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中文摘要 

對於交通管理而言，道路交通狀況的監測是很重要的課題，而如何監控和避免

道路壅塞是交通管理最主要關心的面向之一。壅塞發生的原因包括自用車使用率

提升使得車流量增加、道路系統容量不足或設計不良，以及事故或施工導致車道容

量縮減等。而壅塞的影響層面則包括通勤時間的增長、駕駛人情緒上的負面衝擊、

生活品質的降低以及在緊急應變上的潛在威脅。因此，深入了解這些壅塞所影響的

範圍與層面，並找出道路系統中可能的瓶頸處，提供可靠資訊予用路人與交通管理

單位作為參考，將可協助對於預防壅塞更積極的作為，並在交通管理策略上做出改

善。 

過去文獻中，針對不同資料來源所進行的交通狀態與事件偵測、壅塞擴散模式

與資料視覺化皆有相關研究與討論，本研究將基於高解析度之車輛偵測器資料分

析，將資料處理、模式辨識與視覺化三個區塊一併納入，建立一個完整的壅塞分析

架構。本研究首先進行原始車輛偵測器資料的清理，處理資料中缺失與錯誤的問題，

並篩選出後續分析所需要的特定資料，並根據與不同的壅塞界定門檻值，定義出壅

塞發生的時空位置。本研究以車輛偵測器的實際位置，地圖圖資與鄰接矩陣的觀念

建立路網。接著使用調整的核密度推估方法進行壅塞擴散模式的分析，在不同時間

段進行案例分析，探討一階、二階鄰接以及不同轉向的上游路段受下游壅塞源頭影

響的情形，歸納出可供參考的壅塞擴散模式和推估原則，並透過視覺化呈現交通車

流資料的變化特性。 

藉由案例分析的不同情境設定，與不同尺度的視覺化結果，將可以從圖面上觀

察到整體路網當中有較高機率發生壅塞的位置，以及各源頭路段發生壅塞之後，傳

遞的方向與影響程度。在路網中大部分的路段上觀察到的現象符合一些一般性的

原則，上游路段受到壅塞的影響，一階鄰接路段大於二階鄰接路段；另外在相同鄰

接度的情形下，直行進入下游路段大於左轉進入下游路段，左轉進入下游路段又大

於右轉進入下游路段。 

關鍵字： 車輛偵測器、核密度估計、交通狀態偵測、壅塞擴散模式、視覺化 
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ABSTRACT 

The monitoring of roadway traffic conditions is critical for traffic management, 

where the detection of traffic congestion is one of major concerns. Traffic congestion may 

have various causes, including the increase of traffic volume due to higher private vehicle 

usage, inappropriate design or lack of capacity of road network and layout changes on the 

road segment owing to non-recurrent incidents such as traffic accidents or construction 

work. Traffic congestion may lead to the rise of commuting time, negative impact of 

driver physiology, lower quality of life and potential hazard on emergency response could 

be the impact of traffic congestion. Hence, further understanding of how traffic 

congestion was formed, propagated and dissipates, and identifying possible bottlenecks 

are critical for overall traffic management. Based on the relevant knowledge, it is possible 

to provide drivers and traffic management agencies reliable information to more actively 

prevent traffic congestion and thereby improve the quality of traffic management 

strategies. 

In the current literature, traffic state detection, congestion propagation pattern and 

traffic data visualization have been studied and discussed, respectively. Based on high-

resolution VD data, this study integrates the consideration of data processing, pattern 

recognition and visualization to develop a data analysis framework for better 

understanding of traffic congestion in an urban network. Data cleaning is first performed 

to deal with the missing and erroneous data, and then a specific data set needed for further 

analysis is extracted. Based on different thresholds of congestion detection, the spatio-

temporal locations of congestion occurrences are recorded. The network structure is 

constructed based on the actual coordinate of VDs, map information and the concept of 
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the adjacent matrix. An adjusted kernel density estimation approach is proposed and 

applied to case studies, in order to investigate the effects of congestion propagation on 

road segments with different characteristics in terms of connection type and adjacency. 

Finally, a general principle describing the propagation pattern of traffic congestion is 

concluded and presented through data visualization. 

Based on different scenarios for the case study and visualization result under 

different scales, locations with higher probability to be congested in the whole network 

and the propagation direction and impact after congestion occurred can be observed. Most 

of the road segments within the network follows some general principles. In terms of the 

impact on upstream road segments, road segments of the 1st order adjacency receive larger 

impact than road segments of the 2nd order adjacency. In addition, for road segments of 

the same order adjacency, which goes straight to the congested road segment is affected 

most by the source. The segment with a left turn comes second and the segment with a 

right turn receives the least influence. 

Keywords: congestion propagation pattern, kernel density estimation, traffic state 

detection, vehicle detectors, visualization 
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Chapter 1 Introduction 

1.1 Background 

Traffic congestion is one of the main focuses of traffic management. It is a state 

when traffic demand exceeds roadway capacity. The characteristic of traffic congestion 

occurring within urban road networks can be quite different from those taking place on 

freeways because of traffic signals, intersections and the complexity of road networks. 

Traffic congestion can be further divided into recurrent one which usually occurs during 

peak hours and non-recurrent one resulting from a variety of incidents, such as traffic 

accidents, road construction as well as large activities.  

Researchers are interested in several related topics, including the formation of traffic 

congestion, the estimation of negative effects caused by traffic congestion, the bottlenecks 

in the road network and the strategies to prevent as well as ease congestion. To answer 

the questions mentioned above, congestion incidents need to be identified from traffic 

data first. How to detect traffic congestion through a systematic approach of collecting 

and analyzing traffic data has been the key issue for traffic management. In previous 

studies, traffic data are often extracted from loop detectors. However, there are some 

obvious shortcomings, such as the difficulties in facility maintenance, high 

malfunctioning and misdetection rate. Hence, other types facilities for detection, for 

example, electronic toll collection (ETC) sensors, monitors and microwave vehicle 

detectors (VD) are installed. ETC system has been operating on the freeways in Taiwan 

since 2014. Besides improving the service level of the freeway system, it also contributes 

to the collection of large amount of traffic data. These data can be used for traffic 
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management and opened to both academia and individuals for extended applications. In 

Taipei City, vehicle detectors are widely installed within the urban road network, and 

high-resolution traffic data are collected. They provide abundant traffic data including 

point travel speed, traffic volume and occupancy. The daily VD data are provided without 

charge on the governmental open data platform, Data.Taipei website. Through the 

investigation of these data, the characteristics of traffic flows can be observed and a 

baseline traffic condition can be determined. By comparing the traffic data of a set of 

target VDs within a Region Of Interest (ROI) during a certain time interval with the 

baseline, congestion incidents can be detected. Traffic congestion may be manifested as 

a chain reaction, forming a shockwave across a certain scope of a roadway network (Li, 

She, Luo, & Yu, 2013). Some studies on traffic congestion forecasting have been 

conducted by employing pheromone communication models (Kurihara, Tamaki, Numao, 

Yano, Kagawa, & Morita, 2009), density wave models (Nagatani, 2002) and so on. To 

understand how a congestion incident may propagate throughout a network and dissipate 

based on the exploration of real data can be the research direction to further enhance urban 

traffic management.  

In order to provide pedestrians and cyclists a safer environment, Taipei City 

government has been implementing the bike lane network plan since 2014. Considering 

the departure efficiency, that is, the time needed to eliminate the queue at traffic signals, 

three north-south arterials and three east-west arterials are selected. Each of them has a 

width of at least 40 meters and metro routes passes through four of them. The planned 

network is shown in Figure 1.1. For those with wider sidewalks, for example, Jen-Ai road 

and Zhong-Shan N. road, marking lines for bike lanes are painted on the original 

sidewalks. For the other four routes, sidewalks are first broadened, and then marking lines 
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are drawn. The layout of a widened sidewalk with a bike lane is shown in Figure 1.2.  

