
國立臺灣大學電機資訊學院資訊工程學系

博士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

附加限制條件的最長共同子序列問題之演算法設計

Efficient Algorithms for the Constrained Longest
Common Subsequence Problems

陳怡靜

Yi-Ching Chen

指導教授：趙坤茂 博士

Advisor: Dr. Kun-Mao Chao

 中華民國九十九年六月

June, 2010

i

誌謝

2005 年 6 月 10 日，以一封寫給趙坤茂教授的 e-mail 為開端。

每當有人問起博士班指導教授時，我總是很驕傲地說：「是趙坤茂教授。」趙

老師幽默風趣的言談、身體力行的研究態度總是能帶給我前進的力量。感謝老師在

我遇到瓶頸、進退兩難時，不厭其煩地鼓勵我，並且給予我諸多寶貴的建議。也謝

謝老師總是在關鍵時刻捎來幾句關心與祝福，讓我如同大力水手吃下菠菜罐頭後衝

勁十足。滿懷的感謝難以訴諸於文字，也許數十年後，我會忘記寫過的論文細節，

但是老師的恩情將是沒齒亦難忘。老師，謝謝您！

論文計畫審查與口試期間，承蒙陳健輝教授、陳俊良教授、劉邦鋒教授、曾宇

鳳教授與蔡英德教授提出諸多寶貴意見，使得本論文得以更臻完善，並且感謝每位

委員給予許多鼓勵與肯定。此外，要特別感謝陳健輝教授經常關心我的學業，林守

德教授與林婉瑜老師傳授許多英文論文寫作技巧，在修課結束後依然關心我的研究

進展；還要感謝國立暨南國際大學的杜迪榕教授、阮夙姿教授、黃光璿教授持續關

心我在台北的生活與研究，並給予諸多勉勵。

在進入台大之前，聽到種種與資格考有關的恐怖傳言。感謝一起努力的伙伴：

秉慧、冠宇、冠伶、國煒、啟維、啟堯、容任、思遠、銘康、義興，因為有你們的

打氣與陪伴，我才能順利通過每科考試。我永遠記得從讀書會啟動到放榜前焦慮失

眠與作惡夢的那些日子，苦澀卻甜美。

感謝在這五年間，相處時間遠超過家人的 ACB 夥伴：耀廷學長時常關心我們

這些老毛頭的近況，並且給予我許多精神上的勉勵與實質上的餵食；效飛學長與弘

倫學長總是耐著性子回答我研究上遇到的問題，並且慷慨分享求職經驗；建均經常

舉辦研究室出遊舒緩壓力，同時經常帶給我們女性夥伴諸多生活上的「色彩」；一

軒經常分享在美國求學與工作遇到的趣事與辛苦，並且在我到舊金山旅行時盛情招

待；遇到電腦麻煩事時，芃安與陳琨總是熱心幫忙；機車在校外拋錨時，明江與冠

宇多次出手相救；秉慧在我初到台北時給予諸多陪伴；正偉與峻偉在我口試前提供

即時的幫助；秋芸陪著我耍幼稚、做白日夢；家榮與伍隆時常分享許多生活趣事與

讀書心得；容任、帥朋、謦儀、蔚茵給予我許多鼓勵；安強為大家留下許多活動倩

影。感謝所有 ACB 伙伴，烏來、淡水、平溪、花東綠島、澎湖等多次出遊，還有

話三國、雨天訂便當都是我最珍貴的回憶。

ii

另外，要感謝身邊所有朋友的陪伴與鼓勵，特別是佳衛幫忙解決所有使用 LaTex
的疑難雜症，吳瑞瑜學姊像姊姊般照顧我，晏禕、彥緯、林清池學長在我求職期間

給予許多寶貴的建議，以及那些曾讓我擁有夢想的人們。

每當我走在台北的街頭看到各種年齡的辛勤工作者，總是會質疑自己憑什麼擁

有現在的生活。一切的一切，都要感謝養育、支持我的爸媽，謝謝您們賜予我健康

的身體，謝謝您們提供衣食無缺的成長環境，謝謝您們一直以來把彼此照顧得很

好，讓我能夠專心於學業、無後顧之憂。同時要感謝我的後援團，五伯與二姑一直

提供我求學過程溫暖的避風港，堂哥奕丞給予我很多溫暖的陪伴；回老家時，二伯

與四伯總是給予我最熱情的款待；最後要謝謝爺爺奶奶賜予我眾多珍貴的家人。

2010 年 7 月 27 日，擁有 ACB 鑰匙的第 1822 天。雖然不捨，但我依然會瀟灑

地離開，邁向另一個嶄新的旅程。

祝福所有關心我的朋友們平安快樂。

陳怡靜謹致
國立台灣大學資訊工程學系

中華民國九十九年七月

iii

中文摘要

本篇論文探討數個最長共同子序列的變異問題，是由分子生物學和序列比對的

實際應用與理論興趣發展而來。

在論文的第一部份，我們研究四個附加條件限制的最長共同子序列問題，目的

是在兩條序列之共同子序列中，求得包含或排除一條附加限制字串為子序列或子字

串之最長序列。我們研究這些問題的最佳化特性，並針對每個問題提出一個動態規

劃演算法。理論分析顯示，我們提出的演算法之時間複雜度與兩條序列及一條附加

限制字串的長度乘積成正比。此外，我們也考慮任意多條附加限制字串的情況。

為了使序列的相似度衡量更有彈性，在論文的第二部份，我們研究一個混合附

加條件限制的問題，目的是在兩條序列之共同子序列中，求得包含一條附加限制字

串為子序列且排除另一條附加限制字串為子序列之最長序列。我們提出一個動態規

劃演算法來解決這個問題，演算法所需的時間與兩條序列及兩條附加限制字串的長

度乘積成正比。另外，我們提出一個針對兩條序列配對位置做計算的快速演算法。

在論文最後一個部份，我們在最長共同子序列問題與一個附加條件限制的最長

共同子序列問題上考慮一個被廣泛使用的資料壓縮技術，稱為區段長度編碼法。為

了解決以區段長度編碼的序列之最長共同子序列問題，我們研究序列以區段分割動

態規劃矩陣的特性，並利用簡化矩陣內部份計算來求得最長共同子序列的長度。最

後，我們設計兩個演算法，在兩條以區段長度編碼的序列之共同子序列中，求得包

含一條以區段長度編碼的附加限制字串為子序列之最長序列。

關鍵字：動態規劃、最長共同子序列、附加限制條件之最長共同子序列、區段長度

編碼

iv ABSTRACT IN CHINESE

Abstract

This dissertation studies several variants of the longest common subsequence (abbre-

viated LCS) problem. These variants arise from some applications and theoretical

interests in molecular biology and sequence comparison.

In the first part of this dissertation, we study four constrained LCS (abbreviated

CLCS) problems, each of which is to find a longest sequence that is a common sub-

sequence of two sequences and either includes or excludes a constrained pattern as a

subsequence or substring. We investigate the optimality principles of these problems

and then derive a dynamic programming algorithm for each problem. The theoretical

analyses show that the time complexity of each algorithm is proportional to the prod-

uct of the lengths of the given sequences and constrained pattern. We also consider

the case where the number of constrained patterns in each problem is arbitrary.

To make the similarity measurement of sequences more flexible, in the second

part of this dissertation, we study the problem of finding a longest sequence that is a

common subsequence of two sequences and not merely includes a constrained pattern

as a subsequence but excludes the other constrained pattern as a subsequence. We

v

vi ABSTRACT

give a dynamic programming algorithm whose time complexity is proportional to the

product of the lengths of the given sequences and constrained patterns. We also

present a fast algorithm which restricts the computation on the positions of matches

between the sequences.

In the last part of this dissertation, we consider a common used data compression

scheme called run-length encoding (abbreviated RLE) on the input sequences of the

LCS problem and one of the CLCS problems. To solve the LCS problem of two

RLE sequences, we investigate the properties of the partition, induced by the runs

of two sequences, in the dynamic programming matrix for the LCS problem and

exploit the sequences for computing the length of an LCS by utilizing the simplicity

of some positions. Finally, we devise two algorithms for the problem of finding a

longest sequence that is a common subsequence of two RLE sequences and includes

a constrained RLE pattern as a subsequence.

Keywords: Dynamic Programming; Longest Common Subsequence; Constrained

Longest Common Subsequence; Run-Length Encoding

Contents

Acknowledgement i

Abstract in Chinese iii

Abstract v

List of Figures xii

List of Tables xiii

1 Introduction 1

2 Longest Common Subsequences (LCSs) 9

2.1 Dynamic Programming . 11

2.2 Space-Saving Strategy . 13

2.3 Hunt-Szymanski Strategy . 16

2.4 Previous Results . 19

3 Constrained LCSs 23

vii

viii CONTENTS

3.1 Related Works on Problem SEQ-IC-LCS 25

3.2 Problem STR-IC-LCS . 28

3.3 Problem SEQ-EC-LCS . 33

3.4 Problem STR-EC-LCS . 35

3.5 Problem CLCS with an Arbitrary Number of Constrained Patterns . 37

3.5.1 Hardness . 37

3.5.2 Exact Algorithms . 48

3.6 Discussion . 50

4 Hybrid Constrained LCSs 53

4.1 Dynamic Programming . 54

4.2 Bounded Heaps . 59

4.3 Speeding up the Computation . 60

4.4 Discussion . 66

5 LCSs of Run-Length Encoded Sequences 67

5.1 Related Works . 69

5.2 Sliding-Window Maxima with a Dynamic Window Size 74

5.3 An Efficient Algorithm . 75

5.4 Discussion . 80

6 Constrained LCSs of Run-Length Encoded Sequences 81

6.1 A Simple Algorithm . 82

CONTENTS ix

6.2 A Faster Algorithm . 85

6.3 Discussion . 90

7 Concluding Remarks 93

7.1 Summary and Contributions . 93

7.2 Further Work . 98

Bibliography 101

x CONTENTS

List of Figures

2.1 An LCS between two sequences. (a) Three neighboring positions of

position (i, j). (b) A path in a directed acyclic graph over the LCS

metric. 13

2.2 Computing the length of an LCS in linear time. 14

2.3 Deriving an LCS in linear space. (a) The partition at the first iteration.

(b) The partitions at the second iteration. 15

2.4 Matches between two sequences in the DP matrix. 17

2.5 The contours of the DP matrix with dominant matches between two

sequences. 21

3.1 A problem decomposition of Problem STR-IC-LCS. 29

3.2 Deriving solutions to the two subproblems of Problem STR-IC-LCS. 32

4.1 Obtaining Lk,h[i− 1, j − 1]. 62

5.1 Match blocks (gray blocks) and mismatch blocks (white blocks). . . . 71

5.2 Converting an arbitrary subpath into a forced path. 72

xi

xii LIST OF FIGURES

5.3 Ann et al.’s approach [11]. 72

6.1 A cuboid corresponding a triple run. (a) The bottom border-page. (b)

The right border-page. 83

6.2 Solving the RLE-CLCS problem. 87

List of Tables

2.1 Previous results for the LCS problem 20

3.1 The CLCS problems . 25

5.1 Some results related to the RLE-LCS problem 70

7.1 Previous results and ours for the CLCS problem 94

7.2 Our results for the HC-LCS problem 95

7.3 Previous results and ours for the RLE-LCS and RLE-CLCS problems 97

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

The mystery of the life attracts the human begin for a long time. Since scientists

found the encoded sequences of the nucleotides in the chromosomes of each cell, the

domain of molecular biology has arisen. The four nucleotides (i.e., A, T or U, C, and G)

are assembled together into DNA (deoxyribonucleic acid) or RNA (ribonucleic acid).

Extracting the information of nucleic acid sequences can help scientists to compre-

hend the functional expressions of segments and the evolutionary relationships among

species, but it is difficult to identify the sequences by human eyes. This obstacle can

be overcome by modeling many biological issues into the classical problems in com-

puter science such as sequence comparison.

Sequence alignment is a well-known sequence comparison problem, which is to

align two sequences and the similarity between the sequences is measured by its

score. Needleman and Wunsch [62] proposed a dynamic programming algorithm

1

that performs a global alignment of two protein sequences. The multiple sequence

alignment problem is to align simultaneously an arbitrary number of sequences and

has been shown to be NP-complete [48, 78], i.e., there is no polynomial-time algorithm

to find the mathematically optimal solution unless NP = P. In some applications,

however, the suboptimal solution might be acceptable to develop efficient tools for

reducing the time or space complexity. To reduce the computational cost, most

multiple sequence alignment algorithms use heuristic approaches rather than global

optimization.

In contrast to the global alignment problem, several methods were developed for

the local alignment problem, such as the Smith-Waterman algorithm [69], which is

to determine similar regions between two genetic sequences. Because the local align-

ment problem has wide implementations in sequence database searching, the prob-

lem was intensively investigated for the past two decades to develop efficient tools.

Pearson and Lipman [63] proposed a heuristic approach to improving the Smith-

Waterman algorithm and developed a tool named FASTA, which first identifies short

matched regions (also called seeds), and then performs the Smith-Waterman algo-

rithm on the seeds. The FASTA method reduces the time complexity of the Smith-

Waterman algorithm, and meanwhile obtains good results in most cases. Altschul

et al. [2] developed a popular tool named the basic local alignment search tool (ab-

breviated BLAST) whose running time is faster than the Smith-Waterman algorithm

and FASTA method. With the seeds, the BLAST method extends seeds without gap

2

existence by finding the high-scoring pairs of the aligned seeds. Another tool named

gapped-BLAST [3] uses a new criterion for extending seeds and generates a gapped

alignment for seed pairs with high scores. Because the gapped-BLAST method is

a bit faster and more flexible in the practical application than BLAST, the tool is

widely used up to now.

The longest common subsequence (abbreviated LCS) problem is another sequence

comparison problem, which is a simple form of sequence alignment [25, 37]. The

LCS problem measures the similarity of the sequences by only counting the identical

aligned pairs. The problem was first proposed by Wagner and Fischer [77]. Since

then, it has been intensively studied in the theoretical computer science and much

ink has been spent on it [1, 4, 13, 18, 21, 22, 31, 36, 37, 42, 45, 51, 57, 60, 61, 66, 77].

In fact, the problem of an arbitrary number of sequences, even on a binary alphabet,

has been shown to be NP-complete [55]. The problem has applications not only in

molecular biology, but also in pattern comparison, and screen redisplay. On the side

of molecular biology, several studies devoted to saving computational space [41, 67]

due to the long lengths of DNA sequences. The LCS problem can be reduced to

two well-known problems. One is to obtain a maximum-weight directed path on

a two-dimensional grid that is converted from its dynamic programming table. The

other is the longest increasing subsequence problem [68], which is to look for a numeric

subsequence of a sequence that is strictly increasing. In addition, a similar problem to

the LCS problem, named longest common substring problem, is defined for computing

3

a maximum-length substring that appears in both two sequences. This problem can

be solved in linear time by using a well-known data structure - generalized suffix

tree [37].

Arising from several applications in molecular biology and pattern comparison,

some constraints on sequence comparison are considered. From a sequence function

point of view, for example, the Human and bovine pancreatic ribonuclease (RNase)

sequences contain a conserved catalytic triad, His-12(H), Lys-41(K), His-119(H),

which is essential for RNA degradation. For aligning each residue of the conserved

catalytic triad of such RNase sequences in the same column, Tang et al. [70] addressed

the constrained multiple sequence alignment problem of finding an alignment such

that each character of the additional constrained pattern should be aligned with the

same character of every sequence. Given two sequences of length at most n and a

constrained pattern of length d, Tang et al. [70] presented an algorithm with both

time and space requiring O(dn4). Chin et al. [28] further investigated the problem

and improved the time and space requirements both into O(dn2). Later, many studies

devote to this issue [30, 38, 39, 40, 54, 64, 65, 73, 74].

Relying on some applications, it is advantageous to use a particular representation

for text documents to be compared or transferred. For speeding up the comparing

and transferring time of documents, two categories of data compression, i.e., loss-

less compression (also called reversal compression) and lossy compression (also called

irreversal compression), have been developed. Lossless compression schemes, such

4

as run-length encoding, Huffman coding, and arithmetic coding, exploit statistical

redundancy in such a way as to represent the sender’s data more concisely without

error. Lossy compression schemes, such as fractal compression and vector quantiza-

tion, scrap some of less-relevant information if some loss of precision is acceptable.

Lossless compression schemes are generally used for compressing text files, executable

programs, medical images because of their precise and concise properties. On the

other hand, because lossy compression schemes are faster than the other ones, the

coding schemes are commonly used for compressing graphic and musical documents.

Run-length encoding (RLE) is a simple coding scheme of lossless compression

schemes, which compresses a sequence into several runs so that each run is a maximal-

length substring with an identical character in the sequence. A sequence in RLE

format is represented by an ordered sequence of the characters corresponding to the

runs with their lengths. For example, if sequence A = aaaabbcccccaaaaaaaa, the

RLE representation of A is a4b2c5a8. A well-known and relatively efficient application

of RLE is the fax transmission because most fax documents are composed of a great

portion of white space with a small portion of black space [20]. Many studies have

devoted to the sequence comparison with RLE sequences, such as pattern matching [5,

9, 14, 27, 56], edit distance [15, 24], sequence alignment [44, 50, 52], LCS [11, 34, 53,

58].

In this dissertation, we study the following constrained longest common subse-

quence problems.

5

• Constrained LCSs (abbreviated CLCS). The input of the CLCS problem is

two sequences X, Y and a constrained pattern P over a finite alphabet. Four

variants of the CLCS problem are defined as follows.

– The SEQ-IC-LCS problem [17, 26, 29, 46, 72]: find a longest sequence that

is a common subsequence of X and Y and includes P as a subsequence.

– The STR-IC-LCS problem: find a longest sequence that is a common

subsequence of X and Y and includes P as a substring.

– The SEQ-EC-LCS problem: find a longest sequence that is a common

subsequence of X and Y and excludes P as a subsequence.

– The STR-EC-LCS problem: find a longest sequence that is a common

subsequence of X and Y and excludes P as a substring.

The former two problems have applications on molecular biology and pattern

comparison to take a common specific segment into consideration for similarity

measurement between two sequences. The last two problems consider the the-

oretical opposite constraints to the former two problems. We also investigate

the CLCS problems with an arbitrary number of constrained patterns.

• Hybrid Constrained LCSs (abbreviated HC-LCS). The problem considers

the constraints of the SEQ-IC-LCS and SEQ-EC-LCS problems. Given two

sequences X, Y and two constrained patterns P , Q over a finite alphabet, the

HC-LCS problem is to find a longest sequence that is a common subsequence

6

of X and Y and not merely includes P as a subsequence but excludes Q as

a subsequence. We give the properties of the HC-LCS problem and solve it

by using the dynamic programming technique. To speed up the computation

time, we further employ a data structure based upon van Emde Boas trees and

restrict the computation on the positions where the corresponding characters

of each pair are identical.

• LCSs of Run-Length Encoded Sequences (abbreviated RLE-LCS). We

first exploit the properties of RLE sequences and introduce an approach pro-

posed by Ann et al. [11]. We further adapt Hunt-Szymanski strategy for im-

proving Ann et al. approach for speeding up the computation to the pairs of

runs whose corresponding characters are identical.

