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摘要 

 

本論文探討在基因演化模型下之多重基因複製與親緣樹建立相關的最佳化問

題。針對多重基因複製，我們探討了事件叢集問題 (Episode-Clustering Problem)

與最小事件問題 (Minimum Episodes Problem)。對於事件叢集問題，我們將

Burleigh 等人的結果改進到最佳的線性時間演算法；而對於最小事件問題，以

Bansal 與 Eulenstein 所提出的演算法為基礎下，我們也提出了最佳的線性時間演

算法。針對親緣樹的建立，我們探討了複製–遺失問題 (Duplication-Loss 

Problem)。由於複製–遺失問題是 NP 困難，因此在實際應用上都使用啟發式方

法來解此問題。標準的啟發式方法是在樹狀空間上反覆執行局部搜尋直到局部最

小值被算出。以最近鄰居交換 (NNI) 的局部搜尋為基礎下，本論文探討了複製–

遺失問題的啟發式方法，同時也對相應的局部搜尋問題提出了一個線性演算法。 



Abstract

This dissertation studies several optimization problems related to multiple gene duplications

and phylogenetic tree construction under the Gene Duplication model. For multiple gene du-

plications, we study the Episode-Clustering (EC) problem and the Minimum Episodes

(ME) problem. For the EC problem, we improve the results of Burleigh et al. with an opti-

mal linear-time algorithm. For the ME problem, on the basis of the algorithm presented by

Bansal and Eulenstein, we propose an optimal linear-time algorithm. For the phylogenetic

tree construction, we study the Duplication-Loss problem. Since the Duplication-Loss

problem is NP-hard, heuristics are developed to solve it in practice. A standard heuristic is to

perform the stepwise local search on the tree space until a local minimum is reached. In this

dissertation, we study the heuristic for the Duplication-Loss problem based on NNI local

searches and propose a linear-time algorithm for the corresponding Local Search problem.
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Chapter 1

Introduction

1.1 Biological Background

In evolutionary molecular biology, phylogenetic analysis helps to realize the evolutionary re-

lationship among various organisms. As genomic sequences are easier to obtain, these data

provide sufficient material to conduct large-scale phylogenetic analysis among different species.

One approach for using these genomic data is to employ the idea of gene trees. Given a gene

family∗ for a set of species, a gene tree is a tree that depicts the phylogeny among the genes of

the gene family sampled from the set of species, while a species tree is a tree that represents the

phylogeny of a given set of species. Given a gene tree, the homologous genes in this gene tree

are assumed to evolve in the same way as those species from which these homologous genes are

sampled. In other words, the gene tree and the corresponding species tree are assumed to have

the same topology. However, complicated evolutionary processes, such as gene duplication,

loss, recombination, and horizontal gene transfer, generate gene trees that differ from species

trees [36, 43, 53, 56]. That is to say, gene trees and species trees are inconsistent. In order to

reconstruct the evolutionary history, it is important for evolutionary biologists to explain the

inconsistency between gene trees and species trees.

Gene duplication is an evolutionary process during which one or more genes of a genome are

duplicated, while loss is an evolutionary process during which one or more genes are eliminated.

Many evidences have shown that gene duplications play a major role in the evolution of species

∗A gene family is a set of homologous genes assumed to derive from a common ancestor.
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on Earth [12, 13, 29, 37, 38, 44, 45, 47, 48, 51]. Therefore, utilizing gene duplication and

loss is an applicable approach to explaining the inconsistency between gene trees and species

trees. Goodman et al. proposed the Gene Duplication (GD) model to explain the inconsistency

between gene trees and species trees by postulating gene duplications and losses [25]. The GD

model has been well studied [14, 18, 26, 27, 35, 39, 57, 58]. Goodman et al. [25] used the

concept of a reconciled tree to reconcile the inconsistent gene trees and a species tree based on

the GD model. The reconciled tree provides the mapping between genes trees and a species

tree, and explains the inconsistency in the evolutionary history by postulating gene duplications

and losses. More details about the GD model are formally described in Section 1.2.2. In this

dissertation, we mainly study some optimization problems under the GD model. According as

the species tree is given or unknown, these optimization problems, for a given set of gene trees,

can be categorized into two parts respectively: (1) multiple gene duplication problems, and (2)

phylogenetic tree construction problems.

1.1.1 Multiple Gene Duplication Problems

For a large-scale genome duplication, many gene duplications are parts of large multiple gene

duplication events during which a large portion of an organism’s genome is duplicated. In

order to distinguish gene duplication events and genome duplications, Page and Cotton [42]

introduced the term “episode” for gene duplications in different gene trees, explainable by a

single gene duplication event. That is, the gene duplications of different gene trees are not

necessarily independent events since they may result from the same gene duplication event

(episode). Unfortunately, since gene losses occur following gene duplications, it is difficult to

detect the number and location of multiple gene duplication episodes.

A series of studies, based on the GD model, have focused on the Multiple Gene Dupli-

cation (MGD) problem in order to further understand the number and location of the multiple

gene duplication episodes in the evolutionary history (e.g. [7, 16, 17, 22, 27, 42]). Given a set

of gene trees and a species tree, the goal of the MGD problem is to map each gene duplication

in gene trees onto a species tree and to locate the multiple gene duplication episode such that
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the total number of multiple gene duplication episodes is minimized. Guigó et al. [27] inves-

tigated the phylogenetic issues on multiple gene duplications on the basis of the GD model,

and addressed the MGD problem. They set the range on the location of each gene duplication

according to the mapping between gene trees and a species tree. Each gene duplication in the

gene trees can be placed on any species in the species tree within a path between the two most

recent species containing the duplication and its parent, respectively. If the parent does not

exist, the path is located between the most recent species for the duplication and the root of

the species tree. With the definitions of the location of each gene duplication, they proposed

one formulation of the MGD problem: the Episode-Clustering (EC) problem [27]. Given a

set of gene trees and a species tree, the EC problem is to find a minimum number of locations

in the species tree for placing all gene duplications in the gene trees. For the EC problem,

however, Guigó et al. only gave some hints on how to solve this problem.

