IR Bt LR JEX S g
FALm=

Department of Mathematics

College of Science

National Taiwan University

Master Thesis

CRAL IR S ]

Trace Maps for Faermal Groups,over Local Fields

5 AR

Yen-Ying Lee

a‘,a Wikt mER 2L
Advisor: Ki-Seng Tan, Ph.D.

¢ E9 K99 £ 6

June, 2010



AR LR Hh iy FHORM L R LT L8 & Rinly B e HEF Y
ghiht s BE 7 IEU*.JE&J SAMRERE YRR 0 ¥ A E L B AF
?ﬁéﬁﬁﬁﬁofﬂi@%ﬁ%rﬁﬁﬁ%:immmﬁ;%W#wg
LI R ET o B A e s A RE PR B ES ROk Y
HERN RS S E L

RHFS A VELRZEE S A B TP R F1 LG R
w,%u—;Piﬁ%f**o—wy4mk§w’%$\u TR
1&:‘~%@qu—:}f U Piad £k > & iﬁpﬁc Fgﬂg 4
IS Blis kivhe B ivd -ﬁ%%%mﬁk’%%ﬂ%&*ﬁﬁ
B4 o ) L_1.J|L L'-'ﬁﬂ.{w{

Bofs o AR PSR e g jﬁ?%ﬁﬁu% A E g
ﬁﬁﬁfm”i“”ﬁ%ﬁiJ” LR BRAT S B B
TR s AE TR o A;:' :

*L-ﬁ"!.,g

\

=
-,
L ]

i, ¥ o] e %‘m L e
L :{ - }_"ﬁ'-- :|_I“"l"'

EA15)
i?-.'l HJ?‘?"‘{ -jh_.-.]




i &

S T AEE R E TR BRI R
Bt g

MAET : pApat AN R LR A

1i

F_*



Abstract

In this paper, we discuss properties of trace maps for formal groups over
local field and their application to abelian varieties.

Keywords:trace map, formal group, local field, abelian variety
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Trace Maps for Formal Groups over Local Fields

Yen-Ying Lee

1 Introduction

Consider a complete local field F' that is either a finite extension of Q, or
the field of fraction of the formal power series ring F[[t]] over a finite field F of
characteristic p. Let A be an abelian variety defined over F' and let K/F be a
ZLp-extension. A celebrated theorem of Mazur saysif A has good ordinary reduction

and char.(F) = 0, then

TGl ), A46R)) 555 -

p—

and the bound can be given fin ter ogﬁ_é;&e"dmtion of A (7], Proposition 4.3.9).

|
The proof is mainly based-on analysing tlﬂAp—diVi'sible group of the associated formal
b= 1 | ¥

|

group .# (the kernel of the reduet OP). !I i

In the process of time, the’fé"has been gepergi:izations of the theorem as well
as simplifications of the proof. For iﬁstance, under the condition that A has good
ordinary reduction, Tan [5] shows that the theorem holds for every ZZ—extension over
every local field, Coates and Greenberg [1] extends the theorem to the case where
char.(F) = 0 and K/F is a deeply ramified extension. Here we have to remind the
reader that every (pro-finite) Galois extension K /F' such that the Galois group is a
p-adic Lie group is deeply ramified (Theorem 2.13, [0]). There is a common feature
in both works. Indeed, to deduce (), they both prove, under their own conditions,
the equality

H'(F,.7) = H(Gal(K/F), Z (mg)), (1.2)

where mg denote the maximal ideal of (the ring of integers) of K.
The work of [1] is truly ingenious, as it depends only on well-known ramification

theory while its result is much more general than others. It proves that () holds
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if # is any commutative formal group over F' and K/F is deeply ramified. The only
drawback is it is limited to the condition that F'is of characteristic zero. Considering
this, one might wonder if it is possible to carry over the theory to the characteristic
p case. It turns out that after some modification, the theory of deeply ramification
can also be established in characteristic p so that every ramified Zz—extension is
deeply ramified and (I2) holds for every commutative formal group .# and every
deeply ramified extension K/F. This is described in [6], in which one can also find

the following surprising consequence:

Theorem 1.1. Let F' be a local field of characteristic p and let A/F be an abelian

variety having super-singular reduction. If K/F is a ramified Z,-extension, then

(Gal(K/F @ Qp/z x T,

where T 1s a finite group.

The aim of this thesm is two- fold P(l__)_tg d}eck step by step, all details to make
sure the related assertions in [6] ? ﬁ’%ﬁeh ).t0 provide a convenient access
to the detailed documentatlon of trmr theory Thﬁ content of the thesis is as follows.

