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中文摘要 

由於傳統結構性測試的不足，應用軟體自我測試(software-based self-test)成為

了非侵入性、功能性以及全速測試的替代方案。應用軟體自我測試的技術可彌補傳

統結構性測試的不足，並且能在客戶使用階段提升硬體可靠性(reliability)。在論文

中，我們建立了一套完整的應用軟體測試流程，其中包含非功能性測試限制提取、

測試圖騰指令轉換器、測試程式產生器、電路錯誤模擬器。此外，為了確保所產生

測試程式之測試品質，我們亦提供了隨機程式評估比較結果於文末。 

我們所提出的應用於軟體測試流程目的為在程式或應用執行的過程中，偵測

出可能發生的電路老化缺陷(aging defect)及錯誤。所使用的錯誤模型為電路老化效

應(aging effect)所造成的硬體缺陷，我們將模擬因電路老化效應所造成的路徑延遲

錯誤(path delay fault)及轉態延遲錯誤(transition delay fault)，以偵測電路老化效應的

初期現象。 

關鍵字：應用軟體自我測試、電路老化效應、系統可靠性、積體電路系統測試 
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ABSTRACT 

Since the insufficient of conventional structural test, software-based self-test 

becomes the alternative solution for a non-intrusive, functional and at-speed testing. The 

use of software-based self-test could compensate the shortages of conventional structural 

test and enhance the hardware in-field reliability. In the thesis, we have provided a 

complete test flow for software-based self-test including constraint extraction, pattern-to-

instruction converter, test program generator and fault simulator. Besides, in order to 

confirm the quality of test program generated by our methodology, the results of random 

program evaluation have been displayed in the last part of this thesis.  

The proposed software-based self-test methodology aims to detect the possible 

hardware faults during the execution of test programs or applications. The target fault 

model is the hardware fault caused by aging effect. We model the fault behavior as the 

path delay fault and transition delay fault models for aging fault simulation.  

 

Keywords: Software-Based Self-Test, Aging Effect, Reliability, VLSI System Testing 
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1.1   Motivation 

1.1.1  Challenges of manufacturing testing 

In modern VLSI systems, the level of integration keeps increasing due to the large 

advancement in IC fabrication technology. With the elevating operation frequencies and 

shrinking feature sizes, the conventional structural testing is insufficient to achieve the 

desired test quality. Furthermore, test escapes increase as the number of un-modeled faults 

grows. Therefore, the conventional fault models such as stuck-at fault model and bridging 

fault model are insufficient for maintaining the desired quality product [3]. 

Scan testing is the most commonly used design-for-testability (DFT) technique to 

address the fault coverage and test cost concerns. The problem is lacking self-test ability 

in the field. Hardware-based structural self-test techniques, such as logic built-in self-test 

(BIST), provide the feasible solution. Built-in self-test eliminates the need of high-speed 

testers and can more accurately apply and analyze at-speed test signals on chips. However, 

BIST still have some disadvantages, such as nontrivial area, performance, and design time 

overhead. Moreover, structural BIST’s non-functional, high switching random patterns 

consume much more power than normal system operation. Finally, to apply at-speed tests 

to detect timing-related faults, existing structural BIST must resolve various complex 

timing issues related to multiple clock domains, multiple frequencies, and test clock 

skews that are unique in test mode. 
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In order to carry out the at-speed, non-intrusive and functional testing, the new 

testing method called software-based self-test (SBST) came out. 

 

1.1.2  Software-based self-test  

The use of software-based self-test (SBST) might improve the reliability of 

electronic systems and overcome the shortcomings of the non-functional structural testing 

[4]. Safety-critical applications are usually equipped with a processor or a controller, 

requiring detecting possible faults in normal at-speed operational phase. The SBST 

technique consists in having the processor core execute the test program, activate the 

possible faults in the processor data paths by the instruction sequences, and eventually 

comparing the actual results of the computation against the expected ones, usually stored 

as a signature; any mismatch identifies a malfunctioning [5]. 

SBST can be adopted in end-of-manufacturing test and in-field test. With the 

external testers, the outputs of device are fully observed during the manufacturing test so 

that the fault controllability and observability can be increased. However, the increasing 

gap of the operation frequencies between external testers and the high-performance 

processors will increase test costs and lead to the escaped faults which might be detected 

only in the at-speed testing [6]. Thus, the importance of the at-speed testing may not be 

overemphasized.  
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 Most of the SoC designs are built with embedded processor cores and intellectual 

property (IP) blocks which provide complex functionalities. Due to the large number of 

arithmetic and logic functional modules embedded in the processor cores, the testability 

of the processors becomes a crucial issue [7]. The in-field SBST can be based on the 

instruction set of the processor, any extra hardware such as DFT structures are 

unnecessary. It avoids the issues of area and performance overhead in the design. 

 The in-field SBST might provide at-speed testing with the limitation that data 

memory is observable; this may cause some faults to become functionally untestable [8] 

and reduce the fault coverage significantly. Generating the effective test program and 

avoiding over-testing the functionally untestable data paths in the processor cores might 

help retain the reliability and the fault coverage. 