Residents had been reporting the congestion and inconvenience during the bike lane 

construction on Fu-Xing S. Road and Xin-Sheng S. Road from March to September in 

2016. According to the travel speed collected from vehicle detectors, during the 

construction, travel speed slightly decreased by 6.49% to 7.91% and the service level had 

been degraded (Taipei City Traffic Engineering Office, 2016). However, the service level 

had almost recovered after the construction work was completed. Hence, whether there 

are some differences in terms of the traffic flow characteristics and congestion 

propagation pattern between arterials under construction and the others is worth 

investigating. Moreover, more detailed understanding of relationships among 

neighboring road segments may also provide traffic management agencies and 

individuals valuable information for evaluating the influences of construction decisions, 

determining traffic management strategies and providing navigation. Hence, high-

resolution VD data during the construction in an ROI covering the arterials under 

construction can be extracted for further analysis. Characteristics of the congestion 

propagation pattern including the conditional probability that a congestion may occur 

given the occurrence of another congestion, the potential relationship between adjacent 

road segments and how traffic congestion contribute to different road segments can be 

observed. 
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Figure 1.1 Planned Bike Lane Network in Downtown Taipei 

 

 

Figure 1.2 Layout of Widened Sidewalk on Fu-Xing S. Road 
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In this study, we seek to obtain better understanding of the pattern of how traffic 

congestion propagates and influences a roadway network. The traffic control center of 

Taipei City has provided a system for real time traffic status inquiry by plotting the road 

performance information on a Google Map as partly shown in Figure 1.3. Straightforward 

information can be extracted based on the collected traffic data (Chen, Guo & Wang, 

2015), while the cascading traffic pattern may further suggest driver behavior of diverting 

to circumvent congested road segments. Hence, the main purpose of this study is to go 

deeper to investigate the effects of congestion afterwards. To monitor where and when 

traffic congestion occurs, we take point vehicular speed as the primary consideration. 

Based on the traffic data collected from vehicle detectors (VDs), we cluster these data by 

capturing the spatiotemporal variation of vehicular speed over the network so as to 

identify congestion incidents. Based on the congestion incidents identified, affected road 

segments can also be further determined.  

 

 

Figure 1.3 Real Time Traffic Status of Taipei City 
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Ultimately, this research seeks to investigate the propagation of congestion incidents 

within an urban road network. By visualizing the bottle necks and shockwave after a 

congestion occurs, we provide some research insight so that a precautionary traffic 

management strategy may be taken. 

 

1.2 Research Objectives 

In this study, we expect to have further understanding about the cascading pattern of 

traffic congestion based on high resolution VD data, which may be a reference for the 

determination of traffic management strategies. System for real time traffic status inquiry 

provided by the traffic control center of Taipei City and Google Map visualize instant 

traffic status in terms of vehicular speeds over the roadway network via a web-based 

inquiry interface, but we are more interested in the probability of congestion passing to 

neighboring areas. To be more specific, the research objectives are summarized as below: 

I. Propose an alternated probability density estimation approach to properly compute 

the conditional probability that a congestion may occur on a certain road segment 

given the occurrence of another congestion. 

II. Determine the potential relationship between adjacent road segments based on the 

degree of adjacency and turning (straight, left turn or right turn) pattern. 

III. Visualize the density estimation result and discuss how a congestion on a road 

segment make contributions to adjacent road segments and affect neighboring areas. 
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1.3 Thesis Organization 

Figure 1.4 illustrates the organization of this thesis, which consists of six chapters. 

Chapter 2 provides the literature review of several dimensions related to traffic states and 

events detection, propagation patterns of congestion and the applications of different 

forms of Kernel Density Estimation (KDE) approaches. Based on the gaps identified in 

Chapter 2, Chapter 3 proposed an alternated form of KDE approach, descriptively 

presented the associated data used for analysis and showed the procedure to apply the 

proposed approach. Next, Case studies using the road network of Taipei City are 

performed, and results are visualized in Chapter 4. Finally, conclusions of research 

findings and recommendations for future research are summarized in Chapter 5. 
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Figure 1.4 Thesis Organizations 
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Chapter 2 Literature Review 

 The situation of traffic congestion within road network has drawn much attention 

from both governmental and private units related to traffic management and data analysis. 

As detectors and monitors with high density installed and abundant traffic data collected, 

the insight into potential patterns within have intrigued increasing research interest to 

various case studies. These may lead us to further understanding to the characteristic of 

traffic flow, structure beneath our road network and some thoughts toward traffic 

management strategies. 

 This chapter will be organized as follows. The research papers applying 

different approaches for detecting traffic state and events are reviewed in section 2.1. 

Literature discussing the propagation pattern of traffic congestions is reviewed in section 

2.2. Section 2.3 review the studies about kernel density estimation itself and its 

application in various disciplines. Last, a brief summary is presented in section 2.4. 

 

2.1 Traffic State and Event Detection 

Congestion, slow, smooth and accidents are traffic states than can describe traffic 

flow on roads, providing critical information to travelers as well as transportation 

agencies (Li, She, Luo & Yu, 2013). Various data are collected from loop detectors, 

camera surveillance systems, probe cars and GPS including travel time, traffic speed and 

trajectories are used for traffic state and event detection. Algorithms are designed and 

case studies are performed on freeways and in urban road networks. 
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Coifman, B. (2002) stated that the link travel time can reflect traffic state to some 

extent. Direct measurement of travel time may require correlation of multiple location 

observations, that is, additional detector hardware or new communication infrastructure 

are needed. Thus, a method estimating trajectories and link travel time only using data 

from an individual set of dual loop detector is proposed. Basic traffic flow theory is 

applied for extrapolating local conditions on extended links. With no incidents or delays 

involved, this approach provides good time estimation results. 

Kerner, Demir, Herrtwich, Klenov, Rehborn, Aleksic & Haug (2005) introduced an 

approach which perform traffic state detection with floating car data (FCD). Probe cars 

are sent to collect travel time within a reporting section. A travel time increase due to 

congestion emergence and a travel time decrease because of congestion dissolution are 

recorded. Two or more probe cars can provide substantial information for a typical traffic 

accident to be recognized. This approach can provide a 65% probability to recognize 

incidents last longer than 20 minutes with a penetration rate of 1.5% of probe cars within 

whole amount of vehicles. 

Li, She, Luo & Yu (2013) applied freeway video surveillance system for traffic state 

detection use. Existing surveillance camera infrastructure can provide data in a video form. 

However, there are difficulties including angle and zooming while extracting traffic data 

form surveillance cameras. Based on the movement of vehicles in images, they proposed 

a system to estimate traffic flow speed and occupancy rate and estimate typical traffic 

states (congested, slow and smooth) that can leverage the existing surveillance 

infrastructure. The traffic state detection accuracy ratio during daytime is higher than 85%, 

while the accuracy of congestion reaches 91.8%. 
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 Wang, Lu, Yuan, Zhang & Van De Wetering (2013) proposed a method to perform 

visual analysis of urban traffic traffic jam based on trajectory data. GPS trajectories of 

taxis are collected and strategies for extract congestion information are developed. 

Trajectories are cleaned first in order to fit in a road network. Secondly, traffic speed on 

each road segment is calculated. Lastly, spatio-temporal graphs showing congestion and 

its propagation can provide descriptions of a traffic jam. 

Anbaroglu, Heydecker & Cheng (2014) stated that differences between urban 

network and motorways, and the fact that the nature vary from recurrent congestions (RC) 

and non-recurrent congestions (NRC), limits the use of existing incident detection 

methods mostly focused on motorways without distinguishing RCs and NRCs. 

Substantially high link journey travel time observations (LJTs) occur simultaneously are 

clustered in the proposed NRC detection method. Besides minimum duration restrictions, 

localization index is also introduced to describe the closeness between congestion clusters. 

They concluded that those LJTs at least 40% higher than expected value should belong to 

NRC through the result of sensitivity analysis using a weighted product model (WPM). 

 

2.2 Propagation Patterns 

Besides detection of traffic states and events, how the congestion propagates and/or 

cascade is also one of the most interested issues among research related traffic congestion. 

This may provide us the ability to extrapolate the traffic state on the road network nearby 

and the potential relationship between neighboring road segments. With these we can 

further understand the structure of our road network and the cascading behavior of a 

congestion took place. 



doi:10.6342/NTU201802653

 12 

Long, Gao, Ren & Lian (2008) stated the importance of effectively identifying 

network bottlenecks for improving network service level and preventing congestions. 

Congestion is defined by critical standards based on average journey speed (AJV) and a 

congestion propagation model based on cell transmission model (CTM) is proposed. 

Simulations are performed on Sioux Falls network. The simulated result can provide 

references for decision in controlling traffic demand. 

Wang, Z., et al. (2013) utilized GPS trajectories and provide multiple views for 

visually exploring and analyzing on the level of propagation graphs and road segment 

level. The whole visualization contains speed variation on pixel level while the 

propagation result is shown on road segment level. 

