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Abstract

We use tensor networks to study the Thirring model. We discretize
the model onto the lattice, find the spin representation for the Hamilto-
nian of the Thirring model and use the matrix product operator (MPO)
to represent it.

Using the variational optimization algorithms for uniform Matrix
Product State (VUMPS), we find the ground state of the model and
investigate the phase diagram. Then, we use the time-dependent varia-
tional principle algorithm (TDVP) to study the quench dynamics for the
Thirring model, especially for what happens when quenching different
phases.

Keywords: Tensor network (TN), matrix product state (MPS), varia-
tional optimization algorithm for uniform matrix product state (VUMPS),
time-dependent variational principle (TDVP), Thirring model, quantum
quench, dynamical phase transition (DPT)

doi:10.6342/N'TU201802766

v



Contents

EEESEEXE] i
ii
i

A bstract iv

Introductio 1
A0 Overviewl ..., 1

Thirrin Modei 3
.1 _Spin Representation of the Thirring Modei ............... 3
.2__Chiral Condensate . . . . . . . . . .. ... ... ........... 5
.3 Mapping to the Classical 2D XY Modei ................ 5

|3 Tensor Network and Matrix Product statel 6

.1 Tensor Network and Tensor Diagram . . . . .. .. .. ... ... ... 6
2 Matrix Product Stated . . . . . ... ... ... ... ... 7
.3 Uniform Matrix Product Statesl ..................... 10

4  Expectation Valueé ............................ 11

.5 Gauge Degrees of Freedom, Canonical Form and Symmetric gaugel L 12
.6 Geometric Series for Transfer Matrix . . . . . . . . ... ... .... 16
.7 Matrix Product Operatoq ........................ 18

|4_Variati0nal Optimization Method for uniform Matrix Product Statel 20
1.1 Effective Hamiltoniad ........................... 20
1.2 VUMPS algorithm . . . ... ... .. .. ... ... ... ...... 24
l5 Time-Dependent Variational Principle Applied to Matrix Producd

Statg 27

.1 Tangent Vector gLacd .......................... 27
EQ Gauze Fixing for Tangent Vect01| .................... 28
b.3 _Projection Operator] . . . . . . . . . . . . .. ... ... 29
H.4  TDVP algorithm| . . . . . .. ... .. .. ... ... ... ...... 32

Result and Conclusio 34
.1 Ground State of the Thirring Modei .................. 34
2 TDVP Resull] . . . . o oo oo 40

doi:10.6342/NTU201802766



}7 Summaryl 43

Bibliography/ 44

ore Numerical Results{ 46

doi:10.6342/NTU201802766

vi



List of Figures

I3.1 Tensor network diagrams (a) a scalar, (b) a vector, (c¢) a matrix an(i
I(d) a rank-3 tensorl ............................ 7
B.2 Tensor network diagram for Egs. (3.1) and ( 3.2)] ........... 7
I3.3 (a) Graphical representation of an iterative construction of left—canonicai
IMPS from arbitrary quantum state by SVD. (b) Graphical repre-l

Isentation of an iterative construction of right-canonical MPS froni

Iarbitrary quantum state by SVD. (¢) The property of left canonicaj

|f0rm. (d) The property of right canonical form. (e) Tensor networkl

hiagram of mixed canonical form] .................... 9
b.4 Expectation value represented as a tensor network diagraml ..... 11
I3.5 (a) Use SVD to decompose tensor A. (b) (A,I') notation for uMPSl .12
I3.6 Check the property of the left canonical forml ............. 14

|4.1 (a) One-site effective Hamiltonian, (b) zero-site effective Hamiltoniad

I(c) acting with tensor Ac on one-site effective Hamiltonian (d) actingj

|With tensor C' on zero-site effective Hamiltonianj ........... 21
|4.2 (a)one-site effective Hamiltonian (b)zero-site effective Hamiltonianl .24
U3 Flow chart of VUMPS algorithm] . . . . . . ... ... . ... . ... 26

b.l An illustration of the uMPS manifold and tangent space. The blackj
|dot represents the uMPS, 1(A), and the tangent vector ®(B; A) is aI

|vect0r line on the tangent planel ..................... 28
b.2 (a) The properties of V7, (b) The properties of tensor H ........ 29
b.l Energy density of the Thirring modell ................. 34
b.2 Entanglement entropy of the Thirring modelj ............. 35
b.3 Chiral Condensate of the Thirring modell ............... 35
b.4 Fermion correlator for the massless case on a linear scalel ....... 36
b.5 Fermion correlator for the massless case with a semi-log scalel - Y
b.6 Fermion correlator for the massless case on a log-log Scalel ...... 37

b.? Fermion correlator for the massive case on a linear scale for sz.QI . 38

doi:10.6342/NTU201802766

vii



b.8 Fermion correlator for the massive case with a semi-log scale for sz.QI 38

b.9 Fermion correlator for the massive case on a log-log scale for m:0.2l 39

b.lO A(g) near the transitionl ......................... 39

b.ll The Thirring model evolving from (A,m)=(-0.8, 0.2) to (A,m)=(0. 5]
.................................... 41

b 12 The Thirring model evolving from (A,m)=(0.5, 0.2) to (A,m)=(-0. 8]
.................................... 41

|A.1 The Thirring model evolving from (A,m)=(0, 0) to (A,m)=(0, 0. 2)] 46
|A.2 The Thirring model evolving from (A,m)=(0.5, 0) to (A,m)=(0.5, 0. 2)] 46
|A.3 The Thirring model evolving from (A,m)=(0, 0.2) to (A,m)=(0, O)j .47
|A.4 The Thirring model evolving from (A,m)=(0.5, 0.2) to (A ):(0.51

D) 47

|A.5 The Thirring model evolving from (A,m)=(-0.5, 0) to (A,m):(—O.E)J

|A.6 The Thirring model evolving from (A,m)=(0, 0) to (A,m)=(0, 0. 5)] . 48
|A.7 The Thirring model evolving from (A,m)=(0.5, 0) to (A,m)=(0.5, 0.5)] 48
|A.8 The Thirring model evolving from (A,m)=(-0.5, 0.5) to (A,m):(—O.E)J

D 49
|A.9 The Thirring model evolving from (A,m)=(0, 0.5) to (A,m)=(0, O)l . 49
|A.1() The Thirring model evolving from (A,m)=(0.5, 0.5) to (A,m):(O.SJ

