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ABSTRACT

The monitoring of roadway traffic conditions is critical for traffic management,
where the detection of traffic congestion is one of major concerns. Traffic congestion may
have various causes, including the increase of traffic volume due to higher private vehicle
usage, inappropriate design or lack of capacity of road network and layout changes on the
road segment owing to non-recurrent incidents such as traffic accidents or construction
work. Traffic congestion may lead to the rise of commuting time, negative impact of
driver physiology, lower quality of life and potential hazard on emergency response could
be the impact of traffic congestion. Hence, further understanding of how traffic
congestion was formed, propagated and dissipates, and identifying possible bottlenecks
are critical for overall traffic management. Based on the relevant knowledge, it is possible
to provide drivers and traffic management agencies reliable information to more actively
prevent traffic congestion and thereby improve the quality of traffic management

strategies.

In the current literature, traffic state detection, congestion propagation pattern and
traffic data visualization have been studied and discussed, respectively. Based on high-
resolution VD data, this study integrates the consideration of data processing, pattern
recognition and visualization to develop a data analysis framework for better
understanding of traffic congestion in an urban network. Data cleaning is first performed
to deal with the missing and erroneous data, and then a specific data set needed for further
analysis is extracted. Based on different thresholds of congestion detection, the spatio-
temporal locations of congestion occurrences are recorded. The network structure is

constructed based on the actual coordinate of VDs, map information and the concept of

v
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the adjacent matrix. An adjusted kernel density estimation approach is proposed and
applied to case studies, in order to investigate the effects of congestion propagation on
road segments with different characteristics in terms of connection type and adjacency.
Finally, a general principle describing the propagation pattern of traffic congestion is

concluded and presented through data visualization.

Based on different scenarios for the case study and visualization result under
different scales, locations with higher probability to be congested in the whole network
and the propagation direction and impact after congestion occurred can be observed. Most
of the road segments within the network follows some general principles. In terms of the
impact on upstream road segments, road segments of the 1¥ order adjacency receive larger
impact than road segments of the 2" order adjacency. In addition, for road segments of
the same order adjacency, which goes straight to the congested road segment is affected
most by the source. The segment with a left turn comes second and the segment with a

right turn receives the least influence.

Keywords: congestion propagation pattern, kernel density estimation, traffic state

detection, vehicle detectors, visualization
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Chapter 1  Introduction

1.1  Background

Traffic congestion is one of the main focuses of traffic management. It is a state
when traffic demand exceeds roadway capacity. The characteristic of traffic congestion
occurring within urban road networks can be quite different from those taking place on
freeways because of traffic signals, intersections and the complexity of road networks.
Traffic congestion can be further divided into recurrent one which usually occurs during
peak hours and non-recurrent one resulting from a variety of incidents, such as traffic

accidents, road construction as well as large activities.

Researchers are interested in several related topics, including the formation of traftic
congestion, the estimation of negative effects caused by traffic congestion, the bottlenecks
in the road network and the strategies to prevent as well as ease congestion. To answer
the questions mentioned above, congestion incidents need to be identified from traffic
data first. How to detect traffic congestion through a systematic approach of collecting
and analyzing traffic data has been the key issue for traffic management. In previous
studies, traffic data are often extracted from loop detectors. However, there are some
obvious shortcomings, such as the difficulties in facility maintenance, high
malfunctioning and misdetection rate. Hence, other types facilities for detection, for
example, electronic toll collection (ETC) sensors, monitors and microwave vehicle
detectors (VD) are installed. ETC system has been operating on the freeways in Taiwan
since 2014. Besides improving the service level of the freeway system, it also contributes

to the collection of large amount of traffic data. These data can be used for traffic
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management and opened to both academia and individuals for extended applications. In
Taipei City, vehicle detectors are widely installed within the urban road network, and
high-resolution traffic data are collected. They provide abundant traffic data including
point travel speed, traffic volume and occupancy. The daily VD data are provided without
charge on the governmental open data platform, Data.Taipei website. Through the
investigation of these data, the characteristics of traffic flows can be observed and a
baseline traffic condition can be determined. By comparing the traffic data of a set of
target VDs within a Region Of Interest (ROI) during a certain time interval with the
baseline, congestion incidents can be detected. Traffic congestion may be manifested as
a chain reaction, forming a shockwave across a certain scope of a roadway network (Li,
She, Luo, & Yu, 2013). Some studies on traffic congestion forecasting have been
conducted by employing pheromone communication models (Kurihara, Tamaki, Numao,
Yano, Kagawa, & Morita, 2009), density wave models (Nagatani, 2002) and so on. To
understand how a congestion incident may propagate throughout a network and dissipate
based on the exploration of real data can be the research direction to further enhance urban

traffic management.

In order to provide pedestrians and cyclists a safer environment, Taipei City
government has been implementing the bike lane network plan since 2014. Considering
the departure efficiency, that is, the time needed to eliminate the queue at traffic signals,
three north-south arterials and three east-west arterials are selected. Each of them has a
width of at least 40 meters and metro routes passes through four of them. The planned
network is shown in Figure 1.1. For those with wider sidewalks, for example, Jen-Ai road
and Zhong-Shan N. road, marking lines for bike lanes are painted on the original

sidewalks. For the other four routes, sidewalks are first broadened, and then marking lines
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are drawn. The layout of a widened sidewalk with a bike lane is shown in Figure 1.2.

Residents had been reporting the congestion and inconvenience during the bike lane
construction on Fu-Xing S. Road and Xin-Sheng S. Road from March to September in
2016. According to the travel speed collected from vehicle detectors, during the
construction, travel speed slightly decreased by 6.49% to 7.91% and the service level had
been degraded (Taipei City Traffic Engineering Office, 2016). However, the service level
had almost recovered after the construction work was completed. Hence, whether there
are some differences in terms of the traffic flow characteristics and congestion
propagation pattern between arterials under construction and the others is worth
investigating. Moreover, more detailed understanding of relationships among
neighboring road segments may also provide traffic management agencies and
individuals valuable information for evaluating the influences of construction decisions,
determining traffic management strategies and providing navigation. Hence, high-
resolution VD data during the construction in an ROI covering the arterials under
construction can be extracted for further analysis. Characteristics of the congestion
propagation pattern including the conditional probability that a congestion may occur
given the occurrence of another congestion, the potential relationship between adjacent
road segments and how traffic congestion contribute to different road segments can be

observed.
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In this study, we seek to obtain better understanding of the pattern of how traffic
congestion propagates and influences a roadway network. The traffic control center of
Taipei City has provided a system for real time traffic status inquiry by plotting the road
performance information on a Google Map as partly shown in Figure 1.3. Straightforward
information can be extracted based on the collected traffic data (Chen, Guo & Wang,
2015), while the cascading traffic pattern may further suggest driver behavior of diverting
to circumvent congested road segments. Hence, the main purpose of this study is to go
deeper to investigate the effects of congestion afterwards. To monitor where and when
traffic congestion occurs, we take point vehicular speed as the primary consideration.
Based on the traffic data collected from vehicle detectors (VDs), we cluster these data by
capturing the spatiotemporal variation of vehicular speed over the network so as to

identify congestion incidents. Based on the congestion incidents identified, affected road

segments can also be further determined.
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Ultimately, this research seeks to investigate the propagation of congestion incidents
within an urban road network. By visualizing the bottle necks and shockwave after a
congestion occurs, we provide some research insight so that a precautionary traffic

management strategy may be taken.

