
doi:10.6342/NTU201802030

國立臺灣大學電機資訊學院電機工程學系

碩士論文
Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

基於視覺之使用者界面分割演算法

Vision Based User Interface Segmentation Algorithm

陳奕安

Yi-An Chen

指導教授：王勝德博士

Advisor: Sheng-De Wang, Ph.D.

中華民國 107年 7月
July, 2018

doi:10.6342/NTU201802030

ii

doi:10.6342/NTU201802030

誌謝

論文得以順利完成，最先要感謝的是指導教授王勝德教授，在學術思想與邏輯上

給了我相當大的啟發，沒有您悉心的指導，就沒有這篇論文的誕生；同時也要感

謝口試委員雷欽隆教授、王鈺強教授、曾俊元教授精闢的見解，使論文更趨完善，

在此敬申謝意。

在這段既艱辛又滿足的學術道路上，要感謝各位學長姊、同儕與學弟妹與摯友

們：同實驗室的哲賢、冠廷，一同修課的方為、恩宇、彥鈞，同在研究所奮鬥、

準備出國唸書與正在國外奮鬥的韻竹、佳蒨、恩禾、佳軒、子睿、秉民…等大學

相識的夥伴們。因為有您們的鼎力相助，這篇論文才能完成。

最後，感謝我的父母與妹妹，是我在遭遇挫折時的避風港，您們的一路相挺與

無私付出，使我沒有後顧之憂，得以專心求學，順利取得學位。

碩士生涯告一段落，隨之而來的是更大、更艱鉅的挑戰。請容許我貪心的期

望，未來的日子中，希望還能有您們的支持與鼓勵，有您們在，我就能更堅定的

走下去！

iii

doi:10.6342/NTU201802030

iv

doi:10.6342/NTU201802030

摘要

圖像分割廣泛的被應用於將視覺表現不同的資訊區隔出來。然而，

在使用者界面相關的研究領域，不同使用環境發展出不同的演算法。

本篇論文中，我們提出一個統合的、基於視覺的使用者界面分割演算

法，能利用使用者界面的截圖即能計算其架構資訊。此演算法首先利

用邊緣偵測以及一些定義好的邏輯偵測出使用者界面上的基本元素：

方塊、線段、以及圖形輪廓。接著，我們定義一個計算兩元素距離的

函數以及一個閥值選擇演算法來進行階層式分群。我們將此演算法運

行在網頁界面以及手機應用程式上來評估其性能，並分析評估過程中

演算法常見的缺失。

關鍵字： 影像分割、使用者界面、人機界面、文件分析、跨平台整合

v

doi:10.6342/NTU201802030

vi

doi:10.6342/NTU201802030

Abstract

Segmentation is used broadly to differentiate the presentation of different

kinds of information. However, methods on different user interface environ-

ments tend to develop their own algorithms for this process. In this paper, we

propose a unified vision-based segmentation algorithm, called UISeg, that

only uses screenshots to estimate structural information of the user interface.

The algorithm first leverages edge detection and a set of heuristics to recog-

nize discrete elements such as boxes, lines, and contours. Then, we define

a pairwise distance function and a threshold selection algorithm for the hi-

erarchical clustering process. We evaluate the performance of UISeg with

screenshots of web pages and mobile applications. Also, we analyze com-

mon failure cases among them.