D) 50

|A 12 The Thirring model evolving from (A,m)=(-0.5, 0) to (A,m)=(0.5, O)I 50
|A.13 The Thirring model evolving from (A,m)=(-0.8, 0) to (A,m)=(0.5, O)I 51
|A.14 The Thirring model evolving from (A,m)=(0.5, 0.2) to (A,m):(O.Ql

|A.15 The Thirring model evolving from (A,m)=(0.5, 0.2) to (A,m)=(0, 0.2)] 51
|A.16 The Thirring model evolving from (A,m)=(0.5, 0.2) to (A,m):(—O.SJ

.................................... 52
|A 17 The Thirring model evolving from (A,m)=(0.2, 0.2) to (A,m)=(0. 5]
.................................... 52

|A.18 The Thirring model evolving from (A,m)=(0, 0.2) to (A,m)=(0.5, 0.2)] 52
|A.19 The Thirring model evolving from (A,m)=(0, 0.2) to (A,m):(—O.Sl

.................................... 53
|A 20 The Thirring model evolving from (A,m)=(-0.8, 0.2) to (A m)z(OJ
.................................... 53

doi:10.6342/NTU201802766

viil



Chapter 1

Introduction

1.1 Overview

Tensor network methods are taking a central role in modern quantum physics,
especially in quantum many-body systems [I, 2]. In these methods, the quantum
state is represented as a tensor network, which we call a tensor network state. There
are several forms of tensor network states such as the matrix product state (MPS),
which is a good representation of quantum states in 1D lattice systems, and the
projected entangled pair state (PEPS), which is a representation of quantum states
in 2D lattice systems. In this thesis, we will introduce the Thirring model on 1D
infinite lattice in Chapter E, and we use the so-called uniform matrix product state
(uMPS) (or infinite MPS (iMPS)), which we will introduce in Chapter E, to represent
our quantum states.

There are several algorithms based on the tensor network methods for finding the
ground state of system, such as density matrix renormalization group (DMRG) [3]
and infinite time-evolving block decimation (iTEBD) [4]. In this thesis, we use the
variational optimization algorithm for uniform matrix product states (VUMPS) [5],
which will be discussed in Chapter @, to find the ground state of the Thirring model.

There are tensor network algorithms for simulating real-time evolution for many-
body system on 1D lattices such as iTEBD or the time-dependent variational prin-
ciple (TDVP) [6]. We extend the original TDVP algorithm using the idea of the
infinite boundary conditions for MPS [[7], and then we can use the matrix product
operator (MPO) to do TDVP simulations (see Chapter B)

A quantum quench is a protocol in which one prepares an eigenstate of one
Hamiltonian, Hy, and then evolves dynamically in time under a different Hamilto-
nian, H;. We want to ask whether the Thirring model exists the dynamical phase

transition [8]. We use the VUMPS algorithm to prepare the ground state of the

1 doi:10.6342/N'TU201802766



Thirring model with a given coupling constant (A) and mass (m), which is also the
eigenstate of Hamiltonian Hj, and do real-time evolution by using another parame-
ters (A’;m’) to investigate the quench dynamics of the Thirring model. We discuss

our results in Chapter B

9 doi:10.6342/N'TU201802766



Chapter 2

Thirring Model

2.1 Spin Representation of the Thirring Model

We want to discretize the massive Thirring model onto a 1D latticell. The massive
Thirring model is a theory of Dirac fields in the (14-1)-dimensional spacetime with

a current-current interaction; it is described by the action
Sw.0) = [ [0,  miw - S 2.1)

where m denotes the mass and ¢ is the coupling constant of the current-current

interaction term (¢)y#1)?. The canonical momentum is
1= g—i = wpiryy = it (2.2)
Thus, the Hamiltonian of the Thirring model becomes
H= /dm (Iloyyy — L)
— [ dx [ir0000 — G0, -+ it + S 2.3
— [do[~bir 0+ miv + Sy
We choose the v matrices as
Yo =03, 1 =102, (2.4)

where o; are the Pauli matrices. We can see that the v matrices will satisfy the
Colifford algebra as {v,, 7.} = 2¢,.,, where g, is the metric of the Minkowski space

chosen as (1,-1).

IThe part of the discussuin is based on Ref. [J].

3 doi:10.6342/N'TU201802766



In addition, we will use ¢, and ¢4 to denote the up and down components of the

field. Namely,
Pu
= . 2.5
W ( ¢d) (2:5)

H = / dx [=i(g01hy + P, 010a) + m(Vyhe — Vgtba) + 29(bybutbga)] . (2.6)

We want to discretize the Hamiltonian on a 1D infinite lattice with the lattice

Then, Eq. (@) becomes

constant a and use “Kogut-Susskind fermions” [10], which put the up component

1, on the even sites and the down component ¢, on the odd sites. Hence,

1 1
w —7 ——=Con, — ——=Cap 2.7
(0 \/562 (0¥ \/502 +1 (2.7)
and the differentials in space dimension are
1 1
75(02n+1 - CQn—l) 7(02n+2 - ch)
Iu(x) = , 0 : 2.8
Wul2) y o) = Y= (28)
Then Eq. (@) becomes
1
Hiattice = _% (CLCnJrl - CIL—}—ICTL) +m Z(—l)ncilcn
" " (2.9)

9 Z f i
+ o ConC2nCony1C2n+1-
n

We use Jordan-Wigner transformation, which maps spin operators onto fermionic
creation and annihilation operators, to transform the Hamiltonian of the Thirring

model to the spin representation. Jordan-Wigner transformation can be represented

n—1 n—1
C, = exp (m’ Z S;) S-, ¢l =Stexp (—m' Z Sj) . (2.10)
j=1 j=1
Substituting Eq. () into (@), then we get

1 B o1
—50 2 (S8 + 88 0) +mz (Sn+§>

Z (S;n ) (S;n+1 + ;) .

Finally, we have the spin representation of the Thirring model. There is a prob-

Hspin =
(2.11)

lem here: this spin representation of the Thirring model breaks the lattice shift
symmetry. So, we need to complete the staggered term in the Hamiltonian.

