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中文摘要

我們利用張量網路演算法研究 Thirring 模型。我們將模型離散化
後，找出 Thirring 模型哈密頓的自旋算符表示法並用矩陣作用算符表
示。

利用均勻矩陣乘積態的變分優化演算法去找出模型的基態解並調

查其相圖。然後利用時間相依變分原理來研究 Thirring 模型的動態演
化，特別是對於跨相變的動態演化特別有興趣。

關鍵字: 張量網路、矩陣乘積態、均勻矩陣乘積態的變分優化演算法、
時間相依變分原理、Tirring 模型、量子演化、動態相變
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Abstract

We use tensor networks to study the Thirring model. We discretize
the model onto the lattice, find the spin representation for the Hamilto-
nian of the Thirring model and use the matrix product operator (MPO)
to represent it.

Using the variational optimization algorithms for uniform Matrix
Product State (VUMPS), we find the ground state of the model and
investigate the phase diagram. Then, we use the time-dependent varia-
tional principle algorithm (TDVP) to study the quench dynamics for the
Thirring model, especially for what happens when quenching different
phases.

Keywords: Tensor network (TN), matrix product state (MPS), varia-
tional optimization algorithm for uniform matrix product state (VUMPS),
time-dependent variational principle (TDVP), Thirring model, quantum
quench, dynamical phase transition (DPT)
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Chapter 1

Introduction

1.1 Overview
Tensor network methods are taking a central role in modern quantum physics,

especially in quantum many-body systems [1, 2]. In these methods, the quantum
state is represented as a tensor network, which we call a tensor network state. There
are several forms of tensor network states such as the matrix product state (MPS),
which is a good representation of quantum states in 1D lattice systems, and the
projected entangled pair state (PEPS), which is a representation of quantum states
in 2D lattice systems. In this thesis, we will introduce the Thirring model on 1D
infinite lattice in Chapter 2, and we use the so-called uniform matrix product state
(uMPS) (or infinite MPS (iMPS)), which we will introduce in Chapter 3, to represent
our quantum states.

There are several algorithms based on the tensor network methods for finding the
ground state of system, such as density matrix renormalization group (DMRG) [3]
and infinite time-evolving block decimation (iTEBD) [4]. In this thesis, we use the
variational optimization algorithm for uniform matrix product states (VUMPS) [5],
which will be discussed in Chapter 4, to find the ground state of the Thirring model.

There are tensor network algorithms for simulating real-time evolution for many-
body system on 1D lattices such as iTEBD or the time-dependent variational prin-
ciple (TDVP) [6]. We extend the original TDVP algorithm using the idea of the
infinite boundary conditions for MPS [7], and then we can use the matrix product
operator (MPO) to do TDVP simulations (see Chapter 5).

A quantum quench is a protocol in which one prepares an eigenstate of one
Hamiltonian, H0, and then evolves dynamically in time under a different Hamilto-
nian, H1. We want to ask whether the Thirring model exists the dynamical phase
transition [8]. We use the VUMPS algorithm to prepare the ground state of the

1
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Thirring model with a given coupling constant (∆) and mass (m), which is also the
eigenstate of Hamiltonian H0, and do real-time evolution by using another parame-
ters (∆′,m′) to investigate the quench dynamics of the Thirring model. We discuss
our results in Chapter 6.

2
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Chapter 2

Thirring Model

2.1 Spin Representation of the Thirring Model
We want to discretize the massive Thirring model onto a 1D lattice1. The massive

Thirring model is a theory of Dirac fields in the (1+1)-dimensional spacetime with
a current-current interaction; it is described by the action

S(ψ, ψ̄) =

∫
d2x

[
ψ̄iγµ∂µψ −mψ̄ψ − g

2
(ψ̄γµψ)2

]
, (2.1)

where m denotes the mass and g is the coupling constant of the current-current
interaction term (ψ̄γµψ)2. The canonical momentum is

Π =
∂L
∂ψ̇

= ψ̄iγ0 = iψ†. (2.2)

Thus, the Hamiltonian of the Thirring model becomes

H =

∫
dx (Π∂0ψ − L)

=

∫
dx
[
ψ̄iγ0∂0ψ − ψ̄iγµ∂µψ +mψ̄ψ +

g

2
(ψ̄γµψ)2

]
=

∫
dx
[
−ψ̄iγ1∂1ψ +mψ̄ψ +

g

2
(ψ̄γµψ)2

]
.

(2.3)

We choose the γ matrices as

γ0 = σ3, γ1 = iσ2, (2.4)

where σi are the Pauli matrices. We can see that the γ matrices will satisfy the
Colifford algebra as {γµ, γν} = 2gµν , where gµν is the metric of the Minkowski space
chosen as (1,-1).

1The part of the discussuin is based on Ref. [9].

3
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In addition, we will use ϕu and ϕd to denote the up and down components of the
field. Namely,

ψ =

(
ϕu

ϕd

)
. (2.5)

Then, Eq. (2.3) becomes

H =

∫
dx [−i(ψ∗

d∂1ψu + ψ∗
u∂1ψd) +m(ψ∗

uψu − ψ∗
dψd) + 2g(ψ∗

uψuψ
∗
dψd)] . (2.6)

We want to discretize the Hamiltonian on a 1D infinite lattice with the lattice
constant a and use “Kogut-Susskind fermions” [10], which put the up component
ψu on the even sites and the down component ψd on the odd sites. Hence,

ψu →
1√
a
c2n, ψd →

1√
a
c2n+1 (2.7)

and the differentials in space dimension are

∂1ψu(x) =

1√
a
(c2n+1 − c2n−1)

2a
, ∂1ψd(x) =

1√
a
(c2n+2 − c2n)

2a
. (2.8)

Then Eq. (2.6) becomes

Hlattice = − i

2a

∑
n

(
c†ncn+1 − c†n+1cn

)
+m

∑
n

(−1)nc†ncn

+
2g

a

∑
n

c†2nc2nc
†
2n+1c2n+1.

(2.9)

We use Jordan-Wigner transformation, which maps spin operators onto fermionic
creation and annihilation operators, to transform the Hamiltonian of the Thirring
model to the spin representation. Jordan-Wigner transformation can be represented
as

cn = exp

(
πi

n−1∑
j=1

Szj

)
S−
n , c†n = S+

n exp

(
−πi

n−1∑
j=1

Szj

)
. (2.10)

Substituting Eq. (2.10) into (2.9), then we get

Hspin = − 1

2a

∑
n

(S+
n S

−
n+1 + S−

n S
+
n+1) +m

∑
n

(−1)n
(
Szn +

1

2

)
+

2g

a

∑
n

(
Sz2n +

1

2

)(
Sz2n+1 +

1

2

)
.

(2.11)

Finally, we have the spin representation of the Thirring model. There is a prob-
lem here: this spin representation of the Thirring model breaks the lattice shift
symmetry. So, we need to complete the staggered term in the Hamiltonian.

Hspin = − 1

2a

∑
n

(S+
n S

−
n+1 + S−

n S
+
n+1) +m

∑
n

(−1)n
(
Szn +

1

2

)
+

∆

a

∑
n

(
Szn +

1

2

)(
Szn+1 +

1

2

)
,

(2.12)

4
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where ∆(g) =
cos(π − g)

2 ; this mapping is based on Bethe ansatz [11]. In order to
find the ground states with the constraint ⟨Sz⟩ = ⟨Starget⟩, we add a penalty term
[12] to the spin Hamiltonian:

Hpenalty
spin = Hspin + λ

∑
n

(Szn − Starget)
2 (2.13)

In practice, this works very well when λ > 1. For this thesis, we set Starget = 0.