Keywords: segmentation, user interface, human–computer interaction, doc-

ument analysis, cross-platform integration

vii

doi:10.6342/NTU201802030

viii

doi:10.6342/NTU201802030

Contents

誌謝 iii

摘要 v

Abstract vii

1 Introduction 1

2 Related Work 5

2.1 Web Applications . 5

2.2 Mobile Applications . 6

2.3 Desktop Applications . 6

3 Methodology 9

3.1 Text Detection . 9

3.2 Contour Detection with Computer Vision Techniques 11

3.3 Distance Model . 13

3.4 Hierarchical Clustering . 16

4 Evaluation 21

4.1 Performance Evaluation . 22

ix

doi:10.6342/NTU201802030

4.2 Failure Analysis . 23

4.2.1 Floating elements . 23

4.2.2 wrapping rows . 24

4.2.3 Invisible and highlight separators 24

4.3 Conclusion . 24

Bibliography 27

x

doi:10.6342/NTU201802030

List of Figures

1.1 Overview of the UISeg algorithm. The three steps in UISeg: (1) text

detection (2) contour detection (3) clustering. 3

3.1 Illustration of critical sections and separator effect. Left: The critical sec-

tion and base distance of a and b. Right: Line 1 has separator effect greater

than Line 2. 17

3.2 UISeg results on web, mobile, and desktop environments 18

4.1 Failure cases. Top: floating elements. Middle: wrapping rows. Bottom:

invisible separators. 26

xi

doi:10.6342/NTU201802030

xii

doi:10.6342/NTU201802030

List of Tables

3.1 Detection Criteria . 13

4.1 Segmentation and Clustering Performance Metrics 22

xiii

doi:10.6342/NTU201802030

xiv

doi:10.6342/NTU201802030

Chapter 1

Introduction

Desktop, mobile, and web platforms are the three most common user interface environ-

ments we face with in our daily life. With the advent of new technologies, lines between

these environments are getting blurred. From developers’ point of view, it would be easier

to develop programs on one framework for different devices. React Native, for example, is

one of the many attempts to bringing modern web techniques to mobile devices. Electron

allows the development of cross-platform desktop applications with JavaScript, HTML,

and CSS. On the other hand, application users turn to expect that the experience of in-

dividual services can be shared across platforms. This can be observed in the design of

many well-known Internet services like Facebook, Spotify, Uber, etc. These phenomena

suggest that there is a unifying method to model user interfaces in different platforms, and

it shouldn’t be based on environment-dependent features.

This paper introduces UISeg, a purely vision-based segmentation algorithms that re-

ceives a user interface screenshot and generates a segment tree with all nodes being visu-

ally and sementically coherent. The segment tree can be seen as the underlying structure

of the screenshot image, and the coherence constraint means it is close to the mental model

1

doi:10.6342/NTU201802030

humans unconsciously create when seeing the user interface. Also, UISeg treats all user

interfaces the same. That is to say, the algorithm doesn’t make assumption about char-

acteristics that distinguish user interfaces, including design patterns, displayed languages,

UI toolkits, operation systems, execution contexts (like browser engines). We validate the

performance of UISeg by evaluating the algorithm with web page and mobile application

screenshots. In both environments, UISeg achieves about 90% accuracy on segementa-

tion and 75% on clustering.

The potential impact ofUISeg is that it can be used as the backbone of systems that ex-

tract information from user interfaces. For example, studies on user interface test automa-

tion apply different techniques for mobile applications and web applications to interact

with testing targets because they use features that are only available in one environment.

With UISeg, UI testing process can be divided into a segementation stage and an explo-

ration stage, and we can utilize the outputs of UISeg to examine the user interface in a

more generalized, human-centric way.

To summarize, we make the following contributions in this paper:

1. A modified segmentation method based on prior work. More features about the lay-

out of the user interface are detected without using platform-dependent information.

2. A distance model that uses these features to calculate pairwise distance between

regions. This model can be seen as an attempt to quantify the strength of linkage

between regions in human minds. Also, Segment trees can be generated by using

the model with a simple clustering and threshold selection algorithm.

3. The implementation of algorithms and the labeling tool are publicly available1 to

support further studies.

1https://gitlab.com/uiseg/uiseg

2

doi:10.6342/NTU201802030

Figure 1.1: Overview of the UISeg algorithm. The three steps in UISeg: (1) text detec-
tion (2) contour detection (3) clustering.

3

doi:10.6342/NTU201802030

4

doi:10.6342/NTU201802030

Chapter 2

Related Work

Different problems require segmentation to differentiate useful information from the back-

ground. In this section, we discuss the existing works on three most commonly used UI

environments. These works focus on different topics but all of them have segmentation

involved, implicitly or explicitly.

2.1 Web Applications

The Internet can be seen as a big decentralized, unnormalized data source. Data min-

ing applications utilize web page segmentation methods to detect repeated structures and

retrieve main contents. Several studies [4, 6, 7, 15] suggest that edge detection is useful

to determine separability between content blocks. Zeleny et al. [24] defined a similarity

function between content elements to perform clustering. It is worth mentioning that these

vision-based algorithms are often not considered best approaches in the industry because

structure-based algorithms [11, 12, 22] or hybrid approaches [2, 18, 21] tend to run faster

than vision-based alternatives.