Suppose F'/F is a finite: exteﬂsion Then Cértamly Trp jp(mp) C mp and in
a way, the size of Tr, Jp(mr) / m (which is related to the different) measures the
depth of ramification of the extension.” Roughly speaking, an extension K/F is

deeply ramified if the trace map myp —mp is surjective, for every . Thus, the

ramification of F'/F is kind of “absorbed” in that of K/F. In general, we can write
FCcrhcFrkhcCc---CF,C---Clyg=K,

where each F},/F is a finite extension. Write ) = F'F},. Then my = U mp,. Also,
an & € mp, is contained in Trx g k(Mg pr) if and only if z € Trr m, (m%;), for some
k > mn. K/F is deeply ramified means not only such k exists for each z, but also a
lower bound of k can be given explicitly in terms of n as well as the valuation of x.

An immediate application of the theory is that if K/F' is deeply ramified, then

for every formal group .% over F' and every finite extension K'/K, the trace map
</VK’/K : ﬁ(mm) — 9(771;()

2



is surjective. In particular, if K'/K is a cyclic extension, then we have
H?(Gal(K'/K), . Z (mg)) = 0.

Then further computation shows
HY(Gal(K'/K), Z (mg)) = 0,

for cyclic extension. By applying the inflation-restriction exact sequence as well
as the fact that . (mg/) is a p-group, we deduce that the above holds for every
Galois extension K'/K, and hence (I2) holds, as H'(K,.% (my)) is the direct limit
of HY(Gal(K'/K), F (mx)).

We organize this thesis in the folloyving way. The theory of deeply ramification
in characteristic p is established in Cfiapter.' ¥ 1rni_chapter 2, the trace map of a

formal group is studied and (2)is proved . Then -fhe,rresult is applied in Chapter

3 to prove Theorem [ 7 P [~ ]

2 Deeply Ramified }Erxt@sidn
a1}

Most material of this se(::::ci.ior; @{“e{ from [i] ar!i(f 3], ekéept some modification that
are mostly from [6]. From now 011, we assumé" char.(F') = p. In this section, every
field extension F' is assume to a separable algebraic extension. In particular, if L
is a field extension F', then it is the union of its finite intermediate extensions, and
hence the valuation ordp on F' can be uniquely extended to L. Also, if L/F is finite,

then it had its own valuation ord; that has value 1 at every prime element. We have
ord;, = e(L/F)ordp,

where e(L/F') denotes the ramification index. Let Op, m and [ denote the ring of

integers of L, the maximal ideal and the residue field.

2.1 Ramification groups

Let L/F be a finite Galois extension with Gal(L/F) = G. We may write

Or = OFlz], z € L, as a Op-algebra ([3], I11.6, Proposition 12).

3



Lemma 2.1. Leti1 € Z,1 > —1 and g € G. The following are equivalent:
(a) g operates trivially on Or/m’.

(b) ordi(gv —wv) >i+1, for allv e Oy.
(c) ordp(gr —z) > 1+ 1.

Proof. For (a)<=>(b): Take v € Or. Then

QU =1V < gv—vEmiLJr1

<= ordp(gv—v)>i+1

For (a)<=(c): Let z; be the i;}l@gqﬁ-ﬁfagg iQ’..gL /m%. Then gx; = z; if and only
if ordy(gz — ) > i+ 1. _i;"-f ','l':':i = o O

r- - IS
Proposition 2.2. For each i | et Gy b setof g satisfied the conditions
B i e,

B «ih s 8
in Lemma P11 Then‘ithe Gy for wm:fqi g seq'ue"ﬁJce ‘uf normal subgroups of
5 oup of G and Gy = {1} for

e

L ]

G. In particularly, G(;;ﬂ) =

Tt
Ly

1> 1. 7 o, A
Proof. That G(; a normal subgr nditional (a) in Lemma P
Others are just from the deﬁn’ftlpn J’I N p'?: N ]

Zoropeisn"
Definition. The i-th lower-numbering ramification group of G = Gal(L/F) is the

set of g satisfying the conditions in Lemma P1.
Remark. Suppose H C G and F' = L¥. Then
Hugy =G NH.
The lower-numbering is compatible with taking sub-group.

Definition. The Herbrand function ¢pp : [—1,00) — [—1,00) is defined as

v 1
@ 0<u
(u) = /0 Gy : G

U, -1 <u<0.

br/F

Also, let ¢y, /r denote the inverse function of ¢ /.

4



Lemma 2.3. Denote ig(s) = ordy(sx — z). Then

1 e
br/k(u) = =1+ LT SEZGmf(ZG(s),u +1).

