
Department of Information Management

College of Management

National Taiwan University

Master Thesis

Transformation and Classification of Temporal Properties

with Applications

Yi-Wen Chang

Advisor: Yih-Kuen Tsay, Ph.D.

99 7

July, 2010

Transformation and Classification of Temporal Properties

with Applications

Transformation and Classification of Temporal Properties

with Applications

THESIS ABSTRACT
Graduate Institute of Information Management

National Taiwan University

Student: Chang, Yi-Wen Month/Year: July, 2010
Adviser: Tsay, Yih-Kuen

Transformation and Classification of Temporal Properties with

Applications

In the automata-based approach, the model checking problem can be stated as follows:
given a system M and a temporal property f , determine whether L(AM ∩ A¬f) = ∅,
where AM is a Büchi automaton representing the system M and A¬f is an automaton
representing the negation of the given property f . In principles, a smaller A¬f would be
speed up the model checking process. An open repository called Büchi Store has been
proposed recently, where numerous temporal formulae and their corresponding automata
are collected. One can obtain the Büchi automaton of a desired formula by table look-
up rather than applying translation algorithms. Since there will be hundreds or even
thousands of formulae in the Büchi Store, an appropriate formulae classification is needed
for the user to browse and search readily.

In this thesis, we study property transformation and classification methods, where
properties are represented as formulae or automata. With the understanding of different
classes of temporal properties, one can specify a program more completely and avoid
underspecification. We implement the classification algorithm proposed by Manna and
Pnueli in GOAL, which is a tool for creating, manipulating, and testing temporal formulae
and ω-automata, and apply the classification methods on formulae in the Büchi Store.
These will make it easier for the user to search in the classified formulae. Moreover,
checking the equivalence between two formulae or finding an equivalent formula for a
given formula becomes easier, as two formulae are equivalent only if they belong to the
same class. As a result, the capability of research and education will be enhanced in
GOAL and the functionality of the Büchi Store will also be enriched.

Keywords: Büchi Automata, Büchi Store, Classification, GOAL, ω-Automata, Tem-
poral Logic, Transformation, Verification.

i

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Objectives . 2
1.3 Thesis Outline . 3

2 Related Work 5
2.1 Formula Classification . 5
2.2 Formula Rewriting . 6
2.3 Tools . 7

2.3.1 LTL2BA . 7
2.3.2 GOAL . 7
2.3.3 Büchi Store . 10

3 Preliminaries 12
3.1 Automata on Infinite Words . 12
3.2 ω-automata . 13

3.2.1 Büchi Automata . 13
3.2.2 Generalized Büchi Automata . 15
3.2.3 Muller automata . 16
3.2.4 Rabin automata . 17
3.2.5 Streett automata . 18
3.2.6 Parity automata . 19

3.3 Propositional Linear Temporal Logic (PTL) 20

4 Transformation 24
4.1 Formula Rewriting . 24
4.2 Formula Translation . 29
4.3 Automata Transformation . 31

4.3.1 Safra Tree . 32
4.3.2 Nondeterministic Büchi to Deterministic Muller and Deterministic

Rabin . 34

5 Classification 37
5.1 Temporal Hierarchy . 37

5.1.1 The Temporal Logic View . 37
5.1.2 The Automata View . 39

5.2 Deterministic Büchi v.s. Nondeterministic Büchi 44

ii

6 Implementation and Applications 51
6.1 Implementations in GOAL . 51
6.2 Applications on the Büchi Store . 52

7 Conclusion 57
7.1 Contributions . 57
7.2 Future Work . 58

Bibliography 60

iii

List of Figures

2.1 The result BA from the web application LTL2BA 8
2.2 The editing environment of GOAL . 9
2.3 A screen shot of the Büchi Store . 11

4.1 Examples GBAs for rewrite formula rules proposed in [22] 25
4.2 Examples GBAs for rewrite formula rules proposed in [6] 28
4.3 The create graph algorithm. 32
4.4 The expand function. 33
4.5 An example of translating a nondeterministic Büchi automaton into an

equivalent deterministic Muller automaton and an equivalent deterministic
Rabin automaton . 36

5.1 Inclusion relations between the classes . 39
5.2 An example of safety automata . 40
5.3 An example of guarantee automata . 40
5.4 An example of obligation automata . 41
5.5 An example of recurrence automata . 42
5.6 An examples of persistence automata . 42
5.7 An examples reactivity of automata . 42
5.8 An examples of reactivity automata . 44
5.9 Examples of translating DMW into DBW 48
5.10 Another examples of translating DMW into DBW 49
5.11 Another examples of translating DMW into DBW 50

6.1 Test of temporal hierarchy classification for an input formula in GOAL . . 52
6.2 Convert a deterministic Muller automaton to a deterministic Büchi au-

tomaton by the power of GOAL . 53
6.3 Browse automata sorted by temporal hierarchy in the Büchi Store 56

iv

List of Tables

4.1 Rewriting rules proposed in [22] . 26
4.2 Rules to check for ϕ ≤ ψ in [22] . 26
4.3 Definitions of New and Next functions for non-literals 30

6.1 The experiment result of deterministic Muller to deterministic Büchi con-
verting algorithm for 15 random cases. 54

v

Chapter 1

Introduction

Program verification is a fundamental issue about the correctness of programs. A program

should always accomplish the goal the programmer proposed and should not cause any

unexpected side-effect. One common solution is to test the program with different use-

cases. Yet it might cost lots of time and human work and may not be able to cover all

the possible user behaviors. Hence some systematical methods are proposed to guarantee

the correctness of a program.

1.1 Background

In the early years, several methods are used to seize this goal, such as testing and simu-

lating. In 1981, “model checking” was introduced by E. M. Clarke and E. A. Emerson,

which is an automatic process to check whether a system satisfies a given property [4].

The fundamental problem of model checking is to solve, given a system M and a

specification property f , whether M ⊧ f . It involves three main phases, which are

modeling, specification, and verification. In modeling, a system M is usually given as

a model of the target program. The system can also be formalized by a finite state

machine, which can be represented by Kripke structure. Kripke structure contains nodes

to represent each state in the target program and arcs to represent the variation between

states for each statements in the program. Because a Kripke structure can be transformed

into an equivalent ω-automaton[5], we will use ω-automaton to describe M in the rest of

the thesis. In specification, temporal logic is used to describe the specification property.

Temporal logic, which is a logic language, is wildly used to describe the desired property

with temporal operators in terms of time. A temporal formula is a combination of several

1

temporal operators to describe a property. In this step, we translate the temporal formula

property f into an equivalence automaton Af . Usually, Büchi automaton is chosen to

represent Af . Büchi automaton is first represented by J. R. Büchi in the 1960’s, which is

the first work related to ω-automata [1]. It is also proved in [1, 19] that each temporal

logic formula can be translated into an equivalent Büchi automaton. Actually, lesser the

temporal operators are used in f , smaller Af will be. Rewriting the given formula to

obtain a equivalent formula with lesser operators before translating it into automaton

is very essential method for model checking performance. In verification, we solve the

model checking problem whether M ⊧ f by solving this equivalence containment problem

whether whether L(AM) ⊆ L(Af). The containment problem can be rewritten as an

emptiness check problem, whether L(AM) ∩ L(A¬f) = ∅, which is also equivalent to

L(AM ∩ A¬f) = ∅. To check L(AM ∩ A¬f) = ∅, we have to construct the intersection

automaton A of AM and A¬f . For a given system, the size of A¬f determines the size of

A. Therefore, the smaller A¬f is, the faster the model checking task may be carried out.

The specification automaton A¬f is often generated by applying temporal formulae

to Büchi automata translation algorithms. However, none of the translation algorithms

could always generate the smallest Büchi automaton for a given temporal formula in terms

of state size. One way to obtain the smallest automaton is to translate the given formula

into Büchi automaton and choose the smallest one, which spends lots of space and time.

In order to avoid this situation, we built up a Web-based open repository, which is called

Büchi Store, to store the Büchi automata corresponding to a collection of frequently-used

temporal formulae. In Büchi Store, one can search for the Büchi automaton of a property

formula. Temporal formulae are classified into different classes for the user to find the

formula easily.

1.2 Motivation and Objectives

In order to provide better user environment, the methods of formulae classification in

Büchi Store must be enriched. There are hundreds of formulae stored in Büchi Store

now. For the user to browse the temporal formulae quickly, a systematical ordering is

essential. We had classified the formulae intuitively by the length of the formula and

2

the state size of the corresponding Büchi automaton. It would be useful to classify the

formulae based on the semantic meanings. The classification method should not only

base on the semantic meanings of the formulae but also be easy for user to understand.

Moreover, the classification method should be systematical and be able to classify the

formulae automatically.

In addition, compare to nondeterministic Büchi automata, complementation and

empty check of deterministic Büchi automata is easier. Hence, classification of a property

as deterministic or nondeterministic Büchi would be useful.

For these goals, we will develop the classification and transformation algorithms based

on [17] and [15]. We will also implement the algorithms in GOAL, which is a graphical in-

teractive tool for user to create, manipulate, and test temporal formulae and ω-automata.

Last but not the least, we will apply the classification algorithm on the formulae in Büchi

Store.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2, we will introduce the approaches of properties classification and some

formula rewriting approaches. We will also describe some tools which are related

to temporal logic classification.

In Chapter 3, we will introduce several kinds of automata and temporal logic which

will be used in this thesis and the relevant research.

In Chapter 4, we will present some formulae rewrite rules and some translation

algorithms, including from formulae to automata and from automata to automata.

In Chapter 5, we will present more details about properties classification and some

classification algorithms.

In Chapter 6, we will talk about implementations and applications of the algorithms

described in Chapter 4 and 5.

3

In Chapter 7, we briefly summarize this thesis and conclude out contributions. We

would also describe some work we should do in the future.