5

doi:10.6342/NTU201802030

2.2 Mobile Applications

In recent years, there has been growing interest in transforming a UI screenshot into com-

puter code. REMAUI [19] contains a set of heuristics to reverse-engineer Android user

interfaces from screenshots. A series of recent studies [1,5,14] has indicated that machine

learning can be useful to prototype software GUIs on Android system. Segmentation is

utilized in these works implicity to search for regions of interest (RoIs).

2.3 Desktop Applications

As the first and most familiar platform people working on, desktop is the most studied en-

vironment among the three. Besides the topics mentioned above, many researches focus

on supporting interactions by analyzing the visual patterns of GUI, referred to as direct

pixel access. The first work to explore this idea was examined in the 90’s [16]. After that,

novel tasks have been proposed in conjunction with studies in human-computer interac-

tion fields. Dixon et al. implements various advanced interaction bevaviors to validate

their results on reverse engineering UI structure [9, 10]. Sikuli project [23] offers a set

of visual scripting APIs for automating GUI interactions. These works provide their own

knowledge about how to gain understanding of GUI on their targeted platforms, and seg-

mentation is the key step in it.

While these works gain huge success in their fields, none of them provides an platform-

independent solution, and part of the reason of that is because the segmentation process

requires features only available in some platforms. Our work comes from the idea de-

scribed in [19] that by detecting texts and elements jointly on user interfaces, one can

effectively analyze user interfaces in a way very similar to how humans perceive them.

6

doi:10.6342/NTU201802030

We also get a good insight from Zeleny et al.’s approach [24], which shows that a carefully

designed pairwise similarity function is crucial for good segmentation results. We discuss

the implementation details in the next section.

7

doi:10.6342/NTU201802030

8

doi:10.6342/NTU201802030

Chapter 3

Methodology

Our segmentation algorithm UISeg contains three main processing steps. The first step is

a powerful deep learning-based text detection module that detects texts from a screenshot

image in the paragraph level. Then, computer vision algorithms are used, together with

the results of text detection, to create a valid set of contours that covers all elements on

the screenshot image. Finally, the bounding box of these contours is fed into a clustering

algorithm and a possible hierarchical segmentation of the user interface is generated.

3.1 Text Detection

Text detection on the paragraph level distinguishes texts from images and generate bound-

ing boxes for each paragraph. Different from optical character recognition (OCR) tech-

niques, text detection doesn’t recognize every word in the input image. Although there

have been many studies on OCR and existing OCR engines have been proven to be power-

ful and accurate in many cases, we argue that our text detection approach is more suitable

than existing solid, open-sourced OCR engines like Tesseract [20] for our work because:

• we don’t need character/word prediction nor their localization information. It is hard

9

doi:10.6342/NTU201802030

to transform the output of the OCR engine to fit our need (paragraph localization

information).

• OCR engines may not be language-independent. For example, Tesseract requires

each language having one specific trained model to perform better, and the prepa-

ration can be time-consuming and not applicable if we don’t have any assumption

about the language shown on the input image.

• as discussed in [19] and [13], OCR would have poor results if text is arranged freely

and combined with images, which is typically how user interfaces are designed. Our

preliminary tests show that OCR tools fail to have comparable performace on the

desktop screen, indicating that using these OCR tools will reduce stability of our

algorithm. This is the most important reason why we develop our own model.

Based on the discussion above, we leverage the off-the-shelf object detection model

Faster R-CNN [17] for our work. The implementation is modified from an online, open-

sourced version1 rather than the official one because it can be integrated into our codebase

more easily. This model takes a 512x512, normalized RGB image as input and return

(Xmin, Ymin, Xmax, Ymax, confidence) tuples for each paragraph it finds.

To train the model, we collect 3867 images from Alexa’s top one million website list

using browser automation technology. For each website, only one screenshot is captured

either from the main page or a page selected by randomly clicking a link on the main page.