1 L 1
Hon = =5 (8155 + S785) +m (-1 (854 3)

SE(E ()

4 doi:10.6342/N'TU201802766

(2.12)



where A(g) = w

find the ground states with the constraint (S,) = (Starget), We add a penalty term

; this mapping is based on Bethe ansatz [L1]. In order to

[12] to the spin Hamiltonian:
H;)pelllllalty - spln + )\ Z Starget (213)

In practice, this works very well when A > 1. For this thesis, we set Siarget = 0.

2.2 Chiral Condensate
The chiral condensate can be defined as
‘/d:cw’. (2.14)

We can use same technique as previous section. We can use “Kogut-Susskind

fermions” and Jordan-Wigner transformation:

‘ / dxzzw] - ‘ / dxwwow‘ - ] [z, = via

: ) : (2.15)
— lim — = lim N ;(—1)" (SfL—I— 5) ‘

Here N is the number of sites, which we add by hand. For infinite systems, we cannot

measure the entire condensate, only the condensate at each site can be measured.

2.3 Mapping to the Classical 2D XY Model

There exists a mapping [9] between the coupling constant (g) of the Thirring
model and the temperature (7) in the 2D classical XY model:

Hyy ==K ) cos(f; — 0;). (2.16)
<ij>
The relation is -
g=g - (2.17)

The classical 2D XY model undergoes a Berezinskii-Kosterlitz-Thouless transition
(BKT transition) [13, 14] at T' = ﬁ, the corresponding A is —L ~ —0.707. For

2 V2

A < —0.707, the quantum state is in the KT phase.

5 doi:10.6342/N'TU201802766



Chapter 3

Tensor Network and Matrix

Product state

3.1 Tensor Network and Tensor Diagram

Tensors can be classified by their rank. For example, a rank-0 tensor is a scalar, a
rank-1 tensor is a vector and a rank-2 tensor is a matrix. We can also define tensors
for higher ranks. The index contraction is the sum over all the possible values of
the repeated indices of a set of tensors. A tensor can also be constructed by index

contraction. For instance, the matrix product
Coy = ZAaﬁBﬂv (3.1)
B

is the contraction of index 3, which amounts to the sum over its possible values.

One can also have more complicated contractions, such as :

®afeg = Z AbachceHbdfg (32)
bed

From these examples, we see that we can construct a tensor by contracting
combination of other tensors and we call these combinations “tensor networks.”
It is too tedious to write every index when the network is very complicated; for
convenience, we introduce “tensor network diagrams” which can represent tensor
networks more clearly (see Fig. @) Tensor network diagrams allow to handle
complicated expressions in a visual way. For instance, the contractions in Egs. (Ell)
and () can be represented by the diagrams in Fig. @ Hereafter, we will primarily

use tensor network diagrams to represent tensors and tensor networks.

6 doi:10.6342/N'TU201802766



(a) (b)
‘ scalar . vector

(c) (d)

. matrix ? rank-3 tensor

Figure 3.1: Tensor network diagrams (a) a scalar, (b) a vector, (c¢) a matrix and (d)

a rank-3 tensor.

Figure 3.2: Tensor network diagram for Egs. (@) and (@)

3.2 Matrix Product States

Tensor network states have emerged as a very useful conceptual and numerical
framework for studying quantum many-body systems [2]. For example, if we consider
a 1D lattice system with d-dimensional local state space {o;} on sites i = 1,2, ..., L,
we can write the quantum state as:

|¢> = Z Co1,...01, | o1, ~--70L> (33)
O15..,0L

For the tensor ¢,, ,,, we can use the singular-value decomposition (SVD) to de-

compose it into

T1
c =Y U, 0,500, V]
01,--;0L o1,a1~a1,a1 " ay,092,...,0[,
ai

1 o1
_ _ a
= E Ual,alca1,02,---,0L = E Aalca17027---,UL’
al al

where 1 < d, Ca100,00 = Sarar Vet oy..0p a0d A% = Uy, 4, We can repeat this

(3.4)

7 doi:10.6342/N'TU201802766



process for the tensor cq, 4, .. then

LOL)

T1

§ al
Aolcalana--waL

ai
T1 T2

= Z Z Agi U(al,az),az Saz,as VaTg,og,...,aL

al a2
T1 T2

=Y D At Ula00,0:Can(03,00)

ar ag
T1 T2

ZE § : a1 Ao2
- AalAal,azca%(USwaL)

al a2

Here, 7o < ry x d. If we perform this process iteratively, we will observe that r,

increases exponentially, so we set a maximum bond dimension D such that

dr,if d* < D
- (3.6)

Ty =
D,if d" > D

and truncate the bond dimension by SVD, which avoids the bond dimension D

exponential growth. Finally we can decompose the original tensor ¢, . ., as:
Corvr = ), ATDAT AT, AT (3.7)
a1,..-,01,—1
Or more compactly,
Coy,...or, = ATt A% AL AL (38)

Here A% is a set of matrices with r;_; x r; elements. We can represent the quantum
state using A%

|¢> _ Z A% %2 A9L-1 AOL |01’ ---,UL> (3.9)

01,.-50],
and it is just a set of matrix product with each other, so we call the quantum state
in this form as matrix product state (MPS). Because at each SVD, M = USVT,
UTU = I holds, we have the following properties of this kind of MPS as we construct
above.

> o AniAT =] (3.10)

oy
We call this kind of MPS as “left canonical form” (See Fig. ) Similarly, we
can do the same process from the other side as in Fig. @(b) and we call it “right

canonical form”

)= Y  B7'B%.B"'B|oy,...01), (3.11)

01,450

3 doi:10.6342/N'TU201802766



which will satisfy:
> BB =1 (3.12)
ol

And also we can construct mixed canonical form:

W)= > ATA TLATA oy, o) (3.13)

where I' is a diagonal matrix.

(a) (b)

( c ) [ c ]
T T T 1 T T..0 T 1
01 0 O3... 01,1 Oy, 01 Oy O3... 01,1 Oy,

! !
"‘ c ) [ c )—?
T T 1 [T ... T 1
01 0 O3... 01,1 Oy, (5] 03... 01 Oy,
! !

m_c H—”_C

g1 Oy O03... 0,1 Oy, 01 03... 0,1 Op

P00

3... 011 Oy,

!
-

090 99 9o

(c) (d)

& )

Figure 3.3: (a) Graphical representation of an iterative construction of left-canonical

(

MPS from arbitrary quantum state by SVD. (b) Graphical representation of an
iterative construction of right-canonical MPS from arbitrary quantum state by SVD.
(¢) The property of left canonical form. (d) The property of right canonical form.