2.2 Chiral Condensate
The chiral condensate can be defined as∣∣∣∣∫ dxψ̄ψ

∣∣∣∣ . (2.14)

We can use same technique as previous section. We can use “Kogut-Susskind
fermions” and Jordan-Wigner transformation:∣∣∣∣∫ dxψ̄ψ

∣∣∣∣ = ∣∣∣∣∫ dxψ†γ0ψ

∣∣∣∣ = ∣∣∣∣∫ dxψ∗
uψu − ψ∗

dψd

∣∣∣∣
→ lim

N→∞

1

N

∣∣∣∣∣∑
n

(−1)nc∗nc

∣∣∣∣∣ = lim
N→∞

1

N

∣∣∣∣∣∑
n

(−1)n
(
Szn +

1

2

)∣∣∣∣∣ .
(2.15)

Here N is the number of sites, which we add by hand. For infinite systems, we cannot
measure the entire condensate, only the condensate at each site can be measured.

2.3 Mapping to the Classical 2D XY Model
There exists a mapping [9] between the coupling constant (g) of the Thirring

model and the temperature (T ) in the 2D classical XY model:

HXY = −K
∑
<i,j>

cos(θi − θj). (2.16)

The relation is
g =

T

K
− π. (2.17)

The classical 2D XY model undergoes a Berezinskii–Kosterlitz–Thouless transition
(BKT transition) [13, 14] at T = Kπ

2 , the corresponding ∆ is − 1√
2
≈ −0.707. For

∆ < −0.707, the quantum state is in the KT phase.

5
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Chapter 3

Tensor Network and Matrix
Product state

3.1 Tensor Network and Tensor Diagram
Tensors can be classified by their rank. For example, a rank-0 tensor is a scalar, a

rank-1 tensor is a vector and a rank-2 tensor is a matrix. We can also define tensors
for higher ranks. The index contraction is the sum over all the possible values of
the repeated indices of a set of tensors. A tensor can also be constructed by index
contraction. For instance, the matrix product

Cαγ =
∑
β

AαβBβγ (3.1)

is the contraction of index β, which amounts to the sum over its possible values.
One can also have more complicated contractions, such as :

Θafeg =
∑
bcd

AbacBdceHbdfg (3.2)

From these examples, we see that we can construct a tensor by contracting
combination of other tensors and we call these combinations “tensor networks.”
It is too tedious to write every index when the network is very complicated; for
convenience, we introduce “tensor network diagrams”which can represent tensor
networks more clearly (see Fig. 3.1). Tensor network diagrams allow to handle
complicated expressions in a visual way. For instance, the contractions in Eqs. (3.1)
and (3.2) can be represented by the diagrams in Fig. 3.2. Hereafter, we will primarily
use tensor network diagrams to represent tensors and tensor networks.

6
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(a) 
scalar 

(b) 
vector 

(c) 

matrix 

(d) 

rank-3 tensor 

Figure 3.1: Tensor network diagrams (a) a scalar, (b) a vector, (c) a matrix and (d)
a rank-3 tensor.

= 

γ α β γ α 

A B C 

= 

A B 

H 

c 

b d 

a e 

f g 

Θ a e 

f g 

(a) 

(b) 

Figure 3.2: Tensor network diagram for Eqs. (3.1) and (3.2).

3.2 Matrix Product States
Tensor network states have emerged as a very useful conceptual and numerical

framework for studying quantum many-body systems [2]. For example, if we consider
a 1D lattice system with d-dimensional local state space {σi} on sites i = 1, 2, ..., L,
we can write the quantum state as:

|ϕ⟩ =
∑

σ1,...,σL

cσ1,...,σL | σ1, ..., σL⟩ (3.3)

For the tensor cσ1,...,σL , we can use the singular-value decomposition (SVD) to de-
compose it into

cσ1,...,σL =

r1∑
a1

Uσ1,a1Sa1,a1V
†
a1,σ2,...,σL

=

r1∑
a1

Uσ1,a1ca1,σ2,...,σL =

r1∑
a1

Aa1σ1ca1,σ2,...,σL ,

(3.4)

where r1 ≤ d, ca1,σ2,...,σL ≡ Sa1,a1V
†
a1,σ2,...,σL

and Aa1σ1 ≡ Uσ1,a1 . We can repeat this

7
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process for the tensor ca1,σ2...,σL , then
r1∑
a1

Aa1σ1ca1,σ2,...,σL

=

r1∑
a1

r2∑
a2

Aa1σ1U(a1,σ2),a2Sa2,a2V
†
a2,σ3,...,σL

≡
r1∑
a1

r2∑
a2

Aa1σ1U(a1,σ2),a2ca2,(σ3,...,σL)

≡
r1∑
a1

r2∑
a2

Aa1σ1A
σ2
a1,a2

ca2,(σ3,...,σL)

(3.5)

Here, r2 < r1 × d. If we perform this process iteratively, we will observe that rn
increases exponentially, so we set a maximum bond dimension D such that

rn =

{
dn, if dn < D

D, if dn ≥ D
(3.6)

and truncate the bond dimension by SVD, which avoids the bond dimension D
exponential growth. Finally we can decompose the original tensor cσ,...,σL as:

cσ1,...,σL =
∑

a1,...,aL−1

Aσ1a1A
σ2
a1,a2

...AσL−1
aL−2,aL−1

AσLaL−1
. (3.7)

Or more compactly,
cσ1,...,σL = Aσ1Aσ2 ...AσL−1AσL . (3.8)

Here Aσi is a set of matrices with ri−1× ri elements. We can represent the quantum
state using Aσi :

|ψ⟩ =
∑

σ1,...,σL

Aσ1Aσ2 ...AσL−1AσL |σ1, ..., σL⟩ (3.9)

and it is just a set of matrix product with each other, so we call the quantum state
in this form as matrix product state (MPS). Because at each SVD, M = USV †,
U †U = I holds, we have the following properties of this kind of MPS as we construct
above. ∑

σl

Aσl†Aσl = I (3.10)

We call this kind of MPS as “left canonical form”(See Fig. 3.3). Similarly, we
can do the same process from the other side as in Fig. 3.3(b) and we call it “right
canonical form”

|ψ⟩ =
∑

σ1,...,σL

Bσ1Bσ2 ...BσL−1BσL |σ1, ..., σL⟩ , (3.11)

8
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which will satisfy: ∑
σl

BσlBσl† = I. (3.12)

And also we can construct mixed canonical form:

|ψ⟩ =
∑

σ1,...,σL

Aσ1Aσ2 ...Γ...AσL−1AσL |σ1, ..., σL⟩ , (3.13)

where Γ is a diagonal matrix.

(b) 

c 

𝜎1 𝜎2 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

c 

… 
𝜎1 𝜎3 𝜎𝐿−1 𝜎𝐿 … 

c 

… 
𝜎1 𝜎3 𝜎𝐿−1 𝜎𝐿 … 

𝜎1 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

(a) 

c 

𝜎1 𝜎2 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

c 

𝜎1 𝜎2 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

c 

𝜎1 𝜎2 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

𝜎1 𝜎2 𝜎3 𝜎𝐿−1 𝜎𝐿 … 
… 

(c) 

𝜎𝑖 

= 

𝜎𝑖 

= 

(d) 

𝜎𝑖 𝜎𝑖+1 𝜎1 𝜎2 𝜎𝐿−1 𝜎𝐿 … 

… … 

… 
Λ 

(e) 

Figure 3.3: (a) Graphical representation of an iterative construction of left-canonical
MPS from arbitrary quantum state by SVD. (b) Graphical representation of an
iterative construction of right-canonical MPS from arbitrary quantum state by SVD.
(c) The property of left canonical form. (d) The property of right canonical form.
(e) Tensor network diagram of mixed canonical form.