Page and Cotton [42] defined the EC problem introduced by Guigó et al. more formally,

and presented a heuristic for this problem. Fellows et al. [22] also proposed another version

of the MGD problem, and proved this version to be NP-hard. Recently, Burleigh et al. [17]

revisited the EC problem and gave an exact algorithm for this problem. Afterwards, Bansal

and Eulenstein [7] also gave comprehensive explorations of the MGD problem and defined a

new version of the MGD problem: the Minimum Episodes (ME) problem. Given a set of

gene trees and a species tree, the ME problem is to assign all gene duplications to nodes in

a species tree such that the total number of multiple gene duplication episodes is minimized.

Note that Guigó et al. [27] and Page and Cotton [42] also attempted to solve the ME problem

but turned out to solve the EC problem essentially. In this dissertation, we study the EC and

ME problems and present linear-time algorithms for the two problems.

1.1.2 Phylogenetic Tree Construction Problems

When no preliminary knowledge about the species tree is given, a natural problem in evolu-

tionary molecular biology is to construct a species tree among various species from a set of gene

trees. One possible approach is to reconcile gene trees with species trees under the parsimonious
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criterion of minimizing the number of gene duplications and losses (also known as the mutation

cost) based on the GD model proposed by Goodman et al. [25]. The corresponding problem

is called the Duplication-Loss problem [27]. Other approaches use probabilistic models to

reconcile gene trees with species trees [2, 3].

Given a set of gene trees, the Duplication-Loss problem is to infer a comparable species

tree minimizing the mutation cost. A special case of the Duplication-Loss problem, the

Gene Duplication problem, is to infer a comparable species tree only minimizing the number

of gene duplications (also called the duplication cost) [27]. The decision versions of the two

problems are NP-hard [34], and some parameterized problems are fixed-parameter tractable [30,

50]. Recently, Bansal and Shamir [10] showed that the Gene Duplication problem cannot

be approximated to within a logarithmic factor unless P = NP. In practice, therefore, heuristics

are applied to solving these problems to conduct large-scale species tree construction.

Commonly-used heuristics for the Duplication-Loss and Gene Duplication problems

are to search all possible species trees by solving a series of instances of the Local Search

problem [40, 54]. Given a tree edit operation and a cost criterion, the Local Search problem

is to find an optimal tree S∗ in the neighborhood of S under the given cost criterion. Given a

tree S and a tree edit operation, the neighborhood of S is a set of trees which can be transformed

by performing the given tree edit operations on S. Given a set of gene trees G and an initial

species tree S, the heuristic for the Duplication-Loss and Gene Duplication problems

proceeds as follows. For the first local search, we solve an instance of the Local Search

problem to find an optimal tree S ′ in the neighborhood of the initial species tree S. Then the

optimal tree S ′ is used as the initial species tree in the second local search, and the process

repeats until a local minimum is obtained. Many studies have proven that these heuristics have

much potential for constructing correct species trees (e.g. [20, 41, 42, 46, 49]).

There are several tree edit operations, such as the nearest neighbor interchange (NNI)

operation [1, 8, 15], the subtree pruning and regrafting (SPR) operation [1, 4, 5, 15, 52, 55], and

the tree bisection and reconnection (TBR) operation [1, 6, 19, 52]. For the Gene Duplication
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problem, efficient algorithms for the corresponding local search problems have been proposed

based on the NNI, SPR, and TBR operations [5, 6, 8]. To the best of our knowledge, however,

the corresponding local search problems for the Duplication-Loss problem only have been

considered based on the SPR and TBR operations by Bansal et al. [4]. In this dissertation,

we study the heuristic for the Duplication-Loss problem based on the NNI operation and

present a linear-time algorithm for the corresponding local search problem.

1.2 Preliminaries

In the following, we introduce necessary definitions and notation based on those from [7] for

later discussions. Since the EC, ME, and Duplication-Loss problems are all based on the

GD model, we review some definitions and concepts related to the GD model.

1.2.1 Basic Definitions and Notations

A tree T is a connected, acyclic graph consisting of a node set V (T ) and an edge set E(T ). T

is rooted if it has exactly one distinguished node called the root, denoted by Ro(T ). Given a

rooted tree T , we denote by ≤T the partial order on V (T ), and say x ≤T y if y is a node on

the path from Ro(T ) to x. A node with no children is called a leaf, and Le(T ) denotes the set

of all leaves in T . If (x, y) ∈ E(T ) and x ≤T y, then y is the parent of x, denoted by Pa(x),

and x is a child of y. Let the set of children of y be Ch(y), and the left and right children of

y are denoted by Left(y) and Right(y) respectively if T is a rooted binary tree. The length

of the path from Ro(T ) to a node x, denoted by dT (x), is the depth of x in T . We denote by

lT (x, y) the length of the unique path between x and y. The least common ancestor (LCA) of

a node subset L ⊆ V (T ), denoted by lca(L), is the node that is the ancestor of all nodes in L

with the greatest depth. The subtree of T rooted at x, denoted by Tx, is the tree induced by all

descendants of x. The height of a tree T , h(T ), is the number of nodes on a maximum-length

path from Ro(T ) to a leaf node of T . A tree T is a full binary tree if each node in T is either a

leaf or has two children. Unless specified otherwise, the tree refers to a rooted full binary tree
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a b c d e f g

T Res(T, L)

a b d f

T|L

a b d f

Figure 1.1: An illustration of the restriction and the homomorphic subtree of the tree T on the
leaf set L = {a, b, d, f}.

throughout this dissertation.

