S EERETHEERENE EEH AT
78 3 X
Department of Information Management

College of Management

National Taiwan University

Master Thesis

B -k 8 —Z.,%ﬁ#@«éaf\,%g&ﬁ-},% A

-L i
"‘..lu j -.“::'--_,

Transformation aga(.'l' *P\ﬂiiifemporal Properties
:: % ith l@ion {:’”\:‘-&

F5 & ?)/UJ}X R ’\i‘*’ _ﬁ"—':
Advisor: Yih-Kuen Tsay, Ph.D.

PERE 99 £ 7 A
July, 2010

24

R P EEE L AR S R

BRI RSN B4

MEAE T R O#
tRERBE AT UF LA

AT 2 »EALER

Transformation and Classification of Temporal Properties

with Applications

MR AE D EHE X E

TERBE AT FE LA

B2 RER 2R X
Déﬁé‘ﬁ@%&a

M 2 e s AR EER

XL T XE (23 R97725004) £ B 2 K E

=15
é‘“ﬂgﬁ*‘i% SRR ZB LS NEBR 99 £ 6 A
24 BATFTHEREZBELRBRIRRKE > HFLEH

ook é%@l WV{ 4)

ES & E

BEEERME RTHEL RTHE LW THLATER -

ERERA BT LG KE iﬂlﬂ%éﬁ EERIR T 48 FRA AR LT E
gl RARMTHTMARBAGER LRETERL - HE LM - FEFLE
&g Fe BAY o F A E & B %‘kéﬁ‘é‘%ﬁi PR ARERHRG BT -

BREBERHPRORA BEARBIAETHROARANS {224 H4FE Y
F o B OER/EFHTRET -
BE BRERMEOB R KRS %ﬁﬁmn&ﬂlﬁﬁ%%Muﬁ&

o ERREDFRERY F I%&@ﬁ hERPEE KA -
BB RRHE T Mt RARRIRMIRAE S T R4

SAAR Y ~ A ERALE T eyt 92 S Kk 0 3% paper BB R 1E 49 B AR 48 L T X
FHAA 0 A5 - F AR R AL mEAE W coding FEH AR RREL —
18 R 4F &Y 5T $ o

HIU T mx%&ﬁﬁfﬁﬁﬁ*%mﬁm P RF—REY —defe

- 5 HH BRI TS RIS 0 KNE 0%~ Bl E— ol
& AR R LT ‘Wh&%nﬁwémnﬁm b
FFRLR I T 18 4 AR TEREAEFE LAEH

BAERTE &@@%1&? 5
= ool |
- .?- ﬁb-l."l._ l";‘{'
N 7 4
- o Y
r}" (::5"'] L '1;?3'-,,_, -J"I
Wy, <+ T
.. lli,.--j !..llll -\.j -III ‘ '-- o

e
TEERZARTEME RBEATILFLA

E D CiE

i - X Lt HFLA
BEHE REw HE

R 2 ik s AR EER

LB ek ARG SHILEANRERN AL ST —BA%K N AR — B F#
BAFME [HBF A AR BT B S MBTATATEL P A BEATA
SN ask A ARTHRE f T RMAEE - BRIE 8N BB AT
DA AR AV ER IR A 1B A2 o Bif 0 — B #ed# " Biichi Store | #9 B Biichi &
MR ERRY EPRETHOESGFEENEHEYASGK - ERAH
Tk dE &R F XIF ﬁﬁi%%r %ﬁ%é%ﬁ‘ﬁimﬁ%ﬁﬁﬁﬁ‘
@#ﬁmmsmm¢%%ﬁﬁﬁ%é +ﬂﬁﬁﬁ@ RULE B — 188 %) 5 4
7k A ARAEA %‘&% hf ;{f %= ..x-:

SEY T TR &mm ﬁ%i& » b M T A
ﬂ&é%&%T 3 TR : ~ﬁju%ﬁﬂ@i%ﬁmﬁ

&m&mukﬁ&a' .mwﬁ&ﬁ%\ﬁ@;% 3 %
ﬁ-ﬂEH%ﬁ'\Buchl Stor_ﬁ g d E%x&iﬁiﬂ’ EHER G

WF o sk S EEE : B s SRS TEER T
$I2E %5 0 B % Bk Bt Al #5 R - Bt COAL &
R AR ARSI ’_.Bﬁ(} B i i.__gygq_\-

< 5o, W :-1.;1_1

B4t © Biichi B #4#% ~ Biichi Store ~ % %8 ~ GOAL ~ Omega B 4% ~ 05 5% %5
i~ 2 RE

THESIS ABSTRACT
Graduate Institute of Information Management
National Taiwan University

Student: Chang, Yi-Wen Month/Year: July, 2010
Adviser: Tsay, Yih-Kuen

Transformation and Classification of Temporal Properties with
Applications

In the automata-based approach, the model checking problem can be stated as follows:
given a system M and a temporal property f, determine whether L(Ay nA.f) = @,
where Ay, is a Biichi automaton representing the system M and A_; is an automaton
representing the negation of the given property f. In principles, a smaller A_; would be
speed up the model checking process. An.open repository called Biichi Store has been
proposed recently, where numerous temporal formulae and their corresponding automata
are collected. One can obtain the Biichi automaton of a desired formula by table look-
up rather than applying translation algorithmss. Since there will be hundreds or even
thousands of formulae in the BiichisStore, an appropriate formulae classification is needed
for the user to browse and search readily.

In this thesis, we study property transfornration and classification methods, where
properties are represented as formulae or’autemata. With the understanding of different
classes of temporal properties, omne ¢an sp_e;cify a program more completely and avoid
underspecification. We implement the classification algorithm proposed by Manna and
Pnueli in GOAL, which is a tool-for creating, manipulating;and testing temporal formulae
and w-automata, and apply the classification.methods on formulae in the Biichi Store.
These will make it easier for the-user:to search: in the elassified formulae. Moreover,
checking the equivalence between two formulae ‘or finding an equivalent formula for a
given formula becomes easier, as two formulae are equivalent only if they belong to the
same class. As a result, the capability of research and education will be enhanced in
GOAL and the functionality of the Biichi Store will also be enriched.

Keywords: Biichi Automata, Biichi Store, Classification, GOAL, w-Automata, Tem-
poral Logic, Transformation, Verification.

Contents

1 Introduction 1
1.1 Background 1
1.2 Motivation and Objectives L. 2
1.3 Thesis Outline 3

2 Related Work 5
2.1 Formula Classification 5
2.2 Formula Rewriting il D00 . . . o oo 6
23 Tools 80 -k @ B S 7

2.3.1 LTL2BA . @F v~ .1 . e M. - - - - . . o o oo e . 7
232 GOAL . & . . ! 4 | <. @ W 7
2.3.3 Biichi Stqie oy g em . L Free ehER L L, 10

3 Preliminaries — 12
3.1 Automata on Infinite Words| | Safeeee 1! . . & .5 L L. 12
32 w-automata . S.. . W1l M - 11l oo - - - 13

3.2.1 DBiichi Automata.. . . | . =& = . |} W R ... 13
3.2.2 Generalized:Bichi®Antomata . L0475 &G a0 ... 0L L. 15
3.2.3 Muller automata /o il a0, SN 16
3.2.4 Rabin automata . 7. S, L G a0 17
3.2.5 Streett automata . G . L L 18
3.2.6 Parity automataU L 19
3.3 Propositional Linear Temporal Logic (PTL) 20

4 Transformation 24
4.1 Formula Rewriting 24
4.2 Formula Translation 29
4.3 Automata Transformation 31

4.3.1 SafraTree. 32
4.3.2 Nondeterministic Biichi to Deterministic Muller and Deterministic
Rabin 34

5 Classification 37

5.1 Temporal Hierarchy 37
5.1.1 The Temporal Logic View 37
5.1.2 The Automata View 39

5.2 Deterministic Biichi v.s. Nondeterministic Buchi 44

i

6 Implementation and Applications
6.1 Implementations in GOAL . . .
6.2 Applications on the Biichi Store

7 Conclusion

7.1 Contributions
7.2 Future Work
Bibliography

il

51
51
52

57
o7
58

60

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2

6.3

The result BA from the web application LTL2BA 8
The editing environment of GOAL 9
A screen shot of the Blichi Store. 11
Examples GBAs for rewrite formula rules proposed in [22] 25
Examples GBAs for rewrite formula rules proposed in [6] 28
The create graph algorithm. 32
The expand function. 33

An example of translating a nondeterministic Biichi automaton into an
equivalent deterministie Muller automaten and an equivalent deterministic

Rabin automaton . g8 . . @ . . % WA 36
Inclusion relations between the classes .. o0 Lo 39
An example of safefy/adtomata™, . . £ .% . . N2 0L L 40
An example of guarantee automaber s 4, 1 1 . . . L. L. 40
An example of obligation automata™== . !5 41
An example of recurrencerautomat@;. . .0 .. L oL 42
An examples of persistence aqtomafa 42
An examples reactivitytoftautomata . L0 0 A0 o ..o 42
An examples of reagtivity automata e . .o L L L 44
Examples of translating DMWinto DBW . ..v. 48
Another examples of translating DMW _into DBW 49
Another examples of translating DMW into DBW 50
Test of temporal hierarchy classification for an input formula in GOAL . . 52
Convert a deterministic Muller automaton to a deterministic Biichi au-

tomaton by the power of GOAL 53
Browse automata sorted by temporal hierarchy in the Biichi Store 56

v

List of Tables

4.1
4.2
4.3

6.1

Rewriting rules proposed in [22] L 26
Rules to check for o <o in [22]o oL oo 26
Definitions of New and Next functions for non-literals 30

The experiment result of deterministic Muller to deterministic Biichi con-
verting algorithm for 15 random cases. 54

Chapter 1

Introduction

Program verification is a fundamental issue about the correctness of programs. A program
should always accomplish the goal the programmer proposed and should not cause any
unexpected side-effect. One common solution is to test the program with different use-
cases. Yet it might cost lots of time andihuman. work and may not be able to cover all
the possible user behaviors. Henceé somesystematical methods are proposed to guarantee

the correctness of a program.