9
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3.3 Uniform Matrix Product States
When we consider 1D quantum lattices in the thermodynamic limit, we need to

impose translation symmetry. Hence, we can represent our quantum state in MPS
with bond dimension D as

|ψ(A)⟩ =
∑

s
· · ·Asn−1AsnAsn+1 · · · |s⟩ , (3.14)

where As ∈ CD×D and s = 1, ..., d and can be represented diagrammatically as

A A A A ⋯ ⋯ A 

. 
(3.15)

The MPS in Eq. 3.14 is called “uniform matrix product states (uMPS).” For a given
uMPS |ψ(A)⟩, we can define the transfer matrix E =

∑
sA

s ⊗ Ās, or graphically,

A 

A , 

(3.16)

which is an operator acting on the space of D × D matrices. This kind of matrix
has the property that the leading eigenvalue η (the eigenvalue with maximum norm)
will be positive, and can be scaled to 1 by rescaling the uMPS tensor as A → A√

η
.

We denote the corresponding left and right eigenvectors as l and r and they satisfy
the eigenvalue equations:

A 

A 

l l = 
A 

A 

= r r 

, . 

(3.17)

And we can normalize the leading eigenvectors l and r such that Tr(rl) = 1, or
diagrammatically,

l r = 1 . (3.18)

10
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3.4 Expectation Values
Suppose we want to compute the expectation value ⟨O⟩ with operator

⟨O⟩ =
∑
n∈Z

1

Z
On, (3.19)

where Z represents the number of sites. Since translation invariance, so ⟨O⟩ can be
represented as in Fig. 3.4.

A 

A 

O l r 

𝜎𝑛 

A 

A 

O 

A 

A A 

A A 

l 

⋯ 

⋯ 

⋯ 

⋯ A 

r 

𝜎𝑛 𝜎𝑛−1 𝜎𝑛+1 

A 

A 

O l r 

= 

= = 

l r 

A 

A 

A 

A A 

A A 

l 

⋯ 

⋯ 

⋯ 

⋯ A 

r 

𝜎𝑛 𝜎𝑛−1 𝜎𝑛+1 

Figure 3.4: Expectation value represented as a tensor network diagram.
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3.5 Gauge Degrees of Freedom, Canonical Form
and Symmetric gauge

There is no unique way to write down a uMPS to represent a given quantum
state on a 1D infinite lattice. For a given uMPS |ψ(A)⟩, we can use a local gauge
transformation As → XAsX−1, with invertible X ∈ CD×D to represent the same
quantum state. Namely, |ψ(A)⟩ = |ψ(XAX−1)⟩, since

⋯ 

|𝜓(𝑋𝐴𝑋−1)  

A A A ⋯ ⋯ = 

⋯ 

 
 

 
 A 𝑋−1 X A 𝑋−1 X A 𝑋−1 X 

 
 

 
 

I I I I 

= 

= |𝜓(𝐴)  . (3.20)

We introduce Γ,Λ notation to represent uMPS. For a given uMPS |ψ(A)⟩ , we can
use SVD to decompose the uMPS as in Fig. 3.5, denoting the diagonal term as Λ

and the other term as Γ. In other words, we can use (Λ,Γ) to represent uMPS.

⋯ 

 
 

Г 

 
 

Г Λ Λ Λ 

A → U S 𝑉† 

(a) 

A A A ⋯ ⋯ 

→ U S 𝑉† U S 𝑉† U S 𝑉† 

→ 
Λ Г Λ Г Λ 

⋯ ⋯ 

(b) 

Figure 3.5: (a) Use SVD to decompose tensor A. (b) (Λ,Γ) notation for uMPS.

Furthermore, we say (Λ,Γ) is canonical if

12
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Г 

Г 

= 

Г 

Г 

= 

, 

Λ 

Λ 

Λ 

Λ 
. 

(3.21)

An arbitrary uMPS (Λ,Γ) is not generically canonical, but it can be changed to
the canonical form using a gauge transformation [15]. We will show the step by step
process to change an arbitrary uMPS (Λ,Γ) to the canonical form (Λ′,Γ′). First, we
need to find the eigentensors l and r by solving the following eigenvalue equations,

r 

Г 

Г 

= 

Г 

Г 

= 

, 

l l r 

Λ 

Λ Λ 

Λ 
. 

(3.22)

Notice that tensor l and r are Hermitian after simple resized. Then we find the
matrices L and R such that L†L = l and RR† = r, so we can choose L = l

1
2 and

R = r
1
2 . Finally, we insert these matrices and do SVD as following step:

Λ 

Г 

Λ 

⋯ ⋯ 

↓ ↓ ↓ ↓ 
𝐼 𝐼 𝐼 𝐼 

𝐿−1 𝐿 𝑅 Г 𝐿−1 𝐿 𝑅−1 𝑅 ⋯ ⋯ 

 
 

SVD ↓ 

 
 

SVD ↓ 

U 𝑉† 

Λ
′
 

U 𝑉† 

Λ
′
 

𝐿−1 Г 𝐿−1 𝑅 ⋯ ⋯ U 𝑉† 

Λ
′
 

U 𝑉† 

Λ
′
  

Г′ 

Λ
′
 

 Г′ 

Λ
′
 

 ⋯ ⋯ 

= 

= 

= 

𝑅−1 

𝑅−1 

. 
(3.23)

13
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Г ′ 

= 

Λ 
′
 

Λ 
′
 

Г ′ 

l 

Г 

Λ 

U 

Г 

Λ 

U 

𝐼 

𝐼 

𝐿 

𝐿 

𝐿−1 

𝐿−1 

l 

𝐿 𝑅 

Λ 

𝑈−1 

𝑈−1 

Г 𝑉† 

Λ
′
 

U 

Г 𝑉† 

Λ
′
 

U 

U 

U 

 
 

 
 

𝐿 𝑅 

Λ 

𝑅−1 𝐿−1 

𝑅−1 𝐿−1 

I 

𝑈†𝑈 = 𝐼 

𝐿†𝐿 = 𝑙 

= 

𝐿−1 U 

𝐿−1 U 

𝐿 

𝐿 

= = 

Figure 3.6: Check the property of the left canonical form.

Then we get the canonical form (Λ′,Γ′) and we can easily check the left-canonical
form property (as in Fig. 3.6) and also for the right canonical form property. Now
we can construct a unit tensor again by using canonical (Λ,Γ) as

A Г 

Λ 

= A Г 

Λ 

= 

(a) left canonical form (b) right canonical form 

(3.24)

Another special gauge we shall introduce here is symmetric gauge, which can be
constructed by canonical (Λ,Γ) as

A Г 

Λ
1
2 

= 

Λ
1
2 

. 

(3.25)

14
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We can observe that the left and right eigenvectors of this kind of transfer matrix
are Λ, since

, Λ 

Г 

Г 

= 

Λ
1
2 Λ

1
2 

Λ
1
2 Λ

1
2 

Λ 

Г 

Г 

= 

Λ
1
2 

Λ
1
2 

Λ 

 
 

𝐼 

Λ 

Λ 

Г 

Г 

= 

Λ
1
2 Λ

1
2 

Λ
1
2 Λ

1
2 

Λ 

Г 

Г 

= 

Λ
1
2 

Λ
1
2 

Λ 

 
 

𝐼 

Λ 

. 