This is to avoid any potential design bias between the main page and other pages. Para-

graph localization labels are also collected when visiting the website. Then, these images

are cropped into required dimension and fed into the model for training after standard data

augmentation steps like random horizontal flipping, random scaling, and normalization.
1https://github.com/chenyuntc/simple-faster-rcnn-pytorch/

10

doi:10.6342/NTU201802030

We find out that using deep learning models not only avoids the drawbacks mentioned

above, but has the following advantages:

• Time efficiency. While inference speed varies by the actual implementation, the

running time of deep learning models is generally smaller than that of OCR engines.

This becomes more prominent when the input comes from a long, scrollable web

page, which can be commonly seen in modern websites.

• Generalization. The model proves to be very robust, especially on the aspect of

language and user interface environment. Although the training data come from

website screenshots and most of display languages in the dataset is English, it per-

forms well in other cases. Moreover, the accuracy can be improved by collecting

more data from different sources without modifying the model.

The output tuples with confidence score greater than 0.7 are put into the computer

vision process.

3.2 Contour Detection with Computer Vision Techniques

User interface screenshots differ from natural images in that they tend to have distinct

block regions. These blocks may not have lines surrounding them to distinguish contents

from the background, but the interesting thing is that humans can perceive these blocks

instinctively and assign them semantically coherent meanings unconsciously.

Based on the above observation, we first apply edge detection algorithm to convert the

original 3-channel screenshot into a binary single-channel edge map. Canny [3] is selected

because of its great S/N ratio among various edge detection algorithms.

The following definitions describe roles we are going to mention in this step.

11

doi:10.6342/NTU201802030

Definition 1. A region r on the featuremap can be specified by a 4-tuple (rx1, ry1, rx2, ry2).

We say a region covers another one if the latter is inside the former.

Definition 2. A cluster is a set of non-overlapped regions {r1, r2, . . . , rn} that may have

semantically coherentmeanings. It can also be seen as a region specified as (cx1, cy1, cx2, cy2),

where

cx1 = minr rx1

cy1 = minr ry1

cx2 = maxr rx2

cy2 = maxr ry2

Definition 3. A box is a special kind of region that covers a set of non-overlapped regions.

In the process of clustering, these non-overlapped regions will be merged into a cluster,

and the box will be discarded.

Definition 4. A line l is specified using 4-tuple (ls, le, la, axis), axis ∈ {H, V }, indicating

the start, end, anchor, the type of axis of the line. A line cannot overlap with any region

but it can exist in a box.

These roles exist because we believe that this is how humans perceive user interface.

Edge detection finds the boundaries of objects within the image and the resulting edges

can be connected into contours, which have great possibilities to serve their purposes on

the user interface. Based on what they serve for, we can categorize them into 1. regions

that could be images or texts in the original screenshot, 2. boxes that can always be seen

as a whole and separate their contents from the outsite, 3. lines that represents dividers.

The detailed criteria to detect these elements are shown in Table 3.1.

12

doi:10.6342/NTU201802030

Countour contour not detected as box;
width > 5px & height > 10px

Box contour area/bounding box area > 0.8;
sum of children contour area/contour area > 0.65

Horizontal Line morphological transformations;
not covered by texts;
length > 150px

Vertical Line morphological transformations;
not covered by texts;
length > 100px

Table 3.1: Detection Criteria

3.3 Distance Model

The regions detected in the last step are considered ‘content’ elements coming in a spa-

tially flat structure, and the distance model define pairwise distance between any two of

these elements plus clusters of them. It consists of two metrics: the base distance that is

calculated by directly using the dimension information of regions, and the amplification

factor that magifies the base distance. We believe that this mechanism resembles how hu-

mans perceive user interface. To put it more precisely, we observe that the distance model

should have the following characteristics:

1. distance(a, b) > 0,∀a, b

2. distance(a, b) = distance(b, a)

3. distance(a, b′) > distance(a, b) if there are lines between a and b but there is not

between a and b′.

4. distance(a, b) > distance(a, c) if a, b, c are arraged spatially in the order a ↔ c ↔ b.

Another important observation about distance calculation is that, we can ignore the

raw pixel information of the original user interface, as opposed to how other vision-based

13

doi:10.6342/NTU201802030

segmentation algorithms work, and only consider dimension information about the target

elements in the distance calculation process. In other words, we try to detect all needed

features in the segmentation step and process them in the clustering step; if we find the

overall accuracy unsatisfactory, we can either detect more features by updating segmen-

tation algorithm, or fine-tune the clustering method.