(e) Tensor network diagram of mixed canonical form.

doi:10.6342/N'TU201802766



3.3 Uniform Matrix Product States

When we consider 1D quantum lattices in the thermodynamic limit, we need to
impose translation symmetry. Hence, we can represent our quantum state in MPS

with bond dimension D as

[W(A)) =) - At AT AT ) (3.14)

where A* € cP*P and s =1, ...,d and can be represented diagrammatically as

(3.15)

The MPS in Eq. is called “uniform matrix product states (uMPS).” For a given
uMPS [¢)(A)), we can define the transfer matrix £ =Y A* @ A°, or graphically,

(3.16)

which is an operator acting on the space of D x D matrices. This kind of matrix
has the property that the leading eigenvalue 7 (the eigenvalue with maximum norm)
will be positive, and can be scaled to 1 by rescaling the uMPS tensor as A — A
We denote the corresponding left and right eigenvectors as [ and r and they satisfy

the eigenvalue equations:

- (3.17)

And we can normalize the leading eigenvectors [ and r such that Tr(rl) = 1, or

diagrammatically,

= 1 (3.18)

10 doi:10.6342/N'TU201802766



3.4 Expectation Values

Suppose we want to compute the expectation value (O) with operator
0= 20 (3.19)
N nez Z " :

where Z represents the number of sites. Since translation invariance, so (O) can be

represented as in Fig. @

(@A) 5 3 0 k()

nez

[
N =
]
T T
|
>
|
|
>|
|
>
|
NG NG

fud:
(o)

s - ¢

mr L
__J

>»—0 —>

Figure 3.4: Expectation value represented as a tensor network diagram.

1 doi:10.6342/N'TU201802766



3.5 Gauge Degrees of Freedom, Canonical Form

and Symmetric gauge

There is no unique way to write down a uMPS to represent a given quantum
state on a 1D infinite lattice. For a given uMPS |1)(A)), we can use a local gauge
transformation A% — X A*X ™!, with invertible X € CcP*P to represent the same

quantum state. Namely, [(A4)) = [(XAX 1)), since

[ (XAX™1))

- e = A (3.20)

We introduce I', A notation to represent uMPS. For a given uMPS [¢(A)) , we can
use SVD to decompose the uMPS as in Fig. @, denoting the diagonal term as A

and the other term as I'. In other words, we can use (A,I') to represent uMPS.

(b)

A I A r A

Figure 3.5: (a) Use SVD to decompose tensor A. (b) (A,I') notation for uMPS.

Furthermore, we say (A,I') is canonical if

19 doi:10.6342/N'TU201802766



= j (3.21)

An arbitrary uMPS (A,T") is not generically canonical, but it can be changed to

the canonical form using a gauge transformation [15]. We will show the step by step
process to change an arbitrary uMPS (A,I') to the canonical form (A’,I). First, we

need to find the eigentensors [ and r by solving the following eigenvalue equations,

(3.22)

Notice that tensor [ and r are Hermitian after simple resized. Then we find the
matrices L and R such that L'L = [ and RR' = r, so we can choose L = Iz and

R=r2. Finally, we insert these matrices and do SVD as following step:

Q>

(3.23)

13 doi:10.6342/N'TU201802766



A

| TR
Nﬁ
A’ ) A
r'— Ul U ——VT—R— N —
= Al
o U'tu—e—vi—R'—1 —L"'—U—
A \ J
w
A
—L —¢— R—
M\ A)
Uty =1 Lt+e—+1—T—L1—y—
= 1| 1 A
L1 +1—T—L'-U—
_—
L'L=1 L —[L7—U— [
U —

Figure 3.6: Check the property of the left canonical form.

Then we get the canonical form (A’,I") and we can easily check the left-canonical
form property (as in Fig. @) and also for the right canonical form property. Now

we can construct a unit tensor again by using canonical (A,I') as

(a) left canonical form (b) right canonical form

Another special gauge we shall introduce here is symmetric gauge, which can be

3.24)

constructed by canonical (A,I') as

1 1
A2 A2

1 doi:10.6342/N'TU201802766



We can observe that the left and right eigenvectors of this kind of transfer matrix

are A, since

= A (3.26)

- } A (3.27)

Finally, we will introduce the mixed canonical form for uMPS. For a given canon-

ical (A,I'), we can construct mixed-canonical form:

o O

e A, @ A

(3.28)

Here, Ay, is left-canonical tensor and Apg is right-canonical tensor that can be con-

structed as above, and we define new tensors Ac and C' which can be constructed

by
A A A
- —o)— = —— (3.29)

The tensors Ay, Ag, Ac ,C in mixed-canonical form need to satisfy the condition
A;C =Ac =CA3, (3.30)

or diagrammatically,

15 doi:10.6342/N'TU201802766



s

3.6 Geometric Series for Transfer Matrix

At Chapter @ and H, we will introduce two algorithms (time-dependent varia-
tional principle and variational optimization method for uMPS) and both of them
are needed to simulate the geometric series of the transfer matrix. We know that for
a given uMPS [¢)(A)), which the corresponding unit tensor A has been normalized,
we can define the transfer matrix £ = Y, A*® A® and its leading eigenvalue is one.

If we want to calculate the geometric series of E, we can use the formula:

S E=I+E+E+E+ .. =(I-E)" (3.32)

=0

First, we diagonalize the transfer matrix

1 0 0 O
. 0 A O O
D=P EP= , (3.33)
0 0 X O
0 0 O
where 1 > Ay > Ay > - - - are the eigenvalues of the transfer matrix £. Then,
0 0 0 0
. . 0 1—X) 0 0
P (I-EYP=1—-P EP=
0 0 1—Xy O
0 0 0
(3.34)
0
S0
B 0 X ’
0

where \; = 1 — \, for all i = 1,2,3---. Define D = P~' (I —E)P = — P"'EP,
then ] — E = PDP~'. We can clearly see that the determinant of matrix I — E is 0,

which implies the matrix I — E is not invertible. So we define the pseudo-invemeﬁ]