4

Chapter 2

Related Work

2.1 Formula Classification

We say that a program P has the property Π if all the computations of P belong to

Π. One can use properties to specify a program, but it may lead to underspecification in

some cases. To avoid underspecification, one possible solution is to classify different types

of properties, and provide a list of properties to the specifier to consider. L. Lamport

suggested that properties of a reactive program can be partitioned off into two classes,

safety and liveness properties [14]. In 1990, Z. Manna and A. Pnueli proposed a hierarchy

of temporal properties. They classified temporal properties into six classes [17]. Note that

a formula contains no future operators is called a past formula.

A safety formula is a formula of the form

◻p,

for a past formula p.

A guarantee formula is a formula of the form

◇p,

for some past formula p.

A simple obligation formula is a formula of the form

◻p ∨◇q,

where p and q are past formulae.

5

A general obligation formula is a formula of the form

⋀
i

[◻pi ∨◇qi],

where pi and qi are past formulae.

A recurrence formula is a formula of the form

◻◇p,

for some past formula p.

A persistence formula is a formula of the form

◇◻p,

for some past formula p.

A simple reactivity formula is a formula of the form

◻◇p ∨◇◻q,

where p and q are past formulae.

A general reactivity formula is a formula of the form

⋀
i

[◻◇pi ∨◇◻qi],

where pi and qi are past formulae.

The classes of safety and guarantee properties are disjoint, so do recurrence and persis-

tence properties. Every temporal formula is equivalent to a reactivity formula.

Another way to specify temporal properties is to use finite-state predicate automaton.

2.2 Formula Rewriting

An LTL to BA translation algorithm is introduced by F. Somenzi and R. Bloem, which

consists of some heuristic approaches in the three stages of the translation [22]. They

proposed several formulae and their congruent formulae for replacement. One can re-

place the sub-formulae of the input formulae by its congruent formula, which would help

6

reducing the state size of the result BA of some translation algorithms since the possible

covers of the formulae produced by those algorithms are reduced. Moreover, they also

proposed an approach to simplify the result Büchi automata using simulation.

K. Etessami and G. J. Holzmann also introduced several optimization methods for

formula rewriting [6]. They proposed an idea to take the advantage of the suffix language

of a formula. The formulae with the same suffix language can be replaced from one to

another.

2.3 Tools

There are some tools which are related to automata-based model checking. We will give

a brief instruction for each of them in this section.

2.3.1 LTL2BA

LTL2BA (http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php) is a web ap-

plication which translates the input formula into a BA based on the translation algorithm

P. Gastin and D. Oddoux proposed in [7]. The algorithm translates an LTL formula into

a Büchi automaton with three stages: (1) translating from LTL formula to very week

alternating co-Büchi automaton (VWAA), (2) translating VWAA with co-Büchi condi-

tion into TGBA, and (3) translating TGBA into BA. One can give an LTL formula and

choose several translation preferences to obtain the result BA of their interest. The result

BA will not only be shown in the web page by graph but also presented in Promela

format. Figure 2.1 shows the result BA for input formula ◻◇p ∧ ◻◇q translated by the

web application LTL2BA.

2.3.2 GOAL

GOAL (http://goal.im.ntu.edu.tw) [23, 24] is a graphical interactive tool for user to

define, manipulate and test temporal logics and ω-automata. The acronym GOAL is

derived from “Graphical Tool for Omega-Automata and Logics.” This tool is developed

on JAVA and T.-K. Tsay is the leader of GOAL team at National Taiwan University.

The graphical user interface of GOAL is extended from JFLAP.

7

Figure 2.1: The result BA from the web application LTL2BA

The GOAL tool is used to be an educational assistant in the first place, helping users

learning ω-automata theory and temporal logic. Recently, the GOAL tool had been pro-

posed as a research tool because of the expanded collection of translation, simplification,

and completementation algorithms. User can also write a program to access GOAL func-

tions with command-line mode. The utility functions for some common tasks such as

random formulae generation, and statistics collection are also provided.

GOAL is now provided the following functions:

Editing, Running, Testing, and Simplifying Büchi Automata:

One can easily point-and-click and drag-and-drop to build up a Büchi automaton.

Once the automaton is created, he/she can easily run it by given input to see what

kind of input language the automaton would accept or testing for emptiness. Not

only that, any Büchi automaton can be simplified with the help of simplification

algorithms which had been implemented. With simplification, user can get a smaller

automaton which is equivalent to the original one, which would be much easier to

understand.

Translating QPTL (and LTL) Formulae into Büchi Automata:

Numbers of translation algorithms have been implemented in GOAL. User can

write a QPTL or LTL formula and translate it to a Büchi automaton via these

8

Figure 2.2: The editing environment of GOAL

algorithms. GOAL imposes a restriction that a quantifier must not fall in the scope

of a temporal operator. This function would help user to get more understanding

about the algorithm which he/she is interested in.

Boolean Operations on Büchi Automata:

The three standard boolean operations – union, intersection, and complementation

are supported in GOAL.

Tests on QPTL Formulae:

Satisfiability and validity tests are supported. Even though the equivalent test

between two QPTL formulae is not supported, one can use the mutual implication

operator (↔) to accomplish the same feature.

Exporting Büchi Automata as Promela Code:

User can export the automaton in the Promela syntax on the screen or as a file.

This feature makes it possible to use GOAL as a graphical specification definition

frontend to an automata-theoretic model checker like Spin.

The Automata Repository:

The repository in GOAL contains a collection of frequently used QPTL formulae

9

and their corresponding equivalent automata. This is a very convenient way for

learning the relation between Büchi automata and QPTL for beginners.

2.3.3 Büchi Store

Büchi Store is an open Web-based repository of Büchi automata which is developed on

PHP and Y.-K. Tsay is the leader of Büchi Store tram at National Taiwan University [2].

Hundreds of Büchi automata are stored in Büchi Store now and categorized by temporal

formulae. For each temporal formula stored in Büchi Store, which is considered as most

common used specification formula, it stores the top three smallest BA. One can search

for a temporal formula and obtain smaller automata by his/her choice. Users can also

browse the temporal formulae by several kinds of categories which helps users reach their

desired formula and the corresponding BA. Büchi Store provides two different file formats

for user to download, which are GFF (GOAL file format) and Promela (a file format used

in SPIN [10, 11], a common used verifier tool). Users can choose one of them depends on

his/her usage.

Büchi Store also provide equivalent class and complement class for each formula.

There are many algorithms to compute the complementation of a given automaton, such

as in [21, 13, 12]. The state size of a complement automaton computed by a comple-

mentation algorithm is usually large. We can apply simplification algorithms or some

heuristic to get a smaller automaton. However, with complement class provided by the

Büchi Store, one can obtain a small complement automaton quickly.

Despite of obtaining BA for specification formula, one can upload a BA which he/she

claims to be the smallest BA of a temporal formula. Büchi Store will verify whether the

uploaded BA and the given temporal formula. Hence, the contents in Büchi Store could

be enriched by users’ contributions. Figure 2.3 illustrates the homepage of Büchi Store.

10

Figure 2.3: A screen shot of the Büchi Store

11

Chapter 3

Preliminaries

In this chapter, we will briefly introduce several kinds of ω-automata and propositional

linear temporal logic. These are basic knowledge of this thesis. We will describe each of

them in the following.

3.1 Automata on Infinite Words

Automata theory is considered as a good way to understand a program, which is im-

portant in formal verification. ω-automata can represent not only a given system but

also a given property which is written in temporal formula. This work can be traced

back about forty years ago in 1960’s, when J. R. Büchi introduced his work, which using

finite automata with infinite input words to obtain a decision procedure for a restricted

second-order logic, the sequential calculus [1].

Some notations in the following should be brought out here. Usually, we use Σ to

denote the set of alphabet, and Σω to denote the set of infinite words over Σ. An infinite

word then can be denoted as w = w0w1w2 . . . ,w ∈ Σω and each wi ∈ Σ.

An ω-automaton A is a 5-tuple (Σ,Q, δ,Q0,F) where

Σ is the finite set of symbols, called alphabet,

Q is the finite set of states,

δ, is the transition function,

Q0 ⊆ Q is the initial states, and

F is the acceptance component.

12

If ∣δ(q, σ)∣ = 1 for q ∈ Q and σ ∈ Σ, the automaton is deterministic, otherwise, it is

nondeterministic.

A run ρ of an automaton A on infinite word w = w0w1w2 . . . ∈ Σω is a sequence of

states q0, q1, . . . ∈ Qω where

q0 ∈ Q0, qi ∈ Q and qi+1 ∈ δ(qi,wi) for 0 ≤ i.

The set of states occurring infinitely often in ρ = q0, q1, . . . ∈ Qω is denoted as inf (ρ), more

precisely

inf (ρ) = {qi ∈ Q ∣ ∀i∃j > i, qi = qj}.

3.2 ω-automata

There are several kinds of ω-automata in automaton theory. In this thesis, we will use

some of them, which are Büchi automata, generalized Büchi automata, Muller automata,

Rabin automata and Streett automaton. We will give the definition for all of them in the

following.

3.2.1 Büchi Automata

Büchi automata are often used for automata-based model checking. An ω-automaton

A = (Σ,Q, δ,Q0,F) is called Büchi automaton if the acceptance condition is defined as

follows: F ⊆ Q and a run ρ on a infinite word w is accepted by A if

inf (ρ) ∩ F ≠ ∅.

In other words, there exists at least one state q ∈ F which is visited infinitely often on ρ.

A word w ∈ Σω is accepted by A if there is a corresponding accepting run ρ.

When we talk about Büchi automaton, two basic operations, union and intersection,

for it should be mentioned.

Proposition 3.1. Let A1 and A2 be two Büchi automata. There is a Büchi automaton

A which accepts the union language, which means L(A) = L(A
1
) ∪ L(A

2
). [3]

13

Proof. Let A1 and A2 be defined as follows:

A1 = (Σ1,Q1, δ1,Q01
,F1) and A2 = (Σ2,Q2, δ2,Q02

,F2). Let A is a 5-tuple (Σ,Q, δ,Q0,F),

where

1. Σ = Σ1 ∪Σ2,

2. Q = Q1 ∪Q2,

3. Q0 = Q01
∪Q02

,

4. F = F1 ∪F2, and

5. δ(q,w) = {
δ1(q, σ) if q ∈ Q1

δ2(q, σ) if q ∈ Q2

In this constructive way, it is easy to see that A accepts and only accept any accepting

word for A1 and A2.