Features we get in the clustering process are boxes, horizontal/vertical lines, and re-

gions storing in their own planes, which is defined below:

Definition 5. A plane is a collection of regions or lines that can be accessed in a spatial

way. Two regions don’t overlap with each other if they are in the different planes.

Among these features, the region plane is the core one in the proposed distance model

and is used to calculate the base distance metric.

Definition 6. Let a = (ax1, ay1, ax2, ay2), b = (bx1, by1, bx2, by2) be two regions in the

same plane with center (axc, ayc) and (bxc, byc), respectively. We define base distance

between a and b to be

bd = max(
w

RI
, h), (3.1)

where
w = max(|axc − bxc| − (ax2−ax1)+(bx2−bx1)

2
, 0)

h = max(|ayc − byc| − (ay2−ay1)+(by2−by1)

2
, 0),

RI is the row inclication value representing the tendency to merge regions in the same

row rather than in the same column.

The proper row inclication value varies by user interface environments. We find that

3 is a proper value for a general use case.

14

doi:10.6342/NTU201802030

Then, we introduce size difference and separator effect that compose amplification

factor. The size difference take into consideration that we want to group lists of elements

together, and they often comes in similar sizes.

Definition 7. The size difference of region a and b is

Asize =
2

1 + sr
, (3.2)

where

sr = min(
Area(a)
Area(b)

,
Area(b)
Area(a)

).

This function is chosen as it is a convex downward function passing through points

(0, 2) and (1, 1).

As for separator effect, we first define critical region between any two regions; then,

lines within the critical region will make merging the two regions more difficult.

Definition 8. Using the notaion discussed above, we define critical region Qab to be the

largest region within Gab − a− b, where Gab = (gx1, gy1, gx2, gy2),

gx1 = min(axc, bxc)

gy1 = min(ayc, byc)

gx2 = max(axc, bxc)

gy2 = max(ayc, byc)

In Figure 3.1 we show an example with two regions and the critical region of them.

15

doi:10.6342/NTU201802030

Definition 9. We define separator effect value to be

Asep =
∏

l∈L∩Qab

|l|
max(dim(a, b), |l|)

, (3.3)

where |l| denotes the length of line l, and

dim(a, b) =

min(width(a),width(b)) , if Axis(l) isW

min(height(a), height(b)) , otherwise.

Finally, the pairwise distance between any two regions is defined below.

Definition 10. The pairwise distance of any two regions a and b is defined as

distance(a, b) =

bdAsep×Asize , a, b are in the same box

∞ , otherwise.

(3.4)

The use of exponential function in our distance model may seem unintuitive at first

glance, but actually it is required for better clustering performance, which we will discuss

later.

3.4 Hierarchical Clustering

The goal of hierarchical clustering is to create a segment tree from the elements detected in

the segmentation step, with each node in the segment tree a visually and semantically co-

herent segment. We find that by using the distance model defined in the previous section,

clustering can be done iteratively with a simple threshold selection method.

By iterating from the smallest box to the biggest box, we can ensure that there is not

16

doi:10.6342/NTU201802030

Figure 3.1: Illustration of critical sections and separator effect. Left: The critical section
and base distance of a and b. Right: Line 1 has separator effect greater than Line 2.

any box within candidates in each iteration. Then, all boxes will be converted to clusters

by the end of the algorithm.

The last thing about the clustering algorithm is the heuristic of determining a good

threshold in Line 5 of the algorithm. There is a trade-off about the selection of threshold:

if the threshold is too small, we only merge two regions in each iteration, and the created

cluster might not be a valid coherent segment; on the other hand, if the threshold is too

large, the final segment tree would contain too few nodes, and the algorithmwould become

useless.

The good news is that, because of the exponential function used to calculate pairwise

distance, the distribution of distance has a upward-sloping, concave upward curve, and

small distance tends to be grouped together. Therefore, selecting a threshold becomes

easy: we sort the distance sequence and compute its discrete-time derivative. The first in-

dex at which the derivative increases is used to find the threshold in the original sequence.