 To sum up, SBST has the following advantages. First, it minimizes the addition of 

dedicated test circuitry. Second, it can also apply and analyze at-speed test signals on chip 

more accurately than external testers. Third, compared with the hardware-based self-test 

in nonfunctional BIST mode, SBST is executed in the design’s normal operational mode. 

This can eliminate the excessive power consumption of structural BIST and avoid over-

testing caused by the application of non-functional patterns during structural testing. 
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1.1.3  Challenge of software-based self-test 

Although SBST conquers the disadvantages of BIST and facilitates at-speed, 

nonintrusive, functional testing, it still has some difficulties. The method for generating 

high quality test programs is the hardest part in SBST. Nowadays, fully automation 

approaches are not mature and still supported by the commercial EDA tools [9]. 

Especially in industry, manual development of test program is still adopted. However, the 

negative aspect of these approaches is that the effectiveness of manually developed test 

programs is highly influenced by the skills of the test engineers. The more complex the 

processors become, the harder it is to reach high fault coverage. Especially on those 

modules that are in charge of implementing multi-issue execution of instructions. 

Nowadays, the development of test programs for a complex processor usually follow the 

divide and conquer approach: the processor is segmented in several sub-modules, and a 

test program specialized on each of them is developed. By and large, the high quality test 

program generation is the most challenging part in SBST. 
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1.2   Review of Previous Techniques 

1.2.1  Test program generation approaches 

In general, the development of SBST test program consists of four steps. The first 

step is a creation and optimization of test pattern delivery templates. The second step is a 

functional constraint extraction. The third step is a test generation process for each 

module of the processor under test. The last step is basically a process of joining the test 

pattern with the test pattern delivery templates. 

For the last decade, there has been an extensive research on SBST of embedded 

processors. The major focus of these research was on the method of the test program 

generation, since the quality of the SBST primarily depends on the test program. There 

are two main methods for test program generation, ATPG-aided test generation 

[9,10,11,12] and simulation-based [13,14,15,16] test generation. As to the ATPG-aided 

test generation, we might divide the processor into several module under tests (MUTs) 

and ease the tasks of ATPG for deriving the test patterns. However, without the ATPG 

constraint, some of the generated patterns are typically functionally infeasible. As a result, 

manually constraints collection is needed. Take todays complexity of the gate-level 

processor implementation under consideration, it is not feasible to have manual 

operations at gate-level obviously. Although some automatic constraint extraction 

methods have been proposed nowadays [17], the efficiency of these methods are still 
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worth discussing. Unlike ATPG-aided test generation, the simulation-based test 

generation usually combined with the genetic algorithms or evolutionary cores [15]. The 

classic method of simulation-based test generation is applying the random test program 

to the processor and modifying the test program according to the response of the 

simulation results. That is to say, we do not have to consider the problem of constraint 

extraction when utilizing the simulation-based test generation methodology. However, 

the fragment program library design and the acceleration and optimization of simulation 

are the hardest issues to be solved.  

 

1.2.2 Fault injection approaches 

The fault injection approaches might be divided into four main categories, hardware-

implemented fault injection (HFI), emulation-based fault injection (EFI), software-

implemented fault injection (SWIFI) and simulation-based fault injection (SFI). These 

fault injection and simulation techniques are widely used for evaluating the reliability of 

the system and the quality of fault tolerance approaches in the presence of possible faults. 

HFI techniques [18,19] are injecting the faults to the circuit with the external 

hardware sources. Because of the additional hardware, HFI is the fastest but the most 

expensive approach. Besides, the extra hardware might also cause the damage to the 

injected system. Stuck-at fault is the fault models that usually adopted in HFI.  
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EFI [20,21] is the alternative technique of HFI with lower cost. It uses the field 

programmable gate arrays (FPGAs) to achieve performance similar to HFI. However, it 

requires the synthesizable model of the system. Furthermore, the EFI approach is 

typically limited to the stuck-at fault model or needs circuit modification for soft errors.  

SWIFI [22,23] is based on the alteration of software states. The main advantage is 

that the simulation might run in near real time, lower costs and development effort. 

Typical SWIFI techniques intrude the software at machine code and assembly levels. 

Although it is easy to emulate the hardware when injecting faults at low level, it is hard 

to map the simulation results to the source code programs.  

SFI [24,25] is a non-intrusive approach. Both of the behavior of hardware and 

software architectures could be modeled. Therefore, SFI can provide the flexibility of the 

target fault model and increase the controllability and observability. However, it is 

difficult to model the behavior of modern SoC design. Since many complex components 

such as processor cores, IPs and memory elements are applied to perform numerous 

functionalities and their complex interconnections. The efforts of implementing the 

simulator and low simulation performance are the main shortages of SFI approaches. 
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1.3   Contribution  

Many software-based self-test approaches have been proposed recently. However, 

most of them target the stuck-at faults. With the operation frequencies keep increasing, 

the importance of aging defects might not be ignored. That is the main reason why we 

target the aging defects in the thesis. As to the fault simulation part, we choose to do the 

simulation at gate-level. Since our target faults are path delay faults (PDF) and transition 

delay faults (TDF), the complete information of gates and wires is needed. Besides, in 

order to handle the successive fault activation, the target wires might be under monitoring 

during the simulation which could only be realized at gate-level. Beside, in order to ensure 

the quality of the test program generated by our methodology, we have done the program 

evaluation part by doing random program evaluation.  

