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摘要 

本文採用異質性自我迴歸(HAR-RV)模型，以精簡原則來配適具有緩長記憶性的

實現波動率序列，來預測波動率並且能提供統計上的結果去解釋台股指數波動率的

特性。我們希冀能配適一個能夠充分預測價格變動的波動模型，進而幫助投資人在

風險管理或交易策略上提供有效的決策依據。 

實證結果發現，加入了槓桿效果與交易量作為解釋變數的 LHAR-RV-cum-Vol

模型提供了最佳的預測模型。其中，槓桿效果顯示了具有異質性結構，而且槓桿效

果在短期是由日跳躍所引起，但長期下卻不由日跳躍所引起。此外，研究結果顯示

只有日交易量對於未來波動率具有顯著的解釋能力，特別是以成交筆數當做訊息流

動之替代變數時，才能提供最好的預測能力。 

再者，我們發現使用 Corsi, Pirino and Reno(2009)的 CTBPV 方法來分離連續與

跳躍並加入 HAR-RV 模型其所提供的預測能力優於 Barndorff-Nielsen and 

Shephard(2004)的 BPV 方法，但兩者的差異不具有統計顯著性。最後，本研究將市

場區分成多頭市場與空頭市場時，研究結果發現門檻連續與跳躍(TCJ)做為解釋變數

不論在多頭或是空頭市場皆提供最好的預測能力，但是已實現冪次變異(RPV)做為

解釋變數時只有在空頭市場提供最佳的預測能力。當市場處於空頭市場時，其所隱

含的交易資訊會上升，進而提升了實現波度率的預測績效。 

 

 

關鍵字： 波動度預測、跳躍、槓桿效果、修正後門檻估計量、異質結構、高頻         

率資料 
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Abstract 

This paper employs a ’Heterogeneous Autoregressive’ (HAR) model which is 

suitable to parsimoniously model long memory in realized volatility time series. The 

purpose is to use this model to predict the future volatility and provide some statistical 

results to explain volatility behavior in Taiwan stock index market. We hope to provide an 

accurate predictive model on the volatility and then help investors with regards to risk 

management or trading strategies.              

The empirical results verify that the “best” model for volatility prediction is the 

LHAR-RV-cum-Vol model which includes the leverage effect and trading volume as 

regressors. Particularly, the leverage effect unveils a heterogeneous structure and this 

effect is induced by jumps for short-run prediction horizons but not for long-run 

prediction horizon. Besides, results reveal only daily trading volume has significant effect 

on future volatility, especially the number of transactions as a proxy for information flows 

provides the best predictive ability on the volatility.          

The empirical results also reveal that the HAR model adds continuous components 

(C) and jump components (J) extracted by Corrected Threshold Bi-power Variation 

(Corsi et al. 2009) to predict volatility better than Bi-power Variation (Barndorff-Nielsen 

and Shephard, 2004). However, we do not get significant gain derived by dividing the 

continuous and jump components. Lastly, this study separates the market into up-market 

days and down-market days. We find that the threshold continuous and jump (TCJ) as a 

regressor is the top forecaster in both markets, while realized power variation (RPV) only 

performs best on down-market days. When the market is down the amount of market 

information increases, the predictive ability of future volatility also increases.          

 

 

Keywords:  volatility forecasting; jumps; leverage effects; corrected threshold estimator; 

heterogeneous structure; high-frequency data. 
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1 Introduction  

Volatility forecasting plays a central role in a number of financial issues, such as 

asset pricing, asset allocation, and risk management. A major difficulty in this kind of 

forecasting is that volatility can only be observed after the fact. The traditional approach 

to estimating volatility is to use a parametric framework, such as the ARCH and GARCH 

and stochastic volatility models. In recent years, the Taiwan financial market has grown to 

a mature level, coinciding with an increased availability of high-frequency data on asset 

returns. The availability of this data suggests a non-parametric approach to modeling 

volatility dynamics using improved measures of ex post, or integrated volatility, 

constructed from high frequency data. This method is known as ’realized volatility’, or 

RV.  

The RV method has been advocated by such reputable financial analysts as Andersen 

and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (henceforth ABDL) 

(2001), Barndorff-Nielsen and Shephard (henceforth BN-S) (2002a, b), and Meddahi 

(2002), among others. The main idea is to sum up the corresponding intra-daily squared 

returns; this is a consistent estimator of integrated volatility, as well as a jump component 

for a broad class of continuous time models. Specifically, models based on realized 

volatility have been found to produce forecasts of volatility that are superior to traditional 

measures of volatility, such as squared returns. As an example, empirical results produced 

by ABDL (2003) powerfully indicated that the simple linear models of realized volatility 

outperformed the popular GARCH and related stochastic volatility models in 
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out-of-sample forecasting.  

There are, however, two alternative measures to realized volatility: realized power 

variation (RPV) and realized bi-power variation (BPV). Both of these alternatives were 

introduced by BN-S (2004a, 2004b). The first, RPV, is based on summing powers of 

intraday absolute returns, while BPV is the sum of products of consecutive intraday 

absolute returns. Authors such as Ding et al. (1993), BN-S (2004b), Forsberg and Ghysels 

(2007), Ghysels et al. (2006), Ghysels and Sinko (2006), have demonstrated that RPV 

indeed improved the volatility forecasting. Not only this, but RPV and BPV are also 

immune to jumps. This indicates, then, that both RPV and BPV are excellent methods for 

predicting future volatility. 

BN-S (2004a, 2006), have shown that RV can be decomposed into one continuous 

component, known as ‘realized bi-power variation (BPV)’, as well as a discontinuous jump 

component. Incorporating a measure of jumps is important because their relative 

contribution to the total variation is about 7% as noted by Huang and Tauchen (2005). 

The recent studies on jump issue include test specification, (Lee and Mykland, 2007), as 

well as nonparametric estimation in the presence of jumps.( Mancini and Reno, 2006).    

In Corsi (2009) a simple Heterogeneous Auto-Regressive (HAR-RV) model has 

been introduced for realized volatility in order to capture the long memory of volatility in 

a parsimonious manner. The HAR-RV model provides an additive cascade of various 

volatility components, each of which is generated by the actions of different types of 

market participants. The main idea is that agents with different time horizons perceive, 
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react to, and cause, different types of volatility components. Typically, three primary 

volatility components are used: the short-term traders with daily or higher trading 

frequency, the medium-term investors, who typically rebalance their positions weekly, 

and the long-term agents with a characteristic time of one or more months. The idea of 

heterogeneity of volatility component stems from the so-called Heterogeneous Market 

Hypothesis presented by Miller et al. (1993), which recognizes the presence of 

heterogeneity across traders. 

    Andersen et al. (henceforth ABD) (2007), first incorporated the jumps into the 

HAR-RV model to obtain a non-parametric HAR-RV-CJ model, using related bi-power 

variation measures and adopting the jump test of BN-S (2004a, 2006). In doing so, it was 

found that the jumps were not useful in predicting future volatility. However, Corsi et al. 

(2009) provided an alternative intraday volatility estimator, the ‘corrected threshold 

bipower variation’, or CTBPV. It was demonstrated that the apparent puzzle found in 

ABD was due to a measurement bias, introduced by the bi-power variation in finite 

samples. Specifically, this happened when two jumps occurred in the same daily 

trajectory. In contrast, the CTBPV estimator was nearly unbiased in the presence of jumps. 

Empirical analysis (on the S&P500 index, single stocks and US bond yields) has shown 

that the newly proposed techniques significantly improved the accuracy of volatility 

forecasts, especially during periods following the occurrence of a jump.  

Equity and stock-index volatilities exhibit a significant asymmetric response to past 

return. Early studies by Black (1976) and Christie (1982) found that volatility rises when 
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stocks prices go down, and decreases when stock prices go up. This asymmetry in the 

relationship between equity market returns and volatility is known as the ‘leverage effect’. 

Figlewski and Wang (2001) found that the magnitude of the effect of negative return 

realization on future volatilities is too significant to be explained on the basis of changes 

in firm's financial leverage alone. Thus, the ’leverage effect’ should more properly be 

termed a ‘down market effect’. Moreover, French, Schwert, and Stambaugh (1987), Engle 

and Ng (1993), Zakoian (1994), Bekaert and Wu (2000), Wu (2001), and more recently 

Bollerslev et al (2006) have all pointed out that volatility changes are negatively 

correlated with returns. In view of the demonstrated importance of volatility leverage in 

explaining the negative relation between return and volatility, Corsi and Reno (2009) 

developed the LHAR-RV model. This model incorporates not only daily negative returns, 

but also their weekly and monthly aggregation, into the HAR-RV model.    

Typically, there is a positive correlation between volatility and trading volume, a 

relationship that has been examined extensively. Two theoretical hypotheses designed to 

explain this connection exist. One, the ‘Mixture of Distributions Hypothesis’ (MDH) 

literature (see Clark, 1973; Epps and Epps, 1976; Tauchen and Pitts, 1983 and Harris, 

1987), which is based on the tenet that volatility and trading volume are jointly driven by 

the unobservable information flow. Indeed, MDH helps to explain the high degree of 

positive relationship between volumes and volatility (see Karpoff, 1987). Lamoureux and 

Lastrapes (1990) and Andersen (1996) have suggested that trading volume can serve as a 

proxy measure of the latent information flowing into the market. More recently, 



 

 5

Manganelli (2005) and Bowe et al. (2007) maintain trading volume conveys relevant 

information relating to market conditions and may have a direct effect upon prices.  The 

second hypothesis is ‘Sequential Information Arrival Hypothesis’ (SIAH), developed by 

Copeland (1976), Morse (1981), and Jennings and Barry (1983). In SIAH, new 

information flows into the market to generate both trading volume and price movement in 

a sequential manner. Thus, the SIAH suggests that lagged trading volume may have 

explanatory power for predicting current volatility, and vice versa.. Gallant et al. (1992) 

and Bessembinder and Seguin (1993) documented evidence which also supports a 

positive relationship between volume and volatility.   

As described above, the main contribution of this paper is to incorporate lagged 

trading volume into the LHAR-RV model and attempt to examine the role of trading 

volume as well as to improve the forecasting performance of realized volatility. This 

study refers to the modified model as LHAR-RV-cum-Vol model. To the best of our 

knowledge, no published study has yet modeled and forecasted realized volatility with 

adding the lagged trading volume into the LHAR-RV model.   

In addition to investigating the impact of trading volume on future volatility for 

Taiwan’s stock market, this paper also investigates whether average trade size or number 

of transaction provide the best explanation of price volatility. Admati and Pfleiderer 

(1988), and Foster and Vishwanathan (1990) suggested that informed traders may 

strategically break a large trade into many trades of smaller sizes. Thus, the number of 

transactions may actually carry more information than trade size. Easley and O’Hara (1990) 
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demonstrated that market makers can also learn from a lack of transactions and the length 

of no-trading periods. Therefore, the number of transactions is a crucial variable in 

understanding the process of price formation. 

 Meanwhile, Harris and Raviv (1993) have argued that transactions occur due to traders’ 

different assessments of the impact of information on stock prices. They predicted that the 

number of transactions would have a positive impact on the absolute value of price 

changes. Jones, Kaul and Lipson (1994), using Nasdaq data, found empirical evidence in 

support of Harris and Raviv’s prediction. They also suggested that the impact of average 

trade size on price volatility was dominated by the impact of the number of transactions 

on price volatility. Therefore, they concluded that it was the number of transactions, and 

not trading volume, that possessed the most informational content. Moreover, using 

Nasdaq data, Gopinath and Krishnamurti (2001) reported that the number of trades had a 

larger impact on volatility than the average trade size. This finding was further 

corroborated for the Taiwan OTC market data by Chiang et al. (2006). These publications 

all concluded that the number of trades indeed produced more information than average 

trade size. 

Furthermore, this paper also investigates whether bid-ask frequency or bid-ask 

volume provide the most information for explaining price volatility. From a supply and 

demand point of view, bid-ask frequency (volume) represents supply and demand of the 

stock market. Since that bid information and ask information can serve as a proxy 

measure of the quantity demanded and quantity supplied in the stock market, bid-ask 
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information corresponds to excess supply or excess demand. Using Taiwan Stock 

Exchange (TSE) market data, Chen (2005) provided empirical evidence that bid-ask 

volume has a much larger impact on volatility than the impact of bid-ask frequency.  

Finally, there is an interesting yet unaddressed issue within different market 

conditions in the context of volatility forecasting using the HAR-RV model and its new 

variant models. In particular, this paper examines whether different market conditions (e.g. 

up market day and down market day) generate different empirical results for value-added  

intraday data information in volatility forecasting. Using GARCH models, Fuertes et al. 

(2008) showed that the additional use of intraday data for day t-1 to forecast volatility on 

day t is more advantageous when t-1 is an up market day. The GARCH-RPV model ranks 

top in both regimes, based upon 14 NYSE stocks.  

The remainder of this paper is organized as follows. Section 2 briefly reviews the 

theoretical framework behind the concept of realized volatility and methodology used for 

developing and testing the forecasting models. Section 3 presents a brief description of 

the data and illustrates the empirical in-sample and out-of-sample results on a long series 

of high frequency TAIEX data. Section 4 contains some concluding remarks.  
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2. Research Methodology  

2.1 Modeling volatility 

Assume that the state variable p(t), for example the logarithmic price of a stock , is 

driven by the continuous time stochastic volatility jump-diffusion process:  

Tt tdqttdwtdtttdp ≤≤++= 0),()()()()()( κσµ               (1) 

where )(tµ is a continuous and locally bounded variation process, )(tσ is the stochastic 

volatility process, )(tw denotes a standard Brownian motion, )(tdq  is a counting 

process with 1)( =tdq  corresponding to a jump at time t and 0)( =tdq corresponding to 

no jump, a jump intensity )(tλ , and )(tκ  refers to the jump size. The quadratic 

variation (QV) process of )(tp  can be defined by  

                
2

0 1 ))()((lim)]([ ∑ = +∞→
−→= n

j jjn
spspptp                    (2) 

for any sequence of partitions tsss n =<<<= ...0 10  with { } ∞→→− − n for ss jj
j

0sup 1 . 

The most important aim is attempt to predict the increments in quadratic variation over 

certain horizons, H, is then: 

                 ∫ ∑
+

+≤≤+ +≡
Ht

t
HtstHtt s  dssQV )()( 22

, κσ                     (3)     

where the first component, referred to as integrated volatility, is from the continuous 

component of (3), and the second term is the contribution derived from discrete jumps. 

    This paper employs the intraday data on the Taiwan stock index to predict future 

volatility using the trading hours between 9:00 a.m. and 13:30 p.m., Monday-Friday. Let 
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the discrete daily returns be denoted by ))1(ln)((ln1001, −−=− tPtPr tt , where the time 

index t refers to the day of sampling. This study normalizes the daily time interval to 

unity and divides it into M periods. Each period has length M1=∆ . Then define the ∆  

period return as )))1(()((100, MjtpMjtpr M
jt −−−−= , Mj ,...,2,1= , where M is 

the sampling frequency. This paper sets M = 54 since this corresponds to the five-minute 

sampling frequency as is adopted by Andersen et al. (2001, 2005) and BN-S (2004b). 

ABDL (2001) claimed that sampling at five-minute intervals is sufficient to ensure that 

there is minimal measurement error in the daily realized volatilities, while also preventing 

microstructure biases from becoming a concern. This paper also defines daily ‘realized 

volatility’ (RV), or quadratic variation, which can be estimated by the sum of the 

corresponding M intra-daily squared returns, as follows:   

                           ∑ =+ = M

j
M

jt
M
tt rRV

1
2

,1, )(                         (4) 

This is a consistent estimator of 1, +ttQV , as M → ∞, see BN-S (2002a, b) and ABDL 

(2003) for a review. In this case, realized volatility consists of integrated volatility plus 

the jump component. Other measures of realized volatility, introduced by BN-S (2004a), 

are realized power variation (RPV), and realized bi-power variation (BPV), which this 

study defines as:  

                       ∑ =
−−

+ = M

j
M

jt
M
tt rMRPV

1 ,
2/11

11, µ                      (5) 

 rrBPV M

j
M

jt
M

jt
M
tt ∑ = −

−
+ =

2 1,,
2

11, µ                      (6) 

where )(21 ZE=≡ πµ denotes the mean of the absolute value of the standard 

Gaussian random variable, Z. In particular, this study also defines the standardized 
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realized tri-power quarticity (TQ), adopted in the bi-power jump test (BN-S, 2004b; 

2006), as follows: 

                        ∑ = −−
−

+ = M

j
M

jt
M

jt
M

jt
M
tt rrr MTQ

3
34

2,1,,
3
341, )(µ             (7) 

where )()21()67(2 34323
34 ZE =ΓΓ≡−µ . It is straightforward to drive that for M→∞, 

1,
21

1, )(lim +

+

+∞→
≡→ ∫ tt

t

t

M
ttM

dssRPV σσ ,                (8) 

2
1,

21

1, )(lim +

+

+∞→
≡→ ∫ tt

t

t

M
ttM

dssBPV σσ ,                (9)             

and                   4
1,

41

1, )(lim +

+

+∞→
≡→ ∫ tt

t

t

M
ttM

dss TQ σσ .                 (10)  

Hence, BPV provides a consistent estimator of the integrated variance and it is also 

immune to jumps. 