1.1 Background =

In the early years, several methods are used to saize this goal; such as testing and simu-
lating. In 1981, “model checking” W:as introduced by E. M. Clarke and E. A. Emerson,
which is an automatic process to check whether a system satisfies a given property [4].
The fundamental problem of model checking is to solve, given a system M and a
specification property f, whether M = f. It involves three main phases, which are
modeling, specification, and verification. In modeling, a system M is usually given as
a model of the target program. The system can also be formalized by a finite state
machine, which can be represented by Kripke structure. Kripke structure contains nodes
to represent each state in the target program and arcs to represent the variation between
states for each statements in the program. Because a Kripke structure can be transformed
into an equivalent w-automaton|5], we will use w-automaton to describe M in the rest of
the thesis. In specification, temporal logic is used to describe the specification property.
Temporal logic, which is a logic language, is wildly used to describe the desired property

with temporal operators in terms of time. A temporal formula is a combination of several

temporal operators to describe a property. In this step, we translate the temporal formula
property f into an equivalence automaton Ay. Usually, Biichi automaton is chosen to
represent Ay. Biichi automaton is first represented by J. R. Biichi in the 1960’s, which is
the first work related to w-automata [1]. It is also proved in [1, 19] that each temporal
logic formula can be translated into an equivalent Biichi automaton. Actually, lesser the
temporal operators are used in f, smaller A; will be. Rewriting the given formula to
obtain a equivalent formula with lesser operators before translating it into automaton
is very essential method for model checking performance. In verification, we solve the
model checking problem whether M & f by solving this equivalence containment problem
whether whether L(Ar) € L(A;). The containment problem can be rewritten as an
emptiness check problem, whether L(Ap/) n L(A-;) = @, which is also equivalent to
L(Ay nA.y) =@. To check L(Ay nAsp) =@, we have to construct the intersection
automaton A of Ay, and A_;. Fora given system, the size of A_; determines the size of
A. Therefore, the smaller ALy is; the faster the model-checking task may be carried out.

The specification automaton A~ is often generated by applying temporal formulae
to Biichi automata translation algorithmsiHowever, none of the translation algorithms
could always generate the smallest Biichi aﬁ%?)bmaton for a given temporal formula in terms
of state size. One way to obtain the smallestl“- automaton is'to translate the given formula
into Biichi automaton and choose the smallest one, which-spends lots of space and time.
In order to avoid this situation, we-builtup a Web-based open repository, which is called
Biichi Store, to store the Biichi automata corresponding to a collection of frequently-used
temporal formulae. In Biichi Store, one can search for the Biichi automaton of a property
formula. Temporal formulae are classified into different classes for the user to find the

formula easily.

1.2 Motivation and Objectives

In order to provide better user environment, the methods of formulae classification in
Biichi Store must be enriched. There are hundreds of formulae stored in Biichi Store
now. For the user to browse the temporal formulae quickly, a systematical ordering is

essential. We had classified the formulae intuitively by the length of the formula and

the state size of the corresponding Biichi automaton. It would be useful to classify the
formulae based on the semantic meanings. The classification method should not only
base on the semantic meanings of the formulae but also be easy for user to understand.
Moreover, the classification method should be systematical and be able to classify the
formulae automatically.

In addition, compare to nondeterministic Biichi automata, complementation and
empty check of deterministic Biichi automata is easier. Hence, classification of a property
as deterministic or nondeterministic Biichi would be useful.

For these goals, we will develop the classification and transformation algorithms based
on [17] and [15]. We will also implement the algorithms in GOAL, which is a graphical in-
teractive tool for user to create, manipulate, and test temporal formulae and w-automata.
Last but not the least, we will apply the classification algorithm on the formulae in Biichi

Store.

1.3 Thesis Outhne

The rest of this thesis is organized as follldglrg,;

[©

e In Chapter 2, we will introduce the approachés of properties classification and some
formula rewriting approaches:. We will also describe some tools which are related

to temporal logic classification.

e In Chapter 3, we will introduce several kinds of automata and temporal logic which

will be used in this thesis and the relevant research.

e In Chapter 4, we will present some formulae rewrite rules and some translation

algorithms, including from formulae to automata and from automata to automata.

e In Chapter 5, we will present more details about properties classification and some

classification algorithms.

e In Chapter 6, we will talk about implementations and applications of the algorithms

described in Chapter 4 and 5.

e In Chapter 7, we briefly summarize this thesis and conclude out contributions. We

would also describe some work we should do in the future.

Chapter 2
Related Work

2.1 Formula Classification

We say that a program P has the property II if all the computations of P belong to
IT. One can use properties to specify @ program, but it may lead to underspecification in
some cases. To avoid underspecification, one pessible solution is to classify different types
of properties, and provide a list of properties to the specifier to consider. L. Lamport
suggested that properties of“a réactive program can be partitioned off into two classes,
safety and liveness properties [14]. In 1990',.'}2_._ Manna and A, Pnueli proposed a hierarchy
of temporal properties. They classified temi)pral properties into six classes [17]. Note that

a formula contains no future operators is called a past formula.
e A safety formula is a formula of the form
ap;
for a past formula p.
e A guarantee formula is a formula of the form
op,
for some past formula p.
e A simple obligation formula is a formula of the form
ap Vv &g,

where p and ¢ are past formulae.

A general obligation formula is a formula of the form

/\[Dpz‘ v O],

(2

where p; and ¢; are past formulae.

A recurrence formula is a formula of the form

odp,

for some past formula p.

A persistence formula is a formula of the form

<ap;

for some past formula p.

A simple reactivity formula is aformula of the form

.|:|_<>p v.{mg,

e
-

where p and ¢ are past formulag.

A general reactivity formulais a formula of the form

Aloop: vooa],

7

where p; and ¢; are past formulae.

The classes of safety and guarantee properties are disjoint, so do recurrence and persis-
tence properties. Every temporal formula is equivalent to a reactivity formula.

Another way to specify temporal properties is to use finite-state predicate automaton.

2.2 Formula Rewriting

An LTL to BA translation algorithm is introduced by F. Somenzi and R. Bloem, which
consists of some heuristic approaches in the three stages of the translation [22]. They
proposed several formulae and their congruent formulae for replacement. One can re-

place the sub-formulae of the input formulae by its congruent formula, which would help

reducing the state size of the result BA of some translation algorithms since the possible
covers of the formulae produced by those algorithms are reduced. Moreover, they also
proposed an approach to simplify the result Biichi automata using simulation.

K. Etessami and G. J. Holzmann also introduced several optimization methods for
formula rewriting [6]. They proposed an idea to take the advantage of the suffix language
of a formula. The formulae with the same suffix language can be replaced from one to

another.

2.3 Tools

There are some tools which are related to automata-based model checking. We will give

a brief instruction for each of them in this section.

2.3.1 LTL2BA

LTL2BA (http://www.lsyv.ens-cachan.fr/ gastin/ltl2ba/index.php) is a web ap-
plication which translates theiinput forfiula inte @ BA based'on the translation algorithm
P. Gastin and D. Oddoux proposed in [7]:'j:ﬂshbe algorithm translates an LTL formula into

a Biichi automaton with three stages: (1)gtranslating from LTL formula to very week

alternating co-Biichi automaton (VWAA),(2) translating VWAA with co-Biichi condi-
tion into TGBA, and (3) translating TGBA into BA. One can give an LTL formula and
choose several translation preferences tocobtain the result BA of their interest. The result
BA will not only be shown in the web page by graph but also presented in PROMELA
format. Figure 2.1 shows the result BA for input formula o&p A g translated by the
web application LTL2BA.

2.3.2 GOAL

GOAL (http://goal.im.ntu.edu.tw) [23, 24] is a graphical interactive tool for user to
define, manipulate and test temporal logics and w-automata. The acronym GOAL is
derived from “Graphical Tool for Omega- Automata and Logics.” This tool is developed
on JAVA and T.-K. Tsay is the leader of GOAL team at National Taiwan University.
The graphical user interface of GOAL is extended from JFLAP.

Figure 2.1: The result BA from the web application LTL2BA

The GOAL tool is used to be an educational*assistant in the first place, helping users
learning w-automata theory and tempeoral logiciiRecently, the GOAL tool had been pro-
posed as a research tool because of the expanded colleetion of translation, simplification,
and completementation algorithms. User.can alse write a program to access GOAL func-
tions with command-line mode.. The utili-‘égf"functions for some common tasks such as
random formulae generation,7and statistics.collection are also provided.

GOAL is now provided the following functions:

e Editing, Running, Testing, and’ Simplifying Biichi Automata:
One can easily point-and-click and drag-and-drop to build up a Biichi automaton.
Once the automaton is created, he/she can easily run it by given input to see what
kind of input language the automaton would accept or testing for emptiness. Not
only that, any Biichi automaton can be simplified with the help of simplification
algorithms which had been implemented. With simplification, user can get a smaller
automaton which is equivalent to the original one, which would be much easier to

understand.

e Translating QPTL (and LTL) Formulae into Biichi Automata:
Numbers of translation algorithms have been implemented in GOAL. User can

write a QPTL or LTL formula and translate it to a Biichi automaton via these

GOAL - Automaton (Biichi): Repository: [I<>p#5 o @
File Repository Test Operation Preference Help

e

Figure 2.2: The_ 1editi]?g _gem;:iranment of GOAL
,||.'|. -._1 :,- _'_'+:-.' y i
'|_ AL) —-‘i"' 5

£ X
algorithms. GOAL iI;&ﬁoses a iction th
of a temporal opera‘bb]i'.'.:-?-ﬁ?_ s f
-

about the algorithm which he i

Boolean Operatie‘nsl:p

The three standard Bé(l)lgfa;_l

i~

are supported in GOA]:"._.; 4

. !
2 “""’m-:-
: B

-
. :.\:-:'-. T3 i _-4. y Y
- o ™ = i

Tests on QPTL Formulae: =~ =+ =

W

Satisfiability and validity tests are supported. Even though the equivalent test
between two QPTL formulae is not supported, one can use the mutual implication

operator (<) to accomplish the same feature.

Exporting Biichi Automata as Promela Code:
User can export the automaton in the PROMELA syntax on the screen or as a file.
This feature makes it possible to use GOAL as a graphical specification definition

frontend to an automata-theoretic model checker like SPIN.

The Automata Repository:
The repository in GOAL contains a collection of frequently used QPTL formulae

and their corresponding equivalent automata. This is a very convenient way for

learning the relation between Biichi automata and QPTL for beginners.