The main contributions of this thesis are as follows: 

 Generate the high quality test program in assembly language. 

 Realize the fault simulator that could handle multiple fault activation. 

 Evaluate the performance of the test program generated by our methodology. 
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1.4   Organizations of the Thesis  

The rest of this thesis is organized as follows. In Chapter 2, in order to best 

understand the proposed methodology, we provided some introduction of the basic 

knowledge of delay fault testing. In Chapter 3, we might describe our proposed 

methodology in detail. In Chapter 4, we might show some experiment results including 

fault coverage and test program evaluation. Finally, the conclusion of this thesis will be 

made in Chapter 5. 
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2.1   Aging Effect 

Circuit aging effect refers to the deterioration of circuit performance over time. The 

length of time can be a few years to a few months under worst-case conditions. Circuits 

have always aged. The aging effect was not significant in the past. However, the 

simultaneous use of extremely small channel lengths, rapidly increasing operation 

frequencies and extending of IC lifetime, the circuit aging effect could no longer be 

ignored. All portions of the SoC, whether analog, digital or memory, will be affected. 

These negative impacts could include slower speeds, irregular-timing characteristics and 

increased power consumption. In extreme cases, circuit aging might even cause 

functional failures to occur over time. If we could provide the test for aging defect 

detection, we could also provide more reliable systems.  

 

2.2   Delay Fault Testing 

Delay fault models play a crucial role in the testing field. In order to ensure that the 

processor meets its performance specifications requires the application of delay test. 

These test should be applied at-speed and contain two-vector applied to the combinational 

portion of the circuit under test, to activate and propagate the fault effects to registers or 

other observation points. Different from the structural BIST, which needs to solve various 

complex timing issues such as multiple clock domains, multiple frequencies, and test 
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clock skews, using instruction sequence for processor delay fault testing is a more natural 

application of at-speed tests. 

 However, it is a difficult problem of detecting timing defects. Not only the test 

generation, but also the test application phase complicate the testing process. Delay 

defects are activated and observed by propagating the signal transitions through the circuit. 

The quality of the test patterns have a significantly impact on the testability of the target 

faults. Sequential circuits are especially hard to test since not all delay faults in the 

microprocessor could be tested in the functional mode by any instruction sequence. This 

is simply because no instruction sequence could produce the desired test sequence that 

could sensitize the path and capture the fault effect into the destination output of flip-flop 

at-speed. A fault is said to be functionally testable; otherwise, it is functionally untestable. 

These functionally untestable might cause the reduction of the fault coverage. 

 Manufacturing defects or process variations might affect distribution regions of a 

chip. The path delay fault model is better used for detecting small delay defect (SDD); 

nevertheless, it is a challenging problem that only a small part of paths in modern designs 

could be tested. Selecting critical paths requires accurate timing information and the noise 

factors might have great influence on the signal delay. It is acceptable to target a small 

subset of paths for test but the decision of target paths is still a hard problem. 

 Since the objective of this thesis is aging defects detection, we choose transition 
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delay fault (TDF) and path delay fault (PDF) as our fault models. 

 TDF model assumes that the large delay defect concentrated at one logic node, such 

that any signal transition passing through this node might be delayed past the clock period. 

There are two types of TDFs at each input and output of a gate, slow-to-rise (STR) fault 

and slow-to-fall (STF) fault (Figure 2-1). STR fault illustrates the fault that the slow-to-

rise transition happened too late and the output flip-flop might capture the wrong value. 

On the contrary, STF fault illustrates the fault that the slow-to-fall transition happened 

too late. The advantage of adopting transition delay fault model is that the implementation 

of ATPG is much easier since there is no attention to paths. TDF may detect delay defects 

such as shorts, opens and coupling defects that missed by stuck-at fault test. However, 

TDF might miss distributed and small delay defects. As to the fault size, the number of 

transition delay fault is linear to the circuit size.  

 

Figure 2-1    Transition delay fault model 
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 A path is a sequence of connected gates from a circuit primary input to a primary 

output. And the PDF model assumes that a delay defect in a circuit causes the cumulative 

delay of a combinational path to exceed the specified clock period of the circuit. Unlike 

the transition delay tests that target the large delay defects, the path delay tests are more 

likely to detect small delay defects. Compare these two fault models, the PDF model is 

much more complex than the TDF model with lower fault coverage. Besides, the number 

or path delay fault is exponential to the circuit size. The large number of paths in modern 

designs is a major problem for path delay testing. It’s really hard to test the whole paths. 

In practice, only a subset of paths will be tested. For most design, many path delay faults 

affect the circuit performance but cannot be tested easily. Moreover, there are a lot of 

structurally testable paths through scan-based testing might be functionally untestable 

paths. It cannot generate the desired test patterns to sensitize these functionally untestable 

paths and capture faults effects into the destination primary output of flip-flop in the 

functional test.  