Proposition 3.2. Let A1 and A2 be two Büchi automata. There is a Büchi automaton

A which accepts the intersected language, which means L(A) = L(A
1
) ∩ L(A

2
)[3].

Proof. Let A1 and A2 be defined as follows:

A1 = (Σ1,Q1, δ1,Q01
,F1) and A2 = (Σ2,Q2, δ2,Q02

,F2). Let A is a 5-tuple (Σ,Q, δ,Q0,F),

where

1. Σ = Σ1 ∪Σ2,

2. Q = Q1 ×Q2 × {1,2},

3. Q0 = Q01
×Q02

× {1},

4. F = F1 ×F2 × {1}, and

5. δ((q1, q2, i), σ) = (q′1, q
′
2
, j) where q′

1
= δ1(q1, σ), q′2 = δ2(q2, σ) and

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

j = 1 if q1 ∈ F1 and i = 2
j = 2 if q2 ∈ F2 and i = 1
i = j false.

14

The main idea of this construction is that if a run ρ is accepted, there exists two

states in inf(ρ) which are ((qi, qj ,1)) and ((qk, ql,2)) where i, j, k, l are arbitrary number.

Hence, by the construction, both F1 and F2 is visited infinitely often.

Proposition 3.3. Let A be a Büchi automaton. Then there exists a Büchi automaton A

such that L(A) = Σω −L(A) [1].

3.2.2 Generalized Büchi Automata

An ω-automaton A = (Σ,Q, δ,Q0,F) is called Generalized Büchi automata iff the ac-

ceptance condition is defined as follows: F ⊆ 2Q, e.g. F = {F1,F2, . . . ,Fk} and for all

1 ≤ i ≤ k, Fi ⊆ Q. A run ρ on an infinite word w is accepted by A iff

inf (ρ) ∩ Fi ≠ ∅ for every Fi ∈ F .

In other words, there exists at least one state q for each Fi ∈ F is visited infinitely often

on ρ. A word w ∈ Σω is accepted by A iff there is a corresponding accepting run ρ.

Proposition 3.4. Let A1 be a generalized Büchi automaton. There is a Büchi automaton

A which accepts the same language of A1, which means L(A) = L(A
1
).

Proof. Let A1 = (Σ1,Q1, δ1,Q01
,F1), where F1 = {F1,F2, . . . ,Fk}. Let A is a 5-tuple

(Σ,Q, δ,Q0,F), where

1. Σ = Σ1,

2. Q = Q1 × {1..k},

3. Q0 = Q01
,

4. F = F1 × {1},

5. δ(q0, σ) = (q,1) if there exists a qi ∈ Q01
, δ1(qi, σ) = q, and

6. δ((q′, i), σ) = (q, j) if δ1(q, σ) = q′ and {
j = i + 1 (mod n) if q ∈ Fi

j = i if q ∉ Fi

15

In order to record which acceptance set we are eager to visit, the third flag on state

is needed. This idea is quite the same as the intersection operation of Büchi automata.

Once a run ρ visits a state flagged with j, which means there is a state in Fj of A1 is

visited. If the flag can always change from 1 to k infinitely often, every corresponding

accepting set Fi ∈ F is visited infinitely often. Hence, this run should be accepted by A.

3.2.3 Muller automata

An ω-automaton A = (Σ,Q, δ,Q0,F) is called Muller automaton iff the acceptance

condition is defined as follows: F ⊆ 2Q, which means the acceptance set is a set of subsets

of states, e.g. F = {F1, F2, . . . , Fk} and for all 1 ≤ i ≤ k, Fi ⊆ Q. A run ρ on an infinite

word w is accepted by A iff

inf (ρ) = Fi ∈ F .

In other words, there exists at least a set of states Fi ∈ F that for every state q ∈ Fi, q is

visited infinitely often on ρ. A word w ∈ Σω is accepted by A iff there is a corresponding

accepting run ρ.

Proposition 3.5. Let A1 be a Muller automaton. There is a Büchi automaton A which

accepts the same language of A1, which means L(A) = L(A
1
) [16].

Proof. Let A1 = (Σ,Q1, δ1,Q01
,F1) with calF 1 = {F1, F2, . . . , Fk}. Let A is a 5-tuple

(Σ,Q, δ,Q0,F), where

1. Σ = Σ1,

2. Q = Q1 ∪ (Q1 × 2Q1 × {1..k}),

3. Q0 = Q01
,

4. F = {(q,∅, i) ∣ q ∈ Q and i ∈ {1..k}}, and

5. δ(q, σ) = δ1(q, σ) ∪ {(q,∅, i) ∣ i ∈ {1..k} and q ∈ δ(q, σ)},

16

6. δ((q,P, i), σ) = {
{(q′, P ∪ {q}, i) ∣ q′ ∈ δ1(q, σ)} if P ∪ {q} ≠ Fk

{(q′,∅, i) ∣ q′ ∈ δ1(q, σ)} if P ∪ {q} = Fk

which σ ∈ Σ1, q ∈ Q1, P ⊆ Q and i ∈ {1..k}

Proposition 3.6. Let A1 be a Büchi automaton. There is a Muller automaton A which

accepts the same language of A1, which means L(A) = L(A
1
).

Proof. Let A1 = (Σ,Q, δ,Q0,F1) and A = (Σ,Q, δ,Q0,F), where

F = {G ∈ 2Q ∣ G ∩ F1 ≠ ∅}

3.2.4 Rabin automata

An ω-automaton A = (Σ,Q, δ,Q0,Ω) is called Rabin automaton iff the acceptance con-

dition is defined as follows: Ω ⊆ 2Q × 2Q, which means the acceptance set is a pair of set

of subsets of states, e.g. Ω = {(E1, F1), (E2, F2), . . . , (Ek, Fk)} and for all 1 ≤ i ≤ k, both

Ei and Fi ⊆ Q. A run ρ on an infinite word w is accepted by A iff

∃(Ei, Fi) ∈ Ω, (inf (ρ) ∩Ei = ∅) ∧ (inf (ρ) ∩ Fi ≠ ∅).

In other words, there exists a pair of subsets of states (Ei, Fi) that at least one state

q ∈ Fi is visited infinitely often on run ρ, while every state in Ei is visited only finite times

on ρ. A word w ∈ Σω is accepted by A iff there is a corresponding accepting run ρ.

Proposition 3.7. Let A1 be a Rabin automaton. There is a Büchi automaton A which

accepts the same language of A1, which means L(A) = L(A
1
) [16].

Proof. Let A1 = (Σ1,Q1, δ1,Q01
,Ω1) with Ω1 = {(E1, F1), . . . , (Ek, Fk)}. Let A1 be a

5-tuple (Σ,Q, δ,Q0,F), where

1. Σ = Σ1,

2. Q = Q1 ∪ (Q1 × {1..k}),

17

3. Q0 = Q01
,

4. F =
k

⋃
i=1

Fi × {i}, and

5. δ(q, σ) = δ1(q, σ) ∪ {(p, i) ∣ i ∈ {1..k} and p ∈ δ1(q, σ)},

6. δ((q, j), σ) = {
∅ if q ∈ Ek

{(p, j) ∣ p ∈ δ1(q, σ)} otherwise

which σ ∈ Σ1, q ∈ Q1, and j ∈ {1..k}.

3.2.5 Streett automata

An ω-automaton A = (Σ,Q, δ,Q0,Ω) is called Streett automaton iff the acceptance

condition is defined as follows: Ω ⊆ 2Q × 2Q, which means the acceptance set is a pair of

set of subsets of states, e.g. Ω = {(E1, F1), (E2, F2), . . . , (En, Fn)} and for all 1 ≤ i ≤ n,

both Ei and Fi ⊆ Q. A run ρ on an infinite word w is accepted by A iff

∀(Ei, Fi) ∈ Ω, (inf (ρ) ∩Ei ≠ ∅) ∨ (inf (ρ) ∩ Fi = ∅).

In other words, for every state set pair (Ei, Fi) ∈ Ω, either there exists at least one state

q ∈ Ei would be visited infinitely often or every state in Fi would appears only finite

time on ρ would happen. A word w ∈ Σω is accepted by A iff there is a corresponding

accepting run ρ. As you can see, Streett acceptance condition is dual to Rabin acceptance

condition.

Proposition 3.8. Let A1 be a Streett automaton. There exists a Büchi automaton A

which accepts the same language of A1, which means L(A) = L(A1) [16].

Proof. Let A1 = (Σ1,Q1, δ1,Q01
,Ω1) with Ω1 = {(E1, F1), . . . , (Ek, Fk)}. Let A be a

5-tuple (Σ,Q, δ,Q0,F), where

1. Σ = Σ1,

2. Q = Q1 ∪ (Q1 × 2{1..k} × 2{1..k}),

3. Q0 = Q01
,

18

4. F = Q1 × {∅} × {∅},

5. δ(q, σ) = δ1(q, σ) ∪ {(p,∅,∅) ∣ p ∈ δ1(q, σ)}, and

6. δ((q, I, J), σ) = {
{(p, I ′, J ′) ∣ p ∈ δ1(q, σ)} if I ′ ⊈ J ′

{(p,∅,∅) ∣ p ∈ δ1(q, σ)} if I ′ ⊆ J ′

which σ ∈ Σ1, and q ∈ Q1.

Streett acceptance can be written as a different version. Let Ω = {(R1, P1), . . .,

(Rn, Pn)} and for all 1 ≤ i ≤ n, both Ri and Pi ⊆ Q. A run ρ on an infinite word w

is accepted by A iff

∀(Ri, Pi) ∈ Ω, (inf (ρ) ∩Ri ≠ ∅) ∨ (inf (ρ) ⊆ Pi).