Corsi et al. (2009) provides an alternative estimator of the continuous part of 

volatility, the Corrected Threshold Bipower Variation (CTBPV): 

             ∑
=

−−=
M

j
jjtjjtt rZrZCTBPV

2
11,1,1 ),(),(2 θθ

π
  Tt ,...,1=            (11) 

where ),( ,1 jjtrZ θ  is a special function equal to jtr ,  when jjt   r θ<, , and equal to 

j 1.094 θ  when jjt   r θ≥, , and j θ  is the threshold that is a multiple of local variance, 

jV̂ , that is chosen according to an iterative procedure, that is: 

                               j θ = jVc ˆ⋅θ                           (12) 

A typical value of θc  is θc = 3. Even if tCTBPV  converges to tIV  when M → ∞, it 

is possible to show that ∞→→ θc  as  BPVCTBPVt . As will be shown in the next 

sub-section, this correction is essential for building test statistics. Finally, this study also 

defines the standardized corrected realized threshold tri-power quarticity (CTTQ), 
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adopted in the corrected threshold bi-power jump test (Corsi et al., 2009), as follows: 

      ∑ = −−
−

+ = M

j jjtjjtjjt
M
tt rZrZrZ MCTTQ

3 2,341,34,34
3
341, ),(),(),( θθθµ          (13) 

where )()21()67(2 34323
34 ZE =ΓΓ≡−µ , and ),( ,34 jjtrZ θ  is a special function equal 

to 
34

, jtr  when jjt   r θ<, , and equal to 32
j 1.129 θ⋅  when jjt   r θ≥, . It is also easy to 

show that for M → ∞, 

        4
1,

41

1, )(lim +

+

+∞→
≡→ ∫ tt

t

t

M
ttM

dssCTTQ σσ .               (14) 

2.2 Modeling Realized Jumps 

     In this sub-section, I employ two tests for jump detection to separate the jump and 

continuous sample path components of QV. The first jump test, introduced by BN-S 

(2004a, 2005), utilizes bipower variation to estimate the continuous integrated volatility 

and, by difference, the jump contribution to the total quadratic variation, defined as: 

                        ∑
+<<

++ →−
1

2
1,1, )(

tst

M
tt

M
tt sBPVRV κ .                  (15)               

Following Huang and Tauchen (2005) and ABD (2007), this paper identifies significant 

jumps by using 1, +ttZ  given by (17) and αΦ  as the quantile function of the Normal 

distribution at confidence levelα , thus, the jump component is given by:  

+
++++ −Φ>= )()( 1,1,1,1, tttttttt BVRV ZIJ α

α                    (16) 

)/,1max()52(

/)(
2

1,1,
2

1
4

1

1,1,1,
1,

++
−−

+++
+

−+

−
=

tttt

tttttt
tt

BRVTQ

RVBPVRV
MZ

µµ
      (17)         

where )0,max(   xx =+ , and )(∗I denotes the indicator function which equal equals 1 if 

jumps are detected on day t, and equals to 0 elsewhere, and 1, +ttZ  is normally distributed 
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if there are no jumps (BN-S, 2004b). In order to correctly separate 1, +ttRV  into  

continuous and jump component, the continuous component is naturally defined as:      

αα
1,1,1, +++ −= t ttttt JRVC                       (18)          

This ensures that α
1, +ttC  and α

1, +t tJ  add up to 1, +ttRV . In the empirical study I set 

999.0=α  throughout the paper. Huang and Tauchen (2005) use Monte Carlo simulation 

to demonstrate that the z-statistic shown above has appropriate size, power, and jump 

detection ability. 

    The second jump test proposed by Corsi et al. (2009), employs corrected threshold 

bipower variation to estimate continuous integrated volatility. The residual jump 

component is then calculated as the difference between the realized volatility and the 

CTBPV: 

                    ∑
+<<

++ →−
1

2
1,1, )(

tst

M
tt

M
tt sCTBPVRV κ                     (19) 

Corsi also introduced a correction of the z statistics of BN-S (2006), based on corrected 

threshold multipower variation, which identifies significant jumps as: 

        CTBPVRV TzCITJ tttttttt
+

++++ −Φ>−= )()( 1,1,1,1, α
α                    (20) 

      
)/,1max()52(

/)(
2

1,1,
2

1
4

1

1,1,1,
1,

++
−−

+++
+

−+

−
=−

tttt

tttttt
tt

CTBPVCCTQ

RVCTBPVRV
MTzC

µµ
       (21) 

It is possible to show that )1,0(   NTzC →−  stably in law as M →  ∞ . The 

corresponding continuous component is defined as: 

                          αα
1,1,1, +++ −= t ttttt TJRVTC                       (22) 

which is equal to 1, +ttRV  if )(∗I = 0 and to 1, +ttCTBPV  if )(∗I = 1. Corsi et al. (2009) 
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used Monte Carlo simulation to show that the C-Tz test has significantly more power than 

the z test, especially when jumps are consecutive, which is quite common in 

high-frequency data. Therefore, this paper employs the concept of BPV and corrected 

threshold BPV to estimate both components. 

2.3 Modeling leverage effects  

Financial asset volatilities often exhibit significant asymmetric response to past 

returns. In other words, volatility tends to increase more after a negative shock than after 

a positive shock of the same magnitude. This asymmetric return-volatility phenomenon is 

known as the ‘leverage effect’. This sub-section is inspired by Corsi and Reno (2009) 

who found that not only daily but also weekly and monthly negative past returns (e.g. 

leverage effect) have a high forecasting power for future volatility. Hence, this paper 

defines daily returns )(100 1−−= ttt pp r  and past aggregated negative and positive 

returns as: 

   )0)...(()...(1
11

)(
,  rr Irr

n
r HttHtttHt ≥++++= +−+−

+
−            (23) 

 )0)...(()...(1
11

)(
,  rr Irr

n
r HttHtttHt <++++= +−+−

−
−            (24) 

where )(∗I denotes the indicator function. 

2.4 Modeling Trading Volume  

Research on the importance of trading volume in financial markets is rapidly 

growing. Much of this research has been focused on the positive correlation between both 
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trading volume and volatility, such as Gallant et al. (1992), and Bessembinder and Seguin 

(1993). Tseng (2009) suggested that including trading volume in the HAR-RV model 

provided more accurate predictions. Total trading volume can also be jointly determined by 

number of transactions, and average size per trade. From the viewpoint of the market, 

bid-ask frequency (volume) can represent supply and demand of the stock market. As a 

result, any discrepancy between bid-ask frequency (volume) carries information on excess 

supply or excess demand in the stock market. 

In this sub-section, various measures of volume are employed, and daily volume is 

measured in five ways: 

 type-)(VOL value Volume ingTrad t ∑ =
= M

j
M

jtvol
1 ,ln                    (25) 

 type-)(TNV nsTransactio of Number t ∑ =
= M

j
M
jttf

1 ,ln                   (26)         

type-)(TSV  SizeTrade Average t ∑ =
= M

j

M

jt
M

jt tfvol
1 ,, )ln(                 (27) 

  type-)(TNRFrequceny  Ask-Bid t ∑∑ ==
= M

j
M
jt

M

j
M
jt afbf

1 ,1 , lnln           (28) 

type-)(TVR Volume Ask-Bid t ∑∑ ==
= M

j
M

jt
M

j
M

jt avbv
1 ,1 , lnln              (29) 

It should be noted that these types are defined as the summation of the corresponding M 

intra-daily logarithm of difference volume measures, with these intra-daily logarithm 

volumes representing the rate of information arrival into the market within the same time 

period, such as five-minute intervals; larger trading volume implies a more rapid rate of 

information arrival. Notice that TNRt (TVRt) is defined as bid frequency (volume) 

divided by ask frequency (volume) to measure excess supply or excess demand.    
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2.5 The forecasting Models 

     The Heterogeneous Auto-Regressive (HAR) model introduced by Corsi (2003) and 

Corsi et al. (2009) can effectively capture the long-term memory behavior of RV quite 

parsimoniously. Moreover, Corsi (2003) provided empirical evidence that the HAR model 

is able to reproduce the observed hyperbolic decay of the sample autocorrelations of RV. 

Hence, this paper employs the HAR model to forecast the RV. 

The HAR model uses averaged future RV as the dependent variable and uses 

averages of past values of variance measures as the independent variables. This allows the 

models to take advantage of information from past price variation. We will define the 

multi-period normalized realized variation over H discrete periods as:         

11,21
1

, )...( +++++
−

+ ≡+++= tttHtttHtt RVRV     ,RVRVRVHRV           (30) 

In this paper, the values 1, 5, 10, 15, and 20 are used for H, referring to one-day, weekly, 

bi-weekly, tri-weekly and monthly frequencies respectively. To keep the HAR model   

simple and intuitive, the HAR-RV model of Corsi (2003), including only the daily, 

weekly and monthly RV components, is then expressed as: 

HttttmttwttdHtt XXXRVXRVHAR +−−−+ ++++=−− ,,20,5,10,: εββββ          (31) 

where Htt +,ε  is a standard IID noise and where X= RV, BPV, CTBPV, RPV, C, TC, with 

C and TC denoting the continuous and threshold continuous components of RV, 

respectively. This study follows the HAR-RV model introduced by Corsi (2003) and uses 

the regressors such as RV, BPV, CTBPV, RPV, C and TC for predicting RV.  

In addition to the HAR-RV model, this paper also uses the following model 
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suggested by ABD (2007) and Chung et al. (2008).  

 JJ                                            

JCCCRVCJRVHAR

Httttjmttjw

ttjdttcmttcwttcdHtt

+−−

−−−−+

+++

++++=−−

,,20,5

,1,20,5,10,:

εββ
βββββ

   (32)            

where C and J denote the continuous and jump components of RV, as separated by the 

jump test of BN-S (2006). 

Corsi et al. (2009) proved that corrected threshold BPV (CTBPV) is an unbiased 

estimation of 2
1, +ttσ  in the presence of jumps, but the BPV estimator is a biased measure 

of 2
1, +ttσ  in days where jumps are present. For this reason, this paper modifies the 

HAR-RV-CJ model of Andersen et al. (2007) and Chung et al. (2008) using the 

continuous and jump component of RV as separated by the jump test of Corsi et al. (2009) 

using the CTBPV measure.  

 TJTJ                                            

TJTCTCTCRVTCJRVHAR

Httttjmttjw

ttjdttcmttcwttcdHtt

+−−

−−−−+

+++

++++=−−

,,20,5

,1,20,5,10,:

εββ
βββββ

  (33) 

where TC and TJ are the continuous and jump components. This paper computes these 

regressors analogously to the realized volatility measures given by Equation (30), 

including ,, ,20,5 tttt BPV  BPV −− ,, ,20,5 tttt BPVCT  CTBPV −− ttRPV ,5− , ,RPV t20,-t ,t5,-tC ,t20,-tC

,, t20,-tt5,-t J  J t20,-tt5,-tt20,-tt5,-t TJ and ,TJ ,TC TC , . 

Another form of the HAR regression that is used in this paper incorporates leverage 

effects into the HAR-RV model, and then proposes the following specification to obtain 

the LHAR-RV model: 

  
Httttrmttrw

ttrdttmttwttdHtt

rr                                             

rXXXRVXRVLHAR

+
−

−
−

−

−
−−−−+

+++

++++=−−

,
)(

,20
)(
,5

)(
,1,20,5,10,:

εββ

βββββ
      (34) 
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where X = RV, BPV, CTBPV, RPV, C, TC and where r(-) denotes the ‘leverage effect’ 

components, given by Equation (24). Note that in order to keep the model as 

parsimonious as possible, only the negative returns as suggested by Corsi and Reno (2009) 

are included.    

    In what follows, the HAR-RV-TCJ model is extended to directly incorporate the 

leverage effects to obtain the LHAR-RV-TCJ model of Corsi and Reno (2009):     

 rrr                                                 

TJTJTJ                                                 
TCTCTCRVTCJRVLHAR

Httttrmttrwttrd

ttjmttjwttjd

ttcmttcwttcdHtt

+
−
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−

−
−
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−−−+

++++
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,
)(

,20
)(
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)(
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,20,5,1

,20,5,10,:

εβββ

βββ
ββββ

         (35) 

where the definitions of TC and TJ are the same as those in Equation (33). 

As suggested by Tseng (2009), this paper also incorporates lagged trading volume 

into the LHAR-RV and LHAR-RV-TCJ model; hence, the proposed models read: 

Httttvmttvwttvd

ttrmttrwttrd

ttmttwttdHtt

VolVolVol                              
rrr                              

XXXRV              
VolcumXRVLHAR
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βββ

βββ
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           (37)  

where X = RV, BPV, CTBPV, RPV, C, TC and where Vol defines the summation of the 

corresponding M intra-daily logarithm trading volume given by Equation (25). Also, the 

measures of lagged volume, including ttVol ,5−  and ttVol ,20− , are calculated using the same 

formula presented in Equation (30).     
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Following ABD (2007) and Forsberg and Ghysels (2007), this paper also models 

RV using square root and log-transform methods. The square root forms of the above 

equations are as follows: 

  HttttmttwttdHtt XXXRVXRVHAR +−−−+ ++++=−− ,,20,5,10
2/1

,
2/1 : εββββ      (38) 

where X = RV1/2, BPV1/2, CTBPV1/2, RPV, C1/2, TC1/2. 

  
 JJJ                                                     

CCCRV CJRVHAR

Httttjmttjwttjd

ttcmttcwttcdHtt
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++++
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2/1
,1

2/1
,20

2/1
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2/1
,10,

2/12/1 :

εβββ

ββββ
      (39) 

and the same transformations will be estimated for models (33) to (37). 

The logarithmic forms of the above equations are as follows: 

HttttmttwttdHtt XXXRVXRVHAR +−−−+ ++++=−− ,,20,5,10, lnlnlnln:ln εββββ   

(40) 

where X = RV, BPV, CTBPV, RPV, C, TC. 

 JJJ                              
CCCRVln           

CJRVHAR

Httttjmttjwttjd

ttcmttcwttcdHtt

+−−−

−−−+

+++++++
+++=

−−

,,20,5,1

,20,5,10,

)1ln()1ln()1ln(
lnlnln

:ln

εβββ
ββββ  (41) 

and the same transformations will be estimated for models (33) to (37). 

2.6 Measure of Performance 

In their study, Andersen et al. (2007) compared the results of the different models 

using only adjusted R2. The report demonstrated hat the adjusted R2 was highest when 

modeling the log transform of the realized volatility. However, Forsberg and Ghysels 

(2007) and Chung et al. (2008) continued to place more focus on ‘mean square error’ 
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(MSE) than adjusted R2. There are two reasons cited for this. The first reason was based 

on the argument of Forsberg and Ghysels (2007) who suggested that, when transformed 

variables (such as log or square root) are used as dependent variables, the adjusted R2 

from the regressions with different dependent variables are not comparable.  

The second reason was related to the recent work of Hansen and Lunde (2006) and 

Patton (2006). They have shown that the MSE loss function is robust with regards to the 

volatility proxy used. Therefore, this study will use the adjusted R2 and ‘root mean square 

error’ (RMSE) evaluation measures in the in-sample forecasts, but only RMSE in the 

out-of-sample forecasts.     

     This paper takes the inverse transformation of 2/1
, HttRV +  and HttRV +,ln , and then 

computes RMSEs. To be specific, let HttRV +,  be the true in-sample value of RV for H 

days, and let HttVR +,
ˆ  be the in-sample prediction value of the dependent variable. 

Additionally, the following RMSE evaluation measure is employed for the different 

transformed measures: 

        origin-type: ∑ = ++
− −= N

t HttHtt VRRVNRMSE
1

2
,,

1 )ˆ(        (42) 

square roots-type: ∑ = ++
− −= N

t HttHtt VRRVNRMSE
1

222/1
,,

1 ))ˆ((        (43) 

log-type: ∑ = ++
− −= N

t HttHtt VRRVNRMSE
1

2
,,

1 ))ˆexp(ln(        (44) 

where N is the number of in-sample forecasts. Hence, after recovering the dependent 

variable to its original form, this paper can compare the in-sample and out-of sample 

predictability for different models with different regressors.  
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3 Empirical Analysis 

3.1 Data Source and Descriptions  

The data set analyzed in this paper is the Taiwan Stock Exchange Capitalization 

Weighted Stock Index (TAIEX) time series from the Taiwan Economic Journal (TEJ) 

database. Also, all high-frequency transactions from 2 January 2003 to 30 June 2008 are 

disposed of, a total of 1361 trading days. In order to mitigate the impact of microstructure 

effects on the estimates, as in ABD (2007), this study sets a sampling frequency as ∆ = 5 

minutes, corresponding to 54 returns per day. Table 1 reports the descriptive statistics of 

the realized volatility levels. These realized volatility levels include realized variance 

(RVt), realized bi-power variance (BPVt), corrected threshold bi-power variance (CTBPVt), 

realized power variance (RPVt), the threshold continuous element (TCt), the threshold 

jump element (TJt), and the jump element (Jt), as well as their square root transforms and 

log-transforms. The columns from two to seven of Table 1 report the sample mean, 

standard deviation, skewness, kurtosis, and the minimum and maximum of the different 

variables. The last column (LB10) reports the Ljung-Box test statistic for up to tenth order 

serial correlation and the critical value of LB10 is 18.307.  

First, the LB statistic demonstrates that RPVt has the highest serial correlation and 

CTBPVt has the second highest correlation for the original variables and their 

transformations. For the RPVt the Ljung-Box statistic is 4821.6 compared to 2563.3 for 

the CTBPVt. For the square root transform the LB statistic is 5377.9 for the RPVt
1/2 against 
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4006.4 for the CTBPVt
1/2

. For the log-transform this study finds the highest LB-statistic 

again for the lnRPVt which is 5650.2, which implies that RPVt may provide a better 

predictable power on future volatility. It is worth noting that TJt and Jt have the lowest 

serial correlation for the level and their transformations, while the TJt is much higher than 

Jt. This finding shows that the jump element measured by means of threshold bipower 

variation will be better forecasted.  

   Second, RVt has the highest standard deviation and more volatile than others. Finally, 

all the square-transformed and square-root-transformed variables are severely skewed to 

the right. In contrast, the skewness values for the log transform are quit close to 

symmetric value of 0 except for the TJt and Jt. The estimates of the sample kurtosis are 

well above the normal value of 3 for all the transformations, indicating that the 

distributions of these variables are highly leptokurtic. This is especially true for the RVt of 

Taiwan Stock Exchange (TSE) returns as argued by Andersen et al. (2001) (henceforth 

ABDE) and ABDL (2001, 2003).  

     Figure 1 displays the time series plots of logarithm realized variance and logarithms 

of the threshold continuous and jump elements. Also displayed is the jump element 

computed using the bi-power variation of RV. Clearly, the jump is quit large in TJt and Jt 

plot since that the average logarithms of the threshold jump and jump elements for the 

TAIEX are 0.494 and 0.442 respectively, whilst Forsberg and Ghysels (2007) found that 

the average logarithm of jump for the S&P500 was only 0.023. Figure 2 reports the 

percentage contribution of threshold jumps estimated by Equation (20) to total quadratic 
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variation computed on a 1-month moving average window for the full sample. Jumps 

contribute between 10% and 40% of total variation with an overall sample mean of about 

25.7%. This finding is not in line with the results in Andersen et al. (2007), Huang and 

Tauchen (2005) and Corsi and Reno (2009). Their empirical work documents the mean of 

jumps contribution as only about 6% or 7% of total variance.  