Given a tree T and a set L ⊆ Le(T ), the restriction of T on L is the minimal subtree

containing L as the leaf set, denoted by Res(T, L). We define the homomorphic subtree T |L of

T on the leaf set L to be the tree resulting from Res(T, L) by contracting all nodes of degree

two except Ro(Res(T, L)). See Figure 1.1 for an illustration. Given x ≤T y, we define the

interval [x, y] = {u ∈ V (T )|x ≤T u ≤T y}, and x and y are the starting terminal and the

ending terminal of the interval [x, y], respectively. Let I be a collection of intervals under the

partial order ≤T . A node set U ⊆ V (T ) is called a cover of I if for each interval I ∈ I, there

exists at least one node v ∈ U such that v ∈ I. If U is a cover of minimum cardinality, we

call U a minimum cover of I. The intersection graph of a collection of intervals I, denoted by

int(I), is the graph where V (int(I)) = I and E(int(I)) = {(I, I ′)|I, I ′ ∈ I and I ∩ I ′ 6= ∅}.

1.2.2 The Gene Duplication Model

The Gene Duplication (GD) model was first introduced by Goodman et al. [25]. The model

hypothesized that the inconsistency of gene trees and corresponding species tree is caused by

a series of gene duplications and losses, and that each gene duplication can be placed on a

specified interval on the species tree [25, 27, 57]. Given a set of n taxa, a species tree is a full

binary tree, using these n taxa as leaves, which describes their evolutionary history. Given a

gene family for a set of n taxa, a gene tree is a full binary tree that depicts the evolutionary

history among the sequences of the gene family.
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Let G and S be a gene tree and species tree, respectively. G and S are biologically related

only if all genes in Le(G) are sampled from the species in Le(S). A leaf-mapping LG,S : Le(G) →
Le(S) maps a gene g ∈ Le(G) to a species s ∈ Le(S). That is, a leaf-mapping specifies the

species from which the gene was sampled. G and S are comparable if such a leaf-mapping

LG,S exists. Let G be a set of gene trees. G and S are comparable if each gene tree G ∈ G is

comparable with S. For convenience, we define the set L−1
G,S(s) = {g|g ∈ Le(G) and LG,S(g) =

s} for each leaf s ∈ Le(S). For a set of gene trees G comparable to the species tree S, let

LG,S =
⋃

G∈G LG,S and L−1
G,S(s) =

⋃
G∈G L−1

G,S(s) for each node s ∈ Le(S). Unless specified

otherwise, we assume that all given gene trees are comparable with S and denote by G a set of

gene trees, where G ∈ G throughout this dissertation. To correlate a gene tree G with a species

tree S, we require a function to map each gene g in V (G) to the most recent species in S where

g is involved.

Definition 1: Let G and S be a gene tree and species tree, respectively. Given a leaf-

mapping LG,S for G and S, the LCA-mapping MG,S : V (G) → V (S) of LG,S is defined as

MG,S(g) = lca(LG,S(Le(Gg))) for each node g ∈ V (G).

For the convenience, we define the set M−1
G,S(s) to be {g|g ∈ V (G) and MG,S(g) = s}

for each node s ∈ V (S). For a set of gene trees G comparable to the species tree S, let

MG,S =
⋃

G∈GMG,S and M−1
G,S(s) =

⋃
G∈GM−1

G,S(s) for each node s ∈ V (S).

Definition 2: A node y ∈ V (G) is a gene duplication if there exists a child x of y such that

MG,S(x) = MG,S(y). We denote by Dup(G,S) the set of gene duplications in G with respect

to S. Let Dup(G, S) =
⋃

G∈G Dup(G,S) for a set of gene trees G.

Definition 3: For each gene duplication g ∈ Dup(G,S), the interval I(g) specifies all possible

placements of the gene duplication g onto the species tree and is defined as follows.

1. If g = Ro(G), I(g) is set to [MG,S(g), Ro(S)].

2. If MG,S(g) = MG,S(Pa(g)), I(g) is set to [MG,S(g),MG,S(g)].

7
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Figure 1.2: An illustration of a gene tree G and a comparable species tree S. For simplicity,
the labels of leaves of G are replaced with the corresponding leaf-mapping. For each internal
node in G, the boxed value denotes the LCA-mapping of the internal nodes of G. If a node of
G is a gene duplication, the interval is also shown.

3. Otherwise, I(g) is set to [MG,S(g), z], where z ∈ Ch(MG,S(Pa(g)))∩[MG,S(g),MG,S(Pa(g))].

See Figure 1.2 for an illustration.

According to [27], we define the number of losses and the mutation cost as follows.

Definition 4: Let y be an internal node of the gene tree G and Ŝ = S|LG,S(Le(G)). The number

of losses Loss(G, S, y) associated to y is defined as follows.

Loss(G,S, y) =





0 if MG,Ŝ(y) = MG,Ŝ(Left(y))

= MG,Ŝ(Right(y));∑
z∈Ch(y)

|lŜ(MG,Ŝ(y),MG,Ŝ(z))− 1| otherwise.

Let Loss(G,S) =
∑

y∈V (G)\Le(G) Loss(G,S, y) be the total number of losses of G with respect

to S, and Loss(G, S) =
∑

G∈G Loss(G,S).