3.2.6 Parity automata

An ω-automaton A = (Σ,Q, δ,Q0,F) is called Parity automaton iff the acceptance con-

dition is defined as follows: F ⊆ 2Q is a partition {F0, F1, . . . Fn} of S . A run ρ on an

infinite word w is accepted by A iff

min({i ∣ q ∈ inf (ρ) ∧ q ∈ Fi}) is even,

where min(N) is a function which outputs the minimum integer i ∈ N . A word w ∈ Σω

is accepted by A iff there is a corresponding accepting run ρ.

Proposition 3.9. Let A1 be a parity automaton. There exists a Büchi automaton A

which accepts the same language of A1,which means L(A) = L(A1).

Proof. Let A1 = (Σ1,Q, δ1, q01
,F) with F = {F0, F1, . . . , F2k}. Let A be a 5-tuple A =

(Σ,Q, δ, q0,F), where

1. Σ = Σ1,

2. Q = Q1 ∪ (Q1 × {0..k}),

19

3. q0 = q01
,

4. F =
k

⋃
i=0

F2i × {i},

5. δ(q, σ) = δ1(q, σ) ∪ {(p, i) ∣ i ∈ {0..k} and p ∈ δ(q, σ)}, and

6. δ((q, j), σ) = {
∅ if q ∈ Fi,0 ≤ i < 2j
{(p, j) ∣ p ∈ δ(q, a)} otherwise

which σ ∈ Σ1, q ∈ Q1 and j ∈ {0..k}.

3.3 Propositional Linear Temporal Logic (PTL)

Temporal logic is a description logic which is used to represent and reason about the spec-

ification of a system which is qualified in terms of time. Any logic which views time as a

sequence of states is a temporal logic. It was first introduced by A. Prior in the 1960’s, and

developed further by A. Pnueli for computer usage. A. Pnueli pointed out that temporal

logic is useful when people trying to verify and specify the software programs especially

for concurrent, reactive, and non-terminating programs such as operating system [20].

Temporal logic is used to formalize the describing sequences of transitions between

states in a reactive system, which can be represented as a Kripke structure [5]. A Kripke

structure M can be defined as 4-tuple (Q,Q0,R,L) where Q is the set of states, Q0 is

the set of initial states, R is the total transition relation between two states, and L is

the labeling function which labels each state with a set of propositions if the propositions

is true in the state. A sequence σ of M from a state q is an infinite sequence of states

σ = q0, q1, . . . such that q0 = q and (qi, qi+1) ∈ R for all i ≥ 0. Temporal formulae are

then used to describe the properties of a state or a path, which would be called as state

formulae or path formulae. A state formula describes what property should be true at

the current state while a path formula describes what property should be true along the

specific path.

A formula written in temporal logic can specify the property of a program by the

temporal operators. For example, we can use always operator to describe that some

20

properties, sometimes called specifications, would always be true, which is usually con-

sidered as a safety property of a distributed system. Notice that temporal operators can

also be combined with one another.

Propositional linear temporal logic is a restricted linear temporal logic which only

allowing boolean variables. State formulae, boolean operators, and temporal operators

are contained in linear temporal logic [18]. Moreover, the temporal operator can be

separated into two parts, which are future operators and past operators. The semantics

of PTL in terms of (σ, i) ⊧ f , which means f holds at the i-th position is given below.

A sequence of states satisfies a PTL formula f or σ is a model of f , denoted σ ⊧ f , if

(σ,0) ⊧ f .

State Formulae

For a state formula p,

(σ, i) ⊧ p ⇔ s is the first state of π and M,s ⊧ p.

Boolean Operators

The following are the semantics of some boolean operations.

Negation: ¬p,

(σ, i) ⊧ ¬ p ⇔ (σ, i) ⊭ p.

Disjunction: p ∨ q,

(σ, i) ⊧ p ∨ q ⇔ (σ, i) ⊧ p or (σ, i) ⊧ q.

Conjunction: p ∧ q,

(σ, i) ⊧ p ∧ q ⇔ (σ, i) ⊧ p and (σ, i) ⊧ q.

There are some other operations which are not introduced here such as implication (→)

and equivalence (↔) can be defined by negation, disjunction, and conjunction for sim-

plicity.

21

Future Operators

Here are the semantics of the future operators.

Next: ◯p, or sometimes be written as X p,

(σ, i) ⊧ ◯p ⇔ (σ, i + 1) ⊧ p.

Eventually: ◇p, or sometimes be written as F p,

(σ, i) ⊧ ◇p ⇔ for some k ≥ i, (σ, k) ⊧ p.

Always: ◻p, or sometimes be written as G p,

(σ, i) ⊧ ◻p ⇔ for all k ≥ i, (σ, k) ⊧ p.

Until: p U q,

(σ, i) ⊧ p U q ⇔ for some k ≥ i, (σ, k) ⊧ q, and for all i ≤ j < k, (σ, j) ⊧ p.

Release: p R q,

(σ, i) ⊧ p R q ⇔ for all j ≥ i, (σ, i) ⊭ p for every k, i ≤ k < j, then (σ, j) ⊧ q.

Waits for: p W q,

(σ, i) ⊧ p W q ⇔ (for some k ≥ i, (σ, k) ⊧ q and for all j, i ≤ j < k, (σ, j) ⊧ p)
or (for all j ≥ i, (σ, j) ⊧ p).

Past Operators

Here are the semantics of the past operators.

Previous: −◯p,

(σ, i) ⊧ −◯p ⇔ i > 0 and (σ, i − 1) ⊧ p

Before: ∼◯p,

(σ, i) ⊧ ∼◯p ⇔ i = 0 or (σ, i − 1) ⊧ p

Once: −◇p,

(σ, i) ⊧ −◇p ⇔ for some j,0 ≤ j ≤ i, (σ, j) ⊧ p

22

So-far: −◻p,

(σ, i) ⊧ −◻p ⇔ for all j,0 ≤ j ≤ i, (σ, j) ⊧ p

Since: p S q,

(σ, i) ⊧ p S q ⇔ for some k,0 ≤ k ≤ i, (σ, k) ⊧ q

and for all j, k < j ≤ i, (σ, j) ⊧ p

Back-to: p B q,

(σ, i) ⊧ p B q ⇔ (for some k,0 ≤ k ≤ i, (σ, k) ⊧ q and for all j, k < j ≤ i, (σ, j) ⊧ p)
or (for all 0 ≤ j ≤ i, (σ, j) ⊧ p).

23

Chapter 4

Transformation

In this chapter, we will introduce some methods of formula rewriting and some algorithms

that transform a formula into an equivalent automaton and transform a Büchi automaton

into an equivalent deterministic Muller or Rabin automaton.

4.1 Formula Rewriting

F. Somenzi and R. Bloem introduced an LTL to BA translation algorithm which consists

of some heuristic approaches in the three stages of the translation, which are rewriting the

input formula, optimizing translation procedure, and simplifying the result automaton

[22]. They proposed several formulae and their congruent formulae for replacement,

which are showed in Table 4.1, and some rules to check for ϕ ≤ ψ are showed in Table 4.2.

Transforming the left-hand side by the right-hand side would help reducing the states

size of the result automaton of translation algorithms because the possible covers of the

formulae produced by those algorithms are reduced. For example, we translate φ = ◻◇p∨

◻◇q with original GPVW translation algorithm, which will be introduced in Section 4.2,

and the result GBA contains eleven states. Furthermore, we translate the formula φ with

GPVW+, which is an extension of the original GPVW, and the result GBA contains

seven states. On the other hand, we first transform formula φ into φ′ = ◻◇(p∨ q) by the

rules in Table 4.2 and translate φ′ with the same algorithm GPVW. There are only four

states in the result BA, which is much smaller than the previous result. All the automata

is illustrated in Fig. 4.1. Moreover, they also proposed an approach to simplify the result

Büchi automata using simulation in the later part of the paper which we will not mention

in this thesis.

24

(a) The result GBA of formula ◻◇p ∨ ◻◇q by GPVW.

(b) The result GBA of formula ◻◇p ∨ ◻◇q by GPVW+.

(c) The result GBA of formula ◻◇(p ∨ q) by GPVW.

Figure 4.1: Examples GBAs for rewrite formula rules proposed in [22]

25

ϕ ≤ ψ ⇒ (ϕ ∧ ψ) ≡ ϕ ◻◇ϕ ∨ ◻◇ψ ≡ ◻◇(ϕ ∨ ψ)
ϕ ≤ ¬ψ ⇒ (ϕ ∧ψ) ≡ F ◇◯ϕ ≡ ◯◇ϕ

(◯ϕ) U (◯ψ) ≡ ◯(ϕ U ψ) ϕ ≤ ψ ⇒ ϕ U (ψ U γ) ≡ ψ U γ

(ϕ Rψ) ∧ (ϕ Rγ) ≡ ϕ R(ψ ∧ γ) ◻◻◇ϕ ≡ ◻◇ϕ

(ϕ Rγ) ∨ (ψ Rγ) ≡ (ϕ ∨ ψ) Rγ ◇◻◇ϕ ≡ ◻◇ϕ

(◯ϕ) ∧ (◯ψ) ≡ ◯(ϕ ∧ψ) ◯◻◇ϕ ≡ ◻◇ϕ
◯T ≡ T ◇(ϕ ∧ ◻◇ψ) ≡ (◇ϕ) ∧ (◻◇ψ)
ϕ U F ≡ F ◻(ϕ ∨ ◻◇ψ) ≡ (◻ϕ) ∨ (◻◇ψ)
ϕ ≤ ψ ⇒ (ϕ U ψ) ≡ ψ ◯(ϕ ∧ ◻◇ψ) ≡ (◯ϕ) ∧ (◻◇ψ)
¬ψ ≤ ϕ ⇒ (ϕ U ψ) ≡ (T U ψ) ◯(ϕ ∨ ◻◇ψ) ≡ (◯ϕ) ∨ (◻◇ψ)

Table 4.1: Rewriting rules proposed in [22]

ϕ ≤ ϕ

ϕ ≤ T
(ϕ ≤ ψ) ∧ (ϕ ≤ χ) ⇒ ϕ ≤ (ψ ∧ χ)
(ϕ ≤ χ) ∨ (ψ ≤ χ) ⇒ (ϕ ∧ψ) ≤ χ

χ ≤ ψ ⇒ χ ≤ (ϕ U ψ)
(ϕ ≤ χ) ∧ (ψ ≤ χ) ⇒ (ϕ U ψ) ≤ χ

(ϕ ≤ χ) ∧ (ψ ≤ s) ⇒ (ϕ U ψ) ≤ (χ U s)

Table 4.2: Rules to check for ϕ ≤ ψ in [22]

K. Etessami and G. J. Holzmann also introduced several optimization methods for

formula rewriting [6]. They proposed an idea to take the advantage of the suffix language

of a formula. The formulae with the same suffix language can be replaced from one to

another.