Proof. If uw = 1, then both sides equal —1. Suppose u > —1. Let n > 0 denote the

integer such that n — 1 < u < n and write ¢, = |G,|. Then

n—1

1 n
RHS = —-1+— (gm—gm+1)(m—|—1)—|—g (u+1)
90 "~ 9o
n—1
= Im Iy 41— )
— 9 Yo
= </5L/K( )

Definition. Define the upper-numbering m’aﬁiﬁcation group as

G(U) i G(u),

I !
- |

with v = ¢,/ p(u). Vol =X/ |

| == |
Remark. Let M/F be a Galois 1ntelJ edlaﬁ ext?ﬁsmn of L / Fandlet H = Gal(L/M).

Then we have ¢p/p o gbL/M -_ ¢LJ iand ¢L/M!CP| TPM/F tr,r. Consequently, the

upper-numbering is compatible: Wlth Ga101s quotlent in the sense that
G(”)H/H (G/H)(”

Let G denote the Galois group Gal(F/F) where F is a fixed separable closure
of F'. By the above compatible property, we can define the upper-numbering rami-
fication groups G;f) C G as the projective limit of Gal(L/F )(”) for L running over

all finite Galois extension of F. Then we denote F(®) = F G >.

2.2 The different and the conductor

Let L/F be a finite extension and let 6.,p the different of L/F. Also, let

Or = Op[z] and let f(X) be the minimal polynomial of z over F.

Lemma 2.4. Suppose L/F is an Galois extension with G = Gal(L/F'). Then

o0

ord, (6 r) = / (G — 1) du.

1



Proof. 1t is from the following:

ord(f'(x)) = Z ordy(sx — 1)

s€qG,s#id
N
- Z (Gm) — gem+1))(m + 1), for N >0
m=—1
= > (9w —1)
m=—1

Proof. First, assume 'ﬁha‘e
LNF® = ¢ and | L'—‘)E?ﬁ

the change of variable t&geﬁh%i‘ 4
"",‘lu f{ _f'

) el e
OrdL(5L/F) ':—‘%: Jr[’ g0 — 1]6111&1‘ v

T EFEge

/ (1GW] = DGO . GO du

o 1

S 1
_ e(L/F)/_1 - e &

In general, let M/F be a Galois extension containing L and let G = Gal(M/F),

H = Gal(M/L) and h(,y = |Hy)|. From the multiplicative property of different, we



have 5M/F = 5M/L . 5L/F . Then

ordM(éL/M) = OI'dM(éM/F))—OI‘dM((SM/L)

= / Gy — Iy du
-1

= / Jw) — |H M G(u)| du

1

— /oo([M : MﬁF(v)] _ [M . (MQF(”))L])[G(O) : G(v)] dv
°° 1
= c(M/E) /—1 b= (M N F(”))L M N F(U)] dv

Then the proposition is proved, since (M N FO)L : M N F®] = [L : LN FY],

ordy (8r/r) = ordg(6r/r) - e(M/L) and e(M/F) =e(M/L)-e(L/F). O

Definition. For any finite extensﬂon L over _F ‘Qhe conductor f(L/F) is defined to

be the infimum of all w = [—fl{,@o)

By Hasse-Arf TheOBem_l{.{B 1{ abchan extension, if v is a
jump in the ﬁltratlon.&G In th,ls case, the conductor
f(L/F) is an integer kEurth o .:

I‘fl

3V 4
>
1 g

T

where 7 is a uniformizer of F then the Ieclprbcfty map

F* — G = Gal(L/F)
sends U I(;U) onto G™) (XV.2, [8]). Therefore, the conductor f(L/F) is indeed the
smallest integer w enjoying the property U }w) C Np/p(L*) (see XV.2, [B]).

Corollary 2.6. Let L be a finite extension of F'. Then
e(L/F)f(L/F)

S OI‘dL<(5L/F) S 6(L/F>f(L/F)

Proof. If w > f(L/F) — 1, then F™) N L = L. Therefore, Proposition ZZ3 implies

f(L/F)-1
ord(00r) = e(L/F)/_1 (1—m)dw
< e(L/F)f(L/F)—1—(-1))-1
= e(L/F)f(L/F).

7



On the other hand, if w < f(L/F) — 1, then [L : LN F™)] > 2, and hence

FL/F)-1 4
ordr(6r/p) > e(L/F)/ édw
-1

U]

The following classical lemma will be frequently used.