0 0 0 0
~—1
0 X 0 0
(I-EY=p S p (3.35)
0 0 X 0
0 0 0

1We can see the idea of pseudo-inverse from Ref. [6].
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If {(I;]} and {|7;)} are the set of eigenvectors of matrix I/ — E, and (I| and |r) are

the leading eigenvectors of transfer matrix E. Then,
(1 = B) = Xolfo) (lo| + M|F) (L] + Aalfo) (la] + - + A |Fni) (], (3:36)
where n = D x D and Ao = 0. We can rewrite the pseudo-inverse as
(I = B)" = A7) (] + Xelfa) (o + -+ + A Faet) (T (3.37)
and Eq. () implies that
I— (B = [r){U) = [r){tl + M) (Gl + Al (lo] + -+ A [Fama) {Taa| - (3.38)
If we inverse the Eq. ()7 then we get

[T —(E—|r){p)~
=[r) (1| + AR (L] + /\~2_1|f2><l~2’ ot A [Pt (-

Compare the Eq. () and Eq. (), we can rewrite the pseudo-inverse of [ — E
as

(3.39)

(I=E)" = [ —(E—|r) ]~ =l (3.40)

In many cases, we need to operate a given left tensor or right tensor with (I — E)?.

For instance, given a tensor h;, we want to calculate tensor K:

@l (I-E)* = @ (3.41)

(K| = (u|(I - B)". (3.42)

According to Eq. (), we have:

and we can denote it as

(K| = (| [T = (B~ [r)(ID)] ™ = (mlr) (Ul (3.43)
Then,
T+ Gl 11T = (5 = ) 0D] = Gl )
= (K[ [ = (E = [r) D] + (hulr) (I} = (halr) QLE + Chalr)(lr) (] = (]
Since (I|E = (I| and (l|r) = 1, the Eq. () becomes
(K| = (B = |r)D] =+ (ulr) (I = alr) (1] 4 (halr) (] = (hul, (3.45)
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which implies
(K[[I = (B = [r){I)] = (bl = (ha]r) (L], (3.46)

Tensor h; is given, so we can solve the linear equation to obtain the tensor K. Rather
than invert the matrix [ — E+|r)(l| directly, we can use biconjugate gradient stabilized
method (BICGSTAB) [16], which is a Krylov subspace method, to solve the linear
equation. Its computational complexity is just O(D?). And we can follow the same

procedure to contract right tensor with (I — E)F.

3.7 Matrix Product Operator

In many cases, we can write the Hamiltonian in matrix product operator (MPO)
form; for instance, the Hamiltonian of Heisenberg model is:
J
H=23 > (SFSuia+ Sy Sh) + J.S; (3.47)

n

If we define an operator

| 0 0 0 0
S+ 0 0 0 0

o=|g- 0 0 0 0f= (3.48)
s’ 0 0 0 0
0 (3725 (372)8* 3S* 1|

Then we can make the Heisenberg model as a product of these operators
H=]Jo" (3.49)

or graphically as:

a a a a (3.50)

For the Thirring model [Egs. () and ()] (with Starget = 0), we can write
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down the MPO as

I 0 0 0 0 0
S 0 0 0 0 0
St 0 0 0 0 0
ol = : (3.51)
S* 0 0 I 0 0
S* 0 0 0 0 0
BuS* 4+l —L£ST —LST 2)\8* 28 |
where A
ﬁn = E -+ (—1)"m
A, A
T e

Since this MPO acts on local pairs of sites can be represented as a tensor network

diagram

(3.52)

This kind of MPO form is not invariant under single-site translation, so we merge

two MPO to one by:
- l i l (3.53)

2 2 4

In this thesis, we choose physical bond dimension d = 4 for uMPS.

We have already found the MPO form for the Thirring model, so we can use
tensor network method to find the ground state of the Thirring model and do real-
time evolution for it. We are going to introduce the time-dependent variational
principle (TDVP) algorithm and variational uMPS algorithm (VUMPS) at next

two chapter.
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Chapter 4

Variational Optimization Method

for uniform Matrix Product State

The variational optimization method for uniform matrix product state (VUMPS)
[b] algorithm is a variational tensor network algorithm for determining the ground

state of many-body systems on 1D lattices.

4.1 Effective Hamiltonian

In most many-body systems, it is impossible to directly determine the ground
state, even for simple nearest neighbour Hamiltonians. Instead, we will introduce
an effective Hamiltonian. For a given mixed canonical uMPS (Ay, Ag,C), we can
define the one-site effective Hamiltonian and zero-site effective Hamiltonian as in
Fig. [1] It is much easier to find the ground state of the effective Hamiltonian.

If we use MPO to represent the effective Hamiltonian, it can be represented as:

(@) single-site effective hamiltonian:

(4.1)
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(a) (b)

— A A A Ag— AL A —Ag— Ap—
N I I B || R
H : i H
L L L I
— A— A—  —Ag—Ag— - —A— A— —AR—Agp—
(c) (d)
v Ay Ay Ag— Ag— Ap— v A A € — Ag Ap—
S I S B || ||
H e H
Lo L I
— A A— —Ap— Ap— - — A A —Ap— Ap—

Figure 4.1: (a) One-site effective Hamiltonian, (b) zero-site effective Hamiltonian
(c) acting with tensor Ac on one-site effective Hamiltonian (d) acting with tensor

C' on zero-site effective Hamiltonian.

In practice, we need to find a block tensor L such that

) )
L — = — R | = . (4.3)
_/_ ’ _;)

For instance, the MPO of the Thirring model with penalty term can be represented
by the following form

a P1 2 3 4 5 6
1/[00000\
2 1Zy, 0 0 0 0 0
« 31 0 0 0 0 0
c= Z, 0 0 1 0 0 (44)
s 12 0 0 0 0 0
s \X Y2 V3 Vi ¥ 1)

And we can see that tensor L will satisfy
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L —B= L (4.5)
_J_ N—
We can represent the tensor L as a set of tensors:
R e N\ e N e \ e \ e N\
L —F= { Ly Ly Ly Ly L Le } (4.6)
_J_ _J_ _/_ . 1_ L 1_ . )_ . 1_
Then, construct the tensor L order by order. For g = 6,
(4.7)
For f =2,3,5,
(4.8)
For 5 =4,
(4.9)
Or we can denote it as
(4.10)
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where T7,(L,) means that the transfer matrix constructed by Ay, operates on the left
tensor Ly, and tensor C] is defined

o N G

C1

M
~
=

(4.11)

If we assume L4(0) = 0, from above recurrence relation Eq.(4.1), we can infer that