Ji, & Geroliminis (2014) observed congestion propagation on a macroscopic scale. 

By taxi GPS as sparse probe vehicle data and maximum connected component of 

congested links, interconnected congested links and the critical congestion pockets are 

identified. The proposed method can effectively distinguish the congestion pockets out of 

the network and track the evolution of congestion through time. 

 

2.3 Kernel Density Estimation (KDE) and Applications 

An adjusted kernel density estimation approach is applied in this study, thus related 

literatures including the general kernel density estimation method and some discussion 

about this approach as well as the applications in transportation field and several other 

disciplines are reviewed in this section. Probability density estimation approaches can be 

categorized into parametric and nonparametric ones. Parametric probability density 
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estimation is made based on the assumptions related to the distribution embedded in the 

data set. However, there can be larger gaps between the assumed parametric model and 

reality. As a nonparametric probability density estimation approach (Rosenblatt 1956; 

Whittle 1958; Parzen 1962), kernel density estimation does not require any assumption 

for the distribution of data points. This provides more flexibility and allows researchers 

to discover more characteristics beneath the data set such as such as its actual distribution. 

Hence, the great importance of kernel density estimation has shown in both theoretical 

and applied statistics fields. Rosenblatt, M. (1956) and Parzen, E. (1962) developed 

current form of kernel density estimation, which is also termed Parzen-Rosenblatt 

window method in some fields such as signal processing and econometrics. 

Yu (2009) has done a study on KDE, investigating the most appropriate search 

bandwidth choice for six different probability distribution evaluated by mean integrated 

square error (MISE) and asymptotic mean integrated squared error (AMISE). Yu 

concluded that the KDE with variable search bandwidth can provide acceptable 

estimation results. 

 Xie and Yan (2008) suggested a network KDE method transformed from a standard 

planar KDE to fill the shortcomings while the problem is network based. The innovation 

of this research is to represent network space with lixel, which is the linear units of equal 

network length. This approach is tested with traffic accident data and road network in 

Bowling Green, Kentucky in 2005. This approach has the ability to solve the problem of 

overestimation of density values. The impacts on density calculation from different kernel 

functions and different search bandwidth are also investigated and found that search 

bandwidth brought the highest influence by controlling the smoothness of the spatial 

pattern. 



doi:10.6342/NTU201802653

 14 

Chang (2012) applied KDE and integrate data mining to assess common 

physiological indicators of multiple diseases. To estimate the probability of illness of 

patients being examined, KDE is applied to estimate the probability distribution of each 

common physiological indicator under different health condition. 

Hu (2012) established an approach to analysis GPS trajectory and collected the 

trajectories of visitors in Yehliu Geopark. Possible spatial distribution of visitors within 

the park can be calculated through KDE. In addition, time factor is also taken into account 

to investigate the location of crowds and the spatial distribution of visitors. Ultimately, 

the density distribution of visitors within the park during different time period is simulated. 

The simulation result can be used to reconsider the space allocation and route design. 

 

2.3.1 Standard Kernel Density Estimation (Standard KDE) 

 Assuming 1 2( , ,..., )nx x x   is a univariate independent and identically distributed 

sample extracted from some distribution with an unknown density f , its kernel density 

estimator can be written as: 

 
1 1

1 1
( ) ( ) ( )

n n
i

h ih

i i

x x
f x K x x K

n nh h 


      (2.1) 

  

Where K  is the kernel function which is a non-negative symmetric function and 

satisfies ( ) 1K u du   . Since K   is a probability density function, f   also has the 

characteristics of probability density function. In practice, several kinds of probability 

density function commonly selected as K  are listed below: 
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I. Uniform (rectangular window): 

 
1

( )
2

K u  , for 1u     (2.2) 

II. Triangular: 

 ( ) (1 )K u u  , for 1u   (2.3) 

III. Epanechnikov (parabolic): 

 23
( ) (1 )

4
K u u  , for 1u   (2.4) 

IV. Quartic (biweight): 

 2 215
( ) (1 )

16
K u u  , for 1u   (2.5) 

V. Gaussian: 

 
21

2
1

( )
2

u

K u e




   (2.6) 

 In Eq. (2.1), h  is a positive number named bandwidth or smoothing parameter. It 

controls the smoothness and preciseness of kernel density estimation. A larger h  may 

lead to underfitting and fail to represent the appearance of the real density function. By 

contrast, a smaller h  does not perform well on smoothing the curve and may lead to 

overfitting.  
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2.3.2 Planar Kernel Density Estimation (Planar KDE) 

 In order to perform density estimation of various spatial related issues, the standard 

kernel density estimation concept is then extended to 2-D planes. The general form of the 

planar kernel density estimator in a 2-D space can be written as: 

 
2

1

1
( ) ( )

n
is

i

d
s k

r r




   (2.7) 

Where ( )s   is the density at location s  ,
isd   is the distance from point i   to 

location s  , and r   is the bandwidth in Planar KDE. k   is the kernel, modeled as a 

function of isd

r
 ratio. Instead of giving an equal weight to all points within bandwidth 

r , a distance decay effect is taken into account. That is, as the distance between a point 

and location s  increases, that point is weighted less while calculating the overall density. 

Some commonly applied kernel functions used to account for the distance decay effect 

are expressed in an alternated form below (Gibin, Longley, & Atkindon, 2007; Levine, 

2004): 

I. Gaussian function: 

2

2

1
( ) exp( )

22

is isd d
k

r r
  , when 0 isd r    (2.8) 

( ) 0isd
k

r
 , when isd r   
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II. Quartic function (approximating Gaussian function): 

2

2
( ) (1 )is isd d

k K
r r

  , when 0 isd r    (2.9) 

( ) 0isd
k

r
 , when isd r   

To ensure that the basic assumption ( ) 1k u du   is not violated. 
3


 and 

3

4
 are 

common values chosen for scaling factor K . 

III. Minimum variance function: 

2

2

3
( ) (3 5 )

8

is isd d
k

r r
  , when 0 isd r    (2.10) 

( ) 0isd
k

r
 , when isd r   

 

2.3.3 Network Kernel Density Estimation (Network KDE) 

To perform density estimation of point events with network constraints, network 

KDE is proposed (Xie & Yan, 2008). This approach differs from the planar kernel density 

estimation in several aspects. Network KDE is a 1-D measurement, while planar KDE is 

a 2-D one. Network space is used in the point event context and the kernel function is 

developed based on network distance instead of Euclidean distance. Hence, it performs 

better on density estimation while a planar KDE may over-detect clustered patterns. The 

general form of the network KDE can be expressed as: 
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1

1
( ) ( )

n
is

i

d
s k

r r




   (2.11) 

 

2.4 Summary of Literature Review 

The summary of characteristics of reviews in terms of data source, approaches and 

types of road network is listed in Table 2.1. According to the review in former sections, 

most studies focus on either traffic state and event detection or propagation patterns of 

congestions. Furthermore, there are some shortcomings on the data source they utilize. 

Some of them are not open to public while others require high operation cost and 

complicated preprocessing techniques. To bridge the gaps, this study proposed an 

adjusted KDE approach to account for congestion detection, propagation patterns and 

visualization of VD data. 
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Chapter 3 Methodology 

 In this chapter, the characteristics of adjusted network KDE is represented. The 

proposed adjusted KDE approach is applied to determine the congestion cascading 

pattern in terms of the conditional probability for congestion incidents and the potential 

relationship between adjacent road segments is investigated. Procedures of extracting 

network information, preprocessing VD data and performing KDE estimation by 

employing the proposed approach are also explained in this chapter. 

 

3.1 Adjusted Network Kernel Density Estimation (Adj. 

Network KDE) 

 In this study, we will make some adjustments on the original network KDE approach. 

In order to interpret the spatio-temporal characteristic of the congestion propagation 

within an urban road network, network kernel density estimation approach is applied. 

Instead of using network distance, this research employs “degree of adjacency” based on 

the structure of the road network and adjacency matrix. The locations of VDs do not 

follow a specific rule, for example at the front, middle or the end of the road segment. 