17

doi:10.6342/NTU201802030

Figure 3.2: UISeg results on web, mobile, and desktop environments

18

doi:10.6342/NTU201802030

Algorithm 1 UISeg Algorithm
Input: regions, boxes
Output: a segment tree of the user interface
1: Start from the smallest box to the biggest box
2: if there is only one region covered by the box then
3: Remove the box. Go to Line 1 to process the next box.
4: end if
5: Add all regions covered by the box into a new plane. Select a clustering threshold.
6: while there are some region pairs with pairwise distance < threshold do
7: Remove them from the plane.
8: Merge connected components into clusters and add these clusters into the plane.
9: Update pairwise distance information.
10: Select a new clustering threshold.
11: end while
12: Remove regions in the plane and merge them into a cluster.
13: Remove the box. Go to Line 1 to process the next box.

19

doi:10.6342/NTU201802030

20

doi:10.6342/NTU201802030

Chapter 4

Evaluation

To examine the result of UISeg algorithm, we randomly select 100 web page screenshots

(from previous mentioned Alexa’s website list excluded those used to train the text detec-

tion model) and 100 mobile application screenshots from [8]. Since it would be too much

efforts put to collect desktop UI with source code at large scale, we only evaluate them by

showing examples. For web andmobile UI,We run UISeg algorithm on these images and

mark 20% of nodes in the result segment trees with two groups of correctness labels. The

first group of labels (perfect, fair, bad) measures how humans feel about the

bounding box of a result segment by only looking at the segmented image; all surrounding

pixels and child segments are not considered. The second group (perfect cluster,

missing children, additional children, bad cluster) takes parent-

children relationship into account and represents the overall performance of UISeg. Note

that we don’t change any hyperparamter in these two environments.

In the remaining section, we will first discuss the labeling result of UISeg algorithm

on web and mobile app environments. Then, we analyze common failure cases observed

during the labeling process and show examples of them.

21

doi:10.6342/NTU201802030

Web

avg. segments
per page

perfect cluster missing
children

additional
children

bad cluster total

perfect 95.8 (79.0%) 9.3 (7.7%) 4.8 (4.0%) 0.7 (0.5%) 110.7 (91.2%)

fair 1.9 (1.5%) 1.6 (1.4%) 1.3 (1.1%) 0.7 (0.6%) 5.5 (4.5%)

bad 0.2 (0.2%) 0.6 (0.5%) 0.2 (0.2%) 4.2 (3.4%) 5.2 (4.2%)

total 97.9 (80.7%) 11.6 (9.5%) 6.3 (5.2%) 5.5 (4.5%) 121.3 (100.0%)

ground truth 164.8 (135.86%)

Mobile

avg. segments
per page

perfect cluster missing
children

additional
children

bad cluster total

perfect 35.0 (75.0%) 4.7 (9.9%) 1.4 (3.1%) 0.2 (0.5%) 41.4 (88.6%)

fair 1.1 (2.2%) 0.6 (1.3%) 0.7 (1.4%) 0.2 (0.3%) 2.5 (5.2%)

bad 0.1 (0.1%) 0.1 (0.1%) 0.2 (0.4%) 2.6 (5.6%) 2.9 (6.2%)

total 36.1 (77.3%) 5.3 (11.3%) 2.3 (4.9%) 3.0 (6.4%) 46.7 (100.0%)

ground truth 39.2 (83.9%)

Table 4.1: Segmentation and Clustering Performance Metrics

4.1 Performance Evaluation

The result of the segment evaluation is shown in Table 4.1. Each cell in the table con-

tains the number of occurrences marked with a pair of evaluation labels. It should be

noted that the ground truth cell is calculated using source code but not necessarily reflect

how humans feels about these screenshots. The result shows that UISeg has consis-

tent performance in these environments, as (perfect, perfect cluster) and

(perfect, total) reports about 75% and 90% of all detected segments, respec-

tively. The clustering step performs slightly better in web environment (statistics in the

total row). We conclude that this is because mobile applications tends to have less lines

by design, and this affects the caculation of pairwise distance. Also, since the text detec-

22

doi:10.6342/NTU201802030

tion model is only trained on web page screenshots, it performs less satisfying and worsen

the performance on mobile environment.