Lufn) = Y TH(CY). (4.12)

If we want to find Ly(n — 00), it just an infinite geometric series and it can be found
as we discussed at Chapter B and should be satisfy Eq. (B.46) and we can replace
A— Apand hy — 1. FOI'ﬁzl,

(4.13)

)

(4.14)

Note that we have already construct tensor Lo, L3, Ly, Ls, Lg, so we can make tensor

Cs directly. Then we also can observe that
Ly =) Ti(Cy). (4.15)
i=0
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Then we can construct the tensor L; by Eq. (B.46). Thus, we complete the block
tensor L and can use the same process to construct tensor R. Finally, the effective

Hamiltonian can be represented as in Fig. @

(a) (b)

Figure 4.2: (a)one-site effective Hamiltonian (b)zero-site effective Hamiltonian

4.2 VUMPS algorithm

We are now ready to formulate our variational uniform MPS (VUMPS) algo-
rithm. First, we start from a random uMPS (A, Ag,C), and construct both the
single-site and zero-site effective Hamiltonians as described in the previous section.
Then, we can use Lanczos method to find the tensors Ac and C, which are the

eigentensor with lowest eigenvalues E4, and Ec. Or we can denote it
HACAC = EACAC (416&)

HoC = E¢E. (4.16b)

In general, tensors Ax and C' which satisfy Eq. () will not satisfy Eq. (),

which is the condition for mixed-canonical form for the uMPS. We cannot find any
AL € {AL’ALTAL = I} and AR S {AR’ARART = [}, such that ASLC — AC =
CA% — Ac = 0. The second best way is to choose the tensor Ay and Agr which will

update the effective Hamiltonians by solving the following equations

e, = min [|JAL — A7C||2 (4.17a)
Al Ap=1

e = min |AL — CA%L|2 (4.17Db)
ApAl=1
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Fortunately, the solution of this kind of minimization problem has been proven
that Ay, will be the isometry in the polar decomposition of A%CT; more concretely,
if

Here we decompose the tensor tensor AS,CT by polar decomposition, U is unitary
and P is positive semi-definite. Then the solution of Eq. () is U. We can
do the same process to solve for the tensor Ag [17]. In practice, we can do polar

decomposition by SVD as following. For a given matrix M = WXV, We can set
U=WwVl p=vxvi (4.18)

We can observe that the matrix U is unitary and P is positive semi-definite. And

we have

M =WVl =WVIVXV = UP. (4.19)

This implies that we can use SVD to do polar decomposition. After we update Ay,
and Agr, we can update the effective Hamiltonians. And then, resolve the ground
state of both effective Hamiltonians to find the new Ac and C'. And then update Ay,
and Ag. We repeat this process until the Eq. () is satisfied. Below is a detailed
description of the VUMPS algorithm (see also Fig. @)

1. Start from random tensor (Ap,Agr,C). Set €, > €, where we call €, “current
precision” and € “final precision”.

2. If ¢, > €, update tensors Ac and C' as the ground state of the single-site and
zero-site Hamiltonians. If not, return tensor (Ap,Ag,C) and end the algorithm.

3. Update tensor A and Agr with respect to tensors Ac and C at step 2 by
Eq. (), and calculate the corresponding €; and eg.

4. Set €, = max{er, g} and return to step 2.
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Set ép>¢
Return A, Az,C | false £p>€?
ltrue

End
Calculate Ha. Hc

&p < Max(e, eg)

f

Find the ground state A.,C of Ha. Hc by

iterative eigensolver up to precision &, .

Update A4;,Ar and
calculate corresponding
SL’SR N

Figure 4.3: Flow chart of VUMPS algorithm.
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Chapter 5

Time-Dependent Variational
Principle Applied to Matrix
Product State

Time-dependent variational principle algorithm (TDVP) is a tensor network al-
gorithm for simulating real-time evolution for many-body system on 1D lattices. In

this chapter, we are going to introduce the TDVP algorithm on infinite 1D lattice.

5.1 Tangent Vector Space
For a given uMPS, ¥(A), we can use tensor diagram to represent its tangent

vector as

O({Bi};A) =

Sn—-1 Sn+1

+ I I-I I
: (5.1)

n— STL Sn+1

" A A A B A

Sn-1 Sn Sn+1
7 ‘ ‘ ‘ ‘ ‘
Sn—1 Sn Sn+1 :
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where the set of tensors {B;} decide the “direction” of the tangent vector. Since
there is translation-invariance, we can assume By = By, = B3 = --- = B, so the

tangent vector can be represented as

vEa= 3 B T

Sn+1

~ iy (AQ)

Figure 5.1: An illustration of the uMPS manifold and tangent space. The black dot
represents the uMPS; ¢(A), and the tangent vector ®(B; A) is a vector line on the

tangent plane.

5.2 Gauge Fixing for Tangent Vector

It will be very convenient for us if B in tangent vector ®(B; A) is gauge-fixed
such that

doAtiB =0, ) BliA* =0. (5.3)

In order to ensure this condition, we parametrize B as

(5.4

where [ and r are the leading left and right eigentensors of the transfer matrix and
V1, is the orthonormal basis for the null space (see Fig. @(a)) of the tensor

(5.5)

which we find using SVD. Fig. 5.2(b) shows that this parametrization will satisfy
the condition at Eq. (@)

928 doi:10.6342/N'TU201802766



Figure 5.2: (a) The properties of V;, (b) The properties of tensor B

5.3 Projection Operator

As Fig. lS:l] shows, we need to find the projection operator Py4) such that
Piyay|©) = |®(B; A)). This operator projects an arbitrary quantum state |©) onto
the tangent plane of the manifold. In other words, we want to find the tensor B,

which is a function of X, that minimizes
11©) — [@(B(X); A, - (5.6)
So the derivative with respect to X should be zero:
Ixl[©) — |2(B; A))ll2 =0, (5.7)
which implies

Ox [(©18) — (B]2(B(X); A)) — (B(B(X); A)|©)

_ (5.8)
+(2(B(X); A)|2(B(X); 4)) = 0.

