

doi:10.6342/NTU201800930

國立臺灣大學電機資訊學院電信工程學研究所

博士論文
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Doctoral Dissertation

拉瑪努江和於信號處理及週期偵測之應用

Ramanujan’s Sum and Its Application to Signal
Processing and Period Estimation

張國韋

Kuo-Wei Chang

指導教授：貝蘇章博士

Advisor: Soo-Chang Pei, Ph.D.

中華民國 107 年 5 月
May, 2018

doi:10.6342/NTU201800930

ii

doi:10.6342/NTU201800930

誌謝

感謝真主，感謝我的父母，感謝貝老師，感謝中華電信的主管和同

事們，感謝 530 實驗室的學長姐與學弟妹。這篇論文獻給所有幫助我

的人。

iii

doi:10.6342/NTU201800930

iv

doi:10.6342/NTU201800930

Acknowledgements

Thanks everyone who supports me.

v

doi:10.6342/NTU201800930

vi

doi:10.6342/NTU201800930

摘要

本論文利用拉瑪努江和 (Ramanujan’s sum) 的特性，舉出兩種

信號處理上的應用。其一為建構零自相關的整數序列 (Integer zero

autocorrleation sequence)，這在通訊系統上有廣泛的應用。他的

原理是利用傅立葉轉換，把建構零自相關序列的數論問題，轉換成建

構一個固定振幅信號 (constant amplitude) 的問題，這裡巧妙用上

拉瑪努江和整數的特性。另一個應用是一維與二維的信號週期偵測。

利用拉瑪努江和週期以及整數的特性，週期信號可以被分解成一個個

因數的週期，往後便可以針對不同的週期進行不同的處理，如同以前

的濾波器組 (filter bank)。最後我們針對拉瑪努江和只能找出因數週

期的缺點，採用全相位快速傅立葉 (all phase FFT) 演算法來改進。

全相位快速傅立葉演算法為利用相位的差，求出非整數的頻率，改進

了以往頻率只能在整數上的缺點，可以幫助我們進行週期偵測。我們

也順帶提到全相位快速傅立葉演算法的一些其他應用，包含唧聲信號

(chirp signal) 的頻率追蹤、快速二維頻率偵測等等。

vii

doi:10.6342/NTU201800930

viii

doi:10.6342/NTU201800930

Abstract

This thesis presents two applications of Ramanujan’s sum

in the domain of signal processing. The first one is integer

zero autocorrelation sequence construction, which is useful in

modern communication system. The concept is to transform

this number theoretic problem into a constant amplitude sig-

nal construction problem, by Fourier transform and the inte-

ger property of Ramanujan’s sum. The second application is

1D and 2D period estimation. The periodic signal is separated

into sub-period signals, just like filter bank. Each sub-period is

a factor of the length. Finally we use all phase FFT to enhance

the period estimation. All phase FFT use phase information to

estimate frequency. The advantage is the frequency is non in-

teger. Finally we propose some other applications of all phase

FFT, such as chirp signal pitch tracking and fast 2D frequency

estimation.

ix

doi:10.6342/NTU201800930

x

doi:10.6342/NTU201800930

Contents

誌謝 iii

Acknowledgements v

摘要 vii

Abstract ix

1 Introduction 1

1.1 Definition and Properties of Ramanujan’s Sum 1

1.2 Preliminary . 3

2 First Application: Integer and Gaussian Integer Zero Au-

tocorrelation Sequences 5

2.1 Motivation . 5

2.2 Related Works . 7

2.2.1 Time domain method I: Making extra constraints . . 8

2.2.2 Time domain method II:Linear equation method . . . 9

2.2.3 Frequency domainmethod I:The Geometric sequence

method . 11

2.2.4 Frequency domainmethod I:Legendre sequencemethod 15

2.3 Generate IZAC using Ramanujan’s Sum 21

2.4 Discussion . 25

3 Second Application:Period Estimation 27

xi

doi:10.6342/NTU201800930

3.1 Motivation . 27

3.2 1D Period Estimation . 29

3.2.1 1D period filterbank . 29

3.2.2 1D Impulse Train and Möbius Inversion 31

3.3 2D Period Estimation . 36

3.3.1 2D Ramanujan’s Sum and period filterbank 40

3.3.2 2D LCM for Period Detection 48

3.3.3 2D Period Detection Examples 53

3.3.4 Discussion on Möbius Inversion in 2D 63

4 All phase FFT 71

4.1 Motivation . 71

4.2 Definition and Properties . 72

4.3 Applications of apFFT . 76

4.3.1 Determine the proper frequency for period estimation 76

4.3.2 1D/2D frequency estimation 79

4.3.3 Chirp rate tracking . 81

4.3.4 Sparse FFT and Signal reconstruction 83

5 Conclusion 87

Bibliography 89

xii

doi:10.6342/NTU201800930

List of Figures

3.1 The spectrum of 𝑥, where 𝑥 is defined in Equation (3.1). . . 28

3.2 Relations of gcd-delta, Ramanujan’s sum and impulse train 36

3.3 The original 2D Pattern . 57

3.4 Some random removal from Figure 3.3 57

3.5 Spectrum obtained from Figure 3.4 58

3.6 The image is a combination of Chinese characters and En-

glish letters. The width is 60 pixels and the height is 20

pixels. The meaning of those two Chinese characters is

National Taiwan University (NTU) 60

3.7 The 240x240 image repeating the Figure 3.6. The period-

icity matrix is given in the text. The red box indicates the

basic pattern and the direction of period 60

3.8 A 240x240 noisy image with the pattern in Figure 3.6. The

added noise is white Gaussian with SNR=3db 61

3.9 The spectrum from Figure 3.8. The first peak (DC) is not

shown because the value is too large. 61

3.10Pegasus, by M.C. Escher 1959. The image is cropped and

downsampled to 192 × 192. The red box indicates the ap-
proximated basic pattern. 63

3.11The spectrum from Figure 3.10. The first peak (DC) is not

shown because the value is too large. 63

4.1 The real part of 𝑥 in Equation (4.8) 74

xiii

doi:10.6342/NTU201800930

4.2 The power spectrum of 𝑥 in Equation (4.8), where window
is not performed. 75

4.3 The power spectrum of 𝑥 in Equation (4.8), where window
is performed. 75

4.4 The step function with noise 78

4.5 2D signal with two frequencies 80

4.6 Signal with two chirp rate, represented in time-frequency

plane by all phase FFT. Red:𝛼1 = 0.01,Blue:𝛼2 = −0.01Details
are referred to the text. 82

4.7 Signal with two chirp rate, represented in time-frequency

plane by all phase FFT. Red:𝛼1 = 0.1,Blue:𝛼2 = −0.05. The
red chirp is affected when blue is near. 82

4.8 Absolute value of ̂𝑥, where 𝑥 is given in Equation (4.10),
𝑓 = 855.77. The decay is very fast near 850. 86

xiv

doi:10.6342/NTU201800930

List of Tables

3.1 Similarity and difference between ideal filter and gcd-delta func-

tion . 29

xv

doi:10.6342/NTU201800930

xvi

doi:10.6342/NTU201800930

Chapter 1

Introduction

1.1 Definition and Properties of Ramanujan’s

Sum

A special sum of the roots of unity called Ramanujan’s sum[1]

𝑐𝑞(𝑛) =
𝑞

∑
𝑎=1,(𝑎,𝑞)=1

𝑒2𝜋𝑖 𝑎𝑞 𝑛 (1.1)

where (𝑎, 𝑞) = 1 means that 𝑎 only takes on values coprime to 𝑞. For
example,

𝑐3(𝑛) = [2, −1, −1, 2, −1, −1, 2, −1, ...] (1.2)

𝑐6(𝑛) = [2, 1, −1, −2, −1, 1, 2, 1, −1, ...] (1.3)

𝑐7(𝑛) = [6, −1, −1, −1, −1, −1, −1, 6, −1, −1, ...] (1.4)

The sums have many good properties. First of all, they are all integer.

This is amazing because the roots of unity are complex number. The

summation over complex is in general also complex, but the Ramanu-

jan’s Sum is real and more surprisingly, integer. Secondly, the sums are

1

doi:10.6342/NTU201800930

periodic,

𝑐𝑞(𝑛 + 𝑞) = 𝑐𝑞(𝑛) (1.5)

Additionally, since 𝑐𝑞(𝑛) is real, we have

𝑐𝑞(𝑛) = 𝑐∗
𝑞(𝑛) =

𝑞
∑

𝑎=1,(𝑎,𝑞)=1
𝑒−2𝜋𝑖 𝑎𝑞 𝑛 = 𝑐𝑞(−𝑛) (1.6)

where 𝑥∗ is the complex conjugate of 𝑥. In other words, 𝑐𝑞 is an even

function.

Moreover, when signal length 𝑁 is a multiple of 𝑞, Ramanujan’s sum
can be viewed as discrete Fourier transform (DFT) of a binary sequence.

For instance, let 𝑁 = 6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DFT−−→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
1

−1
−2
−1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DFT−−→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
−1
−1
2

−1
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.7)

As we can see, 𝑐6(𝑛) and 𝑐3(𝑛), 𝑛 = 0, 1, ..., 5 are constructed by 6-point
DFT. Furthermore, since the binary sequences are orthogonal, the Ra-

manujan’s sum 𝑐6 and 𝑐3 are also orthogonal. In general, if 𝑞1 and 𝑞2 are

two different factors of 𝑁 , then 𝑐𝑞1
(𝑛) and 𝑐𝑞2

(𝑛), 𝑛 = 0, 1, ..., 𝑁 − 1 are
orthogonal.

Based on those good properies, the Ramanujan’s sum can be fur-

ther used in analyzing long period time sequences such as stock price,

DNA and protein coding[2, 3, 4]. In this thesis, we will introduce two

applications in signal processing. The first is to construct integer zero

autocorrelation sequences, and the second is period estimation. We

2

doi:10.6342/NTU201800930

define some useful functions and notations in the next section.

1.2 Preliminary

Unless otherwise specified, any signal or sequence 𝑥 in this thesis is pe-
riodic with length𝑁 , and the index is 𝑛with module𝑁 , 𝑛 = 0, 1, 2, ..., 𝑁 −1.
In other words, 𝑥(−𝑛) = 𝑥(𝑁 −𝑛) and 𝑥(𝑁 +𝑛) = 𝑥(𝑛). The discrete Fourier
transform (DFT) of 𝑥 is defined as

̂𝑥(𝑘) = 𝐹 {𝑥} =
𝑁−1
∑
𝑛=0

𝑥(𝑛)𝑊 𝑛𝑘
𝑁 (1.8)

where𝑊𝑁 = 𝑒−2𝜋𝑖/𝑁 , 𝑖 =
√

−1. If there is no ambiguity, 𝑊 is used instead

of 𝑊𝑁 for convenience.

The delta function is

𝛿(𝑛) =
⎧{
⎨{⎩

1 𝑛 = 0
0 otherwise

(1.9)

The autocorrelation of signal is defined as

𝑅𝑥𝑥(𝑘) =
𝑁−1
∑
𝑛=0

𝑥∗(𝑛 − 𝑘)𝑥(𝑛) (1.10)

where 𝑥∗ is the complex conjugate of 𝑥. And a signal 𝑥 is called zero-
autocorrelation (ZAC) if 𝑅𝑥𝑥(𝑘) = 𝐶𝛿(𝑘) for some nonzero constant 𝐶.

Some number theoretic definitions are given as follows. Let 𝑎 and
𝑏 be two integers, 𝑎|𝑏 means 𝑎 is a factor of 𝑏. The greatest common
divisor (gcd) 𝑑 them is denoted as 𝑑 = gcd(𝑎, 𝑏) or simply 𝑑 = (𝑎, 𝑏). They
are called coprime if (𝑎, 𝑏) = 1. The least common multiple of them is

denoted as lcm(𝑎, 𝑏). The number in the form of 𝑎 + 𝑏𝑖 is called Gaussian
integer. For a positive integer 𝑛, two integers 𝑎 and 𝑏 are said to be

3

doi:10.6342/NTU201800930

congruent modulo 𝑛, written:

𝑎 ≡ 𝑏 (mod 𝑛) (1.11)

if their difference 𝑎 − 𝑏 is a multiple of 𝑛.
We define the set I𝑘 = {𝑖|1 ≤ 𝑖 ≤ 𝑘, gcd(𝑖, 𝑘) = 1} to indicate all number

between 1 and 𝑘 which is relatively prime to 𝑘.
2D signal is represented in capital letter like 𝑋, the default size is

𝑁 × 𝑁 and the index is given by 𝑋(𝑛1, 𝑛2). Two dimensional discrete
Fourier transform (2DDFT) is defined as

𝑋̂(𝑘1, 𝑘2) = ∑
𝑛1

∑
𝑛2

𝑋(𝑛1, 𝑛2)𝑊 𝑛1𝑘1+𝑛2𝑘2 (1.12)

4

doi:10.6342/NTU201800930

Chapter 2

First Application: Integer and

Gaussian Integer Zero

Autocorrelation Sequences

2.1 Motivation

Zero autocorrelation(ZAC) sequences have been extensively used in

communication engineering, such as synchronization, CDMA [5, 6] and

OFDM[7] system. They have also been applied to cryptography for con-

structing pseudo random sequences. In this work a special kind of ZAC

sequences is considered, that is, integer ZAC (IZAC), because integer

has the following advantages comparing to complex floating point num-

ber.

1) Integer requires less memory, for both saving and sending.

2) Arithmetic operations can be done faster and error-free.

3) The system can be implemented on hardware easily.

5

doi:10.6342/NTU201800930

There are some trivial IZAC . The most obvious one is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
⋮
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The second one, although less known, is still in simple form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑁 − 2
−2
−2
⋮

−2
−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where 𝑁 is the signal length. For example, 𝑁 = 5 and 𝑁 = 6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
−2
−2
−2
−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4
−2
−2
−2
−2
−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

When 𝑁 is a composite number, constructing integer-valued ZAC from

its factor by zero-padding is not difficult to think of. Let say𝑁 = 15 = 3×5,
by the examples given above, we can organize signals like

(3, 0, 0, −2, 0, 0, −2, 0, 0, −2, 0, 0, −2, 0, 0)

6

doi:10.6342/NTU201800930

or

(1, 0, 0, 0, 0, −2, 0, 0, 0, 0, −2, 0, 0, 0, 0)

One natural question is, are there any non-trivial integer-valued ZAC?

The answer is yes, such as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
−1
−1
2

−1
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Similarly, non-trivial Gaussian integer ZAC can also be found. In the

following, we will introduce how to construct those sequences.

2.2 Related Works

There are two types of construction method for IZAC. The first type is

solving equation directly. The other is by generating a constant ampli-

tude (CA) sequence in frequency domain such that its discrete Fourier

transform is integer. A constant amplitude sequence 𝑥(𝑛) is defined as

|𝑥(𝑛)| = 𝐶 (2.1)

for some constant 𝐶. The reason behind the second method is by the
following theorem.

Theorem 2.2.1. A sequence 𝑥 is CA if and only if its DFT ̂𝑥 is ZAC.
Similarly, a sequence 𝑥 is ZAC if and only if its DFT ̂𝑥 is CA.

Proof. See [8]

7

doi:10.6342/NTU201800930

For convenience, we call the first method time domain method and

the other frequency domain method. As we will see, time domain meth-

ods usually have to deal with non-linear equations, while frequency do-

main methods have to guarantee its DFT is integer. Both of them have

some issues to conquer, but frequency domain methods are more sys-

tematic and easier to solve.

2.2.1 Time domainmethod I: Making extra constraints

Consider 𝑁 = 5, the construction of IZAC is solving a five-variable equa-
tion.

𝑥(0)𝑥(1) + 𝑥(1)𝑥(2) + 𝑥(2)𝑥(3) + 𝑥(3)𝑥(4) + 𝑥(4)𝑥(0) = 0 (2.2)

𝑥(0)𝑥(2) + 𝑥(1)𝑥(3) + 𝑥(2)𝑥(4) + 𝑥(3)𝑥(0) + 𝑥(4)𝑥(1) = 0 (2.3)

𝑥(0)𝑥(3) + 𝑥(1)𝑥(4) + 𝑥(2)𝑥(0) + 𝑥(3)𝑥(1) + 𝑥(4)𝑥(2) = 0 (2.4)

𝑥(0)𝑥(4) + 𝑥(1)𝑥(0) + 𝑥(2)𝑥(1) + 𝑥(3)𝑥(2) + 𝑥(4)𝑥(3) = 0 (2.5)

where 𝑥(𝑛) ∈ ℤ. We can notice that eq. (2.4) is equivalent to eq. (2.3)
and eq. (2.5) is equivalent to eq. (2.2). Thus, there are actually only

two non-linear equations here. To solve this directly seems impossible,

an alternative way is making more constraints. In particular, let 𝑥(0) =
𝑥(1) = 1, eq. (2.2) and eq. (2.3) become

1 + 𝑥(2) + 𝑥(2)𝑥(3) + 𝑥(3)𝑥(4) + 𝑥(4) = 0 (2.6)

𝑥(2) + 𝑥(3) + 𝑥(2)𝑥(4) + 𝑥(3) + 𝑥(4) = 0 (2.7)

Let 𝑥(3) = 𝑎 we can find

𝑥(2) + 𝑥(4) = −1
𝑎 + 1 (2.8)

𝑥(2)𝑥(4) = −2𝑎 + 1
𝑎 + 1 (2.9)

8

doi:10.6342/NTU201800930

⇒ (𝑥(2) − 𝑥(4))2 = 1
(𝑎 + 1)2 + 8𝑎 − 4

𝑎 + 1

= 8𝑎3 + 16𝑎2 + 4𝑎 − 3
(𝑎 + 1)2 (2.10)

Since 𝑥(2), 𝑥(3) = 𝑎, and 𝑥(4) are all rational (which can be modified into
integer easily by multiplying the denominators), eq. (2.10) means there

are two rational numbers 𝑦 and 𝑎, where 𝑦 = (𝑥(2)−𝑥(4))(𝑎+1), such that

𝑦2 = 8𝑎3 + 16𝑎2 + 4𝑎 − 3

This is exactly a well-known rational Elliptic Curves problem[9, 10]. El-

lipitic Curves problem has been studied a lot for the past few decades,

and its main application is cryptography[11]. In short, if there are two

non-trivial rational points (𝑦, 𝑎) on the Elliptic curve, then there are in-
finite rational points on it [9]. In this case, since we already know the

answer [−3, 2, 2, 2, 2] is integer ZAC, so when 𝑥(0) = 𝑥(1) = 1, 𝑥(3) = 𝑎 has
two choices 1, −3/2. By finding the next point we can get 𝑎 = −7/8 and
the new integer ZAC is

[8, 8, −12, −7, −52]

and the next is

[22, 22, 142, 462, −143]

and so on.