Lemma 2.7. Suppose L/F is a finite extension and let b(L/F') denote the integral
part of ord;(0r/r)/e(L/F). Then

T 27 .

r%ﬂﬁiflﬁpf B

@ e

Proof. For simplicity, wri%_e:-"é ;—.F’_Q(L oo denote a uniformizer of F'. Since
i J " LT

t-e(L/F) < ordL(éL/Fl}?{\:ye;-ha
B «fh
] |

which tells us that

b i,
3 =

On the other hand, we have T =1 il
- "?j"_ e ;::'1-‘ =

(t + 1) . B(L/F) > OI'dL(éL/F)

that implies
TrL/F(OL) g w%—HOF.

2.3 Deeply ramified extensions and trace maps

Let K be a (possibly infinite) extension of F'. We say that K has finite conductor

over F if K ¢ F™ for some fixed w € [—1,00).

Proposition 2.8. The following assertions are equivalent:

(a) K has finite conductor over F



(b) As F' runs over all finite intermediate extension of K/F, ordp(dpF) is bounded

Remark. From the multiplicative of the different, we can see from (b) that the
proposition implies that K has finite conductor over F'if and only if K has finite

conductor over some finite intermediate extension F’.

Proof. First, we assume that K has finite conductor over F, that is K ¢ F™ for
some u € [—1,00), or equivalently f(F'/F) < u+1 (that is equivalent to F' ¢ F®),

for all finite intermediate extensions F” of K/F. From Corollary E6, we have

OI‘dF(épl/F) : %
G PR/ F)

Rl iy
ASF = age F’/{F}, _

implies

HT = ?OI‘dF
FOFE]e

< 2C.

Therefore, every F' is contained in F™) for w > 2Ce(F), and hence K is contained

in £ too. [

We are mostly interested in the case where K does not have finite conductor.
Such K must be an infinite extension of F'. Since K/ F is algebraic (hence pro-finite),

we can write
K = UF”’ F, CF,, foralln >0, [F,: F] < (2.1)

From now on, we will choose and fix such F,, n = 0,1, ... for a given K/F. In
particular, if L/F is a Z,-extension and L, denotes its nth layer, then we choose

F,=L, n=01,... for L.



Lemma 2.9. Suppose L/F is a ramified Z,-extension. Then
ordp (0, r) = ordy, (6r,/r)/e(Ln/F) = 00 as n — oo.

Proof. Write G = Gal(L/F) and G,, = Gal(L,/F). Let {U™} be the filtration of
O% described in Section 22

For a continuous character y : G — Q,/Z, (where Q,/Z, is endowed with
the discrete topology), let f(x) denote its conductor, that is the smallest integer w
enjoying the property U™ C ker(x). In view of the equalities (14 z)? = 1+ 2P and

X"(g) = x(g”), we see that

pf () = Fo)-

Let 7 be a uniformizer of # and et WA;”!C-DF de’ﬂote the discriminant of L, /F.

Also, let x; : G, — C* be a primitive character in the 'sense that every character
T l_;r—vr_'e't Fa

of GG, is some of its powers. From they Q&ndhc or dlscrlmmant formula, we see that
as n — 00, | {‘“ !
5 ||
|
A = "B 1zf<xl ~p ﬁ IO
> (p" —p"‘l)pf(f(l) K,:.(p o ')f(xl) e FOE)

> (p" = " " F OV ) FO) + -+ FOE)

= C1p*™ + O(p* 1), for some positive constant C;.

Consequently,
ordg(0r, /7) > Cop™ + O(p" 1), for some positive constant Cs.
0

Proposition 2.10. Assume that K has finite conductor. Then there exist finite

cyclic extension K' of K such that TrK//K(mK/) Z% M.
Proof. Claim 1: There exist an integer b > 0, such that for n sufficiently large,

10



Let
OI‘an (6Fn/F>
e(Fu/F)

Proposition 28 says that r, is bounded. Also, let b, be the integral part of r,,. Then

Tn = Ol"dF((spn/F) ==

from Lemma P74, we see that

Trr, 7(OF,) = m,

and hence b, increases with n. Since it is bounded, the claim is proved.
Choose a ramified Z,-extension ®/F and let ®; denote its ¢-th layer.

Claim 2: There exist some positive integers ¢ and ng so that if F, = F,,®;, then
TrF{l/Fn(mF’) C mpmp,, for all n > ng.

W ol IS T
ot P
Take K' = K®,. Then m K =X Um F/ a’fnd hgggg Clal-m 2 1mphes

o ey

. v g

Suppose Claim 2 were false for some n > ng. As Trp /5, (mpr ) is an ideal of Op,,
we have

Trp g, (M) 2 mpmp, .
Taking trace at both side to F' and applying (E2), we have

Trpyyp(mpy) 2 mp Trp, p(mp,) 2 mi.