1.2 Research Objectives

In this study, we expect to have further understanding about the cascading pattern of
traffic congestion based on high resolution VD data, which may be a reference for the
determination of traffic management strategies. System for real time traffic status inquiry
provided by the traffic control center of Taipei City and Google Map visualize instant
traffic status in terms of vehicular speeds over the roadway network via a web-based
inquiry interface, but we are more interested in the probability of congestion passing to

neighboring areas. To be more specific, the research objectives are summarized as below:

I.  Propose an alternated probability density estimation approach to properly compute
the conditional probability that a congestion may occur on a certain road segment

given the occurrence of another congestion.

Il. Determine the potential relationship between adjacent road segments based on the

degree of adjacency and turning (straight, left turn or right turn) pattern.

I1l. Visualize the density estimation result and discuss how a congestion on a road

segment make contributions to adjacent road segments and affect neighboring areas.
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1.3  Thesis Organization

Figure 1.4 illustrates the organization of this thesis, which consists of six chapters.
Chapter 2 provides the literature review of several dimensions related to traffic states and
events detection, propagation patterns of congestion and the applications of different
forms of Kernel Density Estimation (KDE) approaches. Based on the gaps identified in
Chapter 2, Chapter 3 proposed an alternated form of KDE approach, descriptively
presented the associated data used for analysis and showed the procedure to apply the
proposed approach. Next, Case studies using the road network of Taipei City are
performed, and results are visualized in Chapter 4. Finally, conclusions of research

findings and recommendations for future research are summarized in Chapter 5.
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Chapter 2 Literature Review

The situation of traffic congestion within road network has drawn much attention
from both governmental and private units related to traffic management and data analysis.
As detectors and monitors with high density installed and abundant traffic data collected,
the insight into potential patterns within have intrigued increasing research interest to
various case studies. These may lead us to further understanding to the characteristic of
traffic flow, structure beneath our road network and some thoughts toward traffic

management strategies.

This chapter will be organized as follows. The research papers applying
different approaches for detecting traffic state and events are reviewed in section 2.1.
Literature discussing the propagation pattern of traffic congestions is reviewed in section
2.2. Section 2.3 review the studies about kernel density estimation itself and its

application in various disciplines. Last, a brief summary is presented in section 2.4.

2.1 Traffic State and Event Detection

Congestion, slow, smooth and accidents are traffic states than can describe traffic
flow on roads, providing critical information to travelers as well as transportation
agencies (Li, She, Luo & Yu, 2013). Various data are collected from loop detectors,
camera surveillance systems, probe cars and GPS including travel time, traffic speed and
trajectories are used for traffic state and event detection. Algorithms are designed and

case studies are performed on freeways and in urban road networks.
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Coifman, B. (2002) stated that the link travel time can reflect traffic state to some
extent. Direct measurement of travel time may require correlation of multiple location
observations, that is, additional detector hardware or new communication infrastructure
are needed. Thus, a method estimating trajectories and link travel time only using data
from an individual set of dual loop detector is proposed. Basic traffic flow theory is
applied for extrapolating local conditions on extended links. With no incidents or delays

involved, this approach provides good time estimation results.

Kerner, Demir, Herrtwich, Klenov, Rehborn, Aleksic & Haug (2005) introduced an
approach which perform traffic state detection with floating car data (FCD). Probe cars
are sent to collect travel time within a reporting section. A travel time increase due to
congestion emergence and a travel time decrease because of congestion dissolution are
recorded. Two or more probe cars can provide substantial information for a typical traffic
accident to be recognized. This approach can provide a 65% probability to recognize
incidents last longer than 20 minutes with a penetration rate of 1.5% of probe cars within

whole amount of vehicles.

Li, She, Luo & Yu (2013) applied freeway video surveillance system for traffic state
detection use. Existing surveillance camera infrastructure can provide data in a video form.
However, there are difficulties including angle and zooming while extracting traffic data
form surveillance cameras. Based on the movement of vehicles in images, they proposed
a system to estimate traffic flow speed and occupancy rate and estimate typical traffic
states (congested, slow and smooth) that can leverage the existing surveillance
infrastructure. The traffic state detection accuracy ratio during daytime is higher than 85%,

while the accuracy of congestion reaches 91.8%.

10
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Wang, Lu, Yuan, Zhang & Van De Wetering (2013) proposed a method to perform
visual analysis of urban traffic traffic jam based on trajectory data. GPS trajectories of
taxis are collected and strategies for extract congestion information are developed.
Trajectories are cleaned first in order to fit in a road network. Secondly, traffic speed on
each road segment is calculated. Lastly, spatio-temporal graphs showing congestion and

its propagation can provide descriptions of a traffic jam.

Anbaroglu, Heydecker & Cheng (2014) stated that differences between urban
network and motorways, and the fact that the nature vary from recurrent congestions (RC)
and non-recurrent congestions (NRC), limits the use of existing incident detection
methods mostly focused on motorways without distinguishing RCs and NRCs.
Substantially high link journey travel time observations (LJTs) occur simultaneously are
clustered in the proposed NRC detection method. Besides minimum duration restrictions,
localization index is also introduced to describe the closeness between congestion clusters.
They concluded that those LJTs at least 40% higher than expected value should belong to

NRC through the result of sensitivity analysis using a weighted product model (WPM).

2.2  Propagation Patterns

Besides detection of traffic states and events, how the congestion propagates and/or
cascade is also one of the most interested issues among research related traffic congestion.
This may provide us the ability to extrapolate the traffic state on the road network nearby
and the potential relationship between neighboring road segments. With these we can
further understand the structure of our road network and the cascading behavior of a

congestion took place.
11
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Long, Gao, Ren & Lian (2008) stated the importance of effectively identifying
network bottlenecks for improving network service level and preventing congestions.
Congestion is defined by critical standards based on average journey speed (AJV) and a
congestion propagation model based on cell transmission model (CTM) is proposed.
Simulations are performed on Sioux Falls network. The simulated result can provide

references for decision in controlling traffic demand.

Wang, Z., et al. (2013) utilized GPS trajectories and provide multiple views for
visually exploring and analyzing on the level of propagation graphs and road segment
level. The whole visualization contains speed variation on pixel level while the

propagation result is shown on road segment level.

Ji, & Geroliminis (2014) observed congestion propagation on a macroscopic scale.
By taxi GPS as sparse probe vehicle data and maximum connected component of
congested links, interconnected congested links and the critical congestion pockets are
identified. The proposed method can effectively distinguish the congestion pockets out of

the network and track the evolution of congestion through time.

2.3  Kernel Density Estimation (KDE) and Applications

An adjusted kernel density estimation approach is applied in this study, thus related
literatures including the general kernel density estimation method and some discussion
about this approach as well as the applications in transportation field and several other
disciplines are reviewed in this section. Probability density estimation approaches can be

categorized into parametric and nonparametric ones. Parametric probability density
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estimation is made based on the assumptions related to the distribution embedded in the
data set. However, there can be larger gaps between the assumed parametric model and
reality. As a nonparametric probability density estimation approach (Rosenblatt 1956;
Whittle 1958; Parzen 1962), kernel density estimation does not require any assumption
for the distribution of data points. This provides more flexibility and allows researchers
to discover more characteristics beneath the data set such as such as its actual distribution.
Hence, the great importance of kernel density estimation has shown in both theoretical
and applied statistics fields. Rosenblatt, M. (1956) and Parzen, E. (1962) developed
current form of kernel density estimation, which is also termed Parzen-Rosenblatt

window method in some fields such as signal processing and econometrics.