2.3.3 Bichi Store

Biichi Store is an open Web-based repository of Biichi automata which is developed on
PHP and Y.-K. Tsay is the leader of Biichi Store tram at National Taiwan University [2].
Hundreds of Biichi automata are stored in Biichi Store now and categorized by temporal
formulae. For each temporal formula stored in Biichi Store, which is considered as most
common used specification formula, it stores the top three smallest BA. One can search
for a temporal formula and obtain smaller automata by his/her choice. Users can also
browse the temporal formulae by several kinds of categories which helps users reach their
desired formula and the corresponding BA. Biichi Store provides two different file formats
for user to download, which are GFF (GOAL filé format) and Promela (a file format used
in SPIN [10, 11], a common used-Verifier tool). Users.can choose one of them depends on
his/her usage.

Biichi Store also provide equivalentsclass and complement class for each formula.
There are many algorithms to compute thg': ggr'nplementation of a given automaton, such
as in [21, 13, 12]. The stat¢'size of a corrillf).lement automaton computed by a comple-
mentation algorithm is usually large. .We gan apply simplification algorithms or some
heuristic to get a smaller autematon. However,:with complement class provided by the
Biichi Store, one can obtain a small complement: automaton quickly.

Despite of obtaining BA for specification formula, one can upload a BA which he/she
claims to be the smallest BA of a temporal formula. Biichi Store will verify whether the
uploaded BA and the given temporal formula. Hence, the contents in Biichi Store could

be enriched by users’ contributions. Figure 2.3 illustrates the homepage of Biichi Store.

10

(Biichi Store

Figure 2.3:°A screen shot of the Biichi Store

11

Chapter 3

Preliminaries

In this chapter, we will briefly introduce several kinds of w-automata and propositional
linear temporal logic. These are basic knowledge of this thesis. We will describe each of

them in the following.

3.1 Automata on Infinite Words

Automata theory is considered as a goed way~to understand a program, which is im-
portant in formal verification. w—automatg‘__l_can represent not only a given system but
also a given property which is written in .t‘;é.mporal formula. This work can be traced
back about forty years ago in 1960’s, when J.R. Biichi intréduced his work, which using
finite automata with infinite input VV.OI‘dS to ebtain-a decision procedure for a restricted
second-order logic, the sequential calculus [1].

Some notations in the following should be brought out here. Usually, we use X to
denote the set of alphabet, and >« to denote the set of infinite words over Y. An infinite
word then can be denoted as w = wowiwsy ..., w € X% and each w; € 3.

An w-automaton A is a 5-tuple (X, Q,d,Qo, F) where

e Y is the finite set of symbols, called alphabet,

@ is the finite set of states,

e 0, is the transition function,

Qo € @ is the initial states, and

F is the acceptance component.

12

If |6(q,0)] =1 for ¢ € Q and o € ¥, the automaton is deterministic, otherwise, it is
nondeterministic.
A run p of an automaton A on infinite word w = wowyiwsy ... € ¥¥ is a sequence of

states qo, q1, ... € Q¥ where

qo € Qo,q; € Q and ¢;41 € 9(g;, w;) for 0 <.

The set of states occurring infinitely often in p = qo, q1, ... € Q“ is denoted as inf(p), more

precisely

inf(p) ={q € Q| Vidj>i,q = q;}.

3.2 w-automata

There are several kinds of w-automata in automaton theory. In this thesis, we will use
some of them, which are Bilichi automata, generalized -Biichi automata, Muller automata,
Rabin automata and Streett automaton. We will give.the definition for all of them in the

following.

3.2.1 Biuchi Automata

Biichi automata are often used for. automiatasbased: model checking. An w-automaton
A=(2,0,9,Q0,F) is called Blichi automaton i the acceptance condition is defined as

follows: F € () and a run p on a infinite word w is accepted by A if
inf(p)nF + @.

In other words, there exists at least one state g € F which is visited infinitely often on p.
A word w € ¥¢ is accepted by A if there is a corresponding accepting run p.
When we talk about Biichi automaton, two basic operations, union and intersection,

for it should be mentioned.

Proposition 3.1. Let A; and Ay be two Biichi automata. There is a Biichi automaton

A which accepts the union language, which means L(A) = L(A,) U L(A,). [5]

13

Proof. Let A; and A, be defined as follows:
./41 = (217Q1751, Q017‘Tl) and ./42 = (ZQ,QQ,&Q,QO2,f‘2). Let AIS a5—tuple (E,Q,(;, Qo,f),

where
1. ¥ = 21 U 227
2. Q=0Q1UQy,

3. Qo = Qo YU Qoo,

4. F=F,uF,, and

_) di(g,0) ifqe@
5. (g, w) _{ 5;(%0) if g e Q;

In this constructive way, it is easy to see thatwd accepts and only accept any accepting

word for A; and A,. O

Proposition 3.2. Let Ay and'As be twe_Biichi-automata. There is a Biichi automaton

A which accepts the intersected language, Which means L(A) = L(A,) n L(A,)/[3].
e

Proof. Let A; and A, be defined as‘follow'a_:_
Al = (217 Qh 617 Q017 fl) and AQ i (227(\?27 627 Q021]:2)’ Let A is a 5_tuple (27 Qa 57 Q()?f)a

where
1 S =%, uY,,
2. Q=01 xQyx{1,2},
3. Qo =Qoy x Qop x {1},
4 F=Fy xFx {1}, and

‘5' 5(((]17(]27?:)70-) = (QE7QQ7J> Where Q£ = 51((1170)7% = 52((]27(7) a’nd

j=2 ifgpeFandi=1
1=7 false.

{jl if g € Fi and i =2

14

0

The main idea of this construction is that if a run p is accepted, there exists two
states in in f(p) which are ((g;,¢;,1)) and ((gx, q;,2)) where 4, j, k,[are arbitrary number.
Hence, by the construction, both F; and F; is visited infinitely often.

Proposition 3.3. Let A be a Biichi automaton. Then there exists a Biichi automaton A

such that L(A) = % - L(A) [1].

3.2.2 Generalized Biichi Automata

An w-automaton A = (X, Q, 9, Qo, F) is called Generalized Biichi automata iff the ac-
ceptance condition is defined as follows: F ¢ 29 e.g. F = {Fy,Fo,...,Fr} and for all

1<i<k, F;€@Q. A run p on an infinite -word wsis accepted by A iff
inf (p) @i + @ for every F; € F.

In other words, there exists at least one-state 'q for each F; € F is visited infinitely often

on p. A word w € ¥¢ is accepted.by A iff there'is 4 corresponding accepting run p.
[

Proposition 3.4. Let Ay be a generalized Biichi automaton. There is a Biichi automaton

A which accepts the same langﬁage of Ay which.means L(A) = L(A,).

Proof. Let Ay = (¥1,Q1,01,Q0, F1); where Fy={F1, F,..., Fi}. Let Ais a 5-tuple
(2,Q,6,Q0,F), where

1. ©=3,

2. Q=Q x {1k},

3. Qo = Qoy,

4. F=F, x{1},

5. 0(qo,0) = (¢, 1) if there exists a ¢; € Qoy, 61(¢i,0) = ¢, and

6. 6((q',7),0) = (q,4) if 61(q,0) = ¢’ and { ;:” (mod n) ig;i

15

0

In order to record which acceptance set we are eager to visit, the third flag on state
is needed. This idea is quite the same as the intersection operation of Biichi automata.
Once a run p visits a state flagged with j, which means there is a state in F; of A; is
visited. If the flag can always change from 1 to k infinitely often, every corresponding

accepting set F; € F is visited infinitely often. Hence, this run should be accepted by A.

3.2.3 Muller automata

An w-automaton A = (X,Q,0,Qo,F) is called Muller automaton iff the acceptance
condition is defined as follows: F ¢ 29, which means the acceptance set is a set of subsets
of states, e.g. F ={F,Fy,..., F,} and forall 1 <4<k, F;c@. A run p on an infinite
word w is accepted by A iff

inf (p) = F; € F

In other words, there exists at least a set of states F; € F 'that for every state q € F}, q is

visited infinitely often on p.*A word w e Ew‘as accepted by A iff there is a corresponding

accepting run p. |

Proposition 3.5. Let A; be ai Muller lautomatons ‘Therésis a Biichi automaton A which

accepts the same language of Ay which means LLA)'= L(A,) [16].

Proof. Let Ay = (X,Q1,01,Q0,,F1) with calF'y = {F|,F5,...,F;}. Let Ais a 5-tuple
(27Q757 Qva), where

1. 2=,

2. Q=0Q;u(Qx29 x {1..k}),

3. Qo =Qoy,

4. F={(q,2,i) | qe Q and i € {1..k}}, and

5. 8(q,0) =01(q,0) u{(q,2,7) | i e {1..k} and q € 6(q,0)},

16

. {(¢',Pu{q},i)|q' €d(q,0)} if Pu{q}+Fj
6. 0((a: 7,1, 0) { (o) 0 esnor) it Pole)-F

which o€ Xy, ge Q1, PcQ and i€ {1..k}
U

Proposition 3.6. Let Ay be a Biichi automaton. There is a Muller automaton A which

accepts the same language of Ay, which means L(A) = L(A,).

Proof. Let A1 =(2,0Q,9,Q0,F1) and A=(%,Q,0,Qq,F), where

F={Ge22|GnF, +a}

3.2.4 Rabin automata

An w-automaton A = (3,Q,9, Qgs) is called Rabinautomaton iff the acceptance con-

dition is defined as follows: ()'c29 x 2@, which ameans the acceptance set is a pair of set
of subsets of states, e.g. Q = {(E}, F}), (E;%’Q), L (B By} and for all 1 <4 <k, both
E; and F; € Q. A run p on an-infinite WOI"dIE'@{} is accepted by A iff

(B,) 60, (inf). 0= o)A (inf (0)00 F. + 2).

In other words, there exists a pair of subsets of states (E;, F;) that at least one state
q € F; is visited infinitely often on run p, while every state in Ej; is visited only finite times

on p. A word w € ¥¢ is accepted by A iff there is a corresponding accepting run p.

Proposition 3.7. Let A, be a Rabin automaton. There is a Biichi automaton A which

accepts the same language of Ay, which means L(A) = L(A,) [16].

PTOOf. Let ./41 = (217Q17617Q017Ql) with Ql = {(E17F1)7...,(Ek,Fk)}. Let ./41 be a
5-tuple (22, Q,0,Qo, F), where

1. 2221,

2. Q=Quu(Qux{l.k}),

17

3. QO = Q017

k
4. F=JF;x{i}, and
=1

5. 8(q,0) =01(q,0) u{(p,i) |ie{1..k} and p € §1(q,0)},

{(p,7) |pedi(q,0)} otherwise

6. 6((0,1),0) - {

which o €31, g€ @Qq, and j € {1..k}.