That’s a contradiction. O

Now let K’ be any finite extension of K. It’s well known (see [B] X.4, Lemma
6) that there exist an integer ng > 0 together with a finite extension F, over F,,
satisfying:

F, K=K F, NK=F,, K':K|=[F, :F,]

11



Moreover, if K’ is a Galois extension over K, then we also can choose F, to be
a Galois extension of F,,,. Once we have F, , then we define F, = F, F, for all

n > ng.

Lemma 2.11. Suppose K'/K is a finite extension and F! is defined as above for

n > ng. Then there exist n =n(K'/K) > 0 such that

lim ordp(dp /) = 1.

n—oo

Proof. We will prove the lemma by showing that ord(dz /r, ) is a decreasing sequence
for all n > ng, as ord(dp: /) > 0. Denote d = [K' : K|. Then [F), : F,] = [F), :
F,,] = d, and hence every basis of F over.k, is also a basis of F! over F,, for all
m > n. In particular, if m > s and Win), - I:wd(n) is a basis of Ops over Op,, then
they generate a submodule of;iil:n'ite index in C’)F;n@ver Op,,. This implies that the
discriminant, A(F} / F,), of F,’l over_nga{s a mrtltiple of;l;e discriminant A(F!, /F,,).

| P

On the other hand, we have T
Ll m |

=3
oit (8 /Tn[ £ gmdszt(F;/r{ifl)),

Far™ 2 i I |
: l
il s

U

for every n. Therefore, the lemnia’is proved. . i O
Lemma 2.12. Suppose K' is a finite extension over K. If

lim OrdF<5F,’L/Fn) = O,

n—oo
then TrK//K(mK/) = Mg.

Proof. The lemma is proved in two exclusive cases:
Case 1: e(F,,/F) is bounded, as n — oc.
In this case, there exist an integer n; such that K/F),, is unramified. From the

multiplicative property of different, we have dz

n+1/Fn+1 = 5F7/L/Fn for all n Z nq. Since

the given limit is 0, we must have dgs/p, = Op; for n > n;. Then it follows from
Lemma 277 that Trg /g (mgr) = mg.

Case 2: e(F,/F) — 00, as n — 00

12



In this case, if @, is the uniformizer of F},, then ordp(w,) — 0, as n — oo. For

each n > nyg, let a,, denote the integer so that
Trpr /5, (OF ) = @y O, . (2.3)
By Lemma P74, we have
ordp(wy") < ordp(dp /p,). (2.4)

Therefore, lim ordg(wy") = 0, and hence hm ordp(w® ) = 0. For each given
n—oo

r € mg, then we can find n sufficiently large such that = € Op, and ordp(w “”“) <

ordp(z). Then from (23), z € Trp /5, (@, Opy ). This means x € Trgr k(Mg ), and

the proof is completed. e O

=

b )
Lemma 2.13. AssumelK docsai@l have ﬁnz’tea"@b-hductor Then for each w €

[—1,00), we have [F), : F ﬂF(w)] 77oQ, as i oo, In “particular, e(F,/F) — oo,
L . "-n! l_,',;j; I
asn — 00. e | |
= |

. |
Proof. First, we observe that if K s a!&;ite ll : tensionsof K N F™) then it can
be expressed a composition? of K HF and If b soriie: finite extension of F', and
hence K must have finite conductor as the conductor of KN F™ is bounded by w.
Thus, we can choose a sequence {3y, Ba,...F € K such that d; = degnrp,(5i) is a
strictly increasing sequence. Since 3; € F),, for some n;, if n > n;, then ; € F),, and
consequently, [F, : F, N F™] > d;. This implies [F, : F, N F™)] — 00, as n — co.
Also, since F© is the maximal unramified extension of F, e(F,) = [F, : F, N F(©.

Therefore, the second statement is from the special case where w = 0. O]

Let O%é denote the kernel of the trace map Op — Op, and let a, be the

integer defined by (223). Also, let w, be a local uniformizer of F,.

Lemma 2.14. Assume K' is a cyclic extension over K and T is a generator of

Gal(K'/K). Then for all n > ng, we have

wZ"OOT,L C(r—1)Og, (2.5)

13



Proof. Write G = Gal(F /F,) = Gal(K'/K). By Artin’s normal basis theorem,
there exists e € F so that

{%¢| 0 € G}

form a basis of F, over F,,. By multiplying e by a suitable power of  if necessary,

we can assume that e € Op,. Then
E = ZOFn -%e ~ OF,[G]

and is an sub Op,-module of Op; of finite index. This implies that the Herbrad

quotient of £ is trivial and so is that of O, . Therefore, we have

|0k, /@™ O, | = |H(G, O )| =|H'(G, Or,,)| = |O% /(T = 1)OF|.