Yu (2009) has done a study on KDE, investigating the most appropriate search
bandwidth choice for six different probability distribution evaluated by mean integrated
square error (MISE) and asymptotic mean integrated squared error (AMISE). Yu
concluded that the KDE with variable search bandwidth can provide acceptable

estimation results.

Xie and Yan (2008) suggested a network KDE method transformed from a standard
planar KDE to fill the shortcomings while the problem is network based. The innovation
of this research is to represent network space with lixel, which is the linear units of equal
network length. This approach is tested with traffic accident data and road network in
Bowling Green, Kentucky in 2005. This approach has the ability to solve the problem of
overestimation of density values. The impacts on density calculation from different kernel
functions and different search bandwidth are also investigated and found that search
bandwidth brought the highest influence by controlling the smoothness of the spatial
pattern.

13
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Chang (2012) applied KDE and integrate data mining to assess common
physiological indicators of multiple diseases. To estimate the probability of illness of
patients being examined, KDE is applied to estimate the probability distribution of each

common physiological indicator under different health condition.

Hu (2012) established an approach to analysis GPS trajectory and collected the
trajectories of visitors in Yehliu Geopark. Possible spatial distribution of visitors within
the park can be calculated through KDE. In addition, time factor is also taken into account
to investigate the location of crowds and the spatial distribution of visitors. Ultimately,
the density distribution of visitors within the park during different time period is simulated.

The simulation result can be used to reconsider the space allocation and route design.

2.3.1 Standard Kernel Density Estimation (Standard KDE)

Assuming (X, X,,...,X,) 1s a univariate independent and identically distributed

sample extracted from some distribution with an unknown density f , its kernel density

estimator can be written as:

S REH) @.1)

13 1
f.(X)==> K, (x—x)=—
h() n; h( |) nh =) h

Where K is the kernel function which is a non-negative symmetric function and

satisfies jK(u)du =1. Since K is a probability density function, f also has the

characteristics of probability density function. In practice, several kinds of probability

density function commonly selected as K are listed below:
14
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Uniform (rectangular window):
1
K(u) =5 for |u| <1

Triangular:

K(u)=(@1-|u

), for |u|<1

Epanechnikov (parabolic):
K (u) :%(1—u2), for |u[<1
Quartic (biweight):
K(u) = %(1—&)2 , for |u[<1

Gaussian:

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

In Eq. (2.1), h is a positive number named bandwidth or smoothing parameter. It

controls the smoothness and preciseness of kernel density estimation. A larger h may

lead to underfitting and fail to represent the appearance of the real density function. By

contrast, a smaller h does not perform well on smoothing the curve and may lead to

overfitting.
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2.3.2 Planar Kernel Density Estimation (Planar KDE)

In order to perform density estimation of various spatial related issues, the standard
kernel density estimation concept is then extended to 2-D planes. The general form of the

planar kernel density estimator in a 2-D space can be written as:

n

29 =Y k() @7)

i=1

Where A(s) is the density at location S,d; is the distance from point i to
location S, and r is the bandwidth in Planar KDE. K is the kernel, modeled as a

function of 9 ratio. Instead of giving an equal weight to all points within bandwidth
r

r, a distance decay effect is taken into account. That is, as the distance between a point
and location S increases, that point is weighted less while calculating the overall density.
Some commonly applied kernel functions used to account for the distance decay effect
are expressed in an alternated form below (Gibin, Longley, & Atkindon, 2007; Levine,

2004):
I.  Gaussian function:

1

2z

2
k(d—r's) = exp(— g';z) ,when O0<d_<r 2.8)

Is —

k(ﬁ) =0,when d >r
r
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Il. Quartic function (approximating Gaussian function):

d, d>2
K(-2)=K(1--5), when 0<d, <r 2.9)

r2 is —

k(%) =0,when d >r
r

To ensure that the basic assumption I k(u)du =1 is not violated. 3 and 3 are
p/s

common values chosen for scaling factor K.

I1l. Minimum variance function:

2
di; ), when O0<d_ <r (2.10)

k(%)=§(3—5 o S
r 8 r

k(ﬁ) =0, when d >r
r

2.3.3 Network Kernel Density Estimation (Network KDE)

To perform density estimation of point events with network constraints, network
KDE is proposed (Xie & Yan, 2008). This approach differs from the planar kernel density
estimation in several aspects. Network KDE is a 1-D measurement, while planar KDE is
a 2-D one. Network space is used in the point event context and the kernel function is
developed based on network distance instead of Euclidean distance. Hence, it performs
better on density estimation while a planar KDE may over-detect clustered patterns. The

general form of the network KDE can be expressed as:
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n

A(s) :Z%k(d—ris) (2.11)

i=1

2.4  Summary of Literature Review

The summary of characteristics of reviews in terms of data source, approaches and
types of road network is listed in Table 2.1. According to the review in former sections,
most studies focus on either traffic state and event detection or propagation patterns of
congestions. Furthermore, there are some shortcomings on the data source they utilize.
Some of them are not open to public while others require high operation cost and
complicated preprocessing techniques. To bridge the gaps, this study proposed an
adjusted KDE approach to account for congestion detection, propagation patterns and

visualization of VD data.
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Subject of study

Trathic state and event detection

Propagation patterns

Author (Year)

0002)

Ke

al. 2012) (2013) al. (2014)

er, B. S, et | Li, X etal | Anbaroglu, B.,et | Long. I, etal. | Wang, Z., et

(2008)

al. (2013)

I, Y., etal.
(2014)

This

research

Data source

Probe car

v

Surveillance

system (camera)

v v

Vehicle Detector

Simulated

GPS trajectories

approaches

Traffic flow theory

Communication

model

Image processing

19

Spatio-temporal

clustering

Cell transmission

model

Kernel density

estimation

Visualization

<

<

~

Types of road

network

Urban road

network

Motorways

J\\

Table 2.1 Summary of Characteristics of Reviews
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Chapter 3 Methodology

In this chapter, the characteristics of adjusted network KDE is represented. The
proposed adjusted KDE approach is applied to determine the congestion cascading
pattern in terms of the conditional probability for congestion incidents and the potential
relationship between adjacent road segments is investigated. Procedures of extracting
network information, preprocessing VD data and performing KDE estimation by

employing the proposed approach are also explained in this chapter.

3.1 Adjusted Network Kernel Density Estimation (Adj.

Network KDE)

In this study, we will make some adjustments on the original network KDE approach.
In order to interpret the spatio-temporal characteristic of the congestion propagation
within an urban road network, network kernel density estimation approach is applied.
Instead of using network distance, this research employs “degree of adjacency” based on
the structure of the road network and adjacency matrix. The locations of VDs do not
follow a specific rule, for example at the front, middle or the end of the road segment.
Hence, VD data can only present the whole road segment and precise network distance
cannot be calculated. Furthermore, the conditional probability that congestion occurs on
the upstream road segment given the occurrence of another congestion on the downstream
road segment is also considered. The adjusted form of the network KDE can be written

as:
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"1 adj.
As) =Y = pk(Es)
e r

3.1)

Where adj,, is the degree of adjacency of upstream road segment i and
downstream road segment S and p, is the conditional probability that congestion

occurs on i given another congestion occurring on S. To be more specific, S and i
are both locations of VDs. In addition, each S can also be viewed as the center of several

neighboring road segments including itself, which contribute the effect to adjacent is.