3.2.5 Streett automata

An w-automaton A = (3,Q,0,Qo,§2)ris called Streett automaton iff the acceptance
condition is defined as follows; €} € 29-%929 which means the acceptance set is a pair of
set of subsets of states, e.g. Q = {(Hy, 1), (Eq, B9, ., (Ey, F,)} and for all 1 < i <n,
both E; and F; € Q. A run ponh an infinite word-w is accepted by A iff

V(BF)< b (inf (4) &Bre) ¥ (inflp) m By - 2).

[©

In other words, for every state set pair (Fy; F,) € (), either there exists at least one state
q € E; would be visited infinitely Sftan or every' state in F; would appears only finite
time on p would happen. A word w €°X% is aceepted by A iff there is a corresponding
accepting run p. As you can see, Streett acceptance condition is dual to Rabin acceptance

condition.

Proposition 3.8. Let A; be a Streett automaton. There exists a Biichi automaton A

which accepts the same language of Ay, which means L(A) = L(Ay) [16].

PT’OOf. Let ./41 = (ElleaélaQOUQl) with Ql = {(El,Fl),...,(Ek,Fk)}. Let A be a
5-tuple (2,Q,0,Qo,F), where

1. E = 21,
2. Q= QuuU(Q x 2014} x 2(14}),

3. Qo =Qoy,

18

4. F = Q x{@} x{a},

5. d(q,0) =01(q,0) u{(p,2,2) | pedi(q,0)}, and

B {(p,I",J") |pedi(q,o)} ifI'¢J
6. o(@.1.7).0) { (. 2.9) | peb(am) it I'er

which o € ¥, and g€ Q.

O

Streett acceptance can be written as a different version. Let Q = {(Ry, P),...,
(R,,P,)} and for all 1 < ¢ < n, both R; and P; €). A run p on an infinite word w
is accepted by A iff

V(R:,) e4(inf () n Rize) Vi (o) < P).
3.2.6 Parity automata

An w-automaton A = (2, Q; 0, Qo, F) is called*Parity automaton iff the acceptance con-
[
dition is defined as follows:~#F & 2% fis a partition| { Fy, Fi;.: . F,} of S. A run p on an

infinite word w is accepted by A:iff. |
min({i|qe inf(p)n qeF;})is even,

where min(N) is a function which outputs the minimum integer i € N. A word w € ¢

is accepted by A iff there is a corresponding accepting run p.

Proposition 3.9. Let Ay be a parity automaton. There exists a Biichi automaton A

which accepts the same language of Ay, which means L(A) = L(Ay).

Proof. Let Ay = (21,Q,61,q0,,F) with F = {Fy, F1,..., Fo,}. Let A be a 5-tuple A =
(2,Q,9,q0,F), where

1. 2221,

2. Q=Q1u(Q1x{0.k}),

19

3. qo = qo,
k
4. f: UFQ@ X {7/},
=0
5. 0(q,0) =01(q,0)u{(p,i)|i€{0..k} and pe d(q,0)}, and

6. 6((q,),0) {

2 if ge F,,0<i<2j
{(p,j) |ped(q,a)} otherwise

which o €3, ge @ and j € {0..k}.

3.3 Propositional Linear Temporal Logic (PTL)

Temporal logic is a description logie which is used.to represent and reason about the spec-
ification of a system which is qualified wtermswof time:. Any logic which views time as a
sequence of states is a temporal logie. It was first introduced:by A. Prior in the 1960’s, and
developed further by A. Pnueli for computer usage. A. Pnueli pointed out that temporal
logic is useful when people trying to Verif}};# and specify the Software programs especially
for concurrent, reactive, and mon—temnimat11'15'}%r programs sucli as operating system [20].

Temporal logic is used to f_ormali_zé the describing sequences of transitions between
states in a reactive system, which‘can be represented as a Kripke structure [5]. A Kripke
structure M can be defined as 4-tuple (Q, Qo, R,L) where () is the set of states, Qg is
the set of initial states, R is the total transition relation between two states, and L is
the labeling function which labels each state with a set of propositions if the propositions
is true in the state. A sequence o of M from a state ¢ is an infinite sequence of states
0 = qo,q1,--- such that ¢y = ¢ and (¢;,¢i;1) € R for all i > 0. Temporal formulae are
then used to describe the properties of a state or a path, which would be called as state
formulae or path formulae. A state formula describes what property should be true at
the current state while a path formula describes what property should be true along the
specific path.

A formula written in temporal logic can specify the property of a program by the

temporal operators. For example, we can use always operator to describe that some

20

properties, sometimes called specifications, would always be true, which is usually con-
sidered as a safety property of a distributed system. Notice that temporal operators can
also be combined with one another.

Propositional linear temporal logic is a restricted linear temporal logic which only
allowing boolean variables. State formulae, boolean operators, and temporal operators
are contained in linear temporal logic [18]. Moreover, the temporal operator can be
separated into two parts, which are future operators and past operators. The semantics
of PTL in terms of (0,i) = f, which means f holds at the i-th position is given below.

A sequence of states satisfies a PTL formula f or ¢ is a model of f, denoted o & f, if

(0,0) = f.

State Formulae

e For a state formula p,

(0,2) =p <+ sis the first state of z-and M, s = p.

1 —
i

Boolean Operators -

The following are the semantics of some baglean operations.

e Negation: —p,
(01i)E, - p<(0,0) #'p.

e Disjunction: pvgq,

(0,i)E pv q< (0,1) E por (0,1) E q.
e Conjunction: p A g,

(0,i) E pA gq<(0,i) E pand (0,i) E g.

There are some other operations which are not introduced here such as implication (—)
and equivalence (<) can be defined by negation, disjunction, and conjunction for sim-

plicity.

21

Future Operators

Here are the semantics of the future operators.

e Next: Op, or sometimes be written as X p,

(0,i) EOp < (0,i+1) Ep.

Eventually: ¢p, or sometimes be written as F p,

(0,1) E Op < for some k >4, (0,k) Ep.

Always: Op, or sometimes be written as G p,

(0,i) Egp < for all k >i,(0,k) E p.

Until: p Uq,

(0,i) EpUq < for somek >, (0, k) mgsand forall i <j <k, (o,j) Fp.

Release: p Rq, =

o

(0,i) Ep Rq < fopall j >4, (a,i)zila_&p for every k.i <k < j, then (0,j) Eq.

Waits for: p Wy,

(0,i) Ep Wq < (for some k >, (0, k) Eqgand for all j,i<j<k, (0,7)EDp)
or (for all j>i,(0,7) Ep).

Past Operators

Here are the semantics of the past operators.

e Previous: op,

(0,i)Fop<i>0and (0,i-1)Ep

e Before: op,

(oyi)eep<i=0or (o,i-1)Ep

e Once: ¢p,

(0,i) E ©p < for some j,0<j<i,(0,j)Ep

22

e So-far: gp,
(0,i) F Bp< forall j,0<j<i,(0,7)Fp
e Since: p Sq,

(0,i) Ep Sq< for some k,0<k<i (0,k)Eq
and for all j,k<j<i,(0,j)Ep

e Back-to: p By,

(0,i) Ep Bq< (for some k,0<k <i,(0,k) = qand for all j,k<j<i, (0,7)Ep)
or (forall0<j<i, (0,7)EDp).

23

Chapter 4

Transformation

In this chapter, we will introduce some methods of formula rewriting and some algorithms
that transform a formula into an equivalent automaton and transform a Biichi automaton

into an equivalent deterministic Muller or Rabin automaton.

4.1 Formula Rewriting

F. Somenzi and R. Bloem introduiced an-LTL to-BA translation algorithm which consists
of some heuristic approaches in the three Stg;;g;es of the translation, which are rewriting the
input formula, optimizing translation proée__dure, and.simplifying the result automaton
[22]. They proposed several formulaée and=theit congruent formulae for replacement,
which are showed in Table 4.1, and so:me rules. to check for ¢ < 1) are showed in Table 4.2.
Transforming the left-hand side by the right-hand side would help reducing the states
size of the result automaton of translation algorithms because the possible covers of the
formulae produced by those algorithms are reduced. For example, we translate ¢ = gOpv
0oq with original GPVW translation algorithm, which will be introduced in Section 4.2,
and the result GBA contains eleven states. Furthermore, we translate the formula ¢ with
GPVW+, which is an extension of the original GPVW, and the result GBA contains
seven states. On the other hand, we first transform formula ¢ into ¢’ = o (p Vv q) by the
rules in Table 4.2 and translate ¢’ with the same algorithm GPVW. There are only four
states in the result BA, which is much smaller than the previous result. All the automata
is illustrated in Fig. 4.1. Moreover, they also proposed an approach to simplify the result
Biichi automata using simulation in the later part of the paper which we will not mention

in this thesis.

24

| Generalized Bcni <#19>

|F1 150, 59, s7, 54, 55, 51, 56, 53 ‘
To select a set, left-click it.

| Remove l Create || Update || oK |

[Generaiizea Bichi <#24>

FO : 54, 85, 50, 52, 51
F1:s4, s5, 50, 52,53

To select a set, left-click it.

| Creaie || Update || OK |

(b) The‘.rég{flltﬁft ‘Jf sl Hoﬁy g by GPVW.
9 - ViRl

| Remove

|| Generaiized Buchi <#13>

lIFo:s1,s2 |
To select a set, left-click it.
Lok |

| Remaove || (_:r_eate || Update

(¢) The result GBA of formula o&(p v ¢) by GPVW.

Figure 4.1: Examples GBAs for rewrite formula rules proposed in [22]

25

<P =(pr)=gp 0O v ooy =00 (p v)

p<-p=(pnrp)=F OOP = 0OP

(Op) U (oY) =0(p U) p<=oURUY)=Y Uy
(p RY)A(p RY)=¢ R(¥V A7) ooOY = odw

(e RY) V(Y Ry)=(pVvi) Ry oadP = 00Y

(Op) A (O) =0(p A1) 0ooY = OoY

oT=T O(pApoY) = (Op) A (OoY)
¢UF=F o(y vooy) = (op) v (oY)
p<t=(pUY)=1 O(p AooY) = (0p) A (oY)
—) <= (o UY) = (T Up) O(p vooy) = (0p) v (OoY)

Table 4.1: Rewriting rules proposed in [22]

p<p

p<T
(p<)r(psx) =< (Wax)
(p<x)v(@<x)=(pry)<x

X< =x<(pU)

(p<x) A <x) = (pUY).< x
(<)) (L <s) = (UY)<(x Us)

Table 4.2: Rules to check for.».< ¢ in [22]

K. Etessami and G. J. Holzmann also_intteduced several optimization methods for
formula rewriting [6]. They proposed an id;z;:"tﬁ take the'advantage of the suffix language
[|
of a formula. The formulae¢-with the same'suffix language.can be replaced from one to

another.