Hence, VD data can only present the whole road segment and precise network distance 

cannot be calculated. Furthermore, the conditional probability that congestion occurs on 

the upstream road segment given the occurrence of another congestion on the downstream 

road segment is also considered. The adjusted form of the network KDE can be written 

as: 
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1

1
( ) ( )

n
is

is

i

adj
s p k

r r




   (3.1) 

 Where isadj   is the degree of adjacency of upstream road segment i   and 

downstream road segment s   and isp   is the conditional probability that congestion 

occurs on i  given another congestion occurring on s . To be more specific, s  and i  

are both locations of VDs. In addition, each s  can also be viewed as the center of several 

neighboring road segments including itself, which contribute the effect to adjacent i s. 

 

3.2 Data Description 

Two main components of our data are introduced in the following sections, including 

the description of how we represent our urban road network structure, as well as the 

contents and the procedure of preprocessing raw VD data. We apply the conception of the 

adjacency matrix to form our road network structure. String comparison technique is 

applied to filter target VD set in our region of interest (ROI) and time intervals, while 

criteria are set to perform data preprocessing including the elimination of erroneous and 

some conversion of units. 

 

3.2.1 Network Structure 

The concept of the adjacency matrix is introduced to describe the network structure 

of our ROI. Most networks in previous research have been binary in nature. That is to say, 

the edges between nodes are either existing or not (Newman 2004). A network with such 

an attribute can be represented by an n n  adjacency matrix   with elements 
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1 if  and  are connected,

0 otherwise
ij

i j
  


  

However, our road network is slightly different. Since all the VDs are located on the 

road segments, our adjacency matrix is edge based. Furthermore, most of the arterials in 

our road network are bidirectional, and thereby the direction of traffic is also considered. 

That is, we will have an n n   adjacent matrix    where d   is the entrance of a 

downstream road segment with respect to the exit of an upstream road segment u  with 

elements 

1 if  and  are connected,

0 otherwise
du

d u
  


 

Figure 3.1 shows a sample road network, while table 3.1 represents its 1st order 

adjacency matrix. We name it the 1st order adjacency when 1du   . The 1st order 

adjacent matrix of our ROI will be constructed following the conception of adjacency and 

part of it is shown in Figure 3.2. For some of the road segments, there are no VD installed. 

Another matrix containing the turning information is also constructed at this stage, as 

shown in Table 3.2. The tuning information is extracted from the VD reference data set, 

and the attribute is tagged as S (straight), L (left turn) and R (right turn). For those cannot 

be identified, coordinate information in terms of longitude and latitude is applied.  
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Figure 3.1 Road Network Example 

 

Table 3.1 Adjacency Matrix Example 

  Upstream Arterial A B C D … 

    ID A2E B2E C2N D2N … 

Downstream     Direction East East North North … 

Arterial ID Direction Segment CD CD AB AB … 

A A2E East CD 1 0 1 0  

B B2E East CD 0 1 0 0  

C C2N North AB 0 0 1 0  

D D2N North AB 0 1 0 1  

… … … …     … 
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Figure 3.2 Part of the 1st Order Adjacency Matrix of Our ROI 

 

Table 3.2 Turning Matrix Example 

  Upstream Arterial A B C D … 

    ID A2E B2E C2N D2N … 

Downstream     Direction East East North North … 

Arterial ID Direction Segment CD CD AB AB … 

A A2E East CD self 0 R 0  

B B2E East CD 0 self 0 0  

C C2N North AB 0 0 self 0  

D D2N North AB 0 L 0 self  

… … … …     … 

 

 

Bfrom(尾) 編號 0 1 2 3 4 5 6 7 8

下游 幹道 信義 信義 信義 信義 信義 信義 和平東 和平東 和平東

ID VHSIP20 VHNJV20 VHMKV20 VHMM620 VHMML20 VFZK620 VG6J520

Ato(頭) 上游 方向 東 東 東 東 東 東 東 東 東

編號 幹道 ID 方向 路段 杭金 金新 新建 建復 復敦 敦光 南羅 羅金 金新

0 信義 VHSIP20 東 杭金 1 1 0 0 0 0 0 0 0

1 信義 VHNJV20 東 金新 0 1 1 0 0 0 0 0 0

2 信義 VHMKV20 東 新建 0 0 1 1 0 0 0 0 0

3 信義 VHMM620 東 建復 0 0 0 1 1 0 0 0 0

4 信義 VHMML20 東 復敦 0 0 0 0 1 1 0 0 0

5 信義 東 敦光 0 0 0 0 0 1 0 0 0

6 和平東 東 南羅 0 0 0 0 0 0 1 1 0

7 和平東 VFZK620 東 羅金 0 0 0 0 0 0 0 1 1

8 和平東 VG6J520 東 金新 0 0 0 0 0 0 0 0 1

9 和平東 東 新建 0 0 0 0 0 0 0 0 0

10 和平東 VFTLH60 東 建復 0 0 0 0 0 0 0 0 0

11 和平東 東 復敦 0 0 0 0 0 0 0 0 0

12 和平東 VFPMQ20 東 敦基 0 0 0 0 0 0 0 0 0

13 和平東 西 南羅 0 0 0 0 0 0 0 0 0

14 和平東 VFZK620 西 羅金 0 0 0 0 0 0 0 0 0

15 和平東 VG6J520 西 金新 0 0 0 0 0 0 0 0 0

16 和平東 西 新建 0 0 0 0 0 0 0 0 0

17 和平東 VFTLH60 西 建復 0 0 0 0 0 0 0 0 0

18 和平東 VFQM660 西 復敦 0 0 0 0 0 0 0 0 0

19 和平東 西 敦基 0 0 0 0 0 0 0 0 0

20 辛亥 東 汀羅 0 0 0 0 0 0 0 0 0

21 辛亥 VF9KB20 東 羅新 0 0 0 0 0 0 0 0 0

22 辛亥 東 新建 0 0 0 0 0 0 0 0 0

23 辛亥 VF9KW60 東 建復 0 0 0 0 0 0 0 0 0

24 辛亥 VEWM560 東 復基 0 0 0 0 0 0 0 0 0

25 辛亥 VDYN960 東 基芳 0 0 0 0 0 0 0 0 0

26 辛亥 西 汀羅 0 0 0 0 0 0 0 0 0

27 辛亥 VF9KB60 西 羅新 0 0 0 0 0 0 0 0 0

28 辛亥 西 新建 0 0 0 0 0 0 0 0 0

29 辛亥 VF9KW60 西 建復 0 0 0 0 0 0 0 0 0

30 辛亥 VEFMN20 西 復基 0 0 0 0 0 0 0 0 0

31 辛亥 VEFMN60 西 基芳 0 0 0 0 0 0 0 0 0

32 金山南 VIPIZ61 北 仁信 0 0 0 0 0 0 0 0 0

33 金山南 VJSJD40 北 信愛 0 1 0 0 0 0 0 0 0

34 金山南 VG8IK40 北 愛和 0 0 0 0 0 0 0 0 0

35 金山南 VIPIZ61 南 仁信 0 1 0 0 0 0 0 0 0
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This study focuses on the 1st and 2nd order adjacency, thereby requiring the 1st and 

2nd order adjacency matrices and turning information. We make a dot product of the 1st 

order adjacency matrix itself to obtain the 2nd order adjacency matrix. In the 2nd order 

adjacency matrix, the elements with value 1, is named 2nd order adjacency. A 2nd order 

adjacency relationship indicates that two road segments are connected through another 

road segment. 

 

3.2.2 VD data processing 

The dataset contains high resolution VD data (recorded every 5 minutes) in Taipei 

City from January, 2015 to March, 2017, provided by the Traffic Control Center of Taipei 

City Traffic Engineering Office. Figure 3.3 shows part of the raw data. Some 

preprocessing work must be done in order to extract the target data we are interested in. 

The raw data contain information including device ID, date and time, lane order, volume 

and travel speed of large vehicles and regular passenger cars, lane occupancy, and average 

interval between vehicles. There are also columns for motorcycles, however, none of them 

are actually detected. Table 3.3 explains the important components in the VD data which 

are useful for this study. We use average travel speed as our major indicator for traffic 

congestion. The average travel speed is calculated by converting big car volume into car 

volume based on the passenger car unit. Travel speeds on different lanes within a road 

segment are averaged. In our analysis, data are filtered by ROI and the time interval of 

interest (different peak periods of weekdays).  
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Figure 3.3 Raw VD Data 

 

Table 3.3 Contents of Columns 

Columns  Contents 

DeviceID  Name of vehicle detectors 

DateTime2  Tag of date and time 

LaneOrder  Number of lane 

BigVolume  Volume of large vehicles 

BigSpeed  Speed of large vehicles 

CarVolume  Volume of regular passenger cars 

CarSpeed  Speed of regular passenger cars 

LGID  Identifier of the direction of traffic 

 

There are slight differences between the two different procedures of preprocessing 

VD data in terms of the travel speed criteria setting. Level of Service (LOS) C and average 

speed are chosen in this study. The data preprocessing procedure is described as follows. 

