodology to study
how rapidly the error probability exponentially decays with an increase of coding blocklength when the
rate is fixed. In this thesis, we give an exposition of error exponent analysis to two important quan-
tum information processing protocols—classical data compression with quantum side information, and
classical communications over quantum channels.

We first prove substantial properties of various exponent functions, which allow us to better charac-
terize the error behaviors of the tasks. Second, we establish accurate achievability and optimality finite
blocklength bounds for the optimal error probability, providing useful and measurable benchmarks for
future quantum information technology design. Finally, we study the error probability under the sce-
nario that the coding rate converges to certain limits, a research topic known as moderate deviation
analysis. In other words, we show that the data recovery can be perfect when the compression rate
approaches the conditional entropy slowly, and the reliable communication over a classical-quantum
channel is possible as the transmission rate approaches channel capacity slowly.

The audience of this thesis are not restricted to researchers with backgrounds in quantum infor-
mation theory. Engineers, technology providers, and people who interest in information processing are

welcome to explore the frontiers along this line of research.

Keywords: error exponent analysis, moderate deviation analysis, quantum information theory, classical-
quantum channel, Slepian-Wolf coding, quantum side information, reliability function, large deviation

theory, matrix analysis.
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Chapter 1

Introduction

Information processing and transmission with the assistance of quantum mechanics has emerged as
a promising technology in the forthcoming future. For example, Bennett and and Brassard [1, 2]
proposed a quantum key distribution protocol, which provides us a secure way for sharing secret keys
between two parties. The task of quantum teleportation is to noiselessly transfer a quantum state to
a remote user [3] and it has become a key ingredient of quantum computation [4, 5]. In view of the
latest and most significant achievements of communicating quantumly from a launched satellite with
base stations [6], it is generally believed that the laboratory testing of novel quantum communication
experiments will soon be complete.

To practically implement such quantum information processing (QIP) technologies, it would require
universal quantum computation as the principle component (e.g. to perform the decoding strategies).
Nevertheless, the state-of-the-art quantum computers, at least for the near future, is limited to around
50 qubits. Thus, evaluating how well a QIP system in practical domains only with finite resources
becomes a pressing matter |7, 8]. The goal of this thesis is to investigate two fundamental QIP tasks
and characterize their performance benchmarks, providing invaluable guidance to the design of the
next-generation quantum technology.

In this thesis, we are interested in the QIP protocols that benefits and advances current information
processing systems. Namely, we study the problems of (1) information storage with a quantum helper,
and (2) information transmission over a quantum channel. Due to the non-cloning and probabilistic
nature of quantum mechanics, the processing errors are inevitable. Therefore, our ultimate goal is to
provide an accurate error analysis for theses QIP protocols. In Section 1.1, we give the backgrounds
and literature review of this research topic. In Section 1.2, we introduce the mathematical formalisms
of the studied QIP protocols. Our contributions are listed in Section 1.3. Lastly, we illustrate the

structure of the thesis in Section 1.4.

1.1 Backgrounds

One of the core purposes in information theory is to protect the information when compressing and
transmitting. In Shannon’s seminal work [9], it was shown that the reliable communication over a
channel is possible, provided that the transmission rate is below the channel capacity C, and an
arbitrary large coding scheme is given. On the other hand, Sleipian and Wolf [10] studied a source

compression scenario with an assistance of the side information. Let X denote the random variable

1 d0i:10.6342/N'TU201800597



1. Introduction 2

of the source and Y be that of the side information. They showed that the perfect source recovery
is feasible as long as the compression rate is above the conditional entropy H(X|Y) and an arbitrary
large block code is provided.

Therefore, investigating the interplay between the compression/transmission rate, coding block-
length and the probability of error is one of the fundamental problems in information theory. Based
on different ranges of the error probability, analysis of the information processing performance roughly
falls into the following three categories: (i) large error probability or non-vanishing error probability
regime; (i) medium error probability regime; and (iii) small error probability regime.

In the non-vanishing error probability regime, the largest code rate, given a coding length n and an
error probability no more than ¢, is one of the main research focuses. Strassen [11] first demonstrated
that the maximum size of an n-blocklength code through a discrete memoryless channel (DMC) ‘W,
denoted by M*(W" ¢), yields an asymptotic expansion to the order /n, and hence this is called

second-order analysis:
log M*(W™, €) = nC 4+ vVnV & *(e) + O(logn), (1.1)

where the quantities C' and V' denote the capacity [9] and the dispersion [12] of the channel, and ® is the
cumulative distribution function of a standard normal random variable. Equivalently, Eq. (1.1) yields
the following relationship between the optimal decoding error with blocklength n and rate C' — A/v/n

for any constant A:

. A
nllglooe (n,C—A/yn) =2 <W> . (1.2)
Strassen’s result relied on the Gaussian approzimation or the central limit theorem (CLT), and is also
called the small deviation regime. His work was latter refined by Hayashi [13], Polyanskiy et al. [12],
and extended to quantum channels [14, 15, 16, 7]. The results for higher-order asymptotics are referred
to Refs. [17, 18, 19].

In the small error probability regime, Shannon |20] introduced the reliability function E(R) as the

optimal error exponent:

) 1

nEToo_EIOgﬁ* (n,R) = E(R), (1.3)
for rate R below the channel capacity’ C. The quantity E(R) then provides a measure of how rapidly
the error probability approaches zero with an increase in blocklength. This characterization of the
reliability function is hence called the reliability function analysis or the error exponent analysis. This
seminal work entails the analysis of a broad class of channels [22, 21, 23, 24, 25, 26]. The exponential
decay of the error probability in Eq. (1.3) is a consequence of the large deviation principle (LDP) [27].
In summary, the errors in Egs. (1.2) and (1.3), respectively, fall into the CLT regime and large-deviation

regime.
Given a classical channel, lower bounds for the reliability function (termed achievability), can

be established by random coding arguments [28, 22, 29, 21]. However, upper bounds (also called

'To the best of our knowledge, the reliability function E(R) is only known in the high rate regime, i.e. at rates above
a critical rate (see e.g. [21, p. 160]).

d0i:10.6342/N'TU201800597



1. Introduction 3

optimality) require different techniques since the code-dependent bounds on the error probability need
to be optimized over all codebooks. The first result—the sphere-packing bound E(R) < Eg,(R)—was
developed by Shannon, Gallager, and Berlekamp [30]. The sphere-packing exponent Es,(R) is defined

as

Esp(R) := sup {max Ey(s,P) — sR} , (1.4)
>0 P
where P is maximized over all probability distributions on the input alphabet, and FEy(s, P) is the
auziliary function or Gallager’s function [29]. Unlike Shannon-Gallager-Berlekamp’s technique which
relates channel coding to binary hypothesis testing, Haroutunian [31, 24] employed a combinatorial

method and obtained an upper bound for the reliability function in terms of the following expression
Eg(R) = max min {D (W||W|P) : I(P,W) < R}, (1.5)
w

where W is minimized over all dummy channels with the same output alphabet as W, D(W|'W|P) is
the conditional relative entropy between the dummy channel W and the true channel W, and I(P,' W)
is the mutual information of the channel W (the detailed definitions are given in Chapter 3). It was
later realized that the two quantities in Egs. (1.4) and (1.5) are equivalent: they are related by convex
program duality [32, 33, 25]. Therefore, these two expressions, Eqgs. (1.4) or (1.5), are both called
sphere-packing exponents.

Error exponent analysis in classical-quantum (c-q) channels is more challenging because of the
noncommutative nature of quantum mechanics. Burnashev and Holevo [34] introduced a quantum
version of the auxiliary function [35, 36] and initialized the study of reliability functions in c-q channels.
However, the random coding bound (i.e. achievability) for c-q channels is still unsolved. Winter [37]
derived a sphere-packing bound (i.e. optimality) for c¢-q channels in the form of ESP(R) in Eq. (1.5),
generalizing Haroutunian’s idea [31]. Dalai [38] employed Shannon-Gallager-Berlekamp’s approach [30]
to establish a sphere-packing bound with Gallager’s exponent in Eq. (1.4). In the follow-up work [39],
Dalai and Winter pointed out that these two exponents are not equal in c-q channels. We remark that
both Dalai and Winter’s results are asymptotic and not finite blocklength.

The Slepian-Wolf coding with quantum side information (QSI) was studied by Devetak and Winter
[40]. They generalized Slepian and Wolf’s result [10] to the quantum case: the optimal probability
of error asymptotically vanishes as the compression rate is above the quantum conditional entropy
H(X|B),, where B denotes the quantum system. Similar to the role of channel capacity in channel
coding, we term H (X |B), the Slepian- Wolf limit. The non-vanishing error probability regime was later
studied by Renes and Renner [41], and Tomamichel and Hayashi [14]. A second-order asymptotics
similar Eq. (1.1) was established.

The most paragraph of this thesis will focus on the error exponent analysis for both Slepian-Wolf
coding with QSI and classical-quantum channel coding. We especially focus on the finite blocklegnth
characterizations of the optimal error probability. In Chapters 6 and 7, we establish finite blocklength
bounds for Slepian-Wolf coding with QSI. In Chapters 10 and 11, we review the best-to-date achiev-
ability bound for c-q channel coding, and prove a tight sphere-packing bound in finite blocklengths.

The study of the medium error probability regime was pioneered by Altug and Wagner [42, 43].

They investigated the asymptotic behavior of the optimal decoding error when the coding rate con-

d0i:10.6342/N'TU201800597



1. Introduction 4

verges to capacity sufficiently slowly. Specifically, they studied under which conditions the error is

asymptotically equal to”

¢ (n,C —ay) ~ ® (ﬁa”> e (1.6)

\/a ~ e 2'U7

where the sequence of positive numbers (ay,,)nen satisfies

(i) lim a, =0;
(ii) nginoo any/n = +oo.

Evidently, the transmission rate in Eq. (1.6) approaches capacity slower than 1/y/n. A DMC with
errors satisfying Eq. (1.6) possesses a moderate deviation property (MDP) |27, Section 3.7], and hence
it is also called the moderate deviation regime. The constant v in Eq. (1.6) equals the channel dispersion
V when both the limit in Eq. (1.2) and MDP hold [44, Theorem 1]. We refer the interested readers to
Refs. [44, 45, 46, 47, 43] for further results in classical channel coding.

As an application of our established error exponent bounds, we extend our techniques to the
moderate deviation regime. In Chapters 8 and 12, we demonstrate that the optimal error probability
of the both two QIP tasks vanishes when the compression rate approaches the Slepian-Wolf limit and

the transmission rate approaches the channel capacity, respectively. Specifically, we show that

1 *(n, H(X|B 1
i l08€ (n, H( 2! )p+an) _ . (1.8)
n—-+00 nan 2V
) loge*(n,C —a,) 1
nEIfoo na? YA )

where (a,)nen is any sequence satisfying Eq. (1.7).

We remark that these error probability regime described above—(i), (ii), and (iii)—all have the-
oretical significance and practical value. The non-vanishing error probability regime, (i), has been
relatively well studied in the quantum scenario, while the small and medium error probability, (ii) and
(iii), are rarely explored, which is the ultimate goal and purpose of this thesis. We summarize the error
behaviors in these three regimes in Table 1.1.

Our methodology contains a varieties of matrix inequalities and matrix calculus. Moreover, we
employ the sharp concentration inequalities—Bahadur-Ranga Rao’s concentration inequality [48] and
Chaganty-Sethuraman’s concentration inequality [49]—in strong large deviation theory to establish our
finite blocklength bounds. We collect the mathematical tools of matrix analysis and large deviation

theory in Chapter 2.

1.2 Quantum Information Processing Protocols

In the following, we introduce two quantum information processing protocols studied in this thesis—(1)
information storage with a quantum helper, and (2) information transmission over a quantum channel.
The interested readers can refer to the books [5, 50] for more detailed and various quantum information

processing protocols.

2We denote fn ~ gn if and only if lim,— 1 o % =1.
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1. Introduction 5

‘ Error Regimes ‘ Concentration Phenomena ‘ Hypothesis Testing ‘ Source \ Channel Coding ‘
* A A

€ (n,H+ﬁ> —>~1>(W)
* A A

€ (n.,C—ﬁ)—MI)(W)

2
na )
e*(n, H + ay) = ¢ 2v To(nan)

Large Error CLT: Pr(S, > ynz) - 1—-@ (%) aexp{fn[Df%}} - (%)

. nal na?
Medium Error | MDP: Pr (S, > nayz) = e~ 2o to(naz) Bexp{—nlD—an]} = e~z to(nay) —
6*(7’L, C— an) — efz—v’uﬁo(nai)
Small Error LDP: Pr (S, > nz) = e ™A (@)+o(n) Qexp—nry = e "¢ +olm) e*(n, R) = e "B (R)+o(n)

Table 1.1: This table compares the asymptotic error behaviors of quantum hypothesis testing and classical-
quantum channel coding in three error probability regimes: (i) large error (central limit theorem), (ii) medium
error (moderate deviation principle), and (iii) small error (large deviation principle). The quantity S,, denotes
the sum of n independent and identically distributed random variables with zero mean and variance v. The
exponent A* is the Legendre-Fenchel transform of the normalized cumulant generating function of S, [27]. The
eITor Qexp{—nr} i defined as the minimum type-I error with the type-II error smaller than exp{—nr}. The
quantities D and V in the hypothesis testing column denote the quantum relative entropy and the relative
entropy variance, respectively. The optimal error probability with blocklength n and rate R is denoted by
€*(n, R). The quantities C and V in the channel coding column indicate the channel capacity and the channel
dispersion, respectively. The sequence (a,)nen satisfies Eq. (1.7). The quantity E(R) is the reliability function
of the classical-quantum channel [35], and has not been fully characterized yet.

1.2.1 Information Storage with a Quantum Helper (Source Coding)

We consider a source of classical information which is produced with some quantum side information.
That is, for some finite alphabet X', with some probability p(z), the source produces the classical
information x € X, along with a quantum state p% on a finite-dimensional Hilbert space Hp. Such a

source is characterized by a classical-quantum (c-q) state

pxp =Y pla)a)(z @ ph. (1.10)
reX

where {|z)},cx is an orthonormal basis of a Hilbert space Hx of dimension |X|. We note that the
quantum state pp on a finite Hilbert space Hp can be characterized by a density operator (or density
matriz) such that pp is positive semidefinite pp > 0 and has unit trace Tr[pg] [5, 51, 50].

The task is to compress the classical information produced by the source to a smaller index set
7 and to later decompress the information with the assistance of the quantum side information as a
helper. For convenience, we also term this task Slepian- Wolf coding with quantum side information.

A deterministic encoder is map € : X — Z where the alphabet Z has size |Z|. A decoder, denoted
by D, receives the compressed symbol £(x) along with the quantum state p%, and produces & € &,
aiming to achieve = z.

Thus, the decoding is a map
ZxS8(B) > (w,p) = D(w,pp) € X. (1.11)

If we fix the first argument as w € W, we have that the decoder D(w,-) is a map from S(B) — X,
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i.e. is a positive operator-valued measurement (POVM), and we denote by S(B) the set of quantum
states on Hilbert space Hp. Thus, we can represent the decoding by a collection of POVMs {Py }wew,
where P, = {H;w)}a@e/\/ with H(jw) >0and ) .y Hg}w) =1, for each w € Z. That is, if the message z
is sent, the decoder receives £(x), and measures the state p% with the POVM {H;g(x))}iex.

A random encoding F from X to W is one which maps x to w with some probability p(w|z). We

can see the random encoding therefore as applying the deterministic encoding
(.7,‘1,...,$|X‘)I—>(il,...,i‘)q) (1.12)

with probability p(i1|z1)p(i2|z2) - p(ijx|l)x)). Let us write F =: {& : j = 1,...,|F|} for the
collection of deterministic encoders. Then a random encoding F applies &; with some probability P;.

An (1, R)-Slepian-Wolf code for the c-q state pxp is an ordered pair C = (F, D) consisting of a
(possibly random) encoder F and decoder D, such that the alphabet Z has size R = log |W|. R is
called the compression rate of the code C.Using the above notation, the probability of success of C is

given by
171

Py(C) = > px) > B Te[pp 1] (1.13)

zeX j=1

where C := (F,D) for the possibly random encoding F which gives the deterministic encoding &;
with probability P;, and decoding D which is defined via the collection of POVMs {Py }yew, and
Puw = {H(xw)}ze x- We may likewise define the probability of error of the code C by

P.(C) :=1—-Pg(C) (1.14)
In the following, we define the optimal one-shot compression rate:
R*(1,e) = inf {R : for some R’ < R, 3(1, R')-Slepian Wolf code C for pxp s.t. Pe(C) <e} (1.15)
Similarly, the optimal one-shot probability of error for pxp is defined as:
£*(1,R) := inf {P¢(C) : C is an (1, R')-Slepian Wolf code for pxp for some R’ < R} . (1.16)

The Slepian-Wolf coding can be easily applied to the n-shot case when the underlying c-q state
pxp € S(XB) has an independent an identically distributed extension pxnpn = p?}%. In this case, an
(n, R)-Slepian Wolf code for the state pxp is defined as a (1,nR)-Slepian Wolf code for the state p5'g.
We define the optimal n-shot probability of error for pxp as

e*(n, R) := inf {P¢(C) : C is an (n, R')-Slepian Wolf code for pxp for some R < R}, (1.17)
and likewise the optimal n-shot compression rate for pxp as
R*(n,e) = inf {R : for some R’ < R, 3(n, R')-Slepian Wolf code C for pxp s.t. Pe(C) <e}. (1.18)

We illustrate the protocol of Slepian-Wolf coding with QSI Figure 1.1 below.
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- N

X" Tn -
X" [ encoder | (T
¢ L—J Decoder
: — A ~
i correlated L | N X
i ®n T
S (HB ) {Hg}” )}
an » wneIn

. /

Figure 1.1: We are given n copies of a classical source X which is correlated with a quantum system
B. We compress the source into an index set Z, via the encoder &,, and then perform a decoding
via D, which has access to the side information ppn. This yields the output Xn with associated
alphabets X™. The decoder D,, here is a family of positive operator-valued measurement (POVM)

{Hg?’: )} .- The red-dotted lines indicate classical information, while the blue-solid lines stand for
wne n

quantum information.

1.2.2 Information Transmission over a Quantum Channel (Channel Coding)

Let M be a finite alphabetical set with size M = |[M|. An (n-blocklength) encoder is a map F, :
M — X" that encodes each message m € M to a codeword x"(m) := z1(m)xa(m)...xy(m) € X™.
Here, we assume that the input alphabet X is finite. The codeword x™(m) is then mapped to a state
pZn(m) in the n-fold of Hilbert space H. The decoder is described by a POVM II,, = {II,, 1, .. ., 1T, ar }
on H®", where II,; > 0 and Zf\il II,; = 1. Throughout this thesis, we assume that the channel

output state pi, (m) has a tensor product structure. That is, p}’zn( can be presented as

m)

wan = Wm(m) ® sz(m) Q& Wxn(m) S S(H®n)' (1.19)

x"(m)

Then, this protocol is equivalent to a c-q channel coding with a c-q channel W : X' — S(H). We leave
the scenarios of classical message communications over general quantum channels as future work; see
also the open problems in Chapter 13.

The pair (F,,II,) =: C, is called a code with coding rate (or called transmission rate) R =
%log ICn| = %log M. The error probability of sending a message m with the code C, is given by
the Born rule &,,(C,) == 1 —Tr (HnymWf;”(m)) We use emax(Cn) = maxpmenm em(Cr) and (C,) =
ﬁ Y mem Em(Crn) to denote the mazimal error probability and the average error probability, respec-

tively. Given a sequence x" € X", we denote by
1 n
Py (z) = z; 1{z = z;} (1.20)
1=

the empirical distribution of x", where z; is the i-th position of x™. A constant composition code with
a composition Pxn refers to a codebook whose codewords all have the same distribution Pxn.

Denote by €* (n, R) the smallest average probability of error among all the coding strategies with a
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blocklengh n and coding rate R. Our goal in this thesis is then to characterize €*(n, R) as a function

of (n, R); see Part II. Figure 1.2 below depicts the protocol of c-q channel coding.

T

——————— > I *@7—‘ We,
_ Decoder
% ------- X frs > W W332 ) /
m ] 8 — .’/ ‘ N > m
C ' N ’
(I} : :
{n }
——————— > ITnp -—--’ We,
N/

\M X" e X" . Wen . M/

Figure 1.2: We encode the (classical) message m to an n-blocklength sequence z™. Then, input
sequence will be mapped to an n-product channel output state Wg,". Lastly, the decoder, a positive
operator-valued measurement (POVM), measures the channel output state to obtain the estimated
message M. The red-dotted lines indicate classical information, while the blue-solid lines stand for
quantum information.
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1.3 Main Contributions

Although the aim of this thesis is to give an exposition to the current development of the error exponent
analysis in quantum information theory, we list our contributions in the following. The results can also
be found in the papers [36, 26, 52, 53].

(I) We prove major properties of error exponent functions and auxiliary functions for both Slepian-
Wolf coding with QSI (Chapter 5) and classical-quantum channel coding (Chapter 9). Specifi-
cally,

(a) We show that the error exponent functions introduced by Blahut [32, 23], Haroutunian
[31, 24], and Csiszar-Korner [54, 55, 25] have variational representations (Theorems 5.1 and
9.1). Theses representations are equivalent to the Gallager’s expressions |29, 21, 56| in the
classical case. However, in the quantum case, they are expressed by the log-Euclidean Rényi
divergence [57, 58], while Gallager’s expressions correspond to Petz’s Rényi divergence [59].
As a consequence of the Golden-Thompson inequality [60, 61], the variational representa-
tions are weaker than Gallager’s expressions in the optimality part, i.e. the converse (see
Theorem 9.1). Nevertheless, they have applications in the strong converse domain® [58, 53]

and the moderate deviation analysis (see Section 12.2)

(b) Since the error exponent functions are the Lengendre-Fenchel transform of the auxiliary
functions , the properties of the auxiliary functions immediately characterize that of the
error exponent functions. We prove the concavity properties, which solves an open problem
addressed by Holevo [35], and the first-order/second-order derivatives (Propositions 5.1, 5.2,
9.1, 9.2, and 9.3).

(¢c) We prove the continuity and the saddle-point property of the error exponent functions,
which is one of the crucial steps of establishing finite blocklength results (Propositions 5.3
and 9.5).

(d) An asymptotic expansion of error exponent functions when the compression rate (resp. trans-
mission rate) approaches the Slepian-Wolf limit (resp. channel capacity) is shown in Proposi-
tions 8.1 and 12.2. This property results in the moderate deviation analysis (see Chapters 8
and 12).

(II) We establish a finite blocklength achievability bound of the Slepian-Wolf coding with QSI (The-

orem 6.1), which has the following applications:

(a) recovering Devetak and Winter’s asymptotic achievability result, i.e. any compression rate
larger than the Slepian-Wolf limit is achievable;

(b) achievability of the moderate deviation analysis (Theorem 8.1);

(c) proof ingredient in the achievability of strong converse domain [53].

(TIT) For the optimality part, we establish a series of following results:

3The strong converse domain means that the compression rate (resp. transmission rate ) is smaller (resp. larger) than
the Slepian-Wolf limit (resp. channel capacity). In this case, the optimal probability of success exponentially decays
[37, 62, 63, 57, 58, 64, 53]. This thesis does not include contents of the strong converse part.
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(a) a sharp converse Hoeffding bound (see Theorem 4.4 and Corollary 4.1) for binary quantum
hypothesis testing, which is the main ingredient for the finite blocklength error exponent

analysis and moderate deviation analysis in quantum information theory;

(b) By proving an one-shot converse bound to relate the source coding problem to hypothesis
testing (Proposition 7.1), we employ the above sharp converse Hoeffding bound to show the
finite blocklength sphere-packing bound of Slepian-Wolf coding with QSI (Theorem 7.1).

(¢c) With an one-shot converse bound reducing the channel coding problem to hypothesis test-
ing (Proposition 11.3), we prove the finite blocklength sphere-packing bound of classical-
quantum channel coding. Under the assumption of using constant composition codes, i.e. the
composition for each codeword in the codebook is the same, we derive the exact prefactor
(see Theorem 11.1). For general codes, the obtained prefactor is significantly improved from
the previous result of subexponential [38] to polynomial (see Corollary 11.1). We remark

that the exact prefactor for general codes remains open even in the classical case.

(IV) For the moderate deviation regime, we discuss the trade-offs between the rate, optimal probability

of error, and the blocklength.

(a) When the exponential decaying rate of the type-II error in quantum hypothesis testing
approaches the relative entropy from below with the speed not faster than O(1/y/n), we
show that the optimal type-I error vanishes asymptotically (Theorems 4.5 and 4.6):

. 1 =N n n 1
lim  —5 108 Gexp{-n[D(pllo) ~an)} (P [05") = =5 (1.21)

n—+00 na% QV(pHU) ’
where o, denotes the smallest type-I error when the type-II error does not exceed p; D(pl|o)

and V (p||o) denote the relative entropy and relative variance of p and o, respectively.

(b) When the compression rate approaches the Slepian-Wolf limit from above with the speed
not faster than O(1/y/n), we show that the optimal probability vanishes asymptotically
(Theorem 8.1):

lim log €*(n, H(X|B), + ay) _ 1

n—r—+oo na% A

(1.22)

(¢) When the transmission rate approaches the channel capacity from below with the speed
not faster than O(1/y/n), we show that the optimal probability vanishes asymptotically
(Theorems 12.1 and 12.2):

loge*(n,C — ay,) 1

li = ——. 1.23
nﬁlrfoo na% 2V ( )

1.4 Structure of the Thesis

Organization.
The thesis is divided into three parts. Part I: Fundamentals collects the necessary mathematical
tools—matrix analysis and large deviation theory (Chapter 2), the notation of all quantum entropic

quantities and their properties (Chapter 3), and the error exponent analysis for quantum hypothesis
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testing (Chapter 4). The two quantum information tasks investigated in this thesis are presented in
Parts IT and III, respectively.

Part 1I: Information Storage with a Quantum Helper discusses the source coding scenario—the
error exponent analysis for Slepian-Wolf coding with QSI. We introduce the error exponent functions
in Chapter 5 and prove their properties. The achievability and optimality are studied in Chapters 6
and 7. Next, we move on to the moderate deviation regime in Chapter 8, which heavily relies on the
established results in achievability and optimality.

Part I1I: Information Transmission over a Quantum Channel investigates the channel coding
scheme—the error exponent analysis for communications over classical-quantum channels. The orga-
nization is similar to Part II: the error exponent function, achievability, optimality, and the moderate
deviation analysis are presented in Chapters 9, 10, 11, and 12, respectively. Lastly, we conclude this

thesis in Chapter 13 and provide open problems for future study.

Structure.

The structure of the thesis is depicted in Figure 1.3. The matrix mathematics provided in Chapter 2.1
will be useful in proving properties of the quantum entropic quantities in Chapter 3, properties of error
exponent functions in Chapters 5 and 9, and the achievability in Chapters 4, 6 and 10. The techniques
of large deviation theory in chapter 2.2 will be applied in the optimality part in Chapters 4, 7, and 11.
The optimality in Chapters 7 and 11 requires the sharp converse bound of quantum hypothesis testing
in Chapter 4. In either Part II or Part I1I, the moderate deviation analysis (Chapters 8 and 12) relies
on the properties of error exponent functions (Chapters 5 and 9), achievability (Chapters 6 and 10),
and optimality (Chapters 7 and 11).

Part lI: Information Storage with a Quantum Helper

§5 Error Exponent : - L §8 Moderate
Function GG IR Y/ CPHEI Deviation Analysis

3 | A\A__//v

Part I: Fundamentals -

§2 Mathematical Tools B B

313
§1 §2.1 Matrix §2.2 Large §3 Quantum §4 Quantum 3 )
. i . . - . . Conclusions &
Introduction Analysis Deviation Theory Entropic Quantities Hypothesis Testing
i Open Problems

5 4

P"‘ v/’/'—\(
§9 Error Exponent §12 Moderate
Function Deviation Analysis

—

Part lll: Information Transmission over a Quantum Channel

— §10 Achievability §11 Optimality

Figure 1.3: Structure of the thesis.
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Chapter 2

Mathematical Tools

We provide preliminaries mathematical tools in this Chapter. The introductory matrix analysis is

given in Section 2.1. In Section 2.2, we present the backgrounds of large deviation theory.

2.1 Matrix Analysis

In this section, we provide backgrounds of matrix analysis. For a general treatment of this topic,
interested readers can refer to [65, Section 2.1], [66, Chapter 17|, [67, Section X.4], [68, Section 5.3|,
and [69, Chapter 3].

We denote by IM** the set of self-adjoint operators, and by IM$*(I) the set of Hermitian d x d
matrices with eigenvalues contained in I. Similarly, let ]M; and M;{* be the set of d x d positive
semi-definite matrices and positive definite matrices, respectively.

Let U,V be real Banach spaces. The Fréchet derivative of a function f : U4 — VW at a point X € U,
if it exists', is a unique linear mapping Df[X] : U — W such that

[f(X + E) - f(X) - DFIX](E)

hw _, 0 as EcU and ||E|y — 0,
[

or, equivalently,
If(X + E) - f(X) - DFIX](E)|lw = o(| El),

where | - [[7y) is @ norm in U (resp. W). The notation D f[X](E) then is interpreted as “the Fréchet
derivative of f at X in the direction E”. Furthermore, the Fréchet derivative implies the Gataux
derivative such that the differentiation of f(X + tE) with respect to the real variable ¢ is

f(X +tE) - f(X)

; — DfIX|(E) ast— 0.

For example, if the operator-valued function is the inversion f(X) = X! for each invertible matrix
X, then (see e.g. [67, Example X.4.2])

DF[X](Y)=-X"'YyXxX L (2.1)

!We assume the functions considered in the paper are Fréchet differentiable. The readers can refer to, e.g. [70, 71],
for conditions for when a function is Fréchet differentiable.
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The Fréchet derivative also satisfies several properties similar to conventional derivatives of real-

valued functions (see e.g. [69, Theorem 3.4]):

Proposition 2.1 (Properties of Fréchet Derivatives). Let U,V and W be real Banach spaces.

1. (Sum Rule) If fi : U — W and fo : U — W are Fréchet differentiable at A € U, then so is
f=afi+Bf, and DF[A|(E) = - Df1[A|(E) + B - Df2[A|(E).

2. (Product Rule) If f1 : U — W and fo : U — W are Fréchet differentiable at A € U and assume
the multiplication is well-defined in W, then so is f = fi1 - fo and Df[A](E) = Dfi[A|(E) -
f2(A) + f1(A) - Df2[A|(E).

3. (Chain Rule) Let fi : U — V and fo : V — W be Fréchet differentiable at A € U and fi(A)
respectively, and let f = foo f1 (i.e. f(A) = fa(f1(A)). Then f is Fréchet differentiable at A
and Df[A](E) = Df2[f1(A)] (Df1[A](E)).

Similarly, the m-th Fréchet derivative D™ f[X] is a unique multi-linear map from U™ £ U x - - - x U
(m times) to W that satisfies

HDm_l.f[X + Em}(Elv cee 7Em*1) - Dm_lf[X](El’ o -7Em71)
— D" fX](Er, ..., En)llw = o(|Enllu)

for each E; e U,i =1,...,m. If D™ f[X] is continuous at X, then the m-th Fréchet derivative can be

expressed as a mixed partial derivative |72, Section 9| (see also |73, Theorem 2.3.1]).

0 0

O X) (B B = L

FX+s1Ei+---+smEp).
s1=..=8m=0
We can observe, from the above equation, that the m-th Fréchet derivative is symmetric about all E;;
see [74, Theorem 8], [67, p. 313], and [75, Theorem 4.3.4]. We refer to Refs. [76, Section 8.12], [66,
Chapter 17|, [75, Section 4.3], and |77] for further information about higher order Fréchet derivatives.
The following proposition relates the second order Fréchet derivative with the convexity of a matrix-
valued function, i.e. f(tA)+ f((1—¢)B) <X f(tA+ (1 —¢)B) forall 0 <t < 1.

Proposition 2.2 (Convexity of twice Fréchet differentiable matrix functions |78, Proposition 2.2|).
Let U be an open convex subset of a real Banach space U, and W is also a real Banach space. Then
a twice Fréchet differentiable function f : U — W is conver if and only if D?f(X)(h, h) = 0 for each
X eUandh el.

The partial Fréchet derivative of multivariate functions can be defined as follows [68, Section 5.3].
Let U,V and W be real Banach spaces, f : U x V — W. For a fixed vg € V, f(u,vp) is a function
of u whose derivative at wg, if it exists, is called the partial Fréchet derivative of f with respect to u,
and is denoted by Dy, f[ug, vo]. The partial Fréchet derivative Dy, f[ug, vo] is defined similarly.

The Fréchet derivative and the partial Fréchet derivative can be related as follows.

Proposition 2.3 (Partial Fréchet derivative |68, Proposition 5.3.15]). If f : U x V — W is Fréchet
differentiable at (X,Y) € U x V, then the partial Fréchet derivatives Dx f[X,Y] and Dy f[X,Y]
exist, and

Df[X,Y](h,k) = Dx f[X,Y](h) + Dy f[X, Y](k).
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Now let f : U™ — W and assume it is a holomorphic function (i.e. Fréchet differential in a neighbor-
hood of every point in its domain), then the Taylor expansion f (X + E) at X 2 (X1,...,X,,), E=
(Er,...,E,) € U™ can be expressed as

f(X+E)If(XH-Z%Dkf[X](E,...,E)
k=1 L

n 1 n n o
=f(X)+ Z Dx, f [X] (Ej) + a1 Z Z szjxk(Ej, Ej;) + Remaining terms.  (2.2)
j=1 T =1 k=1

For any map f : Y — W and an operator X € U, we define the induced norm of the Fréchet

derivative Df[X] as
IDFIXT(E)]

= (23)

IDfIX]]| = sup
E+#0

where the norm can be any consistent norm (e.g. ||Df[X][|, = supgo [[DF[X](E)|, / [ Ell5)-
The norm of the Fréchet derivative is closely related to the condition numbers, which measure
the sensitivity of an operator-valued function to perturbations in the variables. Hence, the absolute

condition number is defined by

X+F)— X
condaps(f, X) = lim sup |f(X + E) H
0B|<e €

(2.4)

Then the norm of the Fréchet derivative can be expressed by the absolute condition number [79]

condaps(f, X) = [IDF[X]]|.

We note that there are several algorithms and software packages that can compute the absolute con-
dition number; see [69, Section 3|, [80] and references therein.
Next, we introduce the standard matriz functions. For each self-adjoint and bounded operator

A € M5 with the spectrum o(A) and the spectral measure E, the spectral decomposition is given as

A= AE(N). (2.5)
Aeo(A)

Hence, each scalar function can be extended to a standard matrix function as follows.

Definition 2.1 (Standard Matrix Function). Let f : I — R be a real-valued function on an interval
I of the real line. Suppose that A € M**(I) has the spectral decomposition (2.5). Then

f(A) 2 / F)AE().
Ao (X)

From this equation, it is clear that o(f(A)) = f(c(A)), which is called the spectral mapping theorem.
A function f: I — R is called operator convez if for each A, B € M**(I) and 0 <t < 1,

ftA) + f(1-1)B) < f(tA+ (1 -1)B).
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Similarly, a function f : I — R is called operator monotone if for each A, B € M%%(I),
A<B = f(A)< f(B).

It is remarkable that not all convex (resp. monotone) functions are operator convex (resp. monotone).
For example, the exponential function is not operator convex nor operator monotone on [0, c0); the
power functions that are operator convex are f(z) = zP for p € [-1,0] U [1,2] and f(x) = —aP for
p € [0,1]. However, the trace function on M** given by A — Tr[f(A)] preserves the convexity or
monotonicity.

Proposition 2.4 (Convexity and Monotonicity for Trace Functions |81, Section 2.2|). Consider a real-
valued function f : I — R. If f is convex (resp. monotone) on U C I, then the function A — Tr[f(A)]

is convex (resp. monotone) on M**(U).