Finally, we get
Ox(®(B(X); A)|@(B(X); A)) = 0x(®(B(X); A)|6). (5.9)

Since we must satisfy Eq. (@), the inner product of tangent vector state becomes

29
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(®(B; A)|P(B; A)

(5.10)

This implies that O (®(B(X); A)|®(B(X); A)) = 2X, hence ZX = dg(®(B(X); A)|0).
We can desribe this graphically:

(5.12)

Since Pya))|©) = |®(B; A)), we can define the projection operator as
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Piyayy = Z

T

Now, we can start to construct the time-dependent variational principle (TDVP)

algorithm. Starting from Schrodinger equation:

S NA()) = A (A1), (5.14)

we cannot represent exact quantum state as a uMPS with finite bond dimension, so

we need to project the quantum state to tangent plane. Hence, the TDVP equation
is:

S IW(A®)) = Paay BIW(A®)) (5.15)
If we use a MPO to represent the Hamiltonian, the right hand side of above equation

can be graphically represented as

PiyanHIp(4))

(5.16)

By the chain rule, the left hand side of the Eq. () can be represented as

d
i @) =" —{AHAHAHAHA 1 gy

Sn-1 Sn Sn+1

Comparing the LHS and RHS of Eq. ( n we will obtain

’A(t i , | (5.18)

where
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Finally, we can solve the differential equation using the Runge-Kutta method.
We can also use the technique in Chapter [1] to deal with the infinite boundary
term by replacing tensor Ay and Ag with tensor A; then Lg becomes [, which is the
left eigenvector of the transfer matrix constructed by the tensor A, and Rg becomes

r. Then B can be represented as

) )
‘?* = L R 1. (520
N——/ J

We have already found the TDVP equation represented by the tensor network
diagram. So at next section, we are going to show the TDVP algorithm more

concretely.

5.4 TDVP algorithm

Theoretically, we can use any gauge to simulate the tangent vector, but numeri-
cally, it is not the case. For instance, if we use left-canonical form for a normalized
uMPS W(A), then the right eigenvector r of the transfer matrix will contain the

square of Schmidt coefficients since

A A A
(T
)T
T

A A A
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1

It is therefore ill-conditioned and the many operations with r~2 can produce large
numerical errors. Similarly, if we choose right-canonical form, =2 will bécome very
large. Hence, we should use symmetric gauge for tensor A to avoid this problem:.

If we want to use TDVP algorithm to perform imaginary time evolution, we just

need to use the simple Euler method to solve the differential equation; namely,
A(T +dr) = A(T) — Bdr (5.22)

If we define the function f, which will return the tensor B for a given tensor A,
(B = f(A)). Then we can use the simple Euler method to find the ground state as

following;:

1. Change uMPS W (A) to symmetric gauge.
2. Find tensor B = f(A) as we show in this chapter.
3. Set A(T + dr) = A(T) — Bdr. Then return to step 1.

Repeat the above procedure until the length of tangent vector || B||2 is small enough.
If we want to do real-time evolution, Runge-Kutta method (RK4) is needed, whose

error is O(dt*). This algorithm works as follows:

1. Change uMPS W(A) to the symmetric gauge.
2. Set tensor By = f(A), Ay = A — i%Bldt

3. Set tensor By = f(A;), As = A — i%Bth

4. Set tensor By = f(As), A — 1 Bsdt

5. Set tensor By = f(A3),

6. A(t+dt) = A(t) — iz (By + 2By + 2B3 + By)dt
7. Return to step 1.

Note that we cannot change the gauge for uMPS until whole RK4 process is done.
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Chapter 6

Result and Conclusion

6.1 Ground State of the Thirring Model

We use VUMPS algorithm to simulate the ground state of the Thirring model
on infinite 1D lattice with the constraint (S,) = 0. We show our ressults (with bond
dimension D=25) in Figs.(6.1~6.3). The Thirring model maps to the classical 2D
XY model as we discuss in section @ We can see that (Fig. @) the entanglement

entropy of quantum state in KT phase is very large.

Ground state energy

0.5 —0.1170
—-0.1575
0.4 —0.1980
1-0.2385
0.3 1-0.2790
£ 1-0.3195
0.2 1—-0.3600
—0.4005
0.1 —0.4410
—-0.4815

0.0

Figure 6.1: Energy density of the Thirring model.
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Entanglement entropy

1.278

1.149

41.020

10.891

10.762

10.633

0.504

0.375

0.246

0.117

Figure 6.2: Entanglement entropy of the Thirring model.

Chiral Condensate

LR

0.5

0.4
0.3 40.2730
£ 10.2275
0.2 10.1820
0.1
0.0

0.5
A

Figure 6.3: Chiral Condensate of the Thirring model.
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The fermion correlator can be represented in spin representation as

n+r—1 Sz

G(r) — SIG(ZWZerH»I ])SZ:L+T‘ (61)

For example, if r = 8, then G(r = 3) can be represented in tensor network diagram

as:

where O; = ST ® €™ Oy = €™ @ ™" O3 = ™" @ S~. Figs. (6.4~6.10)
show the result for fermion correlator with bond dimension D=100. We can observe
that for the massive case (m = 0.2), the fermion correlator exhibits power-law decay
in the KT phase and exponential decay in the other phase. For the massless case

(m = 0), the fermion correlator exhibits power-law decay for any A.

Fermion correlator for m=0

Mg)=-0.9
AMg)=-0.8
Mg)=-0.7
0.25 4 «  Alg)=-0.6
Mg)=-0.5
0.20 - e Alg)=-04
Ag)=-0.3
AMg)=-0.2
Ag)=-0.1

0.30

G(r)

0.15 4 e

0.10 A

0.05 A

0.00 + - T T ¥ f T
0 25 50 75 100 125 150 175 200

Figure 6.4: Fermion correlator for the massless case on a linear scale.
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Figure 6.5:

In G(r)

Fermion correlator for m=0

—10 4

AMg)=-0.9
Alg)=-0.8
Ag)=-0.7
Ag)=-0.6
Ag)=-0.5
Mg)=0.4
A(g)=-0.3
A(g)=-0.2
Ag)=-0.1

=

T T T T T
25 50 75 100 125 150 175 200

r

Fermion correlator for the massless case with a semi-log scale.