In general, making extra constraints can reduce the problem, and

we have found a interesting connection to elliptic curve. However, the

method is ad hoc and difficult to find a solution for arbitrary 𝑁 .

2.2.2 Time domainmethod II:Linear equationmethod

Another way to generate ZAC is given in [12]. This method only works

for Gaussian integer and signal length𝑁 = 𝑝𝑘 where 𝑝 is a prime number.

9

doi:10.6342/NTU201800930

It also reduces the problem bymakingmore constraints. In the following

we summarize this method by setting 𝑁 = 9.

The first constraint is called grouping. The index 𝑛 = 0, 1, 2, ..., 𝑁 − 1
is divided into several groups, and 𝑥(𝑛) is the same if 𝑛 is in the same
group. For 𝑁 = 9, we have 3 groups

𝑥(0) (2.11)

𝑥(3) = 𝑥(6) (2.12)

𝑥(1) = 𝑥(2) = 𝑥(4) = 𝑥(5) = 𝑥(7) = 𝑥(8) (2.13)

One can notice that the index 𝑛 is divided by gcd(𝑛, 𝑁). In other words,
if gcd(𝑛1, 𝑁) = gcd(𝑛2, 𝑁), then 𝑛1 and 𝑛2 are in the same group. The

varibles in this problem is reduced from 9 to 3. Moreover, the number

of equations for ZAC is reduced into 2.

𝑥∗[0]𝑥(1) + 𝑥∗(1)𝑥(0) + 3|𝑥(1)|2 + 2(𝑥∗(3)𝑥(1) + 𝑥∗(1)𝑥(3)) = 0 (2.14)

𝑥∗[0]𝑥(3) + |𝑥(3)|2 + 𝑥∗(3)𝑥(0) + 6|𝑥(1)|2 = 0 (2.15)

Since 𝑥 is Gaussian integer, let 𝑥(𝑛) = 𝑥𝑛 + 𝑖𝑦𝑛 and rewrite the above

2(𝑥0𝑥1 + 𝑦0𝑦1) + 3(𝑥2
1 + 𝑦2

1) + 4(𝑥1𝑥3 + 𝑦1𝑦3) = 0 (2.16)

2(𝑥0𝑥3 + 𝑦0𝑦3) + (𝑥2
3 + 𝑦2

3) + 6(𝑥2
1 + 𝑦2

1) = 0 (2.17)

Next, Equation (2.17) subtracts Equation (2.16).

(𝑥3 − 𝑥1)(2𝑥0 − 3𝑥1 + 𝑥3) + (𝑦3 − 𝑦1)(2𝑦0 − 3𝑦1 + 𝑦3) = 0 (2.18)

Here comes the second constraint. Although Equation (2.18) is still a

non-linear equation like Equation (2.2), we can use two linear equations

10

doi:10.6342/NTU201800930

to approximate it.

𝑥3 − 𝑥1 = −𝑦3 − 𝑦1 (2.19)

2𝑥0 − 3𝑥1 + 𝑥3 = 2𝑦0 − 3𝑦1 + 𝑦3 (2.20)

Note that the equations above can only represent part of the solutions

in Equation (2.18). For instance,

𝑥3 − 𝑥1 = 6 (2.21)

2𝑥0 − 3𝑥1 + 𝑥3 = 2 (2.22)

𝑦3 − 𝑦1 = −4 (2.23)

2𝑦0 − 3𝑦1 + 𝑦3 = 3 (2.24)

may be a solution of Equation (2.18), but it is not a solution of Equa-

tions (2.19) and (2.20). To summarize, time domain methods face the

non-linear equations directly. It is a hard problem without making extra

constraints. In the following, we will introduce some frequency domain

methods. By the Theorem 2.2.1, this number theoretic problem can be

solved easily by Fourier transform.

2.2.3 Frequency domainmethod I:The Geometric se-

quence method

The method in this section has been submitted to Eusipco 2018.

For any length 𝑁 , there are two trivial ZAC integer sequences[13]

𝑥(𝑛) = [1, 0, 0, 0, ..., 0] (2.25)

𝑥(𝑛) = [𝑁 − 2, −2, −2, −2, ..., −2] (2.26)

Moreover, if 𝑁 is even, the following sequence is also a ZAC integer

11

doi:10.6342/NTU201800930

sequence.

𝑥(𝑛) =
⎧{
⎨{⎩

𝑁−2
2 𝑛 = 0

(−1)𝑛−1 𝑛 ≠ 0
(2.27)

Observe Equations (2.25) to (2.27), we can find two interest things. The

first is that only the element 𝑥(0) is different from the others. The sec-

ond is that each 𝑥(𝑛), 𝑛 ≠ 0 forms a geometric series. In Equation (2.25),
[0, 0, ..., 0] can be viewed as geometric series with any ratio 𝑟. In Equa-
tion (2.26), the ratio 𝑟 = 1 while in Equation (2.27), the ratio 𝑟 = −1.

Another example can be found in 𝑁 = 4. The closed form solution for
perfect integer sequence is

[−𝑏, 𝑎, 𝑏, 𝑏2

𝑎] (2.28)

where 𝑎,𝑏, 𝑏2
𝑎 are integers. This is solved by brute force. The last three

terms [𝑎,𝑏, 𝑏2
𝑎] can also be viewed as geometric series, with ratio 𝑟 = 𝑏𝑎 .

From the observation above, a natural assumption is that any geo-

metric series can be used to generate perfect integer sequence. With

some calculation the assumption can be proved. The result is given as

follows. Let 𝑟 be an integer. A closed form perfect integer sequences is

given as

𝑥(𝑛) =
⎧{
⎨{⎩

−
𝑁−1
∑
𝑘=2

𝑟𝑘 𝑛 = 0

(1 + 𝑟)𝑟𝑛 𝑛 ≠ 0
(2.29)

Note that 𝑥(𝑛) is a geometric series from 𝑛 = 1 to 𝑁 − 1. Since 𝑟 = 0
or 𝑟 = ±1 gives only trivial result, from now on only the cases 𝑟 ≠ 0, ±1
are discussed. For a concrete example, let 𝑁 = 5 and 𝑟 = 2

𝑥(𝑛) = [−(22 + 23 + 24), 3 ⋅ 21, 3 ⋅ 22, 3 ⋅ 23, 3 ⋅ 24] (2.30)

= [−28, 6, 12, 24, 48] (2.31)

12

doi:10.6342/NTU201800930

For another example, let 𝑁 = 6 and 𝑟 = −3

𝑥(𝑛) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− ∑5
𝑘=2(−3)𝑘

(−2) ⋅ (−3)1

(−2) ⋅ (−3)2

(−2) ⋅ (−3)3

(−2) ⋅ (−3)4

(−2) ⋅ (−3)5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.32)

= [180, 6, −18, 54, −162, 486] (2.33)

The two examples above illustrate that both prime length 𝑁 = 5 and
composite length 𝑁 = 6 can be used. In fact, there is no limitation on
signal length. To prove Equation (2.29), by Theorem 2.2.1 we should

check that ̂𝑥 is CA. By definition,

̂𝑥(𝑚) =
𝑁−1
∑
𝑛=0

𝑥(𝑛)𝑊 𝑛𝑚
𝑁 (2.34)

= −
𝑁−1
∑
𝑘=2

𝑟𝑘 +
𝑁−1
∑
𝑛=1

(1 + 𝑟)𝑟𝑛𝑊 𝑛𝑚
𝑁 (2.35)

= (−
𝑁−1
∑
𝑘=2

𝑟𝑘) − (1 + 𝑟) + (1 + 𝑟)

+ (1 + 𝑟)
𝑁−1
∑
𝑛=1

𝑟𝑛𝑊 𝑛𝑚
𝑁 (2.36)

= −
𝑁−1
∑
𝑘=0

𝑟𝑘 + (1 + 𝑟)
𝑁−1
∑
𝑛=0

𝑟𝑛𝑊 𝑛𝑚
𝑁 (2.37)

= −1 − 𝑟𝑁

1 − 𝑟 + (1 + 𝑟)1 − (𝑟𝑊 𝑚
𝑁)𝑁

1 − 𝑟𝑊 𝑚
𝑁

(2.38)

= −1 − 𝑟𝑁

1 − 𝑟 + (1 + 𝑟) 1 − 𝑟𝑁

1 − 𝑟𝑊 𝑚
𝑁

(2.39)

= (1 + 𝑟)(1 − 𝑟𝑁) (1
1 − 𝑟𝑊 𝑚

𝑁
− 1

1 − 𝑟2) (2.40)

To prove ̂𝑥 is CA, the following lemma is needed.

13

doi:10.6342/NTU201800930

Lemma 2.2.2. For any complex number 𝑧 = 𝑟𝑒𝑖𝜃, where 𝑟 = |𝑧| ≠ 1,

∣ 1
1 − 𝑧 − 1

1 − 𝑟2 ∣ = ∣ 𝑟
1 − 𝑟2 ∣ (2.41)

In other words, the magnitude of 1
1−𝑧 − 1

1−𝑟2 only depends on 𝑟 and is
independent from 𝜃.

Proof.

1
1 − 𝑟𝑒𝑖𝜃 − 1

1 − 𝑟2 = 1
1 − 𝑟 cos(𝜃) + 𝑖𝑟 sin(𝜃) − 1

1 − 𝑟2 (2.42)

= 1 − 𝑟 cos(𝜃) − 𝑖𝑟 sin(𝜃)
(1 − 𝑟 cos(𝜃))2 + 𝑟2 sin2(𝜃)

− 1
1 − 𝑟2 (2.43)

= (1 − 𝑟 cos(𝜃)
1 − 2𝑟 cos(𝜃) + 𝑟2 − 1

1 − 𝑟2) − 𝑖 𝑟 sin(𝜃)
1 − 2𝑟 cos(𝜃) + 𝑟2 (2.44)

Thus, let 𝑄 = 1 − 2𝑟 cos(𝜃) + 𝑟2

∣ 1
1 − 𝑟𝑒𝑖𝜃 − 1

1 − 𝑟2 ∣
2

(2.45)

= (1 − 𝑟 cos(𝜃)
𝑄 − 1

1 − 𝑟2)
2

+ (𝑟 sin(𝜃)
𝑄)

2
(2.46)

=(1 − 𝑟 cos(𝜃))2

𝑄2 − 21 − 𝑟 cos(𝜃)
𝑄(1 − 𝑟2) + 1

(1 − 𝑟2)2 + 𝑟2 sin2(𝜃)
𝑄2 (2.47)

Note that (1 − 𝑟 cos(𝜃))2 + 𝑟2 sin2(𝜃) = 𝑄

∣ 1
1 − 𝑟𝑒𝑖𝜃 − 1

1 − 𝑟2 ∣
2

(2.48)

= 𝑄
𝑄2 − 21 − 𝑟 cos(𝜃)

𝑄(1 − 𝑟2) + 1
(1 − 𝑟2)2 (2.49)

= 1 − 𝑟2

𝑄(1 − 𝑟2) − 21 − 𝑟 cos(𝜃)
𝑄(1 − 𝑟2) + 1

(1 − 𝑟2)2 (2.50)

=−1 + 2𝑟 cos(𝜃) − 𝑟2

𝑄(1 − 𝑟2) + 1
(1 − 𝑟2)2 (2.51)

= −𝑄
𝑄(1 − 𝑟2) + 1

(1 − 𝑟2)2 = 1 − (1 − 𝑟2)
(1 − 𝑟2)2 = (𝑟

(1 − 𝑟2))
2

(2.52)

which completes the proof.

14

doi:10.6342/NTU201800930

We can now prove 𝑥(𝑛) in Equation (2.29) is ZAC. By (2.40) and
Lemma 2.2.2,

| ̂𝑥(𝑚)| = ∣(1 + 𝑟)(1 − 𝑟𝑁) (1
1 − 𝑟𝑊 𝑚

𝑁
− 1

1 − 𝑟2)∣ (2.53)

= |(1 + 𝑟)(1 − 𝑟𝑁)| ⋅ ∣ 1
1 − 𝑟𝑊 𝑚

𝑁
− 1

1 − 𝑟2 ∣ (2.54)

= ∣𝑟(1 + 𝑟)(1 − 𝑟𝑁)
1 − 𝑟2 ∣ = ∣𝑟(1 − 𝑟𝑁)

1 − 𝑟 ∣ (2.55)

in other words, | ̂𝑥| is constant when 𝑟 is fixed. Thus, ̂𝑥 is CA and by
Theorem 2.2.1, 𝑥 is ZAC.

This method looks like a time domain method, because the power

series is used in time domain. However, the ZAC property is proved

by Theorem 2.2.1, so it is actually a frequency domain method. This

construction of ZAC works for Gaussian integer as well, by set 𝑟 = 𝑎 + 𝑏𝑖.
The main drawback of this method is that the dynamic range is too

large. If 𝑟 = 2 and 𝑁 = 100, the max value of the ZAC sequence will be
about 2100 ≈ 1030, although it is still integer.

2.2.4 Frequency domainmethod I:Legendre sequence

method

The methods in this section have been published in [14].

Using Legendre sequence and Gauss sum when 𝑁 is prime

Recall that when 𝑁 is prime, Legendre symbol is defined as

(𝑛
𝑁) =

⎧{{
⎨{{⎩

1, if 𝑛 ≡ 𝑥2(mod 𝑁), for some 𝑥
0, 𝑛 ≡ 0(mod 𝑁)
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

15

doi:10.6342/NTU201800930

And the Gauss sum is defined as

𝐺(𝑘) =
𝑁−1
∑
𝑛=0

(𝑛
𝑁) 𝑒−2𝜋𝑖𝑘𝑛/𝑁

A well known result[15] is that

𝐺(𝑘) =
⎧{
⎨{⎩

(𝑘
𝑁)

√
𝑁, 𝑁 ≡ 1(mod 4)

− (𝑘
𝑁) 𝑖

√
𝑁, 𝑁 ≡ 3(mod 4)

In other words, the Fourier transform of Legendre Sequences is almost

CA, with the only exception on 𝑘 = 0, the first point. The amplitude is
√

𝑁 thus our goal is to find a Gaussian integer 𝑎 and some integers 𝑏,
and 𝑐 such that

|𝑎|2 = 𝑏2 + 𝑁𝑐2 (2.56)

Then a sequence that

𝑓(𝑛) =
⎧{
⎨{⎩

𝑎, 𝑛 = 0

(𝑛
𝑁)

√
𝑁𝑐 + 𝑏𝑖, 𝑛 ≠ 0

(2.57)

is CA, and the DFT of 𝑓(𝑛) is ZAC in Gaussian integer. Before we prove
this let’s see some tiny examples of 𝑁 = 3 and 𝑁 = 5

Example 2.2.1. For 𝑁 = 3, the most trivial value we can choose is
𝑎 = 2, 𝑏 = 1,and 𝑐 = 1. Thus

𝑓(𝑛) = [2, 1𝑖 +
√

3, 1𝑖 −
√

3}
̂𝑓(𝑘) = 𝐹 {𝑓(𝑛)} = {2 + 2𝑖, 2 − 4𝑖, 2 + 2𝑖]

As we can see, 𝑓(𝑛) is CA and ̂𝑓(𝑘) is with Gaussian integer value.
This example shows us 𝑎 does not necessary to be complex.

16

doi:10.6342/NTU201800930

Example 2.2.2. N=3. Let’s try a non-trivial value c=2,b=5,a=6+1i

𝑓(𝑛) = [6 + 1𝑖, 5𝑖 + 2
√

3, 5𝑖 − 2
√

3}
̂𝑓(𝑘) = {6 + 11𝑖, 6 − 10𝑖, 6 + 2𝑖]

From this example we can get a very different result from the previ-

ous one. Note that 𝑎 has three alternatives 6 − 1𝑖, 1 + 6𝑖, and 1 − 6𝑖. They
all give us different ZAC sequences.

Example 2.2.3. 𝑁 = 5, 𝑐 = 1, 𝑏 = 0, 𝑎 = 2 + 1𝑖

𝑓(𝑛) = [2 + 1𝑖,
√

5, −
√

5, −
√

5,
√

5}
̂𝑓(𝑘) = {2 + 1𝑖, 7 + 1𝑖, −3 + 1𝑖, −3 + 1𝑖, 7 + 1𝑖]

There are various ways to construct infinite triples (𝑎, 𝑏, 𝑐) satisfied
(2.56). Let 𝑎 = 𝑎𝑟 + 𝑖𝑎𝑖, where 𝑎𝑟, 𝑎𝑖 are integers. If we choose 𝑐 = 0,
clearly the (2.56) will reduce to 𝑎2

𝑟 + 𝑎2
𝑖 = 𝑏2, and it has infinite solutions.