We refer the readers to Refs. [73] and [82] for general expositions to operator convex and monotone
functions.
If the scalar function is continuously differentiable, then it is convenient to introduce the following

two properties for the trace function of Fréchet derivatives.

Proposition 2.5 ([82, Theorem 3.23|). Let A, X € M** and t € R. Assume f : I — R is a
continuously differentiable function defined on interval I and assume that the eigenvalues of A+t X C 1.
Then

d
= Tr f(A+tX) = Tr[ X f(A + to X))
t=to
In the following, we collect necessary matrix inequalities that will be employed later in this thesis.
Let © := (x1,...,24) € R? be a d-dimensional vector with positive elements. Denote by z+ :=
(w%, . ,xﬁ) the decreasing arrangement of x, i.e. :z:i > 2> a:fi. We say that x is weak majorized by

y, denoted by = <y vy, if

k k
ijgz:yj, 1<k<d. (2.6)
j=1 j=1

The weak log-majorization T <ylog ¥ is defined when log z < logy, where we denote by log = the vector
whose components equal to the logarithm of the components of x. It is well-known that = <yi0g ¥
implies © <y y |67, Example I1.3.5]. Let A\(X) denote the vector of eigenvalues of the matrix X. For
two positive semi-definite matrices A and B, the weak majorization A\(A) <y A(B) is equivalent to
IIA|ll < ||| B]|| for all unitarily-invariant norm ||| - ||| [82, Theorem 6.23].

Lemma 2.1 (|83, Theorem 2.10]). For any A,B € M ", and 0 <7 < 1. Then
AN(A#:B) <wiog A (A"7BT). (2.7)

Lemma 2.2 (Araki-Lieb-Thirring Inequality [34]; see also [67, Theorem IX.2.10]). Let A,B € M.

Then, we have

A (B'A'BY) <y A ((BAB)"), for t €[0,1], (2.8)
A (B'A'BY) =y A ((BAB)"), fort > 1. (2.9)
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Lemma 2.3 (|67, Example I1.3.5]). Let =,y € IR%O (the set of d-dimensional vectors of mon-negative

real numbers). Then
T <wy implies z' <y 9y (2.10)
forallt > 1.

Lemma 2.4 (See, e.g. [81, Section 2.2|). Let f be a monotonically increasing function on the real line.
Then A <X B implies

Tr[f(A)] < Tr[f(B)]. (2.11)

Lemma 2.5 (Matrix Holder’s Inequality [67, Corollary IV.2.6]). Let A, B € IM;‘. Then

1

Tr[AB] < (Tr [A%])e (Tr [Bﬁ])l_e (2.12)
for all 0 <6 < 1.
Lemma 2.6. Let A, B € Mit. Then, for everyt >1 and 0 < 7 < 1, we have
Tr [(A#,B)"] < Tr [AtU—ﬂBﬂ . (2.13)

Proof of Lemma 2.6. From Lemma 2.1, we have

A (A#:B) <w A (A77B) (2.14)
)\ (A“#BTA“#) (2.15)

1
Y <(At(127> BtTAtu;T)) z> ’ (2.16)

where we employ the fact that A(XY) = A(Y X) for any two square matrices X,Y in Eq. (2.15) (see e.g.
[82, Example 1.19]). The last inequality (2.16) follows from Eq. (2.8) in Lemma 2.2. Next, applying

Lemma 2.3 on the above inequality yields

t(l—7) t(l—T))
. (2.17)

A((A#B)) <w A (A5 B AT

Finally, since the trace function is the summation of eigenvalues, the weak majorization in Eq. (2.17)

implies the trace norm inequality in Eq. (2.13). O

Lemma 2.7 (Golden-Thompson Inequality [60, 61]). For any two For any two operators A, B > 0, it
follows that

Tr [eA+B] <Tr {eA eb} . (2.18)

Moreover,
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Lemma 2.8 ( [85, Theorem 1|, [86, Theorem 2| ). For any two operators A, B >0, and t € [0,1], we

have

Tr [A'B'™'] > Tr[{A— B >0} B] + Tr[{A— B < 0} 4] (2.19)
=Tr[A+B—-|A-BJ/2 (2.20)

Lemma 2.9 (Hayashi-Nagaoka Inequality [87, Lemma 2| ). For operators 0 < S <1, and T > 0, we

have
I—(S+T)28(S+T)"2 <2(L—S)+4T. (2.21)
Lemma 2.10 ( [88, Lemma 1|). For any two operators A, B >0, and t € [0,1/2], we have
Tr [A'B™'] >Tr [{A"" =B >0} B] + Tr [{A'" = B! <0} 4]. (2.22)

Lemma 2.11 ([82, Theorem 3.23]). Let A, X be d x d Hermitian matrices, and t € R. Assume
f I — R is a continuously differentiable function. Then

4 Tr f(A+tX) = Tr[X f(A + to X))
dt —to

Lemma 2.12. For all positive semi-definite operators A, B s € [0,1] and v > 0,

I(A+71)° = (B+71)°[lo < (I4 = Blloo +7)° =" (2.23)

Proof of Lemma 2.12. The proof follows similar argument in Ref. [89]. Since the claim holds trivially
for s € {0,1}, we only prove the case of s € (0,1). Recall the integral representation: for s € (0, 1),

sinsm [ ., A+~1
A+ A1) = / gy, 2.24
(A+71) T Jo A+ (v+ 1)1 (224)
i o t1
_sm S”/ o1 [11 - |4 (2.25)
L A+ (y+1)1
Then, it suffices to prove
tl Al H t t
_ (2.26)
HB+(7+t)11 A+ (v+0)1||,

< — .
T+t A= Bl +y+t
We first show Eq. (2.26) with the assumption A — B =: C' > 0. Replacing B and C by B/t and C/t
respectively and denoting z := 1+ ~/t, Eq. (2.26) is equivalent to
H(B b)) — (B+C+21)! H <zt = (|C)loo + )7t (2.27)
o0

= [+ - c+en) . (2.28)

e}

Since

(B+z1)' —(B+C+a1)"

1 1 1 -1 1
= (B+al)"2 (11 - [(B o) EC(B+al) T + 11]) (B +21)73, (2.29)
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the sub-multiplicativity of operator norm thus yields

H(B—i—x]l)_l . (B+C+:c]l)_1Hoo (2.30)
< H(B +o1)75| H]l - ((B Yal) 2 C(B+al) 11)_1 H(B +a1) | (2.31)
<z t1- ((B+x11)—%C(B+x11)—% +11)_1 (2.32)

Further, the fact
Cz (B+21)"'C2 <a27lC. (2.33)

implies that

21— ((B tal) 2 C(B+al) 2+ 11)_1 =z 1|1 - (C% (B+a1)" O3 + 11)_1 (2.34)
) <zl H]l ~ (a0 + 11)””00 ) (2.35)
- Hx_lll - (C+x11)‘1H , (2.36)

o

which establishes Eq. (2.28).

Lastly, we consider the general case A, B > 0. Denoting by f(u) := (u+ 7)%. It is clearly that
u +— f(u) is an operator monotone function (see e.g. [67, Theorem V.1.9]). Then, the inequality
0< A< B+ (A—- B); implies

f(A) = f(B) < f(B+(A-B)+) - f(B), (2.37)
which in turn yields
[(f(A) = f(B) |l o S IF(B+ (A= B)y) = f(B)ls - (2.38)
On the other hand, the established Eq. (2.23) with the pair {B + (A — B), B} leads to

[f(B+(A=B)+) = f(B)llo < FII(A = B)+llo0) = f(0) (2.39)
= [[/((A=B)4) = FO)T] - (2.40)

Combing Eqgs. (2.38) and (2.40) gives

[(£(A) = F(B)) 4o < /(A= B)+) = f(O)L]] - (2.41)

Exchanging the role of A and B, we have

[(£(B) = F( )i < IF((B = A)4) = fO)L] - (2.42)
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Then, our claim holds as follows:

1F(A) = F(B)lloo = 11/ (A) = F(B)[ ]l (2.43)
= [(F(A) = f(B)), & (F(B) = F(A) |, (2.44)

< [[F((A=B)+) = FO] & [f((B = A)+) = FO)L]] (2.45)

= [lf(|A = B[) = f(O)1] (2.46)

= (1A= Bll,) = f(0). (2.47)

O

Lemma 2.13. [90, Corollary 3.6/ Let A; be m x m positive semi-definite matriz and Z; be n x m

matriz for i = 1,..., k. Then, for all unitarily invariant norms || - || and v > 0, the map

k P
. H (Z Z;*Af/pzi)
=1

is jointly log-convez on (0, +00) x (—o0, +00).

(2.48)

2.2 Large Deviation Theory

In this section, we will see that the Lengendre-Fenchel transform is closely related to the error-exponent

function of hypothesis testing and channel coding. Consider the following binary classical hypotheses:

H0:pn =Dz @ Pry @Dy (2'49)

Hl:qn ::qm ®Q:c2®(b:na

where p,,, g, are probability mass functions; and z; belongs to some finite alphabet X and n € IN be

fixed. Given any r > 0, recall the definition of the error-exponent function in Eq. (4.7):

utr) = () = swp {2 (Lo, ey - )b (2.50)

a€e(0,1] «Q

Without loss of generality, we assume that p" < ¢" have the same support since elements of g,,, that
do not lie in the support of p,,, do not contribute to ¢, (r).
Let Z be a random variable with probability measure p. Further, we assume Z is finite on supp(u).

The cumulant generating function (c.g.f.) of Z is defined as
A(t) :==1logE, [¢”/], teR. (2.51)
The Lengendre-Fenchel transform of A(t) is

A (z) == 11]11:{) {zt — A(t)}. (2.52)

Such a transform plays a significant role in concentration inequalities, convex analysis, and large

deviation theory [27].
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Let Pyn be the empirical distribution of the sequence x™ = z1xo...x,. Let Zy = logg—: with

probability measure p”, Z; = log Z—: with probability measure ¢”, and denote

1
AQ&n@y:;{ngp (7] =3 " Pen() Ao, (1),
zeX

1 (2.53)
A17pxn( ) : n log]E tZl Z Pxn A1 T )
TEX
where
tlog tlog bz
Aoz, (t) :==log E,,. |e "Iz ;o Aig,(t) i=log Eq, |e "™, (2.54)

Rewrite the right-hand side of Eq. (2.50) with a = and observe that

1
1+s?

Z&lmlwwzﬂ+mm«s> (2.55)

reX 1+
= B (s, Pen). (2.56)

Then the error-exponent function in Eq. (2.50) can also be viewed as a Lengendre-Fenchel transform
(2) .
of Ey” (s, Pxn):

¢n(r) = sup {ESQ)(S, Pyn) — sr} . (2.57)
s>0

The following lemma relates ¢,(r) to AZ p  (2), the Lengendre-Fenchel transform of Eq. (2.53):

Ajp (2) = Sup {tz = Ajpa (D)}, j€{0,1} (2.58)

Lemma 2.14 (Regularity). Let p™ and q", n € IN, be described as above. Assume r > %DO (p"1¢"™)
and ¢n(r) > 0. The following hold:

(a) Ag p_,(t) >0 for all t € [0,1].
(b) A p (Dn(r) —7) = Pn(r).
(¢) M py (r=on(r)) =7

(d) Let t* :=ty p . be the optimizer of Aj p , (2) in Eq. (2.58), and s* := sy p . be the optimizer of
¢n(r) in Eq. (2.57). The optimizer t* € (0,1) is unique, and satisfies Ay p, (t*) = ¢n(r) — 7.

) —1
s§=s8*

*

In particular, one has t* = 1_“;5* ;8 = 78@55;’/‘) ; and %T”Q(T) = <

82ES? (5,Pen)
0s2

3
1+T
(Agi:(t*))>0-
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Before proving Lemma 2.14, we will need the following partial derivatives with respect to ¢:

Qz; Pz,
) = Ei flog 22| N (0 = B frog 2. (259)
" . qx; " Dzx;
o,z,-(t) = Varqxi’t [logp } , l,mz( ) = Vaurqz G [log ] (2.60)
o xz‘

where we denote the tilted distributions for every i € [n] and t € [0, 1] by

Pz, ("J)lit%i (w)t

Go; t(w) 1= - ,  w € supp(pa,)- (2.61)
’ Zw€supp(pzi)p$z‘ (w)l thi (w)t ¢
It is also easy to verify that
Aog,(t) = A, (1 —1),  Agg, (1) = A1, (1—1), AG,,(t) = A7, (1-1). (2.62)

This lemma closely follows Ref. [91, Lemma 9]; however, the major difference is that we prove the
claim using ¢, (r|p"||c™) in Eq. (4.7) instead of the discrimination function: min {D (7||p) : D (7]jo) < r}
in Eq. (9.20). This expression is crucial to obtaining the sphere-packing bound in Theorem 11.1 in the
strong from, cf. Eq. (1.4), instead of the weak form, cf. Eq. (1.5).

Proof of Lemma 2.1/.

(2.14-(a)) We will prove this statement by contradiction. Let ¢t € [0,1], Assuming that Agp () = 0,
implies Ag ,.(t) = 0, Yz € supp(Pxn). Recall from Eq. (2.60)

0= Ag.(t) = Varg,, [log qm] , (2.63)

xX
which is equivalent to
pe(w) = ge(w) - e 0@ Vi € supp(py). (2.64)
Summing both sides of Eq. (2.64) over w € supp(p,) gives

1="Tr [plq.] e Noa(®) (2.65)

Then, Egs. (2.64) and (2.65) imply that

¢n(T) - 02101}21 a <7" - Z Px" pa:HQa:)) (266)

zeX
= sup A Z Pyn(x)log Tr [pqu] (2.67)
0<a<l & ex
—0, (2.68)

where Eq. (2.68) follows since 7 > 1Dy (p"||¢") = =1 3, ey Pun(2) log Tt [pg.] by assumption.

However, this contradicts with the assumption ¢, (r) > 0. Hence, we conclude item (a).
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(2.14-(b)) Observe that E(SQ)(S, Pyn) — srin Eq. (2.57) is strictly concave in s € R>¢ since

82E(()2)(s Pyn) 1 s
X = A/ — ] <0 2.69
882 (1 + 8)3 07Pxn <1 + S) 9 ( )
owing to Eqgs. (2.56 2.60), and Lemma (a). Moreover, s = 0 cannot be an optimum in
g gs. (2.56), (2.60), ; D

Eq. (2.57); otherwise, it will violate the assumption ¢,(r) > 0. Thus a unique maximizer
s* € R~ exists such that

On(r) = —sr + E((]2)(s*, Pxn) (2.70)
s* s* s*

=— A — | = A — . 2.71

1+$* O,Pxn <1+S*> 07Px" (1"‘8*) ( 7 )

where in the second equality we use Eq. (2.56) and

OE (s, Per)
=4 =7 2.72
r s B (2.72)
1 ; s* s*
= T g 0 <1+s*> ~Aopen <1+s*>’ (2.73)
Comparing Eq. (2.71) with (2.73) gives
My () = gur) - (2.74)
O,Pxn 1 + S* - n bl .
which is exactly the optimum solution to Af p , (2) in Eq. (2.58) with
S*
t* 1 2.
e, (2.75)
2= ¢p(r) —r. (2.76)
Hence, we obtain
AG pn (Dn(r) —7) = "2 = Ao, P (T7) (2.77)
s* s*
= () — 1) — Ao p 2.
o 0u) =)~ o (1) 219
s s s*
_ A — )= Aop. 2.79
14 s O <1+S*> 0-Fx <1+5*> (2.79)
= on(r), (2.80)

where Egs. (2.74) and (2.71) are used in the third and last equalities.

(2.14-(c)) This proof follows from similar arguments in item (b) and Eq. (2.62). Egs. (2.74) and (2.62) lead

to

) 1
Al p. <1+S*> =7 — ¢n(r), (2.81)
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which satisfies the optimum solution to Ay p, (2) in Eq. (2.58) with t* = ﬂls—* € (0,1) and
z =1 — ¢n(r). Then,

Aipxn (T - d)n(r)) = t*Z - Al,Pxn (t*) (282)
1 s*
- 1 4 g* (T - ¢n(r)> - Al,Pxn (1 + S*) (283)
_ 1 / 1 1
- 1+S*A1,Pxn <1+S*> A1, pen <1 +s*> (2.84)
=0 (2.85)

where the third equality is due to Eq. (2.81), and the last equality follows from Eqs. (2.62) and
(2.73).

(2.14-(d)) The fact that a unique optimizer t* € (0,1) exists such that Ay p, () = én(r) — r follows
directly from Egs. (2.74), (2.75) and Ag p_, (t) > 0, for t € [0, 1].

Moreover, Egs. (2.70), (2.72), and (2.69) yield

a¢n(T) Lk
o =S (2.86)
Poulr) _ 05" _ (62E52’<5,Pxn>>‘1 sy (287)
87“2 a 87‘__ 382 _A <L>’ '
S:S* O,Px’n 1+8*
which completes the claim in item (d).
O

Let (Z;);-, be a sequence of independent, real-valued random variables with probability measures
(mi)i_;. Let A;(t) :=log E [e'%] and define the Legendre-Fenchel transform of 1 3% | A;(-) to be:

1 n
A (z) :=supqzt—— ) Ai(t)p, VzeR. 2.88
(2 temp{ 9 <>} (2.89)
Then there exists a real number t* € (0, 1] for every z € R such that
1 n
— A/, +*): 2.89
P2 N (2.89)
1 n
AN (2) = 2" — = A (t9). 2.90
e = Do) (2.90)
Define the probability measure ji; via

d~i Yo AL (4K

dzi (2;) = "5 M), (2.91)

and let 7Z; := Z; — E;, [Z;]. Furthermore, define mo,, := > ;" | Varg, [ZZ-], msg, =y o Eg, “Z,;ﬂ,

and K, (t*) := 15\/5% With these definitions, we can now state the following sharp concentration
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inequality for 2 S°" | Z;:

n

Theorem 2.1 (Bahadur-Ranga Rao’s Concentration Inequality [91, Proposition 5|, [48]). Provided
that /Mg, > 1+ (1+ K, (t*))?, then

o~ Kn(t)

1 — .
Pr{ =N "Z >z >l = 2.92
{n ; ' = } - 2,/27rm2,n ( )

Chaganty and Sethuraman in Ref. [49, Theorem 3.3| considered a more general sequence of random
variables {Z, }nen, which are not necessarily the sum of random variables.

Let (X;);cy be a sequence of independent, real-valued random variables with probability measures
(1i)iy. Let Z, := 31" X; and let Ap(t) := logE [e'?"]. Define the Legendre-Fenchel transform of

%An() by:

A (z) :=sup {zt — 1An(t)} , VzeR. (2.93)
teR n

Let (Ty),,cy be a bounded sequence of real numbers and (t}),,.v be a sequence satisfying for all n € IN
* 1 ! (4% * * 1 *
tr€(0,1); T,= ﬁAn(tn); AN (Ty) =Tht), — EAn(tn)- (2.94)

With these definitions, we can now state the following sharp concentration inequality for %Zn:

Theorem 2.2 (Chaganty-Sethuraman’s Concentration Inequality [49, Theorem 3.3] ). For any n €
(0,1), there exists an No € N such that, for all n > Ny,

Pr {1Zn > Tn,} > T exp{—nA%(T)}, (2.95)
n

T try/2mnma,

where My, == %Z?:l Varg, , [Xi], and the measure i, ; is defined via

d/j‘n,i( - evtn
du; T BN

(2.96)

Remark 2.1. Chaganty and Sethuraman proved Theorem 2.2 provided that the following condition is
satisfied: there exists dg > 0 such that for any 6 and A with 0 < § < do < A, supspy<re: lexp{An (8, +it)}/ exp{An(t
o(1/4/n), where the supremum is defined to be 0 if {t : § < |t| < At} } is empty. In the case of Z,, being
a sum of random variables, exp{A, (¢t} +it)}/ exp{A,(¢})} is the product of the characteristic functions
of {X;}7,. Since the supremum of a characteristic function on a compact interval not containing 0 is
less than 1, this condition is thus satisfied.
We note that the lower bound in Theorem 2.2 for the general sequence of random variables (X;),cpy
suffices to establish the converse bound in moderate deviation analysis for c-q channel coding, The-
orem 12.2 in Chapter 12 later. We do not particularly consider the case of lattice valued random
variables (see e.g. [49, Theorem 3.5]). <&
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Chapter 3

Quantum Entropic Quantities and

Notation

In this chapter, we introduce necessary notation in quantum information theory. In Section 3.1, we
present various quantum generalizations of the classical Rényi divergence [92], and their mathematical
properties. As we will see in quantum hypothesis testing discussed in Chapter 4, some specific defini-
tions of the quantum Rényi divergence naturally arise in the exponent function. In Sections 3.2 and
3.3, we define the conditional Rényi entropies and Rényi mutual information, which play significant
roles in th Parts IT and 111, respectively. We refer the interested readers to books [93, 50, 8] for more

comprehensive discussions.

Notation. Throughout this thesis, we consider a finite-dimensional Hilbert space H. The set of density
operators (i.e. positive semi-definite operators with unit trace) and the set of full-rank density operators
on H are defined as S(H) and S(H).,. For p,o0 € S(H), we write p < o if the support of p is
contained in the support of . The identity operator on H is denoted by 14. If there is no possibility
of confusion, we will skip the subscript H. We use Tr[-] as the standard trace function. Let IN, R,
R>o, and R~ denote the set of integers, real numbers, non-negative real numbers, and positive real
numbers, respectively. Define [n] := {1,2,...,n} for n € IN.

For a positive semi-definite operator A whose spectral decomposition is A =) . a;P;, where (a;);
and (P;); are the eigenvalues and eigenprojections of A, its power is defined as: AP := 3, . £0 al'P,.
In particular, A% denotes the projection onto the support of A. We use supp(4) to denote the support
of the operator A. Further, A | B means supp(A) N supp(B) = 0.

Given a pair of positive semi-definite operators p,o € S(H), we define quantum relative entropy
[94, 95] as

D(pllo) := Tr [p (logp — logo)] . (3.1)

We define two types of the quantum relative entropy variances [14, 15, 16] by
V(pllo) := T [ (log p — log 0)?| = D(p|jo)? (3.2)

_ 1
V(pllo) = [ atTr o'~ oz~ og o)y (108 p  log)] = Dol (3.3)
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They are defined to be +00 when p &« o We note that when p and o commute, D(p||o) reduces to the
classical Kullback-Leibler divergence [96]. It is well-known that both the quantities are non-negative,

and D(p|lo) = 0 if and only if p = o, which in turn shows that

V(pllo) >0 implies D(pl|lo) > 0. (3.4)

3.1 Quantum Rényi divergence

For density operators p,0 € S(H) and every a € [0,1), we define the following two families of

>0
quantum Rényi divergences [59, 57, 58]:

L 108Qalplo). Qulpllo) = Tr 0" ] (3.5)

1 —Q) 10g o
D3 (pllo) = —— 108 Qa(pllo),  Qh(pllo) = Tr [ rzrtlize)ioga] (3.6)

Da(pllo) :

We term the above quantities as the (Petz) a-Rényi divergence, and the log- Euclidean a-Rényi diver-
gence, respectively. The log-Euclidean Rényi divergence arises from the log-FEuclidean operator mean
(also called the chaotic mean): ACLB := exp ((1 — a)log A+ alog B) for 0 < o < 1. For general
density operators p,o € S(H), the above definitions can be extended as

Qulpllo) = i Qulp + 310 +51) and Qu(pllr) = Jim Q4o+ oLl +51). (1)
For a = 1, we define (see e.g. [58, Lemma III.4]):

Qi(pllo) :=Tr [po°] and  Qj(pllo) :== Tr [po?]; (3.8)
Di(pllo) := lim Da(pllo) = D(pllo) and  Di(pllo) := lim Dg(pllo) = D(pllo).  (3.9)

In addition, these two quantities are related by the Golden-Thompson inequality given in Lemma 2.7:

Q% (pllo) < Qalpllo), Yo € [0,1]. (3.10)

The log-Euclidean Rényi divergence is closely related to the quantum version of the Hellinger arc
in statistics [97, 98], [58, Seciont III]. Lemma 3.1 will useful to prove the variational representations in

Sections 5.1 and 9.1 later.

Lemma 3.1 (|58, Theorem IIL.5|). Let p,7 € S(H) with p < 7. For all s > —1, it follows that

min D(c||p) + sD(o||7) = sD°1 (p||7). (3.11)
o€S(H) T+s

In the following, we provide useful mathematical properties. Most of them can be found in Refs. |99,
58, 100].
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Lemma 3.2. Let p,o € S(H). Then,

o 10g Qu(pllo) and o — log Q’,(pllo) are convex on (0,1); (3.12)
a— Dy, (p|lo) is continuous and monotone increasing on [0, 1]; (3.13)
Va e (0,1), (p,0) — Q(pllo) is jointly concave on S(H) x S(H); (3.14)
Va € [0,1], o= Dy(pllo) is convex and lower semi-continuous on S(H). (3.15)

For every p € S(H) and v > 0, the map
(o, 0) = Qo (pllo + 1) is continuous on [0,1] x S(H). (3.16)

Moreover, for every p € S(H), the map
(a,0) = —Qq (pllo) is lower-semicontinuous on [0,1] x S(H), (3.17)

and the same argument holds for D,,.

Proof of Lemma 3.2. We note that Eqgs. (3.12), (3.13), (3.14), and (3.15) are proved in [99], [58, Lemma
I11.3, Lemma II1.11, Theorem III1.14, Corollary II1.25], [100, Corollary 2.2]'. We only prove Egs. (3.16)
and (3.17).

Fix arbitrary v > 0, oy € [0,1], p,o1 € S(H), |lo1 — 02]|ec < €1, and |a1 — ao| < e9. Triangle
inequality implies that

|Qay (pllor +91) = Qay (plloz +y1)| < |Qa, (plloz + 1) — Qay(plloz + 1)

(3.18)
+1Qay (pllor + 1) — Qa, (plloz +41)] .

In the following, we upper bound the two terms in the right-hand side of Eq. (3.18), respectively.

Without loss of generality, we assume a; < ag. Direct calculation shows that

Tr {Pm (02 + 1) 7 — p2 (09 + 711)1_60}

Tr [po” (po —p®2 T (o2 + fyll)*(ar“l)) (o2 + 711)1*“1]

|Qas (plloz + 1) = Qay(plloz +71)| = (3.19)

(3.20)
<d ’ P (pO —p* " (o2 + 711)*(”*‘“)) (o2 + 1)
(o.9]
(3.21)
<d[p™ HPO — P20 (o 4 1) (@2 H(m +1)
o o
(3.22)
< d(1+7) [ = p™ 7 (o 4 1)) (3.23)
[ee]
For sufficiently small g9, it follows that
Hp() — 2T (g ,y]l)f(azfal) -1 _ S\min (pazfal (g + ,y]l)f(ozzfal)) 7 (3.24)
o0

'Tt was shown in [58, Lemma IT1.22] that the map o ++ Dq(p||o) is lower semi-continuous on S(#) for all « € (0, 1).
The argument can be extended to the range a € [0, 1] by the same method in [58, Lemma III.22].
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where we denote by Amin the smallest non-zero eigenvalue. Further, using [67, Problem II1.6.14], we

have
S\min (pag—al (0'2 + ’7]1)7(04276”)) > S\min (paQ_al) S\min ((02 + ’7]1)ﬁ(a2*a1)> (325)
5\mln (P) e
> 3.26
> A (326)

Combining Egs. (3.24) and (3.26) yields

as—aq
0 oag—a —(az—al) _ )\min (p)
Hp p (o2 +71) = T+ (3.27)
>\min
= (g — 1) I +($) + o(ag — aq) (3.28)
S\min
< &9 1 —i-(’;/O) + 0(82). (329)
Hence, Eqs. (3.23) and (3.29) give

Amin (p)

Qe (plloz +71) = Qs (plloz +71)| < e2d(1 +) | =7 ol s o(ea). (3.30)

Next, we upper bound the second term in Eq. (3.18). Hélder’s inequality given in Lemma 2.5 leads

to
T [ (o1 49D = (o2 49D ) || < o™y [[(o1 +9D)! ™ = (o2 +9D) ™| (33D)
<d H(a1 +91)' 7 = oz + 1) (3.32)
Then, we apply Lemma 2.12 in Section 2.1 on Eq. (3.32) to obtain
Qay (pllor + 1) = Qu (plloz + A1) < (1 +7)' 7 =417 ]. (3.33)

Egs. (3.18), (3.24) and (3.33) thus give

:\min (p)

Qo (pllor + 1) — Qay(plloz +91)| < &2 Tty

+d [(51 + )t - 'yl_o‘l] +o(e2).  (3.34)

This implies that, for any a1 € [0,1] the left-hand side becomes arbitrary small as €1,e2 — 0, which
concludes the continuity of («, o) — Qa(p|lo +~1). The assertion for D, follow immediately. O

Let X = {1,2,...,|X]|} be a finite alphabet, and let P(X) be the set of probability distributions
on X. Let W: X — S(H) be a c-q channel. We denote a c-q state by:

PoW:= )" P(x)z)(z| @ W,. (3.35)
TEX

We also express the input distribution P € P(X) as a diagonalized matrix with respect to the compu-
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tational basis (|x))zex, i.e. P =) .y P(x)|z)(z|.
We define the conditional quantum relative entropy of two sets of density operators W, W and
P e P(X) as

D (W|W[P) := Y P(x)D (Wa|[Ws.) . (3.36)
reX

Similarly, we define the following conditional entropic quantities for o € S(H) and P € P(X):

D (W||o|P) : E;(P D (W,o), (3.37)
o (W] P) : xez;(P o (Wallo), (3.38)
V (W|o|P) : xi:(P V (Welo), (3.39)
V (W|o|P) : %{P V (Walo). (3.40)

3.2 Conditional Rényi Entropy
For pap € S(AB), a > 0 and t = { }, or {b}, the quantum conditional Rényi entropies are given by
Hy'(A|B), = sup =D, (paplla®op),
ocp€S(B) (341)
HyH(A|B), = D, (pasl1a @ p) -

In (3.41) When o« = 1 and ¢t = {},{b}, or {x}, both quantities coincide with the usual quantum

conditional entropy:
H{(A|B), = HI*(A|B), = H(A|B), := H(AB), — H(B),, (3.42)
where H(A), := —Tr[palogpa] denotes the von Neumann entropy |5].

Proposition 3.1 (Properties of a-Rényi Conditional Entropy). Given any classical-quantum state
pxp € S(XB), the following holds:

a) The map o — Hg X|B), is continuous and monotonically decreasing on |0, 1].
p
(b) The map o — 1?T“"ng(X]B)p is concave on (0,1).

Proof of Proposition 3.1.
(3.1)-(a) Fix an arbitrary sequence (o )ren such that ag € [0, 1] and limg_, 1o o = oo € [0,1]. Let

oy € argsr(rii[?Dak (pxBlllx ® o), Vke NU{+o0}. (3.43)
[4S
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The definition in Eq. (3.41) implies that

lim sup Hgk(X|B)p = —liminf D,, (pxg|1lx ® o) (3.44)
k—s—400 k—-+o0
< —Dg, <PXB Ix® < lim 0'2)) (3.45)
k—4-o00
< — min D, 1 3.46
<=, min Do (pxsllx ®0) (3.46)
=H! _(X|B),, (3.47)

where, in order to establish (3.45), we used the lower semi-continuity of the map o — Dy, (pxB||1x®
o) (see Eq. (3.15) in Lemma 3.2) and the continuity of a — D, (pxB|1x ® of) (Eq. (3.13) in
Lemma 3.2).

Next, we let

o = (1 —eg) oi + €k VEk e IN, (3.48)

E:

where (ex)rew 1S an arbitrary positive sequence that converges to zero. Then, it follows that

lim inf Hlk (X|B), > —limsup {Dq, (pxB|[lx ® o)} (3.49)
k=00 k—+o0
= —Da,, (pxBllx ® %) (3.50)
=H}_(X|B),. (3.51)

Here, equality (3.50) holds because 1x ® o > pxp for all £ € INU {4+00}. Thus, the map
(o, 0k) = Do, (pxBl|Lx ® o) is continuous for k£ € NU {+oo}. Hence, we prove the continuity.

Now, we show the monotonicity. For all op € S(B), Eq. (3.15) in Lemma 3.2 implies that
—D,(pxp||1l ® op) is monotonically decreasing in o > 0. Since Hl(X\B)p is the pointwise
supremum of the above function, we conclude that HQ(X |B), is monotonically decreasing in

a > 0. Hence, item (a) is proven.

(3.1)-(b) For convenience, we make a substitution @ = 1/(1 + s). The concavity for s > 0 can be proved
with the geometric matrix means in [36]. Here, we present another proof by the following matrix
inequality. Let pxp = > cx P(@)|2){x| @ Wy, t =y =1,i =z, k = |X|, A; = P(x)W,, and
Z; = Iy m. We obtain the log-convexity of the map by applying Lemma 2.13:

p s Tr (Z(P(m)Wz);> . Vp>o0, (3.52)
rzeX

which is exactly the concavity of the map s — SHI/( (X|B), for all s > 0.

1+s)
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3.3 Reényi Mutual Information

The mutual information of a c-q channel W : X — S(H) with a prior distribution P & P(X) is defined
by

I(P,W) := D (PoW||P® PW) = D (W|PW|P), (3.53)

where PoW := 3" P(z)|z)(z|® W, and PW :=}"__, P(x)W,. Hence, the information radius or
information capacity’ of W : X — S(H) is

Cyw:= sup I(P,W). (3.54)
PeP(X)

The conditional information variance and the unconditional information variance of W : X — S(H)
with a prior distribution P € P(X) are defined, respectively, by
V(P,W) = V (W] PW|P),

(3.55)
U(P,W) :=V (PoW|P® PW).

Note that V(P*, W) = U(P*, W) for every capacity-achieving distribution P* € P(X), i.e. I(P*,'W) =
Chy, can be easily verified from the similar argument in [12, Lemma 62]. We also define the uncondi-

tional information variance in terms of V(p||o):
V(P,W) :=V (W[ PW|P). (3.56)
The minimal peripheral information variance and its variant are defined by

Vi = inf V(P,W 3.57
w Pe(P(X):llr(lP,W)zcw (P W), (3:57)

Vw = inf V(P,W). 3.58
w Pe?(X):llr(lP,W):(]w (7W) (3.58)

Furthermore, one can easily verify that

Vip >0 implies Chy > 0. (3.59)

In the following, We define two related information quantities: for every a € [0, 1],

IN(PW) = inf Do(PoW|P®0c); (3.60)
ceS(H)

IP(PW):= inf D, (W|c|P). 3.61

& (P,W) Lot (Wlle|P) (3.61)

The term I&l)(P, W) is called the a-Rényi mutual information [104, 64, 58, 105] or the generalized
Holevo quantity. The second term IC(?) (P,'W) can be viewed as a variant of the a-Rényi mutual infor-

mation, called a-Augustin mutual information [106, 107]. It can be verified that these two functions

2We note that Cy equals to the capacity of classical communications over quantum channels [101, 102, 103]. It is
usually term classical capacity [50], though it is a quantity in quantum information processing.
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are related by Jensen’s inequality:
IV(P,W) < I®(P,W). (3.62)

For the case of a = 1, they both equal conventional mutual information, i.e. Ifl)(P, W)= [fz)(P, W) =
I(P,W). Mosonyi and Ogawa [58, Proposition IV.2| showed that for all a € [0, 1],

Corw = sup ID(P,W)= sup IP(P,W), (3.63)
PeP(X) PeP(X)

and it is termed the Rényi radius or the Rényi capacity of order ae. Moreover, Proposition 3.2 below
and the compactness of P(X') show that the suprema in Eq. (3.63) can be replaced with maxima.