In G(r)

Fermion correlator for m=0

—10 4

Alg)=-0.9
Alg)=-0.8
Alg)=-0.7
Alg)=-0.6
Ag)=-0.5
Ag)=-0.4
Alg)=-0.3
Alg)=-0.2
Alg)=-0.1

1

Figure 6.6: Fermion correlator for the massless case on a log-log scale.
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Fermion correlator for m=0.2

0.30

0.25 4

0.20 -

G(r)

0.15 +

0.10 4

0.05 +

T
75 100
r

T
125

T
150

Alg)=-0.9
Alg)=-0.8
Alg)=-0.7
Ag)=-0.6
Alg)=-0.5
Ag)=-0.4
Alg)=-03
Alg)=-0.2
Alg)=-0.1
175 200

Figure 6.7: Fermion correlator for the massive case on a linear scale for m=0.2.

Fermion correlator for m=0.2

Ag)=-0.9

< Mg)=-0.8
E 0 {g)

- Ag)=-0.7

5] o =08

e Aa)=05

304 « Alg)=04

Ag)=-0.3

“351 ., alg)=0.2

o Ma)=0.1
_a0 (g)

T T T T T T T T
0 25 50 75 100 125 150 175 200

r

Figure 6.8: Fermion correlator for the massive case with a semi-log scale for m=0.2.
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Fermion correlator for m=0.2

—157 Alg)=-0.9

< Alg)=-0.8
£ 20 (g)
2 Alg)=-0.7
5]« Alg)=0s6
e Alg)=05
301 « Alg)=04
Alg)=-0.3
351, alg)=02
«  Alg)=-0.1
_a0 | (g)
0 1 2 3 4 5

Figure 6.9: Fermion correlator for the massive case on a log-log scale for m=0.2.

Fermion caorrelator for m=0.2

In G(r)

«  Alg)=-0.9
A(g)=-0.8
Mg)=-0.7

-1214 « Alg)=-06

-10 4

0 1 2 3 4 5

Figure 6.10: A(g) near the transition.
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6.2 TDVP Result

The most interesting subject is a quench across the phase boundary. For instance,
from the KT phase to the other phase. Even in the same phase, it is still interesting
to investigate the dynamics of the Thirring model.

The most important observable for the real time evolution is return probability
(Loschmidt echo) [18] defined by

L(t) = [ O) [ @)[* = [(¢(0)le ™ [(0))]". (6.2)

However, for an infinite 1D system, we cannot calculate this observable exactly since
it will always be zero for ¢t > 0. Instead, we use the norm square of the dominant
eigenvalue of the transfer matrix, E(t) = > A(t)* ® A*(0), arising from the overlap
between the initial state and the time-evolved state at time ¢ to represent the return
probability (denoted as P(t)). Another important observable is the return rate
function defined by:

1
g(t) = — ]\}1_{%0 N In L(t), (6.3)
which is well-defined even in the thermodynamic limit, and

L(t) ~ PN (t)
Sg(t) = — lim —Nn P(t) = —In P(t). 64
N—oo N
We can represent the return-rate function with the negative logarithm of the domi-
nant eigenvalue of the transfer matrix.

In this thesis, we investigate the dynamics of the Thirring model by TDVP
algorithm with bond dimension D=100 without a penalty term. Note that (S.) and
(H) are conserved quantities since [H, H] = [S,, H] = 0. We can see that (S,) is
conserved in our simulation (Fig. ) even though we turned off the penalty term.
We found that the simulation is very unstable if we turn on the penalty term.

Now let us examine the case starting from the ground state with the parameters
(A,m)=(-0.8, 0.2) and use the Hamiltonian with parameters (A,m)=(0.5, 0.2) to
evolve the state. In Fig. , we observe that the entanglement entropy saturates

after t ~ 15 since the quantum state has evolved to a state far away from the uMPS

manifold. So we can only trust the result before ¢t = 15.
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Figure 6.11: The Thirring model evolving from (A,m)=(-0.8, 0.2) to (A,m)=(0.5,

0.2).
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Figure 6.12: The Thirring model evolving from (A,m)=(0.5, 0.2) to (A,m)=(-0.8,

0.2).

We can present results of a quench on A —m plane and we show the dynamics

of the chiral condensate, the return probability and the fermion correlator. More
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numerical results are shown in the Appendix. We observe that when quenching
from the KT phase with the same mass (m # 0), there exist several non-analytic
cusps (see Fig. ) of the return-rate function which indicates that there may be a
dynamical phase transition. Otherwise, the return-rate function evolving with the
same mass will be very smooth (see Fig. ) We obtain numerical results for the
quench dynamics of the Thirring model. It may exist dynamical phase transition

for some cases. Further exploration is necessary.
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Chapter 7
Summary

Tensor network methods are a powerful tool for studying many-body systems and
there are several efficient algorithms available for 1D systems. After discretizing the
Thirring model on a 1D infinite lattice, we represent it as a spin-1/2 representation.

We use a tensor network method to find its ground state and to study time evolution.

The time-dependent vaiational principle algorithm (TDVP) and the variational
optimization methods for uniform matrix product state (VUMPS) are very efficient
and accurate. In this thesis, we use the VUMPS algorithm to find the ground state of
the Thirring model and characterize the phase diagram. We then extend the TDVP
algorithm in MPO form such that we can deal with the Thirring model problem
and investigate the quench dynamics. We can see that TDVP algorithm preserves

conserved quantities very well.

We want to ask whether the Thirring model exists the dynamical phase transi-
tion. So we use TDVP algorithm to do real-time evolution and see the return-rate
function. And we found the existence of non-analytic cusps in the return-rate func-
tion which suggest the existence of the dynamical phase transition. We still wonder
what is the physical meaning of the dynamics of the fermion correlator for the

Thirring model and it is worthwhile to research it in the future.
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Appendix

More Numerical Results
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Figure A.1: The Thirring model evolving from (A,m)=(0, 0) to (A,m)=(0, 0.2).
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Figure A.2: The Thirring model evolving from (A,m)=(0.5, 0) to (A,m)=(0.5, 0.2).
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Figure A.4: The Thirring model evolving from (A,m)=(0.5, 0.2) to
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(A,m)=(0.5, 0).
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Figure A.7: The Thirring model evolving from (A,m)=(0.5, 0) to (A,m)=(0.5, 0.5).
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Figure A.8: The Thirring model evolving from (A,m)=(-0.5, 0.5) to (A,m)=(-0.5,
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Figure A.19: The Thirring model evolving from (A,m)=(0, 0.2) to (A,m)=(-0.8,

0.2).
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Figure A.20: The Thirring model evolving from (A,m)=(-0.8, 0.2) to (A,m)=(0,
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