 

2.3   Software-Based Delay Fault Testing 

There are three main tasks in software-based delay fault testing, that is path 

activation monitoring, fault injection and fault detection.  
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2.3.1 Path activation monitoring 

The objective of path activation monitoring is to monitor whether the target path 

meets the pre-defined activation conditions. In this thesis, we provide three types of 

activation conditions: non-robust, robust and robust*. During the fault simulation, we 

would keep monitoring whether the target path be activated or not. If the target paths are 

activated, the correspondent fault injection testbench would be generated; otherwise, the 

target paths would be classified into the category of unactivated faults and no more fault 

simulation would be applied in the later processes. With the monitoring process, we could 

remove the unactivated faults from the fault list in advance. Without simulating the faults 

that would not be detected by the fault simulation, we could save the time and accelerate 

the whole simulation. Figure 2-2 is the pseudo code of path activation monitoring 

testbench. Then, after the program execution, we would compare the results in data 

memory with the golden one as the fault detection.  

 

always @($target path output triggered) begin 
if (path successfully activated) begin 

generate the fault injection testbench 
end 

end 

Figure 2-2    Pseudo code of path activation monitoring testbench 
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Figure 2-3    Example of non-robust test conditions for AND gate 

 

 

Figure 2-4    Example of robust test conditions for AND gate 

 

Figure 2-3 and 2-4 are the examples of non-robust and robust test conditions for 

AND gate and the details of these three types of path activation monitoring would be 

discussed as follows. 
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Non-robust and robust test are two typical conditions of delay fault testing. Non-

robust test guarantees to detect the delay fault only if no other path delay is increased. 

According to Figure 2-3, we could observe that if all of the on-path signals have the 

transitions, it could be defined as non-robust conditions. However, in the case of the off-

path signals have the transitions before the on-path signals, the conditions might be more 

complex such as Figure 2-5. Though all of the on-path signals still have the transitions 

and could be defined as non-robust conditions, the output transition is actually caused by 

the off-path signals rather than the on-path signals and could not be defined as robust 

conditions such as the banned conditions in Figure 2-4. Compare these two types of delay 

path conditions, the robust conditions are stricter than the non-robust conditions. Unlike 

the non-robust test, the robust test guarantees to detect the delay fault independent of all 

other delays in the circuit.  

 

 

Figure 2-5    Problem of non-robust test 

 

In addition to the robust method, another monitoring method called robust* is 

adopted for path activation monitoring. The condition of robust* monitoring is stricter 
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than the robust monitoring, but looser than the non-robust monitoring. The condition of 

robust* monitoring is that the transitions of the gate outputs might later than the 

transitions of the gate inputs. The reason why we define this condition is because the 

transitions of the gate outputs might later than the transitions of the gate inputs in the time 

simulation. Since the robust monitoring needs to check whether the whole off-path signals 

meet the conditions of robust, it needs much effort for monitoring the whole off-path 

signals and takes much time comparing to the robust* monitoring. With the robust* 

monitoring, we could only focus on the on-path signals and solve the problem of non-

robust monitoring as Figure 2-5 shows.  

To sum up, Figure 2-6, Figure 2-7 and Figure 2-8 illustrate the three types of path 

activation monitoring. Each of them represents the different conditions of the path 

activation. If the whole on-path wires have transitions, the target path might satisfy the 

non-robust condition. If the whole on-path wires have transitions and the whole off-path 

wires are non-controlling, the target path might satisfy the robust condition. Non-robust 

monitoring is the looser conditions with higher fault injection rate. On the contrary, robust 

monitoring is the stricter condition with lower fault injection rate. 
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Figure 2-6    Example of a non-robust path  

 

 

Figure 2-7    Example of a robust path 

 

 

Figure 2-8    Example of a robust* path 
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Figure 2-9    Testable path coverage 

 

2.3.2 Fault injection and detection 

The cause of path delay fault is that the target transition occurs later than the 

specified clock period and the target register might catches the wrong value. As shown in 

Figure 2-10, we could observe the fault behaviors in gate-level and RT-level simulation.  

 

 

Figure 2-10    Fault behaviors in gate-level and RT-level simulation 
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always @($target path output triggered) begin 
if (path successfully activated) begin 

$deposit ($target register, ~$target register ) 
end 

end 

Figure 2-11    Pseudo code of fault injection testbench 

 

Figure 2-11 is the pseudo code of fault injection testbench. While the target path is 

successfully activated, the value of the target register might be bit-flipped just as the 

behavior of path delay fault.  

 

The observability solution for the fault detection is comparing the results in the data 

memory with the golden ones after the program execution. The fault is defined as the 

detected fault (DT) if the fault effect could be propagated to the data memory and the 

computational results are different from the golden ones. Otherwise, the fault is an 

undetected fault (UD) if the fault effect is masked during the simulation and the results in 

the data memory are same as the golden ones. However, since the limitation of the 

observability, only check the execution results in the data memory might reduce the fault 

coverage significantly. Some faults are verified to be undetected faults because they do 

not have any influence on the computational results in the data memory but they actually 

exist in the circuit. The reason why these faults could not be observed is that there are no 

instructions could store the results such as overflow flag and stall signal to the data 
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memory directly. As a result, the development of creating instructions for storing the 

computational results that could not be observed directly in the data memory would be 

the future work. With these observation instructions, we could greatly increase the fault 

coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU201803476
24 

 

 

 

 

Chapter 3 
Proposed Methodology for 
Software-Based Self-Test on 
Delay Defects 
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3.1   Proposed Methodology 

The objective of the proposed methodology is early aging defect identification by 

software-based self-test approach for processors. The proposed methodology could be 

separated into three main steps, pre-processing, test generation and fault simulation. The 

detail of each step might be explained respectively in the following sections. 