Chung et al. (2008) provided two possible explanations for the occurrence of higher 

jump percentages for the TAIEX. Firstly, market participants in the Taiwan stock market 

are mostly individual investors, known as noise traders. Their investment decisions are 

often undertaken without sound and rational analysis, and can be greatly affected by 

macroeconomic news announcements. Secondly, the Taiwan stock market has insufficient 

market depth and as a result, major investors can artificially generate volatility through 

excessive trading. 

    Figure 3 shows the sample autocorrelation function (SACF) of RVt, BPVt, CTBPVt, 

RPVt, TCt, TJt, and Jt. It is clear that RPVt is the most persistent, followed by BPVt, 

CTBPVt, and TCt. Similar to ABD (2007) and Forsberg and Ghysels (2007) this study 

finds little persistence in the threshold jump and jump components of the realized 

variance.      

Descriptive Statistics on daily trading volume are presented in Table 2. Five 

measures of volume are examined, including the daily trading volume value (VOLt), the 

daily number of transactions (TNVt), the daily average trade size (TSVt), the daily bid-ask 

frequency (TNRt), and the daily bid-ask volume (TVRt). These measures of volume are 
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transformed by taking their logarithms as the detrended versions of the corresponding 

measures. The last column of Table 2 reports the Ljung-Box test statistic for up to 

tenth-order serial correlation (LB10); the corresponding the critical value is 18.307. The 

LB statistics indicate strong autocorrelation in all the volume variables. VOLt is the 

highest followed by TNVt and TSVt. TNRt and TVRt are less persistent. Additionally, the 

standard deviation of VOLt is 23.038 which is the highest variable, meaning that the 

trading volume value is more volatile.  

Regarding sample skewness, the value of VOLt and TNVt are -0.091 and 0.048 

which is quite close to symmetric value of 0, while the TSVt, TNRt and TVRt are clearly 

asymmetric. Turning to the estimates of the sample kurtoses, this study finds that only the 

value of VOLt is close to the normal value 3, indicating that the distribution is 

approximately Gaussian. In contrast, the values of the TSVt, TNRt and TVRt are well above 

the normal value of 3, indicating that the distributions are highly leptokurtic.      

Table 3 presents the Pearson correlation matrix between the five measures of daily 

trading volumes. Notably, it can be seen here that the highest correlation is between 

trading volume value and the number of transactions, while the second highest correlation 

is between trading volume and average trade size. This finding may support the idea of 

using TNVt and TSVt as volume explanation variables to replace VOLt.  

    Figure 4 presents the logarithm of trading volumes including VOLt, TNVt, TSVt, 

TNRt, and TVRt. As is obvious from the figure, periods with volumes above the mean are 

often followed by periods of volumes below the mean. Further, the first three panels show 
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an increasing trend toward the end of the sample period.    

Summarizing, RPVt and CTBPVt exhibit the highest serial correlation, which implies 

that RPVt and CTBPVt will be better at predicting future volatility. However, the threshold 

jump and jump elements of RVt are much less persistent, while the jump element is less 

persistent than the threshold jump element. Volt is most persistent and volatile, and TVRt is 

much less persistent and volatile. This study finds that the there is a high correlation 

between trading volume value and number of transactions. Other proxies of volume, such 

as bid-ask frequency, has a very low correlation with trading volume value.   

3.2 In-sample Results 

The data set covers a long time span of nearly 6 years of high frequency data for the 

TAIEX. In this section, the main determinants of future realized volatility are analyzed, 

and the performance of various HAR models in predicting future realized volatility are 

examined.     

3.2.1 Comparing Volatility Forecasts with Two Jump Detection Methods   

The primary purpose of this sub-section is to analyze the impact of jumps on future 

volatility when threshold bipower variation is employed as a measure of jumps. This 

study shall measure the corrected threshold bi-power variation with a value θc = 3, using 

the C-Tz statistics to detect jumps. The C-Tz statistics are not only computed with a 

confidence level α = 99.9% but the most interesting quantities will be computed and 
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plotted for different values of α as well.  

According to Corsi et al. (2009), the C-Tz statistics provide a more effective 

estimation of the jump component than the z statistics. Furthermore, they proved that the 

z statistics were biased and noisy when the jumps appeared in the form of two 

consecutive jumps in the intra-daily returns. This bias can be completely removed by the 

corrected threshold estimators.  

To compare the detecting power of the C-Tz and z statistics, this study computes 

the number of days which contain jumps in the TAIEX sample. Jumps are detected by the 

condition C-Tz ＞ αΦ  and z ＞ αΦ as a function of α and plots the results in Figure 5. 

Thus, by using the statistics based on corrected threshold bi-power variation, it can be 

seen that this study achieves a higher number of jumps than were achieved by BN-S 

(2004b, 2006), using the statistics based on bi-power variation.   

To further evaluate the relative contribution of the newly proposed C-Tz statistics, 

this paper compares the estimation results with those of the standard HAR model (31), the 

HAR-RV-CJ model (32), and the HAR-RV-TCJ model (33), as is adopted by Corsi et al. 

(2009). This study will also consider the standard deviation and logarithm forms 

following ABD (2007) and Forsberg and Ghysels (2007). Empirical results are reported in 

Tables 4, 5 and 6, where all jumps have been estimated with the C-Tz statistics. Three 

prediction horizons are considered: one-day, one-week, and four-week, corresponding to 

RVt,t+H , for H = 1 , 5 and 20, together with their statistical significance evaluated with the 

Newey-West robust t-statistic.  
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As is seen in Table 4, most of the estimates for βd, βw, and βm of the three models are 

highly significant. The only exception is the coefficient of daily continuous component. 

This result may be due to the fact that the time series of the TAIEX realized volatility 

seems to exhibit a higher level of noise, due to a lower mean tick arrival frequency and 

higher market microstructure effects, such as price discreteness. These microstructure 

effects make the daily continuous component have an insignificant impact on future 

volatility. Meanwhile, the weekly and monthly continuous components, being averaged 

over long periods, arguably contain less noise and more information on the volatility 

process. Therefore, higher weights are received from these models. However, this 

confirms the existence of highly persistent volatility dependence for all the 

transformations. Importantly, the coefficient (daily, weekly and monthly) of jump 

component as measured using BN-S (2004b, 2006) and Corsi et al. (2009) is not 

significant in many cases. This result also shows that only the weekly jump coefficient is 

positive and significant at least 10 % level. This suggests that the weekly jump may play a 

role in future daily volatility forecast for the Taiwan Stock Exchange (TSE) market. It is 

noteworthy that the constant term in these regressions is always significant, suggesting 

that all the regression models are biased. Most importantly, the HAR-RV-TCJ model 

yields a higher R2 and a lower RMSE, thus showing a better forecasting power.  

To understand this point in depth, the sample is divided into days immediately 

following the occurrence of a jump, and days following days with no jumps, as 

introduced by Corsi et al. (2009). On these two samples this computes the adjusted R2 and 
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RMSE statistics separately, denoting them by J-R2, J-RMSE and C-R2, C-RMSE, 

respectively. The results reported in Table 4 show that the HAR-RV-TCJ model greatly 

improves the forecasting power on realized volatility in days which do not follow a jump, 

and it is also slightly outperforming in days immediately following a jump. These results 

are not in line with the findings reported by Corsi et al. (2009), which suggests that using 

the newly proposed C-Tz statistics provide a superior forecasting, especially in days 

which follow the occurrence of a jump. These results demonstrate that not only are C-Tz 

statistics superior at measuring the jump component, but they also remove noise from the 

continuous component in the explanatory variables. Therefore, this study introduces a 

superior method for future realized volatility forecasting in the continuous component. 

This study also examines the forecasting models for H = 5 and 20. Results are 

reported in Tables 5 and 6, respectively. Again, Table 5 shows that the estimates of βd, βw, 

and βm, which quantify the impact of the continuous sample path variability on the total 

future variation, are all generally highly significant. The coefficient (daily, weekly and 

monthly) of the jump component is also not significant in many cases. The result shows 

that the daily and weekly jump coefficients are positive and significant up to at least a 

level of 10%. This suggests that the daily and weekly jumps may play a role in future 

weekly volatility forecasts. Furthermore, the t-statistics of the coefficient βjd is larger for 

the HAR-RV-TCJ model than for the HAR-RV-CJ model. Again, the adjusted R2 and the 

RMSE suggest that the HAR-RV-TCJ model has better forecasting ability than the 

HAR-RV-CJ model. Also, both days after a jump and days without one show that the 
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HAR-RV-TCJ model provides superior forecasts compared to the HAR-RV-CJ model 

measured in terms of adjusted R2 and the RMSE. This is especially true for the days not 

following a jump. Table 6 presents almost the same results as reported in Table 5. 

However, it should be noted that the impact of weekly jump components on future 

monthly volatility is insignificant. The impact of the monthly jump component on future 

monthly volatility, however, is in fact significant for the HAR-RV-TCJ model. This 

suggests that the daily and monthly jumps may play a role in future monthly volatility 

forecasting.      

Thus, these results reveal that since the newly proposed C-Tz statistics can 

effectively estimate the jump component and completely remove jump noise from the 

continuous component, it has superior detecting power over the z test and enhances the 

forecasting ability on future realized volatility.   

3.2.2 The LHAR-RV-TCJ Model for Predicting Future Realized Volatility 

In sub-section 3.2.1, this paper demonstrates that the HAR-RV-TCJ model is better at 

predicting future realized volatility. However, it was suggested in the recent studies by 

Figlewski and Wang (2001) and Bollerslev et al. (2006) that equities and stock indexes 

often exhibit the so called “leverage effect”, i.e. volatility rises when stocks prices go 

down, but decreases when stock prices go up. So it can be seen that the leverage effect 

exhibits a negative correlation between past returns and future volatility. Thus, this paper 

incorporates leverage effects into the HAR-RV-TCJ model to obtain the so-called 
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LHAR-RV-TCJ model newly proposed by Corsi and Reno (2009). The purpose of this 

sub-section, then, is to demonstrate that the newly proposed model indeed improves the 

performance of realized variance forecasting. 

The in-sample regression results of the LHAR-RV-TCJ model for the TAIEX 

considering five prediction horizons. One-day and one to four-week periods are presented 

in Table 7, together with their statistical significance, evaluated with the Newey-West 

robust t-statistic. Table 7 shows that all the coefficients of the three continuous volatility 

components are positive and, in general, highly significant. Interestingly, the weekly 

continuous component affects future volatility more strongly than the daily and monthly 

continuous components. This suggests that the weekly continuous component may play a 

role in future daily volatility forecasting. The hierarchical asymmetric propagation of the 

volatility cascade is also confirmed by these results. The impact of weekly volatility 

decreases with the forecasting horizon, while the impact of monthly volatility increases. 

The coefficient which measures the impact of monthly volatility on future daily volatility 

is approximately three times than that of daily volatility in future monthly volatility. 

These findings are consistent with Corsi (2009) and Corsi and Reno (2009). As noted by 

Muller et al. (1997), Arneodo (1998) and Lynch and Zumbach (2003), who suggested that 

volatility over longer time intervals has greater influence than volatility over shorter time 

intervals, not the other than around.        

 For the jump components, most of jump coefficient estimates are insignificant, 

while the daily jump components remain highly significant and positive. This suggests 
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that the daily jump may play a role in future daily volatility forecasting. It is worth 

mentioning that the impact of daily and weekly jump components decreases with the 

horizon, but the impact of monthly jump component increases with the horizon. This 

finding indicates that monthly jumps affect future volatilities more significantly over a 

long period of time. For the leverage components, the coefficients of the negative returns 

in the LHAR-RV-TCJ model are generally negative and highly significant, especially at 

the daily aggregation frequency, which unveils a so-called “leverage effect”.  

 The square root transformed regression results are presented in Table 8. The daily, 

weekly and monthly coefficients of continuous component are almost significant at the 1 

% level. This confirms the existence of highly persistent volatility dependence. A similar 

hierarchical structure is also confirmed in the square root model. 

For the jump and leverage components, the results are the same as reported in Table 

7. The daily jumps remain positive and highly significant. This result also reveals the 

strong significance of the negative returns at only the daily aggregation frequency.      

The log-transformed regression results are presented in Table 9. Again, the estimates 

for βcd, βcw, and βcm confirm the existence of highly persistent volatility dependence. Most 

of the jump components are highly significant and positive, indicating that when they are 

measured by means of threshold bipower variation, the jump terms will have a substantial 

impact in determining future volatility. This empirical result is not in line with ABD 

(2007), which suggest that the jump components are not statistically significant and 

slightly increase the R2 of the regression.  
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This result also indicates that not only the daily negative returns, but also the 

negative returns of the past week and past month, affect the next day volatility. This 

finding further confirms the views of the Heterogeneous Market Hypothesis; especially 

that heterogeneity originates from the difference in the time horizons. Most importantly, 

in order to evaluate the relative contribution of the newly proposed model, this paper 

compares their in-sample predictions with those of the standard HAR model and the 

HAR-RV-TCJ model with jumps, but with no leverage effects, using corrected threshold 

bipower variation as in Corsi et al. (2009), presented in Table 10. Panel B and C denote 

the square root and log transformation of the variance. The results presented in Panel A, B 

and C also give the highest adjusted R2 and lowest RMSE for the LHAR-RV-TCJ model 

at any forecasting horizon. These empirical results demonstrate that the LHAR-RV-TCJ 

model including the leverage effects significantly improves the forecasting performance 

of the TAIEX volatility at any forecasting horizon. This study also finds that the 

HAR-RV-TCJ model outperforms the HAR model at any forecasting horizon in all the 

transformations.  

3.2.3 Is leverage effect induced by jumps? 

The empirical results of Christie (1982), and French, Schwert, and Stambaugh (1987) 

all suggest that stock price changes and volatility are inversely related ( the so-called 

leverage effect). According to the previous discussion in section 3.2.2, the empirical 

results also suggest that the leverage effect is a vital explanatory component on the future 
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TAIEX volatility. In this sub-section, we set out to examine whether the leverage effect is 

induced by jumps. 

Corsi and Reno (2009) indicates that the leverage effect is only somewhat 

attributable to jumps, and that it appears instead as a feature mostly induced by 

continuous returns. This study closely follows Corsi and Reno (2009) separating the daily 

jump contribution to quadratic variation into positive and negative parts, which are 

defined as: 
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and this study replaces Jt in the LHAR-RV-TCJ model with +
tJ  and −

tJ  to obtain the 

newly model called LHAR-RV-TCJ＋ proposed by Corsi and Reno (2009). This paper also 

estimates the HAR-RV-TCJ+ model but with no leverage terms. Results are reported in 

Tables 11, 12 and 13, corresponding to prediction horizon H=1(one day), 5(one week) and 

20(one month). In Tables 11,12 and 13, estimating the HAR-RV-TCJ+ model, this finds 

that the impact of negative jumps as measured by the corresponding coefficient in the 

regression, is significantly larger than that of positive jumps, and this is true at prediction 

horizon H=5 and 20. Moreover, the coefficient of positive jumps is sometimes negative 

but the coefficient of negative jumps is always positive at prediction horizon H=1. This 

result enhances the asymmetry in positive and negative jumps. Additionally , when this 

study estimates the full LHAR-RV-TCJ+ model with the leverage terms, the impact of 

negative and positive jumps is estimated to be roughly the same for all the 
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transformations at prediction horizon H= 5 and 20. At the same time, the coefficients of 

negative jumps remain positive, while those of positive jumps remain negative, at 

prediction horizon H=1. 

This result is evidence of the fact that the leverage effect is indeed attributable to 

jumps for a short-run prediction horizon. This empirical result is not consistent with Corsi 

and Reno (2009). However, leverage is not induced by jumps for the longer-run 

prediction horizon. Instead, it appears to be a feature primarily induced by continuous 

returns. This empirical result is in line with Corsi and Reno (2009). 

3.2.4 The Reformed Model for Prediction Future Realized Volatility 

The prior studies have clearly demonstrated that the LHAR-RV-TCJ model is better 

at predicting future realized volatility (Corsi and Reno, 2009). The impact of trading 

volume measured in value (dollar volume or notional value) on realized volatility, 

however, was not discussed in the LHAR-RV-TCJ model proposed by Corsi and Reno 

(2009). Anderson (1996) suggested that according to the MDH concept, trading volume 

could serve as a proxy measure of the amount of unobservable information flowing into 

the market. Therefore, this study incorporates lagged trading volume value into the 

LHAR-RV-TCJ model in an attempt to improve the performance of realized volatility 

forecasting. The reformed forecasting model is referred to as the LHAR-RV-TCJ-cum-Vol 

model.   

The in-sample regression results of the LHAR-RV-TCJ-cum-Vol model for TAIEX 
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are presented in Table 14, with the adjusted R2 and the “root mean squared error” (RMSE) 

for the one-day and one- to four-week in-sample RV predictions. In the first case, the 

estimates of βcd, βcw and βcm are mostly positively significant for all the prediction 

horizons, indicating that the RV also exists in highly persistent volatility dependence. The 

coefficient of the jump component shows that only the daily jump coefficient is positive 

and significant up to at least 5% level, with the exception of the one-day prediction 

horizons. The coefficient of the negative returns also reveals that only the daily negative 

return is positively significant to a level of 1 %.  

In the second case, the estimates of the three lagged trading volume components are 

mostly positive but, in general, not significant. This result suggests that trading volume as 

an explanation variable is not helpful in this regression.     

The square root form regression results are presented in Table 15. These results are 

similar to the results reported in Table 14. This study finds that the continuous, jump and 

negative returns components are the primary determining factors for future realized 

volatility. Again, trading volume as the regressors has no significant explanatory power on 

future volatility.        

The log-transformed regression results are presented in Table 16. As expected, all the 

coefficients of the three continuous components are positive and highly significant. A 

similar hierarchical structure is confirmed by these results. Indeed, the impact of daily and 

weekly volatility decreases with the prediction horizon of future volatility, while the 

impact of monthly volatility increases. The daily jump component remains highly 
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significant and positive, with the exception of the three-week prediction horizons, 

indicating that daily jumps may play a role in future volatility forecasting. The estimation 

of model (37) also reveals the strong significance of the negative returns at the daily 

aggregation frequency. It is noteworthy that the impact of the daily negative returns 

decreases with the prediction horizon of future volatility. Additionally, the negative 

returns of the past week also have a significant impact on future volatility, when 

computed over a two week period. Most importantly, however, this study finds that the 

estimates of βvd are positively significant to a level of at least the 10%, with the exception 

of the three-week prediction horizons. This indicates that lagged trading volume indeed 

has a significant forecasting power on future volatility. As pointed out by Karpoff (1987), 

Gallant et al. (1992) and Bessembinder and Seguin (1993), there is a positive relationship 

between volatility and trading volume. The majority of the coefficients of trading volume 

in the far past, such as βvw, βvm, however, are revealed to be insignificant.  