Definition 5: For a gene tree G and a species tree S, Mut(G,S) = |Dup(G,S)|+Loss(G,S)

is the mutation cost of G with respect to S. We also let Mut(G, S) =
∑

G∈G Mut(G,S) for a

set of gene trees G and a species tree S.

An example is shown in Figure 1.3 to describe how the GD model explains the inconsistency

between a gene tree G and a species tree S by postulated gene duplications and losses. R is

8
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Figure 1.3: An illustration for describing how the GD model explains the inconsistency between
a gene tree G and a species tree S. R is the reconciled tree for G and S. For simplicity, the
labels of leaves of G are replaced with the corresponding leaf-mapping.

the reconciled tree for G and S. The LCA-mappings MG,S(u1), MG,S(u2), and MG,S(u3) are

v1, v1, and v2, respectively. In the species v1 of R, the gene y duplicates into two copies y1 and

y2, and both copies speciate according to the topology of the species tree S. The solid lines in

R represent the embedding of G into R, while the dashed lines in R represent the losses of G.

Thus, the inconsistency between G and S can be explained by postulating one gene duplication

and four losses.
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1.3 Problem Definition and Results

In this section, we define the problems discussed in this dissertation, and state our results for

these problems. These results are summarized in Figure 1.4.

1. The Episode-Clustering (EC) Problem. Given a set of gene tree G = {G1, G2, . . . , Gk}
and a species tree S, the EC problem is to find a minimum cover for the collection

of intervals I =
⋃

g∈Dup(G,S){I(g)} under the partial order ≤S. For the EC problem,

Burleigh et al. [17] presented an exact algorithm rather than heuristic approaches used

previously. The time complexity of the exact algorithm is O((
∑k

i=1 mi)
2 +p

∑k
i=1 mi +n)

where mi = |Le(Gi)| for all 1 ≤ i ≤ k, p = |E(int(I))|, and n = |Le(S)|. In this

dissertation, we propose an optimal O(
∑k

i=1 mi + n)-time algorithm.

2. The Tree Interval Cover (TIC) Problem. Given a tree T and a collection of intervals

I = {I1, I2, . . . , Iλ}, the TIC problem is to find a minimum cover C for I under the partial

order ≤T . Burleigh et al. [17] showed that the EC problem is linear-time reducible to the

TIC problem. Thus, Burleigh et al. solved the EC problem by proposing an O(λ2+pλ+n)-

time algorithm for the TIC problem, where p = |E(int(I))| and n = |Le(T )|. In this

dissertation, we give an optimal O(λ + n)-time algorithm for this problem.

3. The Minimum Episodes (ME) Problem. Given a set of gene trees G = {G1, G2, . . . , Gk}
and a species tree S, the ME problem is to assign duplications to nodes in S such that

the total number of episodes is minimized, where each duplication g is associated with an

interval I(g) in S describing the locations in which g can be placed. The formal definition

of episodes will be discussed in Chapter 3. For the ME problem, the problem had been

open for a long time. Bansal and Eulenstein [7] were the first to solve it by an exact

algorithm with the time complexity O(
∑k

i=1 min), where mi = |Le(Gi)| for all 1 ≤ i ≤ k

and n = |Le(S)|. In this dissertation, we give an optimal O(
∑k

i=1 mi +n)-time algorithm

for the ME problem.
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4. The DL-NNI Local Search Problem. We consider the heuristic for the Duplication-

Loss problem based on the NNI operation and the corresponding local search problem,

called the DL-NNI Local Search problem. Given a set of gene trees and a species

tree S, the DL-NNI Local Search problem is to find a tree S∗ with the minimum

mutation cost among the neighborhood of S, where the neighborhood of S is the set of

trees transformed from S by performing an NNI operation on any node of S. For a tree

S and a node x ∈ V (S), an NNI operation performed on x is to swap the subtree rooted

at x and the subtree rooted at the sibling of the parent of x. Note that there are Θ(n)

trees in the neighborhood of S based on the NNI operation, where n is the number of

leaves in S. Given a set of gene trees G = {G1, G2, . . . , Gk} and a species tee S, Zhang

presented a linear-time algorithm for computing the mutation cost in [57]. Given G and

S, the näıve algorithm for the DL-NNI Local Search problem computes the mutation

costs for each tree in the neighborhood of S and takes total O(
∑k

i=1 min+n2) time, where

mi = |Le(G)| for all 1 ≤ i ≤ k and n = |Le(S)|. In this dissertation, we propose a linear-

time algorithm for the DL-NNI Local Search problem. In addition, Bansal et al. [8]

proposed a near-linear time algorithm for the NNI Local Search problem under the

duplication cost (the D-NNI Local Search problem), and the problem is a special case

of the DL-NNI Local Search problem if we set the number of losses zero. Therefore,

our linear-time algorithm for the DL-NNI Local Search problem also improves the

result in [8].

1.4 Organization of the Dissertation

There are five chapters in this dissertation. In Chapter 2, we discuss the EC problem and

propose an optimal linear-time algorithm for the problem. Chapter 3 describes the ME problem

and provides an optimal linear-time algorithm for the problem. We study the heuristic for the

Duplication-Loss problem and propose a linear-time algorithm for the DL-NNI Local

11



Problem Previous results Our results

The Episode-Clustering Problem O((
∑k

i=1 mi)
2 + p

∑k
i=1 mi + n) [17] O(

∑k
i=1 mi + n)

The Tree Interval Cover Problem O(λ2 + pλ + n) [17] O(λ + n)

The Minimum Episodes Problem O(
∑k

i=1 min) [7] O(
∑k

i=1 mi + n)

The DL-NNI Local Search Problem O(
∑k

i=1 min + n2)† O(
∑k

i=1 mi + n)

Figure 1.4: Summary of results in this dissertation.