• Constrained LCSs of Run-Length Encoded Sequences (abbreviated

RLE-CLCS). We consider the SEQ-IC-LCS problem of RLE sequences over

a finite alphabet. We first present a simple algorithm, and then devise a fast

algorithm for speeding up the computation to the runs where the corresponding

characters of two sequences are identical by adapting the framework of our

approach to the RLE-LCS problem.

7

8

Chapter 2

Longest Common Subsequences

(LCSs)

In this chapter we first give some basic definitions. We then introduce the longest

common subsequence problem and address three well-known approaches to the prob-

lem as our preliminary knowledge in the forthcoming chapters. In addition, some

previous results are briefly mentioned.

Definition 2.1. An alphabet Σ is a finite set of symbols. An element of Σ is called

character. A sequence over Σ is a string of characters of Σ.

Let a1a2 . . . am denote a sequence A of length m over Σ. Character σ ∈ Σ is at

position i in a sequence A if σ = ai. Given sequences A, B and a character σ ∈ Σ,

sequences AB and Aσ denote the sequences that are constructed by appending B and

σ to A, respectively. In this dissertation, we use capital letters to denote sequences

9

and lowercase letters to denote characters.

Definition 2.2. A subsequence of a sequence A is obtained by deleting zero or more

characters from A (not necessarily contiguous). A substring of a sequence A is a

subsequence of successive characters within A.

Definition 2.3. A prefix of a sequence A is a substring that begins at the first position

in A. A suffix of a sequence A is a substring that ends at the last position in A.

Given a sequence A = a1a2 . . . an, we denote A[i..j] as the substring aiai+1 . . . aj

of A if 1 ≤ i ≤ j ≤ m, and an empty string otherwise. For example, if A = believe,

then A[3..5] = lie. A substring A[1..i] for any i ∈ {1, 2, . . . , n} is a prefix of A, and

a substring A[j..n] for any j ∈ {1, 2, . . . , n} is a suffix of A.

Definition 2.4. A common subsequence (abbreviated CS) of two sequences A and

B is a subsequence that appears both in A and B. A longest common subsequence

(abbreviated LCS) of A and B is a maximum-length CS of A and B.

Wagner and Fischer [77] proposed the LCS problem in 1974, which is formally

defined as follows.

Problem 2.1. (LCS) [77] Given two sequences X and Y of lengths m and n, re-

spectively, the LCS problem is to find a maximum-length subsequences that appears

in both X and Y .

The LCS problem has been intensively studied for more than three decades [1, 13,

18, 21, 31, 37, 41, 42, 45, 57, 66, 47]. In general, there may exist more than one LCS

10

between two sequences. For example, if X = ACTGCCTAGGC and Y = CGATCTGGAC,

“ATCTGGC” is an LCS of X andY , and “CTCTGGC” and “CGCTGGC” are two another

LCSs of X and Y .

A naive approach to the LCS problem is to enumerate all subsequences of X and

then check every subsequence if it is a subsequence of Y . Nevertheless, the approach

requires exponential running time because X contains 2m subsequences. It causes the

difficulty in the implementation for long sequences.

Dynamic programming (abbreviated DP) technique is a wildly used approach to

solving the LCS problem by the optimality principles of the problem. In the following

we introduce three well-known DP approaches to the LCS problem, which are the

traditional DP algorithm [31], space-saving strategy [41] using the divide-and-conquer

technique to solve the problem in linear space, and Hunt-Szymanski strategy [45]

disregarding the computation of the positions at which X and Y mismatch each

other.

2.1 Dynamic Programming

Lemma 2.1 decomposes the structure of an optimal solution based on the solutions

to its smaller subproblems.

Lemma 2.1. Let Zi,j denote the set of all LCSs of X[1..i] and Y [1..j]. If Z =

z1z2 . . . zl ∈ Zi,j, the following conditions hold:

11

(1) If xi = yj, then zl = xi = yj and Z[1..l − 1] ∈ Zi−1,j−1.

(2) If xi 6= yj, then zl 6= xi implies Z[1..l] ∈ Zi−1,j.

(3) If xi 6= yj, then zl 6= yj implies Z[1..l] ∈ Zi,j−1.

Let L[i, j] denote the length of any sequence belonging to Zi,j. The value L[i, j]

given to position (i, j) is determined by three neighboring positions, (i − 1, j − 1),

(i − 1, j), and (i, j − 1) (see Figure 2.1(a)), and by the characters xi and yj. By

the optimality principles of the LCS problem shown in Lemma 2.1, the recurrence

for computing L[i, j] with the initializations of L[0, 0] = L[i, 0] = L[0, j] = 0, for

i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, can be formulated as follows.

L[i, j] = max

L[i− 1, j − 1] + 1 if xi = yj,

max {L[i− 1, j],L[i, j − 1]} otherwise.

(2.1)

Suppose that Z is a sequence belonging to Zm,n and is initialized to be an empty

sequence. The length of Z is given by L[m,n], which is computed in O(mn) time

and space. While computing each entry L[i, j], we can build a (backtracking) link to

point out the position which L[i, j] results from. Sequence Z in reverse order can be

constructed by tracing back through the links from L[m,n] to L[0, 0] (see Figure 2.1(b)

as an example). The stage of backtracking takes O(m + n) steps. Consequently, the

following theorem is stated.

Theorem 2.1. The LCS problem can be solved in O(mn) time and space.

12

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

A

C

T

G

C

C

T

A

G

G

C

C G A T C T G G A C

(i, j)(i, j 1)

(i 1, j)(i 1, j 1)

(a) (b)

Figure 2.1: An LCS between two sequences. (a) Three neighboring positions of

position (i, j). (b) A path in a directed acyclic graph over the LCS metric.

2.2 Space-Saving Strategy

For long sequences such as human genomic sequences of about 3×109 base pairs, space

restriction is important to the implement of solving the LCS problem. Figure 2.2 il-

lustrates the two linear-space approaches to computing the length of an LCS. Because

computing an entry in each row of matrix L only needs the values in the preceding

and present rows, one approach is to reduce the space to twice the number of entries

in a row. On the other hand, Figure 2.1(a) shows that the value of any position (i, j)

in L is only caused from positions (i−1, j), (i−1, j−1), or (i, j−1); accordingly, the

space requirement can be further reduced to the number of entries in a row plus one.

Constructing an LCS requires the information of backtracking links; unfortunately,

13

Figure 2.2: Computing the length of an LCS in linear time.

such information can not be achieved in linear space.

In 1975 Hirschberg [41] proposed a divide-and-conquer approach, named Algo-

rithm LinearLCS, that performs an LCS between two sequences in quadratic time

and linear space. Let LCS(X, Y) denote the length of an LCS of X and Y . Hirschberg

derived the following lemma.

Lemma 2.2. For any i ∈ {0, 1, . . . , m}, LCS(X[1..m], Y [2..n]) =

max0≤j≤n {LCS(X[1, i], Y [1..j]) + LCS(X[i + 1..m], Y [j + 1..n])}.

The space-saving strategy adopts Lemma 2.2 to recursively divide a given problem

into two smaller problems until it is a trivial problem. Figure 2.3 illustrates the idea

of the strategy. The middle row of the given problem is chosen as a partition line. In

the beginning of the LCS problem, the bm
2
c-th row is chosen (see Figure 2.3(a)). The

lengths of an LCS between X[1..bm
2
c] and Y [1..j] and an LCS between X[bm

2
c+1..m]

14

0

2

m

m

0 n
2

m
j

0

2

m

4

3m

4

m

m

0 n
4

m
j

(a) (b)

4

3m
j

middle vertex

middle vertex

middle vertex

Figure 2.3: Deriving an LCS in linear space. (a) The partition at the first iteration.

(b) The partitions at the second iteration.

and Y [j +1..n] for all j ∈ {0, 1, . . . , n} are separately calculated by the former linear-

space approaches. The j-coordinate of the middle vertex, denoted by jbm
2
c, is defined

by the minimum j such that LCS(X[1, i], Y [1..j]) + LCS(X[i + 1..m], Y [j + 1..n])

is maximum. With the coordinates of the middle vertex (bm
2
c, jbm

2
c), the problem

can be divided into two subproblems, which are the LCS problems of X[1..bm
2
c] and

Y [1..jbm
2
c] and of X[bm

2
c + 1..m] and Y [jbm

2
c + 1..n]. Figure 2.3(b) illustrates the

Algorithm LinearLCS(m,n, X[1..m], Y [1..n])

1: if m ≤ 1 then

2: output an LCS of X and Y ;

3: else

4: i ← bm
2 c;

5: Compute LCS(X[1, i], Y [1..j]) and LCS(X[i + 1..m], Y [j + 1..n] for all j ∈ {0, 1, . . . , n};
6: Find min j subject to max0≤j≤n {LCS(X[1, i], Y [1..j]) + LCS(X[i + 1..m], Y [j + 1..n])};
7: LinearLCS(i, j,X[1..i], Y [1..j]);

8: LinearLCS(m− i, n− j,X[i + 1..m], Y [j + 1..n]);

15

partitions of the two subproblems. Algorithm LinearLCS formally describes the

recursive stages of the space-saving strategy.

A middle vertex in a given problem can be found in the time proportional to the

number of entries in the corresponding DP matrix. Proceeding in this way, all middle

vertices can be found in mn + mn
2

+ mn
4

+ . . . ≤ 2mn time. In addition, the ap-

proach requires no more than 2n space, which can be reused during the computation.

Therefore, the following theorem is stated.

Theorem 2.2. Algorithm LinearLCS solves the LCS problem in O(mn) time and

O(n) space.

2.3 Hunt-Szymanski Strategy

Figure 2.4 gives an example of the DP matrix L for the LCS problem over sequences

X = “ACTGCCTAGGC” and Y = “CGATCTGGAC”, which is computed by Equation 2.1.

The circled positions indicates the occurrences of matches between X and Y . During

the computation of L, the values might increase only when a match between X and Y

is encountered. For speeding up the computation, Hunt and Szymanski [45] provided

an approach to merely calculating the values of the positions where X and Y match

each other.

Let T be a two-dimensional array of threshhold values where T [i, l] denotes the

smallest j such that there exists a CS of length l between X[i..i] and Y [1..j]. For

example, in Figure 2.4 L[6, 4] = 2 and L[6, 5] = 3 yields T [6, 3] = 5. The monotonicity

16

1

1

1

1

1

1

1

1

1

1

0

0 0000000000

7665443320

6665433320

5555433320

5544433320

5444433220

5444332220

5444332220

4444322220

3333322110

2222221110

1111111100

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

A

C

T

G

C

C

T

A

G

G

C

C G A T C T G G A C

Figure 2.4: Matches between two sequences in the DP matrix.

of T is stated in the following lemma [45].

Lemma 2.3. If T [i, l], for some i ∈ {1, 2, . . . , m} and l > 0, are defined, T [i, l− 1] <

T [i, l] and T [i, l − 1] < T [1 + 1, l] ≤ T [i, l].

With the property shown in Lemma 2.3, the following recurrence formula can

compute T [i + 1, l] from T [1, l − 1] and T [i, l].

T [i + 1, l] = max

smallest j subject to X[i + 1] = Y [j]

and T [i, l − 1] ≤ j ≤ T [i, l],

T [i, l] if no such j exists.

(2.2)

To compute the array T efficiently, sequences X and Y are preprocessed for build-

ing a linked list for each index of X. The linked list for index i of X keeps the

17

corresponding indices j, in decreasing order, such that xi = yj. The stage of building

m linked lists takes O(m + n) over a finite alphabet.

With the positions of matches between X and Y , the approach proceeds to the

matches row by row. Let THRESH be a one-dimensional array where THRESH[l]

at the end of iteration i (i.e., the i-th linked list is processed) denotes the smallest

index j such that there exists a CS of length l between X[1..i] and Y [1..j]. The

initialization of THRESH is THRESH[0] = 0 and THRESH[l] = n + 1 for all l ∈

{1, 2, . . . , m}. At iteration i, for each j in the i-th linked list, the value l is queried to

satisfy THRESH[l− 1] < j ≤ THRESH[l] and THRESH[l] maintains the smaller

value between j and THRESH[l]. Specifically, l can be obtained in O(log log n)

time by employing a data structure named van Emde Boas tree [75, 76], which allows

the operations of inserting, deleting, and testing membership of elements in the set

{1, 2, . . . , n}. The data structure requires O(n log log n) time for initialization, and

each such operation can be performed in O(log log n) time. Therefore, the stage of

calculating the array THRESH takes totally O(r log log n) time, where r denotes

the total number of ordered pairs of positions at which X and Y match each other.

Finally, the largest l subject to THRESH[l] 6= n+1 is the length of an LCS between

X and Y . Thus, the following theorem is stated.

Theorem 2.3. The LCS problem over a finite alphabet can be solved in O((r + n)×

log log n) time and in O(r + n) space.

18

2.4 Previous Results

In 1974, Wagner and Fischer [77] proposed the problem of LCS. Since then, the

problem has been studied intensively for decades. The results for the problem are

summarized in Table 2.1. Apart from the above mentioned approaches, in 1977

Hirschberg [42] depicted an efficient representation of the DP matrix L, which use

the contours of L (see Figure 2.5 as an example) to specify the entire matrix. The

contours are described by dominant matches. By finding the dominant matches in

O(ln) time with the time O(n log s) for processing the longer input sequence Y ,

Hirschberg solved the problem in O(lm + n log s) time, where l denotes the length of

an LCS between X and Y , and s denotes the number of distinct characters in Y .

In 1980, Masek and Paterson [57] solve the problem in O(n×max {1, m
log n

}) time by

using a “Four Russians” approach [16]. Two years ago, Nakatsu et al. [61] presented

a O(n× (m− l))-time algorithm, which would be faster than any previous one if l is

close to m (i.e., X and Y are similar).

Later, Hsu and Du [43] gave a O(lm × log n
l

+ lm)-time algorithm by employing

efficient merging methods in the computations. Myers [59] demonstrated that the

LCS problem is equivalent to the problem of finding a shortest/longest path in the

corresponding edit graph, and proposed a O(nE)-time algorithm for the latter prob-

lem, where E denotes the edit distance between X and Y . Apostolico and Guerra [13]

improved the strategy proposed by Hunt and Szymanski. They introduced an aux-

iliary data structure named Characteristic Trees to process the dominant matches

19

Table 2.1: Previous results for the LCS problem

Year Author(s) Time Complexity Space Complexity

1974 Wagner and Fischer [77] O(mn) O(mn)

1975 Hirschberg [41] O(mn) O(n)

1977 Hunt and Szymanski [45]† O((r + n) log log n) O(r + n)

1977 Hirschberg [42] O(ln + n log s) O(ln)

1980 Masek and Paterson [57] O(n×max {1, m
log n

}) O(n2

log n
)

1982 Nakatsu et al. [61]‡ O(n× (m− l)) O(m2)

1984 Hsu and Du [43] O(lm× log n
l
+ lm) O(lm)

1986 Myers [59] O(E × (m + n)) O(E × (m + n))

1987 Apostolico and Guerra [13] O(m log n + µ log 2mn
µ

) O(µ + n)

2007 Iliopoulos and Rahman [47]† O(r log log n + n) O(r + n)

† Over a finite alphabet

‡ Similar input sequences

20

1

1

1

1

1

1

1

1

1

1

0

0 0000000000

7665443320

6665433320

5555433320

5544433320

5444433220

5444332220

5444332220

4444322220

3333322110

2222221110

1111111100

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

A

C

T

G

C

C

T

A

G

G

C

C G A T C T G G A C

Figure 2.5: The contours of the DP matrix with dominant matches between two

sequences.

between X and Y , and the improved algorithm requires O(m log n + µ log 2mn
µ

) time

with O(n log s) preprocessing time, where µ denotes the number of dominant matches

between X and Y , s denotes the number of distinct characters in Y

Recently, Iliopoulos and Rahman [47] proposed an O(r log log n + n)-time algo-

rithm by employing the van Emde Boas tree [75, 76], where r denotes the number of

matches between X and Y . It should be noted, however, that the preprocessing time

of the van Emde Boas tree was not evaluated when analyzing the time complexity.

21

22

Chapter 3

Constrained LCSs

Functional and structural conservations of nucleic sequences play essential roles in the

evolutionary molecular biology. With considerations of conserved segments, similarity

analysis of nucleic sequences can provide some evidences for deduce the evolutionary

relationships between species. On the other side, for two data (such as images and

signals) including an essential message, similarity analysis of such data can provide

some practical information for the applications if the continuity of the message is

under consideration. For achieving these applications, the LCS problem with an

inclusive constraint, named the inclusion-constrained longest common subsequence

(abbreviated IC-LCS) problem, is considered. We address two IC-LCS problems as

follows.

Problem 3.1. (SEQ-IC-LCS) [72] Given two sequences X, Y and a constrained

pattern P of lengths m, n, and d, respectively, the SEQ-IC-LCS problem is to find a

23

longest sequence that is a CS of X and Y and includes P as a subsequence.

Problem 3.2. (STR-IC-LCS) Given two sequences X, Y and a constrained pat-

tern P of lengths m, n, and d, respectively, the STR-IC-LCS problem is to find a

longest sequence that is a CS of X and Y and includes P as a substring.

For example, if X = AATGCCTAGGC, Y = CGATCTGGAC, and P = GTAC, an LCS of X

and Y is “ATCTGGC”, and the outputs of the SEQ-IC-LCS and STR-IC-LCS problems

are “GCTAC” and “GTAC”, respectively.

Due to theoretical interests in the similarity measurement, we extend the definition

of the IC-LCS problem to the LCS problem with an exclusive constraint, named the

exclusion-constrained longest common subsequence (abbreviated EC-LCS) problem.

We address two EC-LCS problems as follows.

Problem 3.3. (SEQ-EC-LCS) Given two sequences X, Y and a constrained pat-

tern P of lengths m, n, and d, respectively, the SEQ-EC-LCS problem is to find a

longest sequence that is a CS of X and Y and excludes P as a subsequence.

Problem 3.4. (STR-EC-LCS) Given two sequences X, Y and a constrained pat-

tern P of lengths m, n, and d, respectively, the STR-EC-LCS problem is to find a

longest sequence that is a CS of X and Y and excludes P as a substring.

For example, suppose that X = AATGCCTAGGC and Y = CGATCTGGAC. If P = TGC,

an output of the SEQ-EC-LCS problem is “ATCTGG”. If P = “TG”, an output of the

STR-EC-LCS problem is “ATCGGC”.

24

Table 3.1: The CLCS problems

Problem Input Output

SEQ-IC-LCS [72]

X,Y, and P

A longest sequence includes P as a subsequence

STR-IC-LCS that is a common includes P as a substring

SEQ-EC-LCS subsequence of X excludes P as a subsequence

STR-EC-LCS and Y and excludes P as a substring

The four variants of the LCS problem are summarized in Table 3.1. Throughout

this chapter, the formats of the sequences and single constrained pattern are defined

by X = x1x2 . . . xm, Y = y1y2 . . . yn, and P = p1p2 . . . pd. The sections that follow use

DP approaches to solve the four optimization problems. Section 3.1 introduces the

previous results for the SEQ-IC-LCS problem. In Sections 3.2 to 3.4, we focus on the

STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems, respectively. Finally, we

consider the four problems in the case of an arbitrary number of constrained patterns

in Section 3.5.