We note that IS admits a closed form for a € (0, 1] due to the quantum Sibson’s identity below.
The minimizer in Eq. (3.61) will be studied in Proposition 3.2.
Lemma 3.3 (Quantum Sibson’s Identity [108]). Fiz an o € (0,1]. Let pap € S(AB) and let o7 be
the minimizer of min, cs(p) Do (paBllpa ® o). Then, one has

. (TralpipdE
Tr [(Tra [035]) ]

The following proposition presents important properties of a-Rényi mutual information and radius.

g

(3.64)

Proposition 3.2 (Properties of a-Mutual Information and Radius). Given any classical-quantum
channel W : X — S(H), the following holds:

(a) For every P € P(X), a — Lg?)(P, W) is monotone increasing on [0,1], and Ig)(P, w) <
log min{|X|,d} for all o € [0, 1].

(b) The map (o, P) +— & (P,W) is continuous on [0,1] x P(X).
(¢) For every (o, P) € (0,1] x P(X), there exists a unique oo p € S(H) such that
I®(P,W) = Do (W|ow,p|P), (3.65)
and
Ta,p(o) =0 and 0 > PW if and only if o = o4 p, (3.66)
where the map To p : Spw(H) = S(H) is defined as

l—a ey
oz Wio 2

Ta,p(0) = ) Pla) Wagt=a] (3.67)

(d) The map (o, P) — 04 p is continuous on (0, 1] x P(X).

(e) The map o — Cyw is continuous and monotone increasing on [0,1].

Proof of Proposition 3.2.
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(3.2)-(a) Recalling the definition of 1? given in Eq. (3.61). The statement immediately follows from
Eq. (3.13) (see also |58, Lemma IV.5]) because the minimization over ¢ € S(?) preserves the
monotonicity. Hence, we have IéQ)(P, W) < I;(P,W) < logmin{|X/|, d}, where the last inequality
follows from the well-known upper bound for the Holevo quantity (see e.g. [5, Chapter 12]).

(3.2)-(b) Fix an arbitrary sequence (ag, Px)ren such that oy € [0,1], P, € P(X), and limp— 400 (g, Pr) =
(O&o,Po) S [0, 1] X iP(.)C') Let

Ok = Oqy,p, € argmin Dy, (W|o|P;), Vke . (3.68)
c€ES(H)

We first choose a subsequence {k;};c such that

lim inf I2) (P, W) =

k——+o0 Xk

1) (P, W). (3.69)

lim
l—+o00

Since S(H) is compact?®, there exists a convergent subsubsequence {k;, }men such that lim,, 1 Ok, =

oo for some oy € S(H). Then, we have

lim +lgof I (P, W) = Jm Do, (Wllow,, |Pr, ) (3.70)
= mgriloo Doy, (Wllow,. | Po) (3.71)

+ lim > [Py, (x) — Po(x)] Doy, (Willo,,) (3.72)

TeX

> mLHJrrloo Daklm (W||0klm|P0) (373)

> Do, (W|loo| Po) (3.74)

> min Dy, (W||o|P 3.75

= i o Wllo|P) (3.75)

=I2(P, W), (3.76)

To see why inequality (3.73) holds, we observe that supp(FPy) C supp(Px) for all sufficiently
large k € IN Further, the upper bound of Lg?)(P, W) < logmin{|X|,d} (item (a)) implies that
Do, (Wyllok) < % for all « € supp(Fy). Hence, for 2 € supp(F) and for all sufficiently
large m € IN, one has Py, (z) — Py(r) and Day, (Wellok, ) is bounded away from +oc. On
the other hand, Py, (v)— Py(x) > 0 for x ¢ supp(Fy) and all sufficiently large m € IN. In order
to establish (3.74), we used the lower semi-continuity of the map (a,0) — Dq(Wy||o) for all
x € supp(FPp) in Eq. (3.17) in Lemma 3.2.

Next, we let

ok = (1 —ex) Oap,py + €k Vk € IN; (3.77)
1P — Polly

2

Ev

(3.78)

8 Again, the compactness is with respect to the trace norm topology, we transit to the operator norm topology by the
finite dimension of the Hilbert space.
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The definition of Ig) yields

limsup I2) (P, W) < limsup { Do, (W||5%|P)} (3.79)

Qg
k—+o0 k—+o0

= limiup {Dak (W||ok| Pxo) + Z [Pr(z) — Po(x)] Doy (WIHEk)} (3.80)
oo TEX

< limsup {Dq, (W|ok|Po)}

+ lim sup {Z [Pr(x) — Po(x)] Day, (WxH&k)} ;
k—+oo TeEX

where equality (3.80) follows from the definition L(XQ). Inequality (3.81) is due to the subadditivity
of superior limits. Then, the convexity of o — D, (W|o|P) implies that

timsup { Do, (WIFK|F)} < limsup {1~ k) Do, (Wiloreo, 7 Po) + e [Day (W 1/l )]}
—+00

k—+o00

(3.82)
= Da, (W||0040,P0’P0) = é%)(Po,W), (3.83)

where the last line holds because of the continuity of o — D, (-||-) on [0, 1] [58, Corollary III.13]and
the finiteness of Dy, (W||1/d| Fy) for all k € IN.

It remains to show the second term in Eq. (3.81) is actually zero. Direct calculation shows that

lim sup {§ * [Pi(x) — Po()] Do <wx||ak>} (3.84)

k=00 zeX

< lim sup {Ek - max Dak(Wngk)} (3.85)
k—+o0 reX

< lim sup {Ek -max Dy, (Wx
TeEX

k—4o00

5’“2) } (3.86)
g)} } (3.87)

= lim sup {Ek . [log er +max Dy, (Wx
TEX

k—4o0

= lim sup ¢, log &k, (3.88)
k—4o0

—0, (3.89)

where Eq. (3.86) follows from the dominance of a-Rényi divergence |8, Section 4[; equality (3.88)
follows the finiteness of D, (W, ||1/d) for all z € X and « € [0,1]. in the last equality (3.89) we

use the convention lim,, o e logey = 0 as €, — 0 Hence, item (b) is proved.

For o = 1, it is well-known that (see e.g. [101]) o1, p = PW. Using the fact PW > W, for all

x € supp(P), the statements are trivial.

We fix an arbitrary (a, P) € (0,1) x P(X) subsequently. Without loss of generality, we may
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further assume

U supp(Wa) = 1y, (3.90)
z€supp(P)

and hence PW has full support. We first show that the minimizer o, p has full support too.
Second, we prove the fixed-point property Eq. (3.66). Finally, we establish the uniqueness of
0a,p. We remark that the uniqueness has been proven by Dalai and Winter [39, Appendix C].
Here, we provide an alternative proof for the completeness. Our approach follows closely from
Hayashi and Tomamichel [104, Appendix CJ.

Define
M (H) := argmin D, (W||o|P) = argmax g,(0) = argmax g4(o) (3.91)
ceS(H) ceS(H) 0€Spw(H)
where
ga(0) == Z P(x)log Tr [Wf‘al_o‘] . (3.92)
reX

To show that the optimizer of g,(-) has full support, we observe that the directional derivative
on the boundary of S(#H) where at least one eigenvalue is zero in a direction that increases its

rank diverges to positive infinite. Namely, it suffices to show

go((1 = t)o +tol) — ga(o)

%1_{1(1) ; = o0, (3.93)
where o € Spw(H) is some singular density operator, and ot := T(r]}ﬁ:f; 7. For € supp(P)

with W, < o, we have W, L o+. It is not hard to see that

log Tr [Wf (1—t)o+ tUL)l_a} —log Tr (Wl

%EI(I] P(x) . (3.94)
_ %E}% P(2) log Tr (W2 (1 — )t -0t~ + tlt_a(aL)l_a)] —log Tr (W] (3.95)
= lim P(a) (1=a) lfg(l ) (3.96)
L —(1—-aw)

= }g% P(:B)li_t (3.97)
= —P(2)(1—a) (3.98)
> —00 (3.99)

where Eq. (3.95) holds because o L ot; Eq. (3.96) is due to W, L o*; and Eq. (3.97) is owing
to L’Héspital’s rule.

On the other hand, since o is singular, there must be some z € supp(P) such that W, & o.
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Tr[We (o)t

Hence, by denoting ¢ := > 0, Eq. (3.95) leads to

Tr[Wool-e]

1 l —a tl a
lim P() oz {(1 ) (3.100)
t—0 t
L —1-—a)1—=t)" 4+ (1—-a)t
— lim P() G (3.101)
= too, (3.102)

where Eq. (3.101) is by L’Héspital’s rule again. Combining Eqgs. (3.99) and (3.102) concludes
Eq. (3.93).

Next, we show the fixed-point property: My (H) = Fo(H), where Fo(H) = {0 € Sso(H)}
denotes the fixed-points of the map: Top : Spw(H) — S(H). A necessary and sufficient

condition for ¢ to be an optimizer is
Owfa(0) = Dgq(0)[w — o] = 0, (3.103)

for all w € S(H), where Dg, (o) denotes the Fréchet derivative of the map g, (see e.g. [104,
Appendix C]). Using the chain rule of Fréchet derivatives, it follows

Wa 11—«

Duga(0) =Tr | Y Plo) T iogt=a] ] (3.104)

reX

O' 2 Waa 2 a 1l &

=Tr | > P(x) T oga]” 020,0 02]. (3.105)

reX

We claim that the operators

{Aw =030 79,07 twe S(H)} (3.106)

span the space of traceless Hermitian operators on S(H). Let o =), A;i)(i| with A; > 0 be the

eigenvalue decomposition. One can verify [82, Theorem 3.25] that

o )\1 [eY 11—«

)\ .

(i1 Aul) = | .
(1—a)@ |w—cr\]>, if \i = A

(3.107)

Therefore, A, is Hermitian and Tr [A,,] = 0 for all w € S(#H). Moreover, the basis of the traceless

Hermitian operators is given by the operators

{Tij = 1)1+ )l Ty =ila) (] = 1) 4], T = )Gl = 13) G}, - (3.108)

For every tuple (¢,7) with ¢ # j there exists an € > 0 such that the state w = o + €I';; is still
in S(H). For this state, we find that A, = nI';; for some real n > 0. The similar argument
applies to I‘;j and F;’] Hence, we have verified that the operators {A,}.c S(#) span the space of

traceless Hermitian operators.

Armed with the above discussion, the condition that 0,,¢,(c) = 0 for all w € S(H) is equivalent
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to the condition that the operators

> Pz )m (3.109)

ayl—a
= Tr [Waol=]
must be proportional to the identity. Thus, the optimum must be a fixed point of the map
Ta,p(")-

Lastly, to prove the uniqueness of the optimizer, it remains to show 92 g, (o) : D?ga(0)[w — o, w —
o] <0 for all w # o and o > 0. Continuing on Eq. (3.104), we have

92ga(0) = =T P(x —5 Ouo' ™| + T P(2) 000
r Z Wao-l a] +1r Z TI‘ Wa oc] WJ
reX zeX
(3.110)
T P(z)——=t 9?0 11
< Tr ; o W%l a]awa ] (3.111)

where Eq. (3.111) holds by noting that 0,0~ # 0 for all w # o. Further, 9201~ < 0 since

u > ul~% is operator concave. Thus, 92g,(c) < 0, item (c) is proved.

(3.2)-(d) We follow the notation in item (d). However, we restrict (ag, Pr)renw and (g, Py) to be in the
set (0,1] x P(X). The continuity of («, P) I&Q)(P, W) in item (b) and Eq. (3.74) thus imply

lim I (Ph.W) = Dag(WlloolPo) = I2) (P, W) = Dag(Wlloag. 2, | Po). (3.112)

k——+o00

Then, the uniqueness of the minimizer o, p in item (c) guarantees that o9 = 04, p,. Hence,

kll)l}_l Oay0r = 00 = Oag,op (3.113)

which proves item (d).

(3.2)-(e) Berge’s maximum theorem [109, Section IV.3], [110, Lemma 3.1] shows that the continuous map
(o, P) 1 (P, W) maximized over the compact set P € P(X) is still continuous for a € [0, 1].

O

d0i:10.6342/N'TU201800597



Chapter 4
Quantum Hypothesis Testing

The goal of this chapter is to provide an introduction to quantum hypothesis testing. In Parts I and
I1T later, our finite blocklength bounds heavily rely on the results in this chapter. In Sections 4.1 and
4.2 below, we present the error exponent analysis, while the moderate deviation analysis is given in
Section 4.3.

The binary quantum hypothesis testing consists of a null hypothesis and an alternative hypothesis.
The null hypothesis and the alternative hypothesis are described by the quantum states p € S(H) and
o € S(H), respectively. Given any test 0 < @ < 1 that determines the outcome to be null hypothesis
p, the type-I error and type-1I error of the hypothesis testing are defined as follows:

o (Qip) =Tt [(1 - Q)] (4.1)
B(Qs0) == Tr[Qo]. (4.2)

Unless p L o, one cannot make both the type-I and type-II errors arbitrary small given the above

definitions. Thus, we define the minimum type-I error when the type-1I error is below u € (0,1) as

a4 (pllo) == min {a(Qip): B(Qi0) < ). (4.3)

0<Q<1

The following famous quantum Stein’s lemma characterizes the trade-off relation between these two er-
rors. That is, the quantum relative entropy D(pl||o) serves as a benchmark to determine the asymptotic

error behaviors of the optimal type-I error.

Theorem 4.1 (Quantum Stein’s Lemma [95], [57], [86]). Given a binary hypotheses: Ho : p and Hy : o,

one has

ngg—loo aexp{fnr} (,0

Bn)l 8 _ 0, < D(p|lo) i
%) {1, r> D(p|lo) (44)

For an n-shot independent extension of the binary hypothesis:

Ho:p"=p1®@p2 @ Q pp, (4.5)
Hi:0"=01®0® - Q0o,, (4.6)
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we define an error exponent function [86] by

o (rlp"lo™) 1= sup {“‘1 (r—iDawno"))}, ’> 0, (47)

ae(0,1] «Q

For the case p" < ¢", it is known that [86, Lemma 4]

+00, r € [0,—LlogTr [(p™)°0"]),

Gu(r|p"[lo™) = g T [0, 73 1D (50"

(4.8)

In the following Sections 4.1 and 4.2, we show that the exponent function ¢, will determine how fast

the optimal type-I error exponentially decay, i.e.

. o i _®n -«
lim —— 1Ogo‘exp{fm"} (P® HU® ) = ¢1(T|pHU) = Ssup (Da(p”a) - T) : (49)

n—+oo N 0<a<l @

4.1 Achievability

Quantum Stein’s lemma, given in Theorem 4.1, states that if the exponential decay of the type-II
error is not faster than the relative entropy, i.e. r < D(p|lo), then the optimal type-I error vanishes
asymptotically. The quantum Hoeffding bound makes a step further to investigate the non-asymptotics:
how fast does the optimal type-1 error decays? The achievability bound is then to give an exponential
upper bound for it. This result was first proved by Hayashi [88], and the upper bound can be expressed
as Petz’s Rényi divergence. Together with the converse bound, discussed in Section 4.2 later, the error
exponent for the optimal type-I error in quantum hypothesis testing was solved; see Eq. (4.9).

For the convenience of readers, we provide the proof of the achievability in Theorem 4.2 below.

Theorem 4.2 (Achievability Hoeffding Bound [88], [86, Section 5.5]). Given a binary hypotheses:
Ho : p and H; : o, and rate r < D(pl||o), one has

1 ol n n n
_ﬁ log Qexp{—nr} (p® HU® ) > ¢1(T|pHU )7 (410)
where ¢y, is defined in Eq. (4.7).

Proof of Theorem J.2. Fix an n € N, a € (0,1), and let

A=e g% (4.11)
B = p®", (4.12)

where x will be determined later. Consider a sequence of test {(1—Q,, @,)} with @, := {B — A > 0}.
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Then, Lemma 2.8 gives that

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

B(Qn; ™) = Tr [Qno®"]
— & Tr [QuA]
< e Qq (p®n||0_®n)
=" Qa (pllo)"
a(Qn; p") = Tr [(1 — Qn)p™"]
=" Tr[(1 — Qn)B]
< e 17 @, (p®7]|0®™)

= e 19 Qg (pllo)".

AAAAAAA,_\
M ~— ~— ' ~— ~— ~— ~—

Now, choose z such that za + log Qq(p|lo) = —r to have

B(Qn; o) < exp{—nr}. (4.21)

Further, it is not hard to see that
a(Qn: p?") < exp{—nd1(r|pllo)}. (4.22)
O

4.2 Optimality

The optimality of the quantum Hoeffding bound means to provide a lower bound to the optimal type-I
error. In other words, the performance of the hypothesis testing with any test cannot be improved.
This problem was solved by Nagaoka |111]—he showed that asymptotically the error exponent of the
optimal type-I error is upper bounded by ®1(p||o); see Theorem 4.3 below. Hence, together with
the achievability bound in Theorem 4.2, the error exponent in Eq. (4.9) is fully characterized. The
method employed by Nagaoka was introduced by Nussbaum and Szkola [112], which is a crucial tool
to translate a pair of quantum density operators to a pair of classical distributions. This thus plays
a significant role in almost all the converse problems in quantum information theory. We provide the

knowledge of the Nussbaum-Szkota mapping in Section 4.2.1 below.

Theorem 4.3 (Asymptotic Converse Hoeffding Bound [111], |86, Section 5.4]). Given a binary hy-
potheses: Hy : p and Hy : o, and rate r < D(pl|o), one has

: 1 ~ n n
lim __logaexp{—nr} (p® HO-® ) < ¢1(T|p”0)7 (423)

n—+oo N
where ¢y, is defined in Eq. (4.7).

Nagaoka’s result in Theorem 4.3 is asymptotic, i.e. it holds when n — 4oc0. This motivates us to
derive a finite blocklength converse bound. Moreover, we are interested in the tightest converse bound.
In the following Theorem 4.4, we establish a sharp converse bound for quantum binary hypothesis

testing, which serves as the fundamental tool to prove the sphere-packing bounds both in Slepian-Wolf
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coding with QSI (Chapter 7) and classical-quantum channel coding (Chapter 11), and the converse
bounds in moderate deviation analysis (see Chapters 8 and 12).

Before stating Theorem 4.4, we introduce some notation. Let

Ho: p" =p1 @ ® pn; (4.24)
Hi:o"=01®: - ®op, (4.25)

where pg,0, € S(H) for « € [n]. Further, denote by (pi,q;) be the Nussbaum-Szkota distribution of
(pi,oi) [112]. For a € [0, 1], define

. ]
Bl o) 1= 5 3 B flog ] (4.26)
n L 4z
z€[n|
1 I o]
Va(p'llo™) === Y B, , |[log =" — B, , [log m] : (4.27)
n ’ qx ’ qdx
z€[n] L i
1 [ 3]
10" = 2 3 B ([l < B o2 [, (4.28)
n z€[n] ' i qz 9z ]

where (pg, ¢z) is the Nussbaum-Szkota distribution of (p,, 0,) for x € [n], and the tilted distribution is

o P (i, 5)at (i, j)
Ux,oa(zvj) = o , Q€ [07 1] (429)
>, P2 e (2,)

With the above notation, we have the following converse bound.

Theorem 4.4 (Sharp Converse Bound for Quantum Hypothesis Testing). Consider a binary hypothesis
testing: Ho : p" = @ pi and Hy : 0™ = Q7' 0; given in Eq. (4.24) with p" J o™. Let r € R be such
that there exists o* € (0,1) such that

1—a* (1
. n| L n) — — Dy g™) — . 4.
0 019710™) = 22 (3D (7o) =) (4.30)
Then, for any test Q, either

|| 4" _Kn(a) *)2
a(Qn;pn) > e—n¢(T|P llo™) € (1 — 1+ (1 —{—Kn(Oé ) )> , (431)
21/2mnVox (p"[|o™) 2¢/Var (p"||0™)

or

BQ"%0") ze™™

(4.32)

o—Kn(1-n) L1+ (1+ K, (1 —a*)?)
21/2mnVi_as (p"|0™) 2¢/Vi—ax (p"[|0™) ’

holds. Here, K, (o) := %'

The proof is delayed to Section 4.2.2.
With the Theorem 4.4 at hand, one can employ the Taylor’s expansion of the ¢, to obtain the
following sharp converse Hoeffding bound, which is the finite blocklength improvement of Nagaoka’s

result in Theorem 4.3.
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Corollary 4.1 (Sharp Converse Hoeffding Bound). Given a binary hypotheses: Hy : p™ and Hy : o”
as in Eq. (4.24), and rate:

1 n n 1 (0 n
= Dy(p"ll0™) < 7 < ~D(p"[lo™), (4.33)
n n
there exist K, Ng € N such that for all n > Ny, the following holds
A n n (0 n 1 (0 n
—10g Bexp{—nr} (PZ"0%™) < g (r|p"(l0c™) + 3 (14 |, (rlp™lc™)]) logn + K. (4.34)
where ¢y, is defined in Eq. (4.7), and ¢!, denotes the first-order derivative of ¢y, .

4.2.1 Nussbaum-Szkola Distributions

Assume the dimension of the Hilbert space H is d. Given density operators p,o € S(H) with spectral

decompositions

p= Mlzi)(zil, and o= ly)yl, (4.35)

i€d] Jjeld]
we define the Nussbaum-Szkota distributions [112] p»?,¢”° as
PP (i, 5) = Nilmily;) P, @ (i, 5) = vl (wilys) [P (4.36)

The distributions p”?,¢”° have the same mathematical properties as the density operators p,o in

some cases, and thus are useful in the sequel. First, one can verify that [112, 14],
Da (pllo) = Da (0 l¢77), Vo € [0,1]. (4.37)
Second, for product states p; ® p2 and o1 ® g9, we have

pPLOP2OIBT2 — 0101 @ pP2.02  and  gPLEP2OIB02 — P01 @ (2,02 (4.38)

Third, p < o if and only if p»? < ¢”7. Moreover, we usually use w to represent the pair of indices (i, j)
in Eq.(4.36), and the distributions p”?, ¢” can be thought of as diagonalized matrices, e.g. Tr [p»?] =

2 weldxq P77 (W).

4.2.2 Proofs of Theorem 4.4 and Corollary 4.1

Let (p;, ¢;) be the Nussbaum-Szkota distribution [112] of (p;, 0;) for every ¢ € [n]. Further, we define
the (non-normalized) distributions p; := piq?, ¢ = GpY, for every i € [n], and p" = @, p; and
q" := @, ¢ accordingly. Since Do(pi||0i) = Da(Pilldi) = Da(pillgi), for a € (0,1), we shorthand

Gn(r) = on (r|p"[|0™) = dn(r|p™(lg")- (4.39)

Applying Nagaoka’s argument [111] in Eq. (11.57) for any 0 < @,, <1 and choosing 6 = exp{nr —
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nen(r)} yields
@ (Qni p") + 65 (Qn;0™) > % (a (U; p") + ™3 (U q”)) : (4.40)
where o (U;p") == 3 e P (W), B(U; ") := >, 4" (w), and
U= {w L p(w)eln (Fn) q"(w)e"R"} . (4.41)

In the following, we will employ Bahadur-Ranga Rao’s concentration inequality, Theorem 2.1 in
Section 2.2, to further lower bound « (U;p™) and 5 (U;¢™). Before proceeding, we need to introduce

some notation. Let

Aoy () : Z log £y, |e [ alog ¢ } o Ap(a) = % Z log By, [ealog%] : (4.42)

xe [n] z€[n]

Since p™ and ¢" share the same support, both Ag,(a) and A, («) are smooth functions in o € R.

One can the calculate derivatives as follows

Z E,, . [log ] A, Z E,,, . [log } (4.43)

ze [n] :L“E[n]
Z Var,, [log ] A ( Z Var, | . [log ] (4.44)
xe [n] Ie[”]

3
Topn(a) := — Z E,, , logf — Agp(@) ] ; (4.45)
ze[n
3
Tine) == > B, llog /(@) ] , (4.46)
:ce[n

where we denote the tilted distribution by

qy = —. (4.47)
> P (W) g™ (w)?
Further, we define the Lengendre-Fenchel transform:
Aj,(2) ==sup {(1 —a)z — Aju(a)}, j€{0,1}. (4.48)

aceR

The quantities A;n(z) would appear in the lower bounds of « (U;p™) and S (U;q¢™) obtained by
Bahadur-Randga Rao’s inequality as shown later.

Now, we are ready to derive the lower bounds for « (U; p™) and 8 (U; ¢"). Letting Z; = log p; —log g;
with probability measure p; = ¢;, and z = r — ¢,(r) in Theorem 2.1, the Bahadur-Randga Rao’s
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inequality gives

=3 W) (4.49)

weue
:Pr{iiZin—qbn(r)} (4.50)
i=1
o—Kn(@) )2
> exp {—nAj, (Pn(r) — 1)} NeTvim) <1 ! +;1 —;f((z() ) )> (4.51)
B B e~ Kn(a) 14 (14 Kn(@)?)
= exp {—nen(r)} A () (1 N ) (4.52)

Similarly, applying Theorem 2.1 with Z; = log ¢; — log pi, ui = pi, and z = ¢, (r) — r yields

n) _ Z qn(w) (4.53)

well
1 n
=Prq— Zi > op(r) — 4.54
{ng > 60(r) } (4.54)
—Kn(l ) _ )2
> exp {—nAj, ")} ——|1- L+ (14 Kl - o)) (4.55)
V2 A (1 A1 — @)
—Kn(l—a) 1 1 1 — )2
=exp {—nr} S (1+ Kn( a)’) . (4.56)
2rA(1 — «) A1 — )

Hence, by Egs. (4.40), (4.52), and (4.56), we conclude our claim. O

4.3 Moderate Deviation Analysis

In this section, we analyze quantum hypothesis testing in the moderate deviation regime. Specifically,

we will show that the optimal type-I error asymptotically vanish when the exponential rate of type-I1

error approaches quantum relative entropy at a speed a,. Here, (a,)nen is any sequence satisfying
(i) lim a, =0;

n——+oo

(4.57)
(i) lim apv/n = +oo.

n—-+00

The achievability part is given in Theorem 4.5. In Section 4.3.1, we provide two proofs. The
first one follows from the Theorem 4.2 in Section 4.1, and an asymptotic expansions of the exponent
function ¢,. The second proof relies on a concentration inequality for noncommutative martingales
[113]. The converse part and its proof are provided in Theorem 4.6 and Section 4.3.2.

We remark that the moderate deviation analysis for classical hypothesis testing was studied by
Sason [45], and by Watanabe and Hayashi [114]. Moreover, a recent work by Rouzé and Datta [115]
formulated the quantum hypothesis problem into a martingale, which is similar to our approach for

proving the achievability.
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Theorem 4.5 (Achievability). Let p,o € S(H) be the density operators with non-zero and finite infor-
mation variance V := V (p|lo) > 0. For any sequence of real numbers {a,}nen satisfying Eq. (12.1),

there exists a sequence ry, := D (p||o) — a,, such that

1 1
li —— 10g Qg — 8 < —
imsup o 108 Bexp(—nr,} (p="[10°7) < =577

(4.58)
The proof is provided in Section 4.3.1

Theorem 4.6 (Converse). Let p,o € S(H) be the density operators with non-zero and finite infor-
mation variance V := V (p|lo) > 0. For any sequence of real numbers {a,}nen satisfying Eq. (12.1),

there exists a sequence ry, := D (p||o) — a,, such that

1
. . - o~ ®n ®n > o
lﬁﬁmfo‘f na? 108 Texp{—nrn} (p lo ) . (4.59)

The proof is provided in Section 4.3.2

4.3.1 Proof of Theorem 4.5

In this section, we present two proofs of Theorem 4.5. The first one relies on the quantum Hoeffding

bound [86] and the Taylor’s expansion of the function Ej,.

The first proof of Theorem 4.5. We start the proof from recalling Audenaet et al.’s achievabilityof the

quantum Hoeffding bound in Lemma 2.8:

Gptart (67710 < exp {—n [ s {2 - D o ]} (4.60)

0<a<l «Q
Since D(p||e) > 0 (due to Eq. (3.4)), we have

D(p|le) —an >0 (4.61)

for all sufficiently large n. Choose such n onwards. Then Eq. (4.60) implies that for all sufficiently

large n, there exists r, = D(p|lo) — a,, and

1 1 1 a—1
——loga (p®")|c®) < — — = su { r—D o } 4.62
w02 (5770%) < = 5 sup { S 0= Dol (4.62)
1 1
= — — sup{Es(s) — srp}, (4.63)

nal a3 >
where we substitute s = =2 and invoke Eq. (9.7):
Ew(s) := Ey(s,P) = sDﬁ (pllo) - (4.64)

with X = {x} and W, = p.
Therefore, we apply Taylor’s theorem, along with items (c) and (e) in Proposition 9.3, to obtain
s s3 3 Ey(s)
E = sD - —V+ - 4.65

s
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for some § € [0, s] and all s > 0. Now let s, = a,,/V, for all n € IN. Then for all sufficiently large n
and for some s, € [0, s,,], Eq. (4.65) yields

sup {En(s) — stn} > En(sn) — Snn (4.66)
s>0
an a? al PEy(s)
= (D —ry) — 2 no- 2 4.67
v ( (pHU) T ) oV 612 O3 s ( )
a? a O3Ey(s)
= _n n -z 4.
2V 6V2 9sd | .7 (4.68)

where we substitute r, = D(p|lo) — ay, in Eq. (4.68).
Note that s, = a,/V < 1 for all sufficiently large n since lim, o a, = 0 in Eq. (12.1) and the
assumption: V' > 0. Define

SE=LAGA (4.69)

3
From item (a) in Proposition 9.3, 9 BE;;S) is continuous over s > 0. Hence the maximum in Eq. (4.69)

is well-defined and finite. Therefore, (4.68) leads to

a? a3 BBy (s
sup {Fyn(s) — srn} > ﬁ + 611/128(:3() ) (4.70)
S=3n,
S n _ n | OEu(s) (4.71)
-2V 6V 0st |
a? al
>t - Y 4.72
2V 6V?2 ( )
for all sufficiently large n.
Substituting Eq. (4.72) into Eq. (4.63) yields
1 1 1 a
—log By <———(1—T—">, 473
na% 08 Cexp{—nry} (pHO-) = na% oV 372 ( )
which implies the desired achievability part:
I L 1oga (llo) < —— (4.74)
imsup —5 log Qeypf— - .
n~>+o£) na% g Cexp{—nr,} \PIIO) > oV
O

In the following, we give an alternative proof of Theorem 4.5 by employing a noncommutative

Bennett inequality [113].

The second proof of Theorem 4.5. Tt is well-known that the Neyman-Pearson (likelihood-ratio) test
achieves the optimum type-I error with the constraint of the type-II error. Hence, it suffices to prove
that

1

. 1 o
lim sup naZ 10g Qexp—nr,} (pllo) = lim na? loga (mn) 2 — 57, (4.75)
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where

=D (pllo) —an, n el

(4.76)

For notational convenience, we first consider the non-identical case. Let the two hypotheses be

Ho:p1 @ p2®@--- @ pp
Hi:01®02® - Q@ 0op,

where p;,0; € S (H;), for every i € [n]. Define the operator

k

n n
L =108 @)~ 0@ = 3 (g~ o),
=1 i=1

=1

(4.77)
(4.78)

(4.79)

which can be seen as the quantum generalization of the Neyman-Pearson log-likelihood ratio.

Next, we formulate the hypothesis testing problem in the noncommutative probability space [116,
117]. Let 9y, be the von Neumann algebra on the Hilbert space ®f:1 Hy, with My = @, and (M),
forms a increasing filtration (see e.g. [118]). The normal faithful tracial stae 7 : 9, — C on M, is
defined as 7 : X — Tr [@?:1 ij] Let Egyn_ [ |9%] : 9, — My, be the conditional expectation

of M, with respect to My. For every k € {0,1,...,n}, we let

(logpi —logoi) + > Egr . [ log p; —log o

Uk 1= E@?zl 05 [ Ly fmk]

=Egr_, [Z (log p; — log o)

=1

Il

i—1 i=k+1
k n n

= Z (log pi —logo;) + Z Tr ®Pj (log p; — log ;)
i=1 i=kt1 | =1

n

(log pi —logo;) + Y D (pillos).
i=k+1

M-

s
Il
—_

In particular, we have

Uo=>_D(pillos)
=1

Up = Z (log p; — log ;) = Ly,
i=1

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)
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Hence, {Uj, — Uy_1};_, forms a martingale:

Uy — Ug—1 = log pi. — log o, — D(pgllow); (4.87)
Egr s [Up — Ug—1| Mp—1] = 0; (4.88)
Egr ., p; | Uk — Uk—l)Q‘ fmk—1] =V (pkllox) =: vg. (4.89)
Denote by
by += [llog pi — log ok — D(pgllow) oo (4.90)
where || - ||o denotes the operator norm. The martingale is bounded by ||Uy, — Uyp_1]|,, < by, for every
k € [n].

Equipped with the notation above, the type-I error can be rephrased as:

o ) = T {®p o Qo< 0} ®p] o)
_n @ ” {Z (o8 s~ log ) < n}] (192
=Tr é) pi {Uy, — Uy < —nan}] (4.93)
=T (1_:_;7_%) (Un — Uy)) (4.94)
=7 (L(nay.00) (Un — Up)) , (4.95)

where the third equality (4.93) follows from the definition of 7, in Eq. (4.76) and Egs. (4.85) and
(4.86). The last line (4.95) is due to the symmetry of U, — Uy, i.e. Egn [Un— U] = 0.
In the following, we borrow the idea from Sason [45] to employ the noncommutative Bennett

inequality to upper bound Eq. (4.95).

Theorem 4.7 (Noncommutative Bennett Inequality [113, Theorem 0.1]). Let (X),_, be a self-adjoint
martingale with respect to the filtration (My)p_, such that: (i) B [Xp9Mk_1] = 0; (ii) E [XZ|9My_1] =
vg; (il) || Xklloo < bg. Then for any x > 0,

. > 1 Uk <$ SUPke[n) bk >
T 1 oo X <exp{ — = = , 4.96
( =, )(; k>> p{ L e (4.96)

where p(u) = (1 + u)log(l + u) — u.

By applying Theorem 4.7 to Eq. (4.95) with = na and Xy, = Uy, — U1 for ever k € [n]:

" Nay, SUPcin] b
a, ("7n) < exp {_ Zk:l Uk o < Pke[n] k>} (497)

SUDje[n) b 2 k=1 Uk

_ exp{—ggﬁp (“zb)} (4.98)
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where

b:=sup by, B?:=supb?, v:= M (4.99)
keln] ke[n] n

By recalling ¢(u) = (1 + u)log(1 + u) — u and using a scalar inequality [45, Lemma 1]:

2 ’LL3

(1+u)log(1+u)2u+%—€, w>0, (4.100)

Eq. (4.98) leads to

ap, (np) = Tr

{épi—ennnédi SO}épZ] (4.101)
i—1 i—1 i=1

_ 2 3
< exp {—Zg [(C;’;? - (Cg’;_? ] } (4.102)

a2b? anb
—exp{—n [21_}32 <1—31_)2>]} (4.103)

Now considering the identical case:

Qo= o e SH™), wd ®ai = o™ € S (H) (1104)

i=1 =1
with p < o (otherwise ay,(n,) = 0 and Eq. (4.75) holds trivially), we have

v=V, (4.105)
b= B = |logp —logo —D(p|lo)], < o0, (4.106)

where the finiteness of b comes from p <« ¢ and the assumption that the Hilbert space H is finite-

dimensional. From Eq. (4.103), the type-I error is upper bounded by

enton <o [ 25 (1 28]} i

Finally, recall that lim, .o a, = 0 in Eq. (12.1). By letting n tend to infinity, we prove the
achievability part:

1 1
i N < ——. .
i o log a () < =57 (4.108)

4.3.2 Proof of Theorem 4.6

The converse part is a direct consequence of the sharp converse Hoeffding bound, Theorem 4.3, in
Section 4.2.

d0i:10.6342/N'TU201800597



4. Quantum Hypothesis Testing 51

Let r,, := D (p|lo) — an, X = {z} and W, = p. We apply Theorem 4.3 with r = r;, to obtain

~ i n A 1—a
gt (7107 2 e {n | sup 222 (D ll) — (|} aon

for sufficiently large n» € IN and some constant A > 0. Here
sy 1= arg max {SDL (pllo) — srn} . (4.110)
a>0 T+s
Now let
Op = ap +cp, Vn €N, (4.111)

and invoke Proposition 12.2 with W, = p, P(z) = 1, and substitute P*W with o to obtain

sy {~s D (o) = 8) +5D (o)}
11m su —_—.
ey 52 =2V

(4.112)

Moreover, Eq. (12.46) in Proposition 12.2 in Section 12.2 gives that lim, oo % < 1/V. Here, we
delay the proof of Proposition 12.2 to Section 12.3 for the reason that we unify the proofs for the
exponent in quantum hypothesis testing and c-q channel coding there.
Combining Eqgs. (4.109) and (4.112) concludes our claim:
log a7exp{—nrn} (p®nHO.®n) 1

N 1 |
it SEESHE oy (119
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Chapter 5

Error Exponent Functions (Source

Coding)

In this chapter, we define different versions of the exponent functions and auxiliary functions for
Slepian-Wolf coding with QSI. We prove a variational representation in Section 5.1. The properties of
the auxiliary function and exponent functions are provided in Sections 5.2 and 5.3, respectively.