I. Filtering the data of the set of VDs based on our ROI and target time intervals by 

string matching techniques.  

 

DEVICEID LANEORDER BIGVOLUME BIGSPEED CARVOLUME CARSPEED MOTORVOLUME MOTORSPEED AVGSPEED LANEOCCUPY DATETIME2 RATE AVGINT LGID

VGUEI60 1 1 41 12 30.67 0 0 30.62 3.5 2015/1/1 00:05 240 161.5 0

VGUEI60 2 0 0 5 42 0 0 42 1.25 2015/1/1 00:05 240 250 1

VGUEI60 3 0 0 8 48 0 0 48 1.5 2015/1/1 00:05 240 222.25 1

VMEKQ40 0 0 0 13 44 0 0 44 2.25 2015/1/1 00:05 240 178.75 0

VMEKQ40 1 0 0 10 33.4 0 0 33.4 2.25 2015/1/1 00:05 240 184.25 0

VLMR820 0 2 63.5 1 0 0 0 42.33 0.75 2015/1/1 00:05 240 250 0

VLMR820 1 0 0 2 0 0 0 0 0.5 2015/1/1 00:05 240 250 1

VHWGD40 0 0 0 4 42.5 0 0 42.5 0.75 2015/1/1 00:05 240 250 0

VHWGD40 1 0 0 3 37 0 0 37 0.75 2015/1/1 00:05 240 235.75 0

VHWGD40 2 3 51 8 49.75 0 0 50.09 3 2015/1/1 00:05 240 176.25 1

VHWGD40 3 0 0 4 34 0 0 34 0.75 2015/1/1 00:05 240 250 1

VELJA00 0 1 40 0 0 0 0 21 0.5 2015/1/1 00:05 240 250 0

VELJA00 1 1 40 3 50 0 0 50 0.75 2015/1/1 00:05 240 236 0

VELJA00 2 0 0 6 37.67 0 0 37.67 1 2015/1/1 00:05 240 236 0

VELJA00 3 1 25 0 0 0 0 34 0.5 2015/1/1 00:05 240 250 1

VELJA00 4 0 0 7 40 0 0 40 1.25 2015/1/1 00:05 240 236.25 1

VELJA00 5 0 0 4 45 0 0 45 0.5 2015/1/1 00:05 240 224 1

VQFHC20 0 0 0 7 41.57 0 0 41.57 0 2015/1/1 00:05 240 41.5 0

VQFHC20 1 0 0 10 61.5 0 0 61.5 1 2015/1/1 00:05 240 32 1

VQFHC20 2 0 0 1 56 0 0 56 0 2015/1/1 00:05 240 14.75 1

VQFHC20 3 0 0 10 44.1 0 0 44.1 1 2015/1/1 00:05 240 32 1
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96 road segments and 66 VDs are included in our ROI. By unifying the time 

format of the raw data, string matching can be performed. Weekday data and 

weekend data are then separated. 

II. Ignoring missing data and removing erroneous data due to malfunctioning VD 

devices. 

Erroneous data here mean records whose values are obviously unreasonable. 

For example, travel speeds remain zero even during peak hours for several days or 

travel speeds exceeding the speed limit for over 40%. 

III. Constructing the incident chart for different criteria respectively. 

A. For LOS C, according to section 19.6 in 2011 Taiwan Highway Capacity 

Manual (Transportation Planning Division, 2011), travel speed can be used to 

determine LOS for urban road network with different speed limits. The 

complete criteria are shown in Table 3.4. We consider LOS C, which is often 

taken as the standard of light congestion by transportation management 

agencies as our threshold. Under this state, except for more restrictions in 

making lane changes, drivers and motorists also experience certain tension. In 

this study, a congestion is recorded if the travel speed is lower than 30 km/hr. 

The differences between the actual travel speed and the LOS C threshold are 

also calculated. 
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Table 3.4 LOS Criteria for Urban Road Network with 50km/hr Speed Limit 

Average Travel Speed  

V (km/hr) 

 LOS 

V≥35  A 

30≤V<35  B 

25≤V<30  C 

20≤V<25  D 

15≤V<20  E 

V<15  F 

 

B. For average speed, a different threshold is adopted. To detect non-recurrent 

incidents, the normal traffic condition should be defined so that we construct a 

baseline for reference first. The baseline is set based on the weekly average of 

travel speed within the week of the targeted time interval. The difference 

between the actual travel speed and the baseline value is calculated. Those 

lower than 80% of the value on the baseline are recorded. 

IV. As a preparation step for further processing, data recorded from step III are 

transformed to a binary data structure. For negative values of the difference between 

the actual travel speed and the threshold, 1 is assigned for them, while others are 

assigned 0. The value 1 shows a VD detected a possible congestion or incident 

during a certain time interval, while 0 indicates an acceptable level of service. 
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3.3 Analysis Procedure 

Base on the road network structure construction and data preprocessing, we can 

obtain the 1st order and 2nd order adjacency relationships of the road segments and binary 

incident chart of the VDs within our ROI. The analysis procedure will be explained as 

follows and shown in Figure 3.4. 

 

I. Detecting incidents 

Base on the binary incident chart obtained from the data preprocessing stage, a 

cell with value 1 indicates possible congestion or incident takes place. For a single 

VD, if there is a sequence of value 1 that lasts for at least 4 time intervals (20 

minutes), we define it as a possible congestion incident. 

II. Calculating the conditional probability that incidents occur on neighboring road 

segments isp  

Duration of each congestion incident is recorded in step I. During the 

congestion incident on a certain road segment, the numbers of consecutive time 

intervals identified as congested on neighboring road segments are also recorded. 

We define the ratio of the latter (upstream adjacent road segment) and the former 

(downstream road segment) as the conditional probability of neighboring road 

segments affected by the congested road segment. 
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III. Calculating the kernel density at each road segment 

Based on the result in step II and adjacency relationship obtained from data 

preprocessing, the kernel density can be calculated through Equation (3.1). A simple 

example is provided for illustration as follows. For the road network shown in Figure 

3.5, congestion occurs on the target road segment TG, road segment 1,R in the 1st 

order right turn relationship with respect to TG, and another road segment 2,SR in 

the 2nd order straight-right turn relationship with respect to TG. Two congestion 

incidents were detected on TG; one started from 6:45 AM and ended at 7:15 AM, 

while the other started from 8:20 PM and ended at 8:50 PM. Both lasted for six time 

intervals (30 minutes). How isp  of these two congestion incidents are obtained are 

shown in Figure 3.6(a) and Figure 3.6(b), respectively. 4 and 3 congestion intervals 

were detected on 1,R during the two congestion incidents on TG respectively. 3 and 

3 congestion intervals are detected on 2,SR during the two congestion incidents 

respectively. Thus, the kernel density calculation is 
1 4 1 1 3 1

(1, ) ( ) ( )
3 6 3 3 6 3

R k k    

for 1,R and 
1 3 2 1 3 2

(2, ) ( ) ( )
3 6 3 3 6 3

SR k k     for 2,SR if 3r    is chosen as the 

search bandwidth. 
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Figure 3.4 Analysis Procedure 

 

 

Figure 3.5 Example Road Network for KDE 

 

Interval 
Segment 

~6:50 ~6:55 ~7:00 ~7:05 ~7:10 ~7:15 𝑝𝑖𝑠 

TG        

1,R       4/6 

2,SR       3/6 

Figure 3.6(a) 𝑝𝑖𝑠 Calculation Example 1 

 

TG 

1,R 2,SR 
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Interval 
Segment 

~8:25 ~8:30 ~8:35 ~8:40 ~8:45 ~8:50 𝑝𝑖𝑠 

TG        

1,R       3/6 

2,SR       3/6 

Figure 3.6(b) 𝑝𝑖𝑠 Calculation Example 2 
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Chapter 4 Case Study 

 A case study is performed using the urban road network of Taipei City with the 

proposed algorithm applied. The dataset includes a real arterial network in part of the Da-

an district, Taipei City. The VD data from January, 2015 to March, 2017 are provided by 

the Traffic Control Center of Taipei City Traffic Engineering Office. The point location 

of each VD is paired with a road segment. The network of our ROI is analyzed in this 

chapter in terms of the kernel density of congestion. Different scenarios, including a day 

with a special event and a week during the construction of bike lanes are investigated. 