3.1 Related Works on Problem SEQ-IC-LCS

The SEQ-IC-LCS problem was first addressed and solved in O(m2n2d) time based on

the DP technique by Tsai [72]. Later, Chin et al. [29] improved the time complexity of

the problem from O(m2n2d) to O(mnd), and showed that this problem is equivalent

to a special case of the constrained multiple sequence alignment problem [28, 70].

25

Meanwhile, Arslan and Eǧecioǧlu [17] also presented an improved algorithms with

O(mnd) time, and extend the definition of the problem such that the resulting LCS

contains a subsequence whose edit distance from the constrained pattern is less than

a given positive integer parameter.

Without loss of generality, assume that m ≤ n. Recently, Iliopoulos and Rah-

man [46] proposed an algorithm by adapting Hunt-Szymanski strategy and employ-

ing a data structure named bounded heap, which is introduced in Section 4.2. The

executing of the algorithm requires O(dr × log log n + n) time, where r is the total

number of ordered pairs of positions at which X and Y match each other. It should be

noted, however, that the preprocessing time of the bounded heap was not evaluated

when the time complexity was analyzed.

Here we introduce an O(mnd)-time algorithm [29] for the problem as follows.

Lemma 3.1 decomposes the structure of an optimal solution based on the solutions

to its smaller subproblems.

Lemma 3.1. Let Zi,j,k denote the set of all longest sequences which are CSs of X[1..i]

and Y [1..j] and include P [1..k] as a subsequence. If Z = z1z2 . . . zl ∈ Zi,j,k, the

following conditions hold:

(1) If xi = yj = pk when k > 0, then zl = xi = yj = pk and Z[1..l−1] ∈ Zi−1,j−1,k−1.

(3) If xi = yj, and (xi 6= pk or k = 0), then zl = xi = yj and Z[1..l−1] ∈ Zi−1,j−1,k.

(4) If xi 6= yj, then zl 6= xi implies Z[1..l] ∈ Zi−1,j,k.

(5) If xi 6= yj, then zl 6= yj implies Z[1..l] ∈ Zi,j−1,k.

26

Let L[i, j, k] denote the length of a sequence that belongs to Zi,j,k. By the op-

timality principles of the SEQ-IC-LCS problem shown in Lemma 3.1, the following

recursive formula can be derived, where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, and

k ∈ {0, 1, . . . , d}.

L[i, j, k] =

1 + L[i− 1, j − 1, k − 1]) if k > 0 and xi = yj = pk,

1 + L[i− 1, j − 1, k] if xi = yj and (xi 6= pk or k = 0),

max {L[i− 1, j, k],

L[i, j − 1, k]} if xi 6= yj.

(3.1)

The boundary conditions of this recurrence are L[i, 0, 0] = L[0, j, 0] = 0 and L[0, j, k] =

L[i, 0, k] = −∞ for any i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, and k ∈ {1, 2, . . . , d}.

Based on Equation (3.1), each entry in matrix L can be computed.

Suppose that Z is a sequence belonging to Zm,n,d and is initially an empty se-

quence. The length of Z is given by L[m, n, d], which requires O(mnd) computation

time. In addition, sequence Z can be constructed by backtracking through the com-

putation path from L[m,n, d] to L[0, 0, 0], and recovering the computation path of Z

takes O(m + n + d) steps. Consequently, the following theorem is stated.

Theorem 3.1. The SEQ-IC-LCS problem can be solved in O(mnd) time and space.

27

3.2 Problem STR-IC-LCS

The STR-IC-LCS problem is to find a longest sequence that is a CS of two sequences

X and Y and includes a constrained pattern P as a substring. Property 3.1 shows

the characterization of the structure of a solution to the STR-IC-LCS problem.

Property 3.1. If Z[1..l] is a longest sequence which is a CS of X[1..m] and Y [1..n]

and includes P [1..d] as the substring Z[l′−d+1..l′] for some l′ ∈ {d, d+1, . . . , l}, then

Z[1..l] is a concatenation of the following two substrings for some i ∈ {0, 1, . . . , m}

and j ∈ {0, 1, . . . , n}:

1. The prefix Z[1..l′] (i.e., Z1): Z[1..l′] is a longest sequence which is a CS of

X[1..i] and Y [1..j] and includes P [1..d] as the suffix Z[l′ − d + 1..l′], and

2. The suffix Z[l′ + 1..l] (i.e., Z2): Z[l′ + 1..l] is an LCS of X[i + 1..m] and

Y [j + 1..n].

Figure 3.1 illustrates the idea of the problem decomposition shown in Property 3.1.

In view of the idea, we solve the problems of computing a longest sequence which is a

CS of X[1..i] and Y [1..j] and includes P [1..d] as the suffix Z[l′− d + 1..l′], and of cal-

culating an LCS of X[i..m] and Y [j..n], for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.

The solutions to the two subproblems are subsequently merged to determine a longest

concatenation. The former subproblem can be computed in quadratic time by employ-

ing the algorithm shown in Section 2.1. For solving the latter subproblem, Lemma 3.2

decomposes the structure of an optimal solution based on the solutions to its smaller

28

m…i+1i…1X

m…j+1j…1Y

l…l d+1…1 l…l +1

l…P[1..d]…1Z

Z1 Z2

Figure 3.1: A problem decomposition of Problem STR-IC-LCS.

subproblems.

Lemma 3.2. Let Zi,j,k denote the set of all longest sequences which are CSs of X[1..i]

and Y [1..j] and include P [1..k] as a suffix. If Z = z1z2 . . . zl ∈ Zi,j,k, the following

conditions hold:

(1) If xi = yj = pk when k > 0, then zl = xi = yj = pk and Z[1..l−1] ∈ Zi−1,j−1,k−1.

(2) If xi = yj and xi 6= pk when k > 0, then zl 6= xi and Z[1..l] ∈ Zi−1,j−1,k.

(3) If xi = yj when k = 0, then zl = xi = yj and Z[1..l − 1] ∈ Zi−1,j−1,k.

(4) If xi 6= yj, then zl 6= xi implies Z[1..l] ∈ Zi−1,j,k.

(5) If xi 6= yj, then zl 6= yj implies Z[1..l] ∈ Zi,j−1,k.

Proof. We prove this lemma case by case. (1) Since P [1..k] is a suffix of Z[1..l], we

have zl = pk. If zl 6= xi, we could append xi = yj = pk to Z[1..l − 1] obtain a CS of

length l, and P [1..k] is also a suffix of the resulting sequence. Thus, Z[1..l−1] is a CS

29

of X[1..i−1] and Y [1..j−1] such that P [1..k−1] is the suffix Z[l−k+1..l−1]. Assume

by contradiction that there exists a CS Z ′[1..l] of X[1..i−1] and Y [1..j−1] such that

P [1..k − 1] is the suffix Z ′[l − k + 2..l]. We could append xi = yj = pk to Z ′[1..l] for

obtaining a CS of X[1..i] and Y [1..j] of length greater than l such that P [1..k] is the

suffix Z ′[l − k + 2..l + 1], which contradicts the hypothesis of Z[1..l] ∈ Zi,j,k.

(2) If zl = xi, then zl 6= pk and P [1..k] is not a suffix of Z[1..l]. Therefore, we can

conclude that zl 6= xi and Z[1..l] ∈ Zi−1,j−1,k. Assume by contradiction that there

exists a CS Z ′[1..l + 1] of X[1..i − 1] and Y [1..j − 1] such that P [1..k] is a suffix of

Z ′[1..l + 1]. Obviously, Z ′[1..l + 1] is also a CS of X[1..i] and Y [1..j] of length greater

than l such that P [1..k] is a suffix. This contradicts the hypothesis of Z[1..l] ∈ Zi,j,k.

(3) This case is a special case of the LCS problem for xi = yj. Thus, it is obvious

that zl = xi = yj and Z[1..l − 1] ∈ Zi−1,j−1,k.

(4) Because zl 6= xi, Z[1..l] is a CS of X[1..i − 1] and Y [1..j] such that P [1..k]

is the suffix Z[l − k + 1..l]. Similar to proof of Case (2), we have Z[1..l] ∈ Zi−1,j,k.

Moreover, the proof of Case (5) is similar to the proof of this case.

Let L[i, j, k] denote the length of a sequence that belongs to Zi,j,k. By the op-

timality principles of the STR-IC-LCS problem shown in Lemma 3.2, we have the

following recurrence, where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, and k ∈ {0, 1, . . . , d}.

30

L[i, j, k] =

1 + L[i− 1, j − 1, k − 1] if k > 0 and xi = yj = pk,

L[i− 1, j − 1, k] if k > 0, xi = yj, and xi 6= pk,

1 + L[i− 1, j − 1, k] if k = 0 and xi = yj,

max {L[i− 1, j, k],

L[i, j − 1, k]} if xi 6= yj.

(3.2)

The boundary conditions of this recursive formula are L[i, 0, 0] = L[0, j, 0] = 0 and

L[0, j, k] = L[i, 0, k] = −∞ for any i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, and k ∈

{1, 2, . . . , d}. Based on Equation (3.2), each entry in matrix L can be computed, and

the computation time requires O(mnd).

Let S[i, j] denote the length of an LCS of X[i..m] and Y [j..n] for i ∈ {1, 2, . . . , m}

and j ∈ {1, 2, . . . , n}. If i = m + 1 or j = n + 1, we set S[i, j] = 0. All entries

in matrix S can be computed by employing an O(mn)-time algorithm for the LCS

problem.

Suppose that Z is a longest sequence which is a CS of X and Y and includes P as

a substring, and is initially an empty sequence. We define a two-dimensional array W

by W [i, j] = L[i, j, d] + S[i + 1, j + 1] for any i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}.

According to Property 3.1, the length of Z is given by the maximum value of W ,

which can be computed in O(mn) time. Suppose that the maximum value in W is

supplied from entry W [i∗, j∗] for some i∗ ∈ {1, 2, . . . , m} and j∗ ∈ {1, 2, . . . , n}. Let

Z1 denote a sequence that belongs to Zi∗,j∗,d and Z2 denote an LCS of X[i∗ + 1..m]

31

S

i

j
(i*, j*)

W

i

j

Maximum value

at (i*, j*)

Z
1

Z
2

L

i

j

k

(i*, j*, d)

Figure 3.2: Deriving solutions to the two subproblems of Problem STR-IC-LCS.

and Y [j∗ + 1..n]. The idea of constructing Z1 and Z2 is illustrated in Figure 3.2. We

construct Z1 and Z2 by backtracking through the computation paths from L[i∗, j∗, d]

to L[0, 0, 0] and from S[i∗ + 1, j∗ + 1] to S[m + 1, n + 1], respectively. Finally, we

obtain Z by concatenating Z1 and Z2. Recovering the computation paths of Z1 and

Z2 take O(m + n + d) and O(m + n) steps, respectively. Consequently, the following

theorem is stated.

Theorem 3.2. The STR-IC-LCS problem can be solved in O(mnd) time and space.

32

3.3 Problem SEQ-EC-LCS

The SEQ-EC-LCS problem is to find a longest sequence that is a CS of two sequences

X and Y and excludes a constrained pattern P as a subsequence. Lemma 3.3 de-

composes the structure of an optimal solution based on the solutions to its smaller

subproblems.

Lemma 3.3. Let Zi,j,k denote the set of all longest sequences which are CSs of X[1..i]

and Y [1..j] and exclude P [1..k] as a subsequence. If Z = z1z2 . . . zl ∈ Zi,j,k, the

following conditions hold:

(1) If xi = yj = pk when k = 1, then zl 6= xi and Z[1..l] ∈ Zi−1,j−1,k.

(2) If xi = yj = pk when k ≥ 2, then zl = xi = yj = pk implies Z[1..l − 1] ∈

Zi−1,j−1,k−1.

(3) If xi = yj = pk when k ≥ 2, then zl 6= xi implies Z[1..l] ∈ Zi−1,j−1,k.

(4) If xi = yj and (xi 6= pk when k > 0, or k = 0), then zl = xi = yj and

Z[1..l − 1] ∈ Zi−1,j−1,k.

(5) If xi 6= yj, then zl 6= xi implies Z[1..l] ∈ Zi−1,j,k.

(6) If xi 6= yj, then zl 6= yj implies Z[1..l] ∈ Zi,j−1,k.

Proof. The proof is similar to Lemma 3.2.

Let L[i, j, k] denote the length of a sequence that belongs to Zi,j,k. By the opti-

mality principles of the SEQ-EC-LCS problem shown in Lemma 3.3, we derive the

following recurrence, where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, and k ∈ {0, 1, . . . , d}.

33

L[i, j, k] =

L[i− 1, j − 1, k] if k = 1 and xi = yj = pk,

max {L[i− 1, j − 1, k],

1 + L[i− 1, j − 1, k − 1]} if k > 2 and xi = yj = pk,

1 + L[i− 1, j − 1, k] if xi = yj and

(k = 0, or k > 0 and xi 6= pk),

max {L[i− 1, j, k],

L[i, j − 1, k]} if xi 6= yj.

(3.3)

The boundary conditions of this recursive formula are L[i, 0, k] = L[0, j, k] = 0 for any

i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, and k ∈ {0, 1, . . . , d}. Based on Equation (3.3),

each entry in matrix L can be computed.

Suppose that Z is a sequence that belongs to Zm,n,d and is initially an empty

sequence. The length of Z is given by L[m,n, d], which requires O(mnd) computation

time. Sequence Z can be constructed by backtracking through the computation path

from L[m,n, d] to L[0, 0, 0]. Recovering the computation path of Z takes O(m+n+d)

steps. Consequently, the following theorem is stated.

Theorem 3.3. The SEQ-EC-LCS problem can be solved in O(mnd) time and space.

34

3.4 Problem STR-EC-LCS

The STR-EC-LCS problem is to find a longest sequence that is a CS of two sequences

X and Y and excludes a constrained pattern P as a substring. Lemma 3.4 decomposes

the structure of an optimal solution based on the solutions to its smaller subproblems.

Lemma 3.4. Let Zi,j,k denote the set of all longest sequences which are CSs of X[1..i]

and Y [1..j] and exclude P [1..k] as a substring. If Z = z1z2 . . . zl ∈ Zi,j,k, the following

conditions hold:

(1) If xi = yj = pk when k = 1, then zl 6= xi and Z[1..l] ∈ Zi−1,j−1,k.

(2) If xi = yj = pk when k ≥ 2, then zl = xi = yj = pk and zl−1 = pk−1 implies

Z[1..l − 1] ∈ Zi−1,j−1,k−1.

(3) If xi = yj = pk when k ≥ 2, then zl = xi = yj = pk and zl−1 6= pk−1 implies

Z[1..l − 1] ∈ Zi−1,j−1,k.

(4) If xi = yj = pk when k ≥ 2, then zl 6= xi implies Z[1..l] ∈ Zi−1,j−1,k.

(5) If xi = yj and (xi 6= pk when k > 0, or k = 0), then zl = xi = yj and

Z[1..l − 1] ∈ Zi−1,j−1,k.

(6) If xi 6= yj, then zl 6= xi implies Z[1..l] ∈ Zi−1,j,k.

(7) If xi 6= yj, then zl 6= yj implies Z[1..l] ∈ Zi,j−1,k.

Proof. The proof is similar to Lemma 3.3.

35

Let L[i, j, k] denote the length of a sequence that belongs to Zi,j,k. By the optimal-

ity principles of the STR-EC-LCS problem shown in Lemma 3.4, we derive the follow-

ing recursive formula, where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, and k ∈ {0, 1, . . . , d}.

L[i, j, k] =

L[i− 1, j − 1, k] if k = 1 and xi = yj = pk,

max {1 + L[i− 1, j − 1, k − 1]),

1 + L[i− 1, j − 1, k]} if k ≥ 2 and xi = yj = pk,

1 + L[i− 1, j − 1, k] if xi = yj and (k = 0, or

k > 0 and xi 6= pk),

max {L[i− 1, j, k],

L[i, j − 1, k]} if xi 6= yj.

(3.4)

The boundary conditions of this recursive formula are L[i, 0, k] = L[0, j, k] = 0 for any

i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, and k ∈ {0, 1, . . . , d}. Based on Equation (3.4),

each entry in matrix L can be computed.

Suppose that Z is a sequence that belongs to Zm,n,d and is initially an empty

sequence. The length of Z is given by L[m,n, d], which requires O(mnd) computa-

tion time. Moreover, sequence Z can be constructed by backtracking through the

computation path from L[m,n, d] to L[0, 0, 0]. Recovering the computation path of

Z takes O(m + n + d) steps. Consequently, the following theorem is stated.

Theorem 3.4. The STR-EC-LCS problem can be solved in O(mnd) time and space.

36

3.5 Problem CLCS with an Arbitrary Number of

Constrained Patterns

In this section, we consider the four variants of the CLCS problem in each of which

the input is two sequences X, Y and w constrained patterns Pi of lengths m, n, and

di for i ∈ {1, 2, . . . , w}, respectively. Gotthilf et al. [35] has showed that the SEQ-IC-

LCS problem with an arbitrary number of constrained patterns is NP-complete, and

it does not have a polynomial-time approximation scheme (PTAS). In the following,

we first introduce Gotthilf et al.’s proof for the SEQ-IC-LCS problem, and then

demonstrate that the STR-IC-LCS and SEQ-EC-LCS problems with an arbitrary

number of constrained patterns are also NP-complete. Furthermore, we give an exact

algorithm for each problem.

3.5.1 Hardness

Problem SEQ-IC-LCS

The decision version of the SEQ-IC-LCS problem is in NP. Given two sequences X,

Y and w constrained patterns Pi over Σ of lengths m, n, and di for i ∈ {1, 2, . . . , w},

the problem is to determine if there is a CS of X and Y with length at least ` such

that it includes each Pi as a subsequence. A proof certificate can simply be a ordered

sequence of the characters in Σ, and verification can be clearly done in polynomial

time by a deterministic Turing machine. It simply checks if the sequence is a CS X

37

and Y with length at least ` and if every Pi is a subsequence of the sequence.

A nondeterministic Turing machine can find such a sequence as follows. At each

character of X, the machine either selects or refuses the character into a sequence,

until all characters of X has be selected or refused. At the end it verifies in polynomial

time that the sequence it has taken is a CS of Y with length at least ` and every Pi

is a subsequence of the sequence.

Gotthilf et al. [35] showed the hardness of the problem by a reduction from the

3-SAT problem.

Lemma 3.5. The 3-SAT problem is reducible to SEQ-IC-LCS problem in polynomial

time.

Proof. Let F =
∧

i∈{1,2,...,l} Ci be a propositional formula with exact three literals in

CNF and vi, i ∈ {1, 2, . . . , b}, be the variables in F . An instance of the SEQ-IC-LCS

problem, containing two sequences X, Y and b + l − 1 constrained patterns P1, P2,

. . ., Pb+l−1, is constructed from F as follows.

The alphabet of the sequences in the SEQ-IC-LCS problem is the union of the

set of clauses {Ci : 1 ≤ i ≤ l} and a set of separators {si : 1 ≤ i ≤ b − 1} for the

clauses. For each variable vi, a substring Xi is constructed by orderly concatenating

all the clauses satisfied with vi = true with all the clauses satisfied with vi = false.