If 𝑁 is odd, we can choose any odd 𝑐 and any even 𝑎𝑟. Now (2.56)

becomes

𝑎2
𝑟 + 𝑎2

𝑖 = 𝑏2 + 𝑁𝑐2

⇒𝑎2
𝑖 − 𝑏2 = 𝑁𝑐2 − 𝑎2

𝑟

Since𝑁 and 𝑐 are odd and 𝑎𝑟 is even, 𝑁𝑐2−𝑎2
𝑟 must be odd. Let𝑁𝑐2−𝑎2

𝑟 =
2𝑘 + 1, then we can use 𝑎𝑖 = 𝑘 + 1 and 𝑏 = 𝑘. Similarly, for any even 𝑐 and
odd 𝑎𝑟, we can find proper 𝑎𝑖 and 𝑏 by the same trick.

We complete this subsection by proving the claim that ̂𝑓(𝑘) is ZAC
with Gaussian integer value.

Proof. Since 𝑓(𝑛) is CA by definition, thus ̂𝑓(𝑘) is ZAC by Theorem 2.2.1.

To prove they are all Gaussian integer, we actually give ̂𝑓(𝑘) a closed

17

doi:10.6342/NTU201800930

form. If 𝑁 ≡ 1(mod 4)

̂𝑓(𝑘) =

⎧{{
⎨{{⎩

𝑎 + (𝑁 − 1)𝑏𝑖, 𝑘 = 0

𝑎 + (𝑘
𝑁) 𝑁𝑐 − 𝑏𝑖, 𝑘 ≠ 0

If 𝑁 ≡ 3(mod 4)

̂𝑓(𝑘) =

⎧{{
⎨{{⎩

𝑎 + (𝑁 − 1)𝑏𝑖, 𝑘 = 0

𝑎 − (𝑘
𝑁) 𝑁𝑐𝑖 − 𝑏𝑖, 𝑘 ≠ 0

Either case the ̂𝑓(𝑘) is in Gaussian integer value since 𝑎 is Gaussian
integer and 𝑏, 𝑐 are integers.

Using GLS when 𝑁 is 4𝑘 + 1 prime

When 𝑁 is 4𝑘 + 1 prime, there is another way to increase the degree
of freedom by using Generalized Legendre Sequences (GLS)[16, 17,

18]. GLS are originally applied to construct the eigenvectors of dis-

crete Fourier transform (DFT) and generate a complete 𝑁-dimensional
orthogonal basis[18], because they have the property that their Fourier

transform is their conjugate multiply a constant whose absolute value

is
√

𝑁 . All the values except the first one of GLS lies on unit circle, and
when 𝑁 = 4𝑘+1 we can choose the ones which only contains [1, 𝑖, −1, −𝑖],
in order to bound the sequences in gaussian integer. The detail steps

is described as follows:

1)Choose a GLS 𝑥 where the first value is 0 and the rest only contain
[1, 𝑖, −1, −𝑖].

2)Take DFT of 𝑥. Now we have a sequence 𝑦 that the first value is
still 0, but the absolute value of rest all equal to

√
𝑁 .

3)The first value of 𝑦 can then be chosen by a Gaussian integer 𝑎 + 𝑏𝑖
satisfying 𝑎2 + 𝑏2 = 𝑁 , which always exists by Fermat’s theorem. Now

18

doi:10.6342/NTU201800930

the sequence is constant amplitude.

4) The DFT of y is a ZAC with Gaussian integer.

It is easy to prove this sequence is really in Gaussian integer. In fact,

the sequence is actually

𝐹 {𝐹 {𝑥(𝑛)} + (𝑎 + 𝑏𝑖)𝛿(𝑛)} = 𝑁𝑥(𝑁 − 𝑛) + 𝑎 + 𝑏𝑖

where 𝑁 , 𝑎, 𝑏, and all value in 𝑥 are with Gaussian integer, so will be the
sequence.

As a concrete example, assume 𝑁 = 13 and we choose a GLS 𝑥

𝑥 = [0, 1, −𝑖, 1, −1, −𝑖, −𝑖, 𝑖, 𝑖, 1, −1, 𝑖, −1]

And we choose 𝑎 + 𝑏𝑖 = 3 + 2𝑖 since 32 + 22 = 13. Thus the ZAC sequence
is

𝑁𝑥(𝑁 − 𝑛) + 𝑎 + 𝑏𝑖 =

13 [0, −1, 𝑖, −1, 1, 𝑖, 𝑖, −𝑖, −𝑖, −1, 1, −𝑖, 1] + 3 + 2𝑖

= [3 + 2𝑖, −10 + 2𝑖, 3 + 15𝑖, −10 + 2𝑖,

16 + 2𝑖, 3 + 15𝑖, 3 + 15𝑖, 3 − 11𝑖, 3 − 11𝑖, −10 + 2𝑖,

16 + 2𝑖, 3 − 11𝑖, 16 + 2𝑖]

This idea of this method can be extended by multiplying an integer

or a Gaussian integer in step 2, and then we can have more choices

in step 3. Let the length 𝑁 = 𝑎2 + 𝑏2, then we can find an integer or

a Gaussian integer 𝑠, satisfying |𝑠| =
√

𝑐2 + 𝑑2 with some integer 𝑐 and
𝑑, and multiply this number to the GLS. The choices in step 3 can be
doubled because

(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = (𝑎𝑑 + 𝑏𝑐)2 + (𝑎𝑐 − 𝑏𝑑)2 = (𝑎𝑑 − 𝑏𝑐)2 + (𝑎𝑐 + 𝑏𝑑)2

19

doi:10.6342/NTU201800930

Thus by multiply different 𝑐 + 𝑑𝑖 we can get different ZAC sequences.
This gives us infinite choices.

For instance, if 𝑁 = 13, originally we can only choose

𝑎 + 𝑏𝑖 = {3 + 2𝑖, 3 − 2𝑖, 2 + 3𝑖, 2 − 3𝑖}

When we multiply the GLS by 𝑠 = 5 =
√

32 + 42, then in step 3 we have to

find 𝑎 + 𝑏𝑖 such that 𝑎2 + 𝑏2 = 25 × 13 = 325, so the choices we have now
are:

[15 + 10𝑖, 15 − 10𝑖, 10 + 15𝑖, 10 − 15𝑖]

which are the original ones multiplyed by 5, and

[17 + 6𝑖, 17 − 6𝑖, 6 + 17𝑖, 6 − 17𝑖]

since 172 +62 is also 325. Similarly, when we multiply the GLS by 𝑠 = 2+𝑖,
we have to find 𝑎 + 𝑏𝑖 such that 𝑎2 + 𝑏2 = 5 × 13 = 65, so the choices we
have now are:

[4 + 7𝑖, 4 − 7𝑖, 7 − 4𝑖, 7 + 4𝑖, 8 − 𝑖, 8 + 𝑖, 1 + 8𝑖, 1 − 8𝑖]

where four of them are the original ones multiplied by 2 + 𝑖.

[4 + 7𝑖, 8 − 𝑖, 1 + 8𝑖, 7 − 4𝑖] =

(2 + 𝑖) [3 + 2𝑖, 3 − 2𝑖, 2 + 3𝑖, 2 − 3𝑖]

In summary, when 𝑁 is a prime, LS can help us construct many in-

teresting ZAC sequences in Gaussian integer. If 𝑁 is a 4𝑘+1 prime, then
we can further use GLS to construct more. The drawback of this method

is that it only for prime number.

20

doi:10.6342/NTU201800930

2.3 Generate IZAC using Ramanujan’s Sum

The method in this section has been published in [13].

Recall in Section 2.2.2, a signal is devided into several groups. We

will use the concept in frequency domain. A signal is called gcd-delta

if 𝑠(𝑛) = 𝛿(𝑑 − 𝑔𝑐𝑑(𝑁, 𝑛)) for some constant 𝑑|𝑁 . We express it as 𝑠𝑁,𝑑(𝑛).
For example,

𝑠6,2(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑠6,6(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Aswe can see, gcd-delta function is actually grouping index 𝑛 by gcd(𝑛, 𝑁).
However, the main difference between Section 2.2.2 and our method is

that we use grouping in frequency domain, and ensure ZAC property by

Theorem 2.2.1. The time domain will be integer by Ramanujan’s Sum.

More precisely,

𝐹 {𝑠𝑁,𝑑} = ̂𝑠𝑁,𝑑(𝑘) = 𝑐𝑁
𝑑

(𝑘) (2.58)

Proof.

̂𝑠𝑁,𝑑(𝑘) =
𝑁−1
∑
𝑛=0

𝑠𝑁,𝑑(𝑛)𝑊 𝑛𝑘
𝑁 (2.59)

=
𝑁−1
∑
𝑛=0

𝛿(𝑑 − gcd(𝑁, 𝑛))𝑊 𝑛𝑘
𝑁 (2.60)

= ∑
gcd(𝑁,𝑛)=𝑑

𝑊 𝑛𝑘
𝑁 (2.61)

21

doi:10.6342/NTU201800930

Since gcd(𝑁, 𝑛) = 𝑑, we can let 𝑛 = 𝑛′𝑑 where gcd(𝑁, 𝑛′) = 1.

̂𝑠𝑁,𝑑(𝑘) = ∑
gcd(𝑁,𝑛)=𝑑

𝑊 𝑛𝑘
𝑁 (2.62)

= ∑
gcd(𝑁,𝑛′)=1

𝑊 𝑛′𝑑𝑘
𝑁 (2.63)

= ∑
gcd(𝑁,𝑛′)=1

𝑊 𝑛′𝑘
𝑁
𝑑

= 𝑐𝑁
𝑑

(𝑘) (2.64)

To construct ZAC sequence, the steps are described as follows

• Step 1. Given a signal length 𝑁 , calculate all its factors 𝑑.

• Step 2. For every 𝑑 choose a binary number 𝑏𝑑 = 0 or 1 and a phase
shift 𝑊 𝑝𝑑

𝑁 , where 𝑝𝑑 is any integer between 0 and 𝑁 − 1.

• Step 3. Let

𝑔(𝑛) = ∑
𝑑|𝑁

(−1)𝑏𝑑𝑊 𝑝𝑑𝑛
𝑁 𝑠𝑁,𝑑(𝑛)

• Step 4. Then ̂𝑔(𝑘) = 𝐹 {𝑔(𝑛)} is an integer-valued ZAC squence.

Before we prove this, we provide another example to explain the ideas.

Let 𝑁 = 6, so 𝑑 = 1, 2, 3, 6. We can arbitrarily choose 𝑏1 = 0, 𝑏2 = 1, 𝑏3 =

22

doi:10.6342/NTU201800930

1, 𝑏6 = 0 and 𝑝1 = 2, 𝑝2 = 1, 𝑝3 = 2, 𝑝6 = 0. Since

𝑠6,1(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑠6,2(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑠6,3(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑠6,6(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

therefore in step 3,

𝑔(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
−𝑊 2

6

−𝑊 2
6

−1
−𝑊 4

6

−𝑊 4
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

And the Fourier transform of 𝑔(𝑛) is

̂𝑔(𝑘) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
−1
−1
2

−1
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The ̂𝑔(𝑘) is an integer-valued ZAC as seen in the introduction. From
the example above we can notice that 𝑔(𝑛) is CA, so by theorem Theo-

rem 2.2.1 𝐺(𝑘) is ZAC. We now formally prove this.

Theorem 2.3.1. 𝑔(𝑛) in step 3 is CA.

23

doi:10.6342/NTU201800930

Proof. Let 𝑔𝑐𝑑(𝑁, 𝑛) = 𝑔𝑛,

𝑔(𝑛) = ∑
𝑑|𝑁

(−1)𝑏𝑑𝑊 𝑝𝑑𝑛
𝑁 𝑠𝑁,𝑑(𝑛)

= ∑
𝑑|𝑁

(−1)𝑏𝑑𝑊 𝑝𝑑𝑛
𝑁 𝛿(𝑑 − 𝑔𝑐𝑑(𝑁, 𝑛))

= ∑
𝑑|𝑁

(−1)𝑏𝑑𝑊 𝑝𝑑𝑛
𝑁 𝛿(𝑑 − 𝑔𝑛)

= (−1)𝑏𝑔𝑛 𝑊 𝑝𝑔𝑛𝑛
𝑁

so 𝑔(𝑛) is on unit circle for all 𝑛. In other words,

𝑔∗(𝑛)𝑔(𝑛) = 1 ∀ 𝑛

which complete the proof.

The last part is to verify ̂𝑔(𝑘) is integer-valued.

Theorem 2.3.2. ̂𝑔(𝑘) in the step 4 is integer-valued.

Proof. Since Fourier transform is a linear transformation,

̂𝑔(𝑘) = 𝐹 {𝑔(𝑛)}

= ∑
𝑑|𝑁

(−1)𝑏𝑑𝐹 {𝑊 𝑝𝑑𝑛
𝑁 𝑠𝑁,𝑑(𝑛)}

= ∑
𝑑|𝑁

(−1)𝑏𝑑 ̂𝑠𝑁,𝑑(𝑘 − 𝑝𝑑)

= ∑
𝑑|𝑁

(−1)𝑏𝑑𝑐𝑁
𝑑

(𝑘 − 𝑝𝑑)

Since 𝑐𝑁
𝑑
is Ramanujan’s sum which is integer, and the circular shift of

an integer sequence is still integer sequence, thus ̂𝑔(𝑘) is in fact a linear
combination of integer sequence with coefficients ±1. This proves that

̂𝑔(𝑘) is integer.

This method can be easily extended to Gaussian integer. In fact,

24

doi:10.6342/NTU201800930

Gaussian integer gives more degree of freedom. The concept is similar

to the method in the previous section. Suppose we can find some inte-

gers 𝑎, 𝑏, 𝑐, 𝑒 such that 𝑎2 +𝑏2 = 𝑐2 +𝑒2, or more simply using Pythagorean

triple 𝑎2 + 𝑏2 = 𝑐2, then the (−1)𝑏𝑑 can be substituted by 𝑎 + 𝑏𝑖 or 𝑐 + 𝑒𝑖.
For example, let

𝑔 = (3 + 4𝑖)𝑠6,6 + 5𝑠6,1 + (4 − 3𝑖)𝑠6,2 + (3 − 4𝑖)𝑠6,3 (2.65)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 + 4𝑖
5

4 − 3𝑖
3 − 4𝑖
4 − 3𝑖

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.66)

It is obvious that 𝑔 is CA. The DFT of 𝑔 is

̂𝑔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

24 − 6𝑖
1 + 11𝑖
−3 + 3𝑖
−2 + 2𝑖
−3 + 3𝑖
1 + 11𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.67)

As we can see, ̂𝑔 is an Gaussian integer sequence with ZAC property.

2.4 Discussion

In summary, integer or Gaussian integer ZAC sequences can be gen-

erated by two kinds of method. The first kind is called time domain

method. The non-linear equations are solved directly by adding more

25

doi:10.6342/NTU201800930

constraints. The second kind is called frequency domain method. By

DFT and Theorem 2.2.1, the ZAC problem is transformed into a con-

stant amplitude (CA) problem, which is easier to handle. In particular,

using famous number theoretic sum like Gauss Sum and Ramanujan’s

Sum guarantees the integer property, so that abundant solutions can

be found.

IZAC sequence construction is an important task in modern commu-

nication, and we have used Ramanujan’s sum to solve it. Next, we will

use another property of Ramanujan’s sum, periodicity, in a different

topic.

26

doi:10.6342/NTU201800930

Chapter 3

Second Application:Period

Estimation

3.1 Motivation

The 1D period detection and estimation have become very popular re-

cently, including different algorithms[19, 20, 21, 22, 23, 24, 25, 26] and

theoretical study[27]. One might think period detection can be easily

solved by frequency analysis, but in fact it is a hard problem. Especially

when the period is integer. Consider a periodic signal whose period is

23,

𝑥 = [1, 2, 3, ..., 22, 23, 1, 2, 3, ..., 22, 23, 1, 2, 3, ...] (3.1)

Since we do not know the period (otherwise we do not need period es-

timation), the signal length 𝑁 might not be a multiple of 23. Let assume
we take the first 100 points, and analyze 𝑥(𝑛), 𝑛 = 0, 1, 2, ..., 99, with 100
point DFT. The amplitude of spectrum is given in Figure 3.1. As we can

see, the spectrum has many peaks, and the first few is at 𝑘 = 0, 4, 9, 13,

27

doi:10.6342/NTU201800930

Figure 3.1: The spectrum of 𝑥, where 𝑥 is defined in Equation (3.1).

because

100/23 ≈ 4.3478 ≈ 4 (3.2)

100 × 2/23 ≈ 8.6957 ≈ 9 (3.3)

100 × 3/23 ≈ 13.043 ≈ 13 (3.4)

It is hard to inference the true period 23 from the numbers 4, 9, 13,
We called this critical length problem. If the signal length 𝑁 is selected

perfectly like 92, i.e., 𝑁 is a multiple of 23, then the spectrum peaks will

be at 𝑘 = 0, 4, 8, 12, We will solve this in Chapter 4.

Another problem is called mixed period problem. Consider two pe-

riodic signal 𝑥1 and 𝑥2 with period 7 and 5 respectively. In particular,
let

𝑥1 = [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, ...] (3.5)

𝑥2 = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2...] (3.6)

Theoretically, 𝑥 = 𝑥1 + 𝑥2 is also a periodic signal with period 7 × 5 = 35.

28

doi:10.6342/NTU201800930

But in practice, it is more desirable to determine and separate each pe-

riod. It can not be easily done by traditional method like autocorrelation.

In [23], the author used Ramanujan’s sum to solve this problem. In the

following we will briefly review his method, and extend to 2D case.