The analysis for each scenario is organized as overview, segment-wise perspective and 

summary. The criteria of LOS C and average travel speed are analyzed, respectively. 

 

4.1 Descriptions of the Case Study 

Our ROI is defined by boundaries constructed by 5 arterials within Taipei City. The 

boundaries are listed in Table 4.1. The ROI area and locations of VDs installed are shown 

in Figure 4.1, where road segments are represented by thicker lines while the square dots 

represent VDs. Our ROI contains 96 road segments with different traffic directions 

separated. Totally 66 VDs are installed within this road network. There are no VDs on 30 

road segments while multiple VDs are installed on some road segments. Data of peak 

hours during weekdays are extracted for analysis. VDs and their corresponding numbers 

and road segments are listed in Table 4.2. 
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Table 4.1 Boundaries of ROI 

Boundary North South West East 

Arterial Jen-Ai Rd. 1. Xin-Hai Rd. 

2. Roosevelt Rd. 

Hang-Zhou S. Rd. 1. An-He Rd. 

2. Le-Li St. 

 

 

Figure 4.1 Road Network of the ROI and Location of VDs 
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Table 4.2 VDs in The ROI and Their Corresponding ID and Road Segments 

ID NO Arterial Dir Block ID NO Arterial Dir Block 

VHSIP20 0 信義 東 杭金   16 和平東 西 新建 

VHNJV20 1 信義 東 金新 VFTLH60 17 和平東 西 建復 

VHMKV20 2 信義 東 新建 VFQM660 18 和平東 西 復敦 

VHMM620 3 信義 東 建復   19 和平東 西 敦基 

VHMML20 4 信義 東 復敦   20 辛亥 東 汀羅 

  5 信義 東 敦光 VF9KB20 21 辛亥 東 羅新 

  6 和平東 東 南羅   22 辛亥 東 新建 

VFZK620 7 和平東 東 羅金 VF9KW60 23 辛亥 東 建復 

VG6J520 8 和平東 東 金新 VEWM560 24 辛亥 東 復基 

  9 和平東 東 新建 VDYN960 25 辛亥 東 基芳 

VFTLH60 10 和平東 東 建復   26 辛亥 西 汀羅 

  11 和平東 東 復敦 VF9KB60 27 辛亥 西 羅新 

VFPMQ20 12 和平東 東 敦基   28 辛亥 西 新建 

  13 和平東 西 南羅 VF9KW60 29 辛亥 西 建復 

VFZK620 14 和平東 西 羅金 VEFMN20 30 辛亥 西 復基 

VG6J520 15 和平東 西 金新 VEFMN60 31 辛亥 西 基芳 

VIPIZ61 32 金山南 北 仁信 VINKW00 48 建國南 北 仁信 

VJSJD40 33 金山南 北 信愛 VFVKW40 49 建國南 北 信和 

VG8IK40 34 金山南 北 愛和   50 建國南 北 和辛 

VIPIZ61 35 金山南 南 仁信 VINKW40 51 建國南 南 仁信 

VJSJD40 36 金山南 南 信愛 VHMKW40 52 建國南 南 信和 

VG8IK40 37 金山南 南 愛和   53 建國南 南 和辛 

VINJW00 38 新生南 北 仁信   54 復興南 北 仁信 

VFYKD00 39 新生南 北 信和 VHLM800 55 復興南 北 信和 

VFYKD40 40 新生南 北 和辛 1 VEWM500 56 復興南 北 和辛 

VFYKD01 41 新生南 北 和辛 2 VIAM700 57 復興南 南 仁信 

VF9KB00 42 新生南 北 辛羅 VHLM800 58 復興南 南 信和 

VINJW00 43 新生南 南 仁信 VEWM500 59 復興南 南 和辛 

VFYKD41 44 新生南 南 信和 VI6NV00 60 敦化南 北 仁信 
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ID NO Arterial Dir Block ID NO Arterial Dir Block 

VFYKD40 45 新生南 南 和辛 1 VGHN840 61 敦化南 北 信和 1 

VFYKD01 46 新生南 南 和辛 2 VFNN700 62 敦化南 北 信和 2 

VF9KB00 47 新生南 南 辛羅   63 敦化南 北 和基 

VI6NV00 64 敦化南 南 仁信 VDTJW00 80 羅斯福 南 舟基 

VGHN840 65 敦化南 南 信和 1 VCCKW00 81 羅斯福 南 基興 

VFNN700 66 敦化南 南 信和 2   82 基隆 北 汀羅 

  67 敦化南 南 和基 VCPKT00 83 基隆 北 羅長 

VGTHG00 68 羅斯福 北 杭和 VCZLY20 84 基隆 北 長辛 

  69 羅斯福 北 和師   85 基隆 北 辛敦 

  70 羅斯福 北 師辛 VF9NH00 86 基隆 北 敦和 

VELJA00 71 羅斯福 北 辛新   87 基隆 南 汀羅 

  72 羅斯福 北 新舟 VCPKT40 88 基隆 南 羅長 

VDTJW00 73 羅斯福 北 舟基   89 基隆 南 長辛 

VCCKW00 74 羅斯福 北 基興   90 基隆 南 辛敦 

VGTHG00 75 羅斯福 南 杭和 VF9NH00 91 基隆 南 敦和 

  76 羅斯福 南 和師   92 師大 北 和羅 

  77 羅斯福 南 師辛   93 師大 北 羅汀 

VELJA00 78 羅斯福 南 辛新   94 師大 南 和羅 

VCPKT41 79 羅斯福 南 新舟   95 師大 南 羅汀 

 

4.2 Result Analysis 

The following result analysis is based on the kernel density estimation result of our 

ROI. Part of the kernel density estimation result of scenario 1 applying the criteria of 

average travel speed is shown in Table 4.3. For each ID, its adjacent road segments and 

their degree of adjacency are recorded and tagged as adj_seg and degree, respectively. 

The kernel density on each adjacent road segments of each day within the interested time 

interval are calculated respectively and then summed.  
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Table 4.3 Detailed KDE Result of Scenario 1 with Average Travel Speed 

ID adj_seg degree 18 19 20 21 22 kdesum 

1 33 1 0.2516 0.5032 0.1258 0.2516 0.3774 1.5096 

1 35 1 0.2516 0.5032 0.1258 0.2516 0.3774 1.5096 

1 0 1 0.1625 0.1761 0 0.1048 0.1931 0.6365 

1 34 2 0.1375 0.1491 0 0.0887 0.1635 0.5388 

2 43 1 0.2516 0.2516 0.2516 0.2516 0.2516 1.258 

2 40 2 0.0776 0.1353 0.1331 0.1242 0.1531 0.6233 

2 1 1 0.1205 0.097 0.0891 0.131 0.1022 0.5398 

2 35 2 0.1154 0.1065 0.0754 0.1309 0.1043 0.5325 

2 33 2 0.0799 0.0998 0.091 0.0865 0.1353 0.4925 

2 39 1 0.0865 0.131 0.0446 0.0734 0.1232 0.4587 

2 0 2 0.102 0.0821 0.0754 0.1109 0.0865 0.4569 

2 8 2 0.0732 0.1109 0.0377 0.0621 0.1043 0.3882 

2 16 2 0 0 0 0 0 0 

3 51 1 0.629 0.629 0.629 0.5032 0.7548 3.145 

3 17 2 0.5324 0.5324 0.5324 0.4259 0.6389 2.662 

3 39 2 0.5324 0.5324 0.5324 0.4259 0.6389 2.662 

3 49 1 0.3738 0.3124 0.1123 0.213 0.4031 1.4146 

3 2 1 0.3414 0.2736 0.2361 0.3459 0.1999 1.3969 

3 43 2 0.1597 0.2573 0.139 0.3347 0.3134 1.2041 

3 1 2 0.289 0.2316 0.1999 0.2928 0.1692 1.1825 

3 9 2 0 0 0 0 0 0 

3 50 2 0 0 0 0 0 0 

4 57 1 0.629 0.5032 0.5032 0.629 0.629 2.8934 

4 18 2 0.5324 0.4259 0.4259 0.5324 0.5324 2.449 

4 51 2 0.5324 0.4259 0.4259 0.5324 0.5324 2.449 

4 3 1 0.2524 0.1866 0.2875 0.3649 0.3476 1.439 

4 56 2 0.1982 0.2553 0.2571 0.3088 0.3117 1.3311 

4 2 2 0.2137 0.1579 0.2434 0.3089 0.2943 1.2182 

4 55 1 0.2831 0.2705 0.0252 0.2332 0.3008 1.1128 

4 49 2 0.1445 0.1901 0.1597 0.2443 0.326 1.0646 

4 10 2 0.2396 0.2289 0.0213 0.1974 0.2546 0.9418 

7 75 1 0.1258 0.8806 0.5032 0.5032 0.7548 2.7676 

7 6 1 0 0 0 0 0 0 

7 69 1 0 0 0 0 0 0 

7 70 2 0 0 0 0 0 0 

7 93 2 0 0 0 0 0 0 
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4.2.1 Scenario 1: 2015/12/28~2015/12/31 