Subsequently, sequence X is set to be X1s1X2s2 . . . sb−1Xb, where substrings Xi and

Xi+1 are separated by a separator si for all i ∈ {1, 2, . . . , b− 1}.

Similarly, for each variable vi, a substring Yi is constructed by orderly concate-

38

nating all the clauses satisfied with vi = false with all the clauses satisfied with

vi = true, and then sequence Y is set to be Y1s1Y2s2 . . . sb−1Yb, where substrings Yi

and Yi+1 are separated by a separator si for all i ∈ {1, 2, . . . , b − 1}. Furthermore,

each element in {Ci : 1 ≤ i ≤ l} and {si : 1 ≤ i ≤ b− 1} forms a constrained pattern

of length one.

Claim. F is satisfiable if and only if the SEQ-IC-LCS problem has a solution of

length at least b + l − 1.

Proof of Claim. For simplicity, assume that there exists at least one clause including

either vi or v̄i.

(⇒) If F is satisfiable, let A be an assignment satisfying F , and let AT and

AF denote the sets of variables assigned true and false in A, respectively. For

every variable vi ∈ AT , the clauses satisfied by setting vi = ture are added from

Xi and Yi to a sequence Z. Also, for every variable vi ∈ AF , the clauses satisfied

by setting vi = false are added from Xi and Yi to Z. Besides, all separators si,

1 ∈ {1, 2, . . . b− 1}, are appropriately added to Z.

Because vi is assigned to either ture or false, no internal crossings exists within Xi

and Yi, and no crossing exists over the separators. Obviously, all clauses are satisfied

and all separators are added to Z; consequently, Z, a CS of X and Y with length

at least b + l− 1, includes all constrained patterns as subsequences. Therefore, there

exists a longest sequence that is a CS of X and Y with length at least b + l − 1 and

includes every constrained pattern as a subsequence.

(⇐) If there exists a longest sequence that is a CS of X and Y and includes

39

every constrained pattern as a subsequence, Ci for all i ∈ {1, 2, . . . , l} and si for all

i ∈ {1, 2, . . . , b− 1} must be included in Z. Because every si, i ∈ {1, 2, . . . , b− 1}, is

a separator between Xi and Xi+1 (also between Yi and Yi+1), any clause appearing in

Xi must be within Yi, and vice versa. If some clause appears in Xi, there exists an

assignment of vi such that it satisfies the clause. Therefore, there exists an assignment

of all variables satisfying F .

Example 3.1. Suppose that F = (v1∨v2∨v̄4)∧(v̄2∨v̄3∨v5)∧(v̄1∨v̄3∨v4)∧(v1∨v̄2∨v̄5).

The construction of Lemma 3.5 yields an instance of the SEQ-IC-LCS problem as

follows.

X = C1C4C3s1C1C2C4s2C2C3s3C3C1s4C2C4,

Y = C3C1C4s1C2C4C1s2C2C3s3C1C3s4C4C2,

P1 = C1,

P2 = C2,

P3 = C3,

P4 = C4,

P5 = s1,

P6 = s2,

P7 = s3, and

P8 = s4.

Consider the assignment with {v1 = ture, v2 = ture, v3 = false, v4 = true, v5 =

flase}. There exists a CS C1C4s1C1s2C2C3s3C3s4C4 between X and Y and includes

40

P1, P2, . . . , P8 as subsequences. On the other hand, consider the solution of the SEQ-

IC-LCS problem with C1C4s1C2C4s2C2C3s3C3s4C2. By setting v1 = ture, v2 = false,

v3 = false, v4 = true, and v5 = ture, F is satisfied.

Because the decision version of the SEQ-IC-LCS problem is in NP, and the 3-SAT

problem can be reduced to it, we conclude the following theorem.

Theorem 3.5. The SEQ-IC-LCS problem in case of an arbitrary number of con-

strained patterns is NP-complete.

Problem STR-IC-LCS

The decision version of the STR-IC-LCS problem is defined as follows. Given two

sequences X, Y and w constrained patterns Pi over Σ of lengths m, n, and di for

i ∈ {1, 2, . . . , w}, the problem is to determine if there is a CS of X and Y with length

at least ` such that it includes each Pi as a substring. We can demonstrate that

the problem is in NP by a verification similar to the SEQ-IC-LCS problem. In the

following we show the hardness of the STR-IC-LCS problem by a reduction from the

3-SAT problem.

Lemma 3.6. The 3-SAT problem is reducible to STR-IC-LCS problem in polynomial

time.

Proof. Let F =
∧

i∈{1,2,...,l} Cw be a propositional formula with exact three literals in

CNF and vi, i ∈ {1, 2, . . . , b}, be the variables in F . An instance of the STR-IC-LCS

41

problem, containing two sequences X, Y and w constrained patterns P1, P2, . . ., Pw,

is constructed from F as follows.

The alphabet of the sequences in the STR-IC-LCS problem is the union of the

set of clauses {Ci : 1 ≤ i ≤ w} and a set of separators {si : 1 ≤ i ≤ b − 1} for the

clauses. For each variable vi, a substring Xi is constructed by concatenating twice all

the clauses satisfied with vi = true with all the clauses satisfied with vi = false in

order. Subsequently, sequence X is set to be X1s
2w
1 X2s

2w
2 . . . s2w

b−1Xb, where substrings

Xi and Xi+1 are separated by a unique character si of length 2w, denoted by s2w
i , for

all i ∈ {1, 2, . . . , b− 1}.

Similarly, for each variable vi, a substring Yi is constructed by concatenating twice

all the clauses satisfied with vi = false with all the clauses satisfied with vi = true

in order, and then sequence Y is set to be Y1s
2w
1 Y2s

2w
2 . . . s2w

b−1Yb, where substrings Yi

and Yi+1 are separated by a unique character si of length 2w, denoted by s2w
i , for

all i ∈ {1, 2, . . . , b − 1}. Furthermore, each element in {Ci : 1 ≤ i ≤ w} forms a

constrained pattern which contains a unique character Ci of length two, denoted by

C2
i .

Claim. F is satisfiable if and only if the STR-IC-LCS problem has a solution of

length at least 2wb.

Proof of Claim. For simplicity, assume that there exists at least one clause including

either vi or v̄i.

(⇒) If F is satisfiable, let A be an assignment satisfying F , and let AT and AF

denote the sets of variables assigned true and false in A, respectively. For every

42

variable vi ∈ AT , the clauses satisfied by setting vi = ture are added twice from Xi

and Yi to a sequence Z. Likewise, for every variable vi ∈ AF , the clauses satisfied by

setting vi = false are added twice from Xi and Yi to Z. Besides, the separators s2w
i ,

1 ∈ {1, 2, . . . b− 1}, are added to appropriate positions in Z.

Because any variable vi is assigned to either ture or false, no internal crossings

exists within Xi and Yi. In addition, no crossing exists over the separators because

the number of clauses within Xi and Yi are not more than 2w. Obviously, all clauses

are satisfied and all separators are added to Z; consequently, Z, a CS of X and Y of

length at least 2wb, includes all constrained patterns as substrings. Therefore, there

exists a longest sequence which is a CS of X and Y with length at least 2wb and

includes every constrained pattern as a substring.

(⇐) If there exists a longest sequence that is a CS of X and Y and includes every

constrained pattern as a substring, C2
i for all i ∈ {1, 2, . . . , w} must be included in

Z. Because there are no more than 2w elements separately within Xi and Yi, every

s2w
i , i ∈ {1, 2, . . . , b − 1}, is a separator between Xi and Xi+1 (also between Yi and

Yi+1). Hence, any clause appearing in Xi must be within Yi, and vice versa. If some

clause appears in Xi, there exists an assignment of vi such that it satisfies the clause.

Therefore, there exists an assignment of all variables satisfying F .

Example 3.2. Suppose that F = (v1∨v2∨v̄4)∧(v̄2∨v̄3∨v5)∧(v̄1∨v̄3∨v4)∧(v1∨v̄2∨v̄5).

The construction of Theorem 3.6 yields an instance of the SEQ-IC-LCS problem as

follows.

43

X = C2
1C

2
4C

2
3s

8
1C

2
1C

2
2C

2
4s

8
2C

2
2C

2
3s

8
3C

2
3C

2
1s

8
4C

2
2C

2
4 ,

Y = C2
3C

2
1C

2
4s

8
1C

2
2C

2
4C

2
1s

8
2C

2
2C

2
3s

8
3C

2
1C

2
3s

8
4C

2
4C

2
2 ,

P1 = C2
1 ,

P2 = C2
2 ,

P3 = C2
3 , and

P4 = C2
4 .

Consider the assignment with {v1 = ture, v2 = ture, v3 = false, v4 = true, v5 =

flase}. There exists a CS C2
1C

2
4s

8
1C

2
1s

8
2C

2
2C

2
3s

8
3C

2
3s

8
4C

2
3 between X and Y that includes

P1, P2, . . . , P4 as substrings. On the other hand, consider the solution of the STR-IC-

LCS problem with C2
1C

2
4s

8
1C

2
2C

2
4s

8
2C

2
2C

2
3s

8
3C

2
1s

8
4C

2
2 . By setting v1 = ture, v2 = false,

v3 = false, v4 = false, and v5 = ture, F is satisfied.

Because the decision version of the STR-IC-LCS problem is in NP, and the 3-SAT

problem can be reduced to it, we conclude the following theorem.

Theorem 3.6. The STR-IC-LCS problem in case of an arbitrary number of con-

strained patterns is NP-complete.

Problem SEQ-EC-LCS

The decision version of the SEQ-EC-LCS problem is defined as follows. Given two

sequences X, Y and w constrained patterns Pi over Σ of lengths m, n, and di for

i ∈ {1, 2, . . . , w}, the problem is to determine if there is a CS of X and Y with length

at least ` such that it excludes each Pi as a subsequence. We can demonstrate that

44

the problem is in NP by a verification similar to the SEQ-IC-LCS problem. In the

following we show the hardness of the SEQ-EC-LCS problem by a reduction from the

3-SAT problem.

Lemma 3.7. The 3-SAT problem is reducible to SEQ-EC-LCS problem in polynomial

time.

Proof. Let F =
∧

i∈{1,2,...,l} Cw be a propositional formula with exact three literals in

CNF and vi, i ∈ {1, 2, . . . , b}, be the variables in F . An instance of the STR-EC-LCS

problem, containing two sequences X, Y and w constrained patterns P1, P2, . . ., Pw,

is constructed from F as follows.

The alphabet of the sequences in the SEQ-EC-LCS problem is the union of the

set of clauses {Ci : 1 ≤ i ≤ w} and a set of separators {si : 1 ≤ i ≤ b − 1} for the

clauses. For each variable vi, a substring Xi is constructed by orderly concatenating

all the clauses satisfied with vi = true with all the clauses satisfied with vi = false.

Subsequently, sequence X is set to be X1s
w
1 X2s

w
2 . . . sw

b−1Xb, where substrings Xi and

Xi+1 are separated by a unique character si of length w, denoted by sw
i , for all

i ∈ {1, 2, . . . , b− 1}.

Similarly, for each variable vi, a substring Yi is constructed by orderly concate-

nating all the clauses satisfied with vi = false with all the clauses satisfied with

vi = true, and then sequence Y is set to be Y1s
w
1 Y2s

w
2 . . . sw

b−1Yb, where substrings

Yi and Yi+1 are separated by a unique character si of length w, denoted by sw
i , for

all i ∈ {1, 2, . . . , b − 1}. Furthermore, each element in {Ci : 1 ≤ i ≤ w} forms a

45

constrained pattern which contains a unique character Ci of length two, denoted by

C2
i .

Claim. F is satisfiable if and only if the SEQ-EC-LCS problem has a solution of

length wb.

Proof of Claim. For simplicity, assume that there exists at least one clause including

either vi or v̄i.

(⇒) If F is satisfiable, let A be an assignment satisfying F , and let AT and AF

denote the sets of variables assigned true and false in A, respectively. For every

variable vi ∈ AT , if the clause satisfied by setting vi = ture has not appeared within

Z so far, it would be added from Xi and Yi to a sequence Z. Likewise, for every

variable vi ∈ AF , the clause satisfied by setting vi = false is added from Xi and Yi

to Z if it has not been included by Z until now. In other words, any clause would

be added into Z once. Besides, the separators sw
i , 1 ∈ {1, 2, . . . b− 1}, are added into

appropriate positions in Z.

Because any variable vi is assigned to either ture or false, no internal crossings

exists within Xi and Yi. In addition, no crossing exists over the separators because

the number of clauses within Xi and Yi are not more than w. Each clause is added

exactly once into Z and all separators are added to Z; consequently, Z, a longest

sequence that is a CS between X and Y with length wb, excludes every constrained

pattern as a subsequence.

(⇐) Suppose that there exists a longest sequence Z that is a CS between X

and Y with length 2w and excludes every constrained pattern as a subsequence.

46

Because there are not more than w elements separately within Xi and Yi, every sw
i ,

1 ∈ {1, 2, . . . b−1}, are added into Z and every clause can not appear more than once

within Z, sequence Z must include all clauses exactly once. Moreover, any clause

appearing in Xi must be within Yi, and vice versa. If some clause appears in Xi,

there exists an assignment of vi such that it satisfies the clause. Therefore, there

exists an assignment of all variables satisfying F .

Example 3.3. Suppose that F = (v1∨v2∨v̄4)∧(v̄2∨v̄3∨v5)∧(v̄1∨v̄3∨v4)∧(v1∨v̄2∨v̄5).

The construction of Theorem 3.7 yields an instance of the SEQ-EC-LCS problem as

follows.

X = C1C4C3s
4
1C1C2C4s

4
2C2C3s

4
3C3C1s

4
4C2C4,

Y = C3C1C4s
4
1C2C4C1s

4
2C2C3s

4
3C1C3s

4
4C4C2,

P1 = C2
1 ,

P2 = C2
2 ,

P3 = C2
3 , and

P4 = C2
4 .

Consider the assignment with {v1 = ture, v2 = ture, v3 = false, v4 = true, v5 =

flase}. There exists a CS C1C4s
4
1s

4
2C2C3s

4
3s

4
4 between X and Y and excludes P1, P2, . . . , P4

as subsequences. On the other hand, consider the solution of the SEQ-EC-LCS prob-

lem with C3s
4
1C2C4s

4
2s

4
3C1s

4
4. By setting v1 = flase, v2 = false, and v4 = false, F

is satisfied. The two variables v3 and v5 may be set either to true or false.

Because the decision version of the SEQ-EC-LCS problem is in NP, and the 3-SAT

47

problem can be reduced to it, we conclude the following theorem.

Theorem 3.7. The SEQ-EC-LCS problem in case of an arbitrary number of con-

strained patterns is NP-complete.

3.5.2 Exact Algorithms

The SEQ-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems with an arbitrary num-

ber of constrained patterns can be solved by the approaches similar to the problems

with a single constrained pattern. Thus, we can immediately give an algorithm for

each problem with time and space requirements being O(mn×∏w
k=1 dk).

It is impossible, unfortunately, to directly adopt the idea for solving the STR-IC-

LCS problem with an arbitrary number of constrained patterns. Because the problem

is complex, here we only investigate the STR-IC-LCS problem with two constrained

patterns. Property 3.2 gives the characterization of the structure of a solution for the

STR-IC-LCS problem with two constrained patterns.

Property 3.2. If Z[1..l] is a longest sequence which is a CS of X[1..m] and Y [1..n]

and includes P1 and P2 as substrings, and assume that P2 is the latter substring

Z[l′ − d2 + 1..l′] (the case of P1 being the latter substring is similar) for some l′ ∈

{d2, d2 + 1, . . . , l}, then Z[1..l] is a concatenation of the following two substrings, for

some i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}:

1. The prefix Z[1..l′]: Z[1..l′] is a longest sequence which is a CS of X[1..i] and

Y [1..j] and includes P1 as a substring with P2 as the suffix Z[l′−d2 +1..l′], and

48

2. The suffix Z[l′ + 1..l]: Z[l′ + 1..l] is an LCS of X[i + 1..m] and Y [j + 1..n].

Based on Property 3.2, we first solving the two subproblems separately of comput-

ing a longest sequence which is a CS of X[1..i] and Y [1..j] such that P1 is a substring

and P2 is a suffix, and of calculating an LCS of X[i..m] and Y [j..n]. The solutions to

the two subproblems are then merged to determine a longest concatenation.

The latter subproblem can be computed in quadratic time by employing the algo-

rithm shown in Section 2.1. For solving the former subproblem, we need to consider

the following two cases:

(a) P2 overlaps P1: We merge P1 and P2 into a new pattern (there are min {d1, d2}

concatenations of length at most d1 + d2 − 1), and then compute Z[1..l′] by

performing the algorithm for the STR-IC-LCS problem shown in Section 3.2.

This case takes Σ
min {d1,d2}−1
k=0 O(mn × (max {d1, d2} + k)) (= O(mnd1d2)) time

and O(mn× (d1 + d2 − 1)) (= O(mn×max {d1, d2})) space.

(b) P2 does not overlap P1: Because Z[1..l′] includes P1 as a substring and P2 as

a suffix, we can decompose Z[1..l′] into two substrings, where one is a longest

sequence which is a CS of X[1..i′] and Y [1..j′] such that P1 is a substring, and

the other is a longest sequence which is a CS of X[i′+1..i] and Y [j′+1..j] such

that P2 is a suffix for some i′ ∈ {1, 2, . . . , i− 1} and j′ ∈ {1, 2, . . . , j − 1}.

An LCS of X[1..i′] and Y [1..j′] where P1 is a substring, for all i′ ∈ {1, 2, . . . , i−1}

and j′ ∈ {1, 2, . . . , j − 1}, can be computed by performing the algorithm for

the STR-IC-LCS problem shown in Section 3.2. For all i ∈ {0, 1, . . . , m} and

49

j ∈ {0, 1, . . . , n}, the pair of the largest indices (i′, j′), where P2 is exactly an

LCS of X[i′+1..i] and Y [j′+1..j], can be determined in O(mnd2) time. Z[1..l′]

is the longest concatenation of the above two results, which can be obtained in

O(mn×max {d1, d2})) time and space.

The solution of the STR-IC-LCS problem is the longest concatenation of (1) a

longest sequence which is a CS of X[1..i] and Y [1..j] and includes P1 as a substring

with P2 as a suffix (or P2 is a substring and P1 is a substring) and (2) an LCS of X[i..m]

and Y [j..n]. Computing the lengths of all concatenations takes O(mnd1d2) time and

O(mn×max {d1, d2}) space. Recovering an LCS by backtracking and concatenating

takes O(m+n+d1+d2) steps. Summarizing all stages, the STR-IC-LCS problem with

two constrained patterns can be solved in O(mnd1d2) time and O(mn×max {d1, d2})

space.