3.2 1D Period Estimation

3.2.1 1D period filterbank

Recall that in Section 2.3 we defined gcd-delta function 𝑠𝑁,𝑑(𝑛). It is a
binary function with only 0 and 1. From another point of view, the binary
function can be considered as ideal filter. For example, ideal low pass

filter can be performed by multiplying

𝐻(𝑘) = [1, 1, 1, ..., 1, 0, 0, ..., 0, 0, 1, 1, ..., 1] (3.7)

in frequency domain. But unlike low pass filter, the 𝑁-point DFT of gcd-
delta 𝑠𝑁,𝑑 function is 𝑐𝑁

𝑑
which is integer and periodic. The similarity and

difference between ideal filter and gcd-delta function can be summa-

rized as Table 3.1.
Property Ideal filter gcd-delta

Freq Domain Binary function Yes Yes
Consecutive 1 Yes No

Time Domain Value Sinc function(real) Integer
Periodic No Yes

Table 3.1: Similarity and difference between ideal filter and gcd-delta function

Traditional filterbanks divide input signal into several sub-band sig-

nals. Each sub-band signal contains certain frequencies. In practice,

lowpass filter and highpass filter are often used for denoising or com-

pression. Similarly, we can use gcd-delta function 𝑠𝑁,𝑑 as period filter-

banks, i.e., the input signal is divided into several sub-band signals and

29

doi:10.6342/NTU201800930

each sub-band contains certain period. For a toy example, let

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−4
4

−1
4
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
−3 + 3

√
3𝑖

−3 + 3
√

3𝑖
12

−3 − 3
√

3𝑖
−3 − 3

√
3𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

We now divide ̂𝑥 into 4 channels by multiplying 𝑠6,6, 𝑠6,3, 𝑠6,2, 𝑠6,1.

̂𝑥1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑥2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
12
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑥3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

−3 + 3
√

3𝑖
0

−3 − 3
√

3𝑖
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑥6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
−3 + 3

√
3𝑖

0
0
0

−3 − 3
√

3𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then by Inverse Fourier transform, the 4 sub-band signals are

𝑥1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑥2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
−2
2

−2
2

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑥3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
−1
2

−1
−1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑥6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
−2
−1
1
2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is clear that

• 𝑥1 + 𝑥2 + 𝑥3 + 𝑥6 = 𝑥

• 𝑥𝑖 and 𝑥𝑗 are orthogonal to each other for all 𝑖 ≠ 𝑗.

• 𝑥𝑖 is periodic with period 𝑖

30

doi:10.6342/NTU201800930

Oncewe have separated the signal, further process can be implemented

easily. For period estimation, the signal power is calculated for each

period. By choosing peaks or ignoring the noise under certain threshold,

the period candidates can be found. The estimated period is the least

common multiplier (lcm) of these candidates. If multiple periods are

desired (the mix period problem), then those candidates can be output

directly.

In the next section, [28] provided a different view and amore efficient

algorithm to achieve the same goal.

3.2.2 1D Impulse Train and Möbius Inversion

Some useful notation and theorem are given as follows. An impulse

train Π𝑁,𝑑 is

Π𝑁,𝑑 =
𝑁
𝑑 −1

∑
𝑚=0

𝛿(𝑛 − 𝑚𝑑) (3.9)

with 𝑑|𝑁 . Alternatively, we can write

Π𝑁,𝑑(𝑛) =
⎧{
⎨{⎩

1 𝑛 = 𝑚𝑑
0 otherwise

(3.10)

An important property is that the DFT of an impulse train is another

impulse train with some gain.

Π̂𝑁,𝑑(𝑘) =
𝑁−1
∑
𝑛=0

𝑁
𝑑 −1

∑
𝑚=0

𝛿(𝑛 − 𝑚𝑑)𝑊 𝑘𝑛
𝑁 (3.11)

=
𝑁
𝑑 −1

∑
𝑚=0

𝑁−1
∑
𝑛=0

𝛿(𝑛 − 𝑚𝑑)𝑊 𝑘𝑛
𝑁 (3.12)

=
𝑁
𝑑 −1

∑
𝑚=0

𝑊 𝑘𝑚𝑑
𝑁 (3.13)

31

doi:10.6342/NTU201800930

=
𝑁
𝑑 −1

∑
𝑚=0

𝑊 𝑘𝑚
𝑁
𝑑

(3.14)

=
⎧{
⎨{⎩

𝑁
𝑑 𝑘 = 𝑚𝑁

𝑑

0 otherwise
(3.15)

= 𝑁
𝑑 Π𝑁, 𝑁

𝑑
(3.16)

For example,

Π6,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Π̂6,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
0
0
3
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 3Π6,3 (3.17)

Recall that gcd-delta function 𝑠𝑁,𝑑 = 𝛿(𝑑−gcd(𝑁, 𝑛)). The relation between
gcd-delta and impulse train is

Π𝑁,𝑑 = ∑
𝑑|𝑑′|𝑁

𝑠𝑁,𝑑′ (3.18)

Proof. Let gcd(𝑛, 𝑁) = ̄𝑑. If 𝑛 = 𝑚𝑑 then obviously 𝑑| ̄𝑑. Thus,

∑
𝑑|𝑑′|𝑁

𝑠𝑁,𝑑′ = ∑
𝑑|𝑑′|𝑁

𝛿(𝑑′ − ̄𝑑) = 1 (3.19)

On the other hand, if 𝑛 ≠ 𝑚𝑑, we can see 𝑑 ∤ ̄𝑑. Thus,

∑
𝑑|𝑑′|𝑁

𝑠𝑁,𝑑′ = ∑
𝑑|𝑑′|𝑁

𝛿(𝑑′ − ̄𝑑) = 0 (3.20)

32

doi:10.6342/NTU201800930

For example,

Π6,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑠6,2 + 𝑠6,6 (3.21)

Finally, we introduce Möbius function in number theory

𝜇(𝑛) =

⎧{{
⎨{{⎩

1 if 𝑛 is a square-free with an even number of prime factors.
−1 if 𝑛 is a square-free with an odd number of prime factors.
0 if 𝑛 has a squared prime factor.

(3.22)

For example, 𝜇(1) = 1, 𝜇(3) = −1, 𝜇(15) = 1, 𝜇(4) = 𝜇(12) = 0. The most
important property of Möbius function is

∑
𝑑|𝑁

𝜇(𝑑) =
⎧{
⎨{⎩

1 𝑁 = 1
0 𝑁 > 1

(3.23)

Now the main contribution in [28] is to rewrite Equation (3.18).

𝑠𝑁,𝑑 = ∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑)Π𝑁,𝑑′ (3.24)

Take DFT for both sides.

̂𝑠𝑁,𝑑 = ∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑)Π̂𝑁,𝑑′ (3.25)

⇒ 𝑐𝑁
𝑑

= ∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑)𝑁
𝑑 Π𝑁, 𝑁

𝑑
(3.26)

33

doi:10.6342/NTU201800930

It means the Ramanujan’s sum can be calculated by impulse train. Note

that

• 𝜇 only has value on 0, 1, −1, which is very easy to implement.

• Impulse train, although with some gain 𝑁
𝑑 , is also easy to imple-

ment by hardware.

Therefore, any processing such as convolution can be implemented by

impulse train, which is more efficient. Unfortunately, in [28], it just

shows the coefficients are 0, 1, −1, and does not know the value comes
from Möbius function. In other words, it does not prove Equation (3.24).

In this thesis we provide a proof.

Proof.

∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑)Π𝑁,𝑑′ = ∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑) ∑
𝑑′|𝑑″|𝑁

𝑠𝑁,𝑑″ (3.27)

= ∑
𝑑|𝑑′|𝑁

∑
𝑑′|𝑑″|𝑁

𝜇(𝑑′

𝑑)𝑠𝑁,𝑑″ (3.28)

= ∑
𝑑|𝑑″|𝑁

∑
𝑑|𝑑′|𝑑″

𝜇(𝑑′

𝑑)𝑠𝑁,𝑑″ (3.29)

= ∑
𝑑|𝑑″|𝑁

𝑠𝑁,𝑑″ ∑
𝑑|𝑑′|𝑑″

𝜇(𝑑′

𝑑) (3.30)

(3.31)

By Equation (3.23), we can obtain

∑
𝑑|𝑑′|𝑁

𝜇(𝑑′

𝑑)Π𝑁,𝑑′ = ∑
𝑑|𝑑″|𝑁

𝑠𝑁,𝑑″ ∑
𝑑|𝑑′|𝑑″

𝜇(𝑑′

𝑑) (3.32)

= ∑
𝑑|𝑑″|𝑁

𝑠𝑁,𝑑″𝛿(𝑑 − 𝑑″) = 𝑠𝑁,𝑑 (3.33)

If gcd-delta functions and impulse trains are organized by the sub-

34

doi:10.6342/NTU201800930

index in decreasing order,

𝑆6 = [𝑠6,6 𝑠6,3 𝑠6,2 𝑠6,1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Π6 = [Π6,6 Π6,3 Π6,2 Π6,1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.34)

Then Equation (3.18) and Equation (3.24) can be viewed as matrix prod-

uct.

𝑆6𝐴6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Π6 (3.35)

𝑆6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Π6𝑀6 (3.36)

35

doi:10.6342/NTU201800930

gcd-delta impulse train

Ramanujan’s sum weighted impulse train

DFT

𝐴𝑁

𝑀𝑁

𝐴𝑁

𝑀𝑁

DFT

Figure 3.2: Relations of gcd-delta, Ramanujan’s sum and impulse train

In general, 𝐴𝑁 and 𝑀𝑁 is defined as

𝐴𝑁(𝑛, 𝑚) =
⎧{
⎨{⎩

1 𝑑𝑚|𝑑𝑛

0 otherwise
(3.37)

𝑀𝑁(𝑛, 𝑚) =
⎧{
⎨{⎩

𝜇(𝑑𝑛
𝑑𝑚

) 𝑑𝑚|𝑑𝑛

0 otherwise
(3.38)

where 𝑑𝑗 is the 𝑗th divisor of 𝑁 in decreasing order.

In summary, the relation of gcd-delta function, Ramanujan’s sum and

impulse train is described as Figure 3.2. Note that in this relation, the

only signal which is not periodic is gcd-delta function. Another obser-

vation is that although impulse trains are easy to implement with hard-

ware, they are not orthogonal. We can think 𝑀𝑁 as an Gram-Schmidt

orthogonalization process so that it is an upper triangular matrix. A fi-

nal remark is that the relation can actually prove Ramanujan’s sum is

integer since 𝐴𝑁 , 𝑀𝑁 and the weights are all integers.

Next we will extend these results to 2D signal. As we will see, al-

though the concept is very similar, the result is not trivial.

3.3 2D Period Estimation

Two dimensional period estimation is a hard problem since it has three

parameters to determine: length, width and direction, unlike 1D peri-

36

doi:10.6342/NTU201800930

odic signal which has only one period parameter 𝑁 such that 𝑥(𝑛 + 𝑁) =
𝑥(𝑛).

For example, the following 2D signals𝑋1 and𝑋2 share the same basic

pattern

𝑋1 =

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏
𝑐 𝑑 𝑐 𝑑 𝑐 𝑑
𝑒 𝑓 𝑒 𝑓 𝑒 𝑓
𝑎 𝑏 𝑎 𝑏 𝑎 𝑏
𝑐 𝑑 𝑐 𝑑 𝑐 𝑑
𝑒 𝑓 𝑒 𝑓 𝑒 𝑓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.39)

𝑋2 =

𝑎 𝑏 𝑒 𝑓 𝑐 𝑑
𝑐 𝑑 𝑎 𝑏 𝑒 𝑓
𝑒 𝑓 𝑐 𝑑 𝑎 𝑏
𝑎 𝑏 𝑒 𝑓 𝑐 𝑑
𝑐 𝑑 𝑎 𝑏 𝑒 𝑓
𝑒 𝑓 𝑐 𝑑 𝑎 𝑏

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.40)

where the common basic pattern is

⎡
⎢
⎢
⎢
⎣

𝑎 𝑏
𝑐 𝑑
𝑒 𝑓

⎤
⎥
⎥
⎥
⎦

but they are two different periodic signals.

Recall that a 2D signal 𝑋(𝑛1, 𝑛2) is called periodic if there are integers
𝑎, 𝑏, 𝑐, 𝑑 such that

𝑋(𝑛1, 𝑛2) = 𝑋(𝑛1 + 𝑎, 𝑛2 + 𝑐) = 𝑋(𝑛1 + 𝑏, 𝑛2 + 𝑑) (3.41)

and we use boldface letter such as P

P = ⎡⎢
⎣

a b
c d

⎤⎥
⎦

(3.42)

37

doi:10.6342/NTU201800930

to indicate the periodicity matrix. And it is well-known[29, 30] that the

periodicity matrix can be uniquely represented as

P = ⎡⎢
⎣

a b
0 d

⎤⎥
⎦

(3.43)

where 𝑎 > 0, 𝑑 > 0 and 0 ≤ 𝑏 < 𝑎. We will use this representation
throughout this article. The periodicity matrix of 𝑋1 and 𝑋2 in the (3.39)

and (3.40) are

P1 = ⎡⎢
⎣

3 0
0 2

⎤⎥
⎦

,P2 = ⎡⎢
⎣

3 1
0 2

⎤⎥
⎦

(3.44)

respectively. The special case of 𝑏 = 0 as (3.39) is called separable case.
The advantage of using periodicity matrix is that 𝑎, 𝑏, 𝑑 can directly point
out the height, width and shift of the periodic pattern.

We now introduce the concept of multiple in 2D. Recall that in 1D, a

signal 𝑥1 with period 3

𝑥1 = [3, 1, 7, 3, 1, 7, 3, 1, 7, ...] (3.45)

can also be considered as period 6, with the pattern [3, 1, 7, 3, 1, 7]. In
other words, let 𝑥2 be a general signal with period 6

𝑥2 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑎, 𝑏, 𝑐, ...] (3.46)

we can say 𝑥1 is a special case of 𝑥2 with 𝑎 = 3, 𝑏 = 1, 𝑐 = 7, 𝑑 = 3, 𝑒 =
1, 𝑓 = 7. Moreover, the period of 𝑥2, which is 6, is a multiple of 3, which

is the period of 𝑥1. This concept can be extended to 2D. For example,

38

doi:10.6342/NTU201800930

let P3 be

P3 = ⎡⎢
⎣

3 2
0 1

⎤⎥
⎦

(3.47)

By definition, the pattern of P3 is

𝑋3 =

𝑎 𝑐 𝑒 𝑎 𝑐 𝑒
𝑐 𝑒 𝑎 𝑐 𝑒 𝑎
𝑒 𝑎 𝑐 𝑒 𝑎 𝑐
𝑎 𝑐 𝑒 𝑎 𝑐 𝑒
𝑐 𝑒 𝑎 𝑐 𝑒 𝑎
𝑒 𝑎 𝑐 𝑒 𝑎 𝑐

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.48)

One can notice that 𝑋3 is actually a special case of 𝑋2, with 𝑏 = 𝑐, 𝑑 =
𝑒, 𝑓 = 𝑎. Also notice that P2 which is the periodicity matrix of 𝑋2, is a

multiple of P3

⎡⎢
⎣

3 2
0 1

⎤⎥
⎦

⎡⎢
⎣

1 −1
0 2

⎤⎥
⎦

= ⎡⎢
⎣

3 1
0 2

⎤⎥
⎦

(3.49)

In general, we call P𝑘 is a multiple of P𝑗 if there is a 2 × 2 matrixM such

that P𝑘 = P𝑗M. We use the number theoretic symbol

P𝑗|P𝑘

to describe this relationship. Note thatM is not necessary to be a peri-

odicity matrix. Also note that matrix multiplying is not commutable. It

means finding anM such that P𝑘 = MP𝑗 is useless. Moreover, since we

only consider discrete patterns, any value in P and the relatedM should

be integer. Furthermore, in 1D we have assumed each sub-period is a

factor of signal length 𝑁 , and in 2D we take a similar assumption. That

39

doi:10.6342/NTU201800930

is, every sub-period we want to detect is a factor of N, where

N = ⎡⎢
⎣

𝑁 0
0 𝑁

⎤⎥
⎦

Once we have defined the multiple, we can now define gcd and lcm.
The least commonmultiple ofP1 andP2 is the integral periodicity matrix

P with the smallest determinant such that P1X = P2Y = P for some

integral matriecs X and Y. Similarly the greatest common divisor of P1

and P2 is the integral periodicity matrix P with the largest determinant

such that P1 = PX and P2 = PY for some integral matriecs X and Y.

3.3.1 2D Ramanujan’s Sum and period filterbank

This work has been published in [31, 32].

Recall that in 1D, Ramanujan’s sum can be viewed as the Fourier

transform of a special kind of function called gcd-delta function. Thus

, to define 2D Ramanujan’s sum, we should first define 2D-gcd-delta

function. Unlike 1D case, which only has 1 parameter 𝑑, 2D gcd-delta
function has 3 parameters, in order to indicate the height, width and

direction. A 2D-gcd-delta function 𝑆𝑁,𝑑1,𝑑2,𝑡(𝑛1, 𝑛2) is defined as follows

𝑆𝑁,𝑑1,𝑑2,𝑡(𝑛1, 𝑛2) =

⎧{{{{
⎨{{{{⎩

1 𝑖𝑓 gcd(𝑛1, 𝑁) = 𝑑1,
gcd(𝑛2, 𝑁) = 𝑑2,
𝑛1
𝑑1

− 𝑡𝑛2
𝑑2

≡ 0 (mod 𝑑)
0 otherwise

(3.50)

where 𝑑 = gcd(𝑁1, 𝑁2) , 𝑁1 = 𝑁
𝑑1
and 𝑁2 = 𝑁

𝑑2
, 𝑛1, 𝑛2 = 0 ∼ 𝑁 − 1 and

gcd(𝑡, 𝑑) = 1.

40

doi:10.6342/NTU201800930

For example,

𝑆6,2,1,1 =

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.51)

As we can see, the 2D-gcd-delta function is indeed a generalization

of 1D gcd-delta function in a 2D plane. Like the 1D case, 2D-gcd-delta

function only contains 0 and 1. In addition, the DFT of 2D-gcd-delta

function is also a periodic signal.

̂𝑆6,2,1,1 =

2 1 −1 −2 −1 1
−1 −2 −1 1 2 1
−1 1 2 1 −1 −2
2 1 −1 −2 −1 1

−1 −2 −1 1 2 1
−1 1 2 1 −1 −2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.52)

The periodicity matrix of the above signal is

P = ⎡⎢
⎣

3 2
0 2

⎤⎥
⎦

(3.53)

However, unlike the 1D case where the period of ̂𝑠𝑁,𝑑 can be easily ob-

tained by 𝑁
𝑑 , the periodicity matrix of ̂𝑆𝑁,𝑑1,𝑑2,𝑡 can not be calculated

trivially. In order to solve this problem, we need the following lemma.