For t = {}, {«} or {b}, we define

E;(R) := max {Ep(s) + sR} (5.1)
Eg(R) = il_;g_{Eé(s) +sRY; (5.2)
Eg(R) = _1835<0 {Eb(s) + R} ; (5.3)

Ei(s) := —sH?L (X|B),, (5.4)

where HQ’T is the Rényi conditional entropy defined in Section 3.2. For t = { }, i.e. the Petz’s Rényi
conditional entropy, quantum Sibson’s identity given in Lemma 3.3 shows that the auxiliary function

Ey(s) admits an closed-form:

Ey(s) = —log Tr

1_}_3 ].-'rS
Trx px'p (5.5)

We also define another version of the exponent function via HY:

EH(R) = max {Eg@ + sR} , (5.6)
Eg(s) = —sHy_(X|B),,. (5.7)

Egw(R) < E,(R) 5.8
Ei(R) < E)(R) 5.9)
Ey(R) < EL(R) (5.10)
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Further, since HY(X|B), < H; , (X|B), for o € [1/2,+00] [119, Corollary 4], [8, Corollary 5.3]. For

1
R e [HI(X]B)/,, HIT/Q(X|B)p], together with Proposition 5.3-(a) below, we have
E}(R) < Ei(R) = Eyp(R) < E3,(R) = E{(R). (5.11)

In Chapter 6 later, we obtain an achievability bound of the optimal error in terms of EY. We conjecture

that it can be further improved by FE..

5.1 Variational Representations

In Theorem 5.1 below, we show that the exponent functions defined in terms of D’ admit the variational

representations as introduced by Csiszar and J. Korner’s [54, 55, 25].

Theorem 5.1 (Variational Representations). Let pxp be a classical-quantum state. Then,

EbR—— mi D +R—HXBUJr 12
' (R) UXBeéT(lXB){ (oxBllpxB) + | (X|B)s| }7 (5.12)
E’ (R) = mi D :R< H(X|B)s}, 1
Sp( ) chBeéI(lXB){ (UXBH/)XB) > ( | ) } (5 3)
E’ (R) = mi D —i—HXBC,—R+ . 5.14
sc(R) UXBG‘;?XB){ (oxBllpxs) + [H(X|B) | } ( )

Proof of Theorem 5.1. We only provide the proof for Eq (5.13) since Egs. (5.12) and (5.14) follow
similarly. The method of Lagrange multipliers gives that

i D cR< H(X|B), 5.15
UXBIélg(lXB){ (oxBlloxp) : R < H(X|B)o} (5.15)
=sup min {D(oxpl|lpxp)+s[R— H(X|B)s|} (5.16)

>0 oxBES(XB)
= su min D (o + min sD (o 1 ®71B)+ sR 5.17
SZISUXBGS(XB){ (oxBllpxB) L in, (oxBl1p ® TB) } (5.17)
=sup min min D (o +sD (o 1 ®718)+ sk 5.18
SZETBes(B)UXBes(XB){ (oxsllpxB) (oxBllp ®7p) } (5.18)
=sup min {sDbl (pXB||]lB®TB)—|—sR} (5.19)
s>0 TBES(B) 1ts
= sup {Eg (s,pxB) —|—SR}, (5.20)
s>0

where we use the representation H(X|B), = max, csp) —D (oxp|lx ® 75) in Eq. (5.17); Eq. (5.19)
follows the Lemma 3.1 in Section 3.1, which was proved by Mosonyi and Ogawa [58]; in the last line
(5.20) we recall the definition E} (s, pxp) := —sHbi(X]Y)p.

1+s

O

5.2 Properties of Auxiliary Functions

In the following, we collect some useful properties of the auxiliary functions Ep(s) and Eé (s).
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Proposition 5.1 (Properties of Ey). Let pxp be a classical-quantum state with H(X|Y), > 0, the
auziliary function Eo(s) defined in Eq. (5.5) admits the following properties.

(a) (Continuity) The function s — Ey(s) is smooth for all s € (—1,400).
(b) (Negativity)
Ep(s) <0, s>0 (5.21)
with Ep(0) = 0.
(c) (Concavity) The function s — Egy(s) is concave in s for all s € (—1,400).

(d) (First-order Derivative)

OFols)|  _ —H(X|B),. (5.22)
s s=0
(e) (Second-order Derivative)
0?Ep(s)
a2 | _, " —V(X|B),. (5.23)

The proof is provided in Section 5.2.1 below.

Proposition 5.2 (Properties of Eé) Let pxp be a classical-quantum state with H(X|Y), > 0, the
auziliary function Eé(s) defined in Eq. (5.7) admits the following properties.

(a) (Continuity) The function s — Ey(s) is smooth for all s € [0,+00).
(b) (Negativity)
El(s) <0, s>0 (5.24)
with E¢(0) = 0.
(c) (Concavity) The function s — Eé(s) is concave in s for all s € (—1,4+00).

(d) (First-order Derivative)

Bt
0 (9();8) — _H(X|B),. (5.25)
s=0
(e) (Second-order Derivative)
2E (s
a;)?( - ~V(X|B),. (5.26)
s=0

The proof is provided in Section 5.2.2 below.
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5.2.1 Proof of Proposition 5.1

Proof of Proposition 5.1.

(5.1)-(a) (Continuity) Since Ey(s) admits a closed-form

1

1+s
—log Tr {TrX p;jg] , Vs> -—1. (5.27)

It is clearly smooth for all s > —1.

(5.1)-(b) (Negativity) The negativity of Ey(s) directly follows from the non-negativity of the conditional
Rényi entropy and the definition, Eq. (5.4).

(5.1)-(c) (Concavity) The concavity for s > 0 can be proved with the geometric matrix means in [36].

Here, we present another proof by the following matrix inequality.

Let pxp =) ,ex P(@)|z)(z|@ Wy, t =y =1,i =2, k = |X|, A; = P(x)W,, and Z; = I, . We
obtain the log-convexity of the map by applying Lemma 2.13:

P

p—Tr (Z(P(a:)Wx);> , Vp>0, (5.28)
reX

which is exactly the concavity of the map s — Ep(s) for all s > —1.

(5.1)-(d) (First-order derivative) By the definition of Ey(s),

oH', (X|B),

=-H', (X|B),—s—"——| =-HZX|B),. (5.29)
s=0 I+s s

an(S)
0s

(5.1)-(e) (Second-order derivative) Similar to Item (d), it follows that

OH', (X|B), 9°H', (X|B),

— 1+s 1+s
R — s . (5.30)
s=

82Eo(8)
0s?

s=0

The above equation indicates that we need to evaluate the first-order derivative of H', (X|B),
1+s

at 0. In the following, we directly deal with the closed-form expression, Eq. (5.5).

To ease the burden of derivations, we denote some notation:

f(s) = Tex P+, (5.31)
g(s) == f(s)1"+), (5.32)
F(s) :=Tr[g(s)], (5.33)
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Then,
OEo(s)  F'(s)
ds  F(s (5.34)
2 " 2
O Fols) __F(s) _ (9Fo(s))" (5.35)
0s? F(s) ds
Direct calculation shows that
oy — L Y(1+s)
" _ 1 logpx
fi(s) = TEE Trx pxplogpxp - [2+ 019 (5.37)

Note that' g(s) = e(1+9)ogf(s) " By applying the chain rule of the Fréchet derivatives, one can

show
g'(s) = Dexp [logg(s)] (1 + s)Dlog [f(s)] (f'(s)) +logf(s)) . (5.38)
Further, we employ Lemma 2.11 and Egs.(5.33), (5.38), to obtain

S

F'(s)=Tr ¢
F"(8)|s=0 = Tr[

—~

) (1 + 5)Dlog[£()](f'(s)) +log £())] (5.39)
s) ( 1+ s)Dlog[f(s (f’(S ) + log f( ))”5:0
)
[£(

—~

(s)
[g(s (2D10g s)] ( s)) +(1+s {Dlog [f(s)] (f”(s))

) (S )] (5.40)

Before evaluating F”(s) at s = 0, note that Eqs. (5.31), (5.32), (5.36), (5.37), and (5.38) yield

+ D3log

f(0) = g(0) = pp, (5.41)
f(0) = —Trx pxplog pxB, (5.42)
f7(0) =2Trx pxplogpxp + Trx pxplog? pxp, (5.43)
9'(0) = Dexp [logg(0)] ((1 + 0)Dlog [f(0)] ((0)) + logf(0)) (5.44)
— Dexp [logf(0)] (Dlog [£(0)] (£(0)) + logf(0)) (5.45)
= f'(0) + f(0) log f(0) (5.46)
= —Trx pxplogpxp + pplogps. (5.47)
From Egs. (5.46), (5.39), the first term in Eq. (5.40) leads to
Tr [¢'(0) ((1 +0) Dlog [£(0)] (f'(0)) + log f(0))] (5.48)
— T [/(0)Dlog [(0)] (£(0)) +2/'(0)logf (0) + £(0)log? £(0)] (5.49)
= Tr [f/(0)Dlog [£(0)] (f'(0)) — 2 Trx pxplog pxp - logps + pplogpE] (5.50)
'Here, let’s assume pxp has full support on S(X B) for brevity. The general case should hold with more technical

derivations.
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Further, from Egs. (5.37), (5.42), and (5.43), the second term in Eq. (5.40) leads to

Tr [£(0) (2Dlog[ (0)] (f/(0)) + {Dlog [£(0)] (f"(0))
+ D%log [£(0)] (£'(0))})] (5.51)
= Tr [2f'(0) + f”( ) — f'(0)Dlog [£(0)] (£'(0))] (5.52)

= Tr [Trx pxplog? pxs — f'(0)Dlog [£(0)] (f'(0))] - (5.53)
Combining Egs. (5.40), (5.50), (5.53) gives
F”(O) =Tr [,OXB (longB —logly ®pB)2:| . (554)

Finally, Egs. (5.35) and (5.54) conclude our result:

OE
Y~ Vipxnlix op) = ~V(XIY), (5.55)
s=0
Moreover, Eq. (5.30) gives
OHL(X|B),
—_—" X|B),. .
= =gvIm, (5.56)
o=
O

5.2.2 Proof of Proposition 5.2

Proof of Proposition 5.2.

(5.2)-(a) (Continuity) Since Ei( ) = —log Tr [pé(_g (Ix ® pB)°]

1 1+s
—log Tr [(TrX p1+s> ] , Vs> —1. (5.57)

It is smooth for all s > 0.

(5.2)-(b) (Negativity) The negativity of Eg (s, pxp) directly follows from the non-negativity of the condi-
tional Rényi entropy and the definition, Eq. (5.4).

(5.2)-(c) (Concavity) The claim follows from the concavity of the map s — sDi_s(-|-), Eq. (3.12) in

Lemma 3.2.
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(5.2)-(d) (First-order derivative) One can verify that

OE} (s, pxp)

s = Di—s (px3lllx ® pp) — sD1_, (px5|1x @ ps)|, ., (5.58)
s=0

= D15 (pxBl1lx ® pB)|s—0 (5.59)

= D(pxBllx ® pB) (5.60)

— —H(X|B),. (5.61)

(5.2)-(e) (Second-order derivative) Continuing from item (d), one obtain

62E3(5> / "
9s2 = —2D7_, (pxBllx ® pB) +sD{_, (pxBllx ® pB)|,_, (5.62)
s=0
= _ZD/I—S (IOXBH]J-X ®PB)L,:0 (563)
= —V(pxsllx ® pp) (5.64)
= V(X|B),, (5.65)

where in equality (5.64) we use the fact D/1/1+s('|“)|s=0 =V {(-||-)/2 [120, Theorem 2].
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5.3 Properties of Error Exponent Functions and Saddle-Point

Proposition 5.3 (Properties of the Exponent Function). Let pxp be a classical-quantum state with
H(X|B), > 0, the following holds.

(a) Es(-) is convez, differentiable, and monotonically increasing on [0, +oc]. Further,

0, R < H{(X|B),
Eyp(R) = | E:(R), H{(X|B), <R<H],(X|B), (5.66)
+oo, R>HI(X|Y),
(b) Define

11—«

Fa(a.op) = @ (R+ Do (pxBlllx ®0p)), a€(0,1), (5.67)

0, a=1,

on (0,1] x S(B). For R € (HI(X\B)p,Hg(X|B)p), there exists a unique saddle-point (a*,0*) €
(0,1) x S(B) of Fr(-,-) such that

Fr(a*,0*) = su inf Fgr(a,op)= inf sup Fgr(a,oB) = Es(R). 5.68
. ) 046[01[,)1]”363(3) ez oBeS(B)ae[OI,)l} r(2 B) sp(R2) (5.68)

(c) Any saddle-point (a*,0*) of Fg(-,-) satisfies

Ix®o* > PXB- (5.69)

Proof of Proposition 5.5.

(5.3)-(a) Ttem (a) in Proposition 3.1 shows that the map « — Hg(X]B)p is monotonically decreasing on
[0,1]. Hence, from the definition:

(R - Hg(X\B)p) , (5.70)

it is not hard to verify that Fg,(R) = +o0 for all R > Hg(H|B)p; finite for all R < Hg(H|B)p; and
ESY(R) =0, forall R > H{ (H|B),. Moreover, Eg,(R) = Ex(R) for R € [H{(X[Y),, H] ,(X|Y),]
by the definition in Eq. (5.1).

For every a € (0, 1], the function =2 (R — Hg(X]B)p) is an non-decreasing, convex, and continu-
ous function in R € Ryg. Since Egp(R) is the pointwise supremum of the above function, Eg,(R)
is non-decreasing, convex, and lower semi-continuous function for all R > 0. Furthermore, since
a convex function is continuous on the interior of the interval if it is finite [121, Corollary 6.3.3],
thus Eg,(R) is continuous for all R < Hg(X\B)p, and continuous from the left at R = Hg(X|B)p.
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(5.3)-(b) Let
Sp(B) = {O'BES(B)IpXB)/_]lx(X)O'B}. (571)

Fix an arbitrary R € (HIT(X|B),,, Hg(X|B)p). In the following, we first prove the existence of a
saddle-point of Fr(-,-) on (0,1] x S,(B). Ref. [122, Lemma 36.2] states that (a*,c*) is a saddle

point of Fr(-,-) if and only if the supremum in

sup inf Fr(a,o 5.72
0e(0.1] 7€S,(B) r(,0) (5.72)

is attained at o* € (0, 1], the infimum in

inf  sup Fgr(a,o 5.73
0€55(B) ae(0.1] R 0) (5.73)

is attained at 0* € S,(B), and the two extrema in Egs. (9.150), (5.73) are equal and finite. We
first claim that, Vo € (0, 1],

inf Fp(o,0) = inf Fra, o). 5.74
jont r(a,0) Lok r(a,0) (5.74)

To see this, observe that for any « € (0,1), Egs. (3.5) yield
Vo € S(B)\S,(B), Da(pxB|lx ® 0) = +o0, (5.75)
which, in turn, implies
Vo € S(B)\S,(B), Fr(o,0)=+00. (5.76)
Further, Eq. (5.74) holds trivially when o = 1. Hence, Eq. (5.74) yields

sup inf Fr(a,0)= sup inf Fgr(a,o
2€(0,1] 7€S,(B) ( ) ae(0,1) 7€S(B) ( ) (577)

Owing to the fact R < HS(X|B)p and Eq. (5.2), we have

Ey(R) = sup inf Fgr(a,o) < 400, 5.78
w(F)= swp nf Fr(o.o) (578)
which guarantees the supremum in the right-hand side of Eq. (5.78) is attained at some « € (0, 1].

Namely, there exists some apr € (0,1] such that

su inf Fgr(a,0) = ma inf Fr(a,o0) < 4o00. 5.79

ae(g?l] o€S,(B) R( J) ae[a;(,l] c€eS(B) R( U) ( )

Thus, we complete our claim in Eq. (5.72). It remains to show that the infimum in Eq.(9.151)
is attained at some o* € S,(B) and the supremum and infimum are exchangeable. To achieve
this, we will show that ([ag,1],S,(B), Fr) is a closed saddle-element (see Definition 5.1 below)

and employ the boundness of [ag, 1] x S,(B) to conclude our claim.
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Definition 5.1 (Closed Saddle-Element [122]). We denote by ri and cl the relative interior and the
closure of a set, respectively. Let A, B be subsets of a real vector space, and F': A x B — R U {z+o0}.
The triple (A, B, F') is called a closed saddle-element if for any = € ri (A) (resp. y € ri (B)),

(i) B (resp. A) is convex.
(ii) F(x,-) (resp. F(-,y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say y, (resp. z,)

satisfies limy_,,, F'(x,y) = 400 (resp. lim,_,,, F(z,y) = —00).

Fix an arbitrary o € ri([ag,1]) = (ar,1). We check that (S,(B), Fr(c,-)) fulfills the three
items in Definition 9.1. (i) The set S,(B) is clearly convex. (ii) Eq. (3.15) in Lemma 3.2 implies
that o — Dy (Wy||lo) is convex and lower semi-continuous. Since convex combination preservers
the convexity and the lower semi-continuity, Eq. (5.67) yields that o — Fg(«,0) is convex and
lower semi-continuous on S,(B). (iii) Due to the compactness of S(B), any accumulation point
of S,(B) that does not belong to S,(B), say o, satisfies 0, € S(B)\S,(B). Egs. (5.75) and
(5.76) then show that Fr(a,o,) = +00.

Next, fix an arbitrary o € ri (S,(B)). Owing to the convexity of S,(B), it follows that ri (S,(B))
=ri(cl(S,(B))) (see e.g. [123, Theorem 6.3]). We first claim c1(S,(B)) = S(B). To see this,
observe that Sx(B) C S,(B) since a full-rank operator is not orthogonal with pxp. Hence,

S(B) = cl(S>0(B)) Ccl(S,(B)). (5.80)
On the other hand, the fact S,(B) C S(B) leads to
cl(S,(B)) C cl(S(B)) =S(B). (5.81)
By Egs. (9.158) and (5.81), we deduce that
r1 (S,(B)) = 11 (c1 (S,(B))) = ri (S(B)) = S=0(B), (552)
where the last equality in Eq. (5.82) follows from [124, Proposition 2.9]. Hence, we obtain
Vo eri(S,(B)) and 1x ®o > pxs. (5.83)

Now we verify that ([ag, 1], Fr(-,0)) satisfies the three items in Definition 9.1. Fix an arbitrary
o €ri(S,(B)). (i) The set (0,1] is obviously convex. (ii) From Eq. (3.13) in Lemma 3.2, the
map « — Fpr(a,0) is continuous on (0,1). Further, it is not hard to verify that Fr(l,0) =
0 = limgp Fr(a,0) from Egs. (5.83), (9.142), and (3.5). Item (b) in Proposition 3.1 implies
that o — Fgr(a,0) on [ag,1) is concave. Moreover, the continuity of o — Fgr(a,0) on [ag,1)
guarantees the concavity of a — Fgr(a,0) on [ag,1]. (iii) Since [ag,1] is closed, there is no

accumulation point of [ag, 1] that does not belong to [ag, 1].

We are at the position to prove the saddle-point property. The closed saddle-element, along with
the boundness of S,(B) and Rockafellar’s saddle-point result [122, Theorem 8|, [123, Theorem
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37.3] imply that

—00 < sup inf Fgr(s,0)= min sup Fg(s,o). 5.84
a€lag,1] 7€SH(B) (s0) 0€S8,(B) a€lag,1] (&) ( )

Then Eqgs. (9.157) and (5.84) lead to the existence of a saddle-point of Fg(:,-) on (0,1] x S,(B).

Next, we prove the uniqueness. The rate R and item (a) in Proposition 5.3 shows that

su min Fr(a,0) € Rxg. 5.85
S min r(a,0) € Rxo (5.85)

Note that a* = 1 will not be a saddle point of Fp p(-,0) because Fr(1,0) = 0, Vo € S(B),
contradicting Eq. (5.85).

Now, fix a* € (0,1) to be a saddle-point of Fgr(,-). Eq. (3.15) in Lemma 3.2 implies that the
map o — Dy (pxp|lx ® o) is strictly convex, and thus the minimizer of Eq. (5.85) is unique.
Next, let 0* € S,(B) be a saddle-point of Fg(:,-). Then,

l—«

Fr(a,0%) = (R - Hg(X\B),,) . (5.86)
Item (b) in Proposition 3.1 then shows that 1?T‘)‘Hg(X\B)p is strictly concave on (0,1), which in
turn implies that Fr(-,0*) is also strictly concave on (0,1). Hence, the maximizer of Eq. (9.163)

is unique, which completes item (b) of Proposition 5.3.

As shown in the proof of item (b), o* = 1 is not a saddle point of Fr(-,-) for any R < Hg(X]B)p.
We assume (a*,0*) is a saddle-point of Fr(-,) with o* € (0,1), it holds that
11—« 1—a*

Fr(a®,0") = min Fr(a®,0) = — =R+~ min Da-(pxsliix©0). (58

By quantum Sibson’s identity given in Lemma 3.3 (see also [125], [119, Lemma 1], [8, Lemma
5.1]), the minimizer of Eq. (5.87) is
a* o
T a*
o= (Trx [pXp)) — (5.88)
Tr |(Tex [%5]) ™ |

From this expression, it is clear that 1x ® o* > pxp, and thus item (c) is proved.
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Chapter 6
Achievability (Source Coding)

The goal of this chapter is to prove a finite blocklength upper bound for the optimal probability error
for Slepian-Wolf coding with QSI.

Theorem 6.1 (n-Shot Achievability Bound). Consider a Slepian- Wolf coding with a joint classical-
quantum state pxp € S(XB) with H(X|B), > 0. Let R < H(X|B),. The following holds for every
n €N,

1 log 4
— Zloge*(n, R) > EYR) — 282, (6.1)
mn mn
where
EHR) = sup R—H! ,(X|B), ), (6.2)
l<a<1 @ a

and Hi(X]B)p = —Du(pxBllx ® pg) for Dy being Petz’s Rényi divergence, see Eq. (3.5).

Proof. Our technique it to use a random coding argument to prove Theorem 6.1. The idea originates
from Gallager [56] and later studied by Renes and Renner [41].

We first present an one-shot achievability. It is not hard to extend to the n-tuple cases. Let
f X = T be a random encoder that encodes every source x € X into some index ¢ € 7 with equal

probability 1/M = 1/|Z|. Then, the optimal probability of error can be upper bounded by

e*(L,log M) < E,E; [e(z,1)], (6.3)
— E,F,; Tr [,}g) (11 5 — Agﬁ)} , (6.4)

where we denote by £(x",4) the error probability conditioned on x™ being the source and it is encoded

into 7. Here, the adopted decoder is a pretty good measurement:

—-1/2 —-1/2

AW = Z I I, Z Iz , (6.5)
z:f(Z)=i z:f(Z)=t

where 0 =< AS) < 1p for each ¢ € 7 will be specified later. Applying the Hayashi-Nagaoka inequality
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65

[87, Lemma 2| to obtain

Iy —AY <2(1p—1L,) + 42 1f(z)=illz,
TH#x

(6.6)

where 1z)—; denotes the indicator function when the event f(7) = i is true. Combining Eqgs. (6.4)

and (6.6) gives

e(z,i) < 27Tr [pfg) (Mg —T)| +4T [P S 15610

TH#x

Taking average over i and using the assumption Pr{f(z) =i} = 1/M yield

E; [e(z,i)] <2Tr

=2Tr

<2Tr

PB

o) (s —11)]

(z)

P (g —1L,)

By taking average over x we obtain

(15 — 1)

+4Pr{f(z)=1i}Tr

4
+MTI'

+ —Tr

Pg) Z Iz

TH#x

L TEX |

e*(1,log M) <23 P(z)Tr [p(g) (1p — Hx)] + % Tr [
reX

PBZHE

Pg) Z Iz

T#x

reX

4
=2Tr[pxp (Ixp — IIxB)| + i Tr[1x ® ppllxp],

(6.7)

(6.11)

(6.12)

where Ilxp 1= >y |7)(2z| ® II;. Next, we invoke Audenaert et al.’s inequality [85, 86]: for every

X,Y ~0and s €[0,1],

TT{X-Y>0}Y+{Y - X <0} X] < Tr [X'"°Y*].

(6.13)

Letting X = pxp, Y = ﬁ]lx ®pB, lIxp = {PXB - ﬁ]lx & pp = O}, we have one-shot achievability:

e*(1,log M) <4 min M°Tr [pﬁ(_g (Ix ® pp)°] .

s€[0,1]

(6.14)

Finally, we consider the n-tuple case. Note that pxnpn = p?}%, and let M = exp{nR}. Egs. (6.14)

and (5.6) lead to

which completes the proof

e*(n, R) < 4exp {—nE#(R)} ,

(6.15)
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Conjecture 6.1 (Random Coding Bound for Slepian-Wolf Coding with Quantum Side Information).
Consider a Slepian- Wolf coding with a joint classical-quantum state pxp € S(XB) with H(X|B), > 0.
Let R < H(X|B),. The following holds for every n € N,

1
~ —loge*(n, R) 2 Ex(R), (6.16)
where
1 —
Ey(R) = sup —— (R . Hg(xyB)p) : (6.17)
$<a<i

and Hot(X]B)p = max,,es5(B) —Da(pxBl[lx®0op) for Dy being Petz’s Rényi divergence, see Eq. (3.5).
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Chapter 7
Optimality (Source Coding)

The main result of this section is the finite blocklength converse bound for the optimal error probability—
Theorem 7.1. We termed this the sphere-packing bound for Slepian-Wolf coding with QSI, as a coun-
terpart of the sphere-packing bound in classical-quantum channel coding; see Chapter 11. The proof
technique relies on an one-shot converse bound in Proposition 7.1 below, and a sharp n-shot converse

bound, Theorem 4.3, given in Section 4.2.

Theorem 7.1 (Sphere-Packing Bound for Slepian-Wolf Coding). theospSW Consider a Slepian-
Wolf coding with a joint classical-quantum state pxp € S(XB) with H(X|B), > 0. Let R €
(H(X]B)p,Hg(X\B)p). Then, there exist No, K € IN, such that for all n > Ny, the following holds:

1 1 OFEsp (1) logn K
——loge* < FE, —(1 D — + — 1
~loge (n,R) < Egp(R) + 5 ( +‘ 5 |s - + ) (7.1)
where
l-—«a
Eg(R) == sup (R- HL(XIB),), (7.2)
0<a<l @&

and H;(X]B)p = MaXy L cS(B) _Da(PXBH]lX & O'B).

The proof is provided in Section 7.2

7.1 One-Shot Converse Bound (Hypothesis Testing Reduction)

Proposition 7.1 (One-Shot Converse Bound for Error). Consider a Slepian- Wolf coding with a joint
classical-quantum state pxp € S(XB) and the index size M < |X|. Then,

—loge*(1,log M) < min —logawm (pxp|Tx ®oB), (7.3)
o5€S(B) ]

where Tx denotes the uniform distribution on the input alphabet X ; and a,(-||-) is defined in Eq. (4.3).

Proof of Proposition 7.1. We first claim that we can reduce to the case of determinstic encoders as

follows. Assume for any deterministic encoder £ : X — W with index size |W| = M, any decoder D,
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and any state op € S(B), we have

1= p(y) TrEW oY) > &
reX

(PXB”TX ®UB) (7.4)

o M
17

for 7x = ITI\ 1x. Then given a random encoding F', we may average over its constituent deterministic

encoders to obtain

|7

1=y ZPTr " pt) > du (pxB|7x ® oB) (7.5)
zeX

using that (7.4) holds for each &;. Then, since the RHS does not depend on the encoding or deocoding,

we may minimize over random encodings F' and decodings D to find

e >a l%(pXB”TX ®oB). (7.6)
Thus
—loge*(1,log M) < —log & AT‘(pXBHTX ®op). (7.7)

Since the LHS does not depend on ¢, we may minimize over it, yielding

—loge*(1,log M) < inf -1 7.8
oge™(1,log )_UBIEI}S(B) og & ‘IVT(PXBHTX@O'B) (7.8)

which is the conjecture, (7.3).
Fix deterministic encoding £ and a decoding strategy, i.e. a collection of POVMs {Py }wew, given
by Py = {ng)}jje)(. Consider the map A : XB — X B such that

A(|z)(z| ® o) = |®2Tr ) o p))2) (). (7.9)

This is the map that encodes in the second register the probability of each measurement outcome of
the POVM {Hég(x))}iex, when z is in the first register. To see that A is completely positive (CP), let
us define for each x € X the measure-and-prepare map A* : B — B given by

“iop e Y T Dop]a) (), (7.10)

which is CP (see e.g. [50]). Then writing L, for left-multiplication by the projector |x)(z| and

similarly R|;y(, for right-multiplication, we have that

A= Z L|x)<x|R\x)(a:\ ® AT, (7.11)
rzeX

Since LaR 4 is CP for self-adjoint A (since A is its only Kraus operator), and the sum of CP maps is
CP, we have that A is CP.
We define a.(p||o) as the minimum type I error for a binary test discriminating between p and o,

with type II error bounded by e. The type I error of a test 7" here is Tr[(1 —7")p] and the type II error
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is Tr[T'o], and therefore

Ge(pllo) = _inf_ Te[(1~T)p) (7.12)
Tr[To]<e

By writing the optimal type-I error into the hypothesis testing relative entropy [14],
—log & (pllo) = D(cllp). (7.13)
Since the hypothesis testing relative entropy satisfies the DPI, we have
Dy (pllo) = D (2(p)[|®(0)) (7.14)
for any CP map ®. Therefore,
bz (pllo) = exp(=Dy(allp)) < exp(=Dy (2(0)[|2(p))) = d=(2(p)[|®(0)). (7.15)

We set 7x = |—)1(‘]IX = ﬁerX |z) (x| as the completely mixed state on X and op € S(B)
arbitrary. Then for any € > 0,

da(pXBHTX & O'B) S dg(A(pXB)HA(TX & UB)). (716)

Let us consider these two states:

(S(:): A\ /4
Arx ®op) = |X‘§YA|:C z| ®@op) = ‘Xb;x a:|®ZTrH |2) (], (7.17)
and
Mpxp) = Y p@)A(z) (x| @ ph) = Y p(@)|2)(z| © Y T pglla)al.  (7.18)
zeX reX TeX

Now, take a two element POVM (the test) as T'=}_ |y)(y| @ |y){y|. Then,

Te[TA(pxB)| Zp ) Te[ILE@) pY ), (7.19)

so this test has type I error of 1 37 p(y) Tr[Hég(y))p%].
On the other hand,

Te[TA(7x ® o)] Z W Tr[(E®) IX! S Y mmfE®eg). (7.20)
weW yeX:£(y)=w
Since
Y T <Y T{op] = Trjop] = 1, (7.21)
YEX:E(y)=w YEX
we have

Tr[TA(tx ® op)] < (7.22)

x|
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That is, this test achieves type II error of ITM\ As the infimum over all such tests, we have that

L= (y) eI ] = G (Mpxp) |Alrx © 0p)) = ﬁ(PXBHTX ® op) (7.23)

[X] [X]

where the second inequality is by (7.16). Then taking the infimum over £ and D,

aur (pxpllmx ® o) < egyw (L, log[WI). (7.24)
Thus,
—loge*(1,log M) < —log & ‘ﬁ(pXBHTX ®op). (7.25)
X

Since this holds independently of op € S(B), we may minimize over op to find

—loge*(1,log M) < min —logé & ,
ge*(1,log M) ,,nin, —log WM‘(PXBHTX oB)

which complete our claim. O

7.2 Proof of Theorem 7.1

Proof of Theorem 7.1. The proof is split into two parts. We first invoke an one-shot converse bound
in Proposition 7.1 to relate the optimal error of Slepian-Wolf coding to a binary hypothesis testing
problem. Second, we employ a sharp converse Hoeffding bound in Theorem 4.3 to asymptotically
expand the optimal type-I error, which yields the desired result in Eq. (7.1).

Applying Proposition 7.1 with pxnpn € S(X"B") and M = exp{nR} gives

1
log(————) < min -1 [ Ue 7.26
o <5§W(”7R)> S oy T, T 088 (s U @ 03) (7.26)
—loga% (pannHan (GB)®n), (727)
= —loga_y_ (sl (Ux ®05)"), (7.28)

where we invoke the saddle-point property in Proposition 5.3-(b) to denote by

—
* = R+ D, Ix®o . 7.29
OR oBrglsl(l )asel[lopl} ( (PXBH X B)) ( )

Next, we show that the exponent ¢, > 0, and thus we can exploit Theorem 4.3 to expand the
right-hand side of Eq. (7.28). Let r = log |X| — R, and note that item (c) in Proposition 5.3 implies

pxp < Ux ® 0. (7.30)
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One can verify that

n 1 a *
b (1o | (Ux ® 0%)®") = sl(%)l] o (Da(pxB|Ux @ oR) —1) (7.31)
ae(0,
11—«
= sup (Do (pxBllx ® oR) — log|X| =) (7.32)
ac(0,1] @
= By (R) (7.33)
> 0, (7.34)

where ¢, is defined in Eq. (2.50); equality (7.33) follows from the saddle-point property, item (b) in
Proposition 5.3, and the definition of Eg,(R) in Eq. (5.2); the last inequality (7.34) is due to item (a) in
Proposition 5.3 and the given range of R. Further, the positivity of ¢, (r| Pl (Tx @ Uﬁ)@m) implies
that » > Do(pxB||7x ® 0%;). By choosing e = r — Do(pxB||7x ® 0};) >0, p = pxp and 0 = 7x ® 0,
Eq. (7.31) guarantees the positivity of ¢,,. Hence, we apply Theorem 4.3 on Eq. (7.28) to obtain

(=)
1

< no, (r]p?}%H (Tx ® U}})@m) + 3 (1 +

Odn (FlpSxll (x @ 0)®")
or

) logn + K, (7.35)

F=r

where K > 0 is some finite constant independent of n. Finally, combining Egs. (7.33) and (7.35)

completes the proof.
O
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Chapter 8

Moderate Deviation Analysis (Source
Coding)

In this chapter, we provide the moderate deviation analysis for Slepian-Wolf coding with QSI. As we
have shown in Chapters 6 and 7, the optimal probability of error exponentially decay to zero as the
compression rate is above the Slepian-Wolf limit H(X|B),. In Theorem 8.1 below, we consider the
scenario that the compression rate approaches H(X|B), from above at a speed a,, which satisfies

(i) lim a, =0;

n—-4o0o

(i) lim apyv/n = +oo. (8.1)

n—+oo
Then, the optimal probability of error still goes to zero asymptotically.