Definition 4.1. A language L ofw-words is saidto be left-append closed if for all w-words

weXw, andveX*: ifwe L, then vwe L.

Proposition 4.2. Given an formula v such that L(v) is left-append closed, and any
formula v, the following equivalences hold: (1)y U =, (2) O = 1.

Definition 4.3. The class of pure eventuality formulae are defined as the smallest set of

LTL formulae (in negation normal form) satisfying:
1. Any formula of the form $w is a pure eventuality formula.

2. Given pure eventuality formulae ¥y and ¥y, and v an arbitrary formula, each of

W1 ANy, Py Vabe, Yy Uy, vy, Y Ris and Oy, is also a pure eventuality formula.
Lemma 4.4. Every pure eventuality formula ¢ defines a left-append closed property L(p).

26

Definition 4.5. A language L of w-words is suffiz closed if whenever w e L and w' is a

suffix of w, then w' e L.

Proposition 4.6. For a formula v with a suffiz closed language L(1)), and an arbitrary
formula ~, the following equivalences hold: (1)y R =, (2) o = .

Definition 4.7. The class of purely universal formulae is defined inductively as the small-

est set of formulae satisfying:
1. Any formula of the form oy is purely universal.

2. Given purely universal formulae 1y and 1o, and an arbitrary formula v, any formula

of the form: iy Ay, W1 Ve, V1 Uy, OUr, Y1 Raby and O, is also purely universal.
Lemma 4.8. Every pure universality formula defines a suffiz closed property.

Lemma 4.9. For all LTL formulae @, ap; andwy, the following equivalences hold:

L (pUD) A (v UD) = (pirm) UY

1

2 (o UB)V (p U) B U () | T

3. Sl UY) =00

4. Whenever v is a pure evéntual%ty formula~(p U) =4, and Sp =1,
5. Whenever 1 is a pure universality formula (¢ R) =, and op = 1.

Here is an simple example to show the effect. First, we translate formula ¢ = (p U q) A
(r Uq) by GPVW and the result GBA Ay contains fourteen states. An automaton
which contains so many states cannot be easily understand by people. We also translate
the formula ¢ with GPVW+ and the result GBA A;) contains seven states. On the
other hand, we transform ¢ to ¢’ = (p Ar) U q and translate ¢’ with GPVW. The result

automaton contains only four states, which is much smaller than A, and A;s-

27

| ceneraiized Biicni <#10>
FO: s6, s0, 58, 51,510,512, 55, 57,53, 5
F1:s6, s0, 58, 54, s1, 510, s12, 55, 57, 53

To select a set, lefi-click it.

| Remove || Create || Update | OK |

s, . kml

M Generalized Bilchi <#8>

I FO:s5, 50,52, 54
F1:s5,50,53,52,54

To select a set, left-click it.

| Remove || Create || Update | OK |

| ceneraizea Bicni <#3>
lIFo:s2, 51 |

To select a set, left-click it.

| Remove

| Create || Update || 0K |

(¢) The result GBA of formula (p A7) U ¢ by GPVW.

Figure 4.2: Examples GBAs for rewrite formula rules proposed in [6]

28

4.2 Formula Translation

Here, we are going to introduce an algorithm which is used for linear temporal formulae
to generalized Biichi automata translation in “on-the-fly” fashion. GPVW is a simple
on-the-fly algorithm proposed in [8]. It stores the information of elementary formulae,
U -formulae, and the right-hand side formulae of U -formulae in each state. In Addition,
the U -formulae are also used to keep the information of the accepting condition of the
result generalized Biichi automata. Considering a U -formula f, when the right-hand side
formula of f holds, the U -formula is also satisfied which implies if the right-hand side
formula of an U -formula is satisfied at the current state of the result generalized Biichi
automata, the U -formula is also satisfied at the current state. Therefore, the current
state will be collected in the accepting set of the result automata corresponding to the
U -formula. They also proposed a new way to detect the contradiction and redundancies
for states in the later parts of the paper.

The central idea of GRVW tramslation algorithmiis a tableau-like procedure related
to ones described in [25, 26]:' The tableau-like proceduré-actually constructs a graph.
The nodes and the arcs in,the graph réﬁéesgant the states and the transitions of the
result automaton. The data fields we use t¢ represent the-graph nodes contain sufficient
information for the graph construetion alg01."-ithm o be able to operate in a DFS order,

which are as follows:
e Name
— A name that distinguish each node
e Incoming
— A set of nodes with outgoing edge leading to the current node.
e New

— A set of subformulae which must be hold at the current node and not yet be

processed.

e Old

29

form | Newl(form) | Nextl(form) | New2(form)
pUo | {n} {nUo} {0}

pRo| {0} {n Ro} {n, 0}

pvo |} 2 {9}

Table 4.3: Definitions of New and Next functions for non-literals
— A set of atomic propositions which is hold in the current node.
e Next

— A set of subformulae which must be hold in all states that are immediate

successors of states satisfying the properties in Old.
e Father

— Nodes will be split durion the construction of the graph. This field, Father,
will be the name of theé nodé which the,current one has been split from. It is
used for reasoning about the correctness of thealgorithm only, and is not that
important for the algorithm; |

e

Before we go any further, we should fir?:t notice that F-formula and G-formula can
always be transformed to U -formula and R -fotrhula. Therefore, without loss of gen-

erality, we can assume the inpﬁt forﬁula doesinot gontain the Eventually operator ‘F’

and Always operator ‘G’ and is in negation normal form. The first step of the algorithm

which is showed in Fig. 4.3 is to generate an initial node for the input formula. The
initial node has a single incoming edge, labeled init, which marks the fact that it is an
initial node. There is only one element in the field New, which is the input formula ¢.

Both the fields Old and Next are empty in the initial node. The core function ezpand is

showed in Fig. 4.4. With the current node N, the algorithm checks if there are unpro-

cessed obligations left in New. When 7, which is the target expanding formula in New, is
not a literal, the algorithm may splits the node with different formulae set to hold. The

splitting rules is illustrated in Table 4.3.

If n is actually in the form @ A ¢, the current node need not to be spilt. Instead, both

i and ¢ are added to New as the truth of both formula is needed to make 1 hold. During

30

the processing the current node, a formula 7 in New is removed from this list. In the

case that 7 is a proposition or the negation of a proposition, then

e If - is in Old, the current node is discarded.

e Otherwise, 7 is added to Next.

If there already is a node n € Node_Set with the same obligations in both its Old and
Next fields, merge the current node and n. If no such node exists in NodeSet, then the
current node is added to this list, and a new current node is formed for its successor as

follows:

1. There is initially one edge from N to the new current node.
2. The set New is the set initially to the Next field of N.

3. The sets Old and Next of the new- eurrentsnode are initially empty.
The list of nodes in Node_Set can nowbe converted-into a generalized Biichi automaton
B=(%,5,9,s0, F):

1. X consists of sets of propositions from AP.
ll-

2. The set of states S includes the nodeslin NodeSet and the additional state s.
3. The initial state is sg.

4. (s,w,s") €d iff s € Incoming(s’) and w satisfies the conjunction of the negated and

non-negated propositions in Old(s").

5. The acceptance set F' contains a separate set of states F; € F' for each subformulae
of the form pUgq ; F; contains all the states s such that either ¢ € Old(s) or pUq €
Old(s).

4.3 Automata Transformation

In this section, we will introduce Safra’s construction [21, 9], which is an approach that
transforms a Blichi automaton into an equivalent deterministic Muller automaton or
deterministic Rabin automaton. Some algorithms mentioned in Chapter 5 will be applied

on deterministic Muller automata.

31

Algorithm: Create Graph

input : Formula ¢
output: Set of nodes Node_set
begin
return (expand (/Name < Father < newname (), Incoming < {init},
New <= {¢}, Old < @, Next < @], @))

end

Figure 4.3: The create graph algorithm.

4.3.1 Safra Tree

Safra tree is an extension of the usual subset construction.
Definition 4.10. Safra tree is a labeled ordered tree where T' = (N,r,p,,1).

e N is a set of nodes. The name of the nodes are token from some global natural

number N.

r is the root node. The name ofwoot is 1.

p: N — N is a parenthood function defined, over N-= {r}, and defining for every
veN-{r}, its parent p(v) € N, :-.::F’“n
Y is the sibling ordering relation, a partial order relation. if p(v) # p(v') then there

is no order between v andv"y while if. p(v) = p(v")-then (v,v") € Y or (v',v) € 1.

(v,v") means v is an order sibling-of v'.

o [: N — 29 js a labeling of the nodes with subsets of Q. The labels of two siblings
are disjoint and the label of every node is a superset of the union of the labels of its

SONs.

In the usual subset construction, we keep track all reachable states, say S, after
reading a prefix of the input word. For an input o € X, Safra tree will not only remember
the successor states of S, but also create a new node to record all the states that can be
reached from S n F' after reading 0. When the label of a node is equal to the union of
the label of its children, which means all the states in this computation has a run that
visited an accepting state, we will mark this node with a special sign, say ‘!, and remove

all the descendants.