Lemma 3.3.1. If two integers 𝑡 and 𝑑 are coprime i.e. gcd(𝑡, 𝑑) = 1 then
for any integer 𝑁 there exists an integer 𝑎 such that gcd(𝑡 + 𝑎𝑑, 𝑁) = 1

Proof. First the integer𝑁 is factorized into power of serial prime integers

𝑁 = 𝑝𝑒1
1 𝑝𝑒2

2 … 𝑝𝑒𝑘
𝑘 . Let Ω be the set of integers {𝑗|𝑑 is a multiple of 𝑝𝑗}.

Now rewrite 𝑁 = 𝑏ℎ where 𝑏 = ∏
𝑗∈Ω

𝑝𝑒𝑗
𝑗 . Obviously any 𝑎 can satisfy

gcd(𝑡 + 𝑎𝑑, 𝑏) = 1.

41

doi:10.6342/NTU201800930

On the other hand, since gcd(𝑑, ℎ) = 1, 𝑑−1 (mod ℎ) exists. We can now
choose 𝑎 = (−𝑡 + 1)𝑑−1 (mod 𝑁) and this 𝑎 proves the existence.

To illustrate the lemma, let 𝑡 = 8, 𝑑 = 27 and 𝑁 = 30 = 2×3×5. Clearly
𝑏 = 3, ℎ = 10 and 27−1 ≡ 3 (mod 10). Thus,

𝑎 = (−8 + 1)3 = −21 ≡ 9 (mod 30) (3.54)

we can easily verify that 𝑡 + 𝑎𝑑 = 251 is coprime to 30. Note that this
lemma only provides existance, and in practice we can choose the small-

est positive 𝑎. In this case we can choose 𝑎 = 3 and 𝑡 + 𝑎𝑑 = 89.
We can prove the following theorem.

Theorem 3.3.2. Follow the definition of 2D gcd-delta, the periodicity

matrix P of ̂𝑆𝑁,𝑑1,𝑑2,𝑡 is given as

P = ⎡⎢
⎣

N1
−d2⋅(t+ad)−1

g

0 d1g

⎤⎥
⎦

(3.55)

where 𝑔 = gcd(𝑑1, 𝑑2), 𝑎 is the smallest integer such that (𝑡 + 𝑎𝑑) has an
inverse in modulo 𝑁1 and (𝑡 + 𝑎𝑑)−1 is the inverse in modulo 𝑁1.

Proof. Recall (24)-(27) in [31]

̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1, 𝑘2) =
𝑁−1
∑
𝑛1=0

𝑁−1
∑
𝑛2=0

𝑆𝑁,𝑑1,𝑑2,𝑡(𝑛1, 𝑛2)𝑊 −𝑛1𝑘1−𝑛2𝑘2
𝑁 (3.56)

= ∑
𝑟1∈𝐼𝑁1 ,𝑟2∈𝐼𝑁2 ,

𝑟1−𝑡𝑟2=0 (mod 𝑑)

𝑊 −𝑟1𝑑1𝑘1−𝑟2𝑑2𝑘2
𝑁 (3.57)

= ∑
𝑟1∈𝐼𝑁1 ,𝑟2∈𝐼𝑁2 ,

𝑟1−𝑡𝑟2=0 (mod 𝑑)

𝑊 −𝑟1𝑘1
𝑁1

𝑊 −𝑟2𝑘2
𝑁2

(3.58)

= ∑
𝑞∈𝐼𝑙

𝑊 −(𝑡+𝑎𝑑)𝑘1𝑞
𝑁1

𝑊 −𝑘2𝑞
𝑁2

(3.59)

= ∑
𝑞∈𝐼𝑙

𝑊 −(𝑙(𝑡+𝑎𝑑)𝑘1
𝑁1

+ 𝑙𝑘2
𝑁2

)𝑞
𝑙 (3.60)

42

doi:10.6342/NTU201800930

where 𝑙 = lcm(𝑁1, 𝑁2). By (3.58), we can easily derive that

̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1 + 𝑁1, 𝑘2)

= ∑
𝑟1∈𝐼𝑁1 ,𝑟2∈𝐼𝑁2 ,

𝑟1−𝑡𝑟2=0 (mod 𝑑)

𝑊 −𝑟1(𝑘1+𝑁1)
𝑁1

𝑊 −𝑟2𝑘2
𝑁2

(3.61)

= ̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1, 𝑘2) (3.62)

since 𝑊 −𝑟1𝑁1
𝑁1

= 1.

Let 𝑟(𝑘1,𝑘2) = 𝑙(𝑡+𝑎𝑑)𝑘1
𝑁1

+ 𝑙𝑘2
𝑁2
and thus, by (3.60),

̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1, 𝑘2) = ∑
𝑞∈𝐼𝑙

𝑊 −(𝑙(𝑡+𝑎𝑑)𝑘1
𝑁1

+ 𝑙𝑘2
𝑁2

)𝑞
𝑙 (3.63)

= ∑
𝑞∈𝐼𝑙

𝑊 −𝑟(𝑘1,𝑘2)𝑞
𝑙 (3.64)

Note that 𝑟 is periodic by

𝑟(𝑘1 + −𝑑2 ⋅ (𝑡 + 𝑎𝑑)−1

𝑔 , 𝑘2 + 𝑑1
𝑔)

= 𝑙(𝑡 + 𝑎𝑑)
𝑁1

(𝑘1 + −𝑑2 ⋅ (𝑡 + 𝑎𝑑)−1

𝑔) + 𝑙
𝑁2

(𝑘2 + 𝑑1
𝑔) (3.65)

Since (𝑡 + 𝑎𝑑)−1 is the inverse of (𝑡 + 𝑎𝑑) in modulo 𝑁1, (𝑡 + 𝑎𝑑)−1(𝑡 + 𝑎𝑑) =
1 + 𝑠𝑁1 for some integer 𝑠 and (3.65) above becomes

𝑟(𝑘1 + −𝑑2 ⋅ (𝑡 + 𝑎𝑑)−1

𝑔 , 𝑘2 + 𝑑1
𝑔)

= 𝑙(𝑡 + 𝑎𝑑)𝑘1
𝑁1

− 𝑙(1 + 𝑠𝑁1)
𝑁1

𝑑2
𝑔 + 𝑙

𝑁2
(𝑘2 + 𝑑1

𝑔) (3.66)

= 𝑟(𝑘1, 𝑘2) − 𝑙𝑠𝑑2
𝑔 − 𝑙𝑑2

𝑁1𝑔 + 𝑙𝑑1
𝑁2𝑔 (3.67)

By 𝑁1𝑑1 = 𝑁2𝑑2 = 𝑁 therefore 𝑑2
𝑁1

= 𝑑1
𝑁2
and (3.67) becomes

𝑟(𝑘1 + −𝑑2 ⋅ (𝑡 + 𝑎𝑑)−1

𝑔 , 𝑘2 + 𝑑1
𝑔)

43

doi:10.6342/NTU201800930

= 𝑟(𝑘1, 𝑘2) − 𝑙𝑠𝑑2
𝑔 (3.68)

Now by (3.64) and (3.68) we can prove that

̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1 + −𝑑2
𝑔 ⋅ (𝑡 + 𝑎𝑑)−1, 𝑘2 + 𝑑1

𝑔)

= ∑
𝑞∈𝐼𝑙

𝑊 −𝑟(𝑘1+ −𝑑2⋅(𝑡+𝑎𝑑)−1
𝑔 ,𝑘2+ 𝑑1𝑔)𝑞

𝑙 (3.69)

= ∑
𝑞∈𝐼𝑙

𝑊 −(𝑟(𝑘1,𝑘2)−𝑙𝑠 𝑑2𝑔)𝑞
𝑙 (3.70)

= ∑
𝑞∈𝐼𝑙

𝑊 −𝑟(𝑘1,𝑘2)𝑞
𝑙 (3.71)

= ̂𝑆𝑁,𝑑1,𝑑2,𝑡(𝑘1, 𝑘2) (3.72)

because 𝑔 = gcd(𝑑1, 𝑑2) and then 𝑑2/𝑔 is an integer. By (3.62) and (3.72)
the proof is completed.

Example 3.3.1. Consider ̂𝑆6,2,1,1 in (3.52). It follows that 𝑁 = 6, 𝑑1 = 2,
𝑑2 = 1, 𝑡 = 1 and

𝑁1 = 𝑁
𝑑1

= 3

𝑁2 = 𝑁
𝑑2

= 6

𝑑 = gcd(𝑁1, 𝑁2) = 3

From (𝑡 + 𝑎𝑑) has inverse in modulo𝑁1 we can use 𝑎 = 0 and (𝑡 + 𝑎𝑑)−1 ≡ 1
(mod 3). Therefore the periodicity matrix from Theorem 3.3.2 is

⎡⎢
⎣

3 2
0 2

⎤⎥
⎦

as we expected.

44

doi:10.6342/NTU201800930

Example 3.3.2. Consider 𝑆4,2,2,1.

𝑆4,2,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.73)

The 2D DFT of 𝑆4,2,2,1 is

̂𝑆4,2,2,1 =
1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎛⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟
⎠

(3.74)

which has the periodicity matrix

⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

one can easily check that 𝑎 = 0 and the theorem is correct.

Example 3.3.3. The final example shows the importance of 𝑎. Let 𝑁 =
30, 𝑑1 = 3, 𝑑2 = 2, 𝑁1 = 30/3 = 10, 𝑁2 = 30/2 = 15, 𝑑 = 5 and 𝑡 = 4 ∈ 𝐼𝑑.

Note that if 𝑎 = 0, 𝑡 = 4 has no inverse in modulo 10. Therefore we must
choose 𝑎 = 1 and 𝑡+𝑎𝑑 = 9. Since 9−1 ≡ 9 (mod 10), the periodicity matrix
is

⎡⎢
⎣

10 −2 × 9
0 3

⎤⎥
⎦

= ⎡⎢
⎣

10 2
0 3

⎤⎥
⎦

There are several good reasons to use 2D-gcd-delta functions 𝑆𝑁,𝑑1,𝑑2,𝑡

as the sub-band. First of all, 𝑆𝑁,𝑑1,𝑑2,𝑡 is disjointed to each other while

different 𝑑1, 𝑑2, 𝑡 can fulfill the whole 𝑁 × 𝑁 image. Secondly ̂𝑆𝑁,𝑑1,𝑑2,𝑡

is integral so fast and accurate algorithm can be found for image pro-

cessing since the pixel value is also an integer. The final reason is that

45

doi:10.6342/NTU201800930

2D-gcd-delta functions have closed form relationship to the periodicity

matrix as we have seen in Theorem 3.3.2.

The number of sub-bands in 1D can be easily determined by the num-

ber of divisors of 𝑁 . However in 2D, the number of sub-bands is equal
to the number of cyclic sub-groups of 𝑍𝑁 ×𝑍𝑁 , which is obtained in [33].

For example, let 𝑁 = 4, there are 10 sub-bands

𝑆4,4,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,4,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

𝑆4,4,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,4,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

1 0
0 2

⎤⎥
⎦

𝑆4,4,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,4,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −2 0
2 0 −2 0
2 0 −2 0
2 0 −2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

1 0
0 4

⎤⎥
⎦

𝑆4,1,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
1 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,1,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 2 2 2
0 0 0 0

−2 −2 −2 −2
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

4 0
0 1

⎤⎥
⎦

46

doi:10.6342/NTU201800930

𝑆4,2,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,2,4,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
−1 −1 −1 −1
1 1 1 1

−1 −1 −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

2 0
0 1

⎤⎥
⎦

𝑆4,1,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,1,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −2 0
0 −2 0 2

−2 0 2 0
0 2 0 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

4 3
0 1

⎤⎥
⎦

𝑆4,1,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 0 0 0
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,1,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 −2 2 −2
0 0 0 0

−2 2 −2 2
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

4 2
0 1

⎤⎥
⎦

𝑆4,1,1,3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,1,1,3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −2 0
0 2 0 −2

−2 0 2 0
0 −2 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

4 1
0 1

⎤⎥
⎦

47

doi:10.6342/NTU201800930

𝑆4,2,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,2,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −2 0
−2 0 2 0
2 0 −2 0

−2 0 2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

2 1
0 2

⎤⎥
⎦

𝑆4,2,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ̂𝑆4,2,2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,P = ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

There is one important thing to notice. These 10 sub-bands do not cover

all patterns directly. For example,

P = ⎡⎢
⎣

2 0
0 2

⎤⎥
⎦

which is obviously a factor of N = ⎡⎢
⎣

4 0
0 4

⎤⎥
⎦
, is not in the sub-bands.

This does not happen in 1D. Recall that in 1D, all the factors of 𝑁 are

considered. The pattern can be detected, however, by finding LCM of

the peaks of 10 sub-bands.

3.3.2 2D LCM for Period Detection

Once the signal is decomposed into sub-band, the only job remains is

calculating the least common multiplier (LCM) of those periods, in order

to estimate the true period. In 1D, this calculation is trivial. However,

48

doi:10.6342/NTU201800930

in 2D the period is illustrated by 2 × 2 periodicity matrix, and the matrix
LCM is not an easy task. To solve this we let

P1 = ⎡⎢
⎣

𝑎1 𝑏1

0 𝑑1

⎤⎥
⎦

(3.75)

P2 = ⎡⎢
⎣

𝑎2 𝑏2

0 𝑑2

⎤⎥
⎦

(3.76)

throughout this section.

Recall that the least common multiple of P1 and P2 is the periodicity

matrix P with the smallest determinant such that P1X = P2Y = P for

some matrices X and Y. In other words,

⎡⎢
⎣

𝑎1 𝑏1

0 𝑑1

⎤⎥
⎦

⎡⎢
⎣

𝑎𝑥 𝑏𝑥

0 𝑑𝑥

⎤⎥
⎦

= ⎡⎢
⎣

𝑎2 𝑏2

0 𝑑2

⎤⎥
⎦

⎡⎢
⎣

𝑎𝑦 𝑏𝑦

0 𝑑𝑦

⎤⎥
⎦

(3.77)

= ⎡⎢
⎣

𝑎 𝑏
0 𝑑

⎤⎥
⎦

(3.78)

From (3.77) we can deduce

𝑎1𝑎𝑥 = 𝑎2𝑎𝑦 = 𝑎 (3.79)

𝑎1𝑏𝑥 + 𝑏1𝑑𝑥 = 𝑎2𝑏𝑦 + 𝑏2𝑑𝑦 = 𝑏 (3.80)

𝑑1𝑑𝑥 = 𝑑2𝑑𝑦 = 𝑑 (3.81)

Note that 𝑎, 𝑎𝑥 and 𝑎𝑦 only appear in (3.79). Tominimize 𝑎we can directly
choose

𝑎𝑥 = 𝑎2
gcd(𝑎1, 𝑎2) (3.82)

𝑎𝑦 = 𝑎1
gcd(𝑎1, 𝑎2) (3.83)

Equivalently, 𝑎 = lcm(𝑎1, 𝑎2) since 𝑎1𝑎2 = lcm(𝑎1, 𝑎2) ⋅ gcd(𝑎1, 𝑎2). On the

49

doi:10.6342/NTU201800930

other hand, from (3.81), however, we can not immediately set 𝑑𝑥 =
𝑑2/ gcd(𝑑1, 𝑑2) since it might controdict (3.80). To avoid this let

𝑑𝑥 = 𝑘 𝑑2
gcd(𝑑1, 𝑑2) (3.84)

𝑑𝑦 = 𝑘 𝑑1
gcd(𝑑1, 𝑑2) (3.85)

we should minimize 𝑘 to minimize 𝑑. To find the minimum of 𝑘 we rear-
range (3.80) as

𝑎1𝑏𝑥 − 𝑎2𝑏𝑦 = 𝑏2𝑑𝑦 − 𝑏1𝑑𝑥 (3.86)

= 𝑘𝑏2𝑑1 − 𝑏1𝑑2
gcd(𝑑1, 𝑑2) (3.87)

= 𝑘(𝑏2𝑞 − 𝑏1𝑝) (3.88)

where 𝑞 = 𝑑1/ gcd(𝑑1, 𝑑2) and 𝑝 = 𝑑2/ gcd(𝑑1, 𝑑2) are integers. The equation
above is solvable if and only if

𝑘(𝑏2𝑞 − 𝑏1𝑝) = 𝑡 ⋅ gcd(𝑎1, 𝑎2) (3.89)

for some integer 𝑡. Let 𝑠 = gcd(𝑎1, 𝑎2), the minimum 𝑘 is equal to

𝑘min = 𝑠
gcd(𝑠, 𝑏2𝑞 − 𝑏1𝑝) (3.90)

The proof is elementary. The term gcd(𝑠, 𝑏2𝑞 − 𝑏1𝑝) indicates the largest
divider of 𝑠 from which 𝑏2𝑞 − 𝑏1𝑝 can provide, and 𝑘 only has to provide
the rest, which is 𝑠/ gcd(𝑠, 𝑏2𝑞−𝑏1𝑝). For example let 𝑠 = 6 and 𝑏2𝑞−𝑏1𝑝 = 9,
since 𝑠 = 3 × 2 but 𝑏2𝑞 − 𝑏1𝑝 can only provide the factor 3, one can easily
check that minimum of 𝑘 satisfied (3.89) is 2.