The purpose of scenario 1 is to investigate the congestion propagation pattern during 

normal weekdays and a day with a special event, which is the New Year’s celebration 

events in this case study. During this time period, the bike lane on Fu-Xing S. road and 

Xin-Sheng S. road was still under construction. The VD data from 12/28 to 12/31 in 2015 

are extracted. The kernel density estimation of congestion is calculated for each road 

segments in our ROI. 

 

Threshold of LOS C – Overview 

The visualization of a KDE plain view is shown in Figure 4.2. Larger circle and 

darker color represents relatively higher density. Based on the threshold of LOS C 

(30km/hr), we can observe that the VDs with relatively high density are located on Xin-

Sheng S. road, especially for the segment between the two largest arterials of Taipei City: 

Jen-Ai road and Xin-Yi road. For other road segments, generally they can still maintain 

level LOS C within peak hours. However, comparing Figure 4.2 with Figure 4.3 (for 

12/31), only the color saturation at the locations of hot spots on the heat map become 

slightly higher, indicating higher probability of the occurrence of congestion. 
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Figure 4.2 KDE of Scenario 1 with LOS C (2015/12/28~30) 

 

 

Figure 4.3 KDE of Scenario 1 with LOS C (2015/12/31) 



doi:10.6342/NTU201802653

 40 

Threshold of LOS C - Segment-wise 

For road segments with relatively high density, further investigation and observation 

are needed, since they can be the potential sources of congestion propagation. Road 

segments 43 shows the highest density among all segments. However, since segment 43 

is located at the north edge of our ROI, none of its upstream segments are accounted in 

this study. The possible congestion propagation to the upstream segments from the 

congestion of the origins of road segment 33, 43 and 44 is visualized in Figures 4.4, 4.5, 

and 4.6, respectively. The thickness and darkness of the color mark represents the degree 

of influence. Segments without a ramp can be either providing minor contributions or 

indicating the situation of no data obtained. The color red represents the congestion source 

road segments, while the upstream road segments are shown in gray scale. Darker color 

and thicker line segment indicates larger impact. White arrows indicate the travel 

directions. 

For the analysis of road segment 33, the effect of congestion propagation to the 

upstream road segments are too minor to be observed.  

For the analysis of road segment 44, road segments of the 1st order adjacency are 

more likely to be affected, while road segments of the 2nd order adjacency are influenced 

less. Among all road segments of the 2nd order adjacency, the one that enters road segment 

44 by a left turn may be receiving more contribution from the congestion source. 
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Figure 4.4 Upstream Influence from The Congestion of Segment 33 (S1_C) 

 

 

Figure 4.5 Upstream Influence from The Congestion of Segment 43 (S1_C)  
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Figure 4.6 Upstream Influence from The Congestion of Segment 44 (S1_C) 

 

Average Travel Speed - Overview 

The visualization result presenting kernel density within the whole week of 

2015/12/28 to 2015/12/31 is shown in Figure 4.7. Another figure specifically presenting 

the kernel density on 2015/12/31 is shown in Figure 4.8. The locations with larger circles 

and darker colors are road segments with higher kernel density. Similar locations of hot 

spots of congestion can be observed through Figure 4.7 and Figure 4.8. We can observe 

that the road segments on Xin-Sheng S. road, Jian-Guo S. road and Fu-Xing S. road near 

He-Ping E. road has relatively higher density than other road segments, indicating higher 

probability of the occurrence of congestion. 
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Figure 4.7 KDE of Scenario 1 with Average Travel Speed (2015/12/28~30) 

 

 

Figure 4.8 KDE of Scenario 1 with Average Travel Speed (2015/12/31) 
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Average Travel Speed - Segment-wise 

  Road segments 40, 44 and 56 show the highest density among all segments. Hence, 

segment-wise analysis is performed. The possible propagation to the upstream segments 

from road segment 40, 44 and 56 is visualized in Figure 4.9, 4.10 and 4.11 respectively. 

 For the analysis of road segment 40, road segments of the 1st order adjacency are 

still more likely to be influenced. Road segments of the 2nd order adjacency are not 

affected as much as the road segment of the 1st order adjacency. Among those adjacent 

upstream road segments, the ones without a turn has higher density. 

 For the analysis of road segment 44, road segments of the 1st order adjacency are 

still more likely to be influenced. Since Xin-Yi road only allows one way traffic, there is 

no road segments entering road segment 44 by left turn. Among the two road segments 

of the 1st order adjacency, the effects are almost the same. Road segments of the 2nd order 

adjacency are not affected as much as the road segment of the 1st order adjacency. Among 

the three upstream road segments of the 2nd order adjacency, the effects are almost the 

same. 

 For the analysis of road segment 56, road segments of the 1st order adjacency are 

more likely to be affected. Among road segments of the 1st order adjacency, the one that 

enters by a left turn has higher density than the other that enters by a right turn. Road 

segments of the 2nd order adjacency following the road segment of the 1st order adjacency 

enter by a right turn are influenced less. Among all road segments of the 2nd order 

adjacency, the one does not enter by a left turn may receive more contribution to 

congestion from the source road segment 56 than the other. 
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Figure 4.9 Upstream Influence from The Congestion of Segment 40 (S1_avg) 

 

 

Figure 4.10 Upstream Influence from The Congestion of Segment 44 (S1_avg) 
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Figure 4.11 Upstream Influence from The Congestion of Segment 56 (S1_avg) 

 

4.2.2 Scenario 2: 2016/4/18~2016/4/22 

The construction of the bike lanes had caused occupation of lanes originally used by 

motorized vehicles and changed the layout of road segments. To investigate the 

congestion propagation pattern on weekdays during the construction of bike lanes, a week 

(2016/4/18 to 2016/4/22) during the construction and close to the completion of it is 

chosen for Scenario 2. Kernel density estimation is performed on each road segments in 

our ROI. 
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Threshold of LOS C – Overview 

From the result shown in Figure 4.12, The main areas with high density still lies on 

Xin-Sheng S. road. However, the service level of some road segments on the parallel 

arterials including Jin-Shan S. road and Jian-Guo S. road may be degraded. The impact 

on the road segments seems to be more local, indicating that most of the congestions does 

not affect widely. 

 

 

Figure 4.12 KDE of Scenario 2 with Level C of LOS (2016/4/18~22) 
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Threshold of LOS C - Segment-wise 

 Similar to what we have observed from the former overview section, even for the 

road segments with higher density, congestion does not spread widely. The possible 

congestion propagation to the upstream segments from the source of road segments 33, 

39 and 84 is visualized in Figure 4.13, 4.14 and 4.15, respectively. Road segments 43 and 

51 have higher density than road segment 84, however, their upstream road segments are 

not included in ROI. 

In the analysis of the road segments for this period, the effect of propagation to 

upstream road segments is too minor to be observed. 

 

 

Figure 4.13 Upstream Influence from The Congestion of Segment 33 (S2_C) 
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Figure 4.14 Upstream Influence from The Congestion of Segment 39 (S2_C) 

 

Figure 4.15 Upstream Influence from The Congestion of Segment 84 (S2_C) 
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Average Travel Speed – Overview 

The visualization result is shown in Figure 4.16. The distribution of higher density 

areas is roughly unchanged, however, with lower color saturation. This may indicate that 

the impact from the construction has eased to some extent. 