3.2 Data Description

Two main components of our data are introduced in the following sections, including
the description of how we represent our urban road network structure, as well as the
contents and the procedure of preprocessing raw VD data. We apply the conception of the
adjacency matrix to form our road network structure. String comparison technique is
applied to filter target VD set in our region of interest (ROI) and time intervals, while
criteria are set to perform data preprocessing including the elimination of erroneous and

some conversion of units.

3.2.1 Network Structure

The concept of the adjacency matrix is introduced to describe the network structure
of our ROI. Most networks in previous research have been binary in nature. That is to say,
the edges between nodes are either existing or not (Newman 2004). A network with such

an attribute can be represented by an nxn adjacency matrix A with elements
21
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_J1 ifiandj are connected,
"0 otherwise

However, our road network is slightly different. Since all the VDs are located on the
road segments, our adjacency matrix is edge based. Furthermore, most of the arterials in
our road network are bidirectional, and thereby the direction of traffic is also considered.
That is, we will have an nxn adjacent matrix A where d is the entrance of a
downstream road segment with respect to the exit of an upstream road segment U with

elements

B 1 ifd and u are connected,
“0 otherwise

Figure 3.1 shows a sample road network, while table 3.1 represents its 1% order

adjacency matrix. We name it the 1% order adjacency when A, =1. The 1% order

adjacent matrix of our ROI will be constructed following the conception of adjacency and
part of it is shown in Figure 3.2. For some of the road segments, there are no VD installed.
Another matrix containing the turning information is also constructed at this stage, as
shown in Table 3.2. The tuning information is extracted from the VD reference data set,
and the attribute is tagged as S (straight), L (left turn) and R (right turn). For those cannot

be identified, coordinate information in terms of longitude and latitude is applied.
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A3
- = A
B3
- = B
C3 D3
y
Figure 3.1 Road Network Example
Table 3.1 Adjacency Matrix Example
Upstream  Arterial A B C D
ID A2E B2E C2N D2N
Downstream Direction | East East North North
Arterial ID Direction Segment |CD CD AB AB
A A2E East CD 1 0 1 0
B B2E East CD 0 1 0 0
C C2N North AB 0 0 1 0
D D2N  North AB 0 1 0 1
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Bfrom(E) 4wk 0 1 2 3 4 5 6 a 8
T wE 5% S5 5% 5% 5% 5% APHE AR FIER
D VHSIP20  VHNJV20 VHMKV20 VHMM620  VHMML20 VFZK620 -~ VG61520
AoGE) | i JE | # #® # #® HOH B
) J51 B e S i g E% Bt RE. B S
0 55 VHSIP20 H i< 1 1 0 0 0 0 0 0 0
1 E% VHNJV20 H & 0 1 1 0 0 0 0 0 0
2 5% VHMKV20 3 g 0 0 1 1 0 0 0 0 0
RNEE: VHMM620 H 1 0 0 0 1 1 0 0 0 0
4 (5% VHMML20 B [CE 0 0 0 0 1 1 0 0 0
5 (5% " ok 0 0 0 0 0 1 0 0 0
6 FISFER W FAEE 0 0 0 0 0 0 1 1 0
7 I VFZK620 H Hd 0 0 0 0 0 0 0 1 1
8 FISFH  VG6I520 H &H 0 0 0 0 0 0 0 0 1
9 FISFER W ik 0 0 0 0 0 0 0 0 0
10 fI*F3# VFTLH60 H feiti) 0 0 0 0 0 0 0 0 0
11 fIEH H (- 0 0 0 0 0 0 0 0 0
12 fIFESE VFPMQ20 3 B 0 0 0 0 0 0 0 0 0
13 AIPEH i) B 0 0 0 0 0 0 0 0 0
14 fII'FE VFZK620 ] s 0 0 0 0 0 0 0 0 0
15 AIFEE VG6I520 [iis] ) 0 0 0 0 0 0 0 0 0
16 FIFEH i) T 0 0 0 0 0 0 0 0 0
17 fISEE VFTLH60 i) 8 0 0 0 0 0 0 0 0 0
18 FISEE. VFQM660 ] 8% 0 0 0 0 0 0 0 0 0
19 AIFEH ] ok 0 0 0 0 0 0 0 0 0
20 FEZ H TTER 0 0 0 0 0 0 0 0 0
21 EZ VF9KB20 H R 0 0 0 0 0 0 0 0 0
22 FEZ H W 0 0 0 0 0 0 0 0 0
23 ¥EZ VFOKW60 H R 0 0 0 0 0 0 0 0 0
24 EZ VEWMS560 H fi-E-Y 0 0 0 0 0 0 0 0 0
25 FEZ VDYN960 S E-5:1 0 0 0 0 0 0 0 0 0
26 FEZ i) TTE 0 0 0 0 0 0 0 0 0
IS ZA VFOKB60 ] 2T 0 0 0 0 0 0 0 0 0
28 FEZ i} M 0 0 0 0 0 0 0 0 0
29 EZ VFOKW60 7 j2:407) 0 0 0 0 0 0 0 0 0
30 FFEZ VEFMN20 [is) ! 0 0 0 0 0 0 0 0 0
31 F¥Z VEFMN60 7§ 0 0 0 0 0 0 0 0 0
32 i VIPIZ61 hin 0 0 0 0 0 0 0 0 0
33 &iFE  VISID40 hin 0 1 0 0 0 0 0 0 0
34 41l VGRIK40 dt 0 0 0 0 0 0 0 0 0
35 liFg  VIPIZ61 & 0 1 0 0 0 0 0 0 0
Figure 3.2 Part of the 1* Order Adjacency Matrix of Our ROI
Table 3.2 Turning Matrix Example
Upstream  Arterial A B C D
ID A2E B2E C2N D2N
Downstream Direction | East East North North
Arterial ID Direction Segment | CD CD AB AB
A A2E  East CD self 0 R 0
B B2E  East CD 0 self 0 0
C C2N  North AB 0 0 self 0
D D2N North AB 0 L 0 self
24
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This study focuses on the 1% and 2" order adjacency, thereby requiring the 1% and
2" order adjacency matrices and turning information. We make a dot product of the 1°
order adjacency matrix itself to obtain the 2" order adjacency matrix. In the 2™ order
adjacency matrix, the elements with value 1, is named 2"¢ order adjacency. A 2" order
adjacency relationship indicates that two road segments are connected through another

road segment.