This result demonstrates that the lagged weekly and monthly volumes have 

relatively weaker impact on future volatility than the lagged daily volume. As noted by 

Tseng (2009), the impact of the lagged volume on the future volatility decreases from 

high to low aggregation frequency.      

In order to evaluate the relative contribution of the newly proposed model, this paper 

compares its in-sample prediction with that of the LHAR-RV-TCJ model; leverage effects 

are included but trading volume is not. The results of Table 17 unambiguously indicate 

that the inclusion of the lagged trading volume considerably improves the forecasting 
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performance of the TAIEX volatility at any prediction horizon for all the transformations. 

In line with Tseng (2009), this study finds that the difference in the RMSE between the 

LHAR-RV-TCJ and LHAR-RV-TCJ-cum-Vol model increases with the prediction horizon 

of future volatility. This is because the standardized measure of the multi-period for the 

RV, leverage effects, and volume over longer horizons, contribute to easier RV predictions. 

The percentage of reduction in the RMSE of the LHAR-RV-TCJ-cum-Vol model, for 

instance, ranges from 0.36% (H=1) to 8.46% (H=20). 

 Thus, this study has successfully demonstrated that the LHAR-RV-TCJ-cum-Vol 

model can significantly improve the performance of future realized volatility forecasting 

after adding trading volumes as the regressors. Coefficients of the trading volume 

components, however, are insignificant for any prediction horizon. This implies that the 

trading volume components have no explanatory capabilities.  

All of this data clearly indicates that the inclusion of lagged trading volume (the 

proxy measure of the amount of unobservable information flowing into stock market) in 

the reformed model does indeed affect future realized volatility forecasting. As noted by 

Bowe et al. (2007) and Manganelli (2005), the trading volume contains relevant market 

information about the financial asset’s true price movement.   

3.2.5 In-sample Results for Different Measures of Trading Volume 

Trading volume can be determined by number of trades (i.e. trading frequency) and 

average trade size. From the viewpoint of the market, bid-ask frequency (volume) can 
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represent supply and demand. As a result, the discrepancy between bid-ask frequency 

(volume) carries information on excess supply or excess demand in the stock market. This 

sub-section will empirically analyze which of these will contribute the most to the future 

realized volatility forecasting for the Taiwan capital market. Using the 

LHAR-RV-TCJ-cum-Vol model, trading volume, trading frequency, average trade size, 

bid-ask volume, and bid-ask frequency will all be compared. The results of the in-sample 

predictions of RVt,t+H for H = 1, 5, 10, 15, and 20, using the five measures of trading 

volume are presented in Table 18. The left-hand column under each prediction horizon 

report the adjusted R2 and the right-hand columns report the RMSE. This study also 

considers the square root and logarithm models. Five measures of trading volume are 

examined: trading volume value (VOL), number of trades (TNV), average trade size 

(TSV), bid-ask frequency (TNR), and bid-ask volume (TVR), corresponding to Equations 

(25) to (29).   

We will first consider the results obtained by implementing the square volatility 

measure, which are presented in Panel A of Table 18. These results indicate that the 

highest adjusted R2 value is achieved with trading frequency as the explanatory variable; 

the results range between 0.209 for the one-day horizon and 0.514 for the four-week 

horizon among trading volume value, trading frequency, and average trade size. The 

results for RMSE also reveal that trading frequency dominates all other measures of 

volume, with the RMSE of trading frequency ranging between 0.808 and 2.165 across 

five prediction horizons. This finding is consistent with Gopinath and Krishnamurti (2001) 
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and Chiang et al. (2006).  

In the second case, the highest adjusted R2 and the lowest RMSE are both achieved 

with bid-ask volume as the explanatory variable for two- to five-week prediction horizons 

between bid-ask volume and bid-ask frequency. The highest adjusted R2 and lowest 

RMSE, meanwhile, are achieved with bid-ask frequency for one-day and one-week 

prediction horizons. 

The results of the RVt,t+H predictions using the square root volatility measure with 

different measures of volume regressors are presented in Panel B of Table 18. Again, 

trading frequency achieves the highest adjusted R2 among trading volume value, trading 

frequency, and average trade size. This is with the adjusted R2 of trading frequency 

ranging between 0.393 and 0.652, while the RMSE of trading frequency ranges between 

0.211 and 0.442 across the five prediction horizons. With the exception of the one-day 

prediction horizons, bid-ask volume ratio achieves the highest adjusted R2, and the lowest 

RMSE, between bid-ask volume ratio and bid-ask frequency ratio across the five 

prediction horizons. 

The results of the RVt,t+H predictions using the logarithmic volatility measure with 

different measures of volume regressors are presented in Panel C of Table 18. First of all, 

trading frequency achieves the highest adjusted R2 and the lowest RMSE between trading 

volume value, trading frequency, and average trade size. This indicates that the number of 

transactions (trading frequency) may actually carry more information than the average 

trade size does. This result is consistent with Gopinath and Krishnamurti (2001). This 
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empirical result suggests that, in the Taiwan stock exchange (TSE) market, the number of 

transactions is more important in explaining the future realized volatility than the average 

trade size. Admati and Pfleiderer (1988), and Foster and Vishwanathan (1990) explained 

that informed traders may strategically break a large trade into many trades of smaller size, 

so the number of transactions could contain more information.  

Secondly, bid-ask volume achieves the highest adjusted R2 between bid-ask volume 

and bid-ask frequency, with the adjusted R2 of trading frequency ranging between 0.468 

and 0.682. The results for RMSE also reveal that bid-ask frequency is dominated by 

bid-ask volume. This paper using the LHAR-RV-TCJ-cum-Vol model, finds that the 

empirical results are also in line with results of Chen (2005), which demonstrated that 

bid-ask volume was better at predicting future realized volatility. 

3.2.6 In-sample Results for Different Volatility Predictors 

Recent literature suggests that realized power variation (RPV) is the most effective 

predictor of future volatility. Such publications include the work of Ghysels et al. (2006), 

ABD (2007), Forsberg and Ghysels (2007), Fradkin (2008) and Chung et al. (2008), to 

name a few. This study employs eight measures of realized variance: realized volatility 

(RV), realized bi-power variation (BPV), corrected threshold bi-power variation 

(CTBPV), realized power variation (RPV), continuous (C), jump and continuous (CJ), 

threshold continuous (TC), and threshold continuous and jump (TCJ).  

RPV outperforms other volatility measures for the forecasting of future volatility, for 
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several reasons. First, BN-S (2004) showed that realized power variation is immune to 

jumps. Jumps are generally large outliers that may have a strong effect on model 

estimates and forecasts. Second, Taylor (1986) and Ding et al. (1993) found that the 

absolute value of returns displays stronger persistence than squared returns. In other 

words, RPV may provide a better signal than RV when predicting volatility. Third, 

Forsberg and Ghysels (2007), Ghysels et al. (2006) and Ghysels and Sinko (2006) 

demonstrated that absolute returns enhance volatility forecasts. Lastly, Forsberg and 

Ghysels (2007) argue that the gains are due to the higher predictability, smaller sampling 

error, and immunity to jumps which means jumps don’t have any affect on the model.  

To the best of our knowledge, the issue of different market conditions, in the context 

of volatility forecasting using different regressors and different model structures, has not 

been previously addressed. Hence, in this sub-section, this study sets out to examine the 

in-sample fit for realized variance with different regressors, using the standard HAR 

model, the LHAR-RV model, and the LHAR-RV-cum-Vol model. The next sub-section 

will then focus on the performance of these models in forecasting future volatility 

during ’up-market days’ (U) versus ’down-market days’ (D). 

The results of the in-sample predictions of RVt,t+H for the different regressors are 

presented in Table 19, with the left-hand columns under each prediction horizon reporting 

the adjusted R2, and the right-hand columns reporting the RMSE. The results using the 

standard HAR models are reported in Panel A of Table 19. These results indicate that RPV, 

as a regressor, achieves the highest adjusted R2 and lowest RMSE, followed by TCJ and 
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TC. It is interesting to note that the predictive ability on future volatility between RPV 

and TCJ is nearly the same. This is also true for BPV and CTBPV. For the HAR-RV-TC 

and HAR-RV-TCJ regressions, the difference in adjusted R2 between TC and TCJ 

regressors is quite small, increasing the fit by at most 0.03. This indicates that there is not 

much to gain by separating RV into its continuous and jump parts and modeling them 

separately. The difference in RMSE between TC and TCJ regressors also yields similar 

results. Further, the adjusted R2 of TC and TCJ regressors is higher than that of C and CJ 

regressors. This suggests the use of the tests and measures proposed by Corsi et al. (2009), 

which provide a better identification and more precise measurement of jumps. 

Interestingly, the RMSE decreases for all regressors as the prediction horizon increases, 

an indication that RV computed over longer horizons are easier to predict since they are 

smoother series, as discussed in Forsberg and Ghysels (2007). 

The results of the in-sample predictions of RVt,t+H using the LHAR-RV model with 

different regressors, are presented in Panel B of Table 19. Again, RPV achieves the 

highest adjusted R2 ranging between 0.194 and 0.433 in the LHAR-RV model, followed 

by TCJ and TC. The results for RMSE also reveal that RPV dominates almost all other 

regressors. The differences in the adjusted R2 and RMSE between BPV and CTBPV are 

quit small, indicating that using CTBPV as the regressor, as proposed by Corsi et al. 

(2009), yields no better predictive power on future volatility than BPV. For the 

LHAR-RV-TC and LHAR-RV-TCJ regressions, using TC and TCJ as regressors produces 

essentially the same results; indicating that only the continuous component has predictive 
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power. In other words, the jump component is simply ‘noise, due to the fact that the jump 

component is less persistent. This study also does not find a large improvement in 

explanatory power from dividing the continuous and jump components, as suggested by 

ABD (2007). From the previous discussion, the possible explanation for this result is that 

the new jump test proposed by Corsi et al. (2009) improves significantly the accuracy of 

volatility forecasts especially in periods not following a jump.   

The results of the RVt,t+H predictions using the LHAR-RV-cum-Vol models with 

different regressors are presented in Panel C of Table 19; in general, these results are 

found to be similar to the results reported in Panel A and B of Table 19. Panel C, however, 

yielded a different result, finding that with TCJ as the regressor, the adjusted R2 is the 

highest and RMSE is the lowest. Obviously, this means that TCJ has a more accurate 

predictive ability than RPV. In other words, RPV is not a top forecaster anymore in the 

models. This result confirms that when corrected threshold bipower variation is employed 

as a measure of jumps, the threshold continuous and jump components can improve the 

forecasting of future volatility.      

Summarizing, the best regressors are RPV and TCJ. This study does not find that 

explanatory power is significantly improved by dividing the continuous and jump 

components using corrected threshold bipower variation. Nevertheless, threshold-based 

tests indeed perform much better than bipower variation-based tests. These results are 

consistent with the findings of Corsi et al. (2009). It has also been demonstrated that RPV, 

BPV and CTBPV all outperform the RV. This confirms Forsberg and Ghysels’ (2007) 
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finding that the realized absolute value is a better forecaster of future realized variance 

than realized variance itself.   

The square root transform regression results are presented in Table 20. The results 

using the HAR-RV1/2 models with different regressors are presented in Panel A of Table 

20. TCJ1/2 almost achieves the highest adjusted R2 within the HAR-RV1/2 model, with the 

adjusted R2 of TCJ1/2 ranging from 0.363 for the on-day horizon, to 0.589 for the 

three-week horizon. Turning to the RMSE of the in-sample predictions, it is clear that 

TCJ1/2 also dominates in RMSE terms. Comparing across prediction horizons, the RMSE 

is always lowest when TCJ1/2 is used as the regressor, with the RMSE of TCJ1/2 ranging 

between 0.941 and 2.229 across the five prediction horizons. For the HAR-RV1/2-RPV 

regression, the RMSE ranges between 0.946 and 2.233 across the five prediction horizons. 

Notice again that the performance between RPV and TCJ1/2 is almost the same. For the 

HAR-RV1/2-TC1/2 and HAR-RV1/2-TCJ1/2 regressions, the results of the difference in 

adjusted R2 between TC1/2 and TCJ1/2 as regressors are quite small, with increasing the fit 

by at most 0.030. Again, this indicates that the jump component of RV is of little help in 

predicting future volatility. The difference in RMSE between the TC and TCJ regressors 

also yields similar results. It is obvious that the C and CJ regressors do not outperform the 

TC and TCJ regressors as independent variables in these regressions. Again, this study 

finds that CTBPV1/2 does not seem to be of any help in improving forecasting. These 

results hold up for Panel B and C of Table 20, using the LHAR-RV1/2 and 

LHAR-RV1/2-cum-Vol models, respectively. 
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The log-transformed regression results are presented in Table 21. From the results of 

the HAR-ln RV, LHAR-ln RV, LHAR-ln RV-cum-Vol models reported in Panels A, B and 

C of Table 21, this study finds that ln RPV achieves nearly the highest adjusted R2 and the 

lowest RMSE. This result is followed by ln TCJ, both for the HAR-ln RV and LHAR-ln 

RV models, while lnBPV achieves the highest adjusted R2 and the lowest RMSE within 

the LHAR-ln RV-cum-Vol model. It is noteworthy that the predictive powers on future 

volatility provided by ln RPV and ln TCJ are identical. Again, Table 21 shows that the 

difference in adjusted R2 and RMSE between the ln TC and ln TCJ regressors within the 

different models is quite small. Corsi and Reno (2009) explained that this is because the 

difference between the two forecasts is mainly in the days which come after a jump, 

which are quite few. Also, the ln TCJ regressor outperforms the ln CJ regressor in these 

models, although the ln C regressor outperforms the ln TC regressor. This result confirms 

that the threshold continuous and jump components seem to capture the main 

determinants of volatility dynamics. 

 It should be noted that when comparing the square and square root forms, the 

adjusted R2 is higher with log-transformed regressors as it reduces the variance of the data. 

In other words, logarithmic models outperform the square root and square models, as 

noted by ABD (2007) and Forsberg and Ghysels (2007). In addition, when the RMSE of 

the HAR-RV-TCJ is compared with the HAR-RV1/2-TCJ1/2 and HAR-lnRV-lnTCJ models, 

this study finds that for the last two models, the square root and log transform do appear 

to be detrimental. Considered from the RMSE perspective, HAR-RV-TCJ model is found 
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to provide the best predictions. The same results are found when this paper models the 

realized volatility in the LHAR-RV1/2 and LHAR-RV1/2-cum-Vol models with TCJ1/2 as 

the regressor. Interestingly, this seems to be the case for the RPV-based regressions as 

well. This finding is in line with Forsberg and Ghysels (2007) and Chung et al. (2009).   

As noted above in the discussion of Table 20, TCJ indeed has more accurate 

predictive ability on future volatility than all other regressors, especially the RPV for 

square root transformation. This finding contradicts the results of Forsberg and Ghysels 

(2007). Importantly, there is significant gain to using TCJ and TC instead of CJ and C as 

the explanatory variables. These surprising results are clear evidence that using corrected 

threshold bipower variation not only better measures the jump components, it also 

removes noise from the continuous component in the explanatory variables better than the 

bipower variation of BN-S (2006).With this, the significant impact of the continuous and 

jump components on future volatility as noted by Corsi et al. (2009), is easily seen.  

 Finally, in order to evaluate the relative contribution of the inclusion of both the 

leverage effects and the jumps, this paper compares its in-sample prediction with those of 

the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol regressions. From an adjusted R2 or 

RMSE perspective, this paper finds that with the same regressor, the best performance is 

obtained by the LHAR-RV-cum-Vol model. This implies that not only does the leverage 

effect accurately reflect the asymmetric responses of realized volatility, but also that 

lagged trading volume does indeed contain extra information that affects future realized 

volatility. This study also demonstrates that the LHAR-RV-TCJ-cum-Vol model provides 
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the most accurate predictions, because the TCJ component successfully captures the 

dynamics in future volatility. Thus, the choice of regressor is clearly more important than 

either the model or the weighting scheme selected for use as noted by Ghysels et al. (2006) 

and Forsberg and Ghysels (2007). 

To sum up, the results provided by the HAR-RV, LHAR-RV and 

LHAR-RV-cum-Vol models suggest that using realized power variance, threshold 

continuous and jump components as the regressors provides most accurate predictions, in 

terms of capturing the fluctuations in future volatility for these models. The results of 

these comparisons show that threshold jumps contribute only marginally to the 

performance of these models. Additionally, the corrected threshold bipower variation 

(CTBPV) proposed by Corsi et al. (2009) is a good estimation of the jump component of 

realized volatility, but it does not improve the forecasts.      

3.2.7 In-sample Results of an Up-market and a Down-market   

This sub-section is inspired by Fuertes et al. (2008) which compares the value-added 

intraday information for future volatility forecasting during an ’up-market’ (U) versus 

a ’down-market’ day (D). The definition of an up/down market day is based on the 

moving average of daily returns over the most recent 20-day window, defined as:  
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   There are two questions to be asked: (a) Dose the performance of future volatility 
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forecasting with different regressors differ over market conditions? (b) Do the benefits 

from exploiting intraday data differ over market conditions? 

The results of the in-sample predictions of RVt,t+H for the various different regressors 

are presented in Table 22, which reports the adjusted R2 and RMSE, respectively, for up- 

and down- market days as defined by Equation (46). For the sake of brevity, this study 

limits itself to the HAR-RV model, since this model provides the simplest, most 

parsimonious method of capturing the memory persistence of realized variance. The 

square transform regression results with different regressors are presented in Panel A of 

Table 22. In the first case, Panel A shows that TCJ, as a regressor, achieves the highest 

adjusted R2 and the lowest RMSE for all prediction horizons in both regimes as pointed 

out by the previous discussion. Regardless of TC and TCJ, this study finds that the 

adjusted R2 and RMSE of RPV, as a regressor, dominates all other regressors for all 

prediction horizons in down-market days. This result does not hold in up-market days, 

however, implying that RPV has more forecasting ability in down-market days than in 

up-market days. This interesting result implies that RPV regressors are invariant to jumps 

in down-market days, but not invariant to jumps in up-market days.     