=

This means if = B
o?% /(T A0 ~ @ Or /wo" (’)F,
W ’F—{"x r'I
then ag + -+ + o, = @y Consequemﬂ \ o) Tmmhllates (’)F/ /(1 —1)Op;, and the

i""lI

Proposition 2.15. The follomel Tssertwns aﬁ equwalent for K:

[]

lemma is proved. |

(a) K/F does not have finite conductor

(b) For every finite extension K' over K, we have lim ordp(dp: /r,) =0
n—oo

c) For every finite extension K' over K, we have Try: /i (mg:) = my.
/

Proof. We have (b) implies (c¢) from Lemma P12, and that (c) implies (a) by Propo-
sition ET0.

Next, we prove (a) implies (b). We can assume that K’ is a Galois extension of K
(otherwise, we can replace K’ by it’s Galois closure over K, and use the multiplicative
property of the different). Then can take F to be Galois over F,,, for all n > ny.
Suppose K does not have finite conductor. Again, from the multiplicative property

of the different, we have

5ry /5 = 08y g * O

14



Applying Proposition 4 to both F!/F, and F,/F,,, we get

>0 1 1
OI'dF 5F’ F,) —¢€ Fn F _l/ — dw.
Oriym) = elFra/ F) a1 [E,cE,NEY] [F:FLnEY)

As Fég’) is Galois over F,, , it and F,, are linearly disjoint over [, N Fé;“) Thus,

if R/, (w) denote F,, N F"), then we have
[F, : F,NFY] = [F,R,(w) : R),(w)].

Certainly, F,R,,(w) C F!. On the other hand, if F| C F{“), for some w, and

w > wy, then F! C F, R, (w). Therefore,

o
A
< &
-
—-é,'.
-
g |

]

that tends to 0, as n = OQ_.,(

Definition. The extenrérfé_r_i"fig i

Proposition 2713 are satisfied. = = =% R F

R
Sk S oy [ L
Suppose K'/K is a field extension. If K/F does not have finite conductor, then

neither does K'/F. Thus, a field extension of a deeply ramified extension is also

deeply ramified.
Proposition 2.16. Every ramified Zﬁ—ewtensz’on over F' is deeply ramified.

Proof. By Proposition Z8 and Lemma P9, every ramified Z,-extension of F' does
not have finite conductor. Since every ramified Zg—extension contains a ramified

intermediate Z,-extension, it is also deeply ramified. O]

Proposition 2.17. If K/F is deeply ramified, then
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Proof. We need to prove H'(Gal(K'/K), mg:) = 0 for all finite Galois extensions
K'/K, as H'(K, mg) is the direct limit (union) of them. Recall that every extension
of K is also deeply ramified over F. In particular, if K" is the fixed field of a Sylow
p-subgroup of Gal(K'/K), then K"/F is also deeply ramified. As mpg is a Z,-
module, the restriction-corestriction formula tells that the restriction map induces
an injection

HY (Gal(K'/K), mg) — H'(Gal(K'/K"), mg).

Thus, by replacing K with K", we can assume that Gal(K'/K) is a p-group, and
hence is solvable. The we prove by the induction on the order | Gal(K'/K)|. By
taking a non-trivial cyclic subgroup H in the center of Gal(K'/K) (and denote

K" = (K")") and applying the inflatign-restrietion exact sequence:

0 — HY(Gal(K'/K)/H, mghn) —s Hl(Gal(I((}’:'/:K),:mK/) — H'Y(H, my),

we can reduce the proof to showing I‘FTCIfmIK/) ‘: 0. Hence, in the following, we can
assume that K'/K is a cyclie extdn 1on;1Let 7' bega, generator of Gal(K'/K). We
need to show that the kernel mK, (I)f the trace rhﬁp M. — m)K equals (7 — 1)mg.

Suppose x € mY, is obtamed frolm mF, for IS(;me ny. Since ordp(0g; /r,) tends
to 0 (see Proposition EZT3(b)), as n goes t6 0o, andihence so does ordp(mg, - 0r /F,)
(Lemma 213 ), we can choose n so that ordp(z) is greater than ordp(mg, - dpr /5, ).

Then by (23), (24) and Lemma T4, we see that € (1 —1)mp C (7—1)mg. O
It can be shown (as in [0]) that H'(K,mp) = 0 also implies K/F is deeply

ramified, although we do not need this.

3 Formal Groups and Trace Maps

Fortunately many of the arguments in Section 2 about the formal additive group
can be generalized almost immediately to arbitrary commutative formal groups de-
fined over the ring of integer of F'. In this section we will carry out this generalization,

which is crucial for the application to abelian varieties discussed in Section 4. The
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material in this section are from [[].