Once 𝑘min is determined, by (3.85) we can obtain 𝑑𝑦 and then from

(3.81) we can obtain 𝑑. In order to calculate 𝑏, we first use (3.89) to

50

doi:10.6342/NTU201800930

calculate 𝑡. Then (3.88) becomes

𝑎1𝑏𝑥 − 𝑎2𝑏𝑦 = 𝑡 ⋅ gcd(𝑎1, 𝑎2) (3.91)

We can now use extended Euclidean algorithm [34] to obtain 𝑏′
𝑥 and 𝑏′

𝑦

such that

𝑎1𝑏′
𝑥 − 𝑎2𝑏′

𝑦 = gcd(𝑎1, 𝑎2) (3.92)

Finally 𝑏𝑥 = 𝑡 ⋅ 𝑏′
𝑥 and 𝑏𝑦 = 𝑡 ⋅ 𝑏′

𝑦 and by (3.80) 𝑏 is obtained.

The discussion above are summarized in the Algorithm 1.

Algorithm 1 Calculate the least common multiple of two periodicity
matrix.
Input:

P1 = [𝑎1 𝑏1
0 𝑑1

]

P2 = [𝑎2 𝑏2
0 𝑑2

]

Output:

P = [a b
0 d]

Such that P1X = P2Y = P for some matrices X and Y.
1: 𝑎 = lcm(𝑎1, 𝑎2) and let 𝑠 = gcd(𝑎1, 𝑎2), 𝑞 = 𝑑1/ gcd(𝑑1, 𝑑2), 𝑝 =

𝑑2/ gcd(𝑑1, 𝑑2);
2: calculate 𝑘 = 𝑘min from (3.90);
3: obtain 𝑑𝑦 from (3.85);
4: obtain 𝑑 from (3.81);
5: calculate 𝑡 by (3.89);
6: use extended Euclidean algorithm to obtain 𝑏′

𝑦 from (3.92)
7: 𝑏𝑦 = 𝑡𝑏′

𝑦;
8: obtain 𝑏 from (3.80), 𝑏 ≡ 𝑏 (mod 𝑎); return

P = [a b
0 d]

51

doi:10.6342/NTU201800930

We end this section by a concrete example. Let

P1 = ⎡⎢
⎣

4 3
0 6

⎤⎥
⎦

,P2 = ⎡⎢
⎣

6 1
0 3

⎤⎥
⎦

It follows that

𝑎 = lcm(4, 6) = 12

𝑠 = gcd(4, 6) = 2, 𝑞 = 6/ gcd(6, 3) = 2, 𝑝 = 3/ gcd(6, 3) = 1

𝑏2𝑞 − 𝑏1𝑝 = −1, 𝑘 = 2
gcd(2, −1) = 2

𝑑𝑦 = 𝑘 𝑑1
gcd(𝑑1, 𝑑2) = 26

3 = 4

𝑑 = 𝑑2𝑑𝑦 = 12

2 ⋅ (−1) = 2𝑡, 𝑡 = −1

4𝑏′
𝑥 − 6𝑏′

𝑦 = 2, 𝑏′
𝑥 = 2, 𝑏′

𝑦 = 1

𝑏𝑦 = 𝑡𝑏′
𝑦 = −1

𝑏 = 𝑎2𝑏𝑦 + 𝑏2𝑑𝑦

= 6 ⋅ (−1) + 1 ⋅ 4 = −2 = 10 (mod 𝑎)

Thus,

lcm (P1,P2) = ⎡⎢
⎣

12 10
0 12

⎤⎥
⎦

In order to prove that this is the common multiple with the smallest

determinant, assume there is a smaller one PG. Note that 𝑑1 = 6 so
𝑑 must greater or equal to 6. On the other hand 𝑎 = lcm(6, 4) = 12 is
already minimum. Thus, we can assume

PG = ⎡⎢
⎣

12 b
0 6

⎤⎥
⎦

52

doi:10.6342/NTU201800930

for some constant 𝑏, such that P1X = P2Y = PG, in other words

⎡⎢
⎣

4 3
0 6

⎤⎥
⎦

⎡⎢
⎣

3 𝑏𝑥

0 1
⎤⎥
⎦

= ⎡⎢
⎣

6 1
0 3

⎤⎥
⎦

⎡⎢
⎣

2 𝑏𝑦

0 2
⎤⎥
⎦

= ⎡⎢
⎣

12 𝑏
0 6

⎤⎥
⎦

This implies 𝑏 = 4𝑏𝑥 + 3 = 6𝑏𝑦 + 2. However, because 4𝑏𝑥 + 3 is odd and
6𝑏𝑦 + 2 is even, such 𝑏 does not exist. This completes the proof.

3.3.3 2D Period Detection Examples

A toy example of 6 × 6

First we will show a toy example of 6 × 6. The input signal we choose is

𝑋 =

8 1 3 5 4 9
3 5 4 9 8 1
4 9 8 1 3 5
8 1 3 5 4 9
3 5 4 9 8 1
4 9 7 1 3 6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.93)

The periodicity matrix is

P = ⎡⎢
⎣

3 2
0 2

⎤⎥
⎦

Note that we deliberately change two values of the last row 8 → 7 and
5 → 6 in order to demonstrate the robustness. To determine the period,
the first step is to decompose the input image 𝑋 into several periodic

53

doi:10.6342/NTU201800930

sub-band signals. The energy spectrum of 𝑋 is

|𝑋̂| ≃

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

180 2 0 2 0 2
0 2 0 2 0 2
0 53 0 2 45 2
0 2 0 2 0 2
0 2 45 2 0 53
0 2 0 2 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.94)

As we can see, those 2s in the above equation can be ignored by peak

finding, and the remaining parts can be mapping to 3 different sub-band

signals.

𝑆6,6,6,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.95)

𝑆6,2,1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.96)

54

doi:10.6342/NTU201800930

𝑆6,2,2,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.97)

Thus, the 3 corresponding periodicity matrices are

𝑆6,6,6,1 → ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

(3.98)

𝑆6,2,1,1 → ⎡⎢
⎣

3 2
0 2

⎤⎥
⎦

(3.99)

𝑆6,2,2,2 → ⎡⎢
⎣

3 1
0 1

⎤⎥
⎦

(3.100)

And finally the LCM of the above matrices is

⎡⎢
⎣

3 2
0 2

⎤⎥
⎦

(3.101)

as we expected.

In this toy example we just demonstrated the guideline of ourmethod.

However, when the image size gets larger and the noise level is higher,

it is difficult to determine the threshold that distinguish peaks or not.

There are two solutions for this problem. First recall that the DFT of 2D-

gcd-delta function is 2D version IIPF[25], we can use IIPF spectrum in

order to enhance the peak. Second, as a rule of thumb, the LCM of the

periodicity matrices is usually stable, which means if we sort the top 𝑘

55

doi:10.6342/NTU201800930

periodicity matrices (order bymagnitude), namelyP1,P2,P3, ...,Pk, then

B1 = P1 = Identity matrix (usually) (3.102)

B2 = LCM(P1,P2) = P2 (usually) (3.103)

B3 = LCM(P1,P2,P3) = LCM(B2,P3) (3.104)

B4 = LCM(P1, ...,P4) = LCM(B3,P4)... (3.105)

Bk = LCM(P1, ...,Pk) = LCM(Bk−1,Pk) (3.106)

The LCM chain B1, ...,Bk is stable means there is some 𝑗 such that Bj =
Bj+1 = Bj+2.... We suggest that use 𝑘 = 10 and look for 3 repeated B if

any.

Computer generated image

In this settings we generate a 48 × 48 binary image with the periodicity
matrix

P = ⎡⎢
⎣

4 1
0 3

⎤⎥
⎦

as Figure 3.3. In order to test the robustness, we randomly remove

some of the white pixels and obtain the input noisy image 𝐼(𝑛1, 𝑛2) as
Figure 3.4.

The first step is to decompose the input image 𝐼 into several periodic
subband signals ̂𝑆48,𝑑1,𝑑2,𝑡. To accomplish this we take 2D DFT to 𝐼, find
peaks in ̂𝐼 and then map those peaks to 𝑆48,𝑑1,𝑑2,𝑡. Recall that from [33]

there are 230 cyclic subgroups of 𝑍48 × 𝑍48. The corresponding magni-

tude of the spectrum is illustrated as Figure 3.5. Note that each index

at x-axis from 1 to 230 is actually mapping to a 𝑆48,𝑑1,𝑑2,𝑡 but does not

indicate the frequency. In the ideal case, the spectrum is sparse which

means there is only a few nonzero bins. However in our case since the

image is defected, there is some random noise shown in Figure 3.5.

56

doi:10.6342/NTU201800930

10 20 30 40

10

20

30

40

Figure 3.3: The original 2D Pattern

10 20 30 40

10

20

30

40

Figure 3.4: Some random removal from Figure 3.3

Nevertheless the noise is negligible for any peaks finding algorithm.

The second step is to calculate the periodicity matrix of each ̂𝑆48,𝑑1,𝑑2,𝑡.

In practice, the calculation can be saved by table lookup method. Those

relations can be precalculated if 𝑁 is fixed. In this example, the 6 peaks

from left to right are mapping to the following periodicity matrices

The left most one at 1: ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦
, the DC (3.107)

57

doi:10.6342/NTU201800930

0 50 100 150 200 250
0

500

1000

1500

2000

2500

Figure 3.5: Spectrum obtained from Figure 3.4

The second one at 9: ⎡⎢
⎣

1 0
0 3

⎤⎥
⎦

(3.108)

The third one at 199: ⎡⎢
⎣

4 3
0 1

⎤⎥
⎦

(3.109)

The fourth one at 204: ⎡⎢
⎣

4 1
0 3

⎤⎥
⎦
, the ground truth (3.110)

The fifth one at 227: ⎡⎢
⎣

2 1
0 3

⎤⎥
⎦

(3.111)

The right most one at 230: ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

(3.112)

The final step is to calculate the least commonmultiplier of the matrices

58

doi:10.6342/NTU201800930

above. The LCM is

P = ⎡⎢
⎣

4 1
0 3

⎤⎥
⎦

(3.113)

Since ⎡⎢
⎣

4 1
0 3

⎤⎥
⎦

= ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

⎡⎢
⎣

4 1
0 3

⎤⎥
⎦

(3.114)

= ⎡⎢
⎣

1 0
0 3

⎤⎥
⎦

⎡⎢
⎣

4 1
0 1

⎤⎥
⎦

(3.115)

= ⎡⎢
⎣

4 3
0 1

⎤⎥
⎦

⎡⎢
⎣

1 −2
0 3

⎤⎥
⎦

(3.116)

= ⎡⎢
⎣

2 1
0 3

⎤⎥
⎦

⎡⎢
⎣

2 0
0 1

⎤⎥
⎦

(3.117)

⎡⎢
⎣

4 1
0 3

⎤⎥
⎦

= ⎡⎢
⎣

4 5
0 3

⎤⎥
⎦

= ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

⎡⎢
⎣

2 1
0 3

⎤⎥
⎦

(3.118)

As we can see, although the ground truth period does not have the

maximum magnitude in the spectrum, it can be obtained by the LCM of

top 6 peaks. Furthermore, even we take wrong threshold and choose

only top 4 peaks at 1, 9, 199 and 230, the LCM is still the correct. It

means the LCM chain is stable from 4 to 6 and shows the robustness of

this proposed method.

After the correct period is obtained, several applications can be im-

mediately realized. For example, the original image can be recovered

be averaging or voting from the repeated patterns. The result can be

further used in image compression as we only use the periodicity matrix

and the basic pattern to generate the whole image.

The second experiment of the computer generated image can be

found from Figure 3.6 to Figure 3.9. The basic pattern in Figure 3.6 is

59

doi:10.6342/NTU201800930

Figure 3.6: The image is a combination of Chinese characters and En-
glish letters. The width is 60 pixels and the height is 20 pixels. The
meaning of those two Chinese characters is National Taiwan University
(NTU)

0

50

100

150

200

50 100 150 200

Figure 3.7: The 240x240 image repeating the Figure 3.6. The periodicity
matrix is given in the text. The red box indicates the basic pattern and
the direction of period

20x60 and the periodicity matrix in Figure 3.7 is

⎡⎢
⎣

20 5
0 60

⎤⎥
⎦

To test the robustness, additive white Gaussian noise (AWGN) with sig-

nal to noise ratio (SNR) 3db is added, as in the Figure 3.8 . The spectrum

is illustrated in Figure 3.9. Although the spectrum is not as clean as Fig-

ure 3.5, the peaks are still distinguishable. With the threshold 1000, the

60

doi:10.6342/NTU201800930

0

50

100

150

200

50 100 150 200

Figure 3.8: A 240x240 noisy image with the pattern in Figure 3.6. The
added noise is white Gaussian with SNR=3db

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

Figure 3.9: The spectrum from Figure 3.8. The first peak (DC) is not
shown because the value is too large.

following periodicity matrices are chosen, ordered by magnitude

⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 6

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 10

⎤⎥
⎦

, ⎡⎢
⎣

10 3
0 4

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 60

⎤⎥
⎦

,

⎡⎢
⎣

20 3
0 4

⎤⎥
⎦

, ⎡⎢
⎣

20 15
0 4

⎤⎥
⎦

, ⎡⎢
⎣

20 9
0 12

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 5

⎤⎥
⎦

One can easily check the LCM chain is stable from 6 to 8 and B6 = B7 =
B8 =

⎡⎢
⎣

20 5
0 60

⎤⎥
⎦

61

doi:10.6342/NTU201800930

as expected.

Real world image

In this experiment we use the artwork ”Pegasus” by the Dutch artist M.

C. Escher[35]. The image is cropped and downsampled to 192×192. The
length and width of the basic pattern, by observing the ”black Pegasus”

on the top left, is around 96 × 48 and the direction is about 𝜋
4 . Thus, the

ground truth of the periodicity matrix is

⎡⎢
⎣

96 48
0 48

⎤⎥
⎦

The number of cyclic subgroups of 𝑍192 ×𝑍192 is 950 and the correspond-

ing magnitude of the spectrum is illustrated as Figure 3.11. We do not

show the DC because the value is too large compared to others. Com-

pare Figure 3.11 and Figure 3.5 we can notice that the real world image

has much noise, but the peaks are still quite clear and distinguishable.

The 6 non-DC peaks represent

⎡⎢
⎣

96 1
0 1

⎤⎥
⎦

, ⎡⎢
⎣

96 93
0 1

⎤⎥
⎦

, ⎡⎢
⎣

32 31
0 1

⎤⎥
⎦

,

⎡⎢
⎣

32 1
0 3

⎤⎥
⎦

, ⎡⎢
⎣

96 91
0 2

⎤⎥
⎦

, ⎡⎢
⎣

64 42
0 1

⎤⎥
⎦

respectively. And the LCM chain B is

⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

, ⎡⎢
⎣

96 1
0 1

⎤⎥
⎦

, ⎡⎢
⎣

96 24
0 24

⎤⎥
⎦

, ⎡⎢
⎣

96 48
0 48

⎤⎥
⎦

,

⎡⎢
⎣

96 48
0 48

⎤⎥
⎦

, ⎡⎢
⎣

96 0
0 192

⎤⎥
⎦

, ⎡⎢
⎣

192 0
0 192

⎤⎥
⎦

62

doi:10.6342/NTU201800930

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

Figure 3.10: Pegasus, by M.C. Escher 1959. The image is cropped and
downsampled to 192×192. The red box indicates the approximated basic
pattern.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

Figure 3.11: The spectrum from Figure 3.10. The first peak (DC) is not
shown because the value is too large.

It does not repeat 3 times except N = ⎡⎢
⎣

192 0
0 192

⎤⎥
⎦
(the whole image).

So in this case we choose the matrix repeated twice B4 = B5, which is

exactly what we expected.

3.3.4 Discussion on Möbius Inversion in 2D

Recall that in 1D, the DFT of an impulse train with period 𝑑 is another
impulse train with period 𝑁

𝑑 . If we want to generalize the 1D result in

Equation (3.18) and Equation (3.24) into 2D, the 2D impulse train must

be defined. To simplify the notation, we do not use 𝑆𝑁,𝑑1,𝑑2,𝑡 for the 2D

63

doi:10.6342/NTU201800930

gcd-delta function. Instead, we use 𝑆𝑁,P for the 2D gcd-delta function,

where ̂𝑆𝑁,P has periodicity matrix P. We use the notation I for identity

matrix and N

N = ⎡⎢
⎣

𝑁 0
0 𝑁

⎤⎥
⎦

as before. The row representation P𝑡 is the same pattern as P, but the

matrix indicates the period from its row. For example, if

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

then

P = ⎡⎢
⎣

4 2
0 1

⎤⎥
⎦

,P𝑡 = ⎡⎢
⎣

2 1
0 2

⎤⎥
⎦

More precisely, the periodicity matrix suggests that

𝑋(⎡⎢
⎣

𝑛1

𝑛2

⎤⎥
⎦

) = 𝑋(⎡⎢
⎣

𝑛1

𝑛2

⎤⎥
⎦

+ P
⎡⎢
⎣

𝑚1

𝑚2

⎤⎥
⎦

)

and the row representation suggests that

𝑋([𝑛1, 𝑛2]) = 𝑋([𝑛1, 𝑛2] + [𝑚1, 𝑚2]P𝑡)

Note that the transpose of P is not necessarily equal to P𝑡. We can now

define impulse trains Π𝑁,P and discuss their properties.

Π𝑁,P(𝑛1, 𝑛2) =

⎧{{
⎨{{⎩

1, ⎡⎢
⎣

𝑛1

𝑛2

⎤⎥
⎦

= P
⎡⎢
⎣

𝑚1

𝑚2

⎤⎥
⎦
for some 𝑚1, 𝑚2

0, otherwise

(3.119)

64

doi:10.6342/NTU201800930

For example, if P = ⎡⎢
⎣

2 1
0 3

⎤⎥
⎦
,

Π6,P(𝑛1, 𝑛2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.120)

Like 1D impulse train, the DFT of 2D impulse train is another impulse

train. Let the periodicity matrix of the original impulse train be P and

the transformed impulse train be Q, then we have

Q𝑡P = N (3.121)

the proof is similar to 1D case so we omit it here. Take the matrix in

Equation (3.120) as example,

Π̂6,P(𝑘1, 𝑘2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 0 6 0 6 0
0 0 0 0 0 0
0 0 0 0 0 0
0 6 0 6 0 6
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.122)

whose periodicitymatrix is ⎡⎢
⎣

6 3
0 1

⎤⎥
⎦
and its row representation is ⎡⎢

⎣

3 1
0 2

⎤⎥
⎦
.