 

3.2   Pre-Processing 

The main goal of pre-processing is to do the constraint extraction. Since there are 

some states that cannot be reached through any instruction sequence. If we could figure 

out the constraint of the processor previously, we might avoid the unreachable states and 

generate the patterns that could be converted into instructions. Nowadays, fully 

automation of constraint extraction is still not mature. Although some automatic 

methodology of constraint extraction has been proposed recently, they cannot meet the 

sufficient accuracy. As a result, manually constraint extraction is still adopted especially 

in industry. In this thesis, we do the constraint extraction manually. However, with the 

complexity of processors keep increasing, the importance of the automation of constraint 

extraction cannot be overemphasized.  

The development of the test program for a complex processor usually follows the 

divide and conquer approach. That is to say, the processor is segmented in several sub-
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modules, and a test program specialized on each of them is developed. The target module 

that we would like to test is the arithmetic logic unit (ALU). Therefore, figure out the 

input and output of the ALU is the previous step before constraint extraction. 

 

 

Figure 3-1    Arithmetic logic unit (ALU) 

 

Figure 3-1 is the ALU module that we are going to test. The ALUOp wire is a 5 bits 

wire that control the ALU operation. Table 3-1 shows the relation between the ALU 

operation signal and the instruction. The ReadData1 wire and ReadData2 wire are 32 bits 

wires which are the operands of the ALU. The Shamt wire is a 5 bits wire that be used for 

shift operations. The result wire is a 32 bits wire which is the ALU computation result. 

The EXC_Ov is the overflow flag and the ALUStall is the stall signal for long ALU 

operation such as divide. 
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The method for deriving the constraints is reading the RTL code and comments of 

our processor test. By reading the source code, I could realize the function of each inputs 

and how they work. Then, I would apply some random programs and dump out the input 

signals per cycle. The constraints could be confirmed by analyzing the simulation results. 

 

Table 3-1    Mapping of ALU operation signal and instruction 

 

 

Table 3-2    Constraints of ALU input 
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The reset, EX_Stall and EX_Flush wires should be zero during the processor 

execution. There are no constraint of the 32 bits operands. The Shamt wire only has value 

while executing the SLL, SRA ad SRL instruction; otherwise it might be zero. The 

Operation wire has three constraint values, 5, 6 and 21. According to Table 3-1, 5 and 6 

could be mapped to the instruction DIV and DIVU. Since DIV and DIVU instructions 

might execute 32 cycles, we could not control them with two successive patterns. 

Therefore, other methods should be adopted for testing the divider module. And 21 is the 

reserved value for MIPS32 release 2 instruction. 

 

3.3   Test Generation 

 

 

Figure 3-2    Flowchart of test generation 

 

Figure 3-2 shows the proposed methodology flow for test generation. The test 

generation processes path delay fault and transition delay fault quite similar. The only 
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difference is the process of critical paths extraction by static timing analysis. The reason 

why the path delay fault testing needs the process of static timing analysis and the detail 

of each steps in the methodology flow will be explained in the following section 

 

3.3.1 Static timing analysis 

Static timing analysis (STA) is a fast and reasonable measurement for computing the 

circuit timing without simulating the entire circuit by input patterns. Unlike the number 

of transition delay fault which is linear to the circuit size, the number of path delay fault 

is exponential to the circuit size. It is impracticable to test the whole path delay faults in 

the circuit. As a result, we tend to do the static timing analysis to figure out the critical 

paths. The critical path is defined as the serially combinational gates of a path with 

maximum delay which may have higher probability having the timing violation. The 

process of critical paths extraction might greatly reduce the fault list size. We consider 

the slack of setup time violation to find out critical paths in the circuit. If the required 

signal arrives too late, it may cause the setup time violation. The transition of input signals, 

different operating environment and manufacturing variations contribute to the delay of 

signal arrival time, as well as the aging defect. The slack is defined as the difference 

between the required time and the arrival time. A positive slack implies that the arrival 

time is earlier than the required time. That is to say, the path with positive slack might not 
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affect the overall delay of the circuit. Conversely, the negative slack implies that a path is 

too slow, and the path must be sped up if the whole circuit is to work at the desired speed.  

 

3.3.2 Automatic test pattern generation (ATPG) 

As stated above, there are two major method for test program generation, ATPG-

aided test generation and simulation-based test generation. ATPG-aided test generation is 

the deterministic, stable and efficient method with acceptable fault coverage. It stands on 

the view point of circuit analysis and generates the high quality test patterns. Nevertheless, 

the difficulties is the constraint extraction and the mapping between test patterns and 

instructions. 
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$path { 
     // from: B[26] 
     // to: Result[0] 
     $name "IO_1" ; 
     $cycle 0 ; 
     $slack -0.455934 ; 
     $transition { 
          "U3905/B" v ; // (MUX2X1) 
          "U3907/B" ^ ; // (MUX2X1) 
          "U3911/B" v ; // (MUX2X1) 
          "U3920/A" v ; // (MUX2X1) 
          "U2635/A" ^ ; // (INVX1) 
          "U2880/A" v ; // (AOI22X1) 
          "U2167/A" ^ ; // (BUFX2) 
          "U1679/A" ^ ; // (AND2X1) 
          "U1677/A" ^ ; // (INVX1) 
          "U155/A" v ; // (OR2X1) 
          "U154/B" v ; // (OR2X1) 
          "U2881/B" v ; // (OAI21X1) 
          "U1595/B" ^ ; // (AND2X1) 
          "U1596/A" ^ ; // (INVX1) 
     } 