(3.26)

(3.27)

Finally, we will introduce the mixed canonical form for uMPS. For a given canon-
ical (Λ,Γ), we can construct mixed-canonical form:

⋯ 𝐴𝑅 𝐴𝐿 𝐴𝐿 𝐴𝐿 ⋯ 𝐴𝑅 C 

⋯ 𝐴𝑅 𝐴𝐿 𝐴𝐿 𝐴𝐶  ⋯ 𝐴𝑅 = 

(3.28)

Here, AL is left-canonical tensor and AR is right-canonical tensor that can be con-
structed as above, and we define new tensors AC and C which can be constructed
by

𝐴𝐶  Г 

Λ 

= 

Λ 

, 

C = 

Λ 

. 

(3.29)

The tensors AL, AR, AC ,C in mixed-canonical form need to satisfy the condition

AsLC = AC = CAsR, (3.30)

or diagrammatically,

15
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𝐴𝐿 C 𝐴𝐶  = = C 𝐴𝐿 
. 

(3.31)

3.6 Geometric Series for Transfer Matrix
At Chapter 4 and 5, we will introduce two algorithms (time-dependent varia-

tional principle and variational optimization method for uMPS) and both of them
are needed to simulate the geometric series of the transfer matrix. We know that for
a given uMPS |ψ(A)⟩, which the corresponding unit tensor A has been normalized,
we can define the transfer matrix E =

∑
sA

s⊗ Ās and its leading eigenvalue is one.
If we want to calculate the geometric series of E, we can use the formula:

∞∑
i=0

Ei = I + E + E2 + E3 + · · · = (I − E)−1. (3.32)

First, we diagonalize the transfer matrix

D = P−1EP =


1 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0
. . .

 , (3.33)

where 1 > λ1 > λ2 > · · · are the eigenvalues of the transfer matrix E. Then,

P−1 (I − E)P = I − P−1EP =


0 0 0 0

0 1− λ1 0 0

0 0 1− λ2 0

0 0 0
. . .



=


0 0 0 0

0 λ̃1 0 0

0 0 λ̃2 0

0 0 0
. . .

 ,

(3.34)

where λ̃i = 1 − λ, for all i = 1, 2, 3 · · ·. Define D̃ = P−1 (I − E)P = I − P−1EP ,
then I−E = PD̃P−1. We can clearly see that the determinant of matrix I−E is 0,
which implies the matrix I − E is not invertible. So we define the pseudo-inverse1

(I − E)P = P


0 0 0 0

0 λ̃1
−1

0 0

0 0 λ̃2
−1

0

0 0 0
. . .

P−1. (3.35)

1We can see the idea of pseudo-inverse from Ref. [6].
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If {⟨l̃i|} and {|r̃i⟩} are the set of eigenvectors of matrix I − E, and ⟨l| and |r⟩ are
the leading eigenvectors of transfer matrix E. Then,

(I − E) = λ̃0|r̃0⟩⟨l̃0|+ λ̃1|r̃1⟩⟨l̃1|+ λ̃2|r̃2⟩⟨l̃2|+ · · ·+ λ̃n−1|r̃n−1⟩⟨l̃n−1|, (3.36)

where n = D ×D and λ0 = 0. We can rewrite the pseudo-inverse as

(I − E)P = λ̃−1
1 |r̃1⟩⟨l̃1|+ λ̃2|r̃2⟩⟨l̃2 + · · ·+ λ̃−1

n−1|r̃n−1⟩⟨l̃n−1| (3.37)

and Eq. (3.36) implies that

I − (E − |r⟩⟨l|) = |r⟩⟨l|+ λ̃1|r̃1⟩⟨l̃1|+ λ̃2|r̃2⟩⟨l̃2|+ · · ·+ λ̃n−1|r̃n−1⟩⟨l̃n−1| (3.38)

If we inverse the Eq. (3.38), then we get

[I − (E − |r⟩⟨l|)]−1

=|r⟩⟨l|+ λ̃−1
1 |r̃1⟩⟨l̃1|+ λ̃2

−1|r̃2⟩⟨l̃2|+ · · ·+ λ̃−1
n−1|.r̃n−1⟩⟨l̃n−1|.

(3.39)

Compare the Eq. (3.37) and Eq. (3.39), we can rewrite the pseudo-inverse of I −E

as
(I − E)P = [I − (E − |r⟩⟨l|)]−1 − |r⟩⟨l|. (3.40)

In many cases, we need to operate a given left tensor or right tensor with (I −E)P .
For instance, given a tensor hl, we want to calculate tensor K:

𝐼 − 𝐸 𝑃 = ℎ𝑙 K (3.41)

and we can denote it as
⟨K| = ⟨hl|(I − E)P . (3.42)

According to Eq. (3.40), we have:

⟨K| = ⟨hl| [I − (E − |r⟩⟨l|)]−1 − ⟨hl|r⟩⟨l| (3.43)

Then,

[⟨K|+ ⟨hl|r⟩⟨l|] [I − (E − |r⟩⟨l|)] = ⟨hl|

⇒⟨K| [I − (E − |r⟩⟨l|)] + ⟨hl|r⟩⟨l| − ⟨hl|r⟩⟨l|E + ⟨hl|r⟩⟨l|r⟩⟨l| = ⟨hl|
(3.44)

Since ⟨l|E = ⟨l| and ⟨l|r⟩ = 1, the Eq. (3.44) becomes

⟨K| [I − (E − |r⟩⟨l|)] + ⟨hl|r⟩⟨l| − ⟨hl|r⟩⟨l|+ ⟨hl|r⟩⟨l| = ⟨hl|, (3.45)
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which implies
⟨K| [I − (E − |r⟩⟨l|)] = ⟨hl| − ⟨hl|r⟩⟨l|. (3.46)

Tensor hl is given, so we can solve the linear equation to obtain the tensor K. Rather
than invert the matrix I−E+|r⟩⟨l| directly, we can use biconjugate gradient stabilized
method (BiCGSTAB) [16], which is a Krylov subspace method, to solve the linear
equation. Its computational complexity is just O(D3). And we can follow the same
procedure to contract right tensor with (I − E)P .

3.7 Matrix Product Operator
In many cases, we can write the Hamiltonian in matrix product operator (MPO)

form; for instance, the Hamiltonian of Heisenberg model is:

H =
J

2

∑
n

(
S+
n S

−
n+1 + S−

n S
+
n+1

)
+ JzS

z
n (3.47)

If we define an operator

   

































ISJSJSJ

S

S

S

I

O

zz

z

i

ˆˆˆ2/ˆ2/0

0000ˆ

0000ˆ

0000ˆ

0000ˆ

ˆ ][
O (3.48)

Then we can make the Heisenberg model as a product of these operators

H =
∏
n

O[i] (3.49)

or graphically as:

O O O O⋯ ⋯ 
(3.50)

For the Thirring model [Eqs. (2.12) and (2.13)] (with Starget = 0), we can write
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down the MPO as

O[n] =



I 0 0 0 0 0

S− 0 0 0 0 0

S+ 0 0 0 0 0

Sz 0 0 I 0 0

Sz 0 0 0 0 0

βnS
z + γI − 1

2a
S+ − 1

2a
S− 2λSz ∆

a
Sz I


, (3.51)

where
βn =

∆

a
+ (−1)nm

γ =
λ

4
+

∆

4a
.