32

Algorithm: expand

input : A single node Node, Set of nodes Node_set

output: Set of nodes Node_set

begin

if New(Node) = @ then

if AND € Node_set with 01d(ND) = 01d(Node) then

Incoming(Node) = Incoming(ND) u Incoming(Node)

return Node_set

else

return (expand (/Name < Father < newname (),
Incoming < {Name (Node) }, New <Next1(Node), Old < @,
Next <= @], {Node} U Node_set))

end
else
let 7 € New
New(Node) := New(Node) ~{n}
switch 7 do
case n=P,, or -P, orp=r_onn=F
if n=F or Neg(n) € 01d(Node) -then // Current node contains a
contradiction
| then return Node_set // Discard current node
else
01d(Node)' := 01d(Node) u{n}
return expand (NodeyNodezset)
end =
case 1= U, or i R, oruv.gé
Nodel := [Name Cnewname(),l‘__Father <Name (Node) ,
Incoming <=Incoming(Node),
New <New (Node). U({Newl(n) }\01d (Node)),
Old < 01d(Node) {nyyNext =Next{Node) U{Next1(n)}] Node2 :=
[Name <newname () Fatlier, <Name (Node) ,
Incoming <Incoming (Node),
New <New(Node) U({New2(n) }x01d(Node)),
Old <= 01d(Node) u{n}, Next <Next (Node) U{Next2(n)}| return
expand (Node2, expand(Nodel, Node_Set))
case n =AY
return expand (/Name <newname (), Father <Father (Node),
Incoming <Incoming(Node),
New <=New(Node) u({u,1}~01d(Node)),
Old < 01d(Node) u{n}, Next <Next (Node) U{Next2(n)}/,
Node_Set)

endsw
end

end

Figure 4.4: The expand function.

33

4.3.2 Nondeterministic Biichi to Deterministic Muller and De-
terministic Rabin

Let B = (X,Q,9,q0, F) be a nondeterministic Biichi automation with n states. There
exists an equivalent deterministic Muller automaton M = (X, Q’,d’, ¢, F) or an equivalent

deterministic Rabin automaton R = (X,Q",d’, ¢, $2) where
e ()’ is a set of Safra tree.
e The initial state ¢/, is the Safra tree consisting of only node 1 labeled {qo}.

e 0 : Q) x3¥ — () is the transition function. For a given input a € ¥ and a Safra tree
T, §'(T,a) is computed as follows:
1. Remove all marks in the Safra tree 7.

2. For every node v with label L.such-that L'n F # @, create a new child with
label LN F.

3. Apply the usual subset construction on every ‘nédes. Replace the label with

1 —

quL §(q7 CL). “#’—-_

4. For every node v.with label L ajf;d q € L, if ¢ also belongs to the label of an

older brother of v, then re_mbve q from L.
5. Remove all nodes withempty labels.

6. For every node whose label is equal to the union of the labels of its sons,

remove all the descendants of the node and mark the node with ‘!’
e The Muller acceptance condition F = {F}, ..., Fy,} is defined as for each Fj,

1. node i appears in all Safra trees of F;, and

2. node 7 is marked at least once in Fj.

e The Rabin acceptance condition Q = {(E4, F1),...,(Fan, Fo,)} is defined as for
i=1{1,2,....2n),

1. Ej; is the set of all Safra trees without a node i, and

2. Fj is the set of all Safra trees with node ¢ marked.

34

Note that deterministic Rabin automaton can be used when computing the comple-
ment of a Biichi automaton. First, transform the Biichi automaton into an equivalent
deterministic Rabin automaton. Second, get the deterministic Streett automaton for the
complement language by dualizing the acceptance condition of the deterministic Rabin
automaton. Last, transform the deterministic Streett automaton into an equivalence
Biichi automaton by Proposition 3.8, which is the complement of the original Biichi

automaton.

35

Muller <#17>
:s0,51,52,53
181

180, 52

150, 52,83
180, 81,82

o - O

To select a set, left-click it.

| Remowve H Create || Update || 0K ‘

(b) A deterr&infsti%ﬁgulf[é&mﬁ‘tiri M ﬁfrwr'é Li/\/l) = L(B)
= N ' m\ M, | " g

Rahin <#16>
0: empty
is1,82
To select a set, left-click it.
‘ Remove || Create H Update || OK ‘

(¢) A deterministic Rabin automaton R where L(R) = L(B)

Figure 4.5: An example of translating a nondeterministic Biichi automaton into an equiv-
alent deterministic Muller automaton and an equivalent deterministic Rabin automaton

36

Chapter 5

Classification

In this chapter, we will introduce temporal hierarchy classification proposed in [17] and

classification of a property as deterministic or nondeterministic Biichi.

5.1 Temporal Hierarchy

We say that a program P. has the property Il'ifrall<the computations of P belong to
I1. One can use properties to:specify a-programs-hut 1t may:lead to underspecification in
some cases. To avoid underspecification, on;g__lpossible solution is to classify different types
of properties, and provide a list of propel.";uié.s to| the_specifier to consider. L. Lamport
suggested that properties of/a reactive progfam can be partitioned off into two classes,
safety and liveness properties.[14]. T 1990,Z: Manna and’A. Pnueli proposed a hierarchy

of temporal properties. They classified“temporal properties into six classes [17].

5.1.1 The Temporal Logic View
A formula contains no future operators is called a past formula.
e A safety formula is a formula of the form
ap;
for a past formula p.
e A guarantee formula is a formula of the form

b,

for some past formula p.

37

A simple obligation formula is a formula of the form

op Vv &4,

where p and ¢ are past formulae.

A general obligation formula is a formula of the form

/\[Dpi v O],

i

where p; and ¢; are past formulae.

A recurrence formula is a formula of the form

0op,

for some past formula p.h._;'z‘uf"’ '
& .

".J"i'l: =

))

A persistence formulih is a f
& i

":_-..l

|
[o

*
|

for some past formﬁ:;}an,?,.

A simple reactivity form‘ﬁ\%»\ is’ _
rE‘T’HH? f}?ra', a W 'ﬂ'l
.-l" :;? D<>p 4 gﬂ%
f __._l||l ___j-\. jl

where p and ¢ are past formulae.

A general reactivity formula is a formula of the form
/\[D<>pi v oo,

where p; and ¢; are past formulae.

Figure 5.1 shows the inclusion relations between the classes. The classes of safety
and guarantee properties are disjoint, so do recurrence and persistence properties. The
safety properties are the closed sets and the guarantee properties are the open sets. Every

temporal formula is equivalent to a reactivity formula.

38

Reactivity
G&T N Fo‘§
Ni[oOpi v Oogi]

Recurrence Persistence
Gs F,
oop &op
Obligation
G5 N FG

Ailop; v &g

Safety Guarantee
F G
ap Op

Figure 5.1+ Inclusion relations between-the classes

5.1.2 The Automata View

Another way to specify tempeoral propertie-s is bagsed on finite-state predicate automa-

ton. In this thesis, we focus ofirdeterministic Streett automata as predicate automata.

First, let us restrict our attention ‘to, a special case' of Streett automata M, where

M=(2,Q,0,q, (R, P)), which means there is only one pair in the acceptance condition.

R is a set of recurrent automaton-states, and P is a set of persistent automaton-states.

A run p on an infinite word w is accepted by M iff either inf(p) n R # @ or inf(p) € P.
Let

e G = RuUP be referred to as the “good” sets of states and
e B =0 -G be referred to as the “bad” sets of states.

Z. Manna and A. Pnueli defined the following classes of automata by introducing restric-

tions on their transition conditions and accepting states.

e A safety automaton is such that there is no transition from ¢ € B to ¢’ € G.

39

(R, P) = ({s0,s1,s3},{})
A safety automaton of p — og.

(R, P) = ({s1},{})

A guarantee automaton of &(p v q).

Figure 5.3: An example of guarantee automata

40

(R, P) = ({s1},{s0})

A simple obligation automaton of gp v $q.

Figure 5.4: An example of obligation automata

e A guarantee automaton is such that there is no transition from g € G to ¢’ € B.
e A simple obligation automaton is'such that

— There is no transition from q ¢ P to ¢" € P

— There is no transition from g€ R to ¢ ¢ R.

e
L.

. -

e A (general) obligation automaton (of dif:gree k) is an automaton, in which each state

q € Q has a rank v(q); 0 <~(q) <k, such that:

— There is a transition from ¢.te ¢ only:if v(¢) <~(q").
— There is a transition from g e B to ¢’ € G only if v(q) <v(¢").

— There is no transition from a state ¢ € G of rank £ to a state ¢’ € B.
e A recurrence automaton is such that P = @.
e A persistence automaton is such that R = @.
e A simple reactivity automaton is an unrestricted automaton of the above type.

Now, we want to apply the classification technique to more general deterministic
Streete automaton M, where M = (3,Q,9,q,<?), and Q = {(Ry, P,),..., (R,,P,)}. A
run p on an infinite word w is accepted by M iff for each (R;, P;) € €, either inf (p)nR; + @
or inf(p) ¢ P;.

41

(R, P) = ({s0},{})

A recurrence automaton of g(p - ©q).

Figure 5.5: An example of recurrence automata

(2P = @ (s0.53))

A persistence automaton.of ‘Grp.

Figure 5.6: An-éxamples of persiétence automata

(R, P) = ({s0},{s1,s2})

A simple reactivity automaton of gOp v &og.

Figure 5.7: An examples reactivity of automata

42

The following are some definitions.

A set of automaton states A c () is defines to be closed if for every q, ¢’ € Q)
ge AnToeX 0(q,0)=q — ¢ € A.

The closure A of a set of states is the smallest closed set containing A.
For a given Streete automaton M, define
k
G=((R;,uP).
i=1
e Checking for a safety property.
Let B =Q - (G. The automaton M specifies a safety property iff BnG=g.

e Checking for a guarantee property.

M specifies a guarantee property iff GnB=-9.
To check for the other levels of the hierarchy, we define the family of accepting set F.

F ={J| J is an accessible cycly; J 0 Rj#@or JC P foreachi=1,... k}
|-’_.ﬂ
e Checking for a recurrence property. '1
M specifies a recurrence.property iff for every J.€ I’ and every accessible cycle

A2 J AeF.

e Checking for a persistence property:
M specifies a persistence property iff for every J € F' and every accessible cycle

BcJ BelF.

e Checking for a guarantee property.

M specifies a guarantee property iff there do not exist three accessible cycles
BcJcA

such that Je F', but B, A¢ F.

43

{(Rh Pl)u (R27 PQ)} = {({80}7 {807 817 827 85})7 ({807 8]-7 837 84}7 {827 86})}
A (general) reactivity automaton of &Gop A Og.

Figure 5.8: An examples of reactivity automata
5.2 Deterministic Buchi v.s.. Nondeterministic Buchi

Deterministic Bilichi automata has-lessrexpressive power then nondeterministic Biichi
automata, while nondeterministic Buichi automata, deterministic Muller automata, de-
terministic Rabin automata, deterministigl.ﬁtreett automata and deterministic parity au-
tomata are all equivalent, in éxpressive pov&f';f@lassiﬁcation of a property as deterministic
or nondeterministic Biichi helps complemenlgation and empty checks. In [15], L. Landwe-
ber uses Borel hierarchy to classify languages of different- ¢omplexity.