Theorem 8.1 (Moderate deviations for the error). theomodlarge Consider a Slepian-Wolf coding with
a joint classical-quantum state pxp € S(XB) and V(X|B), > 0. For any sequence (an)neiv satisfying
Eq. (1.7),

1 1
lim —loge™ (n, H(X|B), + ay)

= 2
n=>Fo0 o 2V(X|B),’ (8.2)

where the conditional information variance is defined by V(X |B), := V(pxB|1x ®pp) and V(p|o) :=
Tr(p (log p — log @)°] — D(p||o)?.

Proof of Theorem 8.1. We shorthand H = H(X|B),, V = V(X|B), for notational convenience. We
first show the achievability, i.e. the “>" in Eq. (8.2). Let {an}n>1 be any sequence of real numbers
satisfying Eq. (8.1). For every n € IN, Theorem 6.1 implies that there exists a sequence of n-block
codes with rates R,, = H + a, such that

£*(n, Ry) < 4exp {—n [Orgnggl {Eg(s) + sRn}] } . (8.3)

Applying Taylor’s theorem to Eé (s) at s = 0 together with Proposition 5.2 gives

L SOR)

S
E}(s) = —sH — SVt 5o : (8.4)
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for some s € [0, s]. Now, let s, = a,/V. Then, s, <1 for all sufficiently large n by the assumption in
Eq. (8.1) and V > 0. For all s,, <1, Eq. (8.4) yields

Max {Eé (s) + sRn} > Eé (Sn) + snRn (8.5)
a a? a3 BEL(s)
_ Yn _H ) — “n n 0 .
\%4 ( + ) 2V * 6V3  0s3 - (8.6)
_ a? al 83Eé (s) (8.7)
2V 6V3  0s3 ) )
a? ad | PE] (s)
> _ _n 0 8.8
2V 6V3| 0s3 | (88)
a? a’
D .
> 57 e (8.9)
where s, € [0, s,]; Eq. (8.7) holds since R,, = H + a,; we denote by
PEL (s)
T = ——0 7 1
sIél[%,)f] 0s3 (8 0)

This quantity is finite due to the compact set [0,1] and the continuity, item (a) in Proposition 5.2.

Therefore, substituting Eq. (8.9) into Eq. (8.3) gives for all sufficiently large n € IN,
1 1 log 4 1 an,
—log (= ) 2 o (1T, 8.11
na? 8 (5*(n, Rn)> ~  na? + 2V 3V?2 (8.11)

Recall Eq. (1.7) and let n — +o00, which completes the achievability:

lim inf — 1 L )2 (8.12)
iminf — log | ———— —. .
n—-+00 na% & 5*(77,, Rn) -2V

We move on to show the converse, i.e. the “<" in Eq. (8.2). Let N3 € IN be an integer such

that R, = H + a, € (H1(X|B),, Ho(X|B),) for all n € N; Invoke the one-shot converse bound,
Proposition 7.1, with M = exp{nR,,} to obtain for all n > Ny,

1
1 — | < i —log non " n 813
o8 <6*(n,Rn)> = gnesiany 8 Y (pxnpn|lTxn @ o) (8.13)
< ~logdpy, (oxosrlimae @ (75,)%7) 5.0
= —logd . (xl(x ©0k,)™). (8.15)

[x[m

where we denote by (a}, ,0% ) the unique saddle-point of o (R, - Hg(X]B)p).
Next, we verify that we are able to employ Theorem 4.4 to asymptotically expand Eq. (8.15).
Equation (8.27) in Proposition 8.1 below shows that lim,,_, 4~ ar, = 1. This together with the closed-

d0i:10.6342/N'TU201800597



8. Moderate Deviation Analysis (Source Coding) 74

form expression of o7, [125], [119, Lemma 1], [8, Lemma 5.1] shows that

*

1
(s i3

(o [55])

lim o = lim = pB. (8.16)

n—+oo m n—+4o0o

g
Since V =V (p||lx ® pg) > 0, by the continuity of V(-||-) (c.f. (3.55)), for every x € (0,1) there exists
Ny € IN such that for all n > No,

\%4 (PXBHTX ® O'En) =V (pXBH]lX & U%n) > (1 — R)V =:v>0. (8.17)

Hence, we apply Theorem 4.4 with r,, = log|X| — R, p = pxp and 0 = 7x ® 0}, to obtain for all
n > max{Ny, Na},

~ -«

08 Aspgaray (9°7107) < sp S (D pllo) 1) Hlog (s5T) K, (819)
ae(0,1

= nEgp(H + an + ) + log (sv/n) + K, (8.19)

for some constant K > 0, and s;, := (1 — a} )/ak . Now, let 0, := a, + v,, and notice that

Yn = O(X%™) = o(a,). We invoke Proposition 8.1 below to have

n

lim sup 2 XIB)y +0n) _ o B (H(XIB), +0n)

2 2 <
n—+00 ay n—+00 571

1
—. 2
G (8.20)

Moreover, Eq. (8.27) in Proposition 8.1 gives that lim, % = 1/V. Combining Egs. (1.7), (8.15),
(8.19) and (8.20) to conclude our claim

1 1 log Qs — @n || gen
lim sup — log () < limsup — 8 Fexpl m"}z(p lo™) (8.21)
n—+oo NGy, 5*(n, Rn) n—+00 nan
1 ) log (s%+/n)
< SV .
<oy + lrlgigop naZ (8.22)
, log (s3v/n)
= +1 n 2
v T T (829
5 log (n(52) —logV
_ i 2 n 8.24
v T T g (524
1

where the last line follows from lim, , . nd2 = +oo. Hence, Eq (8.12) together with Eq. (8.25)

completes the proof.
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Proposition 8.1 (Error Exponent around Slepian-Wolf Limit). Let (0,)nen be a sequence of positive

numbers with lim,_, 6, = 0. The following hold:

Fop (H(X|B)p+6,) _ 1

lim su ; 8.26
rmene 2 = WXIB), g7
I 5n ! (8.27)
imsup - = ————, .
where
s§ i= arg max {s (H(X|B),+ 0pn) — sH', (X\B)p} . (8.28)
s>0 I+s
The proof of Proposition 8.1 is provided in Section 8.1.
O

8.1 Asymptotic Expansion of Error Exponent around Slepian-Wolf
Limit

Proof of Proposition 8.1. For notational convenience, we denote by H := H(X|B),, V := V(X|B),..
Thus,

By (R) = sup {sR + Eo(s)} (8.29)
s>0
(8.30)
Let a critical rate to be
0Ey(s)
= . 8.31
e Js |44 ( )

Let Ny be the smallest integer such that H(X|B),+06, < rer, for all n > Ny. Since the map r — Egy(7)
is non-increasing by item (a) in Proposition 5.3, the maximization over s in Eq. (8.29) can be restricted

to the set [0, 1] for any rate below r¢,, i.e.,
Es, (H +6,) = Jnax {s(H + 6,) + Eo(s)}. (8.32)

For every n € IN, let s}, attain the maxima in Eq. (8.32) at a rate of H + 6,. It is not hard to observe
that s} > 0 for all n > Nj since s, = 0 if and only if H + §,, < H, which violates the assumption of
dpn, > 0 for finite n. Now, we will show Eq. (8.27) and

lim sy =0. (8.33)

n—-+00

Let (s}, Jrew be arbitrary subsequences. Since [0, 1] are compact, we may assume that

lim s} = s, (8.34)

k—o0
for some s, € [0, 1].
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76

Since s — Ey(s) is strictly concave from item (c) in Proposition 5.1, the maximizer s% must satisfy

OEy(s)
Js

= _(H+5Tbk)v

"k

which together with item (a) in Proposition 5.1 implies

lim OEq(s)
k——+o0 0s

_ an(S)

5:5:% s

On the other hand, item (d) in Proposition 5.1 gives

DEo(s)

=—H.
0s |,
Since item (d) in Proposition 5.1 guarantees
O°E,
9”Eyo (s) = -V <o,
s s=0

(8.35)

(8.36)

(8.37)

(8.38)

which implies that the first-order derivative dFE (s) /0s is strictly decreasing around s = 0. Hence, we

conclude s, = 0. Because the subsequence is arbitrary, Eq. (8.34) is shown.

Next, from Egs. (8.35) and Egs. (8.37), the mean value theorem states that there exists a number

8p,, € (O, s’;bk), for each k£ € IN, such that

_ 9PEy (s) _ —H+(H+6n) _ Ony
ds? e s, S5,

When k approaches infinity, items (a) and (e) in Proposition 5.1 give

0?Ey (s) 0?Ey (s)
lim 208 = I8V Ly,
htbe | D82 o—p s |,
nk -
Combining Egs. (8.39) and (8.40) leads to
T

k—4o00 6nk N I’

Since the subsequence was arbitrary, the above result establishes Eq. (8.27).

Finally, denote by

83E0 (8)

W < +o00.

T = max
s€[0,1]

(8.39)

(8.40)

(8.41)

(8.42)

For every sufficiently large n > Ny, we apply Taylor’s theorem to the map s}, — Ej (s};) at the original
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point to obtain

Es, (H +6,) = sy, (H + 6,) + Eo (s},) (8.43)
os )P (sn)® OPEo(s, Po)
— s, — 44
550 5 V+ 6 953 . (8.44)
* )2 * 3T
< s (H+6, — H) - (Sg) v+ (S”é (8.45)
2 *\3
< sup 4 S0y, — Tyl (5)"Y (8.46)
>0 2 6
62 (s2)37
= _n n 8.47
Y% o (8.47)

where §,, is some number in [0, si]. Then, Eqs. (8.27), (8.34), (8.47), and the assumption lim,_, . dp, =
0 imply that the desired inequality

Esy (H +6y) 1

< —. 4
-2V (8.48)

lim sup
n—-400 67%
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Chapter 9

Error Exponent Functions (Channel
Coding)

In this chapter, we introduce the auxiliary functions and the exponent functions for classical-quantum
channel coding. Thee major properties of those functions are provided in Sections 9.2 and 9.3. Sec-
tion 9.1 presents the variational representations for the weak sphere-packing exponent.

The random coding exponent [35] and strong sphere-packing exponent [38] of a c-q channel W :
X — S(H) and a rate R > 0 are defined by

Ei(R) i= max, Bi(R,P) (9.1)
Ey(R) = i, By(R, P), (9.2)
where
Ei(R, P) i=sup {Eo(s, P) ~ sR} (9.3)
Eyp(R, P) = sup {Eo(s, P) — sR} (9.4)

and Ej is the auziliary function of the c-q channel W (see [34, 35, 36]):
1+s
Eo(s, P) := —log Tr (Z P(x)- Wg}/““)) (9.5)
rzeX

for all P € P(X) and s > 0.

We will require three variants of the above auxiliary function: Vs > 0 and o € S(H),

Eg(s, P,0) = sD1_; (P o W||P @ 0) (9.6)
Ew(s,P,0) = lei (W|le|P), (9.7)
El(s,P,0) :=sD’, (W|o|P). (9.8)
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With this, we define another version fo the random coding exponent:

EYR,P) = sup {Eg(s,P,PW)—sR} (9.9)
0<s<1

This quantity will appear in the achievability (see Theorem 12.1 in Chapter 10), and Chapter 12.
The weak sphere-packing exponent [37] is defined as

Esp(R) = Prenj%}/%) Esp(R, pP), (9.10)
where
E = 1 : < . .
Ey(R.P) = min  {D(V|WIP): I(PV) < R) (9.11)

We also need the following definitions: for any R > 0 and P € P(X),

EQ(R, P) := M(P,W)—R); 12

§(RP) = swp == (1(PW) ~ R); (9.12)

E@(R,P):= sup - ° (Ig?)(P,W)—R), (9.13)
O<a<l &

Eq. (3.62) implies that (see also Theorem 9.1) Es(ll))(R, P) < Es(g)(R, P). By quantum Sibson’s
identity [125], one finds

E})(R, P) = Eq(R, P). (9.14)

Proposition 3.2 and Eq. (3.63) imply that the two quantities given in Eqgs. (9.12) and (9.13) are equal

to the strong sphere-packing exponent by maximizing over the input distributions:

Egp(R) = e EQ(R,P) = e EP (R, P). (9.15)

Further, we define [25, p. 152], [38, Theorem 6]:
Roo = CO,W- (916)

From the definitions in Eqgs. (3.54) and (9.16), it can be verified that Ry, < Cy for all c-q channels

W. In Proposition 9.6 below, one has Eg,(R) = 400 for R < Ro, and Eg,(R) = 0 as R > Cy.

Throughout this paper, we further assume that the considered c-q channel W satisfies R, < Cy.
Lastly, we define

Eg(R, P,0) = i {D (W|W|P) : D (W|o|P) < R} (9.17)

forall R >0, P € P(X), and 0 € Sso(H). From the definitions in Eq. (9.17), it is not hard to see that
[36]

Eg(R,P,0) =0, YR> D (W|o|P). (9.18)
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and

400, R < Dy (W|o|P),
E@(R,P,0) = 0 (Wlle1P) (9.19)
0, R>D(W|o|P).

As we will show in Chapter 11, the quantity Es(g)

(R, P) plays a significant role in the connection
between hypothesis testing and channel coding. Moreover, Proposition 9.5 in Section 9.3 below shows

that the the optimizer in Eqgs. (3.61) and (9.13) forms a saddle-point.

9.1 Variational Representations

This section derives alternative formulations of the strong and weak sphere-packing exponents of
Egs. (9.4)-(9.17), and provides a relation between these two exponents. As we will show later, the
derived formulations are essentially optimization problems in the primal domain, while the expressions
in Egs. (9.4) and (9.17) are corresponding dual representations.

We first consider the following convex optimization problem and then exploit it to establish vari-
ational formulations of the sphere-packing exponents. Let p,7 € S(H) be two density operators.

Consider the following convex optimization problem:

P) e(r):= inf D(o|p),
P) )= int Dlolo .
subject to D (o||T) <r.

The above primal problem is interpreted as finding the optimal operator o* that achieves the minimum
relative entropy e(r) to p, within r-radius to 7. The following result shows the dual representation of

problem (P) via Lagrangian duality.

Lemma 9.1 ([93, Section 3.7], [111], [58, Theorem IIL.5]). The dual problem of (P) is given by

(D) sup {—(1 + s)log QL (p||T) — sr} ) (9.21)

1
320 1+s

Proof. By the method of Lagrange multipliers, the primal problem in Eq. (9.20) can be rewritten as

sup inf {D(ol||p) +s(D(o||T) —7)} (9.22)
s>0 0€S(H)
s
= 1 inf D —D — 9.23
swp{(1+5)_int {30010 + 15 Dloln) ) - or) (9.29
— sup {—(1 +8)log @, (pllr) - } , (9.24)
5>0 I+s
where the last equality follows from Lemma 3.2. Ul

d0i:10.6342/N'TU201800597



9. Error Exponent Functions (Channel Coding) 82

Theorem 9.1 (Variational Representations of the Sphere-Packing Exponents). Let W : X — S(#H) be

a classical-quantum channel. For any R > R, we have

— . 11—« b

Eo(R,P) = D’ (W||¢|P) — R d 9.25

sp(R, P) Oigrélaggg{){ - ( o (W[la|P) )} an (9.25)
l—«o

FEyp (R, P) < su min D, (W|o|P)—R) ¢, 9.26

WP < s min {222 (D, (WlolP) - B} (9:26)

where ESP(R, P) and Eq, (R, P) are defined in Egs. (9.17) and (9.4), respectively.

Moreover, equality in Eq. (9.26) is attained when mazimizing over all prior distributions, i.e.,

11—«
Fop(R) = FEqo(R,P) = i Dy (W||lo|P)—R) ¢ . 9.27
o) = s Ep(RP) = mux swp min {ZE a0l -m)}. @)

Proof. We start with the proof of Eq. (9.25). Observe that

gg‘lsi&) D (V|je|P) = og‘lsi(lql{) weXP(x) Tr [V, (log V — log o)] (9.28)
= I(P,V). (9.29)
We find

E = ] : < .
Esp(R, P) = i {D (VI|W|P): I(P,V) < R} (9.30)
= min {D(VHW|P): min D(V||U|P)§R} (9.31)

V:X—S(H) gES(H)

= i D (V||W|P in D (V|o|P)— R 9.32
sp i {DOIWIP)+ 5 ( min DOloIP) - ) | (9.82)

- i i - P(z)D (Vy||[Wy) + s - D (V, :
i;%’g??gl(%v;xnil&m{ SR+;{ (2)D (Vi||[Wa) 4 5 - D (V, HU)} (9.33)
=5 i P in [D(Vu||[Ws)+s-D(Ve|o) —sR 9.34
Sgﬁoé%l(%{;( (z) min (D (VallWs)+s- D (Vallo) = s ]} (9.34)
= mj P in {D(V,||W,): D (Va|lo) <R} y. 9.35
Uggl(g{){x;( (x) ngg?m{ (Ve Wz) = D (Vallo) }} (9.35)

In Eq. (9.32) we introduced the constraint into the objective function via the Lagrange multiplier
s > 0; and Eq. (9.34) follows from the linearity of the convex combination. By Lemma 9.1, the inner

minimum over V, € S(H) can be represented as its dual problem:

Eg(R,P) = min sup{—(l +5) > P(z)log [Qb (Wm||a)] —SR} (9.36)

1
o€S(H) s>0 cex Tts

Y S A T R R

d€S(H) 0<a<1 «

where we substitute @ = 1/(1 + s). From Lemma 3.2, the numerator in the bracket of Eq. (9.37) is a

concave-convex saddle function for every o € S(H) and every a € (0,1]. Hence, we invoke the minimax
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theorem, Lemma 9.2 below, to exchange the order of min-sup in Eq. (9.37):

E R,P)= su min
(5, ) 020zt 7ES(H)

. 1 -« b
_ D2 (W||o|P) — R) \, 9.39
Oiggloglgl(%{ — (2, (WllolP) )} (9.39)

- (9.38)

{ — Y ex P(@)log [Q% (Walo)] — (1~ a)R}

where in (9.39) we recall the definition of the log-Euclidean a-Rényi divergence, Eq. (3.6), and hence
prove the first claim in Eq. (9.25).

Next, we will prove Eq. (9.26). From Jensen’s inequality and the concavity of the logarithm, the
right-hand side of Eq. (9.26) implies that

sup  min {1 —2 (Z P(2) Dy (W,||) — R) } (9.40)

0<a<10€S(H)

xeX
= sup min 21 > P(z)log Tr [Weo' ] — L=ap (9.41)
0<a<10ES(H) o Tx * «a

1
> sup min ¢ ——logTr
0<a<10€S(H) «Q

Y P(a) [Wgal—a]] 1 O‘R} (9.42)

TEX @
= Ey(R, P), (9.43)

where the last equality follows from Eq. (9.14).
Finally, Eq. (9.27) follows from the following identity proved by Mosonyi and Ogawa [58, Proposition
IV.2):

max min Dy (W||o|P) = max min D, (PoW||P®o), (9.44)
PeP(X)oceS(H) PeP(X) oceS(H)

Note that the above relation also holds for D?,.

Lemma 9.2 (|104, Proposition 21|). Let A C R>¢ be a convex set and let B be a compact Hausdorff
space. Further, let f : A x B — R be concave on A as well as conver on B. Then

@) _ g sup 18

sup inf

. (9.45)
zcA yeB X yeB zcA T

O

The following corollary is a simple consequence of the variational representations of the sphere-

packing exponents in Theorem 9.1 and the Golden-Thompson inequality, Lemma 2.7.

Corollary 9.1. For any classical-quantum channel W : X — S(H), R > Ro, and P € P(X), it holds
that

Ey(R, P) < Eyp(R, P). (9.46)
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9.2 Properties of Auxiliary Functions

In the following, we list the properties of the auxiliary functions Fy, Eé, Fy, and E}b1 in Propositions 9.1,

9.2, 9.3, and 9.4, respectively. Our ingredients come from properties of Petz’s quantum Rényi divergence

[59] (see also [126, 120, 8]) and the theory of matrix geometric means.

Proposition 9.1 (Properties of Ey(s, P)). The auziliary function Eo(s, P), defined in Eq. (9.5), admits

the following properties.

(a) The partial derivatives OEo(s, P)/0s, 0*Eq(s, P)/0s%, 03Ey(s, P)/0s3, and Ey(s, P) are all con-

tinuous for (s, P) € R>g x P(X).

(b) For every P € P(X), the function Ey(s, P) is concave in s for all s € R>o.

(c) For every P € P(X),

(d) For every P € P(X),

B 0Ey(s, P) s dFy(s, P)
Ss——+00 0s 0s

(e) For every P € P(X),

82E0(S, P)

= —V(P,W).
882 s=0

The proof is provided in Section 9.2.1.

< I(P,W), Vs € Rso.

(9.47)

(9.48)

(9.49)
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Proposition 9.2 (Properties of Eé(s,P, 0)). Consider a classical-quantum channel W : X — S(H),
a distribution P € P(X), and a state o € S(H) with W, < o for all x € supp(P). Then Eé(s,P, o)
defined in Eq. (9.6) enjoys the following properties.

(a) E%)(s,P,cr) and its partial derivatives 0E(‘)L(8,P, 0)/0s, 82E$(5,P, 0)/0s2, 83E8(3,P, 0)/0s> are
all continuous in (s, P) € R>¢ x P(X).

(b) For every P € P(X), the function Eé(s, P, o) is concave in s € R>o.

(¢) For every P € P(X),

OE(s, P,o)

=D (PoW|P . .
= (PoW|P®0) (9.50)

s=0

(d) For every P € P(X),

GE(‘)L(S, P,o) - 8Eé(s, P,o)

sEI-Poo Ep < Ep <D(PoW|P®oc), Vs € Rxo. (9.51)
(e) For every P € P(X),
9Ej(s, P
TEPo)l __ypow|Peo). (9.52)

0s?
s=0

The proof is provided in Section 9.2.2.

Properties of Ey, and Efl will be crucial in the analysis of the converse part of our main result.

Proposition 9.3 (Properties of Ey(s, P,0)). Consider a classical-quantum channel W : X — S(H),
a distribution P € P(X), and a state o € S(H) with W, < o for all x € supp(P). Then Ey(s, P, o)
defined in Eq. (9.7) enjoys the following properties.

(a) Ey(s, P,o) and its partial derivatives OFy (s, P,o)/ds, 0*Ey(s, P,0)/0s?, 33Ey(s, P,0)/0s® are
continuous for (s, P) € R>g x P(X).

(b) For every P € P(X), the function Ey (s, P,o) is concave in s for all s € R>o.
(c) For every P € P(X),

OEw(s, P, o)

5| =P (W||o|P). (9.53)

(d) For every P € P(X),

lim 2En(sP0) OEWSPo) b g101p) | vs € Rao, (9.54)
$—+00 s s -
(e) For every P € P(X),

0?Ey (s, P, o)

952 = -V (Wla|P). (9.55)
s=0
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The proof is provided in Section 9.2.3.

Proposition 9.4 (Properties of F} (s, P,o)). Consider a classical-quantum channel W+ X — S(H),
a distribution P € P(X), and a state o € S(H) with W, < o for all x € supp(P). Then E(s, P, o)
defined in Eq. (9.8) enjoys the following properties.

(a) E}(s,P,0) and its partial derivatives OE? (s, P,a)/ds, 0°E} (s, P,0)/0s%, O3 E} (s, P,0)/ds> are
all continuous for (s, P) € R>g x P(X).

(b) For every P € P(X), the function E} (s, P,a) is concave in s for all s € Rxq.

(c) For every P € P(X),

dE} (s, P,o)

- = D (W|o|P). (9.56)

s=0
(d) For every P € P(X),

OE; (s, P,o) < OE} (s, P, o)

sgr—‘,{loo s < D5 <D (WHUlP), Vs € RZO' (9.57)
(e) For every P € P(X),
2E} (s, P ~
OBy(s, P, o) —V (W|o|P). (9.58)

0s2

The proof is provided in Section 9.2.4.

9.2.1 Proof of Proposition 9.1

Fix any c-q channel W: X — S(H). To ease the burden of derivations, we denote some notation:

=Y P@)W}) e B(H),, (9.59)
TEX
g(S,P) = f(svp)(lJrS) S B(H)+7 (9-60)
F(s,P):=Tr[g(s, P)] € Rxo, (9.61)

for all (s, P) € R>o x P(X). Clearly, f(-,-) is continuous on R>p x P(&X’). Direct calculation shows
that

Of(s,P) _ 1

f'(s, P) o= =5 M pne S P(a)yw /) logv,, (9.62)
rzeX
" - +8) o
f"(s, P) : o (1 o Z P(z)W} logW, |2 + s (9.63)
—~ —~2
Pf(s,P) 6logW log W,

i Py — ) _ P(x 1/(145) 5o i m .64
P == =0 +s)4 ; WP oeWe | 64y + g |0 06
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where we denote 10/\g by

— logx, x>0,
fopr = °® (9.65)
0, z=0.

From Egs. (9.62), (9.63), and (9.64), we infer that f'(s, P), f”(s, P), and f"”(s,P) share the same
support as f(s, P), and are continuous for all (s, P) € R>g x P(X) (in the strong topology).
Observe that for all (s, P) € R>g x P(X),

g(s, P)° = f(s,P)°. (9.66)
Hence, the operator g(s, P) admit the expression:
g(s, P) = g(s, P)0el 08l P) g (5 PP, (9.67)

By applying the chain rule of the Fréchet derivatives, one can calculate that

g/(S,P) = ag(;;P)
= g(s. P)"Dexp |logg(s. P)| ((1+ s)Dlog [£(s, P)] (f'(s, P)) +logf(s, P)) g(s, P)", (9.68)
2 S
g" (s, P) := o fls, P) ]:9(52’ P)

— (s, P)'Dexp [logg(s, P)| ((1+ 5)Dlog [f (s, P)] (/'(s, P)) + log/ (5, P)) (s, P)’
+ g(s, P)’Dexp |logg(s, P)| (2DIog [£(s, P)] (f'(s, P)) + (1 +5) { Dlog [£(s. P)} ("(s. P)

+ D2log[£(s, )] (1'(5, ) }) g5, P)°, (9.69)

where we use the following integral formulas (see e.g. [82, Example 3.22, Excersize 3.24|)
Dlog[A](B) = /O+OO (t1+A) B+ A)~tdt, (9.70)
D2log[A](B) := Dlog[A](B, B) = —2/0+OO t+A B +A B+ A dt (9.71)

for all 0 < B < A, and (see e.g. [82, Theorem 3.10])

1
D exp[A](B) :/ =04 Bt gt (9.72)
0
1 t1
D% exp[A](B) := D?exp[A](B, B) = 2/ / eU=t)ABeti—t2)A Beta4 g, dt, (9.73)
0 JO

for all self-adjoint operators A and B. Further, by [77, Theorem 3.5] Dexp[-](-), D®exp[-](-) are
continuous for all self-adjoint operators, and Dl?):g[A] (B), DQIO/\g[A] (B) are continuous for all 0 < B <«
A.

In the following, we will show that ¢/(s, P) is continuous for all (s, P) € R x P(X). However, the

operation Dlo/\g[]( -) in Eq. (9.68) is only continuous for positive definite operators (see |69, Theorem
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3.8]). We need to do little more work to circumvent this problem.

Let {sk, Pr}r>1 be an arbitrary sequence with limit (sg, Px) — (S0, Pp). Observe that if f(sg, Pr) <
f(so, P,) for some k € IN, we can only focus on the support of f(s,, P,) and treat f(s,, P,) as a positive
definite operator without loss of generality. Consider any subsequence {s, , Pk, }n>1. Suppose all but

a finite number of (s, , Py, ) satisfy
f(skn7pkn) < f(So, Po)- (974)

Then Eq. (9.68), and the continuity of f(-,-), f'(-,), Dl?)?g;[f(-, 9](+) (recall that it is continuous for
positive definite operators), and Dexp[lo/\gf(-, J](-) (see [69, Theorem 3.8, [77, Theorem 3.5]) imply

that ¢'(-,-) is continuous at (s,, P,). If this is not the case, we define

Wmin ‘= gél}yl )\min(Wx)a (975)
max ‘— )\max ) .
s = M A (V) (9.76)

where Xmin(X ) denotes the minimum non-zero eigenvalue of an operator X. From Eqgs. (9.59), (9.62),
(9.75), and (9.76), one can verify that

Fl(s,P) < (Ji(i 5))2 log wim’ (9.77)
f'(s,P) > /(s P) log L (9.78)

(145)% 7 wmax

Then for any subsequence that f(sg,, Pk,) € f(s0, Po), Eq.s (9.70), (9.77) and (9.78) imply

1 1 L~
Rz 2 (1 + 80)2 log Wmax = lnlg—&l-gof Dlog [f(sk”’ Pkn)] (f,(sk"’ Pk"))
_ 1 1
< i DI P (50, Py )) < ] € Rso.
< lim sup Dlog [f(Skys Pien)] (f (Skn> Prin)) < a2 o8, € R0
(9.79)

Invoking the continuity of f(-,-), g(-,-)?, combined with Eqs. (9.68) and (9.79), we infer that'

1; 89(87 Pk)
m ———:
n—+oo 0s

=4 (s0, Py). (9.80)
S=Sk
Hence, we complete the claim of the continuity of ¢'(-,-). By following the same approach, one can
also verify the continuity of ¢”(-,-) and ¢"'(-,-).
Recall the definition of Ey(s, P, W) in Eq. (9.5) and Eq. (9.61), we have Ey(s, P,W) = —log F'(s, P).

!More precisely, f(sk,, Pk, ) and f(s,, P,) share some disjoint support since f(sk,, , Pk,) & f(s0, P,). However, owing
to the finiteness of Eq. (9.79), the projection g(so, P,)® “nullifies" those disjoint support, and hence we can only consider
the joint support of f(sk, , Pk, ) and f(so, Po). The continuity of the operation Dlo/\g[f(-, )](-) on the support of f(so, Po)
follows from the previous argument.
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By denoting F'(s, P) := OF (s, P)/Js, direct calculation shows that

0Ey(s, P) _F'(s, P)

95 F(sP) (9.81)
?Ey(s,P)  F"(s,P) [dEy(s,P)\"

§32 - F(s,P) ( 033 ) ’ (9.82)
&P Ey(s,P)  F"(s,P) _0Ey(s,P)*Ey(s,P) (dEo(s,P)\’

gs?’ ~ F(s,P) 085 552 B ( 085 ) ’ (9.83)

Now we are at the position to prove Proposition 9.1:

(9.1-(a))

(9.1-(b))

Recalling from Eq. (9.60), the continuity of Eg(s, P), 0Fq(s, P)/0s, 0*Eq(s, P)/0s?,
and 93 Ey(s, P)/0s? follow from the continuity of g(-,-), ¢'(,-), ¢"(-,-), and g"'(-,-).

To prove the concavity of the map s — Ey(s, P) for s > 0, we first provide some useful lemmas
and the definition of geometric means. Define the “s-weighted geometric mean" of positive
definite matrices A and B by

A#B = AY? (A—1/2BA—1/2)5 A2, (9.84)
It is known that the geometric mean is jointly concave in the matrix partial order (see e.g. [127]):
(PA+(1—0)B)#s(0C + (1 —0)D) = 0 (A#:C) + (1 — 0) (B#sD) (9.85)

for all 0, s € [0,1].

Now we begin the proof of item (b). Since the geometric means, Eq. (9.84), are defined for
positive definite matrices, we first present the proof that only works when all {W,},cx are full

rank. The proof can then be extended to include the non-invertible case.

Let X be a random variable with the distribution P, and denote by Ex the expectation with

respect to P. Then it suffices to prove the convexity of the map:
I\t
(IEX W;g) ] (9.86)

Let [,r, and 6 be arbitrary numbers 1 <[ <r, 0 <6 <1, and define

fit—logTr

for all t > 1.

t=0l+(1—0)r. (9.87)
Let t =14 s > 1. Then we prove the convexity of the map f from Eq. (9.86), i.e.
J&) <0f) + (1 =0)f(r). (9.88)

Define the number 7 € [0,1] by

(9.89)
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Then it follows that

—— 4+ L= : (9.90)

1 g 1-606 + 1-—71
t

The concavity of the geometric means (see Eq. (9.85)) implies that

Ex (W] = Bx [W¥/'wi—] 9.91)
= Ex (WY 41wy (9.92)
< Bx W] 1B 7] (9.93)

Now let A = Ex [W)l(/l} and B = Ex [W)l(/r] Since z +— ! for t > 1 is a monotone function,

Lemma 2.4 in Section 2.1 leads to

T [(EX [W}{tDt] < Tr [(A# . B)'] (9.94)
<Tr [AtTBt(H)] (9.95)
—Tr [AWBT“—@)} , (9.96)

where Eq. (9.95) follows from Lemma 2.6. Finally, applying the matrix Hoélder’s inequality,
Lemma 2.5, in Section 2.1 on the right-hand side of Eq. (9.96), we have

| (x [Y])'] < (10 [4]) o

n? r\ 1-6
- (1o ) (oo []))
Taking the logarithm of the above inequality leads to f(t) < 6f(l)+ (1 —6)f(r). This completes
the proof for the special case of invertible channel outputs.

The above proof assumes that every realization of the density operator W,, x € X, is positive

definite. Hence, each density operator Wg/lwggl—ﬂ/r

can be expressed as a geometric mean
W;/ l#l,TWg}/ ". However, if W, is not invertible for some = € X, then consider a sequence of
positive definite operators W, . := W, + eI that approximate W, i.e., lim.\ oW, . = W,. The
geometric mean of le /! and W; /™ is then defined by

(Walt) s, (W27) = lim (W) s (W) (9.97)

g

by the continuity of the geometric means. Note that the concavity of the geometric means, and
Lemmas 2.1 and 2.6 in Section 2.1 still hold if we use the definition in Eq. (9.97). We can thus

obtain a complete the proof of item (b).

(9.1-(c)) This item was discovered by Ogawa and Nagaoka [63, Eq. (12)]. For the sake of completeness,
we provide the proof here. Note that

g(0,P) = f(0,P). (9.98)
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The continuity of ¢'(-,-) and Eq. (9.68) imply that

q' (s, P)|
= 9(0. P)"Dexp [logg(0, P)| ((1+0)Dlog [£(0, P)] ('(0, P)) + o f(0, P) ) g(0. P)"
— Dexp [log/(0, P)| (Dlog [/(0, P)] (f'(0, P)) + (0, P)iog/(0, P)) (9.99)
= f/(s,P) +logf(s.P)| __ (9.100)
=" WalogW, + WplogWp. (9.101)
TEX
Therefore,
‘9E0(25W) - _m = —Tr[¢(0,P)] = I(P,W). (9.102)

(9.1-(d)) The concavity of the map s — E(s, P) in item (b) ensures that OE(s, P)/ds is decreasing in s.
Along with item (c) concludes Eq. (9.48).