} 

Figure 3-3    Critical path example reported by Synopsys Primetime 

 

In the steps for setting desired ATPG options, we might set the constraints that we 

extracted previously. With the constraints, we could assure that the test patterns might be 

converted to the instructions successfully. There are two types of constraint option in 

TetraMAX, add_atpg_constraints and add_atpg primitives. Add_atpg_constraints 

command defines on nets that must be satisfied during pattern generation. In this 
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command, we should specify a name to identify the constraint, the constraint value (0, 1, 

Z), and the place in the design to apply the constraint. Add_atpg_primitives command 

creates a primitive that is added to the design and has its inputs connected to specified 

nets. When you constrain the output of the added primitive, it forces the pattern generation 

algorithm to conform to specified logical conditions at the connection points. In this 

command, we should specify a name for the added primitive, its logical function, and its 

input connections. 

 

3.3.3 Pattern-to-instruction converter 

After we derive the test patterns, the next step is to generate the test program. The 

test program format could be separated into three main sections, operands preparation, 

two-vector and result store. In the rest of this section, an example of converting patterns 

to instructions might be showed and illustrated in detail. Figure 3-4 is a pattern that 

generated by Synopsys TetraMAX. First, we need to figure out the value of each input of 

ALU according to their position. Then, we might get the value that should be applied on 

the ALU inputs. In this step, we might also check whether the pattern is legal that meets 

the constraints we set. Figure 3-5 is the result after doing the test pattern classification. 

We could observe that the pattern meets the constraints and could be converted into 

instructions. Table 3-3 is the mapping table that records the relation between ALU inputs 
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and instructions. The mapping table is derived manually by reading the RTL description 

of the processor and doing some simulation. However, with the SoC design becoming 

more and more complex, the automation of generating the mapping table between test 

patterns and instructions should be developed in the future. According to the mapping 

table, we might convert the patterns into two-vector instructions. Although it seems that 

we finish the conversion patterns and instructions. There are still some tricky details about 

operand preparation and register usage that would be discussed as follows. 
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{ pattern 1 fast_sequential } 
{ vector } 
    vector("_default_WFT_") := [ 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 
    1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0  

1 0 1 1 0 0 0 0 0 0 0 ]; 
{ capture } 
    vector("_default_WFT_") := [ 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 
    0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 

1 0 0 0 0 0 0 0 0 ]; 

Figure 3-4    A test pattern generated by Synopsys TetraMAX 

 

 

Figure 3-5    Classification of pattern information 

 

 

Figure 3-6    Example of test program generated by our methodology 
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Table 3-3    Mapping table for patterns to instructions convertor 

 

 

Since we need to execute the test pattern during two successive cycle, the operands 

should be prepared in advance. As shown in Figure 3-6, we could observe that the 

operands have been prepared before the two-vector part. Each operand needs the 

combination of two instructions LUI and ADDI to reach the target value. The reason why 
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we need two instruction to reach the target value is because one instruction might load 16 

immediate value at most. However, the operands are 32 bits values. As a result, we should 

utilize two instructions to load the 32 bits operands. LUI is the instruction that could load 

upper 16 bits value to the target register. ADDI is the instruction that could add lower 16 

bits value to the target register. There is a small detail we need to take care, the LUI 

instruction might load the upper 16 bits immediate value with the lower 16 bits value set 

to zero. Therefore, LUI instruction must place before the ADDI instruction, or the wrong 

value would be loaded to the register. On the other hand, in order to ensure that the two 

instructions might be executed during two successive cycles. We should choose different 

registers for storing operands. That is to say, we should avoid reusing the registers which 

are used in the first vector. Since the processor contains full data forwarding unit, the two 

instructions might not be executed during the two successive cycles if we do not avoid 

the problem of data dependency. As shown in Figure 3-7, we might observed that the 

registers that used in the second vector might not be used in the first vector. 

 

 
sllv $t2, $t1, $t0    vector 1 
srlv $t5, $t4, $t3    vector 2 

 

Figure 3-7    Example of two vectors from the test program 
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Figure 3-8    Instructions distribution of the test program 

 

Figure 3-8 is the pie chart that suggests the instructions distribution of the test 

program. According to the pie chart, we could observe that 66% of the instructions in the 

test program do the work for operands preparation. The number of instructions for 

operands preparation is four times as much as the number of instructions for two-vector 

or result store. In my opinion, if we could create the instruction that could load 32 bits 

value to the register at a time, we could greatly shrink the size of the test program. 