Let M = (%,Q,T,q) be a finite' automaton {f.a.)" where 7" is a function such that
T:QxX->Q.

Definition 5.1. T: Q x ©* — Q is the extension of T given by T(q,xc) = T(T(q,x),0)
for o €Y, xeX*. Ruq is a function, Ry : X% — Q, given by Ry (x) = T(so,7) , called

the response function of M. (To simplify the notation we omit the subscript M in R,.)

Let w = wow;--- be a member of ¥X*. Abbreviate wow;---w; by w; and define the partial
order < on X* U X¥ by w; <w; <w for i < j <w. Let P(S) be the set of all subsets of the
set S.

44

1. Let FFc@Q. M accepts w with respect to F if 3i.R(w;) € F.

1’. Let FFc@Q. M accepts w with respect to F if Vi.R(w;) € F'.

2. Let Fc@Q. M accepts w with respect to F' if inf(p)n F + @.

2. Let Fc P(Q). M accepts w with respect to F if IF € F.inf(p) € F.

3. Let FcP(Q). M accepts w with respect to F if 3F € F.inf(p) = F.

Definition 5.2. An i-f.a. is a f.a. augmented by an output of type i.

Note that a 2-f.a. is actually a deterministic Biichi automaton and a 3-f.a. is a

deterministic Muller automaton.
Definition 5.3. A c X% is i-definable if there is an i-f.a. which defines it.
Let F be the closed subseti of > and G be‘the open subset of ¥v.

F. is the set of countable unions of closed subsets of >%.

G5 is the set of countable!interse¢tions =Dof open subsets of >«.

Fs is the set of countable intersectiof;'_s_ of F -subsets of »«.

Gso 1s the set of countable unio:ns of Gs-subsets. of Y«.
The hierarchies F, F,, F,s and G,Gs,Gs, form the Baorel hierarchy.
Theorem 5.4. Fvery I-definable set is in G, and every 1’-definable set is in F.
Theorem 5.5. Fvery 2-definable set is in Gs, and every 2’-definable set is in Fy.

Theorem 5.6. Fvery 3-definable set is in G, N Fs.

In the following, let M = (X,Q,T,qo,D) be a 3-f.a., which is also a deterministic

Muller automaton.

Definition 5.7. For x,y € ¥*, x <y, let R(z,y) = {R(2) | x < z < y}. Forqe@, let
Ac(q) ={s|s€Q,32.T(q,x) = s}. Call Ac(q) the set of states accessible from ¢ and

R(x,y) the state path determined by the interval z, y.

45

Definition 5.8. For ¢ € Q, let H, = {R(x,y) | R(z) = R(y) = ¢,x,y € £*}, the set of

realizable cycles.

Theorem 5.9. L(M) is in Gs if and only if for all g € QQ, D e Dn'H, and E € H, implies
DuFEeD. [15]

From the above theorem, we know how to check whether a deterministic Muller au-
tomaton M can be transformed into an equivalent deterministic Biichi automaton. The

construction of the equivalent deterministic Biichi automaton is shown below.
Theorem 5.10. If A€ G5 is 3-definable, then it is 2-definable. [15]

Let L(M) € Gs, where M = (2,Q,T,q,D) is a 3-f.a. Now a 2-f.a. M* satisfying
L(M) = L(M*) is defined as follows. For each ¢ € @, let M, be an f.a. which for any

input sequence w satisfies:

(a) M, enters a designated state ethe first time M-would enter ¢ in reading w;

(b) M, reenters € each time and only at such, times that (1) M is in state ¢ and (2)

the set of states entered by M in re}f;_),“_ahg w,| since the' previous time M, was in e,

. . e
isin D. .

M is (Mg, x -+ x Mg, , D*Y,"where Q ={go, - qn}, x'is the usual product operation

on machines and
D* ={(dy,-,dy) | d; a state of M,,,3j.(d;j =€)}

is the Biichi acceptance condition.

M, =(2,Q",T",q)) can be constructed as follows:
o Q=@ {a})u{ctu{{e,5) [qeQ,5<cQ},

° Q(l):QOa

o T":Q'x X — Q' is defined, for ¢,(q,S) € Q" and o € ¥, as follows.

I al/ _) € if T(Qa U) = gi,
T(q,0) = { T(q,0) otherwise.

— T"(e,0) =(T(qi,0),{T(qi,0)}),

46

, G it T(q,0)=qASu{T(q,0)} €D,
- T'({a,5),0) = { (T(qi,0),Su{T(q,0)}) other%vise. ! !

Two examples are shown in Figure 5.9, 5.10 and 5.11. Note that states with double
circles in M, denote € states.

Here we propose an improvement of this construction. Instead of generating M, for
every ¢ €), we generate M, for all ¢ € S, where S is a subset of) such that, for each
DeD, SnD +@. For example, My, and M, in Figure 5.10 can be ignored, and M
is exactly the result M*.

To prove the correctness of this improvement, the proof is similar to the proof de-
scribed in [15]. Note that M is built into each H,. In the following, Inf(«) and H,

always refer to M.

Proof. 1. L(M)c L(M*). Let ae (M) and Inf(a) € D. Sn Inf(a) # @ since
SnD # @ for each D e D. Choose q € Sainf(a).. M, enters e the first time M enters g,
while reading .

Assume M, enters ¢ for the nth time.at time-t andlet £, Es, -+ be the sets of states
which M enters between successively critering. ¢ after time ¢ (F; # @,i = 1,2,---, since
q € Inf(«)). There is a finite sequence E:EﬂjJrl,---,Eﬁk such that Inf(a) = UY, Eiu.
Since H,ND # &, Theorem 5.9 implies thatl'U{:lk F; € D. Heénece M, enters € an (n+1)st
time. This proves that if e'C(./\/l.), thenfisome M, enters e infinitely often, so that
ae L(M*).

2. LM*)cL(M). Let a € L(M*), so that there is a ¢ such that M, enters €
infinitely often while reading «. Let E; (i = 1,2,---) be the set of states entered by M
between the ¢th and (i + 1)st times M, enters e. Then E; e H,nD (i = 1,2,---) by the
definition of M,. Inf(a) must be equal to a finite union of E;’s, but since H,nD # &,
Theorem 5.9 implies that any finite union of E;’s is in D. Hence a € L(M). O

47

~p p Muller <#32=
FO: sO, s1 |
To select a set, left-click it.

‘ Remaove H Create || Update || OK |

(a) The deterministic Muller automaton M where L(M) =oop And-p

(d) The deterministic Biichi automaton M* which is equivalent to M.

Figure 5.9: Examples of translating DMW into DBW

48

Muller <#33>

FO:s1
F1:s1,s2
To select a set, left-click it.
| Remaove H Create || Update || OK ‘

(a) The muller automaton M where L(M) = &(p Andq)

q ~q
gt = g5
st sty [s2is1,s2)]
f=

[s2.4s0.523] [s1.1s0,51, 521

-

(b) Result of M.,

(c) Result of Mg (d) Result of M

Figure 5.10: Another examples of translating DMW into DBW

49

(e) The deterministic Biichi automaton M* which is equivalent to M.

Figure 5.11: Another examples of translating DMW into DBW

50

Chapter 6

Implementation and Applications

6.1 Implementations in GOAL

All the algorithms described in Chapter 4 and Chapter 5 have been implemented in
GOAL. Some of the algorithms, which I have used to accomplish my thesis, were imple-
mented by the previous authors.

In the implementation of the temporal hierarchy classification algorithm described in

Section 5.1, for an input formula’ f, there,will be four steps:
1. Translate —f into an equivalent Bitehi automaton B_;.
2. Convert B_; into an equivalent [deterministic Rabin automaton R_ ;.

3. Obtain the deterministic Streett automaton Sy,-which is equivalent to f, by dual-

izing the acceptance condition.
4. Apply the classification algorithm on &;.

The major weakness of this procedure is that we may not able to obtain the “best”
Streett automaton Sy to classify the formula f into the lowest class where it belongs
to. To classify an arbitrary Biichi automaton B, we can first get the complement Biichi
automaton B. Then convert B into an equivalent deterministic Rabin automaton R,
and get the dual deterministic Streett automaton S, which is equivalent to B. The
classification algorithm can be applied on §.

In the implementation of the algorithm that converts a deterministic Muller automa-

ton into an equivalent deterministic Bilichi automaton, which is described in Section 5.2,

51

GOAL - (QPTL): <untitled #32>

File Repository Iestl Translate Preference Help
Editor Satisfiability

Validity

Temporal Hierarchy

Enter a QPTL (Quantified Propositional Temporal Logic) formula below:

‘v‘

[I1==p i <>[]q

The Repository will NOT b ome formula in the Repository.
The relevant option may

The QPTL formula is a reactivity formula.
Some examples of QPT

1.<=pliorFp -
2.[1<=pllorGFpor G m
30p--><>q)llorG{
40 ~pVOa)iorG{~pVXa)orG(~pV(Xa)

S.Et:tAlft<--=>() (~) A[l{E-->p)
G.At:[1(tVp)

Figure 6.1: Test of temporal h_ie_rarcﬁ-}} 'class'i-ﬁ:iatior_l for.an input formula in GOAL
A s

o T

ay
the improvement we proposed: is also implemented. To implement the improvement, we

use a simple method to compute the ‘.Lﬁl ||
Y

' o
1. Put the state ¢ that covers the most ﬁ:epé‘i g sets into S.
. = |

T —

2. If there exists any accepting, s tls that has]l ot been covered by the states in 9,
.'lu ..

choose the state that covers/thie most remai_niii"g' aceepting sets and put it into S.

4
T -

3. Repeat step 2. until every accepting set is covered by at least one state in S.

Table 6.1 shows the experiment result of the converting algorithm for 15 random cases.
As we can see, the size of the result Biichi automata reduced when we applied our

improvement.