Obviously,

⎡⎢
⎣

3 1
0 2

⎤⎥
⎦

⎡⎢
⎣

2 1
0 3

⎤⎥
⎦

= ⎡⎢
⎣

6 6
0 6

⎤⎥
⎦

= ⎡⎢
⎣

6 0
0 6

⎤⎥
⎦

65

doi:10.6342/NTU201800930

Now we can describe the relation between 𝑆𝑁,P and Π𝑁,P

Π𝑁,P = ∑
Q|P

𝑆𝑁,Q𝑡 (3.123)

𝑆𝑁,Q = ∑
Q|P|N

𝜇(P
Q

)Π𝑁,P𝑡 (3.124)

where 𝜇 here is generalized Möbius function, with following recursive
definition.

∑
P|N

𝜇(P) =
⎧{
⎨{⎩

1, N = I

0, otherwise
(3.125)

The proof is exactly the same with 1D so we omit is here. Take Equa-

tion (3.120) as example, note that ⎡⎢
⎣

2 1
0 3

⎤⎥
⎦
has four factors

⎡⎢
⎣

2 1
0 3

⎤⎥
⎦

, ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 3

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

(3.126)

and their row representations are

⎡⎢
⎣

6 3
0 1

⎤⎥
⎦

, ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

, ⎡⎢
⎣

3 0
0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

(3.127)

Π6,P(𝑛1, 𝑛2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.128)

66

doi:10.6342/NTU201800930

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.129)

we can find the periodicity matrices of above 2D-gcd-delta are the same

as Equation (3.127). The inversion formula gives

𝑆6,Q(𝑛1, 𝑛2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.130)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.131)

as we can see, 2D-gcd-delta function is linear combination of impulse

train. Thus, the relation of Figure 3.2 still holds. One thing to remark is

that if P is not cyclic, the Möbius function may not only be 0, 1, −1. The

67

doi:10.6342/NTU201800930

minimum example of this is

P = ⎡⎢
⎣

2 0
0 2

⎤⎥
⎦

(3.132)

which has five factors

P1 = ⎡⎢
⎣

2 0
0 2

⎤⎥
⎦

,P2 = ⎡⎢
⎣

2 1
0 1

⎤⎥
⎦

,P3 = ⎡⎢
⎣

2 0
0 1

⎤⎥
⎦

,P4 = ⎡⎢
⎣

1 0
0 2

⎤⎥
⎦

,P5 = ⎡⎢
⎣

1 0
0 1

⎤⎥
⎦

(3.133)

As we can observe, P2, P3, P4 are not multiple to each other. Therefore,

the 𝐴 matrix like Equation (3.37) is given as

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

But 𝑀 = 𝐴−1, the Möbius matrix is

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is no longer a matrix with only 0, 1, −1.

To summarize, the 2D-gcd-delta function is still closely related to 2D

impulse train by generalized Möbius function. These functions can be

viewed as filterbank and applied to separate the signal into sub-period.

68

doi:10.6342/NTU201800930

The period detection is performed by calculating the LCM of those sub-

periods. We have given concrete examples from 6×6 toy matrix, to real
world image like [35]. But this method still has an issue. It assumes all

sub-periods are the factor of 𝑁 (1D case) or N (2D). We will find a way

to solve the issue in the next section.

69

doi:10.6342/NTU201800930

70

doi:10.6342/NTU201800930

Chapter 4

All phase FFT

This work is based on [36]. In this thesis, We use the concept but modify

the details.

4.1 Motivation

All phase FFT (apFFT)[36] uses the phase information to determinemore

accurate frequency. It has been successfully used in many areas such

as spectrum analysis, power management, radar singal processing and

microgridmonitoring[37, 38, 39, 40, 41, 42, 43]. In the traditional DFT, if

the signal length𝑁 is given, the frequencies can only be 𝑘 = 0, 1, 2, ..., 𝑁 −
1. As we have seen in Section 3.1, it will result in critical length prob-
lem. All phase FFT provides a method to calculate exact frequencies.

The concept is simple. It uses the difference of phase to estimate the

frequency. Recall that a continuous signal 𝑥(𝑡) with only one frequency
can be formulated as

𝑥(𝑡) = 𝑎𝑒𝑖(2𝜋𝑓𝑡+𝜙)

where 𝑎 > 0 indicates the amplitude, 𝑓 indicates the frequency and 𝜙 is
the phase of that signal 𝑥. To calculate the frequency 𝑓, we can sample
from two different time 𝑡1 and 𝑡2. The phase at each time ∠𝑥(𝑡𝑗) is 2𝜋𝑓𝑡𝑗+

71

doi:10.6342/NTU201800930

𝜙, 𝑗 = 1, 2. Therefore,

∠𝑥(𝑡2) − ∠𝑥(𝑡1) = 2𝜋𝑓(𝑡2 − 𝑡1) (4.1)

⇒𝑓 = ∠𝑥(𝑡2) − ∠𝑥(𝑡1)
2𝜋(𝑡2 − 𝑡1) (4.2)

Thus, 𝑓 can be determined by phase. When signal is discrete, the for-
mula is almost the same, and we can notice that this method is not

integer, so the critical length problem can be solved.

However, there are some problems on this method:

• What if there are multiple frequencies?

• 𝑥(𝑡) might be real, e.g. 𝑥(𝑡) = cos(2𝜋𝑓𝑡).

• The amplitude is not determined.

We will discuss how to deal with these problem in the next section.

4.2 Definition and Properties

The discrete apFFT algorithm is implemented by the Algorithm 2. In the

step 2 of the algorithm, a window function is used in order to reduce the

interference of other frequencies. In step 3, we take FFT of 𝑦. It means
the phase is obtained from frequency domain. Therefore, whether the

signal 𝑥 is real or complex, the phase can always be determined. In
step 5, we reconstruct the signal with accurate frequency to determine

the phase 𝜙, and further, use 𝑓 and 𝜙 to reconstruct again, to determine
the amplitude. Note that in the reconstruction, the same window func-

tion must be performed, otherwise the phase and amplitude will not be

accurate.

The main drawback of apFFT is that in step 4, local maximum must

be obtained. This will not only increase the computation time, but also

72

doi:10.6342/NTU201800930

cause somemistakes. In particular, if two frequencies are very closed to

each other, then local maximum finding may wrongly detect just one of

them. Moreover, although all phase FFT uses window function to avoid

interference or crosstalk between frequencies, the window bandwidth

is the bottleneck. If the distance between two frequencies are smaller

than the window bandwidth, then all phase FFT will fail. Nevertheless,

in most cases, the frequencies are located sparsely, so this may not be

an issue. Another property or disadvantage of all phase FFT is that the

Algorithm 2 All phase FFT
Input: Signal 𝑥 with length 𝑁 + 1, i.e. 𝑥(𝑛) with 𝑛 = 0, 1, 2, ..., 𝑁 .
Output: 𝑎𝑗, 𝑓𝑗, 𝜙𝑗 such that

𝑥(𝑛) = ∑
𝑗

𝑎𝑗𝑒𝑖(2𝜋𝑓𝑗𝑛
𝑁 +𝜙𝑗)

1: Let 𝑥1(𝑛) = 𝑥(𝑛), 𝑛 = 0, 1, 2, ..., 𝑁 − 1, 𝑥2 = 𝑥(𝑛), 𝑛 = 1, 2, 3, ..., 𝑁 ;
2: Take a window function ℎ(𝑛), such as Hamming window or Blackman
window, calculate 𝑦1(𝑛) = ℎ(𝑛)𝑥1(𝑛), 𝑦2(𝑛) = ℎ(𝑛)𝑥2(𝑛);

3: Take 𝑁 point FFT on 𝑦1 and 𝑦2;
4: Find peaks on | ̂𝑦1(𝑘)|, let the index of these maximum be 𝑘∗

𝑗;
5: For each 𝑗:

𝑓𝑗 = 𝑁(∠ ̂𝑦2(𝑘∗
𝑗) − ∠ ̂𝑦1(𝑘∗

𝑗))
2𝜋 (4.3)

𝑧𝑗 = ℎ(𝑛)𝑒𝑖2𝜋𝑓𝑗𝑛 (4.4)
𝜙𝑗 = ∠ ̂𝑦1(𝑘∗

𝑗) − ∠ ̂𝑧𝑗(𝑘∗
𝑗) (4.5)

𝑟𝑗 = ℎ(𝑛)𝑒𝑖(2𝜋𝑓𝑗𝑛+𝜙𝑗) (4.6)

𝑎𝑗 = | ̂𝑦2(𝑘∗
𝑗)

̂𝑟𝑗(𝑘∗
𝑗) | (4.7)

return 𝑎𝑗, 𝑓𝑗, 𝜙𝑗

separated signals are not orthogonal. Recall that in standard IFFT

𝑥(𝑛) = ∑
𝑘

̂𝑥(𝑘)𝑊 𝑛𝑘

whichmeans the signal is separated into𝑁 sub-bands. Those sub-bands

𝑊 𝑛𝑘 are orthogonal to each other because 𝑘 is an integer. However, if

73

doi:10.6342/NTU201800930

a signal is separated into

𝑥(𝑛) = 3𝑒2𝜋𝑖𝑛
√

2
𝑁 + 𝑒2𝜋𝑖𝑛

√
5

𝑁

one can easily check the inner product of two sub-bands will not equal

to zero for any length 𝑁 .

Remark: Algorithm 2 has one main difference with [36]. We use 𝑁 +1
points instead of 2𝑁 − 1. This will reduce some accuracy because the
input information is less, but the latency will also be reduced.

We now provide a concrete example to see how Algorithm 2 works.

Let 𝑁 = 200, and the input signal 𝑥 is

𝑥(𝑛) =
3

∑
𝑘=1

𝑎𝑘𝑒𝑖(2𝜋𝑓𝑘𝑛
𝑁 +𝜙𝑘) (4.8)

where

𝑓1 = 12.5781, 𝑓2 = 32.4147, 𝑓3 = 49.377

𝑎1 = 2.3, 𝑎2 = 1.7, 𝑎3 = 4.2

𝜙1 = 𝜋
3 , 𝜙2 = 𝜋

8 , 𝜙3 = 11𝜋
15

Figure 4.1: The real part of 𝑥 in Equation (4.8)

74

doi:10.6342/NTU201800930

Figure 4.2: The power spectrum of 𝑥 in Equation (4.8), where window is
not performed.

Figure 4.3: The power spectrum of 𝑥 in Equation (4.8), where window is
performed.

The real part of this signal is illustrated in Figure 4.1. If we perform

DFT directly, as Figure 4.2, we can see the power leakages of these

three signals. In Figure 4.3, where Blackman window is performed, the

spectrum is simpler. This can be very helpful for the next step, peak

finding. After finding the peaks, the phases at those peaks can be found.

75

doi:10.6342/NTU201800930

The phases of first part (𝑥(𝑛), 𝑛 = 0, 1, 2, ...199) are

𝑝1 = [−0.27163, 1.68897, −2.80091]

And the second part (𝑥(𝑛), 𝑛 = 1, 1, 2, ...200)

𝑝2 = [0.12353, 2.70731, −1.24968]

So the estimated frequencies are

(𝑝2 − 𝑝1) × 𝑁
2𝜋 = [12.578289, 32.414725, 49.377016]

As we can see, the errors are very small. Once the frequencies are

determined, the phases and amplitudes can be calculated easily.

𝜙 = [1.0465935, 0.39259048, 2.3037725], 𝑎 = [2.2998256, 1.7000168, 4.2000321]

All of the errors are less than 10−4.

4.3 Applications of apFFT

4.3.1 Determine the proper frequency for period es-

timation

In this section, we will demonstrate how to use all phase FFT to enhance

the period estimation. We give a toy example first. Let 𝑁 = 100 and

𝑥 = [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, ...,]

76

doi:10.6342/NTU201800930

Note that the signal 𝑥 has period 7 which is not a factor of 𝑁 . After
apFFT, the frequencies are

𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
14.285722
28.571754
42.857115
57.142885
71.428246
85.714278

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Although 𝑓 is not an integer vector, we can find𝑁/𝑓 (ignore the DC term)

𝑁
𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.9999961
3.4999601
2.3333349
1.7499991
1.4000064
1.1666668

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can notice that the first one is very close to the true period 7. In
fact, the values are close to

𝑁
𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7
7/2
7/3
7/4
7/5
7/6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It means 𝑓 contains many harmonic frequencies, with fundamental fre-
quency 𝑓0 = 14.2857. The integer period can be found easily by using

77

doi:10.6342/NTU201800930

𝑁/𝑓0. Furthermore, we can use the period 𝑝 to truncate the original sig-
nal. In this example, the largest number below 𝑁 = 100 which is multiple
of 7 is 98, so we can reduce the length into 98 and perform other pro-

cessing. This is very useful when 𝑝 is not prime number, which means
there might be sub-periods in the signal. Once the length is reduced to

the proper length, all methods in Chapter 3 can be applied.

Next, we provide a more realistic example. Suppose a given signal 𝑥
in Figure 4.4, which is a periodic function with noise. The length 𝑁 = 483
and the period 𝑝 = 103. The first few frequencies apFFT obtain are

𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.6891 ≈ 𝑁𝑝

14.0696 ≈ 3𝑁𝑝

23.4459 ≈ 5𝑁𝑝

32.8236 ≈ 7𝑁𝑝

42.2038 ≈ 9𝑁𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that in this signal, only odd harmonic exists. The reason is this

signal is almost a odd signal.

Figure 4.4: The step function with noise

78

doi:10.6342/NTU201800930

4.3.2 1D/2D frequency estimation

In this section we will provide a fast way to estimate the frequency from

a 2D signal by using two 1D apFFT. The concept is very simple. Since

the apFFT uses phase information to estimate frequency, we can use it

again on another dimension. To illustrate the idea, let

𝑋(𝑛1, 𝑛2) = ∑
𝑘

𝑎𝑘𝑒𝑖2𝜋(𝑓𝑘𝑛1+ℎ𝑘𝑛2
𝑁 +𝜙𝑘)

where 𝑓𝑘 is the frequency on the first dimension, and ℎ𝑘 is on the second.

Now let

𝑥1 = 𝑋(𝑛1, 𝑚), 𝑥2 = 𝑋(𝑛1, 𝑚 + 1)

for some fixed𝑚. And by using all phase FFT, the estimated frequencies,
amplitudes and phases from 𝑥1 are

[𝑓𝑥1
, 𝑎𝑥1

, 𝜙𝑥1
] = [𝑓𝑘, 𝑎𝑘, (2𝜋ℎ𝑘𝑚

𝑁 + 𝜙𝑘)]

Similarly, the estimated frequencies, amplitudes and phases from 𝑥2 are

[𝑓𝑥2
, 𝑎𝑥2

, 𝜙𝑥2
] = [𝑓𝑘, 𝑎𝑘, (2𝜋ℎ𝑘(𝑚 + 1)

𝑁 + 𝜙𝑘)]

Note that 𝑓𝑥2
and 𝑎𝑥2

are actually redundant. By

𝜙𝑥2
− 𝜙𝑥1

= 2𝜋ℎ𝑘
𝑁

We can obtain the frequencies on the second dimension. Once 𝑓𝑘, 𝑎𝑘,

ℎ𝑘 are found, we can further calculate 𝜙𝑘 like 1D case.

The advantage of the proposedmethod is lower complexity. Only two

rows or columns are used, so the complexity of frequency estimation is

𝑂(𝑁 log 𝑁) instead of 𝑂(𝑁2 log 𝑁). The drawback of this method is the
assumption that 𝑓𝑘 and ℎ𝑘 are sparse and not very close to each other.

79

doi:10.6342/NTU201800930

Recall that all phase FFT use window function and take local maximum,

and it will fail if two frequencies are near.

Figure 4.5: 2D signal with two frequencies

We use the following signal as example.

𝑋 = 𝑒𝑖2𝜋(𝑓1𝑛1+𝑓2𝑛2
𝑁) + 2𝑒𝑖2𝜋(𝑓3𝑛1+𝑓4𝑛2

𝑁)

where

𝑓1 = 12.531; 𝑓2 = 14.196; 𝑓3 = 35.981; 𝑓4 = 33.52;

The real part of this signal is given in Figure 4.5. Note that 𝑓1 and 𝑓2 can

be near since they are on different dimensions. By all phase FFT, the

estimated frequencies on 𝑛1 are

12.53103; 35.98102

which is very good approximation of 𝑓1 and 𝑓3. The frequencies on 𝑛2

are

14.20639; 33.52696

80

doi:10.6342/NTU201800930

As we can see, this result is still acceptable, but not as good as the esti-

mations on 𝑛1. This is not surprising because we only take two samples

on this dimension. Another reason is error propagation. The phase es-

timation on 𝑛1 already induce some error, and we use the result from

it. Nevertheless, consider we only use 1D all phase FFT twice, instead

of 2D FFT, this result might have potential on mobile device, where the

computation power is limited.