Definition 4.1. A language L of ω-words is said to be left-append closed if for all ω-words

w ∈ Σω, and v ∈ Σ∗: if w ∈ L, then vw ∈ L.

Proposition 4.2. Given an formula ψ such that L(ψ) is left-append closed, and any

formula γ, the following equivalences hold: (1)γ U ψ ≡ ψ, (2) ◇ψ ≡ ψ.

Definition 4.3. The class of pure eventuality formulae are defined as the smallest set of

LTL formulae (in negation normal form) satisfying:

1. Any formula of the form ◇ϕ is a pure eventuality formula.

2. Given pure eventuality formulae ψ1 and ψ2, and γ an arbitrary formula, each of

ψ1 ∧ψ2, ψ1 ∨ψ2, ψ1 U γ, ◻ψ1, ψ1 Rψ2 and ◯ψ1, is also a pure eventuality formula.

Lemma 4.4. Every pure eventuality formula ϕ defines a left-append closed property L(ϕ).

26

Definition 4.5. A language L of ω-words is suffix closed if whenever w ∈ L and w′ is a

suffix of w, then w′ ∈ L.

Proposition 4.6. For a formula ψ with a suffix closed language L(ψ), and an arbitrary

formula γ, the following equivalences hold: (1)γ Rψ ≡ ψ, (2) ◻ψ ≡ ψ.

Definition 4.7. The class of purely universal formulae is defined inductively as the small-

est set of formulae satisfying:

1. Any formula of the form ◻ϕ is purely universal.

2. Given purely universal formulae ψ1 and ψ2, and an arbitrary formula γ, any formula

of the form: ψ1∧ψ2, ψ1∨ψ2, ψ1 U γ, ◇ψ1, ψ1 Rψ2 and ◯ψ1, is also purely universal.

Lemma 4.8. Every pure universality formula defines a suffix closed property.

Lemma 4.9. For all LTL formulae ϕ, ψ, and γ, the following equivalences hold:

1. (ϕ U ψ) ∧ (γ U ψ) ≡ (ϕ ∧ γ) U ψ

2. (ϕ U ψ) ∨ (ϕ U γ) ≡ ϕ U (ψ ∨ γ)

3. ◇(ϕ U ψ) ≡ ◇φ

4. Whenever ψ is a pure eventuality formula (ϕ U ψ) ≡ ψ, and ◇ϕ ≡ ψ.

5. Whenever ψ is a pure universality formula (ϕ Rψ) ≡ ψ, and ◻ϕ ≡ ψ.

Here is an simple example to show the effect. First, we translate formula φ = (p U q)∧

(r U q) by GPVW and the result GBA Aφ contains fourteen states. An automaton

which contains so many states cannot be easily understand by people. We also translate

the formula φ with GPVW+ and the result GBA A′φ contains seven states. On the

other hand, we transform φ to φ′ = (p ∧ r) U q and translate φ′ with GPVW. The result

automaton contains only four states, which is much smaller than Aφ and A′φ.

27

(a) The result GBA of formula (p U q) ∧ (r U q) by GPVW.

(b) The result GBA of formula (p U q) ∧ (r U q) by GPVW+.

(c) The result GBA of formula (p ∧ r) U q by GPVW.

Figure 4.2: Examples GBAs for rewrite formula rules proposed in [6]

28

4.2 Formula Translation

Here, we are going to introduce an algorithm which is used for linear temporal formulae

to generalized Büchi automata translation in “on-the-fly” fashion. GPVW is a simple

on-the-fly algorithm proposed in [8]. It stores the information of elementary formulae,

U -formulae, and the right-hand side formulae of U -formulae in each state. In Addition,

the U -formulae are also used to keep the information of the accepting condition of the

result generalized Büchi automata. Considering a U -formula f , when the right-hand side

formula of f holds, the U -formula is also satisfied which implies if the right-hand side

formula of an U -formula is satisfied at the current state of the result generalized Büchi

automata, the U -formula is also satisfied at the current state. Therefore, the current

state will be collected in the accepting set of the result automata corresponding to the

U -formula. They also proposed a new way to detect the contradiction and redundancies

for states in the later parts of the paper.

The central idea of GPVW translation algorithm is a tableau-like procedure related

to ones described in [25, 26]. The tableau-like procedure actually constructs a graph.

The nodes and the arcs in the graph represent the states and the transitions of the

result automaton. The data fields we use to represent the graph nodes contain sufficient

information for the graph construction algorithm to be able to operate in a DFS order,

which are as follows:

Name

– A name that distinguish each node

Incoming

– A set of nodes with outgoing edge leading to the current node.

New

– A set of subformulae which must be hold at the current node and not yet be

processed.

Old

29

form New1(form) Next1(form) New2(form)
μ U φ {μ} {μ U φ} {φ}
μ Rφ {φ} {μ Rφ} {μ,φ}
μ ∨ φ {μ} ∅ {φ}

Table 4.3: Definitions of New and Next functions for non-literals

– A set of atomic propositions which is hold in the current node.

Next

– A set of subformulae which must be hold in all states that are immediate

successors of states satisfying the properties in Old .

Father

– Nodes will be split durion the construction of the graph. This field, Father ,

will be the name of the node which the current one has been split from. It is

used for reasoning about the correctness of the algorithm only, and is not that

important for the algorithm.

Before we go any further, we should first notice that F -formula and G-formula can

always be transformed to U -formula and R -formula. Therefore, without loss of gen-

erality, we can assume the input formula does not contain the Eventually operator ‘F ’

and Always operator ‘G’ and is in negation normal form. The first step of the algorithm

which is showed in Fig. 4.3 is to generate an initial node for the input formula. The

initial node has a single incoming edge, labeled init, which marks the fact that it is an

initial node. There is only one element in the field New, which is the input formula φ.

Both the fields Old and Next are empty in the initial node. The core function expand is

showed in Fig. 4.4. With the current node N , the algorithm checks if there are unpro-

cessed obligations left in New . When η, which is the target expanding formula in New , is

not a literal, the algorithm may splits the node with different formulae set to hold. The

splitting rules is illustrated in Table 4.3.

If η is actually in the form μ∧φ, the current node need not to be spilt. Instead, both

μ and φ are added to New as the truth of both formula is needed to make η hold. During

30

the processing the current node, a formula η in New is removed from this list. In the

case that η is a proposition or the negation of a proposition, then

If ¬η is in Old , the current node is discarded.

Otherwise, η is added to Next .

If there already is a node n ∈ Node Set with the same obligations in both its Old and

Next fields, merge the current node and n. If no such node exists in NodeSet, then the

current node is added to this list, and a new current node is formed for its successor as

follows:

1. There is initially one edge from N to the new current node.

2. The set New is the set initially to the Next field of N .

3. The sets Old and Next of the new current node are initially empty.

The list of nodes in Node Set can now be converted into a generalized Büchi automaton

B = (Σ, S, δ, s0, F):

1. Σ consists of sets of propositions from AP.

2. The set of states S includes the nodes in NodeSet and the additional state s0.

3. The initial state is s0.

4. (s,w, s′) ∈ δ iff s ∈ Incoming(s′) and w satisfies the conjunction of the negated and

non-negated propositions in Old(s′).

5. The acceptance set F contains a separate set of states Fi ∈ F for each subformulae

of the form pUq ; Fi contains all the states s such that either q ∈ Old(s) or pUq ∈

Old(s).

4.3 Automata Transformation

In this section, we will introduce Safra’s construction [21, 9], which is an approach that

transforms a Büchi automaton into an equivalent deterministic Muller automaton or

deterministic Rabin automaton. Some algorithms mentioned in Chapter 5 will be applied

on deterministic Muller automata.

31

Algorithm: Create Graph

input : Formula φ

output: Set of nodes Node set
begin

return (expand([Name ⇐ Father ⇐ newname(), Incoming ⇐ {init},
New ⇐ {ψ}, Old ⇐∅, Next ⇐∅], ∅))

end

Figure 4.3: The create graph algorithm.

4.3.1 Safra Tree

Safra tree is an extension of the usual subset construction.

Definition 4.10. Safra tree is a labeled ordered tree where T = (N,r, p,ψ, l).

N is a set of nodes. The name of the nodes are token from some global natural

number N.

r is the root node. The name of root is 1.

p ∶ N → N is a parenthood function defined over N − {r}, and defining for every

v ∈ N − {r}, its parent p(v) ∈ N .

ψ is the sibling ordering relation, a partial order relation. if p(v) ≠ p(v′) then there

is no order between v and v′, while if p(v) = p(v′) then (v, v′) ∈ ψ or (v′, v) ∈ ψ.

(v, v′) means v is an order sibling of v′.

l ∶ N → 2Q is a labeling of the nodes with subsets of Q. The labels of two siblings

are disjoint and the label of every node is a superset of the union of the labels of its

sons.

In the usual subset construction, we keep track all reachable states, say S, after

reading a prefix of the input word. For an input σ ∈ Σ, Safra tree will not only remember

the successor states of S, but also create a new node to record all the states that can be

reached from S ∩ F after reading σ. When the label of a node is equal to the union of

the label of its children, which means all the states in this computation has a run that

visited an accepting state, we will mark this node with a special sign, say ‘!’, and remove

all the descendants.