Since this MPO acts on local pairs of sites can be represented as a tensor network
diagram

⋯ ⋯ 𝑂1 𝑂1 𝑂2 𝑂2 
. 

(3.52)

This kind of MPO form is not invariant under single-site translation, so we merge
two MPO to one by:

= 𝑂1 𝑂2 𝑂 

2 2 4 

(3.53)

In this thesis, we choose physical bond dimension d = 4 for uMPS.
We have already found the MPO form for the Thirring model, so we can use

tensor network method to find the ground state of the Thirring model and do real-
time evolution for it. We are going to introduce the time-dependent variational
principle (TDVP) algorithm and variational uMPS algorithm (VUMPS) at next
two chapter.
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Chapter 4

Variational Optimization Method
for uniform Matrix Product State

The variational optimization method for uniform matrix product state (VUMPS)
[5] algorithm is a variational tensor network algorithm for determining the ground
state of many-body systems on 1D lattices.

4.1 Effective Hamiltonian
In most many-body systems, it is impossible to directly determine the ground

state, even for simple nearest neighbour Hamiltonians. Instead, we will introduce
an effective Hamiltonian. For a given mixed canonical uMPS (AL, AR, C), we can
define the one-site effective Hamiltonian and zero-site effective Hamiltonian as in
Fig. 4.1. It is much easier to find the ground state of the effective Hamiltonian.

If we use MPO to represent the effective Hamiltonian, it can be represented as:

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝑂 𝑂 𝑂 𝑂 𝑂 

(a) single–site effective hamiltonian: 

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝑂 𝑂 𝑂 𝑂 

(b) zero–site effective hamiltonian: 

 

(4.1)

(4.2)
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𝐻 

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝐻 

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝐻 

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝐴𝐶  

𝐻 

𝐴𝐿 𝐴𝐿 𝐴𝑅 𝐴𝑅 

𝐴 𝐿 𝐴 𝐿 𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

𝐶 

(a) (b) 

(c) (d) 

Figure 4.1: (a) One-site effective Hamiltonian, (b) zero-site effective Hamiltonian
(c) acting with tensor AC on one-site effective Hamiltonian (d) acting with tensor
C on zero-site effective Hamiltonian.

In practice, we need to find a block tensor L such that

= 𝐿 

𝐴𝐿 𝐴𝐿 

𝐴 𝐿 𝐴 𝐿 

⋯ 

⋯ 

⋯ 

𝑂 𝑂 𝑅 = 

𝐴𝑅 𝐴𝑅 

𝐴 𝑅 𝐴 𝑅 

⋯ 

⋯ 

⋯ 

𝑂 𝑂 

, . 

(4.3)

For instance, the MPO of the Thirring model with penalty term can be represented
by the following form

𝛼 
𝛽 1 2 3 4 5 6 

1 

2 

3 

4 

5 

6 

𝑂 
𝛼 𝛽 

= . (4.4)

And we can see that tensor L will satisfy
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𝐿 = 𝐿 

𝐴𝐿 

𝐴 𝐿 

𝑂 
𝛼 𝛽 

𝛽 . (4.5)

We can represent the tensor L as a set of tensors:

= 𝐿 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 
, , , , , 

  

  𝛽 
. 
(4.6)

Then, construct the tensor L order by order. For β = 6,

𝐿6 𝐿6 

𝐴𝐿 

𝐴 𝐿 

𝐼 =   𝐿6 = . (4.7)

For β = 2, 3, 5,

𝐿𝑖  𝐿6 

𝐴𝐿 

𝐴 𝐿 

𝑌𝑖  = = 

𝐴𝐿 

𝐴 𝐿 

𝑌𝑖  ,  𝑖 = 2,3,5 . (4.8)

For β = 4,

𝐿4 𝐿1 

𝐴𝐿 

𝐴 𝐿 

𝑌4 = + 𝐿4 

𝐴𝐿 

𝐴 𝐿 

𝐼 . (4.9)

Or we can denote it as

L4(n+ 1) = TL(L4(n)) + C1, (4.10)
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where TL(L4) means that the transfer matrix constructed by AL operates on the left
tensor L4, and tensor C1 is defined

𝐿1 

𝐴𝐿 

𝐴 𝐿 

𝑌4 𝐶1           ≡ 

𝐴𝐿 

𝐴 𝐿 

𝑌4 = . (4.11)

If we assume L4(0) = 0, from above recurrence relation Eq.(4.1), we can infer that

L4(n) =
n−1∑
i=0

T iL(C1). (4.12)

If we want to find L4(n→ ∞), it just an infinite geometric series and it can be found
as we discussed at Chapter 3 and should be satisfy Eq. (3.46) and we can replace
A→ AL and hl → I. For β = 1,

𝐿1 𝐿1 

𝐴𝐿 

𝐴 𝐿 

𝐼 = + 𝐶2 . (4.13)

Here, tensor C2 is defined

𝐿5 

𝐴𝐿 

𝐴 𝐿 

𝑍5 𝐿6 

𝐴𝐿 

𝐴 𝐿 

𝑋 

𝐶2 𝐿2 

𝐴𝐿 

𝐴 𝐿 

𝑍2 = 𝐿3 

𝐴𝐿 

𝐴 𝐿 

𝑍3 𝐿4 

𝐴𝐿 

𝐴 𝐿 

𝑍4 + + 

+ + . (4.14)

Note that we have already construct tensor L2, L3, L4, L5, L6, so we can make tensor
C2 directly. Then we also can observe that

L1 =
∞∑
i=0

T iL(C2). (4.15)
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Then we can construct the tensor L1 by Eq. (3.46). Thus, we complete the block
tensor L and can use the same process to construct tensor R. Finally, the effective
Hamiltonian can be represented as in Fig. 4.2.

𝐿 𝑅 𝑂 𝐿 𝑅 

(a) (b) 

Figure 4.2: (a)one-site effective Hamiltonian (b)zero-site effective Hamiltonian

4.2 VUMPS algorithm
We are now ready to formulate our variational uniform MPS (VUMPS) algo-

rithm. First, we start from a random uMPS (AL, AR, C), and construct both the
single-site and zero-site effective Hamiltonians as described in the previous section.
Then, we can use Lanczos method to find the tensors AC and C, which are the
eigentensor with lowest eigenvalues EAC

and EC . Or we can denote it

HAC
AC = EAC

AC (4.16a)

HCC = ECE. (4.16b)

In general, tensors AC and C which satisfy Eq. (4.16) will not satisfy Eq. (3.30),
which is the condition for mixed-canonical form for the uMPS. We cannot find any
AL ∈ {ÃL|ÃL

†
ÃL = I} and AR ∈ {ÃR|ÃRÃR

†
= I}, such that AsLC − AC =

CAsR −AC = 0. The second best way is to choose the tensor AL and AR which will
update the effective Hamiltonians by solving the following equations

ϵL = min
A†

LAL=I

∥AsC − AsLC∥2 (4.17a)

ϵR = min
ARA

†
R=I

∥AsC − CAsR∥2 (4.17b)
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Fortunately, the solution of this kind of minimization problem has been proven
that AL will be the isometry in the polar decomposition of AsCC†; more concretely,
if

𝐴𝐶  𝐶† = 𝑈 𝑃 𝐴𝐿 = 𝑈 
then . 