 

3.4   Fault Simulation 

After we generate the test program, the next step would be the fault simulation for 

confirming the effect of the test program that we generated. In the process of fault 

simulation, the simulation-based fault injection method would be adopted. Figure 3-9 is 

the flowchart of fault simulation. 



doi:10.6342/NTU201803476
38 

 

 

 
Figure 3-9    Flowchart of fault simulation 
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Chapter 4 
Experiment Result 
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4.1   Experiment Setup 

The target processor in our experiments is a MIPS32 processor. Figure 4-1 is the 

MIPS32 processor architecture from [31]. This processor is an opensource design and 

could be downloaded from Github. This design was created by Grant Ayers and funded 

by the eXtensible Utah Multicore (XUM) project at the University of Utah from 2010-

2012. 

It is a standalone MISP32 processor, all required MIPS32 instructions are 

implemented, including hardware multiplication and division. This is a bare-metal 

processor, without memory management unit (MMU) and floating point unit (FPU). The 

hardware divider is small, multi-cycle and runs asynchronously from the pipeline 

allowing some masking of latency. 

 

 

Figure 4-1    MIPS32 processor architecture 
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Figure 4-2    Single-issue in-order 5-stage pipeline 

 

This MIPS32 processor architecture is the single-issue in-order 5-stage pipeline 

including Instruction fetch, Instruction decode, Execute, Memory and Write back stages. 

Figure 4-2 illustrates the pipeline stages of the architecture. 

Besides, the memory interface is separated from the processor. The original design 

of the memory utilizes four-way handshake to exchange the data. Figure 4-3 explains the 

mechanism of the four-way handshake. This interface is simple and robust but the 

performance of the system is limited. The minimum CPI is increased from 1 to between 

3 and 4. It is not practical in SoC designs nowadays. In addition, this handshake 

mechanism causes the pipeline stages to be stalled. The stalled pipeline stage would lead 

to the untestable faults. In order to prevent over-testing the functionally untestable faults, 

we modify the design to make CPI be close to 1. However, accessing the data memory 

still needs two cycles to exchange the data. 

The experiments run on a Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30 GHz with 32 

GB RAM. 
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Figure 4-3    Four-way handshake mechanism 

 

The EDA tools we used in the methodology flow are described as follows: 

 

• Synthesize the RTL Verilog designto get the gate-level circuit. There are 

totally 1,885 flip-flops in the synthesized design.

Synopsys Design Complier

• Static timing analysis tool for figuring out the vulnerable paths with 

lower slack. The critical paths list could be used not only for generating 

the fault list but also for test pattern generation by TetraMAX.

Synopsys Primetime

• ATPG tool for generating the test patterns which would be used to be 

converted to assembly test program.

Synopsys TetraMAX

• Run timed gate-level simulation.

Cadence NC-Verilog
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4.2   Result Statistics 

In this section, we would display some experimental results and evaluate the quality 

of the test program generated by our methodology. 

 

4.2.1 Transition delay fault testing 

Table 4-1 and Table 4-2 are the results of transition delay fault testing by TetraMAX 

and software-based self-test respectively. Figure 4-4 are the equations of coverage 

calculation. In Table 4-1, we could observe that the ATPG-untestable faults account for 

around 40% of the total faults. The main reasons that cause the ATPG-untestable faults 

could be conclude into two points. The first reason is the lack of design-for-testability 

(DFT). Without the DFT insertion, the observability of the circuit would be decreased and 

cause the poor performance of the fault coverage. The second reason is the addition of 

ATPG constraints. Since we need to ensure that the test patterns could be converted into 

instructions, some unreachable states or illegal conditions should be confined previously. 

Compare Table 4-1 and Table 4-2, the fault coverage of the transition delay fault testing 

by software-based self-test is a bit higher than the fault coverage of the testing by 

TetraMAX. This result implies that we convert the test patterns into the instructions 

completely. Besides, some faults are detected by software-based self-test accidently. 
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Table 4-1    Transition delay fault testing by TetraMAX 

 

 

 

               Fault coverage =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓
𝑇𝑇𝑇𝑇𝐷𝐷𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓

× 100% 

 

Test coverage =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓

𝑇𝑇𝑇𝑇𝐷𝐷𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 − 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 𝑓𝑓𝑢𝑢𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝑓𝑓𝑢𝑢𝑓𝑓𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓
× 100% 

 

Figure 4-4    Equations of coverage calculation 

 

4.2.2 Path delay fault testing 

Except for the transition delay fault which represents the large delay defect, the path 

delay fault which represents the small delay defect is also a hot issue when it comes to 

delay fault testing. 

Table 4-2 are the experimental results by different monitoring conditions 

respectively. As mentioned before, the fault size of the path delay fault is exponential to 

the circuit size. It is impractical to test the whole path delay faults in the circuit. Actually, 
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we only test the subset of the whole path delay faults in the circuit. Since the critical paths 

with lower slack might have higher probability to get the path delay fault, we choose the 

top thousand critical paths for the path delay fault testing in our experiment. The second 

row is the fault coverage by the constrained ATPG and non-constrained ATPG. The fault 

coverage by the constrained ATPG is around 40% less than the non-constrained ones. 

That is to say, whether the constraints be applied or not might have great influence on the 

fault coverage. The third row is the number of activated paths according to the three 

different methods. As we mentioned in subsection 3.4.1, the non-robust monitoring is the 

method with loosen condition and could activate more paths than the other methods. On 

the contrary, the robust monitoring with stricter condition could active less paths than the 

other methods. 