3.1 Formal groups

Let r be a integer > 1, and let .% be a commutative formal group law in r

variables, defined over the ring Op.

Definition. A (commutative) formal group law f over OF is a family
f(X)Y) = (fi(X,Y)) of r formal power series in 2r variables X;, Y; with coefficients

in Op, which satisfy the axioms
(a) X =f(X,0) = f(0,X),
(b) f(X,f(Y,Z)):f(f(X,y,)ijr , i

(© 1Y) = fO X G~

It follows immediately, from the hXI@ha
10

F(XX)i= X H YV termis o% fplgher degree (3.1)

| 2|

As usually, for any field extensmn K / F be any ﬁeld with F C K. we define .2 F(mg)

to be the set m}, endowed with abehan group law:

x@y:f(x,y),

even through KA is not in general complete, as myx = Uan and each mp is
n
complete, and hence the power series on the right plainly converge to an element of

my , if v,y € mp, .
3.2 Trace maps
We are going to show the following main theorem for formal groups:

Theorem 3.1. Let K be any extension of F' which is deeply ramified. Then for all

finite Galois extensions K' over K, we have
HY(K'|K,F(mg)) =0, i=1,2. (3.2)

17



Obviously, the theorem is equivalent to
HY(K,Z(mg)) =0, i=1,2, (3.3)

if K/F is deeply ramified. By the inflation-restriction exact sequence, we have the

following;:

Corollary 3.2. If K is deeply ramified extension of F', then
H'(F,7(mp)) = H(Gal(K/F), # (mx)). (3.4)

By applying the argument in the proof of Proposition 217 (and, for i = 2, we ap-
ply the Hoschild-Serre spectral sequence; which generalizes the inflation-restriction
exact sequence), we can reduce the proof of 'Iileorem B1 to the case where K'/K is

cyclic. In that case, the theorem gl be proved By’f;napplying the trace map on the

formal group .# b

| "

Now if K be any extension of F &ﬁf;ﬂel a finite extension over K, then we

recall the trace map i ﬂ_t I : s
r& | X

is defined by A/ k() = (012) @ = 2 (f}dx),-where o1, ,0q denote the distinct
embeddings of K’ into F which fixed K.

We will use the notation introduced in Sec. 2.3, and let w,, denote a uniformizer

for the field F,,

Proposition 3.3. Assume K is an extension of F which is deeply ramified, then

for all finite extension K' of K, we have
N yx(F (mye)) = F(mi).

Lemma 3.4. Assume s is an integer > 1, and let z € (w,Op)". Then for all
n > ng, we have

N 7 (2) = Trpr g, (2) mod w2

18



Proof. From the definition of the formal group, it’s easy to see that
N e (2) = Tr(2) + Hy(2) (3.5)

where H,(z) is a vector all of whose components are formal power series in the com-
ponents of oy1(2),- -+ ,04(2) with coefficients in Op, which contains only monomials

of degree > 2, hence H,(z) = 0 mod w?>*. O

Recall that the integers a, defined in (223). From the above lemma, we deduce

the following:

Lemma 3.5. Assume that n > ng and that s > a,+1. For anyy € F(w’ " O,),

there exists w € .F (w, OF,) such that

Yy QN /p, (w) € Z-‘(@ZW”TOF”)

Lemma 3.6. For alln > no, we have

I ~ N
| -.!" I',;-"; | .
N foen(F (e (102 Or,)
< |

Proof. For a given z in . (z it ), v%. Shalllrecurswely construct a sequence of
elements s |I \

U

wy € J(wan—H‘OF/) fQI' )\ e 1 X

such that
26 N, (01 B - Bwy) € F(we O ), for A > 1

For A = 1, applying above lemma with s = a,, + 1 and y = z. Now assume holds for
A, then applying above lemma again with s = a, + A+ 1 and y = 2 © A5 /5, (w1 ©

--@w,). We deduce the existence of a wy1 with all require properties. Let A — oo,
the limit w =1 ®--- Qwy - -+ exists in F (mp ). Then A% 5, (w) = 2z and the proof

is completed. O

Proof. (of Proposition B33) Take z € . (mg). Since K is deeply ramified, we have

lim ord(w2**1)

n—oo

and ord(w?" 1) < ord(z). Thus z € . (@' Op,), and above lemma shows that

= 0. Hence we can choose n sufficiently large such that z € F),

& is a norm from % (mp; ). O
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Until further notice in this section, we shall assume that K’ is now a finite cyclic

extension over K. Under this assumption, Proposition B33 can be interpreted as
H*(K'/K, Z(mg)) =0, (3.6)
when K is deeply ramified. We now proceed to show that
HY (K'/K, Z(mg)) =0 (3.7)
when K is deeply ramified. Let .7 (my)? denote kernel of A%/ k. Then (B7) is
equivalent to