3.2.2 VD data processing

The dataset contains high resolution VD data (recorded every 5 minutes) in Taipei
City from January, 2015 to March, 2017, provided by the Traffic Control Center of Taipei
City Traffic Engineering Office. Figure 3.3 shows part of the raw data. Some
preprocessing work must be done in order to extract the target data we are interested in.
The raw data contain information including device ID, date and time, lane order, volume
and travel speed of large vehicles and regular passenger cars, lane occupancy, and average
interval between vehicles. There are also columns for motorcycles, however, none of them
are actually detected. Table 3.3 explains the important components in the VD data which
are useful for this study. We use average travel speed as our major indicator for traffic
congestion. The average travel speed is calculated by converting big car volume into car
volume based on the passenger car unit. Travel speeds on different lanes within a road
segment are averaged. In our analysis, data are filtered by ROI and the time interval of

interest (different peak periods of weekdays).
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DEVICEID LANEORDER BIGVOLUME BIGSPEED CARVOLUME CARSPEED MOTORVOLUME MOTORSPEED AVGSPEED LANEOCCUPY DATETIME2 ~RATE  AVGINT LGID

VGUEI60
VGUEI60
VGUEI60
VMEKQ40
VMEKQ40
VLMR820
VLMR820
VHWGD40
VHWGD40
VHWGD40
VHWGD40
VELJAQO
VELJA00
VELJA00
VELJA00
VELJAQ0
VELJA00
VQFHC20
VQFHC20
VQFHC20
VQFHC20

WO~ O LA WD~ OWN — O — O — O WM —

1 41 12 30.67 0 0 30.62 3.5 2015/1/1 00:05 240 161.5 0
0 0 5 42 0 0 42 1.25 2015/1/1-00:05 240 250 1
0 0 8 48 0 0 48 1.5 2015/1/1 00:05 240 222.25 1
0 0 13 44 0 0 44 2.25 2015/1/1 00:05 240 178.75 0
0 0 10 334 0 0 334 2.25 2015/1/1 00:05 240 - 184.25 0
2 63.5 1 0 0 0 42.33 0.75 2015/1/1 00:05 240 250 0
0 0 2 0 0 0 0 0.5 2015/1/1 00:05 240 250 1
0 0 4 42.5 0 0 42.5 0.75 2015/1/1 00:05 240 250 0
0 0 3 37 0 0 37 0.75 2015/1/1 00:05. 240 23575 0
3 51 8 49.75 0 0 50.09 3 2015/1/1 00:05 240 176.25 1
0 0 4 34 0 0 34 0.75 2015/1/1 00:05 240 250 1
1 40 0 0 0 0 21 0.5 2015/1/1 00:05 240 250 0
1 40 3 50 0 0 50 0.75 2015/1/1 00:05 240 236 0
0 0 6 37.67 0 0 37.67 1 2015/1/1 00:05 240 236 0
1 25 0 0 0 0 34 0.5 2015/1/1 00:05 240 250 1
0 0 7 40 0 0 40 1.25 2015/1/1 00:05 240 236.25 1
0 0 4 45 0 0 45 0.5 2015/1/1 00:05 240 224 1
0 0 7 41.57 0 0 41.57 0 2015/1/1 00:05 240 41.5 0
0 0 10 61.5 0 0 61.5 1 2015/1/1 00:05 240 32 1
0 0 1 56 0 0 56 0 2015/1/1 00:05 240 14.75 1
0 0 10 44.1 0 0 4.1 1 2015/1/1 00:05 240 32 1
Figure 3.3 Raw VD Data
Table 3.3 Contents of Columns
Columns Contents
DevicelD Name of vehicle detectors
DateTime?2 Tag of date and time
LaneOrder Number of lane
Bigholume Volume of large vehicles
BigSpeed Speed of large vehicles
CarVolume Volume of regular passenger cars
CarSpeed Speed of regular passenger cars
LGID Identifier of the direction of traffic

There are slight differences between the two different procedures of preprocessing

VD data in terms of the travel speed criteria setting. Level of Service (LOS) C and average

speed are chosen in this study. The data preprocessing procedure is described as follows.

I.  Filtering the data of the set of VDs based on our ROI and target time intervals by

string matching techniques.
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96 road segments and 66 VDs are included in our ROI. By unifying the time
format of the raw data, string matching can be performed. Weekday data and

weekend data are then separated.

Il. Ignoring missing data and removing erroneous data due to malfunctioning VD

devices.

Erroneous data here mean records whose values are obviously unreasonable.
For example, travel speeds remain zero even during peak hours for several days or

travel speeds exceeding the speed limit for over 40%.

I1l. Constructing the incident chart for different criteria respectively.

A. For LOS C, according to section 19.6 in 2011 Taiwan Highway Capacity
Manual (Transportation Planning Division, 2011), travel speed can be used to
determine LOS for urban road network with different speed limits. The
complete criteria are shown in Table 3.4. We consider LOS C, which is often
taken as the standard of light congestion by transportation management
agencies as our threshold. Under this state, except for more restrictions in
making lane changes, drivers and motorists also experience certain tension. In
this study, a congestion is recorded if the travel speed is lower than 30 km/hr.
The differences between the actual travel speed and the LOS C threshold are

also calculated.
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Table 3.4 LOS Criteria for Urban Road Network with 50km/hr Speed Limit

Average Travel Speed  LOS
V (km/hr)
V=35
30<V<3s5
25<5V<30
20<V<25
15<V<20
V<15

Mo g QW o

B. For average speed, a different threshold is adopted. To detect non-recurrent
incidents, the normal traffic condition should be defined so that we construct a
baseline for reference first. The baseline is set based on the weekly average of
travel speed within the week of the targeted time interval. The difference
between the actual travel speed and the baseline value is calculated. Those

lower than 80% of the value on the baseline are recorded.

IV. As a preparation step for further processing, data recorded from step III are
transformed to a binary data structure. For negative values of the difference between
the actual travel speed and the threshold, 1 is assigned for them, while others are
assigned 0. The value 1 shows a VD detected a possible congestion or incident

during a certain time interval, while 0 indicates an acceptable level of service.
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3.3  Analysis Procedure

Base on the road network structure construction and data preprocessing, we can
obtain the 1 order and 2™ order adjacency relationships of the road segments and binary
incident chart of the VDs within our ROI. The analysis procedure will be explained as

follows and shown in Figure 3.4.

I.  Detecting incidents

Base on the binary incident chart obtained from the data preprocessing stage, a
cell with value 1 indicates possible congestion or incident takes place. For a single
VD, if there is a sequence of value 1 that lasts for at least 4 time intervals (20

minutes), we define it as a possible congestion incident.

Il. Calculating the conditional probability that incidents occur on neighboring road

segments

Duration of each congestion incident is recorded in step I. During the
congestion incident on a certain road segment, the numbers of consecutive time
intervals identified as congested on neighboring road segments are also recorded.
We define the ratio of the latter (upstream adjacent road segment) and the former
(downstream road segment) as the conditional probability of neighboring road

segments affected by the congested road segment.
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Calculating the kernel density at each road segment

Based on the result in step II and adjacency relationship obtained from data
preprocessing, the kernel density can be calculated through Equation (3.1). A simple
example is provided for illustration as follows. For the road network shown in Figure
3.5, congestion occurs on the target road segment TG, road segment 1,R in the 1
order right turn relationship with respect to TG, and another road segment 2,SR in
the 2™ order straight-right turn relationship with respect to TG. Two congestion
incidents were detected on TG; one started from 6:45 AM and ended at 7:15 AM,

while the other started from 8:20 PM and ended at 8:50 PM. Both lasted for six time

intervals (30 minutes). How p, of these two congestion incidents are obtained are

shown in Figure 3.6(a) and Figure 3.6(b), respectively. 4 and 3 congestion intervals
were detected on 1,R during the two congestion incidents on TG respectively. 3 and
3 congestion intervals are detected on 2,SR during the two congestion incidents

respectively. Thus, the kernel density calculation is A(L,R) = 14 k(l) + 13 k(l)