(9.1-(e)) By using Lemma 2.11 in Section 2.1, we have

F'(s, P)| o = Tr [¢/(s. P) (1 + 5)Dlog [£(s. P)] (/'(s., P)) +Towf (s, P)) ]|
+ Tr |g(s, P) (2DI0g [£(s, P)] (£'(s, P)) + (1 + ) {Dlog [ (s, P)] (/" (s, P))
+ D2log [f(s, P)] (f’@,P))}ﬂ ‘ . (9.103)

s=0

From Egs. (9.100), (9.101), the first term in Eq. (9.103) yields

Tr [¢/(0, P) (Dlog [£(0. P)] (£/(0, P)) +ogf(0. P))| (9.104)

= Te [£'(0, P)Dlog [£(0, P)] (£'(0, P)) +2/'(0, P)log (0, P) + £(0, P)log f(0, P)| . (9.105)
Similarly, from Eqgs. (9.98),(9.63) the second term in Eq. (9.103) leads to

Tr | £(0, P) (2DIog [£(0, P)] (£'(0. P)) + { Dlog [£(0. P)] (£"(0, P)
+ D2og[£(0. P)] (£(0,P))})] (9.106)

—Te | S ()W, log? W, — £(0, P)Dloz [£(0, P)] (/'(0, P)) | (9.107)
TEX
Equation (9.103) combined with Egs. (9.105), (9.107) gives
F"(0,P) = Tr [Z W, (log W, — log Wp)2] . (9.108)
TEX
Recalling Eq. (9.82) completes the proof.
O
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9.2.2 Proof of Proposition 9.2

(9.2-(a)) The continuity can be proved by the standard approach of functional calculus (see e.g. [126,
Lemma IIL1] and [120, Section 4.2]). Let F(s) := 3., P(x) Tr [W}=*¢°]. Direct calculation

shows that
E}(s, P F'
8 0(8’ 70-) — ~(8)7 (9109)
0s F(s)
D2Ei(s,P,0)  F'(s) [0E(s,Po)\
015 59) 28y (el , (9.110)
Js F(s) Js
- 3
BE(s,P,0)  F"(s,P) aE (s, P,o) 9?Et(s,P,0) [ OES(s,P,0)
AR +3 7 ,(9.111)
0s F(s,P) s 0s 0s
and
ZP [—W,* (logW,)o® + W, *o®loga] (9.112)
reX
F"(s Z P(z) Tt [W,*(log®W,)o® — W5 (logW,)o*logo
veX (9.113)
—Wlfs(logW Jo®logo + WlfsoslogQU]
F"(s Z P(z) Tr [-W, 5 (log’W,)o® + W, *(log” W, )o"logo
TEX
(9.114)

+2W L5 (log? W, )o®loge — 2W L% (logW,)o®log?c
—W, % (logW,)o*log?o + W;fsaslog?’a] )

Since the matrix power function is continuous (with respect to the strong topology; see e.g. |69,

Theorem 1.19]), we conclude the continuity of the partial derivatives Egs. (9.109)-(9.111) in item
(a).
(9.2-(b)) The claim follows from the concavity of the map s+ sDi_s(-| ) (see e.g. [58, Lemma III.11]).

(9.2-(c)) The results can be derived from evaluating Eqgs. (9.109) and (9.112) at s = 0. We provide an

alternative proof here. One can verify

Ei(s, P
ao(;;,a) = Dy, (PoW||P®0o)—sD|_,(PoW|Po0)|_, (9.115)
s=0
= Di—s (PoW|P® o)l (9.116)
— D(PoW|P® o). (9.117)

(9.2-(d)) The concavity of the map s — Eé(s,P, o) in item (b) ensures that OE(%(S,P,J)/&S is non-
increasing in s. Along with Eq. (9.117), we conclude Eq. (9.51).

d0i:10.6342/N'TU201800597



9. Error Exponent Functions (Channel Coding) 93

(9.2-(e)) Following from item (c), one obtain

02E} (s, P,0)

o = 2D ,(PoW|P®o)+sD]{_ (PoW|P®a)|,_, (9.118)
s=0

= 2D} (PoW|P®o)| _, (9.119)

=-V(PoW|P®o), (9.120)

where the last equality (9.120) follows from the fact D/1/1+s( |')]s=0 = V(+||-)/2 [120, Theorem

9.
O
9.2.3 Proof of Proposition 9.3
(9.3-(a)) Direct calculation yields that
aEh(;;P"’) =Dy WlolP) - fS)QD% (W|jo| P) (9.121)
W: (1f D (WlelP)+ (1+ D (WlelP) (9.122)
PERO) T, (WelP) + S Wil
- j 7 D", (Wlo|P). (9.123)
From Egs. (9.121)-(9.123) and the fact that Dy 14 (W||o|P), Dll/(1+s) (W]lo|P),

DY /45 Wlla|P), and DY}

continuity property in item (a).

(W||e|P) are continuous for (s, P) € R>g x P(X), we deduce the

(9.3-(b)) The proof strategy follows closely with [58, Appendix B]. Let ¢(a) = }°, . o P()log Tr [We!™2].
Since a — 1 (a) is convex for all a € (0,1] [58, Lemma II1.11], it can be written as the supremum

of affine functions, i.e.

Y(a) = sup{ca+d;} (9.124)
i€l
for some index set Z. Hence,
1
—FEy(s,P,o) = (1+s)¢ < ) =sup{c;+di(1+s)}. (9.125)
1+s i€l

The right-hand side of Eq. (9.125), in turn, implies that the map s — Ey(s, P, o) is concave for
all s € R>o.

(9.3-(c)) From Egs. (9.121), one finds

OEnw(s, P, o)

o = D(W|o|P). (9.126)

s=0
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(9.3-(d)) The concavity of the map s +— Ey(s,P,o) in item (b) ensures that 0Fy(s, P, 0)/0ds is non-
increasing in s. Along with Eq. (9.126) in item (c), we conclude Eq. (9.54).

(9.3-(e)) Applying D’1/1+S(-||-)|s:0 =V (-||-)/2 [120, Theorem 2], it holds that

aZEha(Z;P’U) - = -V (W|o|P). (9.127)
OJ
9.2.4 Proof of Proposition 9.4
This proof follows similarly from Proposition 9.3.
(9.4-(a)) Direct calculation yields that
aE}bl(;;p,a) =D, (Wljo|P) - (1+ D, (WlelP) (9.128)
W:-GES)SD& (WlolP)+ s D WlalP)  (9.129)
TER L) _ 0D 0WlolP) + 22 0% (el
(15 7 Db’” (W|jo|P). (9.130)
From Egs. (9.128)-(9.130) and the fact that D3 ., , o (W[o|P), DY)y, (W]lo|P),

DY)y (Wlo|P), and DY,

continuity property in item (a).

(W||e|P) are continuous for (s, P) € R>g x P(X), we deduce the

(9.4-(b)) The proof strategy follows closely with [58, Appendix B|. Let

=Y P(x)log Tr el Wet(1=) log"] . (9.131)
reX

Since o — 9)(c) is convex for all a € (0,1] [58, Lemma IIL.11], it can be written as the supremum

of affine functions, i.e.

P(a) = sup {c;a + d;} (9.132)
i€z
for some index set Z. Hence,
~ 1
—El(s,P,0) = (1+ ) < ) =sup{c; +d;(1+s)}. (9.133)
1+s ieT

The right-hand side of Eq. (9.133), in turn, implies that the map s — Elbl(s, P, o) is concave for
all s € R>o.
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(9.4-(¢)) From Egs. (9.128), one finds

OE} (s, P,o)

i = D(W||o|P). (9.134)

s=0

(9.4-(d)) The concavity of the map s + FE} (s, P,o) in item (b) ensures that OF} (s, P,o)/ds is non-
increasing in s. Along with Eq. (9.134) in item (c), we conclude Eq. (9.57).

(9.4-(e)) Following similar steps in [120, Proposition 4|, it can be verifies that

| a2 ) - ()
tog fle) = = e

where f(a) :=Tr [eo‘ log le*a)"]. Further, the Fréchet derivative of the exponential (see e.g. [67,
Example X.4.2|) gives

= lim -~
a=1 atl 2 do?

Dy (pllo)

, (9.135)

() =Tr [e“logpﬂl_a) 1087 (Jog p —log o) |, (9.136)

1
f”(a) _ / dt Tr [et(alongr(lfa) log o) (logp — log 0_) e(lft)(alogp+(17a) log o) (1ng — log O') ’
0

(9.137)

Therefore, Eq. (9.135) equals

1
Dol _, =5 ([ avme (50w~ g o)t p ~ o)) ~ Dlslla)?) (0139
= %ﬁ(pua). (9.139)

Finally, combining with Eq. (9.129) yields

O*E} (s, P,o)

o = -V (W|s|P). (9.140)

9.3 Properties of Error Exponent Functions and Saddle-Point

As we will show in Chapter 11, the quantity E’s(g)(R, P) plays a important role in the connection
between hypothesis testing and channel coding. Moreover, in the last Section 9.1, we observe that the
error-exponent functions can be represented as a sup-min formulation. In the following Proposition 9.5

we show that the pair of the optimizers in the error-exponent functions form a saddle-point.
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Proposition 9.5 (Saddle-Point). Consider a classical-quantum channel W : X — S(H), any R €
(Roo, Cw), and P € P(X). Let

Spw(H) :={o € S(H) : V& € supp(P), W, L o}. (9.141)
Define
l-«a
Frp(a,0) =4 « (Do (Wlio|P) = ), € (0.1) : (9.142)
0, a=1

on (0,1] x S(H), and denote by

Pr(X) = {P eP(X): sup inf Frp(a,0)€ IR>0}. (9.143)
0<a<l10€S(H)

The following holds

(a) For any P € P(X), Frp(-,-) has a saddle-point on (0,1] x Spw(H) with the saddle-value:

min sup Fgrp(o,0) = sup min Fgp(a,0) = E2)(R, P). 9 144
GES(H)0<0¢I§)1 R7P( ) O<a210€$(?{) R7P( ) Sp( ) ( )

(b) If P € Pr(X), the saddle-point is unique.
(¢) Fiz P € Pr(X). Any saddle-point (o, p,0% p) of Frp(-,-) satisfies af, p € (0,1) and
opp > Wi, Va € supp(P). (9.145)

The proof is provided in Section 9.3.1.
The following Proposition 9.6 discusses the continuity and differentiability of the error-exponent

functions. The proof is shown in Section 9.3.2.
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Proposition 9.6 (Properties of Error-Exponent Functions). Consider a classical-quantum channel
W: X — S(H) with Roo < Cyw. We have

(a) Given every P € P(X), Es(g)(-,P) is convez and non-increasing on [0, +00|, and continuous on
[Ié2)(P, W), —1—00}. For every R > R, Es%)(R, -) is continuous on P(X). Further,

+oo, R<I&(PW)

o . (9.146)
0, R>I2PW)

EQ(R,P) =

(b) Egp(-) is conver and non-increasing on [0, +00], and continuous on [Re,+00|. Further,

(9.147)

(¢) Consider any R € (Roo,Cw) and P € Pr(X) (see Eq. (9.143)). The function Es(g)(-,P) is
differentiable with

OB (r, P
%yZ—Sg@) € Rxo, (9.148)

r=R

where s, p := (1 — o} p)/ak p, and o p is the optimizer in Eq. (9.13).
(d) s%’(_) in Eq. (9.148) is continuous on Pr(X).

Given any R € (R, Cyw) and P € Pr(X), we denote a mazimum absolute value subgradient of the
sphere-packing exponent at R by

|EL(R)| = max Sh.p- (9.149)
P:E (R,P)=FE«p(R)

Note that the term ‘Eép(R)‘ in Eq. (9.149) is well-defined and finite by item (d) in Proposition 9.6.
Figure 9.1 below depicts different cases of the Eg,(R) over rate R.

9.3.1 Proof of Proposition 9.5

(9.5-(a)) Fix arbitrary R > R, and P € P(X). In the following, we prove the existence of a saddle-point
of Frp(-,-) on (0,1] x Spw(H). Ref. 122, Lemma 36.2| states that (o*,0*) is a saddle point of
Fr p(-,-) if and only if the supremum in

su inf  Frp(la,o 9.150
ae(g,)l} o€Spw(H) mp{ ) ( )

is attained at o* € (0, 1], the infimum in

inf sup Fgrp(a,o o
o€Spw(H) ae(0,1) ( ) ( )
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(a) 0 = Roe < Chy. (b) 0 < Ra < Chy. (€) 0 < Roo = Chy.

Figure 9.1: This figure illustrates three cases of the strong sphere-packing exponent Eg,(R) over R > 0.
In the first case 0 = Ro, < Cyw (the left figure), Eg,(R) is only infinite at R = 0 and finite otherwise.
In the second case 0 < Ro < Cw (the central figure), Es,(R) = +00 for R < Roo, and Eg,(R) < 400
for R > Ry. In the third case 0 < Ro = Cyy (the right figure), Es,(R) = 400 for R < Cyy, and
Es(R) = 0 for R > Cyy. Without loss of generality, we assume R, < Cyy to exclude the last case
throughout this paper.

is attained at o* € Spw(H), and the two extrema in Egs. (9.150), (9.151) are equal and finite.
We first claim that, Vo € (0, 1],

inf F = inf Frp(a,0). 9.152
vest g TPl o) = 1L Frp(e,0) (5.152)

To see this, observe that for any a € (0,1), Egs. (3.5) and (3.38) yield
Vo € S(H\Spw(H), Do (W|o|P) =400, (9.153)
which, in turn, implies
Vo e S(H\Spw(H), Frp(a,o)=+oo. (9.154)
Further, Eq. (9.152) holds trivially when o = 1. Hence, Eq. (9.152) yields

sup inf Frp(a,0)= sup inf Fgp(a,o
a€(0,1] o€Spw(H) ( ) ae(0,1] c€S(H) ( ) (9155)

Owing to the fact R > R and Eq. (9.13), we have

E@V(R,P) = inf F ,0) < 400, 9.156
s (B, P) R AU rp(a,0) < +00 (9.156)

which guarantees the supremum in the right-hand side of Eq. (9.156) is attained at some « € (0, 1].

Namely, there exists some apr p € (0,1] such that

su inf. Frp(a,0) = max inf Fpp(a,o) < 4o0. 9.157
ae((fl]aesp,w(ﬂ) R.P{ ) a€lap, p,1] 0€ES(H) r.p( ) ( )
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Thus, we complete our claim in Eq. (9.150). It remains to show that the infimum in Eq.(9.151)
is attained at some 0* € Spw(#) and the supremum and infimum are exchangeable. To achieve
this, we will show that ([dp%p, 1], Spw(H), FR,p) is a closed saddle-element (see Definition 9.1
below) and employ the boundness of [ag p, 1] x Spw(H) to conclude our claim.

Definition 9.1 (Closed Saddle-Element [122]). We denote by ri and c1 the relative interior and the
closure of a set, respectively. Let A, B be subsets of a real vector space, and F' : A x B — R U {zxo0}.
The triple (A, B, F) is called a closed saddle-element if for any = € ri (A) (resp. y € ri (B)),

(i) B (resp. A) is convex.
(ii) F(z,-) (resp. F(-,y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say y, (resp. )

satisfies limy_.,, F(z,y) = +o0o (resp. lim,_,,, F(z,y) = —00).

Fix an arbitrary a € ri([agp,1]) = (agp,1). We check that (Spw(H), Frp(c,-)) fulfills
the three items in Definition 9.1. (i) The set Spw(#H) is clearly convex. (ii) Eq. (3.15) in
Lemma 3.2 implies that o — Dq(W;||o) is convex and lower semi-continuous. Since convex
combination preservers the convexity and the lower semi-continuity, Eq. (9.142) yields that o —
Fr p(a,0) is convex and lower semi-continuous on Spw(#). (iii) Due to the compactness of
S(H), any accumulation point of Spw(#) that does not belong to Spw(H), say o,, satisfies
0o € S(H)\Spw(H). Egs. (9.153) and (9.154) then show that Fr p(c, 0,) = +00.

Next, fix an arbitrary o € ri (SP,W(H)). Owing to the convexity of Spy(H), it follows that
ri (Spw(H)) =ri (cl (Spw(H))) (see e.g. [123, Theorem 6.3]). We first claim c1 (Spw(H)) =
S(H). To see this, observe that Sso(H) C Spw(H) since a full-rank density operator is not
orthogonal with every W,, x € X. Hence,

S(H) = c1(S50(H)) C c1 (Spw(H)). (9.158)
On the other hand, the fact Spw(H) C S(H) leads to
cl (Spw(H)) C cl(S(H)) = S(H). (9.159)
By Eqgs. (9.158) and (9.159), we deduce that
ri (Spw(H)) =ri (c1 (Spw(H))) =i (S(H)) = S>o(H), (9.160)
where the last equality in Eq. (9.160) follows from [124, Proposition 2.9]. Hence, we obtain
Vo €ri(Spw(H)) and Ve X, o> W, (9.161)

Now we verify that ([ag,p,1], Frp(-,0)) satisfies the three items in Definition 9.1. Fix an
arbitrary o € ri (Spw(H)). (i) The set (0,1] is obviously convex. (ii) From Eq. (3.13) in
Lemma 3.2, the map o — Fpg p(a,0) is continuous on (0,1). Further, it is not hard to ver-
ify that Fpp(1,0) = 0 = limyy; Fr p(o,0) from Egs. (9.161), (9.142), and (3.5). Item (c) in
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Proposition 3.2 implies that o — Fg p(a,0) on [apg, 1) is concave. Moreover, the continuity of
a+— Fpp(a,0) on [ag p,1) guarantees the concavity of o +— Fg p(a,0) on [apg p, 1]. (iii) Since
(@R p,1] is closed, there is no accumulation point of [@g p, 1] that does not belong to [ag p, 1].
We are at the position to prove item (a) of Proposition 9.5. The closed saddle-element, along with
the boundness of Spw(#H) and Rockafellar’s saddle-point result [122, Theorem 8|, [123, Theorem
37.3] imply that

—00 < sup inf  Fpp(s,0)= min sup Fgrp(s,0). (9.162)
OzG[dR’p,l} UGSP,W(H) GGSPW(H) aE[aR p,l]
Then Egs. (9.157) and (9.162) lead to the existence of a saddle-point of Fg p(-,-) on (0,1] x
Spw(H). Hence, item (a) is proved.

(9.5-(b)) Fix arbitrary R € (R, Cw) and P € Pg(X). We have

su min F « eR 9.163
s iy Fip(e.0) € Reo (9.163)
First note that a* = 1 will not be a saddle point of F p(-, o) because Fr p(1,0) =0, Vo € S(H),
contradicting Eq. (9.163).

Now, fix a* € (0,1) to be a saddle-point of Fr p(-,-). Eq. (3.15) in Lemma 3.2 implies that the
map o — Dgx(W||o|P) is strictly convex, and thus the minimizer of Eq. (9.163) is unique. Next,
let 0* € Spw(H) be a saddle-point of Fg p(-,-). Then,
* l—« (2)
Frp(a,0*) = —2 (Ia (P,W) — R) . (9.164)
e
Item (c) in Proposition 3.2 then shows that I( )(P, W) is strictly concave on (0,1), which in
turn implies that Fr p(-,0*) is also strictly concave on (0,1). Hence, the maximizer of Eq. (9.163)

is unique.

(9.5-(c)) As shown in the proof of item (b), a* = 1 is not a saddle point of Fg p(:,-) for any R > R, and
P € Pr(X). We assume (a*,0%) is a saddle-point of Fr p(-,-) with a* € (0,1), it holds that
ar—1 1—aor

FR’p(a*,U*):ngsl(I’}{)FRP(Oé ,0) = o R+ o Ug}gl(%)Da*(W|]0\P) (9.165)

Then, it is clear from Proposition 3.2-(c) in Section 3.3 that
o* > W,, Vx € supp(P), (9.166)

and thus item (c¢) is proved.

9.3.2 Proof of Proposition 9.6

(9.6-(a)) Fix any arbitrary P € P(&X). Item (b) in Proposition 3.2 shows that the map « — 1’&2)(P7 W) is

monotone increasing on [0, 1]. Hence, from the definition in Eq. (9.13), it is not hard to verify that
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EP(R, P) = 400 for all R € (0,1 (P, W)); finite for all R > I\ (P,W); and ES(R, P) = 0,
for all R > IY(P,W).

For every a € (0, 1], the function 1?704(]&2)(13, W) — R) in Eq. (9.13) is an non-increasing, convex,
(2)

and continuous function in R € R~¢. Since Esf, (R, P) is the pointwise supremum of the above
function, Es(g) (R, P) is non-increasing, convex, and lower semi-continuous function for all R > 0.
Furthermore, since a convex function is continuous on the interior of the interval if it is finite
[121, Corollary 6.3.3|, thus Es(g)(R, P) is continuous for all R > I((]Q) (P,'W), and continuous from

the right at R = I? (P, W).

To establish the continuity of Es(g)(R, P) in P € P(X), we first claim that there exists some
ar € (0, 1] such that for every P € P(X),

l1—« 2 -« 2
sup —— Ié) PW)—-R|] = sup Ia) PW)—R). 9.167
ac(0,]] @ ( ( ) ) aglag,1] @ ( ( ) ) ( )

Recall that R > R = maxpep(x) Iéz) (P,W). The continuity, item (a) in Proposition 3.2, implies
that there is an ag > 0 such that

R>T12(P,W), VPePX). (9.168)

R

Then, Eq. (9.168) and the monotone increases of the map « — IéQ)(P, W) yield that,

1 _
TO‘ (19(13, W) — R) <0, VYPePX), and a € (0,ar). (9.169)

The non-negativity of Es(g)

(R,P) > 0 ensures that the maximizer o* will not happen in the
region (0,ar), and thus Eq. (9.167) is evident. Finally, Berge’s maximum theorem [109, Section
IV.3], [110, Lemma 3.1] coupled with the compactness of [@g, 1] and item (a) in Proposition 3.2

complete our claim:

P EQ(RP) = sup O (Ia2>(P, W) — R) is continuous on P(X). (9.170)

(9.6-(b)) The statement follows since item (a) holds for any P € P(X).

(9.6-(c)) For any R € (Rs,Cw) and P € Pr(X), item (b) in Proposition 9.5 shows that the optimizer
o’ p is unique. Moreover, Eq. (9.148) follows from in Lemma 2.14-(d) in Section 2.2.

(9.6-(d)) The proof of this item is similar to [91, Proposition 3.4]. Fix any P, € Pr(&X) and consider
arbitrary {Py}cn such that P, € Pr(X), Vk € N, and lim,, 1o Py = FP,. Following from
Eq. (9.148), we have

. OED (r, Py
shp, = — Spa(T) : (9.171)

r=R
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Given any R € (R, Cw), the continuity of Es(g)(R, -) (see item (a)) implies that

lim B2 (R, P,) = EP (R, P,). (9.172)

k——+o0

Then, continuity of the first-order derivative in [128, Corollary VI1.6.2.8], we have

L OB (r, P _ OEP(r,P) o,
L T T e (9.173)

which completes the proof.
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Chapter 10

Achievability (Channel Coding)

In the error exponent regime (i.e. large deviation regime), the achievability for information transmis-
sions means that one has to construct a coding strategy and show the probability of error achieves the
desired upper bound given a fixed transmission rate. The finite blocklength achievability bound for
classical-quantum channel exponent was first studied by Burnashev, Holevo [34, 35|, and Winter [37].
Specifically, Burnashev and Holevo [34] introduced the following random coding exponent E,(R) and
the auxiliary function Ey(s, P) (see also Egs. (9.1) and (9.5)):

E.(R)= sup sup {Ey(s,P)— sR}; (10.1)
0<s<1 PEP(X)

1+s
Ey(s, P) = —log Tr (Z P(x)Wg}“) : (10.2)

TeX

By quantum Sibson’s identity given in Lemma 3.3, it is easy to show that the random coding exponent

can be expressed the Rényi capacity with Petz’s version (see Egs. (3.63) and (3.5)):

l—«

E, (R) = sup

l<a<t @

(Caw — R) . (10.3)

Further, they showed that [34, 35] for pure-state c-q channels (i.e. the channel outputs are all rank-one
density operators), there exists a random coding strategy and some decoder (POVM) such that the

average error probability over the ensemble, denoted by Pe(n, R), can be upper bounded as
Pe(n, R) < 4exp{—nE;(R)}, VR < Cy,ncN. (10.4)

However, for general c-q channels (i.e. the channel outputs are possibly non-rank-one density operators),
the random coding bound by the exponent function in Eq. (10.3) is still open.

The slightly weaker and the best to date achievability bound was later proven by Hayashi [87, 88,
129]:

Pe(n, R) < 4exp{—nE*(R)}, VR < Cy,n €. (10.5)
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10. Achievability (Channel Coding) 104

The above bound holds for all c-q channels. However, it can be shown that
EY(R) < E.(R), YR < Cy. (10.6)

Recently, Dalai [130] proposed a method to prove Egs. (10.3) and (10.5). For the sake of complete-

ness, we provide the proof below.

Theorem 10.1 (Dalai [130]). Given any classical-quantum channels W : X — S(H), and any random
codes with size M and distribution P € P(X), we have the one-shot bound:

Pe(1,log M) < 6(M — 1)* exp {—Eg(s, P)} , Vselo1]. (10.7)
Let the transmission rate be R := %logM < Cyw. The n-shot bound is then:
Pe(n, R) < Gexp {anﬁ(R, P)} ., Vnel. (10.8)
For pure-state classical-quantum channels,

Pe(l,log M) < 6(M — 1)°exp{—Ey(s,P)}, Vse][0,1]. (10.9)

Proof of Theorem 10.1. Assume the channel output of a random code is {W,, -+, Wy,,} where x;
has an i.i.d. P(z;). Construct a POVM {Il, };c(ar) by

Moy i= | Y ey | oy | Doy | (10.10)
j j

[
N[

where

Mo = AW = [ Y W2 | >0, ae(0,1],s€(0,1]. (10.11)
J#i

Using Hayashi-Nagaoka inequality, Lemma 2.9, we have

1-T,, <21 —m,) +4) m,. (10.12)
J#i
Hence, the average probability of error given realizations (x1,...,2z)) can be upper bounded as
1
Pr{error|(z1,...,zp)} = i Tr (W, (1 —11,,)] (10.13)

1
§2MZTr W, § WEs — ;Wg <0
(2 1
’ (10.14)

+2A142Tr We S Wee = (> W | >0
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10. Achievability (Channel Coding) 105

For 0 <o <1and0 < s <1, using 2.10 to bound the first term in Eq. (10.14) as
S S

Tr (W, QW — [ D W2 | <0p| <Tr (Wi o (> we | |, (10.15)
J#i J#i

Recalling the operator concavity of u — u®, we take expectation of the random code to obtain

QETr (W (D W | | =2Tr B, Wy ] E | | > W2 (10.16)
i#i i i#i ]
<2Tr B, (W %] (B> Wy (10.17)
i i#i
=2(M — 1)* Tr [E, (W] E, [W2]°] . (10.18)

For the second term in Eq. (10.14), we re-index it to have

S

1
4M2Tr S Wy | QW (D> W : (10.19)
i j#i #i
Again, using Lemma 2.10 yields
S S
T | [ D oW, | SWee (> W <Te | [ D>owe | Wil (10.20)
J#i j#i J#i

Taking expectation and combining with Eq. (10.18), we have
Pe(n,R) < 6(M — 1) Tr [E, [W, *] E, [W2]*] . (10.21)

Invoking the definition of E¥(R) and choosing v = 1/(1 + s), we obtain Eq. (10.7).

For pure-state c-q channels, Eq. (10.21) can be rewritten as
Pe(n, R) < 6(M — 1) Tr [E, [W,]]' T, (10.22)

because WL = W, for p > 0 for pure-state c-q channels. The above expression equals to Eq. (10.9),
which completes the proof. O

Remark 10.1. To obtain the Eq. (10.9) for general c-q channels, one possible way of the above method
is to employ the inequality

Zij <> W, Vaelo1], (10.23)

J#i J#
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which in turn implies

Q=

wajg ng : (10.24)

Unfortunately, the operator inequality in Eq. (10.23) does not hold for general density operators W, .

The inequality only holds under the weak majorization. <&

Lastly, the following Conjecture 10.1 was posed by Holevo [35]. Note that to achieve Eq. (10.26),
the right-hand side of Eq. (10.25) allows to have any sub-exponential prefactors exp{o(n)}.

Conjecture 10.1 (Random Coding Bound for Classical-Quantum Channels). Given any classical-
quantum channels W : X — S(H), transmission rate R < Cy, and random codes with distribution
P e P(X), one has

Pe(n, R) < exp{—nE,(R,P)}, VYneN. (10.25)
In particular,

e*(n,R) < exp{—nE,(R)}, Vne€N. (10.26)
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Chapter 11

Optimality (Channel Coding)

In this chapter, we present the weak and strong sphere-packing bounds for c-q channels. In Section 11.1,
we first review existing approaches of proving classical sphere-packing bound. In Section 11.2, we
provide the proof of a weak sphere-packing bound by using Wolfowitz strong converse. This bound
is new in the quantum scenario and will be used in the moderate deviation analysis in Section 12.
In Section 11.3, we prove our main result of a finite blocklength strong sphere-packing bound for
c-q channels, see Theorem 11.1 below, which improve Dalai’s prefactor [38, 39| from the order of
subexponential OV o polynomial. Lastly, in Section 11.4, we obtain exact asymptotics (i.e. exact
prefactors) of the strong sphere-packing bound for a symmetric c-q channels, which can be seen as a

generalization of classical symmetric channels [21].

Theorem 11.1 (Finite Blocklength Strong Sphere-Packing Bound of Constant Composition Codes).
Consider a classical-quantum channel W : X — S(H) and R € (R, Cw). For every v > 0, there exist
an Ng € N and a constant A > 0 such that for all constant composition codes C,, of length n > Ny

with message size |C,| > exp{nR}, we have

A

— Cn >
E(Cp) 2 s (L EL (R)+)

exp{—nEgxp(R)}. (11.1)

The following corollary generalizes the refined sphere-packing bound for constant composition codes
to arbitrary codes by using the standard argument [30, p. 95]. We delay the proof to the end of Section
11.3.5.

Corollary 11.1 (Finite Blocklength Strong Sphere-Packing Bound of General Codes). Consider a
classical-quantum channel W : X — S(H) and R € (R, Cw). There exist some t > 1/2 and Ny € N
such that for all codes of length n > Ny, we have

e*(n,R) > n"'exp{-—nEs(R)}. (11.2)

Theorem 11.1 yields

1
log < nEgxp(R) + 5 (1+ |E(R)]) logn + o(logn), (11.3)

1
£(Cn)

where the term 3 (1+ ‘Eép(R)D can be viewed as a second-order term (see the discussions in |18,

107 d0i:10.6342/N'TU201800597
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Section 4.4]). On the other hand, for the case of classical non-singular channels®; it was shown that

[131, Theorem 3.6], for all constant composition codes C,, and rate R € (C /2w, Cw),

logg(cln) anr(R)Jr%(ur |E{(R)|) logn + (1), (11.4)

where E;(R) is the random coding exponent defined in Eq. (9.1), and note that E.(R) = Eg,(R) for
all R > C /9w [21, p. 160], [36]. Hence our result, Theorem 11.1, matches the achievability up to the
logarithmic order. We note that whether the third order o(logn) in Eq. (11.3) can be improved to

O(1) is still unknown even for the classical case.

11.1 Literature Review of Classical Sphere-Packing Bound

This section reviews existing proof approaches of classical sphere-packing bounds:

£ (n.R) > f(n) exp {—n [Es(R — g(n))]}, (11.5)
£ (0, R) > f(n)exp {—n [Eop(R - g(m)] }, (11.6)

where f(n) is the pre-factor of the bound, and g(n) is the back-off from the rate. We remark that E,
coincides with Esp in the classical case. The reason why we distinguish the notation Eg, and Esp here
is because of their possible quantum generalizations (recalling that they are not equal in the quantum

case, i.e. Theorem 9.1 in Section 9.1). Table 11.1 below summarizes the comparisons of existing results.

. Finite Composition Pre-factor Rate back-off Classical-quantum .

Bounds)Seftings blocklength  dependent f(n) g(n) channels Tightuess
Shannon-Gallager- . —o(vn) logn s 22

(a) Berlekamp [30] No Yes e O ( B ) Dalai [38] Strong
Haroutunian [31]

(b) Omura [133] No Yes eom o(1) Winter [37] Weak
Csisar-Korner [25]

(c) Blahut [32] No No e~ O(Wm) 0 <n—%> Eqs. (11.148) & (11.153)  Strong

(d) Altug-Wagner [91] Yes Yes 3 (1| B (R)|[+o(1)) 0 Theorem 11.1 Strong

(e) Elkayam-Feder [134] Yes Yes O (n7") o (%) Unknown Unknown
Agustin-Nakiboglu . _t . ] .

() [135, 106, 105, 136] Yes No O (n7") 0 Unknown Unknown

Table 11.1: Different sphere-packing bounds are compared by (i) the bound is finite blocklength or
asymptotical; (ii) whether or not they are dependent on the constant composition codes; (iii) & (iv)
the asymptotics of f(n) and g(n); (v) the corresponding c-q generalizations. The parameter ¢ in rows
(e) and (f) is some value in the range ¢ > 1/2; and (vi) whether their error exponent expressions for
c-q channels are in the strong form (Eq. (1.4)) or weak form (Eq. (12.51)).

(a) Shannon, Gallager and Berlekamp obtained the first classical sphere-packing bound Eq. (11.5),

ﬁ > nE:(R) + 3 logn + (1) [131]. Further, it was conjectured that
[132] that log ﬁ < nEg(R)+ 35 logn+o(log n), for all asymmetric classical singular channels and constant composition

codes. However, such a result remains open.

!For classical singular channels, one has log
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where |30, Theorem 5]

1
fn) =e OV, gy =0 < °i”> . (11.7)
Their method is based on distinguishing two codewords, followed by Chebyshev’s inequality. The
works [137] and [138] further improved the coefficients in f(n) and g(n) for short to moderate
blocklengths.

Remarkably, Shannon-Gallager-Berlekamp’s result can be extended to c-q channels with almost
the same asymptotics in Eq. (11.7) [38]. See also the result by Dalai and Winter for constant

composition codes [39].

(b) Haroutunian [31], Omura [133], Csiszar and Kérner [25], Ahlswede [139] subsequently proposed
a sphere-packing exponent using discrimination functions (i.e. the relative entropy function in
Eq. (1.5)), and obtained the following classical sphere-packing bound for constant composition

codes Cy,:
i 1 -
E(W,Cp) > 5exp{—nEsp(R—5)(1+5)}, (11.8)

for all § > 0 and all sufficiently large n € IN, and (W, C,,) denotes the average error of the code
Cy. The idea is to apply strong converse bounds [140, 141, 142, 133, 25| to a dummy channel,
and then use a data-processing inequality for the discrimination function between the dummy
and true channels. Recently, Altug and Wagner employed a particular strong converse result,

Wolfowitz’s strong converse result [143], and obtained a form of Eq. (11.6) with [43, Lemma 3]:

g(n) = O (%) . (11.9)

Following the arguments in [139, Theorem 49|, Winter proved a weak sphere-packing bound
Eq. (11.8) for constant composition codes in c-q channels [37, Theorem I1.20]. We remark that
Altug and Wagner’s result [43] can also be extended to a weak sphere-packing bound for c-
q channels when combining Winter’s approach [37| with Sharma and Warsi’s strong converse
result [125, Theorem 3.

(c) Blahut related the channel coding problem to hypothesis testing [32, Theorem 20| (see also |23,
Theorem 10.2.1]) and independently obtained a weak sphere-packing bound Eq. (11.6) with

F(n) = e O™ g(n) = 0 <\/15> . (11.10)

In Section 11.3, we generalize Blahut’s result to a strong sphere-packing bound for c-q channels.

(d) In Ref. [48], Altug and Wagner applied a sharp concentration inequality to refine the sphere-
packing bound Eq. (11.7) with

) = e O gy =0 (51, (11.11)

n

d0i:10.6342/N'TU201800597



11. Optimality (Channel Coding) 110

for some ¢ > 1/2 and all sufficiently large n € IN.

(e) Elkayam and Feder [134] established a general expression for the error probability in terms of
the cumulative distribution function [144, Theorem 6]. Combined with the method of types and
Polyanskiy’s minimax meta-converse [145, Theorem 3|, they proved a classical sphere-packing

bound for constant composition codes with

fn)y=0(m™"); gn)=0 <1°g”> : (11.12)

n

for some ¢ > 1/2. This sphere-packing bound also had a polynomial pre-factor; however, it is

unknown whether this method can be extended to c-q channels.

11.2 A Weak Sphere-Packing Bound via Wolfowitz Strong Converse

Theorem 11.2 (Weak Converse Bound with Polynomial Prefactors). Consider a classical-quantum
channel W : X — S(H) with 8o := im(W), an arbitrary rate R > 0, and 0 € Sso(H). For any
n € (0, %) and ¢ > 0, let Ng € IN such that for all n > Ny,

c-e 6V < g (11.13)
where & = \/2A/n and A := max,cs, V(p|lo). Then, it holds that for all n > Ny,

Esp R — 275 Pxn g
o~ n n \/77 9
aexp{—nR} (Wf’l HO-® ) > f(n) exXp§ —"Nn < 1 —n7] ) . (1114)

where f(n) = exp {—M%;]m} and h(p) := —plogp — (1 — p)log(1 — p) is the binary entropy function.