F () = (1 — 1)F (mg) (3.8)

where 7 is the generator of Gal(K" / K ) We_are going to prove the last statement.
We can choose ng so that for each n > ! v F nis a cyclic extension with (the

restriction to F) of) T as a. generator of Gal(F 1 / F, ) o

- .‘r—ir"-& i e
_—yh ,
Lemma 3.7. Assume that n > n " and- 4 ft| > agp+ 1. Ify € F(w, " Op)
=

satisfies Np /p, (y) =0, then there ist 6 j(]w Op ) such that

l
ne) (T‘(”I.U) [’Lﬂeﬁ(wsﬂxj“*l(’) (3.9)

Remark. We will use the snmlarly method as above that is to apply this lemma
recursively, and it is important to note that'y © (7(w) & w) will again be in the

kernel of A% /p, .

Proof. Since AN/, (y) = 0, we have

TrFfl/Fn (y) = 0 mod w, s+an)

From the definition of a,, there exist u € (2" O )" such that Trp /5, (y—u) = 0.

From Lemma 2714, we have
wff“”(’)%é C (1= 1)w,Op.

Hence, we conclude that there exist w € (w, Op)" such that (1 — 1)w = y — u.

Moreover, we have
7(w) ©w = (7 — 1)w mod w?*.
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Also, u =y — (1 — D)w € (@>*Or )", by the construction. Then we conclude that
yo (r(w)ow) =y — (1(w) w) =y — (1(w) —w) = 0 mod w?*.
Since s > a, + 1, the lemma is proved. O
Lemma 3.8. For all n > ng, we have
F (@2 O ) C (1= 1)F (mp),
where F (w2 Op )" denote the kernel of N/, on F (w2 Op).

Proof. For z € & (wi“”JrlOFT/L)O, we recursively apply Lemma B71 to construct a

sequence of elements il . 8
oF vk B TN
Wi
such that )
&
b
26 (T(w & 24 (3.10)
Then w = wy, @ - -+ @ wy Bies . exists i ’ anc}ff&m construction we have
z=T1(w)Sw. - =, M 4B O

ASI ey L B
Proof. (of (82)) Take x € . (mg+)°. Since K is deeply ramified, we have lim ord(ww?* ) =
n—o0
0. Hence we can choose an integer n > ng such that « € F and ord(z) >
ord(zw?* ). Now, x € .F (21" and from above lemma, we have z = 7(y) O y

n

for some y € .F (mp). O

Proof. (of Theorem B) As explained right following Corollary B2, this is just from
(BM@) and (B77).

4 An Application to Abelian Varieties

The material here are from [6]. Suppose A/F is an abelian variety. Let .# be

the associated formal group along the zero section of the Néron model. We assume
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that A has good reduction so that its reduction A is an abelian variety over F, the

residue field of F. Then we have the exact sequence (from the reduction):

0 — F(mp) — A(F) — A(F) — 0. (4.1)

Since the reduction A(F) — A(F) is surjective, the above induces the exact sequence
0 — HY(F,.Z(mp)) — HY(F, A) — HY(F, A(F)). (4.2)

Since .# (mp) is a Z,-module, every element in H'(F,.% (mz)) is torsion of order
equal some power of p. Let H'(F, A), denote the p-primary part of H'(F, A), then

the above induces an injective homomorphism
H'(F, Z (mg)).— H'(F, A),.

If K/F is a Galois extension with G',zii-Gal(Ié‘/F ), then we the inflation map (that

is also injective)

| l
Theorem 4.1. Suppose A has supersimgularreduction and K /F is deeply ramified,

then the natural maps
H'(G, Z(mk)) — H'(F, Z(mp)) — H'(F, A),

are isomorphisms. In particular, the cohomology group H' (G, A(K)), is of infinite

corank over Z,.

Proof. The first isomorphism is from Theorem Bl and the second is from the fact
that every point in A(F) has order prime to p (A has supersingular reduction), and
hence in (B2), H'(F, A(F)) = 0.

Let A’ be the dual abelian variety of A. Since A'(F) is a Z,-module of infinite
rank (see [8]), then Tate’s local duality implies that the cohomology group H'(F, A),

is of infinite corank over Z,. O

Proof. (of Theorem 1.1) Theorem B and Proposition PI8. O
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