6.2 Applications on the Biichi Store

Based on the implementation on GOAL, the Biichi Store becomes more useful. There

are three main change of the Biichi Store, which as follows:

e Smaller and Deterministic BAs can be generated and collected

As we described in Chapter 4, with the rewriting rules we implemented in GOAL,

52

I GOAL - Automaton (Muller): (dmw_casel.gff#1) o @ P4 I

File Repository Operation Preference Help I
Muller to Buchi
DEIEEE d

Muller <#1=>
0:s0,s1
To select a set, left-click it.
Remowve || Create || Update H 0K ‘

.
g0

File Repository Test Operation Preference Help

Figure 6.2: Convert a deterministic Muller automaton to a deterministic Biichi automaton
by the power of GOAL

53

DMW DBW DBW with improvement
Case no. | st. ‘ tran. | st. ‘ tran. | st. ‘ tran.
1 2 3 4 8 2 4
2 4 8 8 32 6 24
3 4 6 10 40 4 16
4 4 8 36 72 11 22
5) 4 8 18 72 5 20
6 3 6 12 48 3 12
7 4 10 11 44 8 32
8 3 5) 6 12 4 8
9) 13 70 | 280 18 72
10 6 12 22 88 13 52
11 4 12 15 120 10 80
12 4 10 36 144 11 44
13 8 21 33 132 15 60
14 6 10 11 44 7 28
15 5) 11 86, 344 13 52
| total |66 | 143 | 3784 14804 130 | 526

Table 6.1: The experiment result‘of-deterministie.Muller to deterministic Biichi convert-
ing algorithm for 15 random cases.

one can generate smaller/ BA in ftévms of size for the same formulae. When one
generated smaller BA, He ¢an share fﬁése interesting BAs on the Biichi Store, and
wins the credit of smallést BA ever fronithe Biichi Store. He then will be encouraged
to searching for smaller BAs.~ Furthérmore, one can also generate deterministic
BA for formulae. The Biichi Storéwill provide a deterministic BA pool for these
deterministic BA since deterministic BA are useful in some research and academy

area. These user’s behavior will definitely enrich the BA pool in the Biichi Store.

e The efficiency and correctness of categorizing formulae are improved
Last year, the Biichi Store provides a very simple way to categorize the temporal
formulae. We had a simple method to category the formulae which cannot recog-
nize all kinds of formulae, which is the first part of 5.1. If the formulae cannot be
categorized by the method, we try to categorize it by hands. Now, we have im-
plemented the second part of the method, which means the ability of categorizing
input formula is improved. Moreover, with the help of rewriting formulae method,

we are able to categorized one formula more efficiently because the intermediate

54

Streett automaton might be reduced. This improvement provides a better user

experiment when people uploading their user-defined BA to the Biichi Store.

e Searching is more functional and humane
For people who visiting the Biichi Store and trying to search for a BA for specific
formula, the search engine can not only search for the input formula literally, but
also search for any equivalent formula with the help of the rewrite roles we had
built in. The Biichi Store will check the possible formula by rewriting the input
formula into a simplest one and checking whether there is a formula which is literally
equivalent with the rewritten one. People will have more opportunity to reach the
BA which he/she is interested in for his/her own defined formula.

With these improvements, the Biichi hSJ*c{q_{fbbfgo{Enes .more helpful for research, practice,

. P o
and education. pr L . --!'-E-;;‘_?__l

95

Biichi Store

@® Formula (Syntax) O Description O Author ©10 O Al

Response (Recurrence)

Suggested browsers: Mozilla Firefox and Google Chrome

<2 First page < Pre 1 - 15 of 57 Mext = Last page ==

Equivalent: [JiTrue U {=p A Trued) « [[[True L=p) =

~<=(False B p) - ~<=(p W False) - ~=3[]p -
=z <>~l Lt [

Complement; <={False R p) = <>{p W False)
=7 [Lo [

Sorted by

= Formula Length

» Stafe Size

= Temporal Hierarchy
* Spec Patterns

Select a category to browse

* Safety

Guarantee

Ohligation

Response (RecUrrence)

Persistence

Reactiity

Unknown

Figure 6.3: Browse automata sorted by temporal hierarchy in the Biichi Store

56

Chapter 7

Conclusion

Study of transformation and classification of temporal properties is important because it
helps us classify temporal properties better. People can find one BA of a given temporal
formula faster and the corresponding BA of a formula may become smaller with the
help of formulae transformation and classification. In.this thesis, we discussed several
transformation and classification.methods for temporal‘properties. We also described the

improvements that we made to. GOAL and the Buichi Store based on these methods.

7.1 Contributions "x

The contributions of this thesis can be summarized as follows.

e [mplementation of classification rules for temporal properties
The temporal hierarchy classification algorithm and conversion of deterministic
Muller automaton to deterministic Biichi automaton are implemented in GOAL.
The user now can test which hierarchy the input formula belongs to. The topic
about properties classification has not been extensively studied. With this thesis
and our implementation, the reader can learn more about the difference between

classes. The implementations are also applied to the Biichi Store.

e [Improvement of the conversion of DMW to DBW
In [15], Landweber gave the rules for construction of M, when converting a deter-
ministic Muller automaton into an equivalent deterministic Biichi automaton. We
proposed a construction of M, based on their work. We also made some improve-

ments so that we can get a smaller automaton. One can get more understanding

o7

of the conversion algorithm through our implementation.

e Improvements on the open repository Biichi Store
The Web-based open repository is very useful for people who are interested in tem-
poral logic or program verification. The Biichi Store provides a collection of tem-
poral formulae and their corresponding smallest Biichi automata. All the temporal
formulae are classified appropriately with our implementations of the classification
algorithm. Hence, the user can easily search for a desired formula to obtain the
smallest corresponding automaton without trying all the translation algorithms,

which would cost lots of time and space.

7.2 Future Work

There are several directions for the future:

e Study and implementation of more simplification algorithms
One major purpose of this thesis“is*to make it easier for people to get smaller Biichi
automata. One simplification algdfgl’lbm proposed in_[22] has been implemented
in GOAL. There are more simpliﬁcét‘%on algorithms that can help obtain smaller
automata. Moreover, the algorithm that converts a.deterministic Muller automaton
into an equivalent deterministic Biichi automaton deseribed in Section 5.2 generates
a large deterministic Biichi autematon. “It should be worthwhile to investigate

simplification algorithms for DBW since smaller DBW will be more useful.

e Formulae equivalence checking
Formulae equivalence checking can also be considered as one kind of formulae clas-
sification methods. However, the semantics equivalence test between two formulae
is usually realized by the equivalence check of the corresponding automata, which
is costly. It should be worthwhile to develop a more direct method for checking the

equivalence between two temporal formulae.

e Development of more functionality and interactive GUIs for the Bichi Store
The Biichi Store now is simply an open Web-based repository. Functions like search-

ing for BA without temporal formula, viewing most often downloaded automata, or

o8

showing comments from users of a Biichi automaton would be a valuable addition
in the Biichi Store. Formulae other than temporal formulae should also be allowed
to describe the corresponding BA in Biichi Store. Besides, the user always feels
easy to browse with suitable interactive GUIs. Online temporal formula rewriting,
online BA editing, and online laying out of automaton may be useful in the Biichi

Store to improve the ability to interact with users.

99

Bibliography

[1]

3]

J.R. Biichi. On a decision method in restricted second-order arithmetic. In Proceed-
ings of the International Congress on Logic, Methodology and Philosophy of Science,
pages 1-11. Standford University Press, 1962.

J.-S. Chang. A comprehensive comparison temporal formula to automata translation
algorithms. Master’s thesis, Institute of Information Management, National Taiwan

University, 2009.

Y. Choueka. Theories of automata on w-tapes: ‘A simplified approach. Journal of

Computer and System Science, pages 8:117-141, 1974.

E. M. Clarke and E. A« Emerson. D_‘é‘ﬁgn and synthesis of synchronization skele-
tons using branching-time temporal log_i_c. In Proceedings of Workshop on Logic of

Programs, LNCS 131, pages 52ﬂ_71, 1981.

E. M. Clarke, O. Grumberg, and-D, A. Péled." Model Checking. The MIT Press,
1999.

K. Etessami and G. Holzmann. Optimizing Biichi automata. In Proceedings of the
the 11th International Conference on Concurrency Theory (CONCUR 2000), LNCS
1877, pages 153-167. Springer, 2000.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translations. In Proceedings
of the 13th International Conference on Computer-Aided Verification (CAV 2001),
LNCS 2102, pages 53—65. Springer, 2001.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing, and Verification,

pages 3—18. Chapman & Hall, 1995.

60

[9]

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

E. Griadel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games (LNCS
2500). Springer, 2002.

G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279-295,
1997.

G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

N. Klarlund. Progress measures for complementation of omega-automata with ap-
plications to temporal logic. In Proceedings of the 32nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1991), pages 358-367, 1991.

O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(3):408-429, 2001.

L. Lamport. Proving the correctness of multiproeéss programs. [EEE Trans. Software

Eng., 3(2):125-143, 1977.
L. H. Landweber. Deciston probléms f;mvautomata. Mathematical Systems Theory,

3(4):376384, 1969. A
Christof Loding. Methods for the tramformbtion of wW-automata: Complexity and
connection to second order logic. Master’s*thesis, Christian-Albrechts-University of

Kiel, 1998.

7. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report
STAN-CS-87-1186, Stanford University, Department of Computer Science, 1987.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

D. E. Muller. Infinite sequences and finite machines. In Proceedings of the 4th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1963), pages 3-16,
1963.

61

[20]

[21]

[22]

[23]

[24]

[25]

2]

A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,

13:45-60, 1981.

S. Safra. On the complexity of w-automta. In Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1988), pages 319-327, 1988.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In Pro-
ceedings of the 12th International Conference on Computer-Aided Verification (CAV
2000), LNCS 1855, pages 248-263. Springer, 2000.

Y .-K. Tsay, Y.-F. Chen, M.-H. Tsai, W.-C. Chan, and C.-J. Luo. GOAL extended:
Towards a research tool for omega automata and temporal logic. In Proceedings of

the 14th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2008), ENCS 4963, pages 346-350. Springer, 2008.

Y.-K. Tsay, Y.-F. Chen, M.#H. Tsai, K-N&. Wu, W.-C. Chan C.-J. Luo, and J.-S.
Chang. Tool support for-dearning Biichi automata.and linear temporal logic. Formal

Aspects of Computing, 21(3):259-275; 2009

e
L.

. -

P. Wolper. The tableau methed for terﬁ-poral logigs An overview. Logique et Analyse,
28(110):119-136, 1985, | =

Pierre Wolper. Temporal logic can be more expressive. Information and Control,

56(1/2):72-99, 1983,

62