4.3.3 Chirp rate tracking

In this section we use all phase FFT to trace the frequency of a chirp

signal. Since the frequency is not represented by integer, the slope can

be more accurate. The chirp signal we use in this section is

𝑐(𝑛) = ∑
𝑘

𝑎𝑘𝑒𝑖2𝜋 𝛼𝑘𝑛2+𝑓𝑘𝑛
𝐿

where 𝛼𝑘 is the chirp rate and 𝑓𝑘 is the based frequency. To trace the

varying frequency, we use sliding window and select only 𝑁 + 1 points
on 𝑐(𝑛). In other words,

𝑥𝑚(𝑛) = 𝑐(𝑚 + 𝑛)

where 𝑛 = 0, 1, 2, ..., 𝑁 . In practice, 𝑚 is moving half of the window size

𝑁 . For example, if 𝑁 = 200, we will take 𝑥0, 𝑥100, 𝑥200, ... as the input. All
phase FFT will apply to each 𝑥𝑗 to get the instantaneous frequency. The

time-frequency plane will look like Figure 4.6. This signal is

𝑐(𝑛) = 𝑒(0.01𝑛2+200𝑛) 𝑖2𝜋
4000 + 2𝑒(−0.01𝑛2+560𝑛) 𝑖2𝜋

4000

As we can see, the frequencies are traced well. Recall that all phase FFT

already chooses local peaks, so on the time-frequency plane only two

lines are shown. Other methods, such as short-time Fourier transform,

81

doi:10.6342/NTU201800930

will produce two lines with thin width. The drawback of this method is

when two chirp come across, it will fail at the crossing area. As shown in

Figure 4.7, where 𝛼1 = 0.1 and 𝛼2 = −0.05 with the same other settings,
the first chirp (𝛼1, red) is affected when the second is near. This makes

sense because of the crosstalk.

Figure 4.6: Signal with two chirp rate, represented in time-frequency

plane by all phase FFT. Red:𝛼1 = 0.01,Blue:𝛼2 = −0.01 Details are referred
to the text.

Figure 4.7: Signal with two chirp rate, represented in time-frequency

plane by all phase FFT. Red:𝛼1 = 0.1,Blue:𝛼2 = −0.05. The red chirp is
affected when blue is near.

82

doi:10.6342/NTU201800930

4.3.4 Sparse FFT and Signal reconstruction

This concept of sparse FFT[44, 45] can be simplified as follows:

• Detect a band where a frequency exists.

• Apply a band pass filter and estimate that frequency easily.

• Eliminate the estimated signal.

• Loop the process above until the remaining signal is too small.

We can find apFFT is very similar to sparse FFT. First of all, finding the

local peaks can be viewed as frequency detection. Secondly, the fre-

quency estimation is simple. Finally, both of them assume the frequen-

cies are sparse and far away. Therefore, we can apply a technique from

sparse FFT to further enhance all phase FFT. The trick is called coprime

downsampling, which often used for fast detection. Let 𝑥 be a signal
with length 𝑁 . 𝑝 and 𝑞 are two integer where gcd(𝑝, 𝑞) = 1. The down-
sampled signals

𝑥𝑝(𝑛) = 𝑥(𝑛𝑝), 𝑥𝑞(𝑛) = 𝑥(𝑞𝑛)

Note that 𝑥𝑝 and 𝑥𝑞 have length 𝑁𝑝 and 𝑁𝑞 respectively. Because down-

sampling induce aliasing, the frequency 𝑓𝑝 calculated by 𝑥𝑝, might come

from

𝑓𝑡 = 𝑓𝑝, 𝑓𝑝 + 𝑁
𝑝 , 𝑓𝑝 + 2𝑁

𝑝 , ...

where 𝑓𝑡 is the true frequency of 𝑥. Similarly,

𝑓𝑡 = 𝑓𝑞, 𝑓𝑞 + 𝑁
𝑞 , 𝑓𝑞 + 2𝑁

𝑞 , ...

The intersection of the two set {𝑓𝑝, 𝑓𝑝 + 𝑁𝑝 , 𝑓𝑝 + 2𝑁𝑝 , ...} and {𝑓𝑝, 𝑓𝑝 + 𝑁𝑝 , 𝑓𝑝 +
2𝑁𝑝 , ...} is the true frequency. The motivation of this method is we can
use fewer sampling points and thus, reduce the complexity. However,

if 𝑁𝑝 is not an integer, traditional frequency finding method will wrongly

83

doi:10.6342/NTU201800930

estimate 𝑓𝑝. Luckily, all phase FFT can solve this easily. Moreover, the

true frequency 𝑓𝑡 might not be integer, either. This shows the advantage

of apFFT.

To illustrate the idea, let 𝑁 = 1000, 𝑝 = 17 and 𝑞 = 23. The signal is

𝑥(𝑛) = 𝑒𝑖2𝜋 𝑓1𝑛
𝑁 + 2𝑒𝑖2𝜋 𝑓2𝑛

𝑁

where 𝑓1 = 855.77 and 𝑓2 = 310.431. The signal 𝑥𝑝, which is 𝑥 downsam-
pled by 𝑝, has length 𝑁/𝑝 ≈ 59. Similarly the length of 𝑥𝑞 is only 43. The
apFFT gives

𝑓𝑝 = [16.313, 32.240]

𝑓𝑞 = [6.0832, 29.6831]

Note that

𝑓𝑝(1) + 5𝑁
𝑝 = 16.313 + 5000/17 ≈ 310.431 = 𝑓2

𝑓𝑝(2) + 14𝑁
𝑝 = 32.24 + 14000/17 ≈ 855.77 = 𝑓1

𝑓𝑞(1) + 7𝑁
𝑞 = 6.0832 + 5000/23 ≈ 310.431 = 𝑓2

𝑓𝑞(2) + 19𝑁
𝑝 = 29.6831 + 19000/23 ≈ 855.77 = 𝑓1

As we can observe, although we just use 59 + 43 = 102 points, which is
1/10 of 𝑁 , the frequencies can still be estimated accurately.

The main difference of sparse FFT and all phase FFT is orthogonality.

The sparse FFT can detect, estimate and reconstruct the frequencies

recursively. More precisely in sparse FFT, if 𝑎𝑘, 𝑓𝑘, 𝜙𝑘 is detected, we can

eliminate that frequency.

𝑥𝑟(𝑛) = 𝑥(𝑛) − 𝑎𝑘𝑒𝑖(2𝜋
𝑁 𝑓𝑘𝑛+𝜙𝑘) (4.9)

84

doi:10.6342/NTU201800930

where 𝑥𝑟 is the remaining signal. However, for all phase FFT, each 𝑓𝑘 is

not orthogonal. Eliminating one frequency may affect another. To solve

this problem, we propose a band elimination method. To simplify the

problem we consider a single frequency signal. Let

𝑥(𝑛) = 𝑒𝑖(2𝜋
𝑁 𝑓𝑛 (4.10)

The DFT of 𝑥 is

̂𝑥(𝑘) =
𝑁−1
∑
𝑘=0

𝑥(𝑛)𝑊 𝑛𝑘 (4.11)

=
𝑁−1
∑
𝑘=0

𝑒𝑖(2𝜋
𝑁 (𝑓−𝑘)𝑛 (4.12)

= 1 − 𝑒𝑖2𝜋(𝑓−𝑘)

1 − 𝑒𝑖2𝜋 (𝑓−𝑘)
𝑁

(4.13)

= 𝑒𝑖𝜋(𝑓−𝑘) 𝑁−1
𝑁

sin(𝜋(𝑓 − 𝑘))
sin(𝜋 𝑓−𝑘

𝑁) (4.14)

In other words, when 𝑓 is determined, the frequency response of all 𝑘
can be represented in closed form. Therefore, when we eliminate the

frequency with non integer 𝑓, we can actually remove several 𝑘 near
𝑓. For example, let 𝑁 = 1000 and 𝑓 = 855.77. The frequency response
near 850 is illustrated in Figure 4.8. As we can see, the decay is very
fast. In practice, we remove the part between 850 and 860. Since the
frequencies we remove are now integer, the orthogonality is preserved.

85

doi:10.6342/NTU201800930

Figure 4.8: Absolute value of ̂𝑥, where 𝑥 is given in Equation (4.10),
𝑓 = 855.77. The decay is very fast near 850.

86

doi:10.6342/NTU201800930

Chapter 5

Conclusion

In this thesis we review the Ramanujan’s sum and propose two appli-

cations. The first application is integer zero autocorrelation (integer

ZAC) sequence construction. This takes advantage of the integer prop-

erty of Ramanujan’s sum. The construction becomes much simpler in

frequency domain. We also review and propose some other methods

such as Legendre sequence and Gauss sum for prime length. Ramanu-

jan’s sum method can be viewed as complement for composite length.

Therefore, integer ZAC for arbitrary length has been solved.

The second application is 1D and 2D period estimation. Two dimen-

sional period estimation is a hard problem since it has three parame-

ters to determine: length, width and direction, unlike 1D periodic signal

which has only one period parameter. We have defined 2D Ramanu-

jan’sum and discussed their period. The signal is then separated into

sub-period signals. We also introduce 2D Least common multiplier (2D

LCM) for period estimation. Concrete examples are provided.

Finally, to handle the problem that the period might not be a fac-

tor of given signal length, we review the all phase FFT. This algorithm

use phase information to estimate frequency so the result can be non

integer. The period can be estimate accurately by the inverse of fun-

demental frequency. We also propose some other applications of all

87

doi:10.6342/NTU201800930

phase FFT, such as chirp signal pitch tracking and fast 2D frequency

estimation.

88

doi:10.6342/NTU201800930

Bibliography

[1] Srinivasa Ramanujan. On certain trigonometrical sums and their

applications in the theory of numbers. Trans. Cambridge Philos.

Soc, 22(13):259–276, 1918.

[2] Michel Planat, Milan Minarovjech, and Metod Saniga. Ramanujan

sums analysis of long-period sequences and 1/f noise. EPL (Euro-

physics Letters), 85(4):40005, 2009.

[3] Changchuan Yin, Xuemeng E Yin, and Jiasong Wang. A novel

method for comparative analysis of DNA sequences by ramanujan-

fourier transform. Journal of Computational Biology, 21(12):867–

879, 2014.

[4] Wei Hua, Jiasong Wang, and Jian Zhao. Discrete ramanujan trans-

form for distinguishing the protein coding regions from other re-

gions. Molecular and cellular probes, 28(5):228–236, 2014.

[5] E. Carni and A. Spalvieri. Synchronous cdma based on the cyclical

translations of a cazac sequence. IEEE Transactions on Wireless

Communications, 8(3):1144–1147, March 2009.

[6] Ho-Hsuan Chang, Shieh-Chiang Lin, and Chong-Dao Lee. A cdma

scheme based on perfect gaussian integer sequences. AEU - Inter-

national Journal of Electronics and Communications, 75:70 – 81,

2017.

89

doi:10.6342/NTU201800930

[7] S. F. A. Shah and A. H. Tewfik. Perfectly balanced binary sequences

with optimal autocorrelation. In 2007 14th IEEE International Con-

ference on Electronics, Circuits and Systems, pages 681–684, Dec

2007.

[8] J.J. Benedetto, I. Konstantinidis, and M. Rangaswamy. Phase-coded

waveforms and their design. Signal Processing Magazine, IEEE,

26(1):22–31, Jan 2009.

[9] Joseph H Silverman and John Torrence Tate. Rational points on el-

liptic curves, volume 9. Springer, 1992.

[10] Neal I Koblitz. Introduction to elliptic curves and modular forms,

volume 97. Springer Science & Business Media, 2012.

[11] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryp-

tography, volume 265. Cambridge university press, 1999.

[12] K. J. Chang and H. H. Chang. Perfect gaussian integer sequences of

period 𝑝𝑘 with degrees equal to or less than 𝑘+1. IEEE Transactions
on Communications, 65(9):3723–3733, Sept 2017.

[13] Soo-Chang Pei and Kuo-Wei Chang. On integer-valued zero auto-

correlation sequences. In Signal and Information Processing Asso-

ciation Annual Summit and Conference (APSIPA), 2013 Asia-Pacific,

pages 1–4, Oct 2013.

[14] Soo-Chang Pei and Kuo-Wei Chang. Perfect gaussian integer se-

quences of arbitrary length. Signal Processing Letters, IEEE,

22(8):1040–1044, Aug 2015.

[15] Godfrey Harold Hardy and Edward MaitlandWright. An introduction

to the theory of numbers. Oxford university press, 1979.

90

doi:10.6342/NTU201800930

[16] L-K Hua. Introduction to number theory. Springer Science & Busi-

ness Media, 2012.

[17] MR Schroeder. Number theory in science and communications,

2nd, 1986.

[18] Soo-Chang Pei, Chia-Chang Wen, and Jian-Jiun Ding. Closed-form

orthogonal dft eigenvectors generated by complete generalized

legendre sequence. IEEE Transactions on Circuits and Systems I:

Regular Papers, 55(11):3469–3479, 2008.

[19] P. P. Vaidyanathan and P. Pal. The farey-dictionary for sparse rep-

resentation of periodic signals. In 2014 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pages

360–364, May 2014.

[20] P.P. Vaidyanathan. Ramanujan Sums in the Context of Signal

Processing-Part I: Fundamentals. Signal Processing, IEEE Transac-

tions on, 62(16):4145–4157, Aug 2014.

[21] P.P. Vaidyanathan. Ramanujan Sums in the Context of Signal

Processing-Part II: FIR Representations and Applications. Signal

Processing, IEEE Transactions on, 62(16):4158–4172, Aug 2014.

[22] P.P. Vaidyanathan. Ramanujan-sum expansions for finite dura-

tion (fir) sequences. In Acoustics, Speech and Signal Process-

ing (ICASSP), 2014 IEEE International Conference on, pages 4933–

4937, May 2014.

[23] S. V. Tenneti and P. P. Vaidyanathan. Nested periodic matrices

and dictionaries: New signal representations for period estima-

tion. IEEE Transactions on Signal Processing, 63(14):3736–3750,

July 2015.

91

doi:10.6342/NTU201800930

[24] S. V. Tenneti and P. P. Vaidyanathan. A unified theory of union

of subspaces representations for period estimation. IEEE Transac-

tions on Signal Processing, 64(20):5217–5231, Oct 2016.

[25] S. C. Pei and K. S. Lu. Intrinsic integer-periodic functions for discrete

periodicity detection. IEEE Signal Processing Letters, 22(8):1108–

1112, Aug 2015.

[26] S. Deng and J. Han. Signal periodic decomposition with conjugate

subspaces. IEEE Transactions on Signal Processing, PP(99):1–1,

2016.

[27] S. V. Tenneti and P. P. Vaidyanathan. Critical data length for period

estimation. In 2016 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1226–1229, May 2016.

[28] P. P. Vaidyanathan and S. Tenneti. Efficientmultiplier-less structures

for ramanujan filter banks. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6458–

6462, March 2017.

[29] J. Cassels. An Introduction to the Geometry of Numbers. Springer-

Verlag, 1971.

[30] J. Kovacevic and M. Vetterli. The commutativity of

up/downsampling in two dimensions. IEEE Transactions on

Information Theory, 37(3):695–698, May 1991.

[31] Soo-Chang Pei and Kuo-Wei Chang. Integer 2-d discrete fourier

transform pairs and eigenvectors using ramanujan¡¦s sum. IEEE

Signal Processing Letters, 23(1):70–74, 2016.

[32] Soo-Chang Pei and Kuo-Wei Chang. Two-dimensional period esti-

mation by ramanujan’s sum. IEEE Transactions on Signal Process-

ing, 65(19):5108–5120, 2017.

92

doi:10.6342/NTU201800930

[33] Mario Hampejs, Nicki Holighaus, László Tóth, and Christoph Wies-

meyr. Representing and counting the subgroups of the group

𝑍𝑚 × 𝑍𝑛. Journal of Numbers, 2014.

[34] Henri Cohen. A Course in Computational Algebraic Number Theory.

New York: Springer-Verlag, 1993.

[35] M.C. Escher. Pegasus, 1959.

[36] Huang Xiaohong, Wang Zhaohua, and Chou Guoqiang. New

method of estimation of phase, amplitude, and frequency based

on all phase fft spectrum analysis. In 2007 International Sympo-

sium on Intelligent Signal Processing and Communication Systems,

pages 284–287, Nov 2007.

[37] X. Lu and Y. Zhang. Phase detection algorithm and precision analy-

sis based on all phase fft. In International Conference on Automatic

Control and Artificial Intelligence (ACAI 2012), pages 1564–1567,

March 2012.

[38] Z. Yonghui, C. Xi, and Z. Xiyuan. Power harmonic analysis based

on all-phase fft1. In 2010 2nd International Conference on Signal

Processing Systems, volume 3, pages V3–576–V3–579, July 2010.

[39] D. Zhang and P. Le. Application of modified all-phase fft to extract

signals in microgrid for condition monitoring and control purposes.

In 2015 Australasian Universities Power Engineering Conference

(AUPEC), pages 1–5, Sept 2015.

[40] Si Wei Tan, Zhi Liang Ren, and Jiong Sun. Parameter estimation

of low-frequency signal with negative frequency contribution. In

Vehicle, Mechatronics and Information Technologies, volume 380

of Applied Mechanics and Materials, pages 3457–3460. Trans Tech

Publications, 11 2013.

93

doi:10.6342/NTU201800930

[41] A. Boughambouz, A. Bellabas, B. Magaz, T. Menni, and M. E. M.

Abdelaziz. Improvement of radar signal phase extraction using all

phase fft spectrum analysis. In 2017 Seminar on Detection Sys-

tems Architectures and Technologies (DAT), pages 1–4, Feb 2017.

[42] G. Yang, J. Tian, S. Wu, and S. L. Wu. A novel frequency discrimi-

nation method based on all phase fft for anti-towed decoy. In IET

International Radar Conference 2015, pages 1–7, Oct 2015.

[43] W. Lv, C. Shen, F. Gui, Z. Tian, and D. Jiang. Real-time spec-

trum analyzer based on all phase fft spectrum analysis. In 2013

Fourth International Conference on Digital Manufacturing Automa-

tion, pages 966–969, June 2013.

[44] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple

and practical algorithm for sparse fourier transform. In Proceed-

ings of the twenty-third annual ACM-SIAM symposium on Discrete

Algorithms, pages 1183–1194. Society for Industrial and Applied

Mathematics, 2012.

[45] S. H. Hsieh, C. S. Lu, and S. C. Pei. Sparse fast fourier transform by

downsampling. In 2013 IEEE International Conference on Acous-

tics, Speech and Signal Processing, pages 5637–5641, May 2013.

94