36 3 36 3

for I,R and l(Z,SR):lgk(g)+1§k(g) for 2,SR if r=3 is chosen as the
36 3 36 3

search bandwidth.
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Preprocessing Data

Adjacency Matrix [¢— Collecting Network Info Extractlpg Data of »| Incident Chart
Target Time Interval
A A
Detecting Incidents «
Calculating Conditional
Probability p;,
Calculating Kernel Density
at Each Road Segment
Figure 3.4 Analysis Procedure
TG
_— 1,R 2,SR
Figure 3.5 Example Road Network for KDE
Interval | ~6:50 | ~6:55 | ~7:00 | ~7:05 | ~7:10 | ~7:15| pjs
Segmen
TG
1,R 4/6
2,SR 3/6

Figure 3.6(a) p;s Calculation Example 1
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Interval | ~8:25 | ~8:30 | ~8:35 | ~8:40 | ~8:45 | ~8:50 | pis
Segmen
TG
1,R 3/6
2,SR 3/6

Figure 3.6(b) p;s Calculation Example 2
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Chapter 4 Case Study

A case study is performed using the urban road network of Taipei City with the
proposed algorithm applied. The dataset includes a real arterial network in part of the Da-
an district, Taipei City. The VD data from January, 2015 to March, 2017 are provided by
the Traffic Control Center of Taipei City Traffic Engineering Office. The point location
of each VD is paired with a road segment. The network of our ROI is analyzed in this
chapter in terms of the kernel density of congestion. Different scenarios, including a day
with a special event and a week during the construction of bike lanes are investigated.
The analysis for each scenario is organized as overview, segment-wise perspective and

summary. The criteria of LOS C and average travel speed are analyzed, respectively.

4.1 Descriptions of the Case Study

Our ROl is defined by boundaries constructed by 5 arterials within Taipei City. The
boundaries are listed in Table 4.1. The ROI area and locations of VDs installed are shown
in Figure 4.1, where road segments are represented by thicker lines while the square dots
represent VDs. Our ROI contains 96 road segments with different traffic directions
separated. Totally 66 VDs are installed within this road network. There are no VDs on 30
road segments while multiple VDs are installed on some road segments. Data of peak
hours during weekdays are extracted for analysis. VDs and their corresponding numbers

and road segments are listed in Table 4.2.
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Table 4.1 Boundaries of ROI

Boundary North South West
Arterial | Jen-AiRd. | 1. Xin-Hai Rd. | Hang-Zhou S. Rd.
2. Roosevelt Rd.

G - -
&L 5 acde 2N B

Figure 4.1 Road Network of the ROI and Location of VDs
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Table 4.2 VDs in The ROI and Their Corresponding ID and Road Segments

ID NO Arterial Dir Block | ID NO Arterial - Dir Block
VHSIP20 [0 &% L ok 16 T & R
VHNJV20 |1 (= £ 4% |VFTLH60 |17 AT & & 24
VHMKV20 | 2 (g L #riz2 | VFQM660 |18 frT & & 3¢
VHMM620 | 3 2 & L 24 19 feT L & 3c4
VHMML20 | 4 B & T =o 20 %7 L TR
5 % & 4 3ck JVFIKB20 (21 =37 i B2t
6 frTd 4 s8R 2 3y 4 s
VFZK620 |7 =L & R4 | VFIKW60 |23 =7 e ]
VG6J520 |8 eI L K £#r | VEWMS60 |24 =7 L A
9 T L Kz | VDYN96O (25 37 i A
VFTLH60 |10 =T & & 2% 260 %7 TR
11 fe & & 43 | VFIKB6O (27 =7 & 3t
VFPMQ20 |12 e & & 3t 28 %7 AT
13 fexd & 2% |JVFIKW60 [29 =7 =i ]
VFZK620 |14 A{ex & & %4 |VEFMN20 |30 %7 A
VG6J520 |15 o & & &7 | VEFMN6O |31 73 7 OAx
VIPIZ61 32 &4 & =z JVINKWOO [48 =Z=®s 2 =
VISID40 |33 &4 o & | VFVKW40 (49 2Z@as 4
VGSIK40 |34 4.3 & &4c 50 #@Es A o3
VIPIZ61 35 40L& s =z JVINKW40 |51 2Z2®s & =8
VISID40 |36 &4 s € |VHMKWA40 (|52 #Z@s 3 i
VG8IK40 |37 44 & &4 53 #£®a = Ao
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4.2  Result Analysis

The following result analysis is based on the kernel density estimation result of our
ROL. Part of the kernel density estimation result of scenario 1 applying the criteria of
average travel speed is shown in Table 4.3. For each ID, its adjacent road segments and
their degree of adjacency are recorded and tagged as adj seg and degree, respectively.
The kernel density on each adjacent road segments of each day within the interested time
interval are calculated respectively and then summed.
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Table 4.3 Detailed KDE Result of Scenario 1 with Average Travel Speed

1D adj seg degree 18 19 20 21 22 kdesum
1 33 1 0.2516 0.5032 0.1258 0.2516 0.3774  1.5096
1 35 1 02516 0.5032 0.1258 0.2516 0.3774 1.5096
1 0 1 0.1625 0.1761 0 0.1048 0.1931 0.6365
1 34 2 0.1375 0.1491 0 0.0887 0.1635 0.5388
2 43 1 02516 0.2516 0.2516 0.2516 0.2516 1.258
2 40 2 0.0776  0.1353 0.1331 0.1242 0.1531 0.6233
2 1 1 0.1205  0.097 0.0891 0.131 0.1022  0.5398
2 35 2 0.1154 0.1065 0.0754 0.1309 0.1043 0.5325
2 33 2 0.0799 0.0998  0.091 0.0865 0.1353 0.4925
2 39 1 0.0865 0.131 0.0446 0.0734 0.1232 0.4587
2 0 2 0102 0.0821 0.0754 0.1109 0.0865 0.4569
2 8 2 0.0732  0.1109 0.0377 0.0621 0.1043 0.3882
2 16 2 0 0 0 0 0 0
3 51 1 0.629  0.629  0.629 0.5032 0.7548  3.145
3 17 2 0.5324 0.5324 0.5324 0.4259 0.6389  2.662
3 39 2 0.5324 0.5324 0.5324 0.4259 0.6389  2.662
3 49 1 03738 03124 0.1123  0.213 0.4031 1.4146
3 2 1 03414 0.2736 0.2361 0.3459 0.1999 1.3969
3 43 2 0.1597 02573  0.139 0.3347 03134 1.2041
3 1 2 0289 0.2316 0.1999 0.2928 0.1692 1.1825
3 9 2 0 0 0 0 0 0
3 50 2 0 0 0 0 0 0
4 57 1 0.629 0.5032 0.5032  0.629  0.629 2.8934
4 18 2 0.5324 0.4259 04259 0.5324 0.5324  2.449
4 51 2 0.5324 0.4259 0.4259 0.5324 0.5324  2.449
4 3 1 02524 0.1866 0.2875 0.3649 0.3476 1.439
4 56 2 0.1982 0.2553 0.2571 0.3088 0.3117 1.3311
4 2 2 0.2137 0.1579 0.2434 0.3089 0.2943 1.2182
4 55 1 0.2831 0.2705 0.0252 0.2332 0.3008 1.1128
4 49 2 0.1445 0.1901 0.1597 0.2443  0.326 1.0646
4 10 2 0.2396 0.2289 0.0213 0.1974 0.2546 0.9418
7 75 1 0.1258 0.8806 0.5032 0.5032 0.7548 2.7676
7 6 1 0 0 0 0 0 0
7 69 1 0 0 0 0 0 0
7 70 2 0 0 0 0 0 0
7 93 2 0 0 0 0 0 0
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4.2.1 Scenario 1:2015/12/28~2015/12/31