 

 

Figure 4.16 KDE of Scenario 2 with Average Travel Speed (2016/4/18~22) 
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Average Travel Speed - Segment-wise 

Road segments 40, 46 and 51 show the highest density among all segments. However, 

the adjacent road segments of road segment 51 is not covered by ROI. The effects on road 

segment 58 with the 4th highest density is investigated and the pattern on road segment 

56 is observed once again to compare with Scenario 1. The possible propagation to the 

upstream segments from the congestion of road segments 40, 46, 58 and 56 is visualized 

in Figure 4.17, 4.18, 4.19 and Figure 4.20, respectively. 

 For the analysis of road segment 40, there are one 1st order and two 2nd order adjacent 

upstream road segments. For the road segment of the 2nd order adjacency, the one that 

enters by a left turn has smaller density than the other one that enters without a turn and 

the road segment of the 1st order adjacency. However, the road segments of the 2nd order 

adjacent without turns has higher density than the 1st order adjacent one. 

For the analysis of road segments 46 and 58, the effect of congestion propagation to 

upstream road segments are too minor to be observed. 

For the analysis of road segment 56, similar patterns can be observed as they are in 

Scenario 1. Road segments of the 1st order adjacency are more likely to be affected. 

Among road segments of the 1st order adjacency, the segment that enters by a left turn has 

higher density than the other that enters by a right turn. However, the angle of the right 

turn here is about 135 degrees, its orientation may be defined between a right turn or a no 

turn. The road segments of the 2nd order adjacency entering the road segment of the 1st 

order adjacency by a right turn are influenced less. Among all road segments of the 2nd 

order adjacency, there are no significant difference between them in terms of the possible 

contribution to congestion received from the source road segment 56. 
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Figure 4.17 Upstream Influence from The Congestion of Segment 40 (S2_avg) 

 

Figure 4.18 Upstream Influence from The Congestion of Segment 46 (S2_avg) 
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Figure 4.19 Upstream Influence from The Congestion of Segment 58 (S2_avg) 

 

Figure 4.20 Upstream Influence from The Congestion of Segment 56 (S2_avg) 
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4.3 Summary of Insights from Case Study 

In this chapter, a case study with two scenarios during different time interval in the 

same urban road network is performed. An urban network is constructed, an adjusted 

KDE is developed and the results are visualized for the sake of further understanding of 

the hot spots of traffic congestion, relationship between road segments as well as the 

congestion propagation pattern. Based on the comprehensive analysis, we induce some 

research findings from the visualization results in both the overview and the segment-

wise perspectives.  

Overview 

During the construction of bike lanes, layouts of road segments were changed. 

According to the report of Taipei City Traffic Engineering Office made about the 

evaluation of bike lane construction, travel speed has slightly decreased on the arterials 

with bike lane construction and recovered after the construction was completed. However, 

according to this research, the probability of the occurrence of the congestion has changed 

comparing to the data before the construction and are likely to be higher on the arterials 

with bike lane construction than elsewhere.  

The analysis results from Scenario 1 show that for a day with special event, the size 

of the impacted area may increase, indicating that a single congestion incident is likely to 

spread wider. Based on threshold of the LOS C, usually most of the road segments 

performed quite well even during the bike lane construction. However, if we use the 

average speed criterion, which represents the daily traffic baseline, it shows that 

fluctuations of the travel speed and congestion incidents actually happen from time to 

time. Hence, a varying value of average travel speed may be a better standard for more 



doi:10.6342/NTU201802653

 55 

active traffic management. 

Segment-wise 

 Road segments of the 1st order adjacency usually have higher density than road 

segments of the 2nd order adjacency, which is consistent with the common knowledge of 

traffic management that spatially closer locations have stronger connection to each other. 

For the connections of the road segment of congestion source and its 1st order 

adjacent upstream road segments, we may conclude that generally the upstream which 

goes straight to the congested road segment is affected most by the source. The segment 

with a left turn comes second and the segment with a right turn receives the least influence. 

For the connections between road segment of the 1st order adjacency and road segments 

of the 2nd order adjacency, similar characteristics can be observed. Each road segment in 

a grid network can have at most three 1st order adjacent upstream road segments and nine 

2nd order adjacent upstream road segments. However, not every road segment within the 

road network is orthogonally connected with each other. Additionally, not all of them have 

VDs installed. Hence, there may be some simplifications in this study. However, the 

proposed approach can be sufficient for the research objectives and flexible for extended 

applications. 
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Chapter 5 Conclusions and Future Work  

Due to the advanced sensor technology, high-resolution vehicle detection data are 

accessible and can provide abundant information for traffic management. However, in the 

existing literature, these data have not been fully explored and utilized. Hence, this 

research develops a framework by using an adjusted KDE approach to estimate the effects 

of congestion propagation in an urban roadway network, through data preprocessing, 

analysis to visualization. Based on the VD data in Taipei City, this research presents a VD 

data analysis framework composed of congestion and incident detection, KDE, 

visualization of congestion hot spots and propagation patterns. The long-term bike lane 

network construction since 2014 is used for the case study to investigate the propagation 

pattern during network layout changes. Based on the proposed approach, this study 

concludes the research insights related to the forming, propagation and dissipation of the 

traffic congestion in the following sections.  

 

5.1 Conclusions 

Based on the research background, literature review, construction of a KDE based 

spatial analysis framework and the case study in Chapter 4, the research insights of this 

study can be concluded as follows: 

(1) This research utilizes the adjusted kernel density estimation approach to compute 

the effects of congestion on road segments. By constructing the network structure, 

we not only record the location and adjacency of neighboring road segments, but 

also identify how they are connected in terms of traffic flow dynamics. This non 

parametric approach allows us to better understand the spatial characteristics of 

traffic flow evolution over a network. 
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(2) This study displays a complete framework for analyzing VD data. We apply the 

criteria suggested from the latest 2011 version Highway Capacity Manual and the 

average travel speed calculated from the data itself. The case study is conducted to 

test the feasibility of applying them as the congestion thresholds and provide the 

visualized results, which can help identify the characteristics of congestion 

propagation patterns under different event and network layout changes. 

(3) The relationship between neighboring road segments and the influence contributed 

by the congestion source segment are clarified. A pattern of congestion propagation 

can be found which is consistent with the general knowledge about traffic 

management. However, that some part of road network that is not a typical grid 

network has slightly different outcomes while most part of the network is typical and 

follows the general pattern. The proposed framework can still provide the 

visualization of propagation pattern for each road segment. 

(4) Instead of plotting data on the time line to observe the fluctuation. The propagation 

of congestion may be visualized to some extent. However, this study contributes on 

several different perspectives. Our proposed methodology can not only visualize the 

propagation itself but also extract its characteristics. Furthermore, it has good 

expandability to compare with historical data and the ability to predict future traffic 

state with urban road network, which is valuable reference for traffic management. 

 

 



doi:10.6342/NTU201802653

 58 

5.2 Future Work 

To further enhance the analysis of urban VD data and its applications for traffic 

management, there are several considerations and suggestions for the future work, which 

may expand the use of the data analysis framework and provide referential information 

for better quality decision-making. The relevant aspects are listed as follows: 

(1) To make the results more reliable, the malfunctioning rate and the amount of missing 

data need to be decreased. On the other hand, it may be addressed by either installing 

more VDs to fill the vacancy spot or developing proper data imputation approaches. 

The reliability of different data imputation approach need to be further tested as well. 

(2) New data can be further included to form a larger data set. More generalized base 

line traffic conditions can be determined. Also, by arbitrarily choosing certain part 

of data set for more case studies, the congestion propagation pattern under different 

circumstances can be identified. The outcome can be provided as a network 

evaluation reference for transportation engineering and management agencies. 

(3) For the adjusted network KDE approach proposed in this study, the spatial 

relationship of road segments and the conditional probability 𝑝𝑖𝑠 are considered in 

the equation. However, in 𝑝𝑖𝑠 the closeness between congestion incidents in terms 

of time dimension is not directly used. Hence, elements that can properly represent 

the time dimension can be further investigated. 

(4) There are some difficulties in extracting road network information. For example, 

road networks may not always be typical grid network and the map information is 

not well organized or reliable. Problems for constructing small networks may be 

fixed manually. However, to implement this approach to a larger network, automatic 

network extracting technique need to be further developed. 
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(5) More studies can be conducted by focusing on how to simplify different network 

structures while extracting their commonality. We may be able to make some basic 

explanation about some phenomenon slightly different from the general findings we 

come up with. However, what kind of simplification is allowed and more types of 

road segment connection patterns still need further investigation.  
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