There’re somemore numbersworthmentioning in this table. The(perfect, missing

children) cell indicates that some clusters of good segmentation results contain less

children than humans expect. This is the direct result of a rigid constraint of threshold

selection. If we choose a looser threshold selection algorithm, the error would be re-

duced, but less segments would be detected. Another observation is that the number in

(perfect, total) cell is greater that the ground truth in the mobile environment but

not in the web environment. This implies that the algorithm captures a set of segments

different from what UI programmers would expect, and that there’s significant dissimilar-

ity between implementation languages of user interface, which is why we design a purely

vision-based, language-independent segmentation and clustering algorithm to have a bet-

ter understanding about user interface.

4.2 Failure Analysis

We analyze the algorithm output labeled in the previous section to find out the cases in

which UISeg fails to work. We show the examples in Figure 4.1 and list the common

failure cases below:

4.2.1 Floating elements

UISeg assumes that input images comes statically as a tree structure. But floating ele-

ments such as context menus or sticky buttons would break the assumption, so the distance

model would be affected and clusters containing these elements would have a false bound-

ing box.

23

doi:10.6342/NTU201802030

4.2.2 wrapping rows

When there is no room for fixed-width elements to stay at the same row, they wrap: some

items will jump to the second row and become closer to only a few items in the first

row. Then, error might occur when UISeg clusters these items with wrapped elements

before merging all elements as a whole. The algorithm fails in this case because it doesn’t

recognize repeating structure and relies on dimension statistics to infer repeating structure.

4.2.3 Invisible and highlight separators

When seeing a table, humans determine it to be row-major or column-major by perceiving

repeated structure. Therefore, some designer would choose not to put separators between

rows/columns for design considerations. This is not the case for UISeg because the al-

gorithm only uses RI , the row inclication value, to balance the importance between the

roles of row and column. Moreover, separators are sometimes be put under headers to

differentiate them from following contents. We call this kind of separators ‘highlight sep-

arators’. In this case, however, UISegwould group headers with the contents above them.

These two kinds of separators are not uncommon and account for a great amount of error,

especially in the web environment.

4.3 Conclusion

In this paper, we have presented an approach for extracting UI structures in different en-

vironments. The environment-independent generalizability this approach provides is im-

portant because a new trend on user interface unification is observed by not only users but

also designers and developers who create user interface. Compared with prior work, our

24

doi:10.6342/NTU201802030

scheme emphasizes the roles of box and separator for accurately calculating pairwise dis-

tance between elements in the segmentation stage, so clustering can be done with a simple

threshold selection method. We validated the performance by judging the output sege-

ment tree on the node level and conducting failure analysis to determine the deficiency of

our algorithm. The results showed that our algorithm can capture most of the elements

on the user interface, but still needs improvement on cases when capturing repeated struc-

ture is needed. We believe that this work offers possible solutions to integrate ideas from

different environment domains together.

25

doi:10.6342/NTU201802030

Figure 4.1: Failure cases. Top: floating elements. Middle: wrapping rows. Bottom:
invisible separators.

26

doi:10.6342/NTU201802030

Bibliography

[1] T. Beltramelli. pix2code: Generating code from a graphical user interface screenshot.

CoRR, abs/1705.07962, 2017.

[2] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Vips: a vision-based page segmentation

algorithm. 2003.

[3] J. Canny. A computational approach to edge detection. In Readings in Computer

Vision, pages 184–203. Elsevier, 1987.

[4] T.-H. Chang, T. Yeh, and R. Miller. Associating the visual representation of user

interfaces with their internal structures and metadata. In Proceedings of the 24th

annual ACM symposium on User interface software and technology, pages 245–256.

ACM, 2011.

[5] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu. From ui design image to gui skeleton:

A neural machine translator to bootstrap mobile gui implementation. In The 40th In-

ternational Conference on Software Engineering, Gothenburg, Sweden. ACM, 2018.

[6] M. Cormer, R. Mann, K. Moffatt, and R. Cohen. Towards an improved vision-based

web page segmentation algorithm. In Computer and Robot Vision (CRV), 2017 14th

Conference on, pages 345–352. IEEE, 2017.