Here we decompose the tensor tensor AsCC† by polar decomposition, U is unitary
and P is positive semi-definite. Then the solution of Eq. (4.17a) is U . We can
do the same process to solve for the tensor AR [17]. In practice, we can do polar
decomposition by SVD as following. For a given matrix M = WΣV †. We can set

U = WV † P = V ΣV †. (4.18)

We can observe that the matrix U is unitary and P is positive semi-definite. And
we have

M = WΣV † = WV †V ΣV = UP. (4.19)

This implies that we can use SVD to do polar decomposition. After we update AL
and AR, we can update the effective Hamiltonians. And then, resolve the ground
state of both effective Hamiltonians to find the new AC and C. And then update AL
and AR. We repeat this process until the Eq. (3.46) is satisfied. Below is a detailed
description of the VUMPS algorithm (see also Fig. 4.3).

1. Start from random tensor (AL,AR,C). Set ϵp > ϵ, where we call ϵp “current
precision” and ϵ “final precision”.
2. If ϵp > ϵ, update tensors AC and C as the ground state of the single-site and
zero-site Hamiltonians. If not, return tensor (AL,AR,C) and end the algorithm.
3. Update tensor AL and AR with respect to tensors AC and C at step 2 by
Eq. (4.17), and calculate the corresponding ϵL and ϵR.
4. Set ϵp = max{ϵL, ϵR} and return to step 2.
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true 

Start 

End 

 Set     p

             ?  p
false 

Calculate  CA HH
C

,

Find the ground state           of                  by 

iterative eigensolver up to precision       . 

CAC ,
CA HH

C
,

p

Update               and 

calculate corresponding    

              .  RL  ,

),max( RLp ε 

Return  CAA RL ,,

𝐴𝐿, 𝐴𝑅 

Figure 4.3: Flow chart of VUMPS algorithm.
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Chapter 5

Time-Dependent Variational
Principle Applied to Matrix
Product State

Time-dependent variational principle algorithm (TDVP) is a tensor network al-
gorithm for simulating real-time evolution for many-body system on 1D lattices. In
this chapter, we are going to introduce the TDVP algorithm on infinite 1D lattice.

5.1 Tangent Vector Space
For a given uMPS, ψ(A), we can use tensor diagram to represent its tangent

vector as

𝑠𝑛−1 𝑠𝑛 𝑠𝑛+1 

𝑠𝑛−1 

𝑠𝑛−1 

𝑠𝑛−1 

𝑠𝑛 

𝑠𝑛 

𝑠𝑛 

𝑠𝑛+1 

𝑠𝑛+1 

𝑠𝑛+1 

Φ({𝐵𝑖}; 𝐴) = 

A A 𝐵𝑛 A ⋯ ⋯ A = 

⋯ ⋯ 

+ A A A 𝐵𝑛+1 ⋯ ⋯ A 

⋯ ⋯ 

+ A A 𝐵𝑛 A ⋯ ⋯ A 

⋯ ⋯ 

A 𝐵𝑛−1 A A ⋯ ⋯ A 

⋯ ⋯ 

, 

(5.1)
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where the set of tensors {Bi} decide the “direction” of the tangent vector. Since
there is translation-invariance, we can assume B1 = B2 = B3 = · · · = B, so the
tangent vector can be represented as

Φ(𝐵; 𝐴) = 

𝑠𝑛−1 𝑠𝑛 𝑠𝑛+1 

A A 𝐵 A ⋯ ⋯ A 

⋯ ⋯ 

. (5.2)

))((ˆ tAHi 

))(( tA

)(A

Figure 5.1: An illustration of the uMPS manifold and tangent space. The black dot
represents the uMPS, ψ(A), and the tangent vector Φ(B;A) is a vector line on the
tangent plane.

5.2 Gauge Fixing for Tangent Vector
It will be very convenient for us if B in tangent vector Φ(B;A) is gauge-fixed

such that ∑
s

As†lBs = 0,
∑
s

Bs†lAs = 0. (5.3)

In order to ensure this condition, we parametrize B as

𝑉𝐿 𝑟−
1
2 𝑙−

1
2 𝑋 (5.4)

where l and r are the leading left and right eigentensors of the transfer matrix and
VL is the orthonormal basis for the null space (see Fig. 5.2(a)) of the tensor

𝐴  

𝑙
1
2 

(5.5)

which we find using SVD. Fig. 5.2(b) shows that this parametrization will satisfy
the condition at Eq. (5.3).

28



doi:10.6342/NTU201802766

𝑉𝐿 

𝐴  

𝑙
1
2 = 0 

𝑉𝐿 

𝑉 𝐿 

= 

(a) 

, 

l 

𝐵 

𝐴  

𝑉𝐿 𝑟−
1
2 𝑙−

1
2 𝑋 

l 

𝐴  

𝑉𝐿 𝑟−
1
2 𝑋 

𝐴  

𝑙
1
2 

0 

= 

= = 0 

(b) 

Figure 5.2: (a) The properties of VL (b) The properties of tensor B

5.3 Projection Operator
As Fig. 5.1 shows, we need to find the projection operator P|ψ(A)⟩ such that

P|ψ(A)⟩|Θ⟩ = |Φ(B;A)⟩. This operator projects an arbitrary quantum state |Θ⟩ onto
the tangent plane of the manifold. In other words, we want to find the tensor B,
which is a function of X, that minimizes

∥|Θ⟩ − |Φ(B(X);A)⟩∥2 . (5.6)

So the derivative with respect to X̄ should be zero:

∂X̄∥|Θ⟩ − |Φ(B;A)⟩∥2 = 0, (5.7)

which implies

∂X̄
[
⟨Θ|Θ⟩ − ⟨Θ|Φ(B(X);A)⟩ − ⟨Φ(B(X̄);A)|Θ⟩

+ ⟨Φ(B(X̄);A)|Φ(B(X);A)⟩ = 0.
(5.8)

Finally, we get

∂X̄⟨Φ(B(X̄);A)|Φ(B(X);A)⟩ = ∂X̄⟨Φ(B(X̄);A)|Θ⟩. (5.9)

Since we must satisfy Eq. (5.3), the inner product of tangent vector state becomes
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 Φ(𝐵;𝐴)|Φ(𝐵; 𝐴  

= 𝑠𝑖 

A A 𝐵 A ⋯ ⋯ A 

𝐴  𝐵  𝐴  𝐴  
 

𝐴  

⋯ ⋯ 

𝑠𝑗 l r 

= 

A A A B ⋯ ⋯ A 

𝐴  𝐴  𝐴  𝐵  𝐴  

⋯ ⋯ 

l r 

𝑉𝐿 𝑋 

𝑉 𝐿 𝑋   

𝑋 

𝑋   

= = 

= l r 

B 

𝐵  

𝑉𝐿 𝑟−
1
2 𝑙−

1
2 𝑋 

𝑉 𝐿 𝑟−
1
2 𝑙−

1
2 𝑋   

l r = 

. (5.10)

This implies that ∂X̄⟨Φ(B(X̄);A)|Φ(B(X);A)⟩ = ZX, hence ZX = ∂X̄⟨Φ(B(X̄);A)|Θ⟩.
We can desribe this graphically:

= 
𝐴  𝐴  𝑉 𝐿 𝑙−

1
2 𝑟−

1
2 𝐴  

⋯ ⋯ 

Θ 

𝑠𝑛 𝑋 . (5.11)