3.6 Discussion

In this chapter, we consider four variants of the LCS problem. We first introduce

the previous results for the SEQ-IC-LCS problem, and then present three O(mnd)-

time and O(mnd)-space algorithms for solving the STR-IC-LCS, SEQ-EC-LCS, and

STR-EC-LCS problems, where m, n, and d are the lengths of two sequences and

a constrained pattern, respectively. In fact, the space requirement can be further

reduced to O(d× (m + n)) by applying the space-saving strategy introduced in Sec-

tion 2.2. We also consider the four problems with two sequences and an arbitrary

50

number of constrained patterns, which are proved to be NP-complete except for the

STR-EC-LCS problem. On the other hand, Gotthilf et al. [35] demonstrated that

the SEC-IC-LCS problem with an arbitrary number of sequence and a single con-

strained pattern is NP-complete and can be solved by a linear-time approximation

algorithm with the approximation factor O(1
mmin|Σ|), where mmin denotes the length

of the shortest sequences and |Σ| denotes the size of the alphabet.

51

52

Chapter 4

Hybrid Constrained LCSs

Due to applications and theoretical interests in molecular biology and sequence com-

parison, we have studied four variants for the LCS problem in Chapter 3. In this

chapter, we merge the constraints on the SEQ-IC-LCS and SEQ-EC-LCS problems

for making the similarity measurement more flexible. The new problem, named the

hybrid constrained longest common subsequence (abbreviated HC-LCS) problem, are

formally defined as follows.

Problem 4.1. (HC-LCS) Given two sequences X, Y and two constrained patterns

P , Q of lengths m, n, d, and e, respectively, the HC-LCS problem is to find a longest

sequence that is a CS of X and Y and not merely includes P as a subsequence but

excludes Q as a subsequence.

Consider sequences X = BADBABD and Y = ABCBDDA as an example. “ABBD” is an

LCS of X and Y . If P = DA and Q = BA, “ADA” is a solution of the HC-LCS problem.

53

Obviously, the SEQ-IC-LCS and SEQ-EC-LCS problems are two simple forms of the

HC-LCS problem.

Throughout this chapter, we define the formats of the sequences and constrained

patterns as X = x1x2 . . . xm, Y = y1y2 . . . yn, P = p1p2 . . . pd, and Q = q1q2 . . . qe.

In the following, we propose a DP algorithm for the HC-LCS problem. Later, we

introduce a data structure named bounded heap, and show how to speed up the

computation by adapting Hunt-Szymanski strategy and employing the data structure.

4.1 Dynamic Programming

Let Zi,j,k,h denote the set of all longest sequences which are CSs of X[1..i] and Y [1..j]

and both include P [1..k] as a subsequence and exclude Q[1..h] as a subsequence.

Lemmas 4.1 to 4.5 decompose the structure of an optimal solution based on the

solutions to its smaller subproblems.

Lemma 4.1. If Z = z1z2 . . . zl ∈ Zi,j,k,h and xi = yj = pk = qh, then the following

properties hold:

(1) h = 1 implies Z[1..l] is an empty sequence.

(2) h ≥ 2 and zl 6= xi imply Z[1..l] ∈ Zi−1,j−1,k,h.

(3) h ≥ 2 and zl = xi imply Z[1..l − 1] ∈ Zi−1,j−1,k−1,h−1.

Proof. We prove this lemma case by case. (1) Since pk = qh and h = 1, q1 is

a subsequence of P [1..k]. If Z[1..l] is a nonempty sequence, then Z[1..l] including

54

P [1..k] as a subsequence implies that Z[1..l] also includes q1 as a subsequence. This

is a contradiction.

(2) Since zl 6= xi, Z[1..l] is a CS of X[1..i − 1] and Y [1..j − 1] such that Z[1..l]

includes P [1..k] as a subsequence and excludes Q[1..h] as a subsequence. Assume by

contradiction that there exists a CS Z ′[1..l + 1] of X[1..i − 1] and Y [1..j − 1] where

Z ′[1..l + 1] includes P [1..k] as a subsequence and excludes Q[1..h] as a subsequence.

It follows that Z ′[1..l + 1] is also a CS of X[1..i] and Y [1..j] such that Z ′[1..l + 1]

includes P [1..k] as a subsequence and excludes Q[1..h] as a subsequence, which is a

contradiction.

(3) Since zl = xi = yj = pk = qh, Z[1..l − 1] is a CS of X[1..i− 1] and Y [1..j − 1]

such that Z[1..l−1] both includes P [1..k−1] as a subsequence and excludes Q[1..h−1]

as a subsequence. Assume by contradiction that there exists a CS Z ′[1..l] of X[1..i−1]

and Y [1..j − 1] such that Z ′[1..l] includes P [1..k − 1] as a subsequence and excludes

Q[1..h − 1] as a subsequence. If we append xi = yj = pk = qh to Z ′[1..l], then

we obtain a CS of X[1..i] and Y [1..j] of length greater than l, which satisfies the

constraints on P [1..k] and Q[1..h]. This contradicts the hypothesis.

Let L[i, j, k, h] denote the length of a sequence that belongs to Zi,j,k,h. When xi =

yj = pk = qh, we can derive that the following recurrence relation from Lemma 4.1.

55

L[i, j, k, h] =

−∞ if xi = yj = pk = qh and h = 1,

max {L[i− 1, j − 1, k, h], 1 + L[i− 1, j − 1, k − 1, h− 1]}

if xi = yj = pk = qh and h ≥ 2.

(4.1)

Lemma 4.2. If Z = z1z2 . . . zl ∈ Zi,j,k,h, xi = yj = pk, and (h = 0 or xi 6= qh), then

zl = xi and Z[1..l − 1] ∈ Zi−1,j−1,k−1,h.

Proof. Since xi = yj = pk and xi 6= qh, we have zl = xi = yj = pk. Otherwise, we can

obtain a CS of X[1..i] and Y [1..j] of length l by appending xi = yj = pk to Z[1..l− 1]

such that it also satisfies the constraints for P [1..k] and Q[1..h]. Therefore, Z[1..l−1]

is a CS of X[1..i−1] and Y [1..j−1] such that it includes P [1..k−1] as a subsequence

and excludes Q[1..h] as a subsequence. Similar to the proof in Lemma 4.1, we can

show that Z[1..l − 1] belongs to Zi−1,j−1,k−1,h.

The following recurrence relation can be derived from Lemma 4.2 if xi = yj = pk

and xi 6= qh.

L[i, j, k, h] = 1+L[i−1, j−1, k−1, h] if xi = yj = pk and (h = 0 or xi 6= qh). (4.2)

Lemma 4.3. If Z = z1z2 . . . zl ∈ Zi,j,k,h, xi = yj = qh, and (k = 0 or xi 6= pk), then

the following properties hold:

(1) h = 1 implies zl 6= xi and Z[1..l] ∈ Zi−1,j−1,k,h.

56

(2) h ≥ 2 and zl 6= xi imply Z[1..l] ∈ Zi−1,j−1,k,h.

(3) h ≥ 2 and zl = xi imply Z[1..l − 1] ∈ Zi−1,j−1,k,h−1.

Proof. Because the proofs of Cases (2) and (3) are similar to Lemma 4.1, here we

only prove Case (1) as follow. Since xi = yj = qh, xi 6= pk, and h = 1, we have

zl 6= xi. Otherwise, Z[1..l] must contain Q[1] as a subsequence. Thus, Z[1..l] is a

CS of X[1..i − 1] and Y [1..j − 1] such that it includes P [1..k] as a subsequence and

excludes Q[1] as a subsequence. Similar to the proof in Lemma 4.1, we can show that

Z[1..l] belongs to Zi−1,j−1,k,h.

When xi = yj = qh and xi 6= pk, we can derive that the following recurrence

relation from Lemma 4.3.

L[i, j, k, h] =

L[i− 1, j − 1, k, h]

if xi = yj = qh, h = 1, and (k = 0 or xi 6= pk),

max {L[i− 1, j − 1, k, h], 1 + L[i− 1, j − 1, k, h− 1]}

if xi = yj = qh, h ≥ 2, and (k = 0 or xi 6= pk).

(4.3)

Lemma 4.4. If Z = z1z2 . . . zl ∈ Zi,j,k,h, xi = yj, (k = 0 or xi 6= pk), and (h = 0 or

xi 6= qh), then zl = xi and Z[1..l − 1] ∈ Zi−1,j−1,k,h.

Proof. Since xi = yj, xi 6= ph, and xi 6= qh, we have zl = xi = yj. Otherwise, we can

obtain a CS of X[1..i] and Y [1..j] of length l by appending xi = yj to Z[1..l− 1] such

that it also satisfies the constraints for P [1..k] and Q[1..h]. Therefore, Z[1..l− 1] is a

57

CS of X[1..i − 1] and Y [1..j − 1] such that it includes P [1..k] as a subsequence and

excludes Q[1..h] as a subsequence. Similar to the proof in Lemma 4.1, we can show

that Z[1..l − 1] belongs to Zi−1,j−1,k,h.

The following recurrence relation can be derived from Lemma 4.4 if xi = yj,

xi 6= pk, and xi 6= qh.

L[i, j, k, h] = 1 + L[i− 1, j − 1, k, h]

if xi = yj, (k = 0 or xi 6= pk), and (h = 0 or xi 6= qh).

(4.4)

Lemma 4.5. If Z = z1z2 . . . zl ∈ Zi,j,k,h and xi 6= yj, then the following properties

hold:

(1) zl 6= xi implies that Z[1..l] ∈ Zi−1,j,k,h.

(2) zl 6= yj implies that Z[1..l] ∈ Zi,j−1,k,h.

Proof. Because the proofs of Case (2) is similar to Case (1), here we only prove Case

(1) as follow. Since zl 6= xi, Z[1..l] is a CS of X[1..i − 1] and Y [1..j] such that it

includes P [1..k] as a subsequence and excludes Q[1..h] as a subsequence. Similar to

the proof in Lemma 4.1, we can show that Z[1..l − 1] belongs to Zi−1,j,k,h.

The following recurrence relation can be derived from Lemma 4.5 if xi 6= yj.

L[i, j, k, h] = max {L[i− 1, j, k, h],L[i, j − 1, k, h]} if xi 6= yj. (4.5)

58

By the optimality principles of the HC-LCS problem shown in Lemmas 4.1 to 4.5,

each entry in matrix L, for i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , d},

and h ∈ {0, 1, . . . , e}, can be computed by Equations (4.1) to (4.5). whose boundary

conditions are L[i, 0, 0, h] = L[0, j, 0, h] = 0 and L[i, 0, k, h] = L[0, j, k, h] = −∞ for

i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, k ∈ {1, 2, . . . , d}, and h ∈ {0, 1, . . . , e}.

Suppose that Z is a sequence that belongs to Zm,n,d,e, and is initially an empty

sequence. The length of Z is given by L[m,n, d, e], which requires O(mnde) compu-

tation time. Furthermore, sequence Z can be constructed by backtracking through a

path from L[m,n, d, e] to L[0, 0, 0, 0]. If xi = yj and L[i, j, k, h] equals to 1 + L(i −

1, j − 1, k − 1, h − 1), 1 + L[i − 1, j − 1, k − 1, h], 1 + L[i − 1, j − 1, k, h − 1], or

1 + L[i − 1, j − 1, k, h], we append the character xi to Z. Therefore, recovering an

HC-LCS takes O(m + n + d + e) steps, and the following theorem is stated.

Theorem 4.1. The HC-LCS problem can be solved in O(mnde) time and space.

4.2 Bounded Heaps

Consider now the problem of querying an entry with the highest value (i.e., priority)

among all those whose j-coordinates (i.e., key) on the DP matrix are below a given

threshold. For this task, we employ a data structure bounded heap H that supports

the following operations [23]:

• Heap.Insert(H; j, `, pos): Insert the key j with priority ` and associated posi-

59

tion pos into the bounded heap H.

• Heap.IncreaseLength(H; j, `, pos): If the bounded heap H does not contain the

key j, perform Heap.Insert(H; j, `, pos). Otherwise, set the priority of this key

to max {`, `′}, where `′ is its original priority.

• Heap.Max (H; j): Return the maximum priority of all items in H with key

smaller than j and its associated position. If H does not contain any items

with keys smaller than j, return null.

The bounded heap uses the van Emde Boas tree [75, 76] as a kernel structure. It

follows that the initialization of the bounded heap takes O(n log log n) time, and each

of the above operations requires O(log log n) time, where keys are drawn from the set

{1, . . . , n} [23].

4.3 Speeding up the Computation

During the computation of L via Equations (4.1) to (4.5), the values in matrix L

might increase only when a match between X and Y is encountered. To make the

computation more efficiently, in this section we adapt Hunt-Szymanski strategy to

restrict it on the positions of matches between X and Y .

For each position i of X, we use a linked list M[i] to record all corresponding

positions j such that xi = yj, and keep this list in increasing order. For example, let

X = BADBABD and Y = ABCBDDA, the desired lists are

60

M[1] = 〈2, 4〉,

M[2] = 〈1, 7〉,

M[3] = 〈5, 6〉,

M[4] = M[1],

M[5] = M[2],

M[6] = M[1], and

M[7] = M[3].

If visualizing matrix L as (d + 1) × (e + 1) two-dimensional submatrices rather

than a four-dimensional matrix, we can convert the notation L[i, j, k, h] into Lk,h[i, j].

Specifically, we exploit the monotonicity of every two-dimensional submatrix Lk,h,

which is stated in the following lemma.

Lemma 4.6. The value of any position (i, j, k, h) in matrix L satisfies the property:

L[i, j, k, h] ≥ L[i′, j′, k, h] for any i′ ≤ i and j′ ≤ j.

Proof. L[i, j, k, h] denotes the length of a longest sequence which is a CS of X[1..i]

and Y [1..j] and not merely includes P [1..k] as a subsequence but excludes Q[1..h] as

a subsequence. Similarly, L[i′, j′, k, h] denotes the length of a longest sequence that

is a CS of X[1..i′] and Y [1..j′] and includes P [1..k] as a subsequence and excludes

Q[1..h] as a subsequence. If i′ ≤ i and j′ ≤ j, X[1..i′] and Y [1..j′] are substrings

of X[1..i] and Y [1..j], respectively. Consequently, a longest sequence that is a CS

of X[1..i′] and Y [1..j′] and satisfies the constraints for P [1..k] and Q[1..h] must be a

CS of X[1..i] and Y [1..j] with the same constraints for P [1..k] and Q[1..h]. In other

61

Lk,h

i

jj 1

i 1

Figure 4.1: Obtaining Lk,h[i− 1, j − 1].

words, L[i, j, k, h] ≥ L[i′, j′, k, h].

For the position (i, j) where a match occurs in a two-dimensional submatrix Lk,h,

the value of position (i−1, j−1) would not be prepared for the entry Lk,h[i, j] if xi−1 6=

yj−1. According to the monotonicity of each submatrix Lk,h, Lk,h[i− 1, j − 1] can be

derived from the maximum value within the submatrix in Lk,h composed by X[1..i−1]

and Y [1..j − 1] (the gray region in Figure 4.1) when xi−1 mismatches yj−1. Without

the computation of positions at which X mismatches Y , Equations (4.1) to (4.5) can

be reformulated as follows, where i ∈ {1, 2, . . . , m}, j ∈ M[i], k ∈ {0, 1, . . . , d}, and

h ∈ {0, 1, . . . , e}.

62

Lk,h[i, j] =

−∞ if xi = pk = qh and h = 1,

max {τ1, 1 + τ2} if xi = pk = qh and h ≥ 2,

1 + τ3 if xi = pk and (h = 0 or xi 6= qh),

τ1 if xi = qh, h = 1, and (k = 0 or xi 6= pk),

max {τ1, 1 + τ4} if xi = qh, h ≥ 2, and (k = 0 or xi 6= pk),

1 + τ1 if (k = 0 or xi 6= pk) and (h = 0 or xi 6= qh),

(4.6)

where

τ1 = max
1≤i′<i,1≤j′<j,j′∈M[i′]

{Lk,h[i
′, j′]}, (4.7)

τ2 = max
1≤i′<i,1≤j′<j,j′∈M[i′]

{Lk−1,h−1[i
′, j′]}, (4.8)

τ3 = max
1≤i′<i,1≤j′<j,j′∈M[i′]

{Lk−1,h[i
′, j′]}, (4.9)

and

τ4 = max
1≤i′<i,1≤j′<j,j′∈M[i′]

{Lk,h−1[i
′, j′]}. (4.10)

The boundary conditions of this recursive formula are L0,h[i, 0] = L0,h[0, j] = 0

and Lk,h[i, 0] = Lk,h[0, j] = −∞ for any i ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . , n}, k ∈

63

Algorithm HC-LCS(X, Y, P,Q)

1: Build a linked list M [i] for all 1 ≤ i ≤ m;

2: Initialize the bounded heap Hk,h for all 1 ≤ k ≤ p and 1 ≤ h ≤ q;

3: Perform Insert(Hk,h; 0, 0, (0, 0, k, h)) if k = 0 and Insert(Hk,h; 0,−∞, (0, 0, k, h)) otherwise;

4: for k ← 0 to d do

5: for h ← 0 to e do // compute each Lk,h

6: for i ← 1 to m do

7: Initialize the insert list I as an empty list;

8: for each j in M [i] do

9: Tk,h(i, j) ← Heap.Max(Hk,h; j); // the 2nd, 4th, and 5th cases of Equation (4.6)

10: Lk,h(i, j) ← Tk,h(i, j);

11: if xi = pk and xi = qh and h = 1 then

12: Lk,h(i, j) ← −∞; // the 1st case of Equation (4.6)

13: else if xi = pk and xi = qh and h ≥ 2 and Tk,h(i, j) ≤ 1 + Tk−1,h−1(i, j) then

14: Lk,h(i, j) ← 1 + Tk−1,h−1(i, j); // the 2nd case of Equation (4.6)

15: else if xi = pk and (xi 6= qh or h = 0) then

16: Lk,h(i, j) ← 1 + Tk−1,h(i, j); // the 3rd case of Equation (4.6)

17: else if xi = qh and h ≥ 2 and (xi 6= pk or k = 0) and Tk,h(i, j) ≤ 1 + Tk,h−1(i, j) then

18: Lk,h(i, j) ← 1 + Tk,h−1(i, j); // the 5th case of Equation (4.6)

19: else if (xi 6= pk or k = 0) and (xi 6= qh or h = 0) then

20: Lk,h(i, j) ← 1 + Tk,h(i, j); // the 6th case of Equation (4.6)

21: I ← I ∪ (Lk,h(i, j), (i, j, k, h));

22: for each (Lk,h(i, j), (i, j, k, h)) in I do

23: IncreaseLength(Hk,h; j,Lk,h(i, j), (i, j, k, h));

24: Output Heap.Max(Hp,q;n + 1);

{1, 2, . . . , d}, and h ∈ {0, 1, . . . , e}. Specifically, we employ the bounded heap to

compute Equations (4.7) to (4.10) efficiently.

Algorithm HC-LCS formally describes the our algorithm adapting Hunt-Szymanski

strategy and employing a bounded heap. We first sort X and Y , and then scan the

two sorted sequences to build a linked list M[i], for each position i of X, as an in-

creasing list of all corresponding positions j such that xi = yj. Note that the original

64

four-dimensional matrix L is visualized as (a+1)× (b+1) two-dimensional matrices,

i.e., Lk,h where k ∈ {0, 1, . . . , d} and h ∈ {0, 1, . . . , e}. We maintain a bounded heap

Hk,h for each Lk,h to implement Equations (4.7) to (4.10).