Remark 11.1. Consider a constant composition code with common type Px» on a finite input alphabet

X. Recall the definition of the weak sphere-packing exponent [37, 26]:

Eqp(R, Pxn) := W/’\{iig(%) {D (W[|W|Pxn) : I(Pen, W) < R} (11.15)

Theorem 11.2, along with the one-shot converse bound (see Proposition 11.2 in Section 11.3.1 later),
establishes a weak sphere-packing bound with polynomial prefactors, which generalizes Altug and
Wagner’s result [43, Lemma 3| to c-q channels: for any n € (0, 3) and for all sufficiently large n such
that Eq. (11.13) holds, we have

5max(wa Px“) > Ug}g@i) aexp{fnR} (W;{X;n”0_®n) (1116)
> aexp{fnR} (Wﬁn”(o_*)®n) (1117)
Esp (R - Liv PX”)
> fnyexp { —n | (11.18)
L=mn
where 0* := PynW* and W* is an arbitrary minimizer in Eq. (11.15). Moreover, Eq. (11.18) im-
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proves the prefactor of Winter’s weak sphere-packing bound [37] from the order of subexponential to

polynomial. <&

Proof of Theorem 11.2. Consider an arbitrary sequence x" € X™ and a test @, on H®". For two c-q

channels W, W : X — 8, the data-processing inequality implies that

D (WEIWER) > [1 - a(Qui W) log ;2 U)o (@, tog S B 1119
= —h ((Qn; Wil")) — a(Qn; Wal') log a(Qu; W)

~ [t~ 0(Qu W] 1og (1~ 0(Qu: W) (11.20

> —(Qui WE) o a(Qui WE) — h (a(Qui WED)). (1121

where the last inequality (11.21) follows since the third term in (11.20) is non-negative. Continuing
from Eq. (11.21), we have

yen D (WEr|[WER) + b ((@ns W)

a(Q’m xn ) > exp{ Oé(Qn; ﬁrﬁn) (1122)
B nD (W] W| Pn) + h (a(Qn; Wial*))
o {_ o(Qus W) | )

where Eq. (11.23) follows from the additivity of the relative entropy and the empirical distribution
Pyn.

The next step is to replace a(Qn; WS’F) with a lower bound that does not depend on the dummy
channel W, provided that W satisfies certain conditions. This can be done using Proposition 11.1,

Wolfowitz’s strong converse bound. We delay its proof in Section 11.2.1 below.

Proposition 11.1 (Wolfowitz’s Strong Converse). Let 8, C S(H) be closed and let W : X — 8, be an

arbitrary classical-quantum channel. Consider the binary hypothesis testing:

Ho : W3, (11.24)
Hy: o®", (11.25)

where x™ € X™ and 0 € Sso(H). For any test Qp such that B(Qn; 0®") < e ™ and D (Wxn ||o|Pxn) <
R — 2k, it holds that

17N A —nK
a(Qn;W§)>1—m—e , (11.26)

where A 1= max,es, V (p||o).

Fix0<n< %, and let €2 := %. Note that ¢2 is finite because A < +oco. For all n > Ny, we have

e SV < g (11.27)

by assumption in Theorem 11.2. Choose £ = £/y/n. For any W : X — 8, with D (W||o|Pxn) < R— \2/—%

and any test @, such that B(Q,;c®") < e ", Proposition 11.1 gives a lower bound to the type-I
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error:

_ A
W WEN) >1 -~ —e ™ >1—1. 11.2
o ) 21— g —eT ™ 21— (11.28)

Hence, combining Egs. (11.23) and (11.28) yields that, for any 8(Qn;0®") < ce™"F,

D (W||W| Pgn) +h (1 -
a(Qn; WE) > max exp n (W] ’ ) +h(1-n) , (11.29)
WiD(W|o| Pyen ) <R—2& 1—n
~ 2t
h(1l — TLEsp R—in,Pxn,O'

:exp{—(n)}exp - ( Ve ) , (11.30)

1-— 1—7
which concludes Theorem 11.2. O

11.2.1 Proof of Wolfowitz’s Strong Converse, Proposition 11.1

This proof follows similar steps by Sharma and Warsi [125, Theorem 3|, which uses generalized diver-
gences to prove Wolfowitz’s strong converse.
To prove our claim, we first introduce notation for generalized divergences. For any p,o € S(H),

and v > 0, define the hockey-stick divergence by

Dy (pllo) = Tt [(p—10). ] (11.31)

where A, := A{A > 0} denotes the positive part of A. This divergence satisfies the data-processing
inequality (DPI):

Tr [(p—v0)y] > Tr [(N(p) =N (0)), ], (11.32)

for any completely positive and trace-preserving map N : S(Hin) — S(Hout) [125, Lemma 4]. Let
pp = pl0O)(0[ + (1 = p)[1)(1], and og:=q|0){0] + (1 — q)|1)(1], (11.33)
for 0 < p,q <1 and some orthonormal basis {|0),|1)}, and define

dy (pllg) = Dy (ppllog) - (11.34)

Note that the quantity dy (p||¢) is independent of the choice of the basis {|0),[1)}. Now we are ready

to prove Proposition 11.1.

Proof of Proposition 11.1. Fix an arbitrary test Q,, on H®™. For notational convenience, we shorthand
Pt =WEM ™ =% o = a(Qn; p") and B = (Qn; 7). Further, we assume B(Qn;7") < e "%, From

x™

the definition of the classical divergence, Eqs. (11.31) and (11.34), and any v > 0, we find

dy(1-alf)=(1—-a=-78); +(a—v[1-8]), (11.35)
>1—a—~p (11.36)
>1—a—~ye "E (11.37)

d0i:10.6342/N'TU201800597



11. Optimality (Channel Coding) 113

On the other hand, DPI for the measurement map Tr[Q,(-)]|0)(0] + (1 — Tr[Q,(-)D]1) (1| implies that

Dy (") = dy (Tr[Qnp"]|| Tr[Qn7"]) = dy (1 — ]| B). (11.38)

Hence, Eqgs. (11.37) and (11.38) lead to

a>1-D,(p"||m") —ye . (11.39)
Since
Dy (p"I7") = T [{p" — 7" 2 0} (p" —77")] (11.40)
< Te[{p" — " > 0} ), (11.41)
Eq. (11.39) gives
a>1—Tr[{p" — 7" > 0} pu] — ye "E. (11.42)

Next, invoking Lemma 11.1 below, for all logy > D (p"||7"), we have

S A Uil ) S —ye "R (11.43)
[logy — D (p"[|7™)]
V (W||o|Pgn

=1- ( o] ) 5 — e (11.44)

n |52 — D (Wlo| ) |

Finally, recall D (W||o|Pxn) < R—2k and A := max,es, V (p[|o) and choose logy = nD (W||o|Pxn) +
nk. Then, Eq. (11.44) yields, for any test @, and 5(Qn;c®") < e "R,

V (Wo|Per)

o (QnyWer) > 1 —e ™" (11.45)

>1——5 —e " (11.46)

which concludes the proof.

Lemma 11.1 (Quantum Chebyshev’s Inequality [108, Lemma 6]). Let p,o € S(H) and assume log~y >
D(p|lo). Then

V(pllo) _
logy — D(p||o)]?

Tr[p{p -0 >0}] < (11.47)

11.3 A Strong Sphere-Packing Bound

The goal the section is to prove Theorem 11.1, the strong sphere-packing bound for c-q channels with
a polynomial pre-factor. To establish this result, we combine Blahut’s insight of relating a channel
coding problem to binary hypothesis testing [32, 23] with a sharp concentration inequality introduced

in Section 2.2. Our proof consists of three major steps: (i) reduce the channel coding problem to
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binary hypothesis testing (Proposition 11.2 in Section 11.3.1); (ii) bound its type-I error from below
(Propositions 11.3 and 11.5 in Sections 11.3.2 and 11.3.3); (iii) employ Theorem 9.1 in Section 9.1
to relate the derived bound to the strong sphere-packing exponent. The proof of Theorem 11.1 and
Corollary 11.1 will be give in Section 11.3.5.

11.3.1 One-Shot Converse Bound (Hypothesis Testing Reduction)

We first present a proof that relates the decoding error of a code to binary hypothesis testing. Propo-
sition 11.2 below is similar to the meta-converse in Ref. [12]. However, the idea dates back to Blahut
[32].

Proposition 11.2. For any classical-quantum channel W : X — S(H) and any code C,, with message
size M, it follows that

fmax (Cn) 2 max min Gy (Werl|o®m) . (11.48)

Proof of Proposition 11.2. Let x™(m) be the codeword encoding the message m € {1,..., M}. Define
a binary hypothesis testing problem:

. ®
Ho : Wl (11.49)
n
Hy o™ = (K)o, (11.50)
=1

where o™ € S (H®") can be viewed as a dummy channel output. Since >-M | 8(II,, n; 0™) = 1 for any
POVM II,, = {Il,, 1, ..., I, ar}, and B (I, ;3 0™) > O for every m € M, there must exist a message
m € M for any code C, such that (I, p,;0") < ﬁ Fix x™ := x™ (m). Then

Emax (Cn) > €m (Cp) = a (I m; Wa) > a0 (Walt||o™) . (11.51)

1
M
Since the above inequality (11.51) holds for every o™ € S (H®"), it follows that

Emax (Cn) > e xgleilcln a1 (Warjo®"). (11.52)

11.3.2 Chebyshev’s Type Converse Bound

In the following Proposition, we generalize Blahut’s one-shot converse Hoeffding bound [32, Theorem
10] to the quantum setting. This result is essentially a Chebyshev-type bound. We will employ it to

lower bound the error of “bad sequences" that yield smaller error exponent in Section 11.3.5.
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Proposition 11.3 (Chebyshev’s Type Converse Hoeffding Bound). Consider the following binary
hypothesis testing problem: Ho : p versus Hy : o, where p,o € S(H). For every r > 0 and v > 0, we

have
N 1 /1 K(p,o
B4 expf 1y (0ll0) = 5 (2— by >>exp{—u—¢<r|p||a>} (11.53)
where
1 —«
Slll) = e { (Da<pua>—r>}, (11.54)
a€(0,1]
and
K(p,0) = V (@lla) + V (@p) € Ro, (11.55)

where (p,q) are the Nussbaum-Szkota distributions of (p,o), and

1t t

5 P (w)g'(w)

Q\W) = — )
() ZwEsup].o(p)ﬁsupp(q) G

w € supp(p) N supp(q) (11.56)

for some t € [0, 1].

Proof of Prosition 11.3. If p and o have disjoint supports, then Eq. (11.53) trivially holds since D, (p||o) =
+oo for all a € [0,1]. Hence, we assume p and o have non-disjoint support in the following. Let B :=
supp(p) N supp(q) be the intersection of the joint support of p and q. Fix ¢(r) := ¢(r|p|lo) = ¢(r|pllq)
since Dq(pllo) = Da(pllq)-

For any test 0 < ) < 1, Nagaoka showed that [111, Lemma 1| (see also [86, Proposition 2|, [112]):

o (Q:p) +04(Qi0) 2 Y. p@+ D dgw) |, V6>0. (11.57)

wip(w)<dq(w) wip(w)>3q(w)

N | =

Let 7 >0, 6 = ¢"~®(") and p > 0 that will be specified later. Eq. (11.57) implies that

~ 1 r—o(r r—ao(r
8 (pllo) > 5 S s+ Y ) | - ey (11.58)
wip(W)e? ") <q(w)er wip(w)et ™ >q(w)er
1
o(r r—ao(r
> > op Z M g(w) | — ey, (11.59)
wGul() wEU2

where in the last line we introduce the decision regions for some v > 0:

) = {w Hg(w)e™ < p(w)e?!) < Q(w)er} o Us(v) = {w DG (w)e™V < q(w)e” < p(w)e¢(r)} :
(11.60)
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and ¢ is the tilted distribution (see [32, Theorem 4]):

Gt (w) = pl_t(w)qt(wz weB (11.61)

for some ¢ € [0, 1] such that ¢; satisfies

D (Gillp) = ¢ (r) and D (Gllq) = (11.62)

In the following, we are going to lower bound the right-hand side of Eq. (11.59) in terms of §.
From Eq. (11.60), we find

Z plw) > e~ @M+Y) Z Gi(w);

wely (v) wely (v)
(11.63)
> @) ze ST ).
weUsa(v) welsa(v)
Next, we estimate the error in the union: Y- oy, ), @ (w). Let
Ug = {w: G(w)e™ < qw)e"}, Up:= {w DGi(w)e™ < p(w)e¢(r)} . (11.64)

Observe that Uy () UUs(r) = Ug NUp and

Y@ =1- D) daw) - D dw). (11.65)

well ANl welus wels,

Denote by
=<qw: |lo Qt(w) >v
Ur = { log ——= q(w) > } (11.66)
=<qw:|lo Gt(w) Hw v
- { o8 Gy~ 2 ) log U ‘ > } (11.67)

where the last equality follows from Eq. (11.62). Since U C Uy, we apply Chebyshev’s inequality to

obtain
. . V (qtllq
daw) < ) dw) < (Vf;” ), (11.68)
welus, welly
Similarly,
. V(g
D dw) < (th”p). (11.69)
wely

Let K = K(p,0) :==V (¢|lq) + V (G||p)- Equation (11.65), along with (11.68) and (11.69) yields that

Yoo gy = Y cjt(w)zl—é (11.70)

wely (IJ)UUQ (l/) weEUANUB
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Hence, from Eqs. (11.59), (11.63), and (11.70), we obtain the lower bound of the type-I error:

A 1 r—o(r _
o)zt [ 3 b+ Y e 0gw) | -y, aL7)
wely(v) weUa(v)
1
Zie_(¢(r)+”) Z Gr(w) + Z Gw) | — ey (11.72)
welq (v) weUa(v)
Zéefwm) S W) | -ty (11.73)
wely (v)UUa(v)
1 — T 14 K T—Q(T
> Lot )”(1—,/2) oy, (11.74)

Choose p = +exp{—(r +v)}. Eq. (11.74) further gives

~ | VRN K 1 (o(r) i
01 expi— ) (Pll0) = Se7@0F) (1 - V2> — e (11.75)
1/1 K
= — R _(¢(T)+V)
9 <2 y2> € ) (11.76)
which completes the proof. O

Applying Proposition 11.3 to product states yields the following result.

Proposition 11.4 (Chebyshev-Type Converse Bound for Classical-Quantum Channels). Let W : X —
S(H) be a classical-quantum channel, and let R € (Roo, Cw). Consider the binary hypothesis testing

with sequences

Ho: p" = WS (11.77)

) (11.78)

. n __ *
Hl.U _(O-R,Pxn

1=a (D, (W||o|Pxn) — R). Then, for every ¢ > 0,

a

there exist No € IN and k1, k2 € Rsq such that for all n > Ny we have

where X" € X™ and o}, p € arg Min,¢5(3) SUPg<a<1

Geesp(-nm) ("]l0") = 1 exp { —rav/n — nEQ (R, Pon) } (11.79)

Remark 11.2. Consider independent and identically distributed (i.i.d.) extensions Hp : p®" and Hj :
o®", Proposition 11.4 then recovers the converse proof of the quantum Hoeffding bound (see [111] and
[85, Section 5.4]): for r € (0, D(p||o)),

1 1l -«
: - -~ Q|| BN _
Jm = —10g Qexp—nry (07" ]|0%") < S (Da(pllo) =) (11.80)

<&
Proof of Proposition 11.J. Denote by p" = Q| Pa;, ¢" = @Q,;_1 ¢z; Nussbaum-Szkota distributions of

p" and o™ [112] with joint supports B,, := supp(ps;) N supp(qy;), ¢ € [n]. Let R, := R — ~y,, where
Y = vilogde piv an arbitrary Ry € (R, R). Choose an Ny € IN such that R,, > Ry for all n > Nj.

n .
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Consider n > Ny onwards. Then, Proposition 11.3 implies that

R i L (1 K(p" o il

Qeexp(-nr) (P"[0") 2 5 <2 - (pyg)> exp{—v — nen (Rulp"|lc")} (11.81)
_ 1 /1 K(p",o") (2)
= (2 _ I/2> exp {fy —nEQ (anpxn)} : (11.82)

where the second equality (11.82) follows from the saddle-point property, item (a) in Proposition 9.5.
Since the coefficient K(p™, ™) in Eq. (11.55) is additive for product states, one has

K(p"0") =V (G'llp") +V (a'llq") (11.83)
=n Y Po(@) [V (Geillpr) + V (Gellga)] (11.84)
reX

where Pyn is the empirical distribution for the sequence x", and ;' := @);-; ¢, + is the tilted distribu-
tion (see Egs. (11.56) and (11.61)). Note that ¢ < p" and ¢i* < ¢" for all ¢t € [0,1]. This guarantees
that the quantity K (p",o™) is finite.

Let
Vi 3= miax ;{ Pyn () [V (Gatllpe) + V (Getllaz)] € Ro, (11.85)
we obtain
K (p",0") < nVpax. (11.86)
By choosing v = v/4nVjax, Eqs. (11.82) and (11.86) give
Gecxpiony (0"16") > 2 05D { v/ InVigas — nER) (R~ 0, Pen) }. (11.87

Finally, we will remove the rate back-off term =, in Eq. (11.87). Recall item (a) in Proposition 9.6
that the map r +— Es(g) (r, Pxn) is convex and monotone decreasing. Further, we assume Es(g) (Ro, Pxn) >
0 and thus the Es(g)(',Pxn) is differentiable at Ry by item (c) in Proposition 9.6. Otherwise, the
monotone decreases imply that Es(g)(R, Pyn) = Es(g) (Ro, Pxn) = 0, which already completes the proof.

Denoting by J_ the left derivative, the convexity then implies that

EZ (R — yp, Pxn) < EQ(R, Pcn) — 10-EQ (R — v, Pxn), (11.88)
OES) (r, Pen)
2 sp s 4x
< E@(R, Pxn) — n e , (11.89)
r=Rgo
where the last inequality (11.89) follows from the monotone decreases. Let
(2)

Tio max | 2B (0 P) (11.90)

Pen€P(X) or "

r=Ro

Note that T € R>g due to Ry > R and item (d) of Proposition 9.6. Then, Eqgs. (11.87), (11.89), and
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(11.90) lead to
_ iy < L 2)
Geoxpf iy ("]l0") = 5 exp {— 1V — Y = nED (R, Pxn)} . (11.91)

Setting k1 = 1/8 and choosing a constant k9 € Rx¢ such that v/4nViax + 7T < koy/n for all n > Ny

conclude this corollary. O

11.3.3 A Sharp Converse Bound

Proposition 11.5 (Sharp Converse Hoeffding Bound). Let W : X — S(H) be a classical-quantum
channel, and let R € (Roo,Cy). Consider the following binary hypothesis testing problem with se-

quences
Ho: p" = WS (11.92)
Hi o™ = (05 p.0 )" (11.93)

where X" € X", and 0, p = arg Minges(3) SUPg<a<1 =2 (D, (W|o|Pxn) — R) satisfying
EZ (R, Pxn) € [v,+00) (11.94)

for some positive v > 0. For every c > 0, there exists a constant Nog € IN, independent of the sequences
p" and o”, such that for all n > Ny we have

Geosp(-nmy (P"]l0") 2 exp {-nEQ (R, Per) |, (11.95)

1
n§ (1+s%,Pxn )

(2)
where s’é,P = — MS"TY’P) , and A € R~y is a finite constant depending on R,v and W.

r=R
Proof. Let p" := @ Pz, and ¢" := Q- ¢z, , where (ps,, ¢z, ) are Nussbaum-Szkota distributions [112]
of (Wy,,0*) for every i € [n]. Since Dy (ps,;||0z;) = Da(pz;l|¢z,), for a € (0,1], again we shorthand

Sn(r) = ¢ (r[p"[l0™) = G (r|p"llg") = EL) (r,W, Pen), (11.96)

where the last equality in Eq. (11.96) follows from the saddle-point property, item (i) in Proposition 9.5.
Moreover, item (iii) in Proposition 9.5 implies that the state o* dominants all the states: o* > W,
for all x € supp(Pxn), Hence, we have p™ < ¢". In the following, we set zero all element of ¢,, that do
not lie in the support of py,, i.e. ¢, (w) =0, w & supp(ps,), @ € [n].

Repeating Nagaoka’s argument [111] in Eq. (11.57) for any 0 < @,, < 1 and choosing § = exp{nr —
non(r)} yield:

a(Qn;p") +6B(Qn;0™) > (a (U; p") 4 """ (M) g (U q”)) , (11.97)

N =
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where
a(p") = ) Pw) (11.98)
B(Uq") = Ui:q”(w) (11.99)

and
U= {w L (w)e®n (1) > q"(w)e’"}. (11.100)

In the following, we
J
exponent function ¢, (r). Such a relationship was presented Lemma 2.14 in Section 2.2. Since the

In the following, we will relate the Fenchel-Legendre transform A% p (z) to the desired error-

Lemma 2.14 (a) in Section 2.2 shows that the optimizer ¢ in Eq. (4.48) always lies in the compact set
H := 0, 1], by invoking Eq. (11.173) we define the following quantities:

Vinax(r, v) == e B, Ag p_, (1); (11.101)
Viin (1, v) 1= teH,II%inneTr,l, AG p, (1); (11.102)
Konax (75 V) 1= 15V/27 Mo max; (11.103)

Mpax i=  max Topent). (11.104)

" ?
teH, Pun€Pr AO,Pxn (t)

To b (1) =Y Pan(2) By, ,
rzeX

3
log}q)i— 0 2(D) ] (11.105)

x
where we define P, , 1= {Pxn € P(X) : V (W||o|Pxn) € [v,+00)} for condition in Eq. (11.94) or define
Pry = {Pxn € P(X) : ¢n(r) € [v,+00)} for condition in Eq. (11.94). Either way, P, is a compact set.
The uniform continuity, Proposition 11.6, in Section 11.3.4 below shows that Ag’(.)(-) and Tj () (-) are
continuous functions in (0, 1] X P, ¢. Hence, the maximization and minimization in the above definitions
are well-defined and finite. Further, the quantity Vin (7, v) is bounded away from zero owing to Lemma
2.14 (a) in Section 2.2.

Now, we are ready to derive the lower bounds to « (U;p™) and 5 (U;¢™). If n € IN is sufficiently
large such that

14 (1 + Kpax(v,1))?
Vmin(ra V)

Vn > No(r,v) := (11.106)

applying Bahadur-Randga Rao’s inequality (Theorem 2.1) to Z; = logq; — logp; with probability
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measure \; = p;, and z = r — ¢, (r) gives

a(Up™) =Y p"(w) (11.107)
welle
_Pr{;;Zi zr—qbn(r)} (11.108)
A
> i%”) exp {—nAg p, (6n(r) — 1)} (11.109)
where K«
Alryv) = — e (11.110)
’ 2/ 4 Viax(r,v)

Similarly, applying Theorem 2.1 to Z; = logp; — log¢; with probability measure A\; = ¢;, and z =
On(r) — 7 yields

Bq) = ¢"(w) (11.111)
well
1 n
:Pr{ngZi zqﬁn(r)—r} (11.112)
A
> i%”) exp {—nA p, (r = du(r)}. (11.113)
Continuing from Eq. (11.109) and item (ii) in Lemma 2.14 gives
A
a (Uspt) > (\;’;)e—”%(’“). (11.114)
Eq. (11.113) together with item (iii) in Lemma 2.14 yields
A(r,v) _
U; q¢") > 4 nr, 11.11
B(Wiq") = N (11.115)

Thus we can bound the left-hand side of Eq. (11.97) from below by %e_”%m. For any test 0 <

@Qn < 1 such that

A(r,v)

. n < —nr .
B(Qn;o™) < NG e ", (11.116)
we have that
AT, V) ng(r)
s o) > nenir) 11.11

By letting A'(r,v) = A(r,v)/2 and v’ = r + L log(y/n/A'(r,v)), we conclude that

- A'(r,v) , 1 Vn
, 57 > ’ _ - — i n .
Qexp{—nr'} (P"]|0") = NG exp{ Non (r - log (o) Pl o (11.118)
o A/(T‘, I/) (2) / 1 \/ﬁ
= \/ﬁ exp{—nEsp r —Elogm7H/,Pxn . (11119)
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11.3.4 Uniform Continuity

In this section, we prove a uniform continuity property, which is crucial to establish the finite block-
length bounds in error exponent analysis.

We first introduce necessary notation. Fix R € (Cow,C1w), and denote by (o p,0% p) the
saddle-point of F(R, P) for any P € Pr(X). Define

Bo(P,W) =Y P(2)E,,, |log px] : (11.120)
reX - S
i 2
Va(PW) := 3 P(2)E,,, ||log?* —E,,, [log px] ] : (11.121)
reX L x x
[ 3
To(P.W) := Y P(2)E,,, ||log Zﬁ ~ B, [log Zﬂ ] : (11.122)
reX L z z

where (py, ¢;) is the Nussbaum-Szkota distribution of (Wy, 0% p), and the tilted distribution is

(o] . . l_a . .
Vaw(i,j) == P (i:1)0 fa’]) . aclo,1]. (11.123)
20, P2, 0) e (2, )

Inspired by Ref. [12, Lemma 62|, we show the following continuity property, which are crucial for

establishing the large deviation bounds in finite blocklength regime.

Proposition 11.6 (Uniform Continuity). The functions Bo (P, W), Vo (P, W), and T,,(P, W) are jointly
continuous on (a, P) € [0,1] x P(X).

Proof of Proposition 11.6. It is not hard to see that the quantities B, (P, W), V, (P, W), and T, (P, W)
are sums of finitely many terms. We thus show that each term is continuous. Fix an arbitrary
x € X onwards. Let (ag, Py)rex be an arbitrary sequence such that (ag, Py) € [0,1] x P(X), and
limy—y 4 oo (g, Pr) = (a0, Po) € [0,1] x P(X). Given the eigenvalue decompositions W, = . Aile;) (€]
and o p = >, Mj(URpk)‘ffﬂff‘; we have the Nussbaum-Szkota distribution p,(i,j) = )\i]<ei\ff>\2
and ¢, (i,7) = uj(a§7pk)|(ei|f]k>]2. Here, we write fj’? and yij(0% p, ) to emphasize the dependence on
P,.
To prove the continuity of B, (P, W), it suffices to show

1 1- kv (2 Ai
Py () At (o p) el £5) 7 log ———
n [ ()
1 ’ N (11.124)
—Py(x) - A (0% py) (el £7)]7 log ———-
Tr {on(ag Po)l—a()} Hj (UR,PO)

If \; = 0, then it is obvious (recalling that the power function is only acting on the support). We
assume \; > 0. If Py(z) > 0, then W, < o, p_for all sufficiently large k € IN and k = 0. Further, if
I (Jﬁypk)’<€i|ff>| = 0, we have )\¢|<ei|fjk>| = 0 by the absolute continuity, which in turn implies the
convergence of Eq. (11.124). Considering the other case, we can deduce that p;(o% p ) is bounded away
from zero. Using the continuity of P — o7, p and logarithm, log A;/u; (0% p ) tends to log Ai/p; (0% p))-
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It remains to show the case of Py(z) = 0. To that end, we want to show log[X; /(0% p )| =
O(log1/P;). We may assume Pg(z) > 0 and p;(0o% p,) > 0 for all k € N. The saddle-point property

guarantees that o, p must satisfy

*1
R Py R Py
ha = | 2 (@) pr— - : (11.125)
T W g )

Further, noting that o p € (0,1] for all P € P(X), the continuity of P — af p and the compact-
ness of P(X) imply that

R = i > p >0 11.126
QR PIG%}(I}Y) QR,P ( )
Therefore,
~ oc*l ,CM*I—%’Pk
> A | Y Pil@) — - (11.128)
z Tr [Wj B (0% Pk)l_aR»Pk

1
> Xin® (Z Pi()W, R’P’“> (11.129)

1
> A ( Py R’Pk) (11.130)
1
= B, " (@) Amin (W2) (11.131)
1
> P20 () Amin (W) - (11.132)

where we denote by Amin the smallest non-zero eigenvalue, and Eq. (11.129) holds because for any P,
Tr [Wf B (g p) TR | € [0, 1), (11.133)

Note that p;(0% p ) < 1. Eq. (11.132) then implies

Ai 1 o ~
log <log — — log P,™" () Amin (W2) (11.134)
1(9% p,) Ai k
1 _ 1
< 2log ————— — log P™™" (z). (11.135)
)\min (Wm) b
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Using Eq. (11.135), we are able show that the left-hand side of Eq. (11.124) converges to 0:

1 ap  1—« k\ 2 7
Py(z) At (o p ) el [ |log ———— (11.136)
Tr [Wﬁ’“(g}h )i } ’ ot ’ 1i(9% p,)
A

< Py(x) |log - (11.137)

J(UR,Pk)

1 AU

< 2Py (x)log =———— — Pi(x)log P, ™" () Amin (Wa) (11.138)

)\min Wz)
0, (11.139)

which proves the continuity of B, (P,'W).

Next, we show the continuity of V, (P, W) and T,,(P, W). Denote by Bo (W (|0}, p) := Ey, , [l0g ps/qq]
for convenience. For Py(z) > 0, p;(0% p,) is bounded away from zero. Then, logA;/u;(0% p ) tends
to log Ai/uj (0% p,), and it is not hard to see that By, (Wylloog, p,) — Bag(Walloog, ). It suffices to
prove the convergence when Py(x) — 0. Eq. (11.135) immediately implies that

1 1- oy (2 Ai
By (Walloh,) = A% (5 p ) el £ log — S (11.140)
R %Tr {Wf‘k(aﬁpk)l—ak] v ol e 1i(o% p,)
1 _1
2log = — log P,"™" (x). 11.141
< 2log gy s By (z) ( )

Using the inequality |a + b|? < 2(|a|? + |b]?), we obtain

2
< 2P ()

2
log — 24| 4 2P.(2)B2 (W,llo% p ).
Oguj(a;i,pk) + 2P (z) B;, (Wellok p,)

log%—

Pl 1 (0%, p)

Ba,(Wellog, p,)

(11.142)

Combining Egs. (11.135), (11.141), and (11.142), we prove the continuity of V, (P, W).
Similarly, using the inequality |a + b|> < 4(|a|? + |b]?) gives

3 3
Ai * J *
Py(x) log ——— — Bay(Wallof p)| < 4Pi(w) [log ———| +4Py(2)B;, (Wallokp). (11.143)
i ( R,P) Mj(UR,P)
Further, Eq. (11.135) implies
A 3 _1
log —— < —41log? Mpin(Wy) — 4log? P (). (11.144)
Nj(UR,P)

Combining Egs. (11.141), (11.143), and (11.144), proves the continuity of T, (P, W). O

11.3.5 Proofs of Theorem 11.1 and Corollary 11.1

We are ready to prove our main result—the refined strong sphere-packing bound in Theorem 11.1 for

constant composition codes and Corollary 11.1 for general codes.
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Proof of Theorem 11.1. Fix any rate Cpyw < R < Cy. First note that by Ref. [36, Proposition 10|, we
find

Eg(R) € Rso. (11.145)

By Proposition 11.2 and the standard expurgation method (see e.g. [30, p. 96], [32, Theorem 20], [23,

p. 395]), it holds for every constant composition code C,, with a common composition Pxn that

_ 1 1/\ mn n
£(Cp) > 5 Emax (c,) > Jnax 50| (War|o®™) (11.146)
1
> oy | ;N 11.14
2 max o @rep(-nk) (war(je®") (11.147)
]‘/\ n * n
> 502exp(-nR) (W2r|(a*)e™), (11.148)

where C/, is an expurgated code with message size |Cl,| = [|Cpn|/2] > 5 exp{nR}. Inequality (11.147)

holds because the map p — @, is monotone decreasing. In the last line (11.148) we denote by

1—
0" =0% p, i=argmin sup { a (Do (W]|o|Pxn) — R)} (11.149)
n oES(H) 0<a<l |«

a channel output state that depends on the coding rate R and the composition Pxn.
In the following, we deal with sequences of inputs that will yield different lower bounds. Fix an
arbitrary 0 € (0, Esp(R)). Let v := Eg(R) — 6 > 0, and define:

P (X) 1= {pxn € P(X) v < ED(R, Pon) < Egp(R) < +oo} . (11.150)

The set Pp,(X) ensures that the error exponents of the input sequences x™ with composition Pyn €
PR (X) are close to the sphere-packing exponent Eg,(R).
For sequences x" with Pyn ¢ Pp,(X), we infer that

Eg(R) — B (R, Pxn) = 6 > 0. (11.151)
We then apply the Chebyshev-type bound, Proposition 11.4, with ¢ = 2 to obtain, VPx» ¢ Pg,(X),

aZ exp{—nR} (W;?;LnH (G*)®n) > K1 €xXp {_'%2\/> - nES(IQ)) (R7 PX")} ; (11152)
> k1 exp {—kev/n —n[Eg (R) — 6]}, (11.153)

for all sufficiently large n, say n > N; € IN. The equality in Eq. (11.152) follows from the saddle-point
property, item (a) in Proposition 9.5, and the constants k1, ko are positive and finite constants.
Next, we consider sequences x™ with Pyn € Pp,(X). Since such sequences satisfy Eq. (11.94), we

apply the sharp lower bound, Proposition 11.5, with ¢ = 2 to obtain, VPxn» € Pg,(X),

2A

~ nl(g*)®n) > —
Taexptnm) (W (00)) 2~

exp{—nEs(g> (R, Pxn)}, (11.154)
for all sufficiently large n, say n > No € IN, and some A € R~¢. In the following, we will relate the
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term s% p_, in Eq. (11.154) to |E{,(R)|. The idea follows similar from [91, Eqs. (111)(114)]. Let

PE(X) = {P € P(X): ED(R, P) = Esp(R)} , (11.155)
Po(X) = {P € Pro(X): min 1P Qll; 2 9} . (11.156)

Since s7, ( 18 uniformly continuous on the compact set P € PR (X) (see item (d) of Proposition 9.6),

one has

Yy € Reo, 3f(7) € R0, such that VP, Q € Pr,(X), |[P—Qll; < f(7) = |shp — shol <7-

(11.157)
By choosing v € Rs that satisfies Eq. (11.157), it follows that
Shpn < |EpR)| +7, VP € Proy(X)\P s (X). (11.158)
Hence, Eqs. (11.154) and (11.158) further lead to, VPxn € Pr,(X)\P () (X)),
2A
~ XN *\®n —
2 exp{—nR} (Wx" ”(U ) ) > n%(lJr‘Eép(R)‘Jr,y) exp{ nESp (R)} : (11159)
For the case Pxn € Pr,(X) N Ps)(X), we have
Ey(R) — E@(R, Pen) =: 8" > 0. 11.160
Sp( ) PE?I’I;i))((X) sp ( ) ( )
Then, Egs. (11.154) and (11.160) give, VPxn € Pg,(X) N Pp (L),
~ n 2A
Qg exp{—nr} (Wen'[[(6*)®") > exp {—n [Eyp (R) — '] }. (11.161)

1
ni (1+S’}},Pxn )

Finally, by comparing the bounds in Eqgs. (11.153), (11.159) and (11.161), the first-order leading
term in the right-hand side of Eq. (11.159) decays faster than that of Eqgs. (11.153) and (11.161).
Thus, for sufficiently large n, say n > N3 € IN, we combine the bounds to obtain, for all compositions
Pyn € P(X),

24
s (HEL (R +7)

Q2 exp{—nr) (Wial'll(0%)7") = exp {—nEg (R)} . (11.162)

By combining Eqs. (11.148), (11.162), we conclude our result: for any v > 0 and every n-blocklength

constant composition code C,,

A
_ S B ‘
£(Cp) > ) exp {—nEs, (R)}, (11.163)
for all sufficiently large n > Ny := max { /N1, Na, N3}. O

n+|X|—1
|X|-1
positions. Hence, for any code with M = exp{nR} codewords, there exists some codewords M’ of

Proof of Corollary 11.1. For an n-blocklength code, there are at most ( ) < nl¥l different com-
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x|

the same composition such that M’ > M/n Denote by C;, such constant composition codes with

composition Pyn.
Fix an arbitrary Ry € (R, R), and choose N; be an integer such that R — ' logn > Ry for all

n
n > Nj. Consider such n > Nj onwards. By following the similar steps in Theorem 11.1, we obtain

A X
e (n,R)>£(Cl) > ————exp {—nEs(g) <R _ ¥ log n, Pxn> } , (11.164)
5 (i) "

for all sufficiently large n, say n > No € IN, and some S);%JDX'" € R>g. Let

OES (r, P)

T = max (11.165)
PeP():ED (R, P)=Eup(R) L
Then, item (a) in Proposition 9.6 implies that
X X
EX (R = [ ogn, Pxn) <EP(R,Pen)+ 7T - 1% 10 (11.166)
n n
X
SEsp(R)+T~|n|logn, Vn > Ny (11.167)
Combining Egs. (11.164) and (11.167) gives
. A
£*(n,R) > exp{—nEs(R)}, Vn > max{Ni, No}. (11.168)

1
. (st p, )+71X|

_1 * _
By choosing t € R such that n=t < An 2<1+SR’Px”) TlX‘, and letting Ny := max{Ny, Na}, we

conclude our claim. O

11.4 Symmetric Classical-Quantum Channels

In this section, we consider a symmetric c-q channels. By using the symmetric property of the chan-
nels, we show that the uniform distribution, denoted by Uy, achieves the maximum of Es%) (R,-) and
Es(g)(R, -). Then, by choosing the optimal output state o}, = U;%’UX, every input sequence in the code-
book is a good codeword and attains the sphere-packing exponent Fg,(R). Hence, we can remove the
assumption of constant composition codes and apply Theorem 11.1 to obtain the exact pre-factor for
the sphere-packing bound (Theorem 11.3).