32

Algorithm: expand

input : A single node Node, Set of nodes Node set
output: Set of nodes Node set
begin

if New(Node)= ∅ then

if ∃ND ∈ Node set with Old(ND) = Old(Node) then

Incoming(Node) = Incoming(ND) ∪ Incoming(Node)
return Node set

else

return (expand([Name ⇐ Father ⇐ newname(),
Incoming ⇐ {Name(Node)}, New ⇐Next1(Node), Old ⇐∅,
Next ⇐∅], {Node} ∪Node set))

end

else

let η ∈ New
New(Node) := New(Node) ∖{η}
switch η do

case η = Pn, or ¬Pn or η = r or η = F

if η = F or Neg(η) ∈ Old(Node) then // Current node contains a

contradiction

then return Node set // Discard current node

else

Old(Node) := Old(Node) ∪{η}
return expand(Node,Node set)

end

case η = μ U ψ, or μ Rψ, or μ ∨ψ

Node1 := [Name ⇐newname(), Father ⇐Name(Node),
Incoming ⇐Incoming(Node),
New ⇐New(Node) ∪({New1(η)}∖Old(Node)),
Old ⇐ Old(Node) ∪{η}, Next ⇐Next(Node) ∪{Next1(η)}] Node2 :=

[Name ⇐newname(), Father ⇐Name(Node),
Incoming ⇐Incoming(Node),
New ⇐New(Node) ∪({New2(η)}∖Old(Node)),
Old ⇐ Old(Node) ∪{η}, Next ⇐Next(Node) ∪{Next2(η)}] return

expand(Node2, expand(Node1, Node Set))
case η = μ ∧ψ

return expand([Name ⇐newname(), Father ⇐Father(Node),
Incoming ⇐Incoming(Node),
New ⇐New(Node) ∪({μ,ψ}∖Old(Node)),
Old ⇐ Old(Node) ∪{η}, Next ⇐Next(Node) ∪{Next2(η)}],
Node Set)

endsw

end

end

Figure 4.4: The expand function.

33

4.3.2 Nondeterministic Büchi to Deterministic Muller and De-
terministic Rabin

Let B = (Σ,Q, δ, q0, F) be a nondeterministic Büchi automation with n states. There

exists an equivalent deterministic Muller automatonM= (Σ,Q′, δ′, q′
0
,F) or an equivalent

deterministic Rabin automaton R = (Σ,Q′, δ′, q′
0
,Ω) where

Q′ is a set of Safra tree.

The initial state q′
0

is the Safra tree consisting of only node 1 labeled {q0}.

δ′ ∶ Q′ ×Σ → Q′ is the transition function. For a given input a ∈ Σ and a Safra tree

T , δ′(T,a) is computed as follows:

1. Remove all marks in the Safra tree T .

2. For every node v with label L such that L ∩ F ≠ ∅, create a new child with

label L ∩ F .

3. Apply the usual subset construction on every nodes. Replace the label with

⋃q∈L δ(q, a).

4. For every node v with label L and q ∈ L, if q also belongs to the label of an

older brother of v, then remove q from L.

5. Remove all nodes with empty labels.

6. For every node whose label is equal to the union of the labels of its sons,

remove all the descendants of the node and mark the node with ‘!’.

The Muller acceptance condition F = {F1, . . . , F2n} is defined as for each Fi,

1. node i appears in all Safra trees of Fi, and

2. node i is marked at least once in Fi.

The Rabin acceptance condition Ω = {(E1, F1), . . . , (E2n, F2n)} is defined as for

i = {1,2, . . . ,2n},

1. Ei is the set of all Safra trees without a node i, and

2. Fi is the set of all Safra trees with node i marked.

34

Note that deterministic Rabin automaton can be used when computing the comple-

ment of a Büchi automaton. First, transform the Büchi automaton into an equivalent

deterministic Rabin automaton. Second, get the deterministic Streett automaton for the

complement language by dualizing the acceptance condition of the deterministic Rabin

automaton. Last, transform the deterministic Streett automaton into an equivalence

Büchi automaton by Proposition 3.8, which is the complement of the original Büchi

automaton.

35

(a) A nondeterministic Büchi automaton B for ◻◇p

(b) A deterministic Muller automaton M where L(M) = L(B)

(c) A deterministic Rabin automaton R where L(R) = L(B)

Figure 4.5: An example of translating a nondeterministic Büchi automaton into an equiv-
alent deterministic Muller automaton and an equivalent deterministic Rabin automaton

36

Chapter 5

Classification

In this chapter, we will introduce temporal hierarchy classification proposed in [17] and

classification of a property as deterministic or nondeterministic Büchi.

5.1 Temporal Hierarchy

We say that a program P has the property Π if all the computations of P belong to

Π. One can use properties to specify a program, but it may lead to underspecification in

some cases. To avoid underspecification, one possible solution is to classify different types

of properties, and provide a list of properties to the specifier to consider. L. Lamport

suggested that properties of a reactive program can be partitioned off into two classes,

safety and liveness properties [14]. In 1990, Z. Manna and A. Pnueli proposed a hierarchy

of temporal properties. They classified temporal properties into six classes [17].

5.1.1 The Temporal Logic View

A formula contains no future operators is called a past formula.

A safety formula is a formula of the form

◻p,

for a past formula p.

A guarantee formula is a formula of the form

◇p,

for some past formula p.

37

A simple obligation formula is a formula of the form

◻p ∨◇q,

where p and q are past formulae.

A general obligation formula is a formula of the form

⋀
i

[◻pi ∨◇qi],

where pi and qi are past formulae.

A recurrence formula is a formula of the form

◻◇p,

for some past formula p.

A persistence formula is a formula of the form

◇◻p,

for some past formula p.

A simple reactivity formula is a formula of the form

◻◇p ∨◇◻q,

where p and q are past formulae.

A general reactivity formula is a formula of the form

⋀
i

[◻◇pi ∨◇◻qi],

where pi and qi are past formulae.

Figure 5.1 shows the inclusion relations between the classes. The classes of safety

and guarantee properties are disjoint, so do recurrence and persistence properties. The

safety properties are the closed sets and the guarantee properties are the open sets. Every

temporal formula is equivalent to a reactivity formula.

38

Reactivity
Gδσ ∩ Fσδ

⋀i[◻◇pi ∨ ◇◻qi]

Recurrence
Gδ

◻◇p

Persistence
Fσ

◇◻p

Obligation
Gδ ∩ Fσ

⋀i[◻pi ∨ ◇qi]

Safety
F

◻p

Guarantee
G

◇p

Figure 5.1: Inclusion relations between the classes

5.1.2 The Automata View

Another way to specify temporal properties is based on finite-state predicate automa-

ton. In this thesis, we focus on deterministic Streett automata as predicate automata.

First, let us restrict our attention to a special case of Streett automata M, where

M= (Σ,Q, δ, q0, (R,P)), which means there is only one pair in the acceptance condition.

R is a set of recurrent automaton-states, and P is a set of persistent automaton-states.

A run ρ on an infinite word w is accepted by M iff either inf (ρ) ∩R ≠ ∅ or inf (ρ) ⊆ P .

Let

G = R ∪P be referred to as the “good” sets of states and

B = Q −G be referred to as the “bad” sets of states.

Z. Manna and A. Pnueli defined the following classes of automata by introducing restric-

tions on their transition conditions and accepting states.

A safety automaton is such that there is no transition from q ∈ B to q′ ∈ G.

39

(R,P) = ({s0, s1, s3},{})
A safety automaton of p → ◻q.

Figure 5.2: An example of safety automata

(R,P) = ({s1},{})
A guarantee automaton of ◇(p ∨ q).

Figure 5.3: An example of guarantee automata

40

(R,P) = ({s1},{s0})
A simple obligation automaton of ◻p ∨◇q.

Figure 5.4: An example of obligation automata

A guarantee automaton is such that there is no transition from q ∈ G to q′ ∈ B.

A simple obligation automaton is such that

– There is no transition from q ∉ P to q′ ∈ P .

– There is no transition from q ∈ R to q′ ∉ R.

A (general) obligation automaton (of degree k) is an automaton, in which each state

q ∈ Q has a rank γ(q), 0 ≤ γ(q) ≤ k, such that:

– There is a transition from q to q′ only if γ(q) ≤ γ(q′).

– There is a transition from q ∈ B to q′ ∈ G only if γ(q) < γ(q′).

– There is no transition from a state q ∈ G of rank k to a state q′ ∈ B.

A recurrence automaton is such that P = ∅.

A persistence automaton is such that R = ∅.

A simple reactivity automaton is an unrestricted automaton of the above type.

Now, we want to apply the classification technique to more general deterministic

Streete automaton M, where M = (Σ,Q, δ, q0,Ω), and Ω = {(R1, P1), . . ., (Rn, Pn)}. A

run ρ on an infinite word w is accepted by M iff for each (Ri, Pi) ∈ Ω, either inf (ρ)∩Ri ≠ ∅

or inf (ρ) ⊆ Pi.

41

(R,P) = ({s0},{})
A recurrence automaton of ◻(p →◇q).

Figure 5.5: An example of recurrence automata

(R,P) = ({},{s0, s3})
A persistence automaton of ◇◻p.

Figure 5.6: An examples of persistence automata

(R,P) = ({s0},{s1, s2})
A simple reactivity automaton of ◻◇p ∨◇◻q.

Figure 5.7: An examples reactivity of automata

42

The following are some definitions.

A set of automaton states A ⊂ Q is defines to be closed if for every q, q′ ∈ Q

q ∈ A ∧ ∃σ ∈ Σ, δ(q, σ) = q′ %→ q′ ∈ A.

The closure Â of a set of states is the smallest closed set containing A.

For a given Streete automaton M, define

G =
k

⋂
i=1

(Ri ∪ Pi).

Checking for a safety property.

Let B = Q −G. The automaton M specifies a safety property iff B̂ ∩G = ∅.

Checking for a guarantee property.

M specifies a guarantee property iff Ĝ ∩B = ∅.

To check for the other levels of the hierarchy, we define the family of accepting set F .