The matches between X and Y in each Lk,h is processed in row-major order. At

iteration i (i.e., row i of Lk,h is processed), Hk,h has kept a position with its Lk,h-value

for each j′ ∈ {1, 2, . . . , n} such that the position provides the maximum value among

all positions (i′, j′, k, h) where l′ ∈ {1, 2, . . . , i − 1}, and empty if no such position

exists. For each j in M[i], we query the position that has the maximum value among

all positions in Hk,h with key smaller than j, and then store the queried value in

Tk,h[i, j]. According to Equation (4.6), we compute Lk,h[i, j] by the relationships

among xi, pk, and qh, and then place the position (i, j, k, h) with Lk,h[i, j] into the

insert list I. After row i of Lk,h is processed, we update the data inHk,h by performing

Heap.IncreaseLength on each entry in I. Finally, we query the position that has the

maximum value among all positions inHd,e with key smaller than n+1. The maximum

value in Hd,e is the length of an HC-LCS, and we can obtain an HC-LCS by tracing

back through the backtracking links from the position with the maximum length until

i = 0 or j = 0.

Since sorting is invoked in building the m linked lists, building linked lists requires

O(n) time and O(n) space over a finite alphabet [31]. The initialization of each Hk,h

takes O(n log log n) time. Let r denote the total number of matches between X

and Y . We need to maintain an Hk,h and I for each Lk,h. Because the opera-

65

tions Heap.IncreaseLength and Heap.Max are performed on Hk,h at most r times,

computing a two-dimensional submatrix Lk,h takes O(r log log n) time and O(r + n)

space. Consequently, the calculation of the (d+1)× (e+1) matrices requires in total

O(de × r log log n) time and O(de × (r + n)) space. Finally, delivering an HC-LCS

takes O(m + n + d + e) steps. In summary, we have the following corollary.

Theorem 4.2. Given two sequences X, Y and two constrained patterns P , Q of

lengths m, n, d, and e, respectively. Without loss of generality, assume that m ≤ n.

Let r denote the total number of matches between X and Y . The HC-LCS problem

can be solved in O((der + n)× log log n)) time and O(de× (r + n)) space.

4.4 Discussion

In this chapter, we studied the HC-LCS problem, which is a hybrid problem of the

SEQ-IC-LCS and SEQ-EC-LCS problems. We presented a traditional DP algorithm

for solving the HC-LCS problem in O(mnde) time and space. Subsequently, Algo-

rithm HC-LCS, an improved algorithm, was proposed for restricting the computation

on the positions of matches between X and Y , which requires O((der+n)× log log n)

time and O(de× (r + n)) space over a finite alphabet. In the worse case, Algorithm

HC-LCS requires O(demn log log n) time. However, the latter outperforms the for-

mer algorithm if r = o(n(m
log m

− 1)). If only the dominant matches between X and

Y are considered during the computation, the latter algorithm may be improved by

adapting the strategy proposed in [13].

66

Chapter 5

LCSs of Run-Length Encoded

Sequences

The LCS problem has many applications in molecular biology, pattern comparison,

and screen redisplay. Some sequences appearing in the real world may contain several

segments of contiguous identical characters. For reducing the processing space and

speeding up the processing time of similarity measurement, it is beneficial to use par-

ticular representations for such sequences, such as run-length encoding (abbreviated

RLE) representation. RLE is a simple and widely used coding scheme, which com-

presses a sequence into several runs so that each run is a maximal-length substring of

an identical character in the sequence. A sequence in RLE format is represented by

an ordered sequence of the characters corresponding to the runs with their lengths. In

this chapter, we consider the LCS problem of RLE sequences (abbreviated RLE-LCS),

67

which is formally defined as follows.

Problem 5.1. (RLE-LCS) Given two sequences X and Y of lengths m and n with

M and N runs, respectively, the RLE-LCS problem is to find an LCS of X and Y .

Throughout this chapter, the format of input sequences is defined as follows. Let

X = x1x2 . . . xm and Y = y1y2 . . . yn denote two sequences over a finite alphabet

Σ. Let X̂ = αm1
1 αm2

2 . . . αmM
M denote the RLE representation of X, where αi for

i ∈ {1, 2, . . . , M} is the unique character of the i-th run in X and mi is the length

of this run. We also let X̂[i..j] denote the RLE substring of X from run i to run

j if 1 ≤ i ≤ j ≤ M , and an empty string otherwise. Likewise, Ŷ = βn1
1 βn2

2 . . . βnN
N

denotes the RLE representation of Y ; Ŷ [i..j] denotes the RLE substring of Y from

run i to run j if 1 ≤ i ≤ j ≤ N , and an empty string otherwise.

Section 5.1 introduces the previous results for the RLE-LCS problem. In Sec-

tion 5.2, we devise a linear-time algorithm for computing the maxima within a sliding

window upon a numerical sequence where the window size is dynamic. We further

improve some previous results for the REL-LCS problem in Section 5.3, by adapting

Hunt-Szymanski strategy and the approach to the sliding-window maxima problem

with a dynamic window size.

68

5.1 Related Works

Some related results for the RLE-LCS problem are summarized in Table 5.1. Bunke

and Csirik [24] and Arbell et al. [15] separately proposed an O(mN +Mn)-time algo-

rithm, while Apostolico et al. [14] discovered an O(MN × log(MN))-time algorithm.

Mitchell [58] reduced the RLE-LCS problem to the geometric shortest path problem,

and gave an O((M + N + R) × log(M + N + R))-time algorithm solving the latter

problem by using special convex distance functions, where R denotes the number

of the pairs of runs at which the two sequences match each other. Recently, algo-

rithms with time complexity of O(Mn + mN −MN) [34], O(min {Mn, mN}) [53],

and O(min {ρ1, ρ2}+ MN) [11] were presented, where ρ1 and ρ2 denote the numbers

of entries on the bottom borders and right borders of the blocks whose corresponding

runs match each other, respectively.

In the following we depict the properties of the RLE-LCS problem and introduce

two approaches separately shown in [34] and [11]. Lemma 5.1 shows the characteri-

zation of an optimal solution to the RLE-LCS problem based on the solutions to its

smaller subproblems [34].

Lemma 5.1. Let LCS(X̂, Ŷ) denote the length of an LCS of X̂ and Ŷ . Given two

distinct characters σ1, σ2 and two nonnegative integers s1, s2, the following properties

hold:

69

Table 5.1: Some results related to the RLE-LCS problem

Year Author(s) Time Complexity

1995 Bunke and Csirik [24] O(mN + Mn)

1997 Mitchell [58] O((M + N + R)× log(M + N + R))

1999 Apostolico et al. [14] O(MN log(MN))

2002 Arbell et al. [15] O(Mn + mN)

2004 Freschi and Bogliolo [34] O(Mn + mN −MN)

2008 Liu et al. [53] O(min {Mn, mN})

2008 Ann et al. [11] O(min {ρ1, ρ2}+ MN)

(1) LCS(X̂σs1
1 , Ŷ σs2

1) = LCS(X̂σs1−d
1 , Ŷ σs2−d

1) + d, where d = min {s1, s2}.

(2) LCS(X̂σs1
1 , Ŷ σs2

2) = max {LCS(X̂σs1
1 , Ŷ), LCS(X̂, Ŷ σs2

2)}.

Bunke and Csirik [24] discovered the division of run-sized blocks in the DP matrix,

which partitions the matrix into M×N blocks corresponding to pairs of runs in X̂ and

Ŷ . A block (i, j) is match if αi = βj; otherwise, it is mismatch. We take Figure 5.1 as

an example. The DP matrix over sequences “a4b2c4a8” and “b2a6b3c4a3b6a4” is split

into 4× 7 blocks, where match blocks are colored by gray and white blocks indicate

mismatch blocks.

A four-dimensional matrix B is used for the bottom borders and right borders in

blocks, where Bi,j[mi, h] denotes the value of the h-th entry on the bottom border of

70

a4

b2

c4

a8

b2 a6 b3 c4 a3 b6 a4

X

Y

bottom

right

top

left

Figure 5.1: Match blocks (gray blocks) and mismatch blocks (white blocks).

the block (i, j), and Bi,j[v, nj] denotes the value of the v-th entry on the right border of

the block (i, j). Notice that B is physically mapped to the original two-dimensional

DP matrix. According to Lemma 5.1, the following recurrence [34] is derived for

computing each lattice Bi,j[v, h] for v = mi or h = nj with proper initializations.

Bi,j[v, h] =

Bi−1,j[mi−1, h− v] + v if block (i, j) is match and v < h,

Bi,j−1[v − h, nj−1] + h if block (i, j) is match and v > h,

Bi−1,j−1[mi−1, nj−1] + h if block (i, j) is match and v = h,

max {Bi−1,j[mi−1, h],

Bi,j−1[v, nj−1]} if block (i, j) is mismatch.

(5.1)

By Equation 5.1, the length of an LCS between X̂ and Ŷ , given by BM,N [mM , nN],

can be calculated in O(Mn + mN −MN) [34].

71

Figure 5.2: Converting an arbitrary subpath into a forced path.

(mi, h)

i

i 1

jj

(mi 1, h)

i

…

…

Finding the maximum length of paths

passing through these vertices

Figure 5.3: Ann et al.’s approach [11].

In the original DP matrix, a monotonically nondecreasing path that begins at the

top-left corner of a match block is defined as a forced path [14] if it traverses the

match blocks by strictly diagonal moves and traverses the mismatch blocks by either

strictly horizontal moves or strictly vertical moves. Figure 5.2 gives an example of

forced paths, and illustrates that any subpath which begins at the top-left corner of

a match block can be converted into a forced subpath [14].

By the property of path conversion, Ann et al. [11] presented an algorithm that

reduces the computation on the bottom borders and right borders in all blocks to

72

the bottom-right corners in all blocks and the bottom borders in the match blocks.

Figure 5.3 illustrates the idea of Ann et al.’s approach. For any entry (mi, h) of

block (i, j), suppose that the forced path passing through it crosses row i−1 at entry

(mi−1, h
′) of block (i − 1, j′). The value of entry (mi, h) of block (i, j), denoted by

Bi,j[mi, h], is derived from the maximum length of two forced paths ending at the entry

over the LCS matric function. One path is passing through entry (mi−1, h
′) of block

(i − 1, j′), and the other is with the maximum length among such the forced paths

passing through the corner of block (i − 1, j′′) for all j′′ ∈ {j′ + 1, j′ + 2, . . . , j − 1}.

In addition, the value of entry (mi−1, h
′) of block (i−1, j′) can be further derived from

the maximum of the values given in the bottom-right corner of block (i − 1, j′ − 1)

and entry (mi′ , h
′) of block (i′, j′), where i′ denotes the index of the former run of

X̂[i] with the same character αi in X̂. The length of an LCS between X̂ and Ŷ is

given by BM,N [mM , nN]. Before the algorithm starts, the numbers of entries in the

bottom borders and right borders of the match blocks can be separately calculated to

determine which of the input sequences is considered as X̂. Because the computation

on the bottom-right corners of all blocks and the bottom borders of the match blocks

is required, the algorithm takes O(MN + min {ρ1, ρ2}) time [11].

Notice that the increment of the values given in entries might occur when a pair

of runs in X̂ and Ŷ match each other. With the monotonicity of the original DP

matrix [45], therefore, in Section 5.3 we restrict the computation merely on the match

blocks.

73

5.2 Sliding-Window Maxima with a Dynamic Win-

dow Size

Consider now the following problem. Given two numerical sequences A = a1a2 . . . an

and S = s1s2 . . . sn satisfying 1 ≤ si ≤ i, s0 = 0, and si−1 ≤ si for all i ∈ {1, 2, . . . , n},

the sliding-window maxima problem with dynamic window sizes is to compute a nu-

merical sequence Z = z1z2 . . . zn such that each zi is the maximum number within

a interval [si, i], i.e., zi = max {xj : si ≤ j ≤ i}. For this task, we employ a data

structure double-ended queue (abbreviated deque) Q that supports the following op-

erations [71]:

• Queue.Insert(Q; `): Insert value ` at the rear of Q.

• Queue.DeleteFront(Q): Delete the front element from Q.

• Queue.DeleteRear(Q): Delete the rear element from Q.

• Queue.Max (Q): Return the front element in Q.

We devise an approach named Algorithm DSW-Max, which maintains Q as a

decreasing list to solving the problem. Because the front element of Q is always the

maximum value within the currently window-interval, the correctness of the algorithm

can be easily demonstrated. The deque Q is accessed O(n) times during the execu-

tion of the algorithm, and each operation requires O(1) time in the worst case [71].

Consequently, the maximum value within the interval [si, i] for all i ∈ {1, 2, . . . , n}

can be obtained in linear time.

74

Algorithm DSW-Max(A,S)

1 for i ← 1 to n do

2 while Q is nonempty and the front element of Q is out of [si, i] do

3 Queue.DeleteFront(Q);

4 while Q is nonempty and xi is larger than or equal to the rear element of Q do

5 Queue.DeleteRear(Q);

6 Queue.Insert(Q; xi);

7 zi = Queue.Max(Q);

Theorem 5.1. The sliding-window maxima problem with dynamic window sizes can

be solved in linear time.

5.3 An Efficient Algorithm

Let L̂[i, j] denote the length of an LCS of X̂[1..i] and Ŷ [1..j]. In other words, L̂[i, j]

records the value given by the bottom-right corner of the block (i, j). Because the

L̂-values might increase only when a match run between X̂ and Ŷ is encountered,

in this section we modify Ann et al.’s approach [11] to restrict the computation

on the bottom borders of the match blocks by adapting Hunt-Szymanski strategy.

Algorithm RLE-LCS formally describes the modified approach.

First of all, a preprocessing for calculating all match runs between X̂ and Ŷ is

performed as follows. For each run i, we use a linked list M[i] to record the positions

of the runs j in Ŷ in increasing order such that αi = βj. For example, let X̂ =

a4b2c5a8 and Ŷ = b2a6b5c6a3b6a5, the desired lists are

75

M[1] = 〈2, 5, 7〉,

M[2] = 〈1, 3, 6〉,

M[3] = 〈4〉, and

M[4] = M[1].

For this task, we sort X̂ and Ŷ , and then scan the two sorted sequences to build a

linked list M[i], for each run i in X̂, as an increasing list of all corresponding runs j

such that αi = βj.

By adapting Hunt-Szymanski strategy, we employ a bounded heap H to make

the computation efficiently, which is restricted on the bottom borders of the match

blocks.

Algorithm RLE-LCS proceeds to the match runs between X̂ and Ŷ in row-major

order. While row i of matrix L̂ is processed, the bounded heap H has kept a position

in L̂ with its corresponding value for each key j′′ ∈ {1, 2, . . . , N} (i.e., each column

in L̂) such that its L̂-value is the maximum amongst the positions (i′′, j′′) for all

i′′ ∈ {1, 2, . . . , i − 1}, and empty if no such position exists. For each j in M[i], we

perform Heap.Max(H; j) for obtaining the position (i∗, j∗) with the maximum value

amongst all positions in H where j∗ < j, and set T [i, j] = L̂[i∗, j∗].

The maximum length of the paths passing through the top-left corners of the

match block (i, j), denoted by Wi[j], is the maximum value amongst all positions in

the match blocks (i′′, j′′), where i′′ < i and j′′ < j, plus the number of occurrences of

αi from the position with maximum value to the end of Y . For i ∈ {1, 2, . . . , M}, j ∈

76

Algorithm RLE-LCS(X̂, Ŷ)

1 Do preprocessing on F and M[i] for all 1 ≤ i ≤ M ;

2 Initialize the bounded heap H and the matrices L̂ and B;

3 Perform Heap.Insert(H; 0, 0, (0, 0));

4 for i ← 1 to M do

5 Do preprocessings on ωi and χi;

6 Initialize the insertion list I as an empty list;

7 for each j in M[i] do // process the match blocks

8 T [i, j] ← Heap.Max(H; j);

9 Compute Wi[j];

10 for h ← 1 to nj do

11 if the forced path does not cross row i− 1 then

12 Bi,j [h] ← max {Wi[0], . . . ,Wi[j]} − occi[j, h] + 1;

13 else

14 i′ ← F [i];

15 (j′, h′) ← χi[j, h];

16 τ1 ← max {Wi[j′ + 1], . . . , Wi[j]} − occi[j, h] + 1; // implemented by Algorithm DSW-Max

17 τ2 ← max {T [i− 1, j′],Bi′,j′ [h′]}+ mi;

18 Bi,j [h] ← max {τ1, τ2};
19 L̂[i, j] ← Bi,j [nj];

20 I ← I ∪ (L̂[i, j], (i, j));

21 for each (L̂[i, j], (i, j)) in I do

22 Perform Heap.IncreaseLength(H; j, L̂[i, j], (i, j));

23 Output Heap.Max(H; N + 1);

77

{1, 2, . . . , N}, and h ∈ {1, 2, . . . , nj}, let occi[j, h] denote the number of occurrences

of αi in the suffix Y [π..m], where π is the position of the h-th entry of Ŷ [j] in Y . In

other words, Wi[j] = T [i, j] + occi∗ [j
∗, nj∗]− 1.

If the forced path passing through entry (mi, h) of block (i, j) does not cross row i−

1, then Bi,j[h] = max {Wi[0], . . . , Wi[j]}− occi[j, h] + 1, where max {Wi[0], . . . , Wi[j]}

for all j in M[i] can be obtained by scanning Wi once. On the other hand, for

i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , N}, and h ∈ {1, 2, . . . , nj}, we let χi[j, h] denote

the position of row i − 1 in which the forced path passing through entry (mi, h) of

block (i, j) crosses, and suppose that the position locates at entry (mi−1, h
′) of block

(i−1, j′), i.e., (j′, h′) = χi[j, h]. We define τ1 = max {Wi[j
′ + 1], . . . , Wi[j]}−occi[j, h],

where max {Wi[j
′ + 1], . . . ,Wi[j]} can be obtained by employing Algorithm DSW-

Max, and τ2 = max {T [i− 1, j′],Bi′,j′ [h
′]} + mi, where i′ denotes the index of the

former run of X̂[i] with the same character αi in X̂, which is computed and kept into

F [i] at the preprocessing stage. Finally, Bi,j[h] is determined by max {τ1, τ2}.

When all elements on the bottom border of block (i, j) are computed, we set

L̂[i, j] = Bi,j[nj] and place the item of the position (i, j) with its value L̂[i, j] into

the insertion list I. At the end of the iteration on row i, we perform the operation

Heap.IncreaseLength for each entry in I on H.

After all match blocks are processed, we query the position that has the maximum

value amongst the positions inH with key smaller than N+1, whose value is the length

of an LCS. We can obtain an LCS by tracing back via the backtracking links from the

78

position with the maximum value until i = 0 or j = 0. Because Algorithm RLE-LCS

is extended from the framework given by Ann et al. [11], its correctness follows.

Theorem 5.2. Algorithm RLE-LCS computes the length of an LCS of X̂ and Ŷ in

O(min {ρ1, ρ2} + (R + N) × log log N) time, using O(min {ρ1, ρ2} + M + N) space,

where R denotes the number of the match blocks.