Search problem in Chapter 4. Finally, concluding remarks appear in Chapter 5.

†Only näıve algorithms were known for this problem. It should be noted that Bansal et al. proposed a near-
linear time algorithm for the D-NNI Local Search problem [8]. In the near-linear time algorithm, the first
instance of the D-NNI Local Search problem can be solved in O(

∑k
i=1 min + n2) time, while the following

instances can be solved in O(
∑k

i=1 mi + n) time.
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Chapter 2

The Episode-Clustering Problem

2.1 A Linear-Time Algorithm for the Episode-Clustering

Problem

In this chapter, we study the Episode-Clustering (EC) problem. Burleigh et al. [17] in-

troduced the Tree Interval Cover (TIC) problem and showed that the EC problem is a

special case of the TIC problem. In the following, we give the definition of the EC problem

and propose a linear-time algorithm for the TIC problem.

2.1.1 A Linear-Time Algorithm for the Tree Interval Cover Problem

Given a collection of gene trees G and a species tree S, the EC problem is to find a minimum

cover for the collection of intervals I =
⋃

g∈Dup(G,S){I(g)} under the partial order ≤S. Now

we turn to introduce the TIC problem. Given a tree T and a collection of intervals I =

{I1, I2, . . . , Iλ} where Ii = [ai, bi] and ai, bi ∈ V (T ) for i = 1, 2, . . . , λ, the TIC problem is

to find a minimum cover C for I under the partial order ≤T . Note that given G and S, the

collection of intervals I can be computed in linear time using the efficient algorithm for finding

the least common ancestor [11, 57]. As a result, it is not hard to see that the EC problem is

a special case of the TIC problem [17]. Next, we state the linear-time algorithm for the TIC

problem.

The algorithm proceeds as follows. First, we traverse the tree T from Ro(T ) using the

breadth-first search to compute d(v) for each node v ∈ V (T ), i.e., the distance between v to

13



Ro(T ). With the value of d(v), we can derive the length, l(Ii), of each interval Ii = [ai, bi]

in I, by calculating the value of d(ai) − d(bi). For each node v in T , we maintain a value

min len(v) defined as follows. Let I(v) be the set of intervals that pass through the node v.

The min len(v) is used to keep the minimum length of intervals from v to all ending terminals

among the intervals in I(v). Initially, we set the value of min len(v) to be the minimum among

the lengths of the intervals using v as the starting terminal. If such value does not exist for the

node v, the value of min len(v) is set to infinity.

Then we traverse the tree T in a bottom-up fashion. When we visit a node v in T , we have

the following two cases:

1. If min len(v) = 0, there exists at least one interval whose ending terminal is v. Hence,

we must add the node v into the cover C.

2. If min len(v) 6= 0, there are no intervals using v as an ending terminal. We just upload the

value min len(v)−1 to Pa(v) and compare the value min len(v)−1 with min len(Pa(v)).

Then we take the smaller value as the value of min len(Pa(v)).

We call the above method Algorithm TIC, and an example of executing Algorithm TIC is

given in Figure 2.2. In G1, the boxed value of each internal node ui denotes the LCA-mapping,

and the interval I(ui) is marked on the left side of node ui if ui is a gene duplication, where

1 ≤ i ≤ 5. The same usage applies to G2. In S, the gray-colored value of each internal node sj

denotes the initial value of min len(sj) computed by Algorithm TIC, where 1 ≤ j ≤ 7. When

Algorithm TIC traverses S in a bottom-up fashion, s7 is the first internal node to be visited,

and we do nothing because min len(s7) = ∞. When s6 is visited, the value of min len(s5) does

not change since min len(s6) − 1 > min len(s5). When s5 is visited, s5 is added to the cover

C since min len(s5) = 0. When s4 is visited, we also do nothing because min len(s4) = ∞.

When s3 is visited, s3 is added to the cover C since min len(s3) = 0. When s1 and s2 are

visited, we do nothing because their min len values are infinity. Finally, the returned cover

C = {s3, s5}.
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Algorithm TIC(T, I)

Input: A rooted tree T , where |V (T )| = N ; a collection of intervals I = {I1, I2, . . . , Iλ}
under the partial order ≤T , where Ii = [ai, bi] for i = 1, . . . , λ.

Output: Return a minimum cover C of I.

1 Perform the breadth-first search to calculate d(v), the distance between v and Ro(T )

for each v ∈ V (T ).

2 for each node v ∈ V (T ) do

3 min len(v) ←∞.

4 for i = 1 to λ do

5 l(Ii) ← d(ai)− d(bi).

6 if l(Ii) < min len(ai) then

7 min len(ai) ← l(Ii).

8 Apply the postorder traversal to T and let v1, v2, . . . , vN be the visiting order of nodes.

9 for i = 1 to N do

10 if min len(vi) = 0 then

11 Insert v into the cover C.

12 else if min len(v)− 1 < min len(Pa(v)) then

13 min len(Pa(v)) ← min len(v)− 1.

14 return C.

Figure 2.1: The algorithm for the Tree Interval Cover problem.
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2.1.2 Correctness and Complexity

Now we show the correctness and time complexity of this algorithm.

Lemma 1: Let C = {c1, c2, . . . , cp} be the cover found by Algorithm TIC. The cover C must

be a feasible interval cover, i.e., a cover covering all intervals in I.