Additionally, for the HAR-RV-TC and HAR-RV-TCJ regressions, the inclusion of 

the jump component on down-market days increases the adjusted R2, ranging from 

21.58% for the one-day prediction horizon, to 0.98% for the three-week prediction 

horizon. Conversely, it decreases to -0.47% for the one-day prediction horizon and 0.86% 

for the three-week prediction horizon over up-market days. Similarly, the percentage 



 

 48

reduction in the inclusion of jump component forecast errors for up-market days is 0.05% 

for the one-day prediction horizon and 0.68% for the three-week prediction horizon, 

compared to an increase to 8.15% and 1.28% over down-market days, respectively. This 

finding indicates that the jump element of RV is of little help in predicting future volatility 

in up-market days. In the second case, the forecast losses tend to be smaller for 

down-market days. This suggests that realized volatility at day t is relatively more 

difficult to forecast when t-1 is an up-market day.         

The square-root transform regression results are presented in Panel B of Table 22. A 

glance at these values shows the superiority of the HAR-RV-RPV and HAR-RV-TCJ 

models in a down-market regime, and the superiority of the HAR-RV-TCJ model in an 

up-market regime. Regardless of TC and TCJ, this study also shows that the performance 

of RPV is greatly superior to other regressors in down-market days, in terms of the 

adjusted R2 and RMSE. For the HAR-RV1/2-TC1/2 and HAR-RV1/2-TCJ1/2 regressions, the 

difference in adjusted R2 between TC1/2 and TCJ1/2 regressors is larger in up-market days, 

but smaller in down-market days. This result is dissimilar to that of the square form. The 

explanation for this finding might be that the predictive ability in down-market days is 

originally high, so that adding the jump element only marginally contributes to the 

performance of the model. The result of the difference in RMSE between C1/2 and CJ1/2 

regressors is ambiguous. Furthermore, the RMSE from down-market days is relatively 

smaller than that from up-market days. This finding is consistent with Fuertes et al. 

(2008), suggesting that the future volatility is easier to forecast when the market is 
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underperforming (i.e. in down-market days).  

The log-transformed regression results are presented in Panel C. This study notes 

that ln TCJ achieves almost the highest adjusted R2 in both regimes; ln RV is also the best 

forecaster in up-market days. However, the results for RMSE reveal that ln RV   

achieves a low RMSE in down-market days, indicating that there is a smaller deviation 

between the actual and predicted values; meanwhile, ln TCJ dominates all other 

regressors in up-market days. Regardless of ln TCJ, ln TC and ln RV, ln RPV performs 

relatively well in down-market days. For the HAR-lnRV-lnTC and HAR-lnRV-lnTCJ 

regressions, the results of the difference in adjusted R2 and RMSE between lnTC and ln 

TCJ regressors are similar to the results reported in Panel A. This study finds that there is 

a relatively significant gain derived from implementing lnTCJ as the explanatory variable 

in down-market days compared to up-market days. From the RMSE perspective, this 

paper can compare the HAR-RV-TCJ with the HAR-RV1/2-TCJ1/2 and HAR-ln RV-ln TCJ 

models over different market conditions. For the last two models, the square and log 

transform do appear to be detrimental and indeed the HAR-RV-TCJ model is found to 

provide the best predictions.  

Overall, it is not difficult to see that the most tangible benefits from exploiting 

intraday data in order to predict a future volatility occur during a bearish market. Fuertes 

et al. (2008) explained that if market is bearish, volatility is higher during down days than 

up days. This effect is exacerbated because, as Admati and Pfleiderer (1988) demonstrate, 

trades from both informed and discretionary liquidity traders come in clusters, with both 
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groups preferring to trade during ‘thick’ markets1 in order to minimize transaction costs. 

This clustering of trades, when trading activity is already high, triggers the release of even 

more information, which aids forecasting future volatility in down-market days. It is also 

possible high trading activity may mitigate the microstructure noise (e.g. 

infrequent-trading effects); this would explain why the HAR-RV model tends to provide 

better forecasts during down-market days. Hence, the use of intraday data is relatively 

more beneficial during down-market days.  

Take summarize section 3.2, this paper shows that jumps can be effectively detected 

using the newly proposed C-Tz statistics and that the HAR-RV-TCJ model provides a 

superior forecasting, especially in days which do not follow a jump. The inclusion of the 

leverage effects in the HAR-RV-TCJ model noticeably improves the forecasts and the 

model confirms the views of the Heterogeneous Market Hypothesis. Moreover, the 

leverage effect is indeed attributable to jumps for short-run prediction horizons, while the 

leverage effect is not induced by jumps for long-run prediction horizons. Trading volume 

contains stock-market-relevant information and as a result the modified model, the 

so-called LHAR-RV-TCJ-Cum-Vol model, improves the performance of future volatility 

forecasting. This study also reveals that TNV provides more information on explaining 

volatility and that TVR has a significantly greater impact on volatility than TNR does. 

The results of comparing the forecast performance of different volatility predictors 

                                                 
1In Lippman and McCall (1986), a ‘thick’ market indicates that more transactions of a homogeneous good 

(an equity) take place in a unit of time, so-called a ‘liquid’ market. 
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suggest that RPV and TCJ are the top forecasters. This study also notes that the TJ 

regressor contributes only marginally to the forecast performance. From market 

conditions analysis, TCJ is the top forecaster in both regimes. Additionally, RPV performs 

relatively well in down-market days as compared to up-market days. Importantly, the 

forecast losses tend to be smaller on down-market days, indicating that the volatility is 

relatively is difficult to forecast within up-market days.           

3.3 Out-of-sample Results 

In this sub-section, out-of-sample predictions of the realized volatility of TAIEX are 

reported. The data is split into two parts to provide an in-sample section for estimating the 

models, and an out-of-sample section for measuring the predictions. The in-sample period 

covers 2 January, 2003 to 29 December, 2006, for a total of 994 days. The out-of-sample 

period is 2 January, 2007 to 30 June, 2008, for a total of 367 days.  

In terms of predictive ability, the in-sample fit measures clearly demonstrate greater 

accuracy for the LHAR-RV-cum-Vol model compared to the HAR-RV and LHAR-RV 

models; the measures also indicate that the TCJ and RPV elements are the most effective 

forecaster for predicting future volatility. Since the primary purpose of this study is to 

seek out improvements in the forecasting of future volatility, it is important to determine 

whether the superior performance of the LHAR-RV-cum-Vol model is confirmed in the 

out-of-sample forecasts. Table 23 reports the out-of-sample results for the HAR-RV, 

LHAR-RV, and LHAR-RV-cum-Vol models, as well as their square root transforms and 
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log-transforms. Panel A of Table 23 presents results pertaining to the prediction of RVt,t+H. 

The out-of-sample results confirm the in-sample results; with the same regressor, and for 

all prediction horizons, all of the RMSE results are significantly lower in the 

LHAR-RV-cum-Vol regressions than those in the HAR-RV and LHAR-RV regressions. 

Compared to the other regressors within these models, RPV achieves the lowest RMSE 

for all the prediction horizons, making it by far the most preferable. This empirical result 

is consistent with the results achieved by both Forsberg and Ghysels (2007) and Chung et 

al. (2008), which indicate that the predictable features of absolute returns (realized power 

variation) are shown to improve forecasting the usual squared return-based measures of 

volatility. Interestingly, the TCJ regressor does not outperform the TC regressor.    

   Panel B of Table 23 reports the results for the square root transform. Again, 

RPV-based measures continue to provide the best out-of-sample predictions. Most 

importantly, it shows that TCJ1/2 models slightly improve the forecasting power with 

respect to TC1/2 models. As noted by ABD (2007), jumps have a null impact in 

determining future volatility when the jump component is estimated through the concept 

of corrected threshold bipower variation. Furthermore, CTBPV1/2 does not provide more 

accurate out-of-sample predictive ability than BPV1/2.     

Panel C of Table 23 reports the results for the log transform. The results are 

displayed on Panel A and B. Surprisingly, it seems that ln RV is the top forecaster for all 

the prediction horizons. In light of the findings of Corsi et al. (2009), it is not surprising to 

see that ln TCJ produces a better predictive power than lnTC. Indeed, the RMSE is 
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always lower for the LHAR-lnRV-cum-Vol model than for the HAR-lnRV and 

LHAR-lnRV models. These findings suggest that the LHAR-RV-cum-Vol model does 

improve the forecasting of future volatility for all the transformations with the results 

holding for both the in-sample and out-of-sample forecasts.    
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4 Concluding Remarks 

This paper provides five contributions to the literature. The first contribution is to 

show that C-Tz statistics, which are based on corrected threshold bipower variation, are 

more efficient in detecting jumps than z statistics, which are based on bipower variation. 

The HAR-RV-CJ model is also evaluated, using the jumps detected by the z statistics, as 

in BN-S (2004a, 2006), and compared with the HAR-RV-TCJ model estimated with the 

jumps detected by the C-Tz statistics. The results indicate that the predictability of the 

HAR-RV-TCJ model is more accurate than HAR-RV-CJ model, especially in days which 

do not follow the occurrence of a jump. Meanwhile, the continuous volatility components 

present the hierarchical asymmetric propagation of the volatility cascade.  

The second contribution is the incorporation of the leverage effects into the 

HAR-RV-TCJ model enhances the forecasting of future volatility. Results reveal not only 

daily but also weekly and monthly negative past returns are highly significant. This 

empirical finding confirms the view of the Heterogeneous Market Hypothesis. In addition, 

this study demonstrates that the leverage effect is indeed attributable to jumps for one-day 

prediction horizons. However, the leverage is not linked to jumps for the one-week or 

four-week prediction horizons; it appears instead to be a feature primarily induced by 

continuous returns. 

The third contribution of this paper is to present a new improved model for volatility 

forecasting. This model extends the LHAR-RV-TCJ model by incorporating lagged 

trading volume, which is a proxy for the rate of information arrival into the market. 
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Results find that the only daily trading volume and daily jump components appear to play 

a role in future volatility forecast and the LHAR-RV-TCJ-cum-Vol model shows 

remarkably good forecasting performance. This result seems to support the Sequential 

Information Arrival Hypothesis and Mixture of Distributions Hypothesis. In particular, 

the number of transactions as a proxy for information flows provides the best predictive 

ability on the volatility. The informational content of the bid-ask volume appear to be 

higher than that of the bid-ask frequency in the TSE market. 

The fourth contribution of this paper finds that the absolute returns-based volatility 

measure is better at forecasting than the squared returns-based volatility measure. Besides, 

RPV and TCJ under different transformations are the preferred regressors for future 

volatility predictions. The magnitude and occurrence of jumps in price does not have a 

significant effects on future volatility even if jumps are effectively detected using the 

newly proposed C-Tz statistics. This suggests that it is not necessary to separate the 

continuous and jump components of volatility for the purpose of forecasting. However, 

given the inadequacy of bipower variation in measuring volatility in the presence of 

jumps, this paper employs the tests and measures introduced by Corsi et al. (2009) to 

separate the RV into the continuous and jump components; this indicates that the TC and 

TCJ regressors indeed outperform the C and CJ regressors as independent variables. 

Moreover, CTBPV does not provide a better forecast of future volatility than BPV. These 

results hold good for both the in-sample and out-of-sample data.  

Last, but definitely not least, using intraday data to model and forecast future 
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volatility in ‘up-market’ and ‘down-market’ days, results suggest that TCJ is the most 

preferred regressor to predict future volatility in both regimes. It also appears that the 

jump component contains more information about future price movements when the 

market is down. Moreover, the RPV regressor performs relatively well in down-market 

days, indicating that it is invariant to jumps in down-market days, but it is variant to 

jumps in up-market days. In other words, there is no change in the RPV repressor with 

regard to its ability to predict future volatility in down-market days. Interestingly, the 

RMSE tends to be smaller for down-market days. That is, when the market is down the 

amount of market information increases, the predictive ability of future volatility also 

increases.     

As the future research directions, we may include the realized volatility of 

international stock markets in the HAR-RV models. Meanwhile, for checking the 

adequacy of the fitted model, we should examine the sample ACF and the time plot of the 

residual series. Visual examination of such a residual plot often is useful in detecting 

problems with the estimated model. Besides, we believe choosing an optimal sampling 

frequency could improve the forecasting performance of realized volatility. These issues 

warrant further study in the future.    
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Table 1  Descriptive Statistics of Realized Volatility Levels in the TAIEX 
Variablesa Mean Std. Dev. Skew Kurtosis Min. Max. LB(10)

d 

RVt 1.506 2.451 9.504 137.429 0.080 46.846 574.630 
BPVt 0.896 0.870 3.182 18.167 0.063 8.199 2517.100

CTBPVt 0.781 0.757 3.224 19.540 0.019 7.614 2563.300
RPVt 0.853 0.354 1.296 5.706 0.256 2.826 4821.600

TCt 0.862 0.874 3.231 18.575 0.019 8.902 2273.600
TJt

b 0.643 2.234 11.926 197.696 0.000 46.826 83.266 
Jt

c 0.470 2.060 13.762 253.528 0.000 46.735 52.715 

RVt
1/2 1.084 0.574 2.901 19.976 0.284 6.844 2034.1 

BPVt
1/2 0.872 0.368 1.422 6.091 0.252 2.863 3935.6 

CTBPVt
1/2 0.813 0.346 1.369 5.999 0.138 2.759 4006.4 

RPVt
1/2 0.905 0.181 0.666 3.515 0.506 1.681 5377.9 

TCt
1/2 0.850 0.374 1.446 6.152 0.138 2.983 3590.8 

TJt
1/2 b 0.434 0.674 2.697 16.490 0.000 6.843 87.155 

Jt
1/2 c 0.306 0.613 3.421 23.117 0.000 6.836 57.847 

lnRVt -0.047 0.886 0.419 3.397 -2.515 3.846 3045.5 
lnBPVt -0.432 0.786 0.220 2.793 -2.750 2.104 4707.6 

lnCTBPVt -0.575 0.804 0.091 2.978 -3.950 2.030 4751.1 
lnRPVt -0.236 0.393 0.145 2.661 -1.361 1.039 5650.2 

lnTCt -0.497 0.825 0.110 3.054 -3.950 2.186 4352.2 
ln(TJt+1)

b 0.295 0.494 2.437 10.984 0.000 3.867 128.66 
ln(Jt+1)

c 0.209 0.442 3.080 15.781 0.000 3.865 89.298 
 

Notes: 

a. RVt denotes realized variance; BPVt denotes bi-power variance; CTBPVt denotes corrected threshold 

bi-power variance; RPVt denotes realized power variance; Ct and Jt are the respective continuous and 

jump elements of RVt as separated by the CTBPVt jump test of Corsi et al. (2009). 

b. A significant daily jump test are computed using a critical value of α = 99.9% while the C-Tz statistics are 

computed using cθ = 3. 

c. A significant level of α = 99.9% was used in the bi-power jump test. 

d. The critical value of the test statistic for LB(10) was 18.307. 
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Table 2  Descriptive Statistics of Daily Trading Volume for the TAIEX 
variablesa Mean Std. Dev. Skew Kurtosis Min. Max. LB(10)

 

lnVOLt
 394.986 23.038 -0.091 2.814 320.204 463.193 7190.0

lnTNVt
 504.578 19.223 0.048 2.662 433.893 562.7526 7154.7

lnTSVt
 -109.592 6.107 -0.676 3.853 -130.042 -92.593 7102.6

lnTNRt
 1.004 0.013 0.211 3.605 0.938 1.054 245.3

lnTVRt
 0.999 0.007 -0.204 3.773 0.965 1.030 19.916

 

Notes: 

a. VOLt denotes daily trading volume value (unit: NTD million); TNVt denotes daily number of transactions 

(trading frequency); TSVt denotes daily average trade size; TNRt denotes daily bid-ask frequency; TVRt 

denotes daily bid-ask volume.  

b. All measures of volume are transformed by taking their logarithm.   

c. The critical value of the test statistic for LB(10) was 18.307. 