Proof. Before the algorithm starts, the numbers of entries on the bottom borders and

right borders of the match blocks can be calculated to determine which of the input

sequences is considered as sequence X.

For efficiently implementing the algorithm in space, we use linked lists M[i] for

all i ∈ {1, 2, . . . ,M} to keep the positions of all match blocks. For each match block,

we employ a one-dimensional array for its bottom border. In addition, the bounded

heap H uses O(N) space. Thus, Algorithm RLE-LCS uses O(min {ρ1, ρ2}+M +N)

space.

Building the linked lists M in line 1 takes O(M + N) time over a finite alpha-

bet [31]. Also, line 1 for computing the array F for X̂ takes O(M) time. The initial-

izations onH, L̂, and B in line 2 take O(N log log N), O(R), and O(min {ρ1, ρ2}) time,

respectively. Computing the arrays occ and χ in line 5 totally takes O(min {ρ1, ρ2})

time. The operations Heap.Max performed on H in line 8 and Heap.IncreaseLength

performed on H in line 22 take O(r log log N) time in total. With the values of T and

occ, Wi[j] in line 9 can be computed in O(1) time. For each row i, the sliding-window

maxima problem of a input sequence Wi with a given dynamic window size can be

79

solved in time linear to the number of elements in Wi. Because W1,W2, . . ., and WM

totally contain R elements, lines 12 and 16 for computing the maximal values in the

required intervals takes O(R) time. Each value in matrices B and L̂ can be calculated

in O(1) time. Summarizing the time complexity of all stages, we obtain the desired

time complexity.

5.4 Discussion

In this chapter we study the RLE-LCS problem for two sequences X and Y of lengths

m and n with M and N runs, respectively. The proposed algorithm for the RLE-LCS

problem takes O(min {ρ1, ρ2}+(R+N)×log log N) time and O(min {ρ1, ρ2}+M +N)

space. Comparing with Ann et al.’s algorithm [11] with O(min {ρ1, ρ2}+ MN) time,

our algorithm outperforms Ann et al.’s algorithm if R = o(N(M
log log N

− 1)).

80

Chapter 6

Constrained LCSs of Run-Length

Encoded Sequences

The SEQ-IC-LCS problem aries from the applications in molecular biology, and also

has applications in pattern comparison. Some of such sequences appearing in the real

world may contain several segments of contiguous identical characters. In order to

reduce the processing space and speeding up the processing time of the SEQ-IC-LCS

problem, we consider this problem of RLE sequences (abbreviated RLE-CLCS) in

this chapter, which are formally defined as follows.

Problem 6.1. (RLE-CLCS) Given two sequences X, Y and a constrained pattern

P of lengths m, n, and d with M , N , and D runs, respectively, the RLE-CLCS

problem is to find a longest sequence that is a CS of X and Y and includes P as a

subsequences.

81

Throughout this chapter, the format of input sequences is defined as follows. Let

X = x1x2 . . . xm, Y = y1y2 . . . yn, and P = p1p2 . . . pd denote two sequences and a

constrained pattern over a finite alphabet Σ, respectively. Let X̂ = αm1
1 αm2

2 . . . αmM
M

denote the RLE representation of X, where αi is the unique character of the i-th run

in X and mi is the length of this run. We also let X̂[i..j] denote the RLE substring

of X from run i to run j if 1 ≤ i ≤ j ≤ M , and an empty string otherwise. Likewise,

Ŷ = βn1
1 βn2

2 . . . βnN
N and P̂ = γd1

1 γd2
2 . . . γdD

D denote the RLE representations of Y and

P , and Ŷ [i..j] for 1 ≤ i ≤ j ≤ N and P̂ [i..j] for 1 ≤ i ≤ j ≤ D denote the RLE

substrings of Y and P from run i to run j, respectively.

In the following, we show some properties of the RLE-CLCS problem for devis-

ing a simple algorithm, and then present the other algorithm for speeding up the

computation.

6.1 A Simple Algorithm

Lemma 6.1 shows the characterization of an optimal solution to the RLE-CLCS prob-

lem based on the solutions to its smaller subproblems.

Lemma 6.1. Let CLCS(X, Y, P) denote the length of a longest sequence which is a

CS of X and Y and includes P as a subsequence. Given two distinct symbols σ1, σ2

and three nonnegative integers s1, s2, s3, the following properties hold:

(1) CLCS(Xσs1
1 , Y σs2

1 , Pσs3
1) = CLCS(Xσs1−d

1 , Y σs2−d
1 , Pσs3−d

1) + d, where d =

82

X

Y

bottom

right

top

left

P

(a) (b)

up

down

Figure 6.1: A cuboid corresponding a triple run. (a) The bottom border-page. (b)

The right border-page.

min {s1, s2, s3}.

(2) CLCS(Xσs1
1 , Y σs2

1 , Pσs3
2) = CLCS(Xσs1−d

1 , Y σs2−d
1 , Pσs3

2)+d, where d = min {s1, s2}.

(3) CLCS(Xσs1
1 , Y σs2

2 , P) = max {CLCS(Xσs1
1 , Y, P), CLCS(X, Y σs2

2 , P)}.

Similar to the RLE-LCS problem, the runs of X, Y , and P induce the partition

of the DP matrix for the CLCS problem into run-sized cuboids. We can visualize the

three-dimensional DP matrix as M × N × Q cuboids, and each cuboid corresponds

to a triple of runs in X̂, Ŷ , and P̂ . A cuboid (i, j, k) is fully match if αi = βj = γk

and is partially match if αi = βj and αi 6= γk. For the case of αi 6= βj, the cuboid

(i, j, k) is mismatch.

A six-dimensional matrix C is used for the bottom border-pages (see Figure 6.1(a)

as an example) and right border-pages (see Figure 6.1(b) as an example) of cuboids,

where Ci,j,k[mi, h, l] holds the value of the h-th entry at level l in the bottom border-

page of the cuboid (i, j, k) and Ci,j,k[v, nj, l] holds the value of the v-th entry at level l

in the right border-page of the cuboid (i, j, k). Notice that C is physically mapped to

83

the original three-dimensional DP matrix, and we can employ two two-dimensional

arrays for the bottom border-page and right border-page of each cuboid to implement

the matrix C. According to Lemma 6.1, the following recurrences can compute each

entry Ci,j,k[v, h, l] for v = mi or h = nj with proper initialization.

1. Cuboid (i, j, k) is fully match:

Ci,j,k[v, h, l] =

Ci−1,j,k[mi−1, h− v, l − v] + v if l > v and h > v,

Ci,j−1,k[v − h, nj−1, l − h] + h if l > h and v > h,

Ci−1,j−1,k[mi−1, nj−1, l − h] + h if l > h and v = h,

Ci−1,j,k−1[mi−1, h− v, qk−1] + v if h > v and v ≥ l,

Ci,j−1,k−1[v − h, nj−1, qk−1] + h if v > h and h ≥ l,

Ci−1,j−1,k−1[mi−1, nj−1, qk−1] + h if v = h and h ≥ l.

(6.1)

2. Cuboid (i, j, k) is partially match:

Ci,j,k[v, h, l] =

Ci−1,j,k[mi−1, h− v, l] + v if h > v,

Ci,j−1,k[v − h, nj−1, l] + h if v > h,

Ci−1,j−1,k[mi−1, nj−1, l] + h if v = h,

(6.2)

3. Cuboid (i, j, k) is mismatch:

Ci,j,k[v, h, l] = max {Ci−1,j,k[mi−1, h, l], Ci,j−1,k[v, nj−1, l]}. (6.3)

84

CM,N,D[mM , nN , dD] gives the length of a longest sequence that is a CS between X̂

and Ŷ and includes P̂ as a subsequence. Because there are O(d×(Mn+mN−MN))

entries needed to compute and the computation of each entry requires O(1) time, the

following theorem is stated.

Theorem 6.1. The RLE-CLCS problem can be solved in O(d× (Mn + mN −MN))

time and space.

6.2 A Faster Algorithm

Let L̂[i, j, k] denote the length of a longest sequence which is a CS of X̂[1..i] and Ŷ [1..j]

and includes P̂ [1..k] as a subsequence, i.e., L̂[i, j, k] = Ci,j,k[mi, nj, dk]. Because the

L̂-values might increase only when a match run between X̂ and Ŷ is encountered, in

this section we extend the idea of Algorithm RLE-LCS shown in Section 5.3 to the

bottom border-pages of the fully match and partially match cuboids for speeding up

the computation.

The algorithm proceeds to the match runs between X̂ and Ŷ at each position of

P in row-major order. A linked list M[i], for each run i in X̂, is prepared for keeping

an increasing list of the positions of the runs j in Ŷ such that αi = βj. When row i

at level l of layer k is processed, the bounded heap Hk,l has kept a position with the

corresponding C-value for each j′′ ∈ {1, 2, . . . , N} such that the value is the maximum

85

among the positions (i′′, j′′) for all i′′ ∈ {1, 2, . . . , i}, and empty if no such position

exists. For each j in M[i], we perform the operation Heap.Max(H to obtaining the

position (i∗, j∗) for j∗ < j with the maximum value among all positions in Hk,l, and

then set Ti,k[j, l] = Ci∗,j∗,k[mi∗ , nj∗ , l].

In the original matrix, we can conclude that a path beginning at Ci,j,k[1, 1, 1] of a

cuboid (i, j, k) is a monotonically nondecreasing path and convert it into a path that

consists of the following subpaths:

• a path that traverses the fully match cuboids by strictly three-dimensional di-

agonal moves (and strictly plane diagonal moves in some situation),

• a path that traverses the partially match cuboids by strictly plane diagonal

moves, and

• a path that traverses the mismatch cuboids by either strictly plane horizontal

moves or strictly plane vertical moves.

By the property of path conversion, we can determine Ci,j,k[v, h, l] by the position

on row i−1 at layer k or on row i at layer k−1 where the path passing through entry

(mi, h, l) of cuboid (i, j, k) crosses. Figure 6.2 illustrates the idea of our approach to

the RLE-CLCS problem. For any entry (mi, h, l) of cuboid (i, j, k), suppose that the

converted path passing through it crosses row i−1 at entry (mi−1, h
′, l) of cuboid (i−

1, j′, k). The value given by entry (mi, h, l) of cuboid (i, j, k), denoted by Ci,j,k[mi, h, l],

is derived from the maximum length of two paths ending at the entry over the LCS

matric function. One is passing through entry (mi−1, h
′, l′) of cuboid (i − 1, j′, k),

86

a8
i

i

j

j

j

k

k

(mi, h, l)

(mi 1, h , l)

Finding the maximum length of paths

passing through these vertices

Figure 6.2: Solving the RLE-CLCS problem.

and the other is with the maximum length amongst such the paths passing through

entry (mi−1, nj′′ , l
′′) of cuboid (i − 1, j′′, k) for all j′′ ∈ {j′ + 1, j′ + 2, . . . , j − 1} and

l′′ ∈ {l′ + 1, l′ + 2, . . . , l − 1}. In addition, the value given by entry (mi−1, h
′, l′′) of

cuboid (i − 1, j′, k) can be further derived from the maximum of the values given

by entry (mi−1, nj′−1, l
′) of cuboid (i − 1, j′ − 1, k) and entry (mi′′ , h

′, l′) of cuboid

(i′, j′, k), where i′ denotes the index of the former run of X̂[i] with the same character

αi in X̂.

Let Wi,k[j, l] denote the maximum possible length of all paths passing through

entry (mi, h, l) of a fully or partially match cuboid (i, j, k), which equals to Ti,k[j, l]

plus the number of occurrences of αi from the position with maximum value to the

end of Y .

In order to obtain the maximum length amongst the paths passing through entry

(mi−1, nj′′ , l
′′) of cuboid (i − 1, j′′, k) for all j′′ ∈ {j′ + 1, j′ + 2, . . . , j − 1} and l′′ ∈

87

{l′ + 1, l′ + 2, . . . , l − 1}, a list ϕi,j,k,h is prepared for maintaining the W -values whose

positions of the fully or partially match cuboids are walked across by the path ending

at entry (mi, h, dk) of cuboid (i, j, k). Notice that every entry Wi,k[j, l] is contained

in a unique list. We can obtain the maximum value within all queried ranges of the

list ϕi,j,k,k by employing Algorithm DSW-Max.

Summarizing the above observations, we can now deduce the following lemmas

that provide the basis for efficiently computing the entries in the bottom border-page

of a fully or partially match cuboid. Let occi[j, h] denote the number of occurrences

of αi in the suffix Y [π..m], where π is the position of the h-th entry of Ŷ [j] in Y .

Lemma 6.2. If the path passing through entry (mi, h, l) of cuboid (i, j, k) crosses row

i− 1 on entry (mi−1, h
′, l′) of cuboid (i− 1, j′, k) for some 1 ≤ j′ ≤ j, Ci,j,k[mi, h, l] is

given by max {τ1 − occi[j, h] + 1, τ2 + mi}, where τ1 and τ2 are defined as follows.

• τ1 is the maximum value within the range [j′ + 1, j] of the list ϕi,j,k,h.

• τ2 = max {Ci′,j′,k[mi′ , h
′, l′], Ti,k[j

′, l′]}, where i′ denotes the index of the former

run of the i-th run with the same character αi in X̂.

Lemma 6.3. If the path passing through entry (mi, h, l) of cuboid (i, j, k) crosses layer

k − 1 on entry (v′, h′, dk−1) of cuboid (i, j′, k − 1) for some 1 ≤ j′ ≤ j, Ci,j,k[mi, h, l]

is given by max {τ1 − occi[j, h] + 1, τ2 + mi}, where τ1 is the maximum value within

the range [j′ + 1, j] of the list ϕi,j,k,h and τ2 = Ti,k[j
′, 0].

88

Lemma 6.4. If the path passing through entry (mi, h, l) of cuboid (i, j, k) does not

cross row i − 1 nor layer k − 1, the path does not yield a legal CS passing through

entry (mi, h, l) of cuboid (i, j, k), i.e., Ci,j,k[mi, h, l] = −∞.

After Ci,j,k[mi, nj, l] is computed, we place the item of position (i, j, k, l) with its

value Ci,j,k[mi, nj, l] into the insertion list I. At the end of the iteration on row i at

level l of layer k, we perform the operation Heap.IncreaseLength for each entry in I

on Hk,l. After all fully match and partially match cuboids are processed, we query

the position that has the maximum value amongst all positions in HD,dD
with key

smaller than N +1. The maximum value is the length of a solution sequence. We can

obtain the sequence by tracing back through the backtracking links from the position

with the maximum value until i = 0 or j = 0. Theorem 6.2 summarized the main

result.

Theorem 6.2. There exists an O(d × (min {ρ1, ρ2} + (R + N) × log log N))-time

algorithm, using O(d × min {ρ1, ρ2} + N + M) space, for computing the length of a

longest sequence which is a CS of X̂ and Ŷ and includes P̂ as a subsequence, where

R denotes the number of the match runs between X̂ and Ŷ , and ρ1 and ρ2 denote the

numbers of entries in the bottom border-pages and right border-pages of the partially

match cuboids at the first layer, respectively.

Proof. Before the algorithm starts, the numbers of entries in the bottom borders and

right borders of the match blocks can be calculated to determine which of the input

sequences is considered as sequence X.

89

For efficiently implementing the algorithm in space, we use linked lists M[i] for

all i ∈ {1, 2, . . . , M} to keep the positions of the match runs between X̂ and Ŷ .

For each fully or partially match cuboid, we employ a two-dimensional array for its

bottom border-page. We also employ a bounded heap of size N , which can be repeatly

used at each position of P . Thus, computing the length of a solution sequence uses

O(d×min {ρ1, ρ2}+ N + M) space.

Building the linked lists M takes O(M +N) time over a finite alphabet [31]. The

initializations on all bounded heaps Hk,l and matrix C take O(d × (min {ρ1, ρ2} +

N log log N)) time in total. Building all lists ϕ takes O(d × min {ρ1, ρ2}) time, and

solving the dynamic sliding-window maxima problem with the input sequences ϕ takes

O(d×R) time because there are d×R elements in ϕ. Matrix C can be computed by

employing Algorithm RLE-LCS d times with proper preprocesses, and Lemmas 6.2

to 6.4 compute each required entry of the matrix C in constant time. Summarizing

the time complexity of all stages, we conclude that the time complexity of solving the

RLE-CLCS problem is O(d× (min {ρ1, ρ2}+ (R + N)× log log N)).

6.3 Discussion

In this chapter we consider the RLE-CLCS problem for two sequences X, Y and

a constrained pattern P of lengths m, n, and d with M runs, N runs, and D runs,

respectively. We first gave a simple algorithm which takes O(d×(Mn+mN)) time and

space. The second proposed algorithm takes O(d×(min {ρ1, ρ2}+(R+N)×log log N))

90

time and O(d×min {ρ1, ρ2}+ N + M) space by adapting Algorithm RLE-LCS.

In 2009, Ann et al. [12] gave an algorithm for the RLE-CLCS algorithm requiring

O(d× (min {ρ1, ρ2}+ MN) + λ) time, where λ denotes the number of the entries of

whole boundaries of the fully match cuboids. Comparing with Ann et al.’s algorithm,

our latter algorithm outperforms Ann et al.’s algorithm if R = o(MN
log log N

+ λ
d log log N

−

N).

91

92

Chapter 7

Concluding Remarks

In this chapter, we summarize the results reported in this dissertation, and then

describe several further directions regarding the problems studied in this dissertation.

7.1 Summary and Contributions

This dissertation studied three research topics related to the LCS problem, which

are the CLCS (constrained LCS) problem, the HC-LCS (hybrid constrained LCS)

problem, and the LCS and CLCS problems of RLE sequences.

In Chapter 3, we studied four variants of the LCS problem, which are the SEQ-

IC-LCS, STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems. Table 7.1 shows

our results as well as the previous works. Four O(mnd)-time and O(mnd)-space

algorithms were separately presented for the four problems, where m, n, and d denote

the lengths of two sequences and a constrained pattern, respectively. In fact, the

93

Table 7.1: Previous results and ours for the CLCS problem

Problem Single Pattern w patterns for w ≥ 2 Hardness

SEQ-IC-LCS

O(m2n2d) time and space [72]

O(mn×∏w
k=1 dk) NP-complete [35]

O(mnd) time and space†[29]

O(mnd) time and space [17]

O(dr × log log n + n) time and

O(d× (r + n)) space [46]

STR-IC-LCS O(mnd)† O(mnd1d2) if w = 2 NP-complete

SEQ-EC-LCS O(mnd)† O(mn×∏w
k=1 dk) NP-complete

STR-EC-LCS O(mnd)† O(mn×∏w
k=1 dk)

† The space can be reduced to O(d× (m + n)) by the space-saving strategy.

space requirement can be further reduced to O(d× (m + n)) by applying the space-

saving strategy for the LCS problem introduced in Section 2.2. We also studied the

four problems with an arbitrary number of constrained patterns, which were shown

to be NP-complete except for the STR-EC-LCS problem, and presented the exact

algorithms for the four problems. Moreover, it can be further demonstrated that the

four problems are special cases of sequence alignments with linear-scoring functions.