Proof: For the purpose of contradiction, assume that I ′ = [s1, si] be an interval that is not

covered by the cover C. Let the path of I ′ be (s1, s2, . . . , si). When initializing the value

min len(s1), it holds that min len(s1) ≤ i − 1 by Algorithm TIC. Then Algorithm TIC tra-

verses the tree T in a bottom-up fashion. When visiting a node sj where 1 ≤ j ≤ i, it is clear

that min len(sj) ≤ i− j. Before we encounter the node Pa(si), there must exist a node s′ ∈ I ′

such that min len(s′) = 0, and the node s′ is inserted into our cover C. Therefore, the cover

I ′ is covered by the node s′ and our assumption is a contradiction. Hence, the cover C found

by Algorithm TIC is a feasible interval cover.

Theorem 1: Algorithm TIC solves the Tree Interval Cover problem correctly.

Proof: Let C = {c1, c2, . . . , cp} be the cover found by Algorithm TIC. By Lemma 1, C is a

feasible interval cover, i.e., a cover covering all intervals in I. Therefore, the rest is to show

that the cardinality of C is equal to that of an optimal cover.

For i = 1, 2, . . . , p, there exists an interval, Ici
, having ci as an ending terminal and setting

min len(ci) = 0. We claim that Ici
∩ Icj

= ∅ for all i 6= j where 1 ≤ i, j ≤ p. For the purpose

of contradiction, assume that Ici
∩ Icj

6= ∅ for some i 6= j, and ci is an ancestor of cj without

loss of generality. Since Algorithm TIC traverses the tree T in a bottom-up fashion, the node

cj would be inserted into the cover C earlier than the node ci. When inserting cj into C, the

value of min len(cj) is equal to zero, and min len(cj) − 1 would not be uploaded to compare

with min len(Pa(cj)) by Algorithm TIC. In other words, any interval passing through the

node cj can not affect the value of min len(ci). Due to Ici
∩ Icj

6= ∅, Ici
also pass through
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cj. Therefore, it is impossible that the interval Ici
is the interval such that min len(ci) = 0

and our assumption is a contradiction. Hence, for all i 6= j where 1 ≤ i, j ≤ p, the claim that

Ici
∩ Icj

= ∅ holds.

By the above claim, we obtain that an optimal cover requires at least p nodes to cover these

non-overlapped intervals Ic1 , Ic2 , . . . , Icp . Thus, the cardinality of an optimal cover is equal to

that of the cover C found by Algorithm TIC.

Theorem 2: Given a tree T and a collection of intervals I = {I1, I2, . . . , Iλ}, Algorithm TIC

finds the minimum cover of I in O(N + λ) time, where |V (T )| = N .

Proof: Algorithm TIC takes O(N) time to compute d(v) for each node v ∈ V (T ) using the

breadth-first search. For each node v ∈ V (T ), the initial value of min len(v) can be computed

in O(λ) time, and then Algorithm TIC traverses the tree T in a bottom-up fashion in O(N)

time. Totally, the time complexity for Algorithm TIC is O(N + λ).

In the following corollary, we conclude the time complexity of the EC problem. The corollary

can be easily derived by Theorem 2 and we omit the proof here.

Corollary 1: Given a set of gene tree G = {G1, G2, . . . , Gk} and a comparable species tree S,

the EC problem can be solved in O(
∑k

i=1 mi +n) time, where mi = |Le(Gi)| for i = 1, 2, . . . , k,

and n = |Le(S)|.
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Figure 2.2: An example of executing Algorithm TIC for the EC problem with gene trees G1, G2

and a comparable species tree S. For simplicity, the labels of leaves of G are replaced with the
corresponding leaf-mapping.
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Chapter 3

The Minimum Episodes Problem

To study the Minimum Episodes (ME) problem, we first introduce some definitions and

notation proposed by Bansal and Eulenstein [7].

Given a gene tree G and a species tree S, let FG,S : V (G) → V (S). FG,S is valid if for each

node g ∈ V (G), its mapping satisfies the following:

1. If g ∈ Dup(G,S), g is mapped to any node in the interval I(g).

2. Otherwise, FG,S(g) is the same as MG,S(g).

Let the unions of the mappings F =
⋃

G∈G FG,S and FM =
⋃

G∈GMG,S for a set of gene

trees G. F is valid if FG,S is valid for each gene tree G ∈ G.

Given a set of gene trees G, a species tree S, and a valid mapping F , let F−1(s) denote the

node set {g : F(g) = s} and H(F , s) denote the subgraph of G induced by the node set F−1(s),

where s ∈ V (S). Note that H(F , s) must be a forest.

Definition 6: Given a set of gene trees G, a species tree S, and a valid mapping F , ∆(F , s) =

max {h(T ) : T is a tree in H(F , s)}, i.e., the number of episodes at s caused by F , where s ∈
V (S). Also let ∆(F) =

∑
s∈V (S) ∆(F , s).

Let T be a tree in H(F , s) such that h(T ) = ∆(F , s), where s ∈ V (S). A node g ∈ F−1(s)

is a leading node if and only if g is the root of T . A node g ∈ F−1(s) is free if and only if Pa(s)

is in the interval I(g), where s is not the root of S.
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The ME problem is, given a set of gene trees G = {G1, G2, , . . . , Gk} and a species tree S, to

find a valid mapping Fopt :
⋃

G∈G V (G) → V (S) such that ∆(Fopt) = min {∆(F) : F is any valid mapping}.

3.1 Algorithm ME by Bansal and Eulenstein

Algorithm ME [7] first computes the mapping FM from G to S and all intervals I(g) for each

node g ∈ Dup(G, S). Let F :
⋃

G∈G V (G) → V (S) record the mapping in each step. F is

initialized with FM and is modified step by step as follows. S is traversed in postorder, and

each visited node s ∈ V (S) is checked whether F−1(s) 6= ∅ and all leading nodes in F−1(s) are

free. If both conditions hold, F is updated by changing the mappings of all leading nodes in

F−1(s) from s to Pa(s). When the postorder traversal is terminated, ∆(F) is minimum, i.e.,

F is an optimal valid mapping.