 

 

Table 3  Pearson Correlation Matrix Between Measures of Daily Trading Volume 
 VOLt TNVt TSVt TNRt TVRt 

VOLt 1.000  0.974  0.705 -0.098  0.033 

TNVt   1.000  0.527 -0.089  0.026 

TSVt    1.000 -0.091  0.042 

TNRt     1.000  0.329 

TVRt      1.000000 

 

Note: 

a. This table reports correlation estimates of daily trading volume value (VOLt), daily number of 

transactions (TNVt), daily average trade size (TSVt), daily bid-ask frequency (TNRt), and daily bid-ask 

volume ( TVRt). 
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Table 4  Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=1) 

 
Notes: 

a. OLS estimate for daily (H=1) HAR-RV, HAR-RV-CJ, HAR-RV-TCJ volatility forecast regressions. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t  ln RVt+1 

 

HAR- 

RV CJ TCJ RV CJ TCJ RV CJ TCJ 

0β  
0.429*** 

(5.089) 

0.247*** 

(3.027) 

0.141* 

(1.769) 

0.158*** 

(3.875) 

0.103***

(2.620) 

0.076** 

(2.037) 

-0.008 

(0.435) 

0.097*** 

(2.657) 

0.149***

(3.193) 

dβ  
0.159 

(1.440) 

-0.078 

(-0.522) 

0.100 

(0.552) 

0.068 

(1.014) 

0.029 

(0.349) 

0.139 

(1.513) 

0.028 

(0.711) 

0.072 

(1.391) 

0.126** 

(2.154) 

wβ  
0.330** 

(2.303) 

0.859*** 

(2.977) 

0.990*** 

(2.726) 

0.530***

(5.636) 

0.660***

(4.950) 

0.685***

(4.469) 

0.520*** 

(7.723) 

0.459*** 

(5.818) 

0.428***

(5.138) 

mβ  
0.219*** 

(2.963) 

0.296* 

(1.668) 

0.293 

(1.405) 

0.252*** 

(4.238) 

0.252***

(2.754) 

0.194* 

(1.850) 

0.350*** 

(5.716) 

0.299*** 

(4.294) 

0.228***

(3.114) 

jdβ  
 

 

0.205 

(1.579) 

0.168 

(1.365) 

 0.031 

(0.665) 

0.022 

(0.551) 

 -0.005 

(-0.086) 

-0.006 

(-0.134) 

jwβ  
 

 

0.196** 

(2.002) 

0.150* 

(1.647) 

 0.265***

(4.039) 

0.234***

(4.456) 

 0.512*** 

(4.188) 

0.488***

(4.499) 

jmβ  
 

 

-0.108 

(-0.668) 

-0.055 

(-0.548) 

 0.045 

(0.413) 

0.068**

(0.854) 

 0.083 

(0.459) 

0.160 

(1.091) 

R2 0.168 0.188 0.194 0.345 0.352 0.363 0.432 0.439 0.445 

RMSE 2.228 2.198 2.190 2.235 2.234 2.229 2.271 2.277 2.275 

J-R2 0.184 0.216 0.244 0.223 0.397 0.595 0.201 0.217 0.226 

J-RMSE 1.699 1.664 1.634 1.747 1.723 1.710 1.863 1.826 1.831 

C-R2 0.051 0.090 0.162 0.140 0.329 0.578 0.236 0.243 0.243 

C-RMSE 1.824 1.785 1.712 1.860 1.786 1.693 1.843 1.805 1.784 
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Table 5  Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=5) 

 

Notes: 

a. OLS estimate for weekly (H=5) HAR-RV, HAR-RV-CJ, HAR-RV-TCJ volatility forecast regressions. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t

 ln RVt+1 
 

HAR- 

RV CJ TCJ RV CJ TCJ RV CJ TCJ 

0β  
0.563*** 

(5.229) 

0.350*** 

(3.682) 

0.217** 

(2.237) 

0.211*** 

(4.383) 

0.149***

(3.274) 

0.122***

(2.812) 

-0.012 

(-0.544) 

0.105** 

(2.355) 

0.157**

(2.807) 

dβ  
0.097*** 

(3.741) 

0.163** 

(2.042) 

0.246*** 

(2.606) 

0.112*** 

(4.608) 

0.142***

(3.230) 

0.216***

(4.648) 

0.101*** 

(4.569) 

0.119*** 

(4.055) 

0.151***

(4.860) 

wβ  
0.240** 

(2.244) 

0.217 

(1.109) 

0.706*** 

(2.662) 

0.349***

(3.934) 

0.411***

(3.516) 

0.464***

(3.509) 

0.316*** 

(4.506) 

0.297*** 

(3.873) 

0.285***

(3.708) 

mβ  
0.278*** 

(3.456) 

0.678*** 

(3.506) 

0.475** 

(2.413) 

0.338*** 

(4.907) 

0.359***

(3.789) 

0.315***

(2.847) 

0.449*** 

(6.804) 

0.392*** 

(5.415) 

0.324***

(4.237) 

jdβ  
 0.098*** 

(3.137) 

0.097*** 

(3.847) 

 0.053** 

(2.560) 

0.064***

(3.785) 

 0.083** 

(2.570) 

0.105***

(3.735) 

jwβ  
 0.093 

(1.455) 

0.049 

(0.878) 

 0.172***

(2.641) 

0.110* 

(1.816) 

 0.326*** 

(2.750) 

0.245**

(2.176) 

jmβ  
 -0.081 

(-0.568) 

-0.064 

(-0.743) 

 0.047 

(0.474) 

0.082 

(1.097) 

 0.094 

(0.508) 

0.220 

(1.486) 

R2 0.263 0.320 0.351 0.528 0.554 0.573 0.640 0.653 0.656 

RMSE 1.356 1.301 1.271 1.329 1.308 1.293 1.367 1.360 1.360 

J-R2 0.214 0.223 0.236 0.229 0.274 0.288 0.489 0.505 0.507 

J-RMSE 0.900 0.894 0.886 1.019 1.005 1.004  0.983 0.976 0.981 

C-R2 0.148 0.246 0.299 0.213 0.323 0.393 0.491 0.501 0.501 

C-RMSE 0.830 0.781 0.753 0.936 0.910 0.890 0.820  0.810 0.806 



 

 67

Table 6  Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=20) 

 

Notes: 

a. OLS estimate for monthly (H=20) HAR-RV, HAR-RV-CJ, HAR-RV-TCJ volatility forecast regressions. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t

 ln RVt+1 
 

HAR- 

RV CJ TCJ RV CJ TCJ RV CJ TCJ 

0β  
0.724*** 

(7.108) 

0.581*** 

(6.308) 

0.435*** 

(4.480) 

0.323*** 

(6.457) 

0.267***

(5.607) 

0.244***

(5.362) 

-0.019 

(-0.741) 

0.095* 

(1.942) 

0.125** 

(2.058) 

dβ  
0.044** 

(2.133) 

0.107** 

(2.377) 

0.161*** 

(3.015) 

0.063*** 

(2.880) 

0.096***

(2.826) 

0.146***

(3.793) 

0.058*** 

(3.350) 

0.077*** 

(3.342) 

0.097***

(4.027) 

wβ  
0.081 

(0.987) 

0.179 

(1.219) 

0.567*** 

(3.367) 

0.183**

(2.165) 

0.296***

(2.961) 

0.395***

(3.754) 

0.233*** 

(3.458) 

0.271*** 

(3.685) 

0.293***

(4.016) 

mβ  
0.380*** 

(5.081) 

0.546*** 

(3.021) 

0.447** 

(2.185) 

0.448*** 

(5.661) 

0.407***

(3.758) 

0.318***

(2.696) 

0.493*** 

(6.854) 

0.385*** 

(4.626) 

0.291***

(3.355) 

jdβ  
 0.044*** 

(3.539) 

0.045*** 

(4.582) 

 0.034***

(2.765) 

0.039***

(3.645) 

 0.055** 

(2.445) 

0.065***

(3.190) 

jwβ  
 -0.065 

(-1.209) 

-0.099** 

(-2.345) 

 0.021 

(0.333) 

-0.035 

(-0.598)

 0.073 

(0.608) 

0.014 

(0.129) 

jmβ  
 0.123 

(0.838) 

0.124 

(1.184) 

 0.172 

(1.603) 

0.235***

(2.695) 

 0.293 

(1.431) 

0.454***

(2.624) 

R2 0.268 0.333 0.389 0.513 0.549 0.571 0.649 0.654 0.657 

RMSE 0.995 0.948 0.908 0.984 0.959 0.941 1.024 1.021 1.018 

J-R2 0.236 0.274 0.303 0.291 0.318 0.321 0.585 0.595 0.599 

J-RMSE 0.585 0.569 0.558 0.739 0.735 0.733 0.665 0.666 0.667 

C-R2 0.210 0.306 0.359 0.348 0.447 0.476 0.593 0.593 0.595 

C-RMSE 0.538 0.503 0.484 0.688 0.674 0.666 0.530 0.524 0.522 
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Table 7  In-sample Results modeling HttRV +,  of TAIEX using the LHAR-RV-TCJ Model 

 

Notes: 

a. OLS estimate for LHAR-TCJ regressions, estimated on 1day and 1- to 4 -week of the realized volatility. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

 

 

Horizons 

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
0.077 

(0.857) 

0.144 

(1.401) 

0.233** 

(2.347) 

0.309*** 

(3.280) 

0.384*** 

(4.072) 

cdβ  
-0.052 

(-0.315) 

0.126 

(1.317) 

0.045 

(0.622) 

0.104 

(1.639) 

0.111** 

(2.023) 

cwβ  
1.041** 

(2.253) 

0.723** 

(2.389) 

0.870*** 

(3.336) 

0.762*** 

(3.405) 

0.666*** 

(3.569) 

cmβ  
0.307 

(1.357) 

0.595*** 

(3.070) 

0.513** 

(2.300) 

0.485** 

(2.186) 

0.474** 

(2.243) 

jdβ  
0.122 

(1.015) 

0.071*** 

(2.660) 

0.039** 

(2.527) 

0.031*** 

(2.849) 

0.028*** 

(2.913) 

jwβ  
0.159* 

(1.833) 

0.054 

(0.848) 

-0.012 

(-0.220) 

-0.048 

(-0.996) 

-0.079* 

(-1.823) 

jmβ  
-0.026 

(-0.276) 

-0.038 

(-0.460) 

-0.013 

(-0.134) 

0.046 

(0.471) 

0.135 

(1.328) 

rdβ  -0.342*** 

(-2.791) 

-0.161** 

(-2.375) 

-0.165*** 

(-3.253) 

-0.174*** 

(-3.925) 

-0.134*** 

(-3.587) 

rwβ  
-0.140 

(-0.515) 

-0.410 

(-1.241) 

-0.223 

(-0.956) 

-0.067 

(-0.320) 

-0.002 

(-0.014) 

rmβ  
0.338 

(0.468) 

1.083 

(1.317) 

1.027 

(1.515) 

0.982* 

(1.784) 

0.911* 

(1.938) 

R2 0.203 0.366 0.408 0.416 0.401 

RMSE 2.175 1.254 1.040 0.945 0.898 
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Table 8  In-sample Results modeling 2/1
, HttRV +  of TAIEX using the LHAR-RV-TCJ Model 

 

Notes: 

a. OLS estimate for LHAR-TCJ regressions, estimated on 1day and 1- to 4 -week of the realized volatility. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

 

 

Horizons 

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
0.100** 

(2.236) 

0.113** 

(2.169) 

0.149*** 

(2.907) 

0.181*** 

(3.712) 

0.215*** 

(4.475) 

cdβ  
-0.026 

(-0.270) 

0.106** 

(2.320) 

0.071* 

(1.762) 

0.104*** 

(2.743) 

0.112*** 

(3.085) 

cwβ  
0.683*** 

(3.708) 

0.446*** 

(3.352) 

0.544*** 

(3.925) 

0.501*** 

(3.964) 

0.462*** 

(4.130) 

cmβ  
0.269** 

(2.491) 

0.402*** 

(3.768) 

0.354*** 

(2.953) 

0.333*** 

(2.719) 

0.320*** 

(2.700) 

jdβ  
-0.022 

(-0.686) 

0.036** 

(2.529) 

0.025** 

(2.029) 

0.027** 

(2.538) 

0.028*** 

(2.799) 

jwβ  
0.241*** 

(4.310) 

0.129* 

(1.945) 

0.070 

(1.021) 

0.025 

(0.393) 

-0.007 

(-0.129) 

jmβ  
0.093 

(1.280) 

0.097 

(1.356) 

0.130* 

(1.669) 

0.178** 

(2.279) 

0.234*** 

(2.716) 

rdβ  -0.100*** 

(-2.795) 

-0.051*** 

(-3.454) 

-0.046*** 

(-4.352) 

-0.043*** 

(-4.541) 

-0.032*** 

(-3.730) 

rwβ  
-0.114** 

(-2.340) 

-0.122** 

(2.083) 

-0.050 

(-1.069) 

-0.010 

(-0.220) 

0.012 

(0.292) 

rmβ  
0.076 

(0.581) 

0.246 

(1.638) 

0.239* 

(1.779) 

0.237** 

(1.989) 

0.213* 

(1.929) 

R2 0.388 0.592 0.605 0.599 0.579 

RMSE 2.196 1.275 1.070 0.977 0.932 
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Table 9  In-sample Results modeling HttRV +,ln  of TAIEX using the LHAR-RV-TCJ Model 

 

Notes: 

a. OLS estimate for LHAR-TCJ regressions, estimated on 1day and 1- to 4 -week of the realized volatility. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

 

 

 

Horizons 

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
0.044 

(0.978) 

0.096* 

(1.787) 

0.134** 

(2.277) 

0.139** 

(2.333) 

0.127** 

(2.069) 

cdβ  
0.035 

(0.594) 

0.085*** 

(2.970) 

0.062*** 

(2.713) 

0.068*** 

(3.063) 

0.077*** 

(3.454) 

cwβ  
0.407*** 

(4.670) 

0.273*** 

(3.681) 

0.316*** 

(4.013) 

0.329*** 

(4.283) 

0.324*** 

(4.379) 

cmβ  
0.285*** 

(4.018) 

0.378*** 

(5.179) 

0.356*** 

(4.475) 

0.322*** 

(3.818) 

0.293*** 

(3.393) 

jdβ  
-0.076* 

(-1.648) 

0.056** 

(2.226) 

0.040* 

(1.789) 

0.043** 

(2.111) 

0.045** 

(2.359) 

jwβ  
0.456*** 

(4.185) 

0.251** 

(2.103) 

0.188 

(1.526) 

0.120 

(1.014) 

0.063 

(0.554) 

jmβ  
0.234* 

(1.781) 

0.282** 

(2.015) 

0.311** 

(2.116) 

0.380*** 

(2.480) 

0.464*** 

(2.688) 

rdβ  -0.116*** 

(-3.431) 

-0.070*** 

(-3.820) 

-0.061*** 

(-4.495) 

-0.056*** 

(-4.551) 

-0.042*** 

(-3.567) 

rwβ  
-0.219*** 

(-4.263) 

-0.206*** 

(-3.168) 

-0.097 

(-1.633) 

-0.038 

(-0.614) 

0.001 

(0.026) 

rmβ  
0.097 

(0.692) 

0.317* 

(1.787) 

0.317* 

(1.836) 

0.323** 

(1.993) 

0.286* 

(1.811) 

R2 0.466 0.674 0.687 0.681 0.662 

RMSE 2.240 1.341 1.147 1.058 1.013 
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Table 10  Comparing Forecasting Models: HAR-RV, HAR-RV-TCJ and LHAR-RV-TCJ 
Horizons  

1day 1week 2weeks 3weeks 4weeks 

Models R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A:  

HAR-RV 0.168 2.228 0.263 1.356 0.261 1.165 0.263 1.064 0.268 0.995

HAR-TCJ 0.194 2.190 0.351 1.271 0.393 1.055 0.400 0.958 0.389 0.908

LHAR-TCJ 0.203 2.175 0.366 1.254 0.408 1.040 0.416 0.945 0.401 0.898

Panel B:  

HAR-RV1/2 0.345 2.235 0.528 1.329 0.532 1.136 0.525 1.042 0.513 0.984

HAR-TCJ1/2 0.363 2.229 0.573 1.293 0.592 1.084 0.589 0.990 0.571 0.941

LHAR-TCJ1/2 0.388 2.196 0.592 1.275 0.605 1.070 0.599 0.977 0.579 0.932

Panel C:  

HAR-lnRV 0.432 2.271 0.640 1.367 0.662 1.169 0.662 1.077 0.649 1.024

HAR-lnTCJ 0.445 2.275 0.656 1.360 0.677 1.159 0.674 1.067 0.657 1.018

LHAR-lnTCJ 0.466 2.240 0.674 1.324 0.687 1.147 0.681 1.058 0.662 1.013

 

Notes: 

a. The table presents the adjusted R2 and root mean square error (RMSE) for 1-day and 1- to 4-week  

in-sample predictions for TAIEX. 

b. The dependent variable for all models and for all horizons is the standardized realized variance:  

RVt;t+H/H. 

c. Bold values denote the highest adjusted R2 and the lowest RMSE.  
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Table 11  In-sample daily regressions for the LHAR-RV-CJ+ and HAR-RV-CJ+ model 

 

Notes: 

a. OLS estimate for the LHAR-RV-CJ+ and HAR-RV-CJ+ model in which this separates daily jumps into 

positive and negative value. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t

 ln RVt+1 
 

 

HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ 

0β  
0.158* 

(1.957) 

0.116 

(1.283) 

0.091** 

(2.460) 

0.100** 

(2.242) 

0.146*** 

(3.126) 

0.055 

(1.200) 

dβ  
0.036 

(0.190) 

-0.036 

(-0.215) 

0.105 

(1.103) 

-0.012 

(-0.131) 

0.107* 

(1.859) 

0.039 

(0.694) 

wβ  
1.083*** 

(2.811) 

1.095** 

(2.277) 

0.718*** 

(4.538) 

0.689*** 

(3.679) 

0.449*** 

(5.250) 

0.411*** 

(4.646) 

mβ  
0.278 

(1.317) 

0.309 

(1.358) 

0.176* 

(1.660) 

0.260** 

(2.363) 

0.218*** 

(2.993) 

0.281*** 

(3.963) 

)(+
jdβ  -0.066 

(-1.227) 

-0.055 

(-1.093) 

-0.066** 

(-2.093) 

-0.053* 

(-1.651) 

-0.152*** 

(-2.747) 

-0.117** 

(-2.103) 

)(−
jdβ  0.269** 

(2.231) 

0.231 

(1.618) 

0.112* 

(1.898) 

0.026 

(0.450) 

0.155** 

(2.105) 

-0.010 

(-0.143) 

jwβ  
0.145 

(1.361) 

0.151 

(1.455) 

0.232*** 

(4.360) 

0.239 

(4.305) 

0.485*** 

(4.612) 

0.456*** 

(4.223) 

jmβ  
-0.011 

(-0.116) 

-0.001 

(-0.017) 

0.090 

(1.194) 

0.099 

(1.384) 

0.189 

(1.318) 

0.239* 

(1.808) 

)(−
rdβ   -0.163 

(-1.278) 

 -0.076*** 

(-2.793) 

 -0.094*** 

(-2.999) 

)(−
rwβ  

 -0.129 

(-0.464) 

 -0.111** 

(-2.220) 

 -0.217*** 

(-4.188) 

)(−
rmβ  

 0.363 

(0.493) 

 0.086 

(0.635) 

 0.107 

(0.750) 

R2 0.215 0.216 0.378 0.389 0.455 0.467 

RMSE 2.160 2.157  2.204 2.191 2.260 2.238 
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Table 12  In-sample weekly regressions for the LHAR-RV-CJ+ and HAR-RV-CJ+ model 

 

Notes: 

a. OLS estimate for the LHAR-RV-CJ+ and HAR-RV-CJ+ model in which this separates daily jumps into 

positive and negative values. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t

 ln RVt+1 
 

 

HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ 

0β  
0.221** 

(2.272) 

0.149 

(1.440) 

0.128*** 

(2.940) 

0.113** 

(2.169) 

0.155*** 

(2.792) 

0.095* 

(1.760) 

dβ  
0.228** 

(2.421) 

0.128 

(1.339) 

0.203*** 

(4.405) 

0.107** 

(2.363) 

0.143*** 

(4.719) 

0.084*** 

(2.966) 

wβ  
0.731*** 

(2.748) 

0.731** 

(2.407) 

0.478*** 

(3.610) 

0.466*** 

(3.350) 

0.295*** 

(3.821) 

0.273*** 

(3.673) 

mβ  
0.471** 

(2.400) 

0.595*** 

(3.071) 