The purpose of scenario 1 is to investigate the congestion propagation pattern during
normal weekdays and a day with a special event, which is the New Year’s celebration
events in this case study. During this time period, the bike lane on Fu-Xing S. road and
Xin-Sheng S. road was still under construction. The VD data from 12/28 to 12/31 in 2015
are extracted. The kernel density estimation of congestion is calculated for each road

segments in our ROL

Threshold of LOS C — Overview

The visualization of a KDE plain view is shown in Figure 4.2. Larger circle and
darker color represents relatively higher density. Based on the threshold of LOS C
(30km/hr), we can observe that the VDs with relatively high density are located on Xin-
Sheng S. road, especially for the segment between the two largest arterials of Taipei City:
Jen-Ai road and Xin-Yi road. For other road segments, generally they can still maintain
level LOS C within peak hours. However, comparing Figure 4.2 with Figure 4.3 (for
12/31), only the color saturation at the locations of hot spots on the heat map become

slightly higher, indicating higher probability of the occurrence of congestion.
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Threshold of LOS C - Segment-wise

For road segments with relatively high density, further investigation and observation
are needed, since they can be the potential sources of congestion propagation. Road
segments 43 shows the highest density among all segments. However, since segment 43
is located at the north edge of our ROI, none of its upstream segments are accounted in
this study. The possible congestion propagation to the upstream segments from the
congestion of the origins of road segment 33, 43 and 44 is visualized in Figures 4.4, 4.5,
and 4.6, respectively. The thickness and darkness of the color mark represents the degree
of influence. Segments without a ramp can be either providing minor contributions or
indicating the situation of no data obtained. The color red represents the congestion source
road segments, while the upstream road segments are shown in gray scale. Darker color
and thicker line segment indicates larger impact. White arrows indicate the travel

directions.

For the analysis of road segment 33, the effect of congestion propagation to the

upstream road segments are too minor to be observed.

For the analysis of road segment 44, road segments of the 1% order adjacency are
more likely to be affected, while road segments of the 2™ order adjacency are influenced
less. Among all road segments of the 2" order adjacency, the one that enters road segment

44 by a left turn may be receiving more contribution from the congestion source.
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Figure 4.6 Upstream Influence from The Congestion of Segment 44 (S1_C)

Average Travel Speed - Overview

The visualization result presenting kernel density within the whole week of
2015/12/28 to 2015/12/31 is shown in Figure 4.7. Another figure specifically presenting
the kernel density on 2015/12/31 is shown in Figure 4.8. The locations with larger circles
and darker colors are road segments with higher kernel density. Similar locations of hot
spots of congestion can be observed through Figure 4.7 and Figure 4.8. We can observe
that the road segments on Xin-Sheng S. road, Jian-Guo S. road and Fu-Xing S. road near
He-Ping E. road has relatively higher density than other road segments, indicating higher

probability of the occurrence of congestion.
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Average Travel Speed - Segment-wise

Road segments 40, 44 and 56 show the highest density among all segments. Hence,
segment-wise analysis is performed. The possible propagation to the upstream segments

from road segment 40, 44 and 56 is visualized in Figure 4.9, 4.10 and 4.11 respectively.

For the analysis of road segment 40, road segments of the 1% order adjacency are
still more likely to be influenced. Road segments of the 2" order adjacency are not
affected as much as the road segment of the 1% order adjacency. Among those adjacent

upstream road segments, the ones without a turn has higher density.

For the analysis of road segment 44, road segments of the 1* order adjacency are
still more likely to be influenced. Since Xin-Yi road only allows one way traffic, there is
no road segments entering road segment 44 by left turn. Among the two road segments
of the 1% order adjacency, the effects are almost the same. Road segments of the 2™ order
adjacency are not affected as much as the road segment of the 1% order adjacency. Among
the three upstream road segments of the 2™ order adjacency, the effects are almost the

same.

For the analysis of road segment 56, road segments of the 1 order adjacency are
more likely to be affected. Among road segments of the 1% order adjacency, the one that
enters by a left turn has higher density than the other that enters by a right turn. Road
segments of the 2" order adjacency following the road segment of the 1 order adjacency
enter by a right turn are influenced less. Among all road segments of the 2™ order
adjacency, the one does not enter by a left turn may receive more contribution to

congestion from the source road segment 56 than the other.
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Figure 4.10 Upstream Influence from The Congestion of Segment 44 (S1_avg)
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Figure 4.11 Upstream Influence from The Congestion of Segment 56 (S1_avg)

4.2.2 Scenario 2: 2016/4/18~2016/4/22

The construction of the bike lanes had caused occupation of lanes originally used by
motorized vehicles and changed the layout of road segments. To investigate the
congestion propagation pattern on weekdays during the construction of bike lanes, a week
(2016/4/18 to 2016/4/22) during the construction and close to the completion of it is
chosen for Scenario 2. Kernel density estimation is performed on each road segments in

our ROI.
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Threshold of LOS C — Overview

From the result shown in Figure 4.12, The main areas with high density still lies on
Xin-Sheng S. road. However, the service level of some road segments on the parallel
arterials including Jin-Shan S. road and Jian-Guo S. road may be degraded. The impact

on the road segments seems to be more local, indicating that most of the congestions does

not affect widely.
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Threshold of LOS C - Segment-wise

Similar to what we have observed from the former overview section, even for the
road segments with higher density, congestion does not spread widely. The possible
congestion propagation to the upstream segments from the source of road segments 33,
39 and 84 is visualized in Figure 4.13, 4.14 and 4.15, respectively. Road segments 43 and

51 have higher density than road segment 84, however, their upstream road segments are

not included in ROL

In the analysis of the road segments for this period, the effect of propagation to

upstream road segments is too minor to be observed.
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Figure 4.13 Upstream Influence from The Congestion of Segment 33 (S2_C)
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Average Travel Speed — Overview
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The visualization result is shown in Figure 4.16. The distribution of hi%!mefriddtl?sity:
& |/ %

areas is roughly unchanged, however, with lower color saturation. This may'iindicat're that

the impact from the construction has eased to some extent.
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Average Travel Speed - Segment-wise

Road segments 40, 46 and 51 show the highest density among all segments. However,
the adjacent road segments of road segment 51 is not covered by ROI. The effects on road
segment 58 with the 4" highest density is investigated and the pattern on road segment
56 is observed once again to compare with Scenario 1. The possible propagation to the
upstream segments from the congestion of road segments 40, 46, 58 and 56 is visualized

in Figure 4.17, 4.18, 4.19 and Figure 4.20, respectively.