Bansal and Eulenstein [7] gave an analysis of Algorithm ME as follows. Let n = |Le(S)|
and mi = |Le(Gi)| for all 1 ≤ i ≤ k. The mapping FM is computed in O(

∑k
i=1 min) time. All

intervals of the nodes in Dup(G, S) are calculated in O(
∑k

i=1 mi) time. For each node s ∈ V (S),

it takes O(
∑k

i=1 mi) time for each step of finding all leading nodes in F−1(s), checking if these

leading nodes are free, and updating the mapping F . Since there are O(n) nodes in the species

tree, each of the above three steps takes O(
∑k

i=1 min) time, we have the following theorem.

Theorem 3: [7] Given a set of gene trees G and a species tree S, Algorithm ME computes

an optimal valid mapping from the gene trees to the species tree in O(
∑k

i=1 min) time.

3.2 A Linear-Time Algorithm for the Minimum Episodes

Problem

The time complexity of Algorithm ME is dominated by four steps: (1) computing the LCA-

mapping, (2) finding all leading nodes, (3) checking if these leading nodes are free, and (4)

updating the mapping. We present a linear-time algorithm for the ME problem by separately

improving these steps in the following.
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3.2.1 Computing the LCA-Mapping

Given a gene tree and a species tree, Zhang [57] proposed a linear-time algorithm for computing

the LCA-mapping. We conclude the result in the following.

Theorem 4: [57] Given a gene tree G and a species tree S, computing the LCA-mapping

from G to S takes O(m + n) time, where |Le(G)| = m and |Le(S)| = n.

By Theorem 7, the following corollary can be easily derived and we omit the proof here.

Corollary 2: Given a set of gene trees G = {G1, G2, . . . , Gk} and a species tree S, computing

the LCA-mapping from G to S takes O(
∑k

i=1 mi+n) time, where |Le(S)| = n and |Le(Gi)| = mi

for all 1 ≤ i ≤ k.

3.2.2 Finding All Leading Nodes

We present an efficient approach, named Algorithm LeadingNode, to finding all leading nodes

in F−1
M (s) for each node s ∈ V (S) in the following. For each node s ∈ V (S), we maintain a

value δ(s) and a linked list lead[s] with two pointers head[lead[s]] and tail[lead[s]], which point

to the head and tail of lead[s], respectively. We use δ(s), initially zero, to keep ∆(FM, s) and

use lead[s] to store the leading nodes in F−1
M (s).

We traverse each gene tree G ∈ G by performing the breadth-first search from Ro(G). For

each node g ∈ V (G), we keep a value r(g) to store Ro(T ), where T is a tree in H(FM,FM(g))

with g ∈ V (T ). When g is visited, r(g) is determined according the following three rules:

1. If g = Ro(G), then r(g) = g since g must be Ro(T ).

2. If FM(g) 6= FM(Pa(g)), it follows that Pa(g) /∈ V (T ). Thus, r(g) = g.

3. Otherwise, r(g) = r(Pa(g)) since Pa(g) is also a node in T .

For each node g ∈ V (G), we also maintain a boolean value flag(g), initially zero, to indicate

whether g is a leading node. When visiting g, we let s = FM(g) and consider the following two

cases:
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1. If the distance between g and r(g) plus one is greater than δ(s), then the elements in

lead[s] are not the leading nodes in F−1
M (s) and r(g) is a new leading node in F−1

M (s). We

delete each node g′ ∈ lead[s] and set flag(r(g′)) = 0. We also insert r(g) into lead[s], set

flag(r(g)) = 1, and update δ(s) to the distance between g and r(g) plus one.

2. If the distance between g and r(g) plus one is equal to δ(s) and flag(r(g)) = 0, then r(g)

is also a leading node in F−1
M (s). We insert r(g) into lead[s] and set flag(r(g)) = 1.

After processing all gene trees in G, we find all leading nodes in F−1
M (s) and compute

∆(FM, s) for each node s ∈ V (S). Algorithm LeadingNode is given in Figure 3.1. The

correctness and time analysis of Algorithm LeadingNode are shown as follows.

Lemma 2: Given a set of gene trees G, a species tree S, and a valid mapping FM, Algo-

rithm LeadingNode finds all leading nodes in F−1
M (s) and computes ∆(FM, s) for each node

s ∈ V (S).

Proof: We need to show that (1) the elements in lead[s] are all leading nodes in F−1
M (s), and

(2) ∆(FM, s) = δ(s) for each node s ∈ V (S) after Algorithm LeadingNode terminates.

Part (1): Assume that g is a leading node in F−1
M (s) and g 6∈ lead[s]. Let g = Ro(T ) for

some tree T in H(FM, s). Since g 6∈ lead[s], there exists another tree T ′ in H(FM, s) with

g′ = Ro(T ′) such that h(T ′) = δ(s) > h(T ) by lines 14 and 21 of Algorithm LeadingNode.

Thus, it follows that ∆(FM, s) ≥ h(T ′) > h(T ) and g is not a leading node in F−1
M (s), which is

a contradiction.

On the other hand, assume that g ∈ lead[s] and g is not a leading node in F−1
M (s). Let

g = Ro(T ) for some tree T in H(FM, s). Since g is not a leading node in F−1
M (s), there must

exist a tree T ′ in H(FM, s) with g′ = Ro(T ′) such that h(T ′) > h(T ). By lines 14 and 21 of

Algorithm LeadingNode, g is not in lead[s], which is a contradiction. Therefore, g is a leading

node in F−1
M (s) if and only if g ∈ lead[s] for each node s ∈ V (S).