0.308*** 

(2.778) 

0.401*** 

(3.753) 

0.319*** 

(4.175) 

0.379*** 

(5.182) 

)(+
jdβ  0.034 

(1.191) 

0.044 

(1.377) 

0.028** 

(1.866) 

0.033** 

(2.057) 

0.040 

(1.406) 

0.060* 

(1.948) 

)(−
jdβ  0.125*** 

(6.851) 

0.087*** 

(2.808) 

0.100*** 

(4.864) 

0.040* 

(1.718) 

0.177*** 

(4.513) 

0.050 

(1.221) 

jwβ  
0.048 

(0.838) 

0.053 

(0.811) 

0.109* 

(1.808) 

0.128* 

(1.939) 

0.244** 

(2.194) 

0.251** 

(2.101) 

jmβ  
-0.053 

(-0.611) 

-0.035 

(-0.415) 

0.091 

(1.231) 

0.098 

(1.361) 

0.233 

(1.586) 

0.282** 

(2.013) 

)(−
rdβ   -0.134 

(-1.607) 

 -0.049*** 

(-2.765) 

 -0.072*** 

(-3.328) 

)(−
rwβ  

 -0.408 

(-1.229) 

 -0.121** 

(-2.082) 

 -0.206*** 

(-3.175) 

)(−
rmβ  

 1.087 

(1.321) 

 0.247 

(1.637) 

 0.316* 

(1.776) 

R2 0.354 0.367 0.577 0.592 0.659 0.674 

RMSE 1.267 1.253 1.288 1.274 1.356 1.341 
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Table 13  In-sample monthly regressions for the LHAR-RV-CJ+ and HAR-RV-CJ+ model 

 

Notes: 

a. OLS estimate for the LHAR-RV-CJ+ and HAR-RV-CJ+ model in which this separates daily jumps into 

positive and negative values. 

b. The significant daily jumps are computed using a critical value of α = 99.9%.   

c. The t-statistics based on Newey-West correction are given in parentheses. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

 

 

RVt+1 RV 2/1
1+t

 ln RVt+1 
 

 

HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ HAR-CJ+ LHAR-CJ+ 

0β  
0.437*** 

(4.499) 

0.386*** 

(4.106) 

0.245*** 

(5.400) 

0.215*** 

(4.474) 

0.125** 

(2.053) 

0.126** 

(2.034) 

dβ  
0.153*** 

(2.896) 

0.111** 

(2.026) 

0.143*** 

(3.744) 

0.111*** 

(2.996) 

0.095*** 

(3.974) 

0.076*** 

(3.405) 

wβ  
0.577*** 

(3.412) 

0.668*** 

(3.573) 

0.398*** 

(3.763) 

0.462*** 

(4.127) 

0.295*** 

(4.022) 

0.323*** 

(4.371) 

mβ  
0.445** 

(2.180) 

0.474** 

(2.243) 

0.316*** 

(2.682) 

0.321*** 

(2.710) 

0.290*** 

(3.337) 

0.293*** 

(3.397) 

)(+
jdβ  0.018 

(0.995) 

0.020 

(0.998) 

0.032** 

(2.474) 

0.031** 

(2.334) 

0.050** 

(2.139) 

0.049** 

(1.989) 

)(−
jdβ  0.057*** 

(4.468) 

0.033** 

(2.334) 

0.047*** 

(3.238) 

0.024 

(1.403) 

0.082*** 

(2.751) 

0.038 

(1.137) 

jwβ  
-0.099** 

(-2.340) 

-0.080* 

(-1.817) 

-0.035 

(-0.599) 

-0.007 

(-0.125) 

0.014 

(0.126) 

0.063 

(0.553) 

jmβ  
0.129 

(1.240) 

0.137 

(1.342) 

0.237*** 

(2.718) 

0.233*** 

(2.716) 

0.457*** 

(2.640) 

0.463*** 

(2.688) 

)(−
rdβ   -0.125*** 

(-3.106) 

 -0.034*** 

(-3.157) 

 -0.045*** 

(-2.952) 

)(−
rwβ  

 -0.002 

(-0.012) 

 0.012 

(0.285) 

 0.001 

(0.022) 

)(−
rmβ  

 0.912* 

(1.942) 

 0.212* 

(1.923) 

 0.285* 

(1.805) 

R2 0.389 0.400 0.571 0.578 0.657 0.662 

RMSE 0.907 0.898 0.940 0.932 1.018 1.013 
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Table 14 In-sample Results modeling HttRV +,  of TAIEX using the LHAR-TCJ-cum-Vol Model 

 

Notes: 

 a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.  

b. The t-statistics based on Newey-West correction are given in parentheses.  

c. The significant daily jumps are computed using a critical value of α = 99.9%. 

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

Horizons   

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
-1.347** 

(-2.483) 

-1.822*** 

(-2.619) 

-2.223*** 

(-3.139) 

-2.485*** 

(-3.643) 

-2.529*** 

(-3.887) 

cdβ  
-0.064 

(-0.416) 

0.077 

(0.867) 

0.024 

(0.405) 

0.056 

(0.994) 

0.058 

(1.256) 

cwβ  
0.937** 

(1.982) 

0.637** 

(2.061) 

0.626*** 

(2.596) 

0.436** 

(2.264) 

0.336** 

(1.987) 

cmβ  
0.435 

(1.642) 

0.748*** 

(3.817) 

0.806*** 

(3.159) 

0.898*** 

(3.824) 

0.896*** 

(4.051) 

jdβ  
0.121 

(0.986) 

0.067** 

(2.316) 

0.038** 

(2.456) 

0.030*** 

(2.653) 

0.027*** 

(2.712) 

jwβ  
0.156* 

(1.780) 

0.048 

(0.769) 

-0.017 

(-0.327) 

-0.051 

(-1.172) 

-0.083* 

(-1.922) 

jmβ  
-0.124 

(-1.349) 

-0.172* 

(-1.828) 

-0.195* 

(-1.682) 

-0.176 

(-1.429) 

-0.095 

(-0.731) 

rdβ  -0.329*** 

(-2.689) 

-0.158** 

(-2.445) 

-0.130*** 

(-2.625) 

-0.130*** 

(-3.231) 

-0.090*** 

(-2.687) 

rwβ  
-0.122 

(-0.342) 

-0.391 

(-1.458) 

-0.241 

(-1.219) 

-0.159 

(-0.874) 

-0.095 

(-0.565) 

rmβ  
0.162 

(0.201) 

0.891 

(1.040) 

0.570 

(0.827) 

0.292 

(0.531) 

0.209 

(0.439) 

vdβ  
0.002 

(0.231) 

0.008*** 

(2.663) 

0.002 

(0.817) 

0.004 

(1.508) 

0.005** 

(2.035) 

vwβ  
-0.005 

(-0.449) 

-0.014 

(-1.265) 

-9.38E-4 

(-0.101) 

0.004 

(0.604) 

0.003 

(0.516) 

vmβ  
0.012 

(0.917) 

0.019 

(1.452) 

0.015 

(1.294) 

0.010 

(1.105) 

0.011 

(1.462) 

RMSE 2.167 1.225 0.994 0.879 0.822 
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Table 15 In-sample Results modeling 2/1
, HttRV +  of TAIEX using the LHAR-TCJ-cum-Vol Model 

 

Notes: 

a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.  

b. The t-statistics based on Newey-West correction are given in parentheses. 

c. The significant daily jumps are computed using a critical value of α = 99.9%.  

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 

 

 

 

 

Horizons   

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
-0.223* 

(-1.769) 

-0.307* 

(-1.946) 

-0.401** 

(-2.350) 

-0.464*** 

(-2.704) 

-0.481*** 

(-2.823) 

cdβ  
-0.080 

(-0.946) 

0.068 

(1.534) 

0.054 

(1.457) 

0.070** 

(2.006) 

0.068** 

(2.083) 

cwβ  
0.655*** 

(3.342) 

0.420*** 

(2.918) 

0.390*** 

(2.891) 

0.292** 

(2.429) 

0.245** 

(2.235) 

cmβ  
0.360*** 

(2.685) 

0.496*** 

(4.360) 

0.540*** 

(4.123) 

0.597*** 

(4.669) 

0.602*** 

(4.963) 

jdβ  
-0.032 

(-0.838) 

0.028* 

(1.909) 

0.023* 

(1.874) 

0.024** 

(2.331) 

0.023** 

(2.432) 

jwβ  
0.232*** 

(4.015) 

0.115* 

(1.795) 

0.049 

(0.753) 

-1.81E-4 

(-0.003) 

-0.034 

(-0.617) 

jmβ  
0.021 

(0.286) 

0.009 

(0.121) 

0.002 

(0.031) 

0.020 

(0.220) 

0.063 

(0.645) 

rdβ  -0.102*** 

(-2.940) 

-0.052*** 

(-3.515) 

-0.038*** 

(-3.711) 

-0.033*** 

(-3.632) 

-0.023*** 

(-2.777) 

rwβ  
-0.123* 

(-1.845) 

-0.120** 

(-2.292) 

-0.059 

(-1.338) 

-0.035 

(-0.809) 

-0.015 

(-0.372) 

rmβ  
0.021 

(0.149) 

0.194 

(1.248) 

0.119 

(0.856) 

0.062 

(0.506) 

0.026 

(0.223) 

vdβ  
0.002 

(1.087) 

0.001** 

(2.024) 

5.5E-4 

(0.694) 

9.4E-4 

(1.186) 

0.001* 

(1.854) 

vwβ  
-0.002 

(-0.911) 

-0.002 

(-1.245) 

4.4E-4 

(0.220) 

0.001 

(0.965) 

0.001 

(0.860) 

vmβ  
0.002 

(0.887) 

0.003 

(1.585) 

0.003 

(1.259) 

0.001 

(0.962) 

0.002 

(1.183) 

RMSE 2.191 1.254 1.037 0.931 0.878 
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Table 16 In-sample Results modeling HttRV +,ln  of TAIEX using the LHAR-TCJ-cum-Vol Model 

 

Notes:  

a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.  

b. The t-statistics based on Newey-West correction are given in parentheses. 

c. The significant daily jumps are computed using a critical value of α = 99.9%.  

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.  

 

 

 

 

Horizons   

Variables 1day 1week 2weeks 3weeks 4weeks 

0β  
-0.558*** 

(-3.222) 

-0.632*** 

(-3.106) 

-0.767*** 

(-3.469) 

-0.870*** 

(-3.840) 

-0.952*** 

(-4.085) 

cdβ  
-0.017 

(-0.289) 

0.050* 

(1.719) 

0.039* 

(1.711) 

0.036* 

(1.697) 

0.0.38* 

(1.774) 

cwβ  
0.368*** 

(3.775) 

0.206*** 

(2.718) 

0.180** 

(2.311) 

0.168** 

(2.225) 

0.162** 

(2.182) 

cmβ  
0.391*** 

(4.738) 

0.497*** 

(6.425) 

0.539*** 

(6.521) 

0.542*** 

(6.272) 

0.522*** 

(6.015) 

jdβ  
-0.101** 

(-2.066) 

0.041* 

(1.686) 

0.035 

(1.641) 

0.036* 

(1.926) 

0.035* 

(1.945) 

jwβ  
0.418*** 

(3.766) 

0.203* 

(1.753) 

0.118 

(1.000) 

0.039 

(0.348) 

-0.020 

(-0.190) 

jmβ  
0.066 

(0.513) 

0.083 

(0.595) 

0.051 

(0.332) 

0.083 

(0.484) 

0.148 

(0.773) 

rdβ  -0.118*** 

(-3.361) 

-0.066*** 

(-3.562) 

-0.047*** 

(-3.522) 

-0.040*** 

(-3.411) 

-0.028** 

(-2.440) 

rwβ  
-0.243*** 

(-3.923) 

-0.217*** 

(-3.495) 

-0.122** 

(-2.190) 

-0.075 

(-1.349) 

-0.037 

(-0.698) 

rmβ  
-0.054 

(-0.367) 

0.151 

(0.857) 

0.054 

(0.309) 

0.005 

(0.034) 

-0.044 

(-0.267) 

vdβ  
0.004** 

(2.036) 

0.003** 

(2.258) 

0.001 

(1.261) 

0.001* 

(1.796) 

0.002** 

(2.389) 

vwβ  
-0.002 

(-0.678) 

-0.001 

(-0.458) 

0.003 

(1.114) 

0.004 

(1.483) 

0.003 

(1.264) 

vmβ  
0.002 

(0.782) 

0.003 

(1.211) 

0.002 

(0.726) 

0.001 

(0.519) 

0.001 

(0.723) 

RMSE 2.231 1.319 1.114 1.013 0.964 
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Table 17 Comparison for the In-sample Performance of LHAR-RV-TCJ and 
HAR-RV-TCJ-cum-Vol Models 

Horizons  

1day 1week 2weeks 3weeks 4weeks 

Models R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A: LHAR-RV 

TCJ 0.203 2.175 0.366 1.254 0.408 1.040 0.416 0.945 0.401 0.898

TCJ-cum-Vol 0.207 2.167 0.394 1.225 0.459 0.994 0.493 0.879 0.496 0.822

Panel B: LHAR-RV1/2 

TCJ1/2 0.388 2.196 0.592 1.275 0.605 1.070 0.599 0.977 0.579 0.932

TCJ1/2-cum-Vol 0.393 2.191 0.610 1.254 0.637 1.037 0.647 0.931 0.639 0.878

Panel C: LHAR-lnRV 

lnTCJ 0.466 2.240 0.674 1.324 0.687 1.147 0.681 1.058 0.662 1.013

lnTCJ-cum-Vol 0.475 2.231 0.694 1.319 0.720 1.114 0.727 1.013 0.717 0.964

 

Notes: 

a. The table presents the adjusted R2 and root mean square error (RMSE) for 1-day and 1- to 4-week 

in-sample predictions for TAIEX. 

b. The dependent variable for all models and for all horizons is the standardized realized variance: RVt;t+H/H. 

c. Bold values denote the highest adjusted R2 and the lowest RMSE. 
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Table 18  In-sample Results for Five Measures of Trading Volume using the 
HAR-RV-TCJ-cum-Vol Model 

 
Notes: 

a. Entries to the table represent Adjusted R2 and RMSE for one day, one week through four weeks in-sample 

predictions of the RV in the TAIEX with five measures of trading volume. 

b. These different regressors are employed in use of the LHAR-RV-cum-Vol model. 

c. The dependent variable for all horizons is the standardized realized. 

d. VOL denotes trading volume value; TNV denotes number of transactions (trading frequency); TSV denotes 

average trade size; TNR denotes bid-ask frequency; TVR denotes bid-ask volume. 

e. Bold values denote the highest adjusted R2 and the lowest RMSE. 

 

 

 

 

 

 

 

Horizons 

1 day 1 week 2 weeks 3 weeks 4 weeks  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A : LHAR-RV-TCJ-cum-Vol  

VOL 0.207 2.167 0.394 1.225 0.459 0.994 0.493 0.879 0.496 0.822 

TNV 0.209 2.165 0.398 1.221 0.468 0.985 0.506 0.868 0.514 0.808 

TSV 0.203 2.172 0.373 1.246 0.417 1.031 0.430 0.933 0.416 0.885 

TNR 0.208 2.165 0.380 1.239 0.426 1.024 0.432 0.930 0.418 0.884 

TVR 0.205 2.171 0.376 1.243 0.428 1.021 0.446 0.919 0.438 0.868 

Panel B: LHAR-RV1/2-TCJ1/2-cum-Vol  

VOL 0.393 0.443 0.610 0.264 0.637 0.234 0.647 0.220 0.639 0.215 

TNV 0.393 0.442 0.613 0.263 0.644 0.232 0.657 0.217 0.652 0.211 

TSV 0.389 0.444 0.597 0.268 0.610 0.243 0.607 0.232 0.589 0.229 

TNR 0.390 0.444 0.598 0.268 0.613 0.242 0.606 0.232 0.586 0.230 

TVR 0.389 0.444 0.600 0.267 0.618 0.240 0.618 0.229 0.602 0.226 

Panel C : LHAR-lnRV-ln TCJ-cum-Vol  

VOL 0.475 0.634 0.694 0.378 0.720 0.339 0.727 0.324 0.717 0.323 

TNV 0.476 0.633 0.698 0.376 0.727 0.335 0.737 0.319 0.729 0.316 

TSV 0.467 0.639 0.677 0.388 0.691 0.357 0.687 0.347 0.670 0.349 

TNR 0.466 0.640 0.676 0.389 0.689 0.358 0.683 0.349 0.664 0.352 

TVR 0.468 0.638 0.682 0.386 0.699 0.352 0.699 0.341 0.682 0.342 
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Table 19  In-sample Forecasts Evaluation modeling HttRV +,  using Different HAR-RV Models 

 

Notes:   

a.  Entries to the table represent Adjusted R2 and RMSE for one-day, and one- to four-week in-sample predictions of the 

RV of TAIEX using the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol models.  

b.  Bold values denote the highest adjusted R2 and the lowest RMSE. 