F = {J ∣ J is an accessible cycly, J ∩Ri ≠ ∅ or J ⊆ Pi for each i = 1, . . . , k}

Checking for a recurrence property.

M specifies a recurrence property iff for every J ∈ F and every accessible cycle

A ⊇ J,A ∈ F .

Checking for a persistence property.

M specifies a persistence property iff for every J ∈ F and every accessible cycle

B ⊆ J,B ∈ F .

Checking for a guarantee property.

M specifies a guarantee property iff there do not exist three accessible cycles

B ⊆ J ⊆ A

such that J ∈ F , but B,A ∉ F .

43

{(R1, P1), (R2, P2)} = {({s0},{s0, s1, s2, s5}), ({s0, s1, s3, s4},{s2, s6})}
A (general) reactivity automaton of ◇◻p ∧◇q.

Figure 5.8: An examples of reactivity automata

5.2 Deterministic Büchi v.s. Nondeterministic Büchi

Deterministic Büchi automata has less expressive power then nondeterministic Büchi

automata, while nondeterministic Büchi automata, deterministic Muller automata, de-

terministic Rabin automata, deterministic Streett automata and deterministic parity au-

tomata are all equivalent in expressive power. Classification of a property as deterministic

or nondeterministic Büchi helps complementation and empty checks. In [15], L. Landwe-

ber uses Borel hierarchy to classify languages of different complexity.

Let M = (Σ,Q,T, q0) be a finite automaton (f.a.) where T is a function such that

T ∶ Q ×Σ → Q.

Definition 5.1. T̄ ∶ Q ×Σ∗ → Q is the extension of T given by T̄ (q, xσ) = T (T̄ (q, x), σ)

for σ ∈ Σ, x ∈ Σ∗. RM is a function, RM ∶ Σ∗ → Q, given by RM(x) = T̄ (s0, x) , called

the response function of M. (To simplify the notation we omit the subscript M in RM.)

Let w = w0w1⋯ be a member of Σω. Abbreviate w0w1⋯wi by w̄i and define the partial

order ≺ on Σ∗ ∪Σω by w̄i ≺ w̄j ≺ w for i < j < ω. Let P (S) be the set of all subsets of the

set S.

44

1. Let F ⊆ Q. M accepts w with respect to F if ∃i.R(w̄i) ∈ F .

1’. Let F ⊆ Q. M accepts w with respect to F if ∀i.R(w̄i) ∈ F .

2. Let F ⊆ Q. M accepts w with respect to F if inf (ρ) ∩F ≠ ∅.

2’. Let F ⊆ P (Q). M accepts w with respect to F if ∃F ∈ F .inf (ρ) ⊆ F .

3. Let F ⊆ P (Q). M accepts w with respect to F if ∃F ∈ F .inf (ρ) = F .

Definition 5.2. An i-f.a. is a f.a. augmented by an output of type i.

Note that a 2-f.a. is actually a deterministic Büchi automaton and a 3-f.a. is a

deterministic Muller automaton.

Definition 5.3. A ⊆ Σω is i-definable if there is an i-f.a. which defines it.

Let F be the closed subset of Σω and G be the open subset of Σω.

Fσ is the set of countable unions of closed subsets of Σω.

Gδ is the set of countable intersections of open subsets of Σω.

Fσδ is the set of countable intersections of Fσ-subsets of Σω.

Gδσ is the set of countable unions of Gδ-subsets of Σω.

The hierarchies F,Fσ, Fσδ and G,Gδ,Gδσ form the Borel hierarchy.

Theorem 5.4. Every 1-definable set is in G, and every 1’-definable set is in F .

Theorem 5.5. Every 2-definable set is in Gδ, and every 2’-definable set is in Fσ.

Theorem 5.6. Every 3-definable set is in Gδσ ∩ Fσδ.

In the following, let M = (Σ,Q,T, q0,D) be a 3-f.a., which is also a deterministic

Muller automaton.

Definition 5.7. For x, y ∈ Σ∗, x ≺ y, let R(x, y) = {R(z) ∣ x ⪯ z ⪯ y}. For q ∈ Q, let

Ac(q) = {s ∣ s ∈ Q,∃x.T̄ (q, x) = s}. Call Ac(q) the set of states accessible from q and

R(x, y) the state path determined by the interval x, y.

45

Definition 5.8. For q ∈ Q, let Hq = {R(x, y) ∣ R(x) = R(y) = q, x, y ∈ Σ∗}, the set of

realizable cycles.

Theorem 5.9. L(M) is in Gδ if and only if for all q ∈ Q, D ∈ D∩Hq and E ∈ Hq implies

D ∪E ∈ D. [15]

From the above theorem, we know how to check whether a deterministic Muller au-

tomaton M can be transformed into an equivalent deterministic Büchi automaton. The

construction of the equivalent deterministic Büchi automaton is shown below.

Theorem 5.10. If A ∈ Gδ is 3-definable, then it is 2-definable. [15]

Let L(M) ∈ Gδ, where M = (Σ,Q,T, q0,D) is a 3-f.a. Now a 2-f.a. M∗ satisfying

L(M) = L(M∗) is defined as follows. For each q ∈ Q, let Mq be an f.a. which for any

input sequence w satisfies:

(a) Mq enters a designated state ε the first time M would enter q in reading w;

(b) Mq reenters ε each time and only at such times that (1) M is in state q and (2)

the set of states entered by M in reading w, since the previous time Mq was in ε,

is in D.

M∗ is (Mq0
×⋯ ×Mqn

,D∗), where Q = {q0,⋯, qn}, × is the usual product operation

on machines and

D∗ = {(d0,⋯, dn) ∣ di a state of Mqi
,∃j.(dj = ε)}

is the Büchi acceptance condition.

Mqi
= (Σ,Q′, T ′, q′

0
) can be constructed as follows:

Q′ = (Q ∖ {qi}) ∪ {ε} ∪ {⟨q,S⟩ ∣ q ∈ Q,S ⊆ Q},

q′
0
= q0,

T ′ ∶ Q′ ×Σ → Q′ is defined, for q, ⟨q,S⟩ ∈ Q′ and σ ∈ Σ, as follows.

– T ′(q, σ) = {
ε if T (q, σ) = qi,

T (q, σ) otherwise.

– T ′(ε, σ) = ⟨T (qi, σ),{T (qi, σ)}⟩,

46

– T ′(⟨q,S⟩, σ) = {
ε if T (q, σ) = qi ∧ S ∪ {T (q, σ)} ∈ D,

⟨T (qi, σ), S ∪ {T (q, σ)}⟩ otherwise.

Two examples are shown in Figure 5.9, 5.10 and 5.11. Note that states with double

circles in Mq denote ε states.

Here we propose an improvement of this construction. Instead of generating Mq for

every q ∈ Q, we generate Mq for all q ∈ S, where S is a subset of Q such that, for each

D ∈ D, S ∩D ≠ ∅. For example, Ms0 and Ms2 in Figure 5.10 can be ignored, and Ms1

is exactly the result M∗.

To prove the correctness of this improvement, the proof is similar to the proof de-

scribed in [15]. Note that M is built into each Hq. In the following, Inf (α) and Hq

always refer to M.

Proof. 1. L(M) ⊆ L(M∗). Let α ∈ L(M) and Inf (α) ∈ D. S ∩ Inf (α) ≠ ∅ since

S ∩D ≠ ∅ for each D ∈ D. Choose q ∈ S ∩ Inf (α). Mq enters ε the first time M enters q,

while reading α.

Assume Mq enters ε for the nth time at time t and let E1,E2,⋯ be the sets of states

which M enters between successively entering q after time t (Ei ≠ ∅, i = 1,2,⋯, since

q ∈ Inf (α)). There is a finite sequence Ej,Ej+1,⋯,Ej+k such that Inf (α) = ⋃k
l=0 Ej+l.

Since Hq ∩D ≠ ∅, Theorem 5.9 implies that ⋃j+k
l=1 El ∈ D. Hence Mq enters ε an (n+ 1)st

time. This proves that if α ∈ L(M), then some Mq enters ε infinitely often, so that

α ∈ L(M∗).

2. L(M∗) ⊆ L(M). Let α ∈ L(M∗), so that there is a q such that Mq enters ε

infinitely often while reading α. Let Ei (i = 1,2,⋯) be the set of states entered by M

between the ith and (i + 1)st times Mq enters ε. Then Ei ∈ Hq ∩ D (i = 1,2,⋯) by the

definition of Mq. Inf (α) must be equal to a finite union of Ei’s, but since Hq ∩ D ≠ ∅,

Theorem 5.9 implies that any finite union of Ei’s is in D. Hence α ∈ L(M).

47

(a) The deterministic Muller automaton M where L(M) = ◻◇p ∧ ◻◇¬p

(b) Result of Ms0 (c) Result of Ms1

(d) The deterministic Büchi automaton M∗ which is equivalent to M.

Figure 5.9: Examples of translating DMW into DBW

48

(a) The muller automaton M where L(M) = ◇(p ∧ ◻◇q)

(b) Result of Ms0

(c) Result of Ms1 (d) Result of Ms2

Figure 5.10: Another examples of translating DMW into DBW

49

(e) The deterministic Büchi automaton M∗ which is equivalent to M.

Figure 5.11: Another examples of translating DMW into DBW

50

Chapter 6

Implementation and Applications

6.1 Implementations in GOAL

All the algorithms described in Chapter 4 and Chapter 5 have been implemented in

GOAL. Some of the algorithms, which I have used to accomplish my thesis, were imple-

mented by the previous authors.

In the implementation of the temporal hierarchy classification algorithm described in

Section 5.1, for an input formula f , there will be four steps:

1. Translate ¬f into an equivalent Büchi automaton B¬f .

2. Convert B¬f into an equivalent deterministic Rabin automaton R¬f .

3. Obtain the deterministic Streett automaton Sf , which is equivalent to f , by dual-

izing the acceptance condition.