In Chapter 4, we studied the HC-LCS problem, which is a hybrid problem of

the SEQ-IC-LCS and SEQ-EC-LCS problems. Figure 7.2 shows the results for our

94

Table 7.2: Our results for the HC-LCS problem

Problem Approach Time Complexity Space Complexity

HC-LCS
A DP algorithm O(mnde) O(mnde)†

Speeding up the computation O((der + n)× log log n) O(de× (r + n))

† The space can be reduced to O(de× (m + n)) by the space-saving strategy.

two algorithms. The former algorithm, using traditional DP techniques, requires

O(mnde) time and space, where m, n, d, and e denote the lengths of two sequences

and two constrained patterns, respectively. Let r be the total number of ordered

pairs of positions at which two sequences match each other. The latter algorithm,

restricting the computation on the positions of matches between two sequences, takes

O(der log log n) time with O(n log log n) time for initialization. In the worse case,

the latter algorithm requires O(demn log log n) time. However, the complexity of

O((der+n)× log log n)) are superior to O(mnde) if r = o(mn
log log n

− n
de

). Consequently,

the latter algorithm outperforms the former algorithm if r = o(n(m
log m

− 1)). In fact,

the space requirement of the HC-LCS problem can be reduced to O(de× (m+n)) by

applying the space-saving strategy for the LCS problem introduced in Section 2.2.

In Chapter 5, we considered the RLE-LCS problem. Let two sequences be of

lengths m and n with M and N runs, respectively. We first introduced Ann et

al.’s algorithm [11] which takes O(min {ρ1, ρ2} + MN) time and devised a linear-

95

time algorithm for computing the maxima within a sliding window upon a numer-

ical sequence where the window size is dynamic. We then modified Ann et al.’s

approach by adapting Hunt-Szymanski strategy and the approach to the sliding-

window maxima problem with a dynamic window size. The new algorithm, taking

O(min {ρ1, ρ2} + (R + N) × log log N) time, outperforms Ann et al.’s algorithm if

R = o(N(M
log log N

− 1)), where R denotes the number of runs at which the two se-

quences match each other, and ρ1 and ρ2 denote the numbers of entries on the bottom

borders and right borders of the blocks whose corresponding runs match each other,

respectively.

In Chapter 6, we studied the RLE-LCS problem. Let two sequences and a con-

strained pattern be of lengths m, n, and d with M runs, N runs, and D runs, respec-

tively. We presented two algorithms for the RLE-CLCS problem. The former algo-

rithm requires O(d× (Mn + mN)) time and space. By adapting our approach to the

RLE-LCS problem shown in Section 5.3 and employing a bounded heap, we delivered

the latter algorithm for the RLE-CLCS problem, which requires O(d×(min {ρ1, ρ2}+

(R + N)× log log N)) time and O(d×min {ρ1, ρ2}+ N + M) space. The latter algo-

rithm outperforms Ann et al.’s algorithm [12] with O(d× (min {ρ1, ρ2}+ MN) + λ)

time if R = o(MN
log log N

+ λ
d log log N

−N), where λ denotes the number of the entries of

whole boundaries of the fully match cuboids. Table 7.3 summarizes our results as

well as the previous works for the RLE-LCS and RLE-CLCS problems.

96

T
ab

le
7.

3:
P

re
v
io

u
s

re
su

lt
s

an
d

ou
rs

fo
r

th
e

R
L
E

-L
C

S
an

d
R

L
E

-C
L
C

S
p
ro

b
le

m
s

P
ro

b
le

m
P

re
v
io

u
s

R
es

u
lt

s
(T

im
e

C
om

p
le

x
it
y
)

O
u
r

R
es

u
lt

s
(T

im
e

C
om

p
le

x
it
y
)

R
L
E

-L
C

S

O
(M

n
+

m
N

)
[2

4]

O
(m

in
{ρ

1
,ρ

2
}+

(R
+

N
)
×

lo
g

lo
g

N
)

O
((

M
+

N
+

R
)
×

lo
g
(M

+
N

+
R

))
[5

8]

O
(M

N
lo

g
(M

N
))

[1
4]

O
(M

n
+

m
N

)
[1

5]

O
(M

n
+

m
N
−

M
N

)
[3

4]

O
(m

in
{M

n
,m

N
})

[5
3]

O
(m

in
{ρ

1
,ρ

2
}+

M
N

)
[1

1]

R
L
E

-C
L
C

S
O

(d
×

(m
in
{ρ

1
,ρ

2
}+

M
N

)
+

λ
)

[1
2]

O
(d
×

(M
n

+
m

N
))

O
(d
×

(m
in
{ρ

1
,ρ

2
}+

(R
+

N
)
×

lo
g

lo
g

N
))

97

7.2 Further Work

Several directions related to the LCS problem are worthy of further study, such as the

LCS problems of two-dimensional sequences, the alignment models of the four CLCS

problems with a scoring scheme of affine gap penalties, and the CLCS problems of

approximate pattern occurrences, which are stated as follows.

• Longest Common Subsequences of Two-Dimensional Sequences. The

issues we mentioned in this dissertation are sequence comparisons with one-

dimensional sequences, such as texts, numerical sequences, and musical se-

quences. For those two-dimensional sequences like images, it may not work

by directly deducing an approach to comparing such sequences from the known

approaches to comparing one-dimensional sequences. Many studies have de-

voted to two-dimensional pattern matching [6, 7, 8, 10, 19, 33, 49, 79]. It would

be interesting to consider the LCS problem of two-dimensional sequences.

• Constrained Sequence Alignments with Affine Gap Penalties. The

constrained sequence alignment problems, a alignment model of the SEQ-IC-

LCS problem, arose from applications in molecular biology [70] in 2003. Since

then, much ink has been spent on the problem [28, 30, 38, 39, 40, 54, 64, 65,

73, 74]. For aligning nucleic sequences, the scoring scheme of affine gap penal-

ties is commonly used. The problem with affine gap penalties would become

challenging issues in sequence comparison.

98

• Approximate Constrained Longest Common Subsequences. Arslan

and Eǧecioǧlu [17] have investigated the approximate SEQ-IC-LCS problem of

finding a longest sequence which is a common subsequence of two sequences

and contains a subsequence whose edit distance from the constrained pattern is

less than a given positive integer parameter. It would be interesting to consider

such a criterion for other CLCS problems studied in this dissertation.

99

100

Bibliography

[1] A.V. Aho, D.S. Hirschberg, and J.D. Ullman. Bounds on the complexity of the

longest common subsequence problem. Journal of ACM, 23:1–12, 1976.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[3] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

D.J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[4] C.E.R. Alves, N. Cáceres, and S.W. Song. An all-substrings common subsequence

algorithm. Discrete Applied Mathematics, 156(7):1025–1035, 2008.

[5] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Pro-

ceeding of the 2nd IEEE Data Compression Conference (DCC’92), pp. 279–288,

1992.

101

[6] A. Amir, G, Benson, and M. Farach. An alphabet independent approach to

two dimensional pattern matching. SIAM Journal on Computing, 23(2):313–323,

1994.

[7] A. Amir, A. Butman, M. Crochemore, G.M. Landau, and M. Schaps. Two-

dimensional pattern matching with rotations. In Proceeding of the 14th Annual

Symposium on Combinatorial Pattern Matching (CPM’03), pp. 17–31, 2003.

[8] A. Amir and E. Chencinski. Faster Two Dimensional Scaled Matching. Algorith-

mica, 56(2):214–234, 2010.

[9] A. Amir, G.M. Landau, and D. Sokol. Inplace run-length 2d compressed search.

Theoretical Computer Science, 290(3):1361–1383, 2003.

[10] A. Amir, D. Tsur, and O. Kapah. Faster two dimensional pattern matching

with rotations. In Proceeding of the 15th Annual Symposium on Combinatorial

Pattern Matching (CPM’04), pp. 409–419, 2004.

[11] H.Y. Ann, C.B. Yang, C.T. Tseng, and C.Y. Hor. A fast and simple algorithm

for computing the longest common subsequence of run-length encoded sequences.

Information Processing Letters, 108(6):360–364, 2008.

[12] H.Y. Ann, C.B. Yang, C.T. Tseng, and C.Y. Hor. Fast algorithms for com-

puting the constrained LCS of run-length encoded strings. In Proceedings of

the 2009 International Conference on Bioinformatics and Computational Biol-

ogy (BIOCOMP’09), vol. 2, pp. 646–649, 2009.

102

[13] A. Apostolico and C. Guerra. The longest common subsequence problem revis-

ited. Algorithmica, 2:315–336, 1987.

[14] A. Apostolico, G.M. Landau, and S. Skiena. Matching for run-length encoded

sequences. Journal of Complexity, 15(1):4–16, 1999.

[15] O. Arbell, G.M. Landau, and J.S.B. Mitchell. Edit distance of run-length encoded

sequences. Information Processing Letters, 83(6):307–314, 2002.

[16] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradzev, On economic

construction of the transitive closure of a directed graph. Soviet mathematics -

Doklady, 11(5):1209–1210, 1970 (in English).

[17] A.N. Arslan and Ö. Eǧecioǧlu. Algorithms for the constrained longest common

subsequence problems. International Journal of Foundations of Computer Sci-

ence, 16(6):1099–1109, 2005.

[18] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence

algorithms. In Proceedings of the 7th International Symposium on Sequence Pro-

cessing and Information Retrieval (SPIRE’00), pp. 39–48, 2000.

[19] R. Bird. Two dimensional pattern matching. Information Processing Letters,

6(5):168–170, 1977.

[20] D. Bodson, K.R. McConnell, and R. Schaphorst. FAX: Digital Facsimile Tech-

nology and Applications, Artech House, Norwood, MA, 1989.

103

[21] P. Bonizzoni, G.D. Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette. Exem-

plar longest common subsequence. IEEE Transactions on Computational Biology

and Bioinformatics, 4(4):535–543, 2007.

[22] E.A. Breimer, M.K. Goldberg, and D.T. Lim. A learning algorithm for the longest

common subsequence problem. Journal of Experimental Algorithmics, 8(2.1),

2003.

[23] G.S. Brodal, K. Kaligosi, I. Katriel, and M. Kutz. Faster algorithms for comput-

ing longest common increasing subsequence. In Proceedings of the 17th Annual

Symposium on Combinatorial Pattern Matching (CPM’06), pp. 330–341, 2006.

[24] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of

run-length coded sequences. Information Processing Letters, 54(2):93–96, 1995.

[25] K.M. Chao and L. Zhang. Sequence Comparison: Theory and Methods, Springer,

2009.

[26] Y.C. Chen and K.M. Chao. On the generalized constrained longest common

subsequence problems. Journal of Combinatorial Optimization, accepted, 2009.

[27] K.Y. Chen, P.H. Hsu, and K.M. Chao. Hardness of comparing two run-length

encoded strings. Journal of Complexity, accepted, 2010.

104

[28] F.Y.L. Chin, N.L. Ho, T.W. Lam, and P.W.H. Wong. Efficient constrained mul-

tiple sequence alignment with performance guarantee. Journal of Bioinformatics

and Computational Biology, 3(1):1–18, 2005.

[29] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, and S.K. Kim. A simple al-

gorithm for the constrained longest common sequence problems. Information

Processing Letters, 90:175–179, 2004.

[30] Y.S. Chung, C.L. Lu, and C.Y. Tang. Constrained sequence alignment: a general

model and the hardness results. Discrete Applied Mathematics, 155:2471–2486,

2007.

[31] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-

rithms, 2nd edition, MIT Press and McGraw-Hill, 2001.

[32] M. Crochemore, G.M. Landau, and M. Ziv-Ukelson. A subquadratic sequence

alignment algorithm for unrestricted scoring matrices. SIAM Journal on Com-

puting, 32(6): 1654–1673, 2003.

[33] J.J. Fanm and K.Y. Su. The design of efficient algorithms for two-dimensional

pattern matching, IEEE Transactions on Knowledge and Data Engineering,

7(2):318–327, 1995.

[34] V. Freschi and A. Bogliolo. Longest common subsequence between run-length-

encoded sequences: a new algorithm with improved parallelism. Information

Processing Letters, 90(4):167–173, 2004.

105

[35] Z. Gotthilf, D. Hermelin, and M. Lewenstein. Constrained LCS: hardness and

approximation. In Proceedings of the 19th Annual Symposium on Combinatorial

Pattern Matching (CPM’08), pp. 255–262, 2008.

[36] R.I. Greenberg. Fast and simple computation of all longest common subse-

quences. Technical Report, Department of Mathematical and Computer Sciences,

Loyola University, Chicago, 2002.

[37] D. Gusfield. Algorithms on Sequences, Trees, and Sequences, Cambridge Univer-

sity Press, 1997.

[38] D. He and A.N. Arslan. A space-efficient algorithm for the constrained pairwise

sequence alignment problem. Genome Informatics, 16(2):237–246, 2005.

[39] D. He and A.N. Arslan. A parallel algorithm for the constrained multiple se-

quence alignment problem. In Proceedings of the 5th IEEE Symposium on Bioin-

formatics and Bioengineering (BIBE’05), pp. 258–262, 2005.

[40] D. He, A.N. Arslan, and A.C.H. Ling. A fast algorithm for the constrained

multiple sequence alignment problem. Acta Cybernetica, 17(4):701–717, 2005.

[41] D.S. Hirschberg. A linear space algorithm for computing maximal common sub-

sequences. Communications of ACM, 18:341–343, 1975.

[42] D.S. Hirschberg. Algorithms for the longest common subsequence problem. Jour-

nal of ACM, 24:664–675, 1977.

106

[43] W.J. Hsu and M.W. Du. New algorithms for the LCS problem. Journal of Com-

puter and System Sciences, 29:133–152, 1984.

[44] G.S. Huang, J.J. Liu, and Y.L. Wang. Sequence alignment algorithms for run-

length-encoded sequences. In Proceedings of the 14th Annual International Com-

puting and Combinatorics (COCOON’08), pp. 319–330, 2008.

[45] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common

subsequence. Communications of ACM, 20(5):350–353, 1977.

[46] C.S. Iliopoulos and M.S. Rahman. New efficient algorithms for the LCS and

constrained LCS problems. Information Processing Letters, 106:13–18, 2008.

[47] C.S. Iliopoulos. and M.S. Rahman. A new efficient algorithm for computing the

longest common subsequence. Theory of Computing Systems, 355–371, 2008.

[48] W. Just. Computational complexity of multiple sequence alignment with SP-

score. Journal of Computational Biology, 8(6):615-23, 2001.

[49] J. Kärkkäinen and E. Ukkonen. Two and higher dimensional pattern matching in

optimal expected time. In Proceedings of the 5th annual ACM-SIAM symposium

on Discrete algorithms, pp.715–723, 1994.

[50] J.W. Kim, A. Amir, G.M. Landau, and K. Park. Computing similarity of run-

length encoded sequences with affine gap penalty. Theoretical Computer Science,

395(2–3):268–282, 2008.

107

[51] G.M. Landau, E.W. Myers, and M. Ziv-Ukelson. Two algorithms for LCS con-

secutive suffix alignment. Journal of Computer and System Sciences, 73(7):1095–

1117, 2007.

[52] J.J. Liu, G.S. Huang, Y.L. Wang, and R.C.T. Lee. Edit distance for a run-

length-encoded sequence and an uncompressed sequence. Information Processing

Letters, 105(1):12–16, 2007.

[53] J.J. Liu, Y.L. Wang, and R.C.T. Lee. Finding a longest common subsequence

between a run-length-encoded sequence and an uncompressed sequence. Journal

of Complexity, 24(2):173–184, 2008.

[54] C.L. Lu and Y.P. Huang. A memory-efficient algorithm for multiple sequence

alignment with constraints. Bioinformatics, 21:20–30, 2005.

[55] D. Maier. The complexity of some problems on subsequences and supersequence.

Journal of ACM, 25:322–336, 1978.

[56] V. Mäkinen, E. Ukkonen, and G. Navarro. Approximate matching of run-length

compressed sequences. Algorithmica, 35(4):347–369, 2003.

[57] W.J. Masek and M.S. Paterson. A faster algorithm computing string edit dis-

tances. Journal of Computer and System Sciences, 20:18–31, 1980.

108

[58] J.S.B. Mitchell. A geometric shortest path problem, with application to comput-

ing a longest common subsequence in run-length encoded sequences. Technical

Report, Department of Applied Mathematics, SUNY, Stony Brook, NY, 1997.

[59] E.W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,

1:251–266, 1986.

[60] E.W. Myers. A fast bit-vector algorithm for approximate string matching based

on dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

[61] N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence

algorithm suitable for similar text strings. Acta Informatica, 18:171–179, 1982.

[62] S.B. Needleman and C.D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–453, 1970.

[63] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence compar-

ison. In Proceedings of the National Academy of Sciences of the United States of

America, vol. 85, pp. 2444–2448, 1988.

[64] Z.S. Peng and H.F. Ting. Time and space efficient algorithms for constrained

sequence alignment. In Proceedings of the 9th International Conference on Im-

plementation and Application of Automata (CIAA’04), pp. 237–246, 2004.

109

[65] Y.H. Peng, C.B. Yang, K.S. Huang, and K.T. Tseng. An algorithm and applica-

tions to sequence alignment with weighted constraints. International Journal of

Foundations of Computer Science, 21(1):51–59, 2010.

[66] P.A. Pevzner. Computational Molecular Biology: an Algorithmic Approach, The

MIT Press, Cambridge, MA, 2000.

[67] C. Rick. Simple and fast linear space computation of longest common subse-

quence. Information Processing Letters, 75:275–281, 2000.

[68] C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal

of Mathematics, 13:179–191, 1961.

[69] T.F. Smith and M.S. Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147:195–197, 1981.

[70] C.Y. Tang, C.L. Lu, M.D. Chang, Y.T. Tsai, Y.J. Sun, K.M. Chao, J.M. Chang,

Y.H. Chiou, C.M. Wu, H.T. Chang, and W.I. Chou. Constrained multiple se-

quence alignment tool development and its application to RNase family align-

ment. Journal of Bioinformatics and Computational Biology, 1(2):267–287, 2003.

[71] R.E. Tarjan. Data Structure and Network Algorithms, CBMS 44 (Society for

Industrial and Applied Mathematics, Philadephia, PA, 1983.

[72] Y.T. Tsai. The constrained longest common subsequence problem. Information

Processing Letters, 88:173–176, 2003.

110

[73] Y.T. Tsai, Y.P. Huang, C.T. Yu, and C.L. Lu. MuSiC: a tool for multiple se-

quence alignment with constraints. Bioinformatics, 20:2309–2311, 2004

[74] H.J. Tsai, C.Y. Lin, Y.C. Chung, and C.Y. Tang. An Efficient Parallel Algorithm

for Constraint Multiple Sequence Alignment. In Proceedings of the International

Computer Symposium (ICS’06), pp. 1261–1266, 2006.

[75] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and

linear space. Information Processing Letters, 6:80–82, 1977.

[76] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an

efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[77] R.A. Wagner and M.J. Fischer. The sequence-to-string correction problem. Jour-

nal of ACM, 21(1):168–173, 1974.

[78] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Jour-

nal of Computational Biology, 1:337-348, 1994.

[79] R.F. Zhu and T. Takaoka. A technique for two-dimensional pattern matching.

Communications of the ACM, 32(9):1110–1120, 1989.

111