Then, the tangent vector becomes

𝑉𝐿 

𝐴  𝐴  𝑉 𝐿 𝑙−
1
2 𝑟−

1
2 𝐴  ⋯ ⋯ 

Θ 

𝑠𝑛 

A A A 

𝑠𝑛 

𝑙−
1
2 𝑟−

1
2 

. (5.12)

Since P|ψ(A)⟩|Θ⟩ = |Φ(B;A)⟩, we can define the projection operator as
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𝑉𝐿 

𝐴  𝐴  𝑉 𝐿 𝑙−
1
2 𝑟−

1
2 𝐴  ⋯ ⋯ 

𝑠𝑛 

A A A 

𝑠𝑛 

𝑙−
1
2 𝑟−

1
2 

𝑃|𝜓(𝐴) = . 
(5.13)

Now, we can start to construct the time-dependent variational principle (TDVP)
algorithm. Starting from Schrödinger equation:

i
d

dt
|Ψ(A(t))⟩ = Ĥ|Ψ(A(t))⟩, (5.14)

we cannot represent exact quantum state as a uMPS with finite bond dimension, so
we need to project the quantum state to tangent plane. Hence, the TDVP equation
is:

i
d

dt
|Ψ(A(t))⟩ = P|Ψ(A)⟩Ĥ|Ψ(A(t))⟩ (5.15)

If we use a MPO to represent the Hamiltonian, the right hand side of above equation
can be graphically represented as

𝑉𝐿 

𝐴  𝐴  𝑉 𝐿 𝑙−
1
2 𝑟−

1
2 𝐴  ⋯ ⋯ 

A A A 

𝑠𝑛 

𝑙−
1
2 𝑟−

1
2 

𝑃|𝜓(𝐴) 𝐻 |𝜓 𝐴   

𝑂 𝑂 𝑂 𝑂 

A A A A 

⋯ ⋯ 

= 
. (5.16)

By the chain rule, the left hand side of the Eq. (5.15) can be represented as

𝑖
𝑑

𝑑𝑡
|𝜓(𝐴) = 

𝑠𝑛−1 𝑠𝑛 𝑠𝑛+1 

A A 𝐴  A ⋯ ⋯ A 

⋯ ⋯ 

. (5.17)

Comparing the LHS and RHS of Eq. (5.15), we will obtain

𝐴 (𝑡) B =  -i , 
(5.18)

where
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B 

𝑉𝐿 

𝐴  𝐴  𝑉 𝐿 𝑙−
1
2 𝑟−

1
2 𝐴  

𝑙−
1
2 𝑟−

1
2 

= 𝑂 𝑂 𝑂 𝑂 

A A A A 

⋯ ⋯ 

. 

(5.19)

Finally, we can solve the differential equation using the Runge-Kutta method.
We can also use the technique in Chapter 4.1 to deal with the infinite boundary
term by replacing tensor AL and AR with tensor A; then L6 becomes l, which is the
left eigenvector of the transfer matrix constructed by the tensor A, and R6 becomes
r. Then B can be represented as

B 

𝑉𝐿 

𝑉 𝐿 𝑙−
1
2 𝑟−

1
2 

𝑙−
1
2 𝑟−

1
2 

= 𝑂 

A 

L R . (5.20)

We have already found the TDVP equation represented by the tensor network
diagram. So at next section, we are going to show the TDVP algorithm more
concretely.

5.4 TDVP algorithm
Theoretically, we can use any gauge to simulate the tangent vector, but numeri-

cally, it is not the case. For instance, if we use left-canonical form for a normalized
uMPS Ψ(A), then the right eigenvector r of the transfer matrix will contain the
square of Schmidt coefficients since

Г 

Г 

= 

Λ  Λ  

Λ  Λ  

  

Λ  

Λ  

r 

Λ  

Λ  

= . (5.21)
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It is therefore ill-conditioned and the many operations with r−
1
2 can produce large

numerical errors. Similarly, if we choose right-canonical form, l− 1
2 will become very

large. Hence, we should use symmetric gauge for tensor A to avoid this problem.
If we want to use TDVP algorithm to perform imaginary time evolution, we just
need to use the simple Euler method to solve the differential equation; namely,

A(τ + dτ) = A(τ)−Bdτ (5.22)

If we define the function f , which will return the tensor B for a given tensor A,
(B = f(A)). Then we can use the simple Euler method to find the ground state as
following:

1. Change uMPS Ψ(A) to symmetric gauge.
2. Find tensor B = f(A) as we show in this chapter.
3. Set A(τ + dτ) = A(τ)−Bdτ . Then return to step 1.

Repeat the above procedure until the length of tangent vector ∥B∥2 is small enough.
If we want to do real-time evolution, Runge-Kutta method (RK4) is needed, whose
error is O(dt4). This algorithm works as follows:

1. Change uMPS Ψ(A) to the symmetric gauge.
2. Set tensor B1 = f(A), A1 = A− i1

2
B1dt

3. Set tensor B2 = f(A1), A2 = A− i1
2
B2dt

4. Set tensor B3 = f(A2), A3 = A− iB3dt

5. Set tensor B4 = f(A3),
6. A(t+ dt) = A(t)− i1

6
(B1 + 2B2 + 2B3 +B4)dt

7. Return to step 1.

Note that we cannot change the gauge for uMPS until whole RK4 process is done.
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Chapter 6

Result and Conclusion

6.1 Ground State of the Thirring Model
We use VUMPS algorithm to simulate the ground state of the Thirring model

on infinite 1D lattice with the constraint ⟨Sz⟩ = 0. We show our ressults (with bond
dimension D=25) in Figs.(6.1∼6.3). The Thirring model maps to the classical 2D
XY model as we discuss in section 2.3. We can see that (Fig. 6.2) the entanglement
entropy of quantum state in KT phase is very large.

Δ 

Ground state energy 

Figure 6.1: Energy density of the Thirring model.
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Δ 

Entanglement entropy 

Figure 6.2: Entanglement entropy of the Thirring model.

Δ 

Chiral Condensate 

Figure 6.3: Chiral Condensate of the Thirring model.
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The fermion correlator can be represented in spin representation as

G(r) = S+
n e

(iπ
∑n+r−1

j=n+1 S
z
j )Sin+r (6.1)

For example, if r = 8, then G(r = 3) can be represented in tensor network diagram
as:

A 

A 

𝑂1 l r 

A 

A 

𝑂2 

A 

A 

𝑂2 

A 

A 

𝑂3 

where O1 = S+ ⊗ eiπS
z , O2 = eiπS

z ⊗ eiπS
z , O3 = eiπS

z ⊗ S−. Figs. (6.4∼6.10)
show the result for fermion correlator with bond dimension D=100. We can observe
that for the massive case (m = 0.2), the fermion correlator exhibits power-law decay
in the KT phase and exponential decay in the other phase. For the massless case
(m = 0), the fermion correlator exhibits power-law decay for any ∆.

Figure 6.4: Fermion correlator for the massless case on a linear scale.
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Figure 6.5: Fermion correlator for the massless case with a semi-log scale.

Figure 6.6: Fermion correlator for the massless case on a log-log scale.
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Figure 6.7: Fermion correlator for the massive case on a linear scale for m=0.2.

Figure 6.8: Fermion correlator for the massive case with a semi-log scale for m=0.2.
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Figure 6.9: Fermion correlator for the massive case on a log-log scale for m=0.2.

Figure 6.10: ∆(g) near the transition.
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6.2 TDVP Result
The most interesting subject is a quench across the phase boundary. For instance,

from the KT phase to the other phase. Even in the same phase, it is still interesting
to investigate the dynamics of the Thirring model.