 

Table 4-2    Path delay fault testing by software-based self-test 
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Figure 4-5    Venn diagram of fault detection 

 

Figure 4-5 is the Venn diagram of the fault detection. The faults that could be 

detected by the non-robust monitoring might be detected by the robust, robust* and 

constrained ATPG methods. The faults that could be detected by the robust* monitoring 

might be detected by the robust and constrained ATPG methods. To sum up, the faults 

that could be detected by the monitoring with strict condition might also be detected by 

the monitoring with loose condition. 

 

4.2.3 Random program evaluation 

The major objective of the random program evaluation to evaluate the quality of test 

program generated by our methodology. The processes are generating random test 

programs, doing fault simulation by our simulator and finally comparing the results. The 

random program is not totally random. Table 4-3 illustrates the format of the random 

program. First, we need to randomly generate the operands that would be used by the 
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instructions in the second step. Second, we would randomly choose the instructions 

according to the MIPS32 instruction set reference. In this step, we would generate three 

different programs with successive one vector, two vectors and three vectors. The 

difference of these three types of program would be discussed afterwards. Third, we 

should store the result to the data memory for checking the fault effect.  

 

Table 4-3    Random program format 

 

 

The test programs would be simulated by our simulator with non-robust and robust 

mode separately. The fault coverage would be recorded per hundred instructions. Finally, 

we would draw the line graph for observing and analyzing the results. 
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Figure 4-6    Random program evaluation in robust 1-vector mode 

 

 

Figure 4-7    Random program evaluation in robust 2-vector mode 
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Figure 4-8    Random program evaluation in robust 3-vector mode 

 

 

Figure 4-9    Mean fault coverage of different vectors in robust mode 

 

Figure 4-6, Figure 4-7 and Figure 4-8 are the results of random program fault 

coverage. Figure 4-9 is the mean fault coverage of the random program with different 

vectors. The marking line in these figures is the fault coverage of the test program 
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generated by our methodology. According to the marking line, the fault coverage of our 

test program could reach 24% with 603 instructions. However, the fault coverage of the 

random programs could locate in between 10% to 15% with around three times larger 

than the program size of our test program.  

 

 

Figure 4-10    Random program evaluation in non-robust 1-vector mode 

 

 

Figure 4-11    Random program evaluation in non-robust 2-vector mode 
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Figure 4-12    Random program evaluation in non-robust 3-vector mode 

 

 

Figure 4-13    Mean fault coverage of different vectors in non-robust mode 

 

Figure 4-10, Figure 4-11 and Figure 4-12 are the results of random program fault 

coverage. Figure 4-13 is the mean fault coverage of the random program with different 

vectors. The marking line in these figures is the fault coverage of the test program 
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generated by our methodology. According to the marking line, the fault coverage of our 

test program could reach 31% with 603 instructions. However, the fault coverage of the 

random programs could locate in between 15% to 20% with around three times larger 

than the program size of our test program.  

 Based on the results of fault coverage of random programs, we could say that our 

test program is more efficient and effective. The fault coverage of our test program could 

be two to eight times higher than the fault coverage of random programs in the same 

instruction length. Besides, the fault coverage threshold of the random test program is 

around half of our test program.  

Compare the results of fault coverage in robust and non-robust mode, they have the 

similar tendency. The random program with less successive vectors might reach the fault 

coverage threshold earlier than the program with more successive vectors. The reason of 

this phenomenon would be discussed afterwards.  

 

Figure 4-14    Comparison between different successive vectors  
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Figure 4-14 illustrates the distribution of the random test program with different 

successive vectors. The yellow row represents the process of operand preparation. The 

orange row represents the process of test vector execution. The blue row represents the 

process of result store. As we seen, in the same program length, the program with less 

successive vectors might execute the test vector and result store more times. That is to 

say, it might do the path activation and fault effect capture more times. As a result, is 

could reach the fault coverage threshold earlier than the program with more successive 

vectors. However, although the program with less successive vectors could reach the fault 

coverage threshold earlier, it might have the similar threshold than the other programs. 

To sum up, the number of successive vectors could only affect the time to reach the fault 

coverage threshold, it could not have any influence on the threshold. 
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Chapter 5 
Conclusion 
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In this thesis, a software-based self-test methodology targeting the aging defects is 

proposed. The methodology includes ATPG-aid test generation, pattern-to-instruction 

converter, testbench generator and fault simulator. The test patterns would be generated 

by the ATPG tool, then the pattern-to-instruction converter would convert the patterns 

into instructions and synthesize the test program. The testbench generator might generate 

the testbench for doing fault simulation. It provides three types of path activation 

monitoring: non-robust, robust and robust*. Finally, in order to evaluate the quality of our 

test program, we adopt the method of random program evaluation. In this process, we 

compare the results of fault coverage of the random program with multiple successive 

vectors in robust and non-robust mode.  

The future work includes: functionally path classification and automatically 

constraint extraction. The process of functionally path classification is to remove the 

nonfunctional paths previously. It could not only avoid over-testing nonfunctional paths 

but also increase the fault coverage. As to the automatically constraint extraction, since 

the processors become more and more complex, manually constraint extraction would 

become more difficult and insufficient. The importance of automatically constraint 

extraction would not be overemphasized.  
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