For the analysis of road segment 40, there are one 1% order and two 2" order adjacent
upstream road segments. For the road segment of the 2™ order adjacency, the one that
enters by a left turn has smaller density than the other one that enters without a turn and
the road segment of the 1% order adjacency. However, the road segments of the 2" order

adjacent without turns has higher density than the 1% order adjacent one.

For the analysis of road segments 46 and 58, the effect of congestion propagation to

upstream road segments are too minor to be observed.

For the analysis of road segment 56, similar patterns can be observed as they are in
Scenario 1. Road segments of the 1% order adjacency are more likely to be affected.
Among road segments of the 1% order adjacency, the segment that enters by a left turn has
higher density than the other that enters by a right turn. However, the angle of the right
turn here is about 135 degrees, its orientation may be defined between a right turn or a no
turn. The road segments of the 2™ order adjacency entering the road segment of the 1%
order adjacency by a right turn are influenced less. Among all road segments of the 2"
order adjacency, there are no significant difference between them in terms of the possible

contribution to congestion received from the source road segment 56.
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Figure 4.18 Upstream Influence from The Congestion of Segment 46 (S2_avg)
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Figure 4.20 Upstream Influence from The Congestion of Segment 56 (S2_avg)
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4.3  Summary of Insights from Case Study

In this chapter, a case study with two scenarios during different time interval in the
same urban road network is performed. An urban network is constructed, an adjusted
KDE is developed and the results are visualized for the sake of further understanding of
the hot spots of traffic congestion, relationship between road segments as well as the
congestion propagation pattern. Based on the comprehensive analysis, we induce some
research findings from the visualization results in both the overview and the segment-

wise perspectives.
Overview

During the construction of bike lanes, layouts of road segments were changed.
According to the report of Taipei City Traffic Engineering Office made about the
evaluation of bike lane construction, travel speed has slightly decreased on the arterials
with bike lane construction and recovered after the construction was completed. However,
according to this research, the probability of the occurrence of the congestion has changed
comparing to the data before the construction and are likely to be higher on the arterials

with bike lane construction than elsewhere.

The analysis results from Scenario 1 show that for a day with special event, the size
of the impacted area may increase, indicating that a single congestion incident is likely to
spread wider. Based on threshold of the LOS C, usually most of the road segments
performed quite well even during the bike lane construction. However, if we use the
average speed criterion, which represents the daily traffic baseline, it shows that
fluctuations of the travel speed and congestion incidents actually happen from time to

time. Hence, a varying value of average travel speed may be a better standard for more
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active traffic management.

Segment-wise

Road segments of the 1% order adjacency usually have higher density than road
segments of the 2" order adjacency, which is consistent with the common knowledge of

traffic management that spatially closer locations have stronger connection to each other.

For the connections of the road segment of congestion source and its 1% order
adjacent upstream road segments, we may conclude that generally the upstream which
goes straight to the congested road segment is affected most by the source. The segment
with a left turn comes second and the segment with a right turn receives the least influence.
For the connections between road segment of the 1™ order adjacency and road segments
of the 2™ order adjacency, similar characteristics can be observed. Each road segment in
a grid network can have at most three 1% order adjacent upstream road segments and nine
2" order adjacent upstream road segments. However, not every road segment within the
road network is orthogonally connected with each other. Additionally, not all of them have
VDs installed. Hence, there may be some simplifications in this study. However, the
proposed approach can be sufficient for the research objectives and flexible for extended

applications.

55

doi:10.6342/NTU201802653



Chapter 5 Conclusions and Future Work

Due to the advanced sensor technology, high-resolution vehicle detection data are
accessible and can provide abundant information for traffic management. However, in the
existing literature, these data have not been fully explored and utilized. Hence, this
research develops a framework by using an adjusted KDE approach to estimate the effects
of congestion propagation in an urban roadway network, through data preprocessing,
analysis to visualization. Based on the VD data in Taipei City, this research presents a VD
data analysis framework composed of congestion and incident detection, KDE,
visualization of congestion hot spots and propagation patterns. The long-term bike lane
network construction since 2014 is used for the case study to investigate the propagation
pattern during network layout changes. Based on the proposed approach, this study
concludes the research insights related to the forming, propagation and dissipation of the

traffic congestion in the following sections.

5.1 Conclusions

Based on the research background, literature review, construction of a KDE based
spatial analysis framework and the case study in Chapter 4, the research insights of this
study can be concluded as follows:

(1) This research utilizes the adjusted kernel density estimation approach to compute
the effects of congestion on road segments. By constructing the network structure,
we not only record the location and adjacency of neighboring road segments, but
also identify how they are connected in terms of traffic flow dynamics. This non
parametric approach allows us to better understand the spatial characteristics of

traffic flow evolution over a network.
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(2) This study displays a complete framework for analyzing VD data. We apply the
criteria suggested from the latest 2011 version Highway Capacity Manual and the
average travel speed calculated from the data itself. The case study is conducted to
test the feasibility of applying them as the congestion thresholds and provide the
visualized results, which can help identify the characteristics of congestion

propagation patterns under different event and network layout changes.

(3) The relationship between neighboring road segments and the influence contributed
by the congestion source segment are clarified. A pattern of congestion propagation
can be found which is consistent with the general knowledge about traffic
management. However, that some part of road network that is not a typical grid
network has slightly different outcomes while most part of the network is typical and
follows the general pattern. The proposed framework can still provide the

visualization of propagation pattern for each road segment.

(4) Instead of plotting data on the time line to observe the fluctuation. The propagation
of congestion may be visualized to some extent. However, this study contributes on
several different perspectives. Our proposed methodology can not only visualize the
propagation itself but also extract its characteristics. Furthermore, it has good
expandability to compare with historical data and the ability to predict future traffic

state with urban road network, which is valuable reference for traffic management.
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5.2 Future Work

To further enhance the analysis of urban VD data and its applications for traffic
management, there are several considerations and suggestions for the future work, which
may expand the use of the data analysis framework and provide referential information
for better quality decision-making. The relevant aspects are listed as follows:

(1) To make the results more reliable, the malfunctioning rate and the amount of missing
data need to be decreased. On the other hand, it may be addressed by either installing
more VDs to fill the vacancy spot or developing proper data imputation approaches.
The reliability of different data imputation approach need to be further tested as well.

(2) New data can be further included to form a larger data set. More generalized base
line traffic conditions can be determined. Also, by arbitrarily choosing certain part
of data set for more case studies, the congestion propagation pattern under different
circumstances can be identified. The outcome can be provided as a network
evaluation reference for transportation engineering and management agencies.

(3) For the adjusted network KDE approach proposed in this study, the spatial
relationship of road segments and the conditional probability p;s are considered in
the equation. However, in p;s the closeness between congestion incidents in terms
of time dimension is not directly used. Hence, elements that can properly represent
the time dimension can be further investigated.

(4) There are some difficulties in extracting road network information. For example,
road networks may not always be typical grid network and the map information is
not well organized or reliable. Problems for constructing small networks may be
fixed manually. However, to implement this approach to a larger network, automatic

network extracting technique need to be further developed.
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(5) More studies can be conducted by focusing on how to simplify different network
structures while extracting their commonality. We may be able to make some basic
explanation about some phenomenon slightly different from the general findings we
come up with. However, what kind of simplification is allowed and more types of

road segment connection patterns still need further investigation.
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