4. Apply the classification algorithm on Sf .

The major weakness of this procedure is that we may not able to obtain the “best”

Streett automaton Sf to classify the formula f into the lowest class where it belongs

to. To classify an arbitrary Büchi automaton B, we can first get the complement Büchi

automaton B̄. Then convert B̄ into an equivalent deterministic Rabin automaton R̄,

and get the dual deterministic Streett automaton S , which is equivalent to B. The

classification algorithm can be applied on S .

In the implementation of the algorithm that converts a deterministic Muller automa-

ton into an equivalent deterministic Büchi automaton, which is described in Section 5.2,

51

Figure 6.1: Test of temporal hierarchy classification for an input formula in GOAL

the improvement we proposed is also implemented. To implement the improvement, we

use a simple method to compute the set S.

1. Put the state q that covers the most accepting sets into S.

2. If there exists any accepting sets that has not been covered by the states in S,

choose the state that covers the most remaining accepting sets and put it into S.

3. Repeat step 2. until every accepting set is covered by at least one state in S.

Table 6.1 shows the experiment result of the converting algorithm for 15 random cases.

As we can see, the size of the result Büchi automata reduced when we applied our

improvement.

6.2 Applications on the Büchi Store

Based on the implementation on GOAL, the Büchi Store becomes more useful. There

are three main change of the Büchi Store, which as follows:

Smaller and Deterministic BAs can be generated and collected

As we described in Chapter 4, with the rewriting rules we implemented in GOAL,

52

Figure 6.2: Convert a deterministic Muller automaton to a deterministic Büchi automaton
by the power of GOAL

53

DMW DBW DBW with improvement
Case no. st. tran. st. tran. st. tran.

1 2 3 4 8 2 4
2 4 8 8 32 6 24
3 4 6 10 40 4 16
4 4 8 36 72 11 22
5 4 8 18 72 5 20
6 3 6 12 48 3 12
7 4 10 11 44 8 32
8 3 5 6 12 4 8
9 5 13 70 280 18 72
10 6 12 22 88 13 52
11 4 12 15 120 10 80
12 4 10 36 144 11 44
13 8 21 33 132 15 60
14 6 10 11 44 7 28
15 5 11 86 344 13 52

total 66 143 378 1480 130 526

Table 6.1: The experiment result of deterministic Muller to deterministic Büchi convert-
ing algorithm for 15 random cases.

one can generate smaller BA in terms of size for the same formulae. When one

generated smaller BA, He can share these interesting BAs on the Büchi Store, and

wins the credit of smallest BA ever from the Büchi Store. He then will be encouraged

to searching for smaller BAs. Furthermore, one can also generate deterministic

BA for formulae. The Büchi Store will provide a deterministic BA pool for these

deterministic BA since deterministic BA are useful in some research and academy

area. These user’s behavior will definitely enrich the BA pool in the Büchi Store.

The efficiency and correctness of categorizing formulae are improved

Last year, the Büchi Store provides a very simple way to categorize the temporal

formulae. We had a simple method to category the formulae which cannot recog-

nize all kinds of formulae, which is the first part of 5.1. If the formulae cannot be

categorized by the method, we try to categorize it by hands. Now, we have im-

plemented the second part of the method, which means the ability of categorizing

input formula is improved. Moreover, with the help of rewriting formulae method,

we are able to categorized one formula more efficiently because the intermediate

54

Streett automaton might be reduced. This improvement provides a better user

experiment when people uploading their user-defined BA to the Büchi Store.

Searching is more functional and humane

For people who visiting the Büchi Store and trying to search for a BA for specific

formula, the search engine can not only search for the input formula literally, but

also search for any equivalent formula with the help of the rewrite roles we had

built in. The Büchi Store will check the possible formula by rewriting the input

formula into a simplest one and checking whether there is a formula which is literally

equivalent with the rewritten one. People will have more opportunity to reach the

BA which he/she is interested in for his/her own defined formula.

With these improvements, the Büchi Store becomes more helpful for research, practice,

and education.

55

Figure 6.3: Browse automata sorted by temporal hierarchy in the Büchi Store

56

Chapter 7

Conclusion

Study of transformation and classification of temporal properties is important because it

helps us classify temporal properties better. People can find one BA of a given temporal

formula faster and the corresponding BA of a formula may become smaller with the

help of formulae transformation and classification. In this thesis, we discussed several

transformation and classification methods for temporal properties. We also described the

improvements that we made to GOAL and the Büchi Store based on these methods.

7.1 Contributions

The contributions of this thesis can be summarized as follows.

Implementation of classification rules for temporal properties

The temporal hierarchy classification algorithm and conversion of deterministic

Muller automaton to deterministic Büchi automaton are implemented in GOAL.

The user now can test which hierarchy the input formula belongs to. The topic

about properties classification has not been extensively studied. With this thesis

and our implementation, the reader can learn more about the difference between

classes. The implementations are also applied to the Büchi Store.

Improvement of the conversion of DMW to DBW

In [15], Landweber gave the rules for construction of Mq when converting a deter-

ministic Muller automaton into an equivalent deterministic Büchi automaton. We

proposed a construction of Mq based on their work. We also made some improve-

ments so that we can get a smaller automaton. One can get more understanding

57

of the conversion algorithm through our implementation.

Improvements on the open repository Büchi Store

The Web-based open repository is very useful for people who are interested in tem-

poral logic or program verification. The Büchi Store provides a collection of tem-

poral formulae and their corresponding smallest Büchi automata. All the temporal

formulae are classified appropriately with our implementations of the classification

algorithm. Hence, the user can easily search for a desired formula to obtain the

smallest corresponding automaton without trying all the translation algorithms,

which would cost lots of time and space.

7.2 Future Work

There are several directions for the future:

Study and implementation of more simplification algorithms

One major purpose of this thesis is to make it easier for people to get smaller Büchi

automata. One simplification algorithm proposed in [22] has been implemented

in GOAL. There are more simplification algorithms that can help obtain smaller

automata. Moreover, the algorithm that converts a deterministic Muller automaton

into an equivalent deterministic Büchi automaton described in Section 5.2 generates

a large deterministic Büchi automaton. It should be worthwhile to investigate

simplification algorithms for DBW, since smaller DBW will be more useful.

Formulae equivalence checking

Formulae equivalence checking can also be considered as one kind of formulae clas-

sification methods. However, the semantics equivalence test between two formulae

is usually realized by the equivalence check of the corresponding automata, which

is costly. It should be worthwhile to develop a more direct method for checking the

equivalence between two temporal formulae.

Development of more functionality and interactive GUIs for the Büchi Store

The Büchi Store now is simply an open Web-based repository. Functions like search-

ing for BA without temporal formula, viewing most often downloaded automata, or

58

showing comments from users of a Büchi automaton would be a valuable addition

in the Büchi Store. Formulae other than temporal formulae should also be allowed

to describe the corresponding BA in Büchi Store. Besides, the user always feels

easy to browse with suitable interactive GUIs. Online temporal formula rewriting,

online BA editing, and online laying out of automaton may be useful in the Büchi

Store to improve the ability to interact with users.

59

Bibliography

[1] J.R. Büchi. On a decision method in restricted second-order arithmetic. In Proceed-

ings of the International Congress on Logic, Methodology and Philosophy of Science,

pages 1–11. Standford University Press, 1962.

[2] J.-S. Chang. A comprehensive comparison temporal formula to automata translation

algorithms. Master’s thesis, Institute of Information Management, National Taiwan

University, 2009.

[3] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of

Computer and System Science, pages 8:117–141, 1974.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In Proceedings of Workshop on Logic of

Programs, LNCS 131, pages 52–71, 1981.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,

1999.

[6] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings of the

the 11th International Conference on Concurrency Theory (CONCUR 2000), LNCS

1877, pages 153–167. Springer, 2000.

[7] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translations. In Proceedings

of the 13th International Conference on Computer-Aided Verification (CAV 2001),

LNCS 2102, pages 53–65. Springer, 2001.

[8] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-

cation of linear temporal logic. In Protocol Specification, Testing, and Verification,

pages 3–18. Chapman & Hall, 1995.

60

[9] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games (LNCS

2500). Springer, 2002.

[10] G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,

1997.

[11] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.

[12] N. Klarlund. Progress measures for complementation of omega-automata with ap-

plications to temporal logic. In Proceedings of the 32nd Annual IEEE Symposium

on Foundations of Computer Science (FOCS 1991), pages 358–367, 1991.

[13] O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM

Transactions on Computational Logic, 2(3):408–429, 2001.

[14] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng., 3(2):125–143, 1977.

[15] L. H. Landweber. Decision problems for ω-automata. Mathematical Systems Theory,

3(4):376–384, 1969.

[16] Christof Löding. Methods for the transformation of ω-automata: Complexity and

connection to second order logic. Master’s thesis, Christian-Albrechts-University of

Kiel, 1998.

[17] Z. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report

STAN-CS-87-1186, Stanford University, Department of Computer Science, 1987.

[18] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer, 1995.

[19] D. E. Muller. Infinite sequences and finite machines. In Proceedings of the 4th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 1963), pages 3–16,

1963.

61

[20] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,

13:45–60, 1981.

[21] S. Safra. On the complexity of ω-automta. In Proceedings of the 29th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 1988), pages 319–327, 1988.

[22] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Pro-

ceedings of the 12th International Conference on Computer-Aided Verification (CAV

2000), LNCS 1855, pages 248–263. Springer, 2000.

[23] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, W.-C. Chan, and C.-J. Luo. GOAL extended:

Towards a research tool for omega automata and temporal logic. In Proceedings of

the 14th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2008), LNCS 4963, pages 346–350. Springer, 2008.

[24] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, W.-C. Chan C.-J. Luo, and J.-S.

Chang. Tool support for learning Büchi automata and linear temporal logic. Formal

Aspects of Computing, 21(3):259–275, 2009.

[25] P. Wolper. The tableau method for temporal logic: An overview. Logique et Analyse,

28(110):119–136, 1985.

[26] Pierre Wolper. Temporal logic can be more expressive. Information and Control,

56(1/2):72–99, 1983.

62