The most important observable for the real time evolution is return probability
(Loschmidt echo) [18] defined by

L(t) = |⟨ψ(0)|ψ(t)⟩|2 =
∣∣⟨ψ(0)|e−iHt|ψ(0)⟩∣∣2 . (6.2)

However, for an infinite 1D system, we cannot calculate this observable exactly since
it will always be zero for t > 0. Instead, we use the norm square of the dominant
eigenvalue of the transfer matrix, E(t) =

∑
sA(t)

s⊗ Ās(0), arising from the overlap
between the initial state and the time-evolved state at time t to represent the return
probability (denoted as P (t)). Another important observable is the return rate
function defined by:

g(t) = − lim
N→∞

1

N
lnL(t), (6.3)

which is well-defined even in the thermodynamic limit, and

L(t) ≈ PN(t)

⇒g(t) = − lim
N→∞

1

N
N lnP (t) = − lnP (t).

(6.4)

We can represent the return-rate function with the negative logarithm of the domi-
nant eigenvalue of the transfer matrix.

In this thesis, we investigate the dynamics of the Thirring model by TDVP
algorithm with bond dimension D=100 without a penalty term. Note that ⟨Sz⟩ and
⟨H⟩ are conserved quantities since [H,H] = [Sz, H] = 0. We can see that ⟨Sz⟩ is
conserved in our simulation (Fig. 6.11) even though we turned off the penalty term.
We found that the simulation is very unstable if we turn on the penalty term.

Now let us examine the case starting from the ground state with the parameters
(∆,m)=(-0.8, 0.2) and use the Hamiltonian with parameters (∆,m)=(0.5, 0.2) to
evolve the state. In Fig. 6.11, we observe that the entanglement entropy saturates
after t ≈ 15 since the quantum state has evolved to a state far away from the uMPS
manifold. So we can only trust the result before t = 15.
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(a) (b) 

(c) (d) 

Figure 6.11: The Thirring model evolving from (∆,m)=(-0.8, 0.2) to (∆,m)=(0.5,
0.2).

(a) (b) 

Figure 6.12: The Thirring model evolving from (∆,m)=(0.5, 0.2) to (∆,m)=(-0.8,
0.2).

We can present results of a quench on ∆−m plane and we show the dynamics
of the chiral condensate, the return probability and the fermion correlator. More
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numerical results are shown in the Appendix. We observe that when quenching
from the KT phase with the same mass (m ̸= 0), there exist several non-analytic
cusps (see Fig. 6.11) of the return-rate function which indicates that there may be a
dynamical phase transition. Otherwise, the return-rate function evolving with the
same mass will be very smooth (see Fig. 6.12). We obtain numerical results for the
quench dynamics of the Thirring model. It may exist dynamical phase transition
for some cases. Further exploration is necessary.
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Chapter 7

Summary

Tensor network methods are a powerful tool for studying many-body systems and
there are several efficient algorithms available for 1D systems. After discretizing the
Thirring model on a 1D infinite lattice, we represent it as a spin-1/2 representation.
We use a tensor network method to find its ground state and to study time evolution.

The time-dependent vaiational principle algorithm (TDVP) and the variational
optimization methods for uniform matrix product state (VUMPS) are very efficient
and accurate. In this thesis, we use the VUMPS algorithm to find the ground state of
the Thirring model and characterize the phase diagram. We then extend the TDVP
algorithm in MPO form such that we can deal with the Thirring model problem
and investigate the quench dynamics. We can see that TDVP algorithm preserves
conserved quantities very well.

We want to ask whether the Thirring model exists the dynamical phase transi-
tion. So we use TDVP algorithm to do real-time evolution and see the return-rate
function. And we found the existence of non-analytic cusps in the return-rate func-
tion which suggest the existence of the dynamical phase transition. We still wonder
what is the physical meaning of the dynamics of the fermion correlator for the
Thirring model and it is worthwhile to research it in the future.
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Appendix
More Numerical Results

Figure A.1: The Thirring model evolving from (∆,m)=(0, 0) to (∆,m)=(0, 0.2).

Figure A.2: The Thirring model evolving from (∆,m)=(0.5, 0) to (∆,m)=(0.5, 0.2).
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Figure A.3: The Thirring model evolving from (∆,m)=(0, 0.2) to (∆,m)=(0, 0).

Figure A.4: The Thirring model evolving from (∆,m)=(0.5, 0.2) to (∆,m)=(0.5, 0).
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Figure A.5: The Thirring model evolving from (∆,m)=(-0.5, 0) to (∆,m)=(-0.5,
0.5).

Figure A.6: The Thirring model evolving from (∆,m)=(0, 0) to (∆,m)=(0, 0.5).

Figure A.7: The Thirring model evolving from (∆,m)=(0.5, 0) to (∆,m)=(0.5, 0.5).
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Figure A.8: The Thirring model evolving from (∆,m)=(-0.5, 0.5) to (∆,m)=(-0.5,
0).

Figure A.9: The Thirring model evolving from (∆,m)=(0, 0.5) to (∆,m)=(0, 0).
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Figure A.10: The Thirring model evolving from (∆,m)=(0.5, 0.5) to (∆,m)=(0.5,
0).

Figure A.11: The Thirring model evolving from (∆,m)=(0.5, 0.5) to (∆,m)=(0.5,
0.1).

Figure A.12: The Thirring model evolving from (∆,m)=(-0.5, 0) to (∆,m)=(0.5, 0).
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Figure A.13: The Thirring model evolving from (∆,m)=(-0.8, 0) to (∆,m)=(0.5, 0).

Figure A.14: The Thirring model evolving from (∆,m)=(0.5, 0.2) to (∆,m)=(0.2,
0.2).

Figure A.15: The Thirring model evolving from (∆,m)=(0.5, 0.2) to (∆,m)=(0,
0.2).
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Figure A.16: The Thirring model evolving from (∆,m)=(0.5, 0.2) to (∆,m)=(-0.5,
0.2).

Figure A.17: The Thirring model evolving from (∆,m)=(0.2, 0.2) to (∆,m)=(0.5,
0.2).

Figure A.18: The Thirring model evolving from (∆,m)=(0, 0.2) to (∆,m)=(0.5,
0.2).
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Figure A.19: The Thirring model evolving from (∆,m)=(0, 0.2) to (∆,m)=(-0.8,
0.2).

Figure A.20: The Thirring model evolving from (∆,m)=(-0.8, 0.2) to (∆,m)=(0,
0.2).

53


	口試委員會審定書
	致謝
	中文摘要
	Abstract
	Introduction
	Overview

	Thirring Model
	Spin Representation of the Thirring Model
	Chiral Condensate
	Mapping to the Classical 2D XY Model

	Tensor Network and Matrix Product state
	Tensor Network and Tensor Diagram
	Matrix Product States
	Uniform Matrix Product States
	Expectation Values
	Gauge Degrees of Freedom, Canonical Form and Symmetric gauge
	Geometric Series for Transfer Matrix
	Matrix Product Operator

	Variational Optimization Method for uniform Matrix Product State
	Effective Hamiltonian
	VUMPS algorithm

	Time-Dependent Variational Principle Applied to Matrix Product State
	Tangent Vector Space
	Gauge Fixing for Tangent Vector
	Projection Operator
	TDVP algorithm

	Result and Conclusion
	Ground State of the Thirring Model
	TDVP Result

	Summary
	Bibliography
	Appendix  More Numerical Results