27

doi:10.6342/NTU201802030

[7] M. Cormier, K. Moffatt, R. Cohen, and R. Mann. Purely vision-based segmentation

of web pages for assistive technology. Computer Vision and Image Understanding,

148:46–66, 2016.

[8] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and

R. Kumar. Rico: A mobile app dataset for building data-driven design applications.

In Proceedings of the 30th Annual Symposium on User Interface Software and Tech-

nology, UIST ’17, 2017.

[9] M. Dixon and J. Fogarty. Prefab: implementing advanced behaviors using pixel-

based reverse engineering of interface structure. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 1525–1534. ACM, 2010.

[10] M. Dixon, D. Leventhal, and J. Fogarty. Content and hierarchy in pixel-based meth-

ods for reverse engineering interface structure. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 969–978. ACM, 2011.

[11] D. Fernandes, E. S. de Moura, A. S. da Silva, B. Ribeiro-Neto, and E. Braga. A

site oriented method for segmenting web pages. In Proceedings of the 34th inter-

national ACM SIGIR conference on Research and development in Information Re-

trieval, pages 215–224. ACM, 2011.

[12] G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya. Robust web page segmen-

tation for mobile terminal using content-distances and page layout information. In

Proceedings of the 16th international conference on World Wide Web, pages 361–

370. ACM, 2007.

[13] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Bigorda, S. R.Mestre, J. Mas,

D. F. Mota, J. A. Almazan, and L. P. De Las Heras. Icdar 2013 robust reading com-

28

doi:10.6342/NTU201802030

petition. In Document Analysis and Recognition (ICDAR), 2013 12th International

Conference on, pages 1484–1493. IEEE, 2013.

[14] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshyvanyk. Ma-

chine learning-based prototyping of graphical user interfaces for mobile apps. arXiv

preprint arXiv:1802.02312, 2018.

[15] A. Pnueli, R. Bergman, S. Schein, and O. Barkol. Web page layout via visual seg-

mentation. HP Laboratories, 2009.

[16] R. L. Potter. Pixel Data Access: Interprocess Communication in the User Interface

for End-user Programming and Graphical Macros. PhD thesis, College Park, MD,

USA, 1999. AAI9926789.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detec-

tion with region proposal networks. In Advances in neural information processing

systems, pages 91–99, 2015.

[18] A. Sanoja and S. Gançarski. Block-o-matic: A web page segmentation framework.

InMultimedia Computing and Systems (ICMCS), 2014 International Conference on,

pages 595–600. IEEE, 2014.

[19] E. Shah and E. Tilevich. Reverse-engineering user interfaces to facilitateporting to

and across mobile devices and platforms. In Proceedings of the compilation of the

co-located workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11,

& VMIL’11, pages 255–260. ACM, 2011.

29

doi:10.6342/NTU201802030

[20] R. Smith. An overview of the tesseract ocr engine. InDocument Analysis and Recog-

nition, 2007. ICDAR 2007. Ninth International Conference on, volume 2, pages 629–

633. IEEE, 2007.

[21] A. Spengler and P. Gallinari. Document structure meets page layout: loopy random

fields for web news content extraction. In Proceedings of the 10th ACM symposium

on Document engineering, pages 151–160. ACM, 2010.

[22] C. S. Win and M. M. S. Thwin. Web page segmentation and informative content

extraction for effective information retrieval. IJCCER, 2(2):35–45, 2014.

[23] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui screenshots for search and

automation. In Proceedings of the 22nd annual ACM symposium on User interface

software and technology, pages 183–192. ACM, 2009.

[24] J. Zeleny, R. Burget, and J. Zendulka. Box clustering segmentation: A new method

for vision-based web page preprocessing. Information Processing & Management,

53(3):735–750, 2017.

30

	誌謝
	摘要
	Abstract
	Introduction
	Related Work
	Web Applications
	Mobile Applications
	Desktop Applications

	Methodology
	Text Detection
	Contour Detection with Computer Vision Techniques
	Distance Model
	Hierarchical Clustering

	Evaluation
	Performance Evaluation
	Failure Analysis
	Floating elements
	wrapping rows
	Invisible and highlight separators

	Conclusion

	Bibliography