 

 

 

 

Horizons 

1 day 1 week 2 weeks 3 weeks 4 weeks  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A : HAR-RV-X Model 

RV 0.168 2.228 0.263 1.356 0.261 1.165 0.263 1.064 0.268 0.995 

BPV 0.161 2.237 0.327 1.295 0.375 1.071 0.387 0.970 0.378 0.917 

CTBPV 0.163 2.235 0.325 1.297 0.378 1.069 0.388 0.970 0.379 0.916 

RPV 0.175 2.218 0.359 1.265 0.411 1.040 0.423 0.942 0.410 0.893 

C 0.145 2..259 0.290 1.330 0.331 1.109 0.341 1.006 0.337 0.947 

CJ 0.199 2.183 0.313 1.308 0.342 1.098 0.350 0.998 0.343 0.941 

TC 0.161 2.237 0.330 1.292 0.385 1.063 0.395 0.964 0.382 0.914 

TCJ 0.194 2.190 0.351 1.271 0.393 1.055 0.400 0.958 0.389 0.908 

Panel B: LHAR-RV-X Model 

RV 0.186 2.206 0.294 1.326 0.290 1.141 0.289 1.044 0.284 0.983 

BPV 0.185 2.202 0.351 1.271 0.394 1.054 0.405 0.955 0.391 0.906 

CTBPV 0.183 2.205 0.347 1.274 0.397 1.052 0.406 0.954 0.393 0.905 

RPV 0.194 2.190 0.373 1.249 0.423 1.029 0.433 0.932 0.417 0.887 

C 0.176 2.215 0.325 1.295 0.359 1.084 0.365 0.986 0.352 0.935 

CJ 0.205 2.173 0.332 1.287 0.361 1.081 0.366 0.984 0.353 0.933 

TC 0.184 2.204 0.356 1.266 0.406 1.043 0.415 0.947 0.397 0.902 

TCJ 0.203 2.175 0.366 1.254 0.408 1.040 0.416 0.945 0.401 0.898 

Panel C : LHAR-RV-X-cum-Vol Model 

RV 0.185 2.199 0.312 1.307 0.331 1.107 0.353 0.994 0.366 0.923 

BPV 0.191 2.191 0.377 1.243 0.439 1.013 0.473 0.898 0.480 0.836 

CTBPV 0.189 2.194 0.375 1.246 0.442 1.011 0.474 0.896 0.483 0.834 

RPV 0.199 2.181 0.396 1.224 0.459 0.995 0.487 0.886 0.492 0.827 

C 0.186 2.198 0.363 1.257 0.421 1.029 0.457 0.911 0.469 0.845 

CJ 0.216 2.155 0.377 1.242 0.440 1.011 0.482 0.889 0.490 0.827 

TC 0.191 2.192 0.385 1.236 0.452 1.001 0.484 0.888 0.488 0.830 

TCJ 0.207 2.167 0.394 1.225 0.459 0.994 0.493 0.879 0.496 0.822 
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Table 20  In-sample Forecasts Evaluation modeling 2/1
, HttRV +  using Different HAR-RV Models 

 

Notes:   

a. Entries to the table represent Adjusted R2 and RMSE for one-day, and one- to four-week in-sample predictions of the 

RV of TAIEX using the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol models.  

b. Bold values denote the highest adjusted R2 and the lowest RMSE. 

 
 
 
 

Horizons 

1 day 1 week 2 weeks 3 weeks 4 weeks  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A : HAR-RV1/2-X Model 

RV1/2 0.345 2.235 0.528 1.329 0.532 1.136 0.525 1.042 0.513 0.984 

BPV1/2 0.346 2.254 0.559 1.319 0.583 1.099 0.576 1.002 0.560 0.951 

CTBPV1/2 0.347 2.255 0.546 1.325 0.577 1.102 0.575 1.005 0.557 0.954 

RPV 0.365 2.232 0.572 1.296 0.593 1.085 0.587 0.994 0.567 0.946 

C1/2 0.327 2.270 0.522 1.344 0.549 1.125 0.549 1.026 0.532 0.972 

CJ1/2 0.349 2.229 0.539 1.324 0.558 1.115 0.555 1.019 0.539 0.966 

TC1/2 0.341 2.259 0.543 1.325 0.574 1.100 0.572 1.003 0.552 0.955 

TCJ1/2 0.363 2.229 0.573 1.293 0.592 1.084 0.589 0.990 0.571 0.941 

Panel B: LHAR-RV1/2-X Model 

RV1/2 0.373 2.206 0.556 1.308 0.551 1.120 0.540 1.029 0.522 0.970 

BPV1/2 0.376 2.216 0.576 1.297 0.594 1.084 0.589 0.989 0.567 0.943 

CTBPV1/2 0.373 2.223 0.570 1.304 0.590 1.087 0.585 0.993 0.564 0.946 

RPV 0.386 2.196 0.590 1.280 0.604 1.072 0.595 0.982 0.573 0.939 

C1/2 0.365 2.224 0.556 1.314 0.570 1.105 0.563 1.010 0.541 0.963 

CJ1/2 0.373 2.205 0.564 1.303 0.573 1.101 0.566 1.028 0.547 0.958 

TC1/2 0.370 2.223 0.569 1.301 0.589 1.084 0.584 0.989 0.560 0.946 

TCJ1/2 0.388 2.196 0.592 1.275 0.605 1.070 0.599 0.977 0.579 0.932 

Panel C : LHAR-RV1/2-X-cum-Vol Model 

RV1/2 0.375 2.204 0.567 1.295 0.572 1.095 0.579 0.994 0.571 0.934 

BPV1/2 0.387 2.204 0.603 1.268 0.634 1.044 0.647 0.935 0.640 0.881 

CTBPV1/2 0.384 2.211 0.599 1.274 0.634 1.045 0.647 0.936 0.641 0.880 

RPV 0.392 2.195 0.608 1.258 0.633 1.042 0.639 0.941 0.630 0.888 

C1/2 0.380 2.208 0.591 1.278 0.622 1.055 0.636 0.945 0.631 0.889 

CJ1/2 0.384 2.196 0.595 1.272 0.624 1.052 0.639 0.941 0.633 0.885 

TC1/2 0.382 2.210 0.600 1.269 0.634 1.041 0.646 0.932 0.638 0.879 

TCJ1/2 0.393 2.191 0.610 1.254 0.637 1.037 0.647 0.931 0.639 0.878 
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Table 21  In-sample Forecasts Evaluation modeling Htt,RV +ln  using Different HAR-RV Models 

 

Notes:   

a. Entries to the table represent Adjusted R2 and RMSE for one-day, and one- to four-week in-sample predictions o 

the RV of TAIEX using the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol models.  

b. Bold values denote the highest adjusted R2 and the lowest RMSE. 

 

 

 

 

Horizons 

1 day 1 week 2 weeks 3 weeks 4 weeks  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Panel A : HAR-ln RV-X Model 

ln RV 0.432 2.271 0.640 1.367 0.662 1.169 0.662 1.077 0.649 1.024 

ln BPV 0.436 2.293 0.648 1.379 0.675 1.166 0.675 1.070 0.658 1.019 

ln CTBPV 0.432 2.301 0.636 1.393 0.664 1.176 0.663 1.079 0.646 1.028 

ln RPV 0.449 2.274 0.660 1.364 0.683 1.158 0.680 1.066 0.664 1.017 

ln C 0.424 2.305 0.632 1.394 0.660 1.181 0.659 1.084 0.644 1.032 

ln CJ 0.435 2.278 0.644 1.374 0.666 1.172 0.664 1.277 0.648 1.027 

ln TC 0.426 2.306 0.629 1.396 0.658 1.179 0.657 1.082 0.639 1.032 

ln TCJ 0.445 2.275 0.656 1.360 0.677 1.159 0.674 1.067 0.657 1.018 

Panel B: LHAR-ln RV-X Model 

ln RV 0.459 2.228 0.667 1.342 0.677 1.154 0.673 1.064 0.657 1.017 

ln BPV 0.460 2.254 0.669 1.355 0.686 1.153 0.682 1.058 0.662 1.015 

ln CTBPV 0.455 2.266 0.658 1.368 0.674 1.162 0.669 1.070 0.649 1.024 

ln RPV 0.468 2.237 0.677 1.345 0.691 1.147 0.685 1.058 0.667 1.013 

ln C 0.452 2.259 0.659 1.366 0.674 1.164 0.668 1.073 0.648 1.026 

ln CJ 0.456 2.245 0.665 1.354 0.677 1.160 0.672 1.070 0.653 1.027 

ln TC 0.452 2.268 0.653 1.369 0.669 1.164 0.664 1.072 0.643 1.027 

ln TCJ 0.466 2.240 0.674 1.341 0.687 1.147 0.681 1.058 0.662 1.013 

Panel C : LHAR-ln RV-X-cum-Vol Model 

ln RV 0.463 2.232 0.675 1.332 0.695 1.136 0.700 1.038 0.692 0.985 

ln BPV 0.473 2.239 0.696 1.325 0.726 1.113 0.734 1.010 0.725 0.959 

ln CTBPV 0.470 2.248 0.690 1.334 0.720 1.118 0.729 1.013 0.719 0.962 

ln RPV 0.475 2.231 0.694 1.324 0.720 1.118 0.725 1.019 0.716 0.969 

ln C 0.469 2.242 0.691 1.330 0.721 1.118 0.730 1.014 0.721 0.963 

ln CJ 0.469 2.237 0.692 1.324 0.722 1.115 0.731 1.011 0.722 0.961 

ln TC 0.467 2.249 0.687 1.334 0.717 1.119 0.726 1.014 0.716 0.964 

ln TCJ 0.475 2.231 0.694 1.319 0.720 1.114 0.727 1.013 0.717 0.964 
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Table 22  In-sample Forecast Evaluation and Market Conditions: Up- vs. Down- Market Days 

 

Notes: 

a. The up- and down-market classification are based on the moving average of daily return over the most recent 20-day  

window to forecast RVt,t+H.  

b. Entries to the table represent Adjusted R2 and RMSE for one day, and one week through four weeks in-sample predictions 

of the RV in the TAIEX. 

c. For all models, the dependent variable is the standardized realized variance i.e. RVt,t+H/H for all the horizons. 

d. Bold values denote the highest adjusted R2 and the lowest RMSE. 

 

 

 

 

 

Panel A : HAR-RV-X Model  

RV BPV CTBPV RPV TC TCJ  

up down up down up down up down up down up down

R2 0.169 0.478 0.205 0.422 0.205 0.425 0.179 0.430 0.212 0.417 0.211 0.507
1 day 

RMSE 1.823 1.265 1.783 1.331 1.783 1.328 1.811 1.322 1.775 1.337 1.774 1.228

R2 0.426 0.535 0.483 0.591 0.485 0.590 0.441 0.605 0.490 0.591 0.495 0.620
1 week 

RMSE 0.993 0.933 0.942 0.875 0.940 0.876 0.980 0.859 0.935 0.875 0.930 0.842

R2 0.466 0.564 0.547 0.675 0.557 0.677 0.524 0.682 0.563 0.679 0.566 0.688
2 weeks 

RMSE 0.869 0.813 0.800 0.701 0.791 0.699 0.821 0.694 0.786 0.697 0.782 0.687

R2 0.504 0.578 0.571 0.709 0.573 0.713 0.564 0.714 0.581 0.711 0.586 0.718
3 weeks 

RMSE 0.795 0.755 0.739 0.626 0.737 0.622 0.745 0.621 0.730 0.624 0.725 0.616

R2 0.504 0.608 0.555 0.739 0.555 0.744 0.567 0.741 0.558 0.740 0.568 0.744
4 weeks 

RMSE 0.771 0.696 0.730 0.568 0.730 0.563 0.720 0.566 0.727 0.568 0.718 0.562

Panel B:  HAR-RV1/2-X Model 

RV1/2 BPV1/2 CTBPV1/2 RPV TC1/2 TCJ1/2  

up down up down up down up down up down up down

R2 0.715 0.798 0.722 0.795 0.721 0.796 0.724 0.805 0.720 0.793 0.725 0.805
1 day 

RMSE 2.628 2.489 2.628 2.518 2.631 2.518 2.623 2.502 2.628 2.522 2.621 2.498

R2 0.873 0.892 0.877 0.903 0.873 0.902 0.879 0.909 0.872 0.901 0.883 0.909
1 week 

RMSE 1.830 1.758 1.830 1.753 1.833 1.755 1.821 1.743 1.832 1.755 1.817 1.741

R2 0.890 0.901 0.897 0.920 0.893 0.920 0.897 0.924 0.892 0.920 0.901 0.923
2 weeks 

RMSE 1.650 1.612 1.642 1.591 1.643 1.591 1.637 1.585 1.642 1.591 1.633 1.586

R2 0.895 0.906 0.898 0.928 0.894 0.929 0.897 0.931 0.893 0.928 0.904 0.930
3 weeks 

RMSE 1.557 1.547 1.552 1.521 1.554 1.520 1.549 1.518 1.553 1.521 1.542 1.516

R2 0.885 0.915 0.887 0.937 0.883 0.938 0.886 0.939 0.882 0.936 0.894 0.938
4 weeks 

RMSE 1.507 1.503 1.505 1.477 1.508 1.476 1.504 1.475 1.508 1.503 1.495 1.475
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 Table 22  In-sample Forecast Evaluation and Market Conditions: Up- vs. Down- Market Days (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A : HAR-ln RV-X Model  

ln RV ln BPV ln CTBPV ln RPV ln TC ln TCJ  

up down up down up down up down up down up down

R2 0.384 0.471 0.355 0.384 0.333 0.321 0.351 0.400 0.342 0.348 0.396 0.478
1 day 

RMSE 2.427 2.335 2.438 2.396 2.445 2.419 2.438 2.384 2.443 2.411 2.424 2.349

R2 0.627 0.649 0.556 0.556 0.508 0.469 0.548 0.568 0.526 0.510 0.633 0.664
1 week 

RMSE 1.545 1.483 1.569 1.535 1.581 1.564 1.570 1.530 1.578 1.552 1.530 1.492

R2 0.662 0.662 0.576 0.597 0.522 0.514 0.567 0.600 0.541 0.558 0.661 0.688
2 weeks 

RMSE 1.333 1.284 1.354 1.322 1.367 1.348 1.356 1.321 1.363 1.335 1.329 1.288

R2 0.659 0.670 0.565 0.618 0.511 0.537 0.556 0.617 0.529 0.582 0.655 0.701
3 weeks 

RMSE 1.224 1.188 1.248 1.216 1.261 1.240 1.250 1.217 1.257 1.228 1.222 1.189

R2 0.616 0.692 0.527 0.642 0.478 0.559 0.520 0.641 0.493 0.604 0.609 0.725
4 weeks 

RMSE 1.168 1.122 1.189 1.145 1.201 1.168 1.191 1.148 1.198 1.157 1.167 1.122
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Table 23  Out-of-Sample Forecasts of the TAIEX 2007-2008 

Notes:   

a. The table presents the out-of-sample results for TAIEX from 2 January 2007 to 30 June 2008. The dependent variable  

is RV. Data from 2 January 2003 to 29 December 2006 is used to estimate the parameters of the models 

b. Entries to the table represent RMSE for the out-of-sample predictions, based upon one-say and one- to four-week 

out-of-sample RV prediction horizons.    

c. Model 1 denotes the HAR-RV model; Model 2 denotes the LHAR-RV model; Model 3 denotes the LHAR-RV-cum-Vol 

 model. 

d. Bold values denote the highest adjusted R2 and the lowest RMSE. 

  

 

Panel A: RV BPV CTBPV RPV TC TCJ 

Model 1 3.158 2.978 2.980 2.951 2.995 3.145 

Model 2 3.129 2.978 2.987 2.956 2.995 3.134 

 

1 day 

Model 3 3.123 2.952 2.961 2.947 2.968 3.115 

Model 1 1.708 1.620 1.633 1.561 1.638 1.639 

Model 2 1.707 1.627 1.644 1.588 1.636 1.651 

 

1 week 

Model 3 1.665 1.556 1.569 1.525 1.559 1.576 

Model 1 1.409 1.307 1.313 1.278 1.317 1.312 

Model 2 1.397 1.291 1.295 1.271 1.298 1.296 

 

4 weeks 

Model 3 1.312 1.147 1.131 1.142 1.128 1.149 

Panel B : RV1/2 BPV1/2 CTBPV1/2 RPV TC1/2 (TCJ)1/2 

Model 1 3.038 3.042 3.049 3.004 3.064 3.028 

Model 2 3.009 3.011 3.023 2.987 3.033 3.003 

 

1 day 

Model 3 2.997 2.977 2.995 2.975 3.001 2.981 

Model 1 1.688 1.725 1.748 1.675 1.760 1.713 

Model 2 1.682 1.714 1.739 1.680 1.744 1.706 

 

1 week 

Model 3 1.636 1.643 1.669 1.632 1.673 1.644 

Model 1 1.429 1.432 1.449 1.415 1.458 1.409 

Model 2 1.417 1.422 1.439 1.406 1.447 1.397 

 

4 weeks 

Model 3 1.326 1.269 1.283 1.284 1.293 1.276 

Panel C : lnRV lnBPV lnCTBPV lnRPV lnTC ln (TCJ) 

Model 1 3.067 3.115 3.130 3.088 3.142 3.094 

Model 2 3.027 3.064 3.077 3.047 3.087 3.044 

 

1 day 

Model 3 2.993 3.011 3.029 3.021 3.034 3.000 

Model 1 1..765 1.840 1.872 1.812 1.886 1.832 

Model 2 1.744 1.810 1.840 1.794 1.851 1.804 

 

1 week 

Model 3 1.689 1.722 1.753 1.735 1.762 1.726 

Model 1 1.491 1.547 1.573 1.536 1.583 1.524 

Model 2 1.477 1.539 1.567 1.530 1.576 1.513 

 

4 weeks 

Model 3 1.372 1.387 1.414 1.410 1.425 1.388 
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 Figure 1  Time Series Plot for Log Realized Volatility of the TAIEX 2003-2008 

 

Notes: 

a. The top panel shows daily realized volatility in log form, or lnRVt . 

b. The second panel graphs the threshold continuous component defined in Equation (22), TCt. 

c. The third panel graphs the significant threshold jumps corresponding to α = 99.9% defined in  

Equation (20), TJt.  

d. The bottom panel graphs the significant jumps defined in Equation (16), Jt. 

e. The sample period covers from 2 January 2003 to 30 June 2008. 
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 Figure 2  Jump Contribution to Total Variance 

  

Notes:  

 a. Percentage contribution of daily jump estimated by Equation (20) to total quadratic variation 

measured over a moving average window of 1-month for the TAIEX. 

b. The C-Tz statistic in Equation (20) is computed with confidence interval α= 99.9% . 

c. The sample period covers from 2 January 2003 to 30 June 2008. 
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Figure 3  Sample Autocorrelation Function for the TAIEX Volatility Measures and 

Decompositions  
 

Notes: 

a. The figure shows the SACF for RV, RPV, CTBPV, RPV, TC, TJ, and Jumps for the period. 

b. The significance level of the threshold bipower test and bipower test is 0.999. 
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Figure 4  Daily Trading Volumes in the TAIEX 
Notes:  a. The top three panels graph trading volume value (Volt) , number of transactions (TNVt), 

     and average trade size (TSVt), respectively.  

b. The bottom two panels graph bid-ask frequency and bid-ask volume, respectively.   

c. The sample period covers from 2 January 2003 to 30 June 2008. 
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Figure 5  Number of Jump Days 

 

  Notes: 

a. Number of days which contain jumps in the TAIEX sample obtained with the C-Tz statistics (21) 

and z statistics (17) , as a function of the confidence level α.  
b. The sample period covers from 2 January 2003 to 30 June 2008 for a total of 1361 days. 

 
 
 