A c-q channel W: X — S(H) is symmetric if it satisfies

W, =V iwy (vl veex, (11.169)

where W1 € S(H) is an arbitrary density operator, and V satisfies VIV = Vv = VI¥l = 14,
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Theorem 11.3 (Exact Sphere-packing Bound for Symmetric Classical-Quantum Channels). For any
rate R € (R, Cy), there exist A > 0 and Ny € IN such that for all codes C,, of length n > Ny with

message size |C,| > exp{nR}, we have

A

max CTL 2—
fmax (Cn) 2 = mmD

exp {—nEgxp(R)}. (11.170)
Proof of Theorem 11.3. The proof consists of the following steps. First, we show that the distribution
Uy satisfies B (R, Ux) = B2 (R, Ux) = Eg(R). Second, we show that B (R, P) = Eg(R) for all
P € P(X), which means that any codeword attains the sphere-packing exponent. Finally, we follow
Theorem 11.1 to complete the proof.

Fix any R € (Cpw,Cw). From the definition of the symmetric channels in Eq. (11.169), it is not
hard to verify that UxW® = VUxW*VT for all a € (0, 1], where we denote by PW® := Y~ _, P(z)W2
for all & € (0, 1]. Hence, it follows that

Te[W (U W) %] = Te[VE Wy o=L (U, W) a7 (11.171)
= Te[We (UrW*) "] (11.172)

for all z € X and « € (0,1]. Summing Eq. (11.172) over all z € X and dividing by M yields
Te[W (Ur W) 2] = Te[(Uxy W) a], (11.173)

for all z € X and « € (0,1]. Recalling Proposition 11.7 below, the above equation shows that the

distribution Uy indeed maximizes Ey(s, P), Vs € R>o. Then we have

PR ) = | e Fa(s P) 5B | = Fu (),

Further, Jensen’s inequality shows that ES2 (R, Ux) > ES) (R, Ux) = Esp(R), and thus, B2 (R, Uy) =
Egp(R).

Next, let (a},0%) be the saddle-point of Fry, (-, -) (see Eq. (9.142)). One can observe from the
definition of Es(g) and Eq. (11.173) that all the quantities Dyx (Wyllo%;), © € X, are equal. Hence,
quantum Sibson’s identity given in Lemma 3.3 shows that

(U Wek) /R

o = — (11.174)
" (w7

which, in turn, implies that

EP(R,P) = azl(lg)l] Frp(a,op) = Ssli%){Eo(S, Ux) — sR} = Esp(R), VP € P(X). (11.175)

Further, we have

OES) (R, P)
OR

1 — ao*
‘EéP(R)} = *aR =

. VP e PX). (11.176)
ap
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Since Eqgs. (11.175) and (11.176) indicates that every input sequence attains the sphere-packing expo-
nent, we apply the same arguments in the proof of Theorem 11.1 to conclude this theorem.

Proposition 11.7 ([35, Eq. (38)]). Let s € R>¢ be arbitrary. The Necessary and sufficient condition

for the distribution P* to mazimize Ey(s, P) is

1+s
Tr (Z P*(z)WH( 1+8>) ,VeeXx  (11.177)

zeX

Wl/ 1+S . (Z P* Wl/ 1+s))

TEX

with equality if P*(x) # 0.
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Chapter 12

Moderate Deviation Analysis (Channel
Coding)

This section presents our main results—the error performance of classical-quantum channels satisfies
the moderate deviation property, Eq. (1.6). The achievability part is stated in Theorem 12.1, and its
proof is given in Section 12.1. Our proof strategy employs Hayashi’s bound [88] and the properties
of the modified auxiliary function (Proposition 9.2). Theorem 12.2 contains the converse part, and
is proved in Section 12.2. The proof involves a weak sphere-packing bound (Theorem 11.2), a sharp
converse lower bound (Theorem 11.1), and an approximation of the error-exponent function around
capacity (Proposition 12.2).

Let (an)nen be a sequence of real numbers satisfying

(i) ap, =0, as n— oo, (12.1)
(i) apy/n — 400, as n — +oo. '

Unlike our proof techniques relying on error exponent analysis (the LDP regime), a recent and
independent paper [146| obtained the same result, but proceeds from the second-order analysis (the
CLT regime). Their achievability proof follows from the one-shot capacity by Hayashi and Nagaoka
[87] (see also Hayashi [88], and Wang and Renner [147]); while the converse part reduces channel coding
to hypothesis testing [148, 87, 44|, followed by Strassen’s Gaussian approximation [11| and a powerful

inequality in probability [149] to the quantum scenario.
Theorem 12.1 (Achievability). For any W : X — S(H) with Visy > 0 and any sequence (ap)n>1

satisfying Eq. (12.1), there exists a sequence of codes {Cy,}n>1 with rates R, = Cyw — a,, so that

. 1 _ 1

The proof is given in Section 12.1.

Theorem 12.2 (Converse). For any W € W(X) with V(W) > 0, any sequence {an}n>1 satisfying
Eq. (12.1), and any sequence of codes {Cp},~, with rates R, = C(W) — an, it holds that

1
2V (W)

(12.3)

n——+00

1
lim inf — log& (W,C,) > —
na?
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The proof is given in Section 12.2.

Remark 12.1. Altug and Wagner [43] proved Theorem 12.2 for discrete classical channels by a weak
sphere-packing bound with the expression of Esp. Although such a weak sphere-packing bound in-
deed holds for c-q channels (as we have shown in Theorem 11.2 and Remark 11.1 in Section 11.2),
Proposition 12.2 in Section 12.2 shows that it will lead to

1 1
limsup — loge (W, C,,) > ———, 124
ns o aZ (W,Cn) 2Viy 1z4)
where Vay is defined in Eq. (3.58). Since V(p|lo) < V(p||o) [150, Theorem 1.2], it holds that Viy < Vap
and the equality happens if and only if the channel reduces to classical. Hence, Altug and Wagner’s
method yields a weaker result in quantum regime; namely, a gap between the achievability and the
converse. In Section 12.2, we will employ a sharp converse bound from strong large deviation theory

to achieve our result, Theorem 12.2.

12.1 Proof of Achievability, Theorem 12.1

Let W: X — S(H) satisfy Vay > 0. Let {a,}n>1 be any sequence of real numbers satisfying Eq. (12.1).
Since Viy > 0, Eq. (3.59) in Section 3.3 shows that Cyy > 0. Hence, we have Cy — a,, > 0, for
all sufficiently large n. Fix such an integer n onwards. The achievability bound, Theorem 10.1, in

Chapter 10 implies that there exists a code C,, with R,, = Cy — a,, so that

E(W,C,) < 6exp {—n [max {Eé(s,P, PW) — sRn}] } , (12.5)
0<s<1

for all P € P(X). In the following, we denote by E(%(s, P) = Eé(s, P, PW) for notational convenience.

Simple algebra yields

log 6 1
o8 — max {Eé(s,P) - sRn}, (12.6)

1
—loge(W,(C,) < — —
na2 0g (W, Cn) < na2 a2 0<s<1

n
for all sufficiently large n and any P € P(X).

Let P(X) be the set of distributions that achieve the minimum in Eq. (3.57), and let P € P(X).
Note that Ref. [16, Lemma 3| implies that TT’(X) is compact. Applying Taylor’s theorem to Eé(s, ﬁ)
at s = 0 together with Proposition 9.2 gives

B (5,15) = sCho — ‘fvw + 2363%5:,15) : (12.7)

S=S§

for some 5 € [0,s]. Let s, = an/Viy. Then s, < 1 for all sufficiently large n by the assumption in
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Eq. (12.1) and Vjy > 0. For all s, < 1, Eq. (12.7) yields

LB (e B
01%1351 {Eo (s,P) sRn} > Ej (sn,P> snRy (12.8)
e
_ ai (C - R ) _ a’?l + a’?l 83E0 <S7P) (12 9)
BT I VR P ‘
S=35p,
2 5 O3EY (s, P
_ o, G 770 ( ) , (12.10)
2V 6V 0s3
where 3, € [0, s,] and Eq. (12.10) holds since R,, = Cyw — ay,.
Define
3EY (s, P
T omax | ZEGDP) (12.11)
5 0s3
(s,P)€[0,1]xP(X)

which is finite due to the compact set [0,1] x P(X) and item (a) in Proposition 9.2. Therefore,
Eq. (12.10) implies that

s a2 a3 PES (5,]5)
_ > n n .
02ei {EO (S’P) SR"} A * 6V 0s3 (12.12)
§=38p
3 BSE(%(S,?)
3
S On T e (12.13)
= 2Vw GV% .
2 3
a; a, Y
- 0 12.14
2V 6V ( )
for all sufficiently large n.
Substituting Eq. (12.14) into Eq. (12.6) gives
1 B log 4 1 an Y
— 1 WC)<—% ——(1—-—]. 12.15
na2 0gE(W,Cn) < na? 2V ( 3V ( )
Recall Eq. (12.1) and let n — +o0, which completes the proof:
1 1
limsup — loge(W,(C,,) < ———. 12.16
O

12.2 Proof of Converse, Theorem 12.2

Our strategy consists of the following steps. First, we claim that it suffices to prove Eq. (12.3) for the
maximal error probability of any code C,, i.e. emax(W,Cy,). Recall the standard expurgation method
(see e.g. |30, p. 96|, |32, Theorem 20|, |23, p. 395]): by removing half codewords with highest error
probability to arrive at £(W,Cp) > Semax (W,C,) with |C)| = [|Cnl|/2] > 3 exp{nR,} = exp{n(R, —
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%log 2)}. Since the induced rate back-off is only %logQ = o(ay), one might define another sequence

/
n

Gy = Ay — = log2 satisfying Eq. (12.1). Hence, without of loss generality, we only need to prove the
converse part for epax.
Second, we employ the method of Ref. [26, Lemma 16] to relate the error probability &,ax to the

minimum type-I error:

log 5max(wa Cn) = max min IOg 6zexp{fan} (W@n Ho.n) (12 17)
na? © oneS(H®M) xmeX™ na .
lo a B W®n P*W ®n
> min g Qexp{—nR,} ( . H( ) ) ’ (12.18)
xnexn naz

where P* € P(X) is an arbitrary capacity-achieving distribution, i.e. I(P*, W) = Cy.
Third, we divide the set of codewords into two groups. Fix an arbitrary n € (0, %) Let A :=
max,cs, V(p||P*W) and let £ = \/2A/n. Define:

Qgood = {X" € X" : D(W||P*W|Pyn) > Ry} ; (12.19)
Qbaud = Xn\ngod‘ (12.20)

For the codes in 2,4, we employ a weak converse bound in Theorem 11.2, and apply a sharp converse
bound, Proposition 12.1 below, for {2440q4. Furthermore, we can assume a, > 0 for all sufficiently large
n € IN owing to the assumption lim,,,~ any/n = +00. Subsequently, we will consider such n onwards.
We remark that Proposition 12.1 follows the same argument as Proposition 11.5 in Section 11.3.3, and

Chaganty-Sethuraman’s concentration inequality, Theorem 2.2 in Section 2.2. Thus, we skip the proof.

Proof of Theorem 12.2. We start the proof with the case {24, and further consider two different cases:

QI(JL)d = {xn € X" : D(W||P*W|Pgn) < Ry, — \2/%} ; (12.21)
0P {Xn CX":R, - \2/% < DOW|[P*W|Pyr) < Rn} . (12.22)

We apply the weak converse bound, Theorem 11.2, in Section 11.2 with ¢ = P*W to further lower
bound the right-hand side of Eq. (12.18).

Let n and £ be defined as above, and let N; be an integer satisfying Eq. (11.13). Then Eq. (11.14)
gives, for all n > Ny,

log aexp{_an (W®n”(P*W)®n) - _Esp (Rn fa Pxn P W) n log f(U) (12 23)
na? - ag, (1 =) nay |

Further, Eq. (9.18) implies that for all x € Q!

~ 2
Esp <R ; Pyn, P*W> = 0. (12.24)
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(1)
Hence, we have for all x" € Q, 1,

108 Qexp{—nr,} (Wit [[(P*W)E™) . log f(n)

12.2

na2 ~  na? (12:25)
1 logf(n)

— 12.26

> oy T Tha (12.26)

where the last inequality follows from V4y > 0. Since f(n) < +oo, taking the infimum limit of n — 400

and using Eq. (12.1) give, for all x" € Q]gla)d,

.. log aexp{fnR (” ®nH(P*W)®n)) 1
n > _
%g—i{g na? - 2V (12:27)

(2)

Next, we move on to x € Q. ;. In this case, Esp in Eq. (12.23) is not equal to zero for any finite

n, we employ Eq. (12.45) in Proposition 12.2 below with d,, = a,, + 2§/y/n and b, = a,, to arrive at

10€ Qe i—nr.y (WS (P*W)En 4£2 1
lim ing 18 Gexpnfn) ( x I(Prw)=m) > — lim 3 S — (12.28)
n—-+00 na? notoo <an n \%) 2V (1 —n)
—0 (12.29)
1
> 12.30
2 5, (12:3)

where the equality follows since lim,— 4o nai = +o0.
In the last case of x" € Qgq0d, Wwe employ a tighter bound, Proposition 12.1, to lower bound the
right-hand side of Eq. (12.18).

Proposition 12.1 (A Sharp Converse Bound). Consider a classical-quantum channel W : X — S(H)
and a state 0 € S(H). Suppose the sequence x™ € X™ satisfies

v <V (W|o|Pxn) < +00 (12.31)

for some v > 0, and suppose the sequence of rates (Rp)nen satisfies® Do(W||o|Pxn) < R, <
D(W|o|Pxn). Then, there exists an Nog € IN such that, for all n > Ny,

Bexp{—nR,} (W' lo®") >

A
> s e { ~nB) (Ru — en, Per,0) | (12.32)

where ¢, = Klogn and A, K > 0 are finite constants independent of the sequence x", and
sy = argmax {Ey(s, Pxn,0) — SR, } . (12.33)

s>0

“Note that Do(W|o|P) = D(W|o|P) implies W, = o for all z € supp(P) [8, Collorary 4.1]. This further gives
V(W|lo|P) = 0. However, the assumption in Eq. (12.31) ensures that liminf,ew D(W||o|Pxn) — Do(W|lo|Pxn) > 0.
Hence, the intervals [Do(W||o|Pxn), D(W||o|Pxn)] for all x™ satisfying Eq. (12.31) are not measure zero.

Before applying Proposition 12.1, we verify that the condition, Eq. (12.31), is satisfied. Define

v(8) = min {V (W|P*W|P): D(W||P*W|P) > Cyy — 6} (12.34)
PeP(X)
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Note that the map § — v(J) is monotone decreasing and continuous at 0 from above, i.e. lims|ov(J) =
v(0) = Vay [16, Lemma 22]. For any x € (0, 1), we can choose a sufficiently small 7 > 0 independent of
the sequence x" such that v(y) > (1 — k)Vi =: v > 0. Further, let Ny € IN such that a,, < v for all
n > Na. Then, one finds, for all X" € Q4p0q4 and n > No,

V (W||P*W|Pxn) > v(y) > v > 0. (12.35)

Moreover, since Vyy > 0 implies that Cyy = maxpepxy D(W||P*W|P) > maxpecp Do(W||P*W|P), one
can choose a sufficiently large n, say N3 € IN, such that R,, > Dy(W| P*W|Pxn) for all n > N3. Now,
we have for all X" € Q4004 and n > max{No, N3} that
max Do(W||P*W|P) < R,, < D(W| P*W|Pxn); (12.36)
PeP(X)
0 < v < V(W|P*W|Pen). (12.37)

Together with Eqgs. (12.18) and (12.35) and letting 0 = P*W, Proposition 12.1 yields, for all X" € Q004
and all sufficiently large n, say n > N4 € IN,

-~ n * n 2 *
lo8 Bespi ity (Wl (P W)E) B (R = e Ben, W) log st/ log A ) oo

2 2 2 2
na;, az na;, na;,

Recall Eq. (12.46) in Proposition 12.2 below with b, = 0 and 6, = a, + ¢, that limsup,,_, ., % <

ﬁ. Hence, one can fix an arbitrary ¢ > 0 and there exists an N5 € IN such that % < ﬁ +( for

all n > N5. This then leads to for all sufficiently large n > max{Na, N3, Ny, N5} and all X" € Qy40q,

R log —A
108 Bty (WELNP W) ER) (R — o P PW) loglan + ca)/it | 8 50
na2 = a? na2 na?

(12.39)

Taking n — 400, the second and the third terms on the right-hand side of Eq. (12.39) vanish since
Cn = KIO% = o(ay) and the assumption lim,,_, |~ an\/n = 400.

Next, we apply Eq. (12.44) in Proposition 12.2 again to bound the error-exponent function Es(g) in
Eq. (12.38): for all x € Q©)

108 Gexp{_nr,) (WS (PFW)E™) EP (Cy — 6,, Pen, P*W)

. - |
RS = hm (1240
EZ (Cyy — 6, Pen, P*W
= — lim sup —2 (Cw o X ) (12.41)
n—+00 577,
1
> 12.42
>~ (12.42)

Finally, combining Eqs. (12.18), (12.27), (12.30) and (12.42) concludes the desired Eq. (12.3).
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Proposition 12.2 (Error Exponent around Capacity). Let (by)new be a sequence of real numbers with
n

limy, 400 by = 0 and let (6,)nen be a sequence of positive numbers with limy, s~ 0, = 0. Suppose the
sequence of distributions (Pp,)new satisfies

Cy — 0n, < D(W||P*W|P,) < Cw — by,.
The following hold:

(12.43)
lim su Es(g) (Cw = O, P, P"W) < lim su (0n — bn)z' (12.44)
n~>+oc1>) 5721 o n*>+OCI>) 2VW(5121 ’ .
E — 6p, P, P*W _b,)2
lim sup — (G S ) < lim sup (0 — bn) ; (12.45)
n—+oo 5n n——+o0o 2VW672L
sy 1
limsup =* < —, (12.46)
n——+00 5n W
where
sy = argmax { Ey (s, Py, PW) — s (Cyw — d,) } - (12.47)
s>0
The proof of Proposition 12.2 is provided in Section 12.3 below. O

12.3 Asymptotic Expansions of Error-Exponent around Capacity

Proof of Proposition 12.2. We only prove Eqgs. (12.44) and (12.46), since Eq. (12.45) follows from the
same argument and Proposition 9.4.
(2).

Recall the error-exponent function Esg

EZ (Cy — 6y, P, P*W) = sup {—s (Cyw — 8,) + En(s, P, P*W)}. (12.48)
s>0
In the following, we fix o = P*W in the definition of Ey, (Eq. (9.7)) and denote by

En(s, P) := Eu(s, P, P*W) = sD_1_ (W|P*WIP).

(12.49)

for notational convenience. We define a critical rate for a c-q channel W to be

aEh(S, P)
Ter -= max ———— .
PeP(X) 0s s=1

(12.50)
Let Ny be the smallest integer such that Cyy — &, > rcp, ¥ > Ny. Since the map r — Esﬁ) (ry-,-) is

non-increasing [86, Section 5], the maximization over s in Eq. (12.48) can be restricted to the set [0, 1]
for any rate above re, i.e.,

Es(g) (CW - 5717 Pna P*W) - org?é(l {_S (CW - 571) + Eh(s’ P")} :

(12.51)
For every n € IN, let s¥ attain the maxima in Eq. (12.51) at a rate of Cyy — d,, > 0. In the following
lemma, we discuss the asymptotic behavior of {s¥},cn.
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Lemma 12.1. Let s}, attain the mazima in Eq. (12.51) and P, satisfy Eq. (12.43). We have
(a) The limit point of {P,}nen 1S capacity achieving.
(b) sk >0 for alln € N and lim,,_, y s, = 0.
Proof of Lemma 12.1. Let (Pp,)ren and (s, Jkew be arbitrary subsequences. Since P(X') and [0, 1]

are compact, we may assume that

lim P, =P, lim s;k = So, (12.52)

k—4o00 k—o0
for some P, € P(X) and s, € [0,1].

(12.1-(a)) Let k — +o00. Eq. (12.43) implies that
D(W[[P*W|F,) = Cw, (12.53)

which guarantees that P, is capacity-achieving by the dual representation of the information

radius, see e.g. [151], [17, Theorem 2].

(12.1-(b)) One can observe from Eq. (12.51) that s}, = 0 if and only if Cyy —d,, > D(W| P*W|P,,). However,
this violates the assumption in Eq. (12.43). Hence, we have s} > 0 for all n € IN.

Since P, is capacity achieving, the uniqueness of the divergence center implies that P,W = P*W.

Item (c) in Proposition 9.3 shows that

62E‘h (87 PO)

52 = —V (W||P*W|P,) = =V (P,, W) < —Vy < 0, (12.54)

s=0

where the last inequality follows since Viy > 0. Then, Eq. (12.54) implies that the first-order
derivative OFE, (s, P,) /Os is strictly decreasing around s = 0. Moreover, item (d) in Proposi-

tion 9.3 gives

OEy (s, P,)

- < D (W|P*W|P,) = Cw, (12.55)

S=So

This, together with items (b) and (c) in Proposition 9.3, shows that the first inequality in

Eq. (12.55) becomes an equality if and only if s, = 0. Since the subsequence was arbitrary, item
(b) is shown.

O

Now we are ready to prove this proposition. We start with proving Eq. (12.46). Since s — Ey(s, )

is concave from item (b) in Proposition 9.3, the maximizer s}, must satisfy

OFy(s, Py,)

o = Cy — O, (12.56)
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Further, item (c) in Proposition 9.3 gives

8Eh (8, P;:k)

5 =D (W||P*W|P},) . (12.57)

s=0

The mean value theorem states that there exists a number 3, € (0, szk), for each k£ € IN, such that

_ PEn (s, Py,)
0s2

_ D(W[P*W|P,,) — Cyo + b,

*
Snk

(12.58)

s:§n,c
On,,
sgk

where the last inequality is again due to D (W||P*W\P,fk) < Cy. When k approaches infinity, items

(a) and (e) in Proposition 9.3 give

0?Ey (s, Py,) 0?Ey (s, P,)
lim —— Tk =l — V(R W) < —Vay. 12.60
k_l}llloo 852 5:,§nk 852 50 ( ) ) = VW ( )
Combining Egs. (12.59) and (12.60) leads to
*
. 1
lim sup 2% < (12.61)

kotoo Onp VW

Since the subsequence was arbitrary, the above result establishes Eq. (12.46).
Next, for any sufficiently large n > Ny, we apply Taylor’s theorem to the map s} — Ey, (s}, P,) at

the original point to obtain

EZ (Cy — 65, P, PYW)

= —S:L (Cw — 0n) + En (S:L, P,) (12.62)
*\2 *\3 93
= 5% (6n + D(W||P*W|P,) — Cyy) — (Sg) V (P, W) + (Sg) 0 E‘(})ii Fn) (12.63)
for some 5, € [0, s}]. Let
3
Y=  max (B)Eh(j’P)‘ . (12.64)
(5,P)€[0,1]xP(X) Os
Continuing from Eq. (12.63) gives
* )2 *\3
E (Cv = 0n, Py, P*W) < 5(8, — by) — (sg)v (P, W) + (sng T (12.65)
2 *\3
< sup {s(5n b)) — 2 V(P W)} 4 ()™ (12.66)
s>0 2 6
(6n — bn)2 (32)3T
= 12.
LW 6 (12.67)

where the first line follows from the assumption D (W|P*W|P,) < Cyw — b, in Eq. (12.43) and
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Eq. (12.64). Finally, Eq. (12.67), along with item (b) in Lemma 12.1 and Eq. (12:61), implies that

2) " y
B (Cw =60, P PW) _ (60— ba)

1 <l —_ 12.68

ns oo 52 S S SV (B, W02 (12.68)
_ 2

< limsup (On — bn)” (12.69)

n—-+oo 2VW57% ’

where the last inequality follows from the continuity of V (-, W) on P(X) (Eq. (3.55)); the fact that
{P, }nen is capacity achieving (item (a) in Lemma 12.1); and the definition of Vjy in Eq. (3.57).
O
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Chapter 13
Conclusions and Open problems

This thesis targets at characterizing the decoding error probability as a function of the coding block-
englth. We study two fundamental quantum information processing protocols—the classical data com-
pression (i.e. Slepian-Wolf coding) with quantum side information, and the classical-quantum channel
coding. We have proven varieties of properties for the error exponent functions, which enables us
to better understand the error behaviors of these information tasks. Then, we established numerous
finite blocklength bounds for the optimal probability of error. Our results are not only of theoretical
interests but also of practical values—they serve as the performance benchmark for designing the next
generation quantum information technology. Lastly, we extend the derived finite blocklength results
in the large deviation regime to the moderate deviation regime. We show that the optimal probability
error vanishes asymptotically as the rate approaches the Slepian-Wolf limit /channel capacity slowly.
It is interesting to observe that there is an elegant duality between the two tasks when expressing
the error exponent functions as conditional Rényi entropy and Rényi capacity. By exploiting this
duality, we are able to unify the technical proofs these two tasks under the same framework of quantum
hypothesis testing. Finally, we illustrate such relationship in Table 13.1 below, and depict the error

exponent functions in Figure 13.1.

‘ Bounds\Settings ‘ Slepian-Wolf Coding with Quantum Side Information ‘ Classical-Quantum Channel Coding ‘
Achievability E.(R) := hax, {Eo(s) — sR} E.(R) := fex, {Prgj?écv) Ey(s, P) — sR}
(R < Cyor R> H(X|B), ) = max l_a(R—HT(X‘Y)) = max {17 (Cow - R)
4 1/2<a<1 o « 4 1/2<a<1 o @
Optimality Eg,(R) :=sup {Ey(s) — sR} Egp(R) :=sup { max FEy(s, P) — SR}
s<0 s<0 (PEP(X)
1-— 1-—
(R< Cywor R>H(X|B),) = sup { “(r- H;(X|Y),,)} = sup {7‘1 (Cow — R)}
0<a<1 | @ 0<a<t | «@
Strong Converse E}(R):= sup {E’S (s) — SR} E}(R):= sup { max Eg(s, P) — GR}
—1<s<0 —1<s<0 (PEP(X)
1—-a T l-a, .
(R>Cyor R< H(X|B),) —supl— 2 (R —H (X\Y),,) =sup{ — 2 (C%yy — R)
a>1 o a>1 « ’
14s 1+s
Auxiliary Function Ey(s) := —logTrp {(Trx(pXB)l/(Hs)) } Ey(s, P) := —log Tr |:<Z P(x)- W;/(Hs)> :|
TeX

Table 13.1: The comparison of the error exponent analysis for Slepian-Wolf coding with quantum
side information and classical-quantum channel coding. We note that we only obtained suboptimal
achievability results (i.e. with the exponent Ey(R) instead of Ey(R)).
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—> R '
H(X|B), H{(X|B), Co,w
(a) Slepian-Wolf coding with quantum side information (b) Classical-quantum channel coding

Figure 13.1: Sphere-packing exponents in two quantum information processing protocols.

13.1 Open Problems

There are still many open problems in the error exponent analysis. We divide them into the following
categories: (a) Properties of the error exponent functions and auxiliary functions; (b) Random coding

bound; (¢) Sphere-packing bound; and (d) Moderate Deviation Analysis.

13.1.1 Properties of Error Exponent Functions and Auxiliary Functions
Problem 1 (Concavity). For any classical-quantum channel W : X — S(H), define the sandwiched

auxiliary function:

Ej(s,P):= min sD*, (PoW|P®o), (s, P)e(—1,+00)x PX), (13.1)
o€S(H) T+s

where we denote by

11—«

log Tr [(012_7&;)0%)&} , Ya>0 (13.2)

Dalpllo) i= ——

the sandwiched a-Rényi divergence [152, 64, 8].
Then, the that map s — E(s, P) is concave for all s € (—1,0).

Remark 13.1. We are able to show that the map s — Ey(s, P) is concave for all s € (—1,0), where
Ey(s, P) is defined via Petz’s Rényi divergence. However, the sandwiched a-Rényi divergence has been
shown the tightest entropic quantity in the strong converse domain [64, 58]. Hence, the concavity of

the sandwiched auxiliary function is the most relevant. <&

Problem 2 (Continuity of the Sphere-Packing Exponent). Let W : X — S(H) be a classical-quantum
channel, and fix R € (Cow,Ciw). For every v > 0, there exists a constant ¢ > 0 such that for all
P e P(X) with Esp(R, P) > v and,

Es(g)(R’ P) < ESP(R) - CHUOAR,P,P - UaR,WH%y (133)
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where
EP(R,P):= sup — <Ié2)(P,W) —R); (13.4)
0<a<l &
IDP,W):= inf D, (W|o|P); 13.5
o (P,W) Lant, (Wllo|P) (13.5)

and oo p, 0o W, QR.P, g are the optimizers such that

IP(P,W) = Do (W]|ow,p|P); (13.6)
Cow = sup Dy (Wlloaw|P); (13.7)
PeP(X)
l—«o
2 R,P _
EQ (R, P) = — = (1), (P,W) - R): (13.8)
_l—-ap
Egp(R) = . (Capw — R). (13.9)

13.1.2 Achievaibility: Random Coding Bound

We shorthand Prc(n) := E¢, [€(W,Cy,)] the average probability of error for a n-blocklength random
codes with distribution P € P(X) on the input alphabet X'. Moreover, the following conditional Rényi

entropies and Rényi divergences are defined via Petz’s version [59]; see Eq. (3.5).

Problem 3 (Random Coding Bound for Slepian-Wolf Coding with Quantum Side Information). Con-
sider a Slepian-Wolf coding with a joint classical-quantum state pxp € S(XB) with H(X|B), > 0.
Let R < H(X|B),. The following holds for every n € N,

e*(n, R) < e (R (13.10)
where
1—« +
E.(R) = sup <R - Ha(X\B)p> : (13.11)
1<a<i
Hl(X|B),:= sup —Dalpxsllx®op). (13.12)
op€S(B)

Problem 4 (Random Coding Bound for Classical-Quantum Channels). For any classical-quantum
channel W : X — S(H), rate R < Cy, and any n € N,

Pro(n) < e "R (13.13)
where
1—
E(R,P)= sup —— (I&U(P, W) — R) ; (13.14)
j<a<t @
ID(P,W) = inf Do(PoW|P®0). (13.15)
oc€S(H)
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Moreover, the optimal probability of error can be upper bounded as
e*(n, R) < e "E(R) (13.16)

where Ex(R) := suppep(x) Br(R, P).

Problem 5 (Exact Asymptotics of Random Coding Bound for Classical-Quantum Channels). For any
classical-quantum channel W : X — S(H) and any n-blocklength block codes,

1+o0(1) _,

Prc(n) = \/ﬁ()e E(BP) R < Cjaw (13.17)
1 1

Pre(n) = +oll) _ —nEi(r.P) Chjaw < R < Cyw. (13.18)

e

Problem 6 (Random Coding Bound for Entanglement-Assisted Codes). Let N : S(A) — S(B) be a
quantum channel. Fiz any rate below the entanglement-assisted classical capacity, i.e. R < Cea(N') The

optimal probability of error over all n-blocklength entanglement-assisted codes can be upper bounded as
Era(n, R) < e "Prealfl), (13.19)

where

1l -«

Er,ea(R) = Ssup Ssup inf (Da (-N‘AHB(d}AA’)HpA’ & UB) - R) s (13'20)

1<a<1vaar 9B es(B) «

and P44 denotes the purification of p4.

13.1.3 Optimality: Sphere-Packing Bound

We remark that the exact asymptotics of the sphere-packing for general codes in classical channels is
still open. We do believe that the following Eq. (13.21) holds for both classical and c¢-q channels.

Problem 7 (Exact Asymptotics of Sphere-Packing Bound for Classical-Quantum Channels). For any
classical-quantum channel W : X — S(H) and any n-block codes (not necessary constant composition

codes)",

1
e (n,R) > — e " VR < C. (13.21)
n§<1+) oR D
where,
1—
E(R) = sup — (Corw — R) . (13.22)
0<a<l O

The sphere-packing bound beyond c-q channels are still unknown. We conjecture that it holds for
an entanglement-breaking channel Ngp, whose classical capacity is additive, i.e C(NZy) = nC(Ngg)

[64, Theorem 18]. For general quantum channels, we might need regularized Rényi capacity.

"We note that the sphere-packing exponent is not necessarily differentiable. Throughout this section, we write
OFEs,(R)/OR to be the left derivative.
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Problem 8 (Sphere-Packing Bound beyond Classical-Quantum Channels). For any entanglement-

breaking channel Ngg, and any n-block codes

1
5* (n, R) > WeinESp(R), VR < C, (1323)
n§<1+) oR D
where
11—«
Esp(R) := sup (Co(NEB) — R) . (13.24)
0<a<l O

Moreover, for any quantum channel N, and any n-block codes

1 .
" (n,R) > — e ") VR <C, (13.25)
3 (14 )
mn
where
1l—« 1
EX(R) := lim —Co(N®") —R). 13.26
() = sup —2 (n;rfmn (M) > (13.26)

Problem 9 (Sphere-Packing Bound for Entanglement-Assisted Codes). Let N : S(A) — S(B) be a
quantum channel. Fiz any rate below the entanglement-assisted classical capacity, i.e. R < Cea(N).

Then for any n-block codes

1
Eea (M R) 2 ———5— e BwealR) YR < C, (13.27)
n§<1+) OR D
where
. 1—«
Espea(R) := sup sup inf (Do (Nassp(aa)|lpar ® o) — R), (13.28)

0<a<ly, ,» OBES(B) «

13.1.4 Moderate Deviation Analysis

Problem 10 (Moderate Deviation Analysis for Entanglement-Breaking Channels). Prove that any

quantum entanglement-breaking channel Ngg satisfies moderate deviation principle, i.e.

1 1
li —1 * R)=———— 13.29
no>Foo na? oge” (n, R) 2V (NEB)’ ( )

where the sequence (an)nen satisfy Eq. (12.1).
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