Part (2): Let T be a tree in H(FM, s) with h(T ) = δ(s), and g = Ro(T ). For the purpose

of contradiction, assume that there exists a tree T ′ in H(FM, s) with h(T ′) = ∆(FM, s) such
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Algorithm LeadingNode(G, S,FM)

Input: A set of gene trees G, a species tree S, and a valid mapping FM.

Output: Return all leading nodes in F−1
M (s) and ∆(FM, s) for each node s ∈ V (S).

1 for each node s ∈ V (S) do

2 δ(s) = 0.

3 head[lead[s]] ← NIL.

4 for each gene tree G ∈ G do

5 for each node g ∈ V (G) visited in the breadth-first search from Ro(G) do

6 if g = Ro(G) then

7 r(g) ← g.

8 else if FM(g) 6= FM(Pa(g)) then

9 r(g) ← g.

10 else

11 r(g) ← r(Pa(g)).

12 flag(g) ← 0.

13 Calculate d(g), the distance between g and Ro(G).

14 if δ(FM(g)) < d(g)− d(r(g)) + 1 then

15 for each element g′ in lead[FM(g)] do

16 Delete g′ from lead[FM(g)].

17 flag(g′) ← 0.

18 Insert r(g) into lead[FM(g)].

19 flag(r(g)) ← 1.

20 δ(FM(g)) ← d(g)− d(r(g)) + 1.

21 else if δ(FM(g)) = d(g)− d(r(g)) + 1 and flag(g) = 0 then

22 Insert r(g) into lead[FM(g)].

23 flag(r(g)) ← 1.

24 return lead[s] and δ(s) for each s ∈ V (S).

Figure 3.1: The algorithm for finding the leading nodes in F−1
M (s) and for computing ∆(FM, s)

for each node s ∈ V (S).
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that h(T ′) > h(T ). Let g′ = Ro(T ′). According to line 16 of Algorithm LeadingNode, δ(s)

must be set to h(T ′), which contradicts the assumption. Thus, we have h(T ′) ≤ h(T ) = δ(s)

and ∆(FM, s) = δ(s) for each node s ∈ V (S).

Lemma 3: Given a set of gene trees G = {G1, G2, . . . , Gk}, a species tree S, and a valid

mapping FM, the time complexity of Algorithm LeadingNode is O(
∑k

i=1 mi + n), where

|Le(S)| = n and |Le(Gi)| = mi for all 1 ≤ i ≤ k.

Proof: Algorithm LeadingNode initializes δ(s) and lead[s] for all nodes s ∈ V (S) in O(n)

time. All gene trees in G are traversed, so there are in total O(
∑k

i=1 mi) visited nodes. The two

for-loops in lines 4 and 5 contain O(
∑k

i=1 mi) iterations and each operation in the two for-loops

takes O(1) time except the for-loop in lines 15–17. The time complexity of the two for-loops

in lines 4 and 5 is dominated by the for-loop in lines 15–17. According to lines 18 and 22 of

Algorithm LeadingNode, however, a visited node g ∈ V (G) brings at most one insertion. It

implies that O(
∑k

i=1 mi) insertions are totally executed. That is, the total number of deletions

in line 16 of Algorithm LeadingNode is O(
∑k

i=1 mi), and the for-loop in lines 15–17 takes

totally O(
∑k

i=1 mi) time. Consequently, the time complexity of Algorithm LeadingNode is

O(
∑k

i=1 mi + n).

3.2.3 Checking If All Leading Nodes Are Free

In the following, we check if all leading nodes in F−1(s) are free, where F is an arbitrary

valid mapping. For each gene tree G ∈ G, the interval I(g) and the length of I(g) for each

node g ∈ Dup(G,S) are computed in linear time [57] by applying an efficient algorithm for

the Least Common Ancestor problem [11]. For each node s ∈ V (S), we maintain a value

min len(s), which is the minimum length of intervals from s to all ending terminals among

all intervals passing through s. Initially, we set min len(s) to be the minimum among the

lengths of the intervals of all leading nodes in F−1
M (s) using s as the starting terminal. If
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Algorithm LinearME(G, S)

Input: A set of gene trees G and a species tree S.

Output: Return an optimal mapping F :
⋃

G∈G V (G) → V (S) such that ∆(F)

= min {∆(F̂) : F̂ is any valid mapping}.
1 Compute the LCA-mapping FM from G to S.

2 Find all leading nodes in F−1
M (s) for each node s ∈ V (S).

3 for each gene tree G ∈ G do

4 Compute the interval I(g) = [ag, bg] for each g ∈ Dup(G,S) using the algorithm in [11].

5 Traverse S by the breadth-first search from Ro(S) to calculate d(s), the distance

between s and Ro(S) for each node s ∈ V (S).

6 for each node s ∈ V (S) do

7 min len(s) ←∞.

8 for each node s ∈ V (S) do

9 for each node g in lead[s] do

10 if g ∈ Dup(G, S) then

11 l(I(g)) ← d(ag)− d(bg).

12 else

13 l(I(g)) ← 0.

14 if l(I(g)) < min len(FM(g)) then

15 min len(FM(g)) ← l(I(g)).

16 for each node s ∈ V (S) visited in postorder do

17 if head[lead[s]] 6= NIL then

18 if min len(s) > 0 then

19 if δ(Pa(s)) ≤ 1 then

20 tail[lead[Pa(s)]] ← head[lead[s]].

21 min len(Pa(s)) ← min {min len(Pa(s)),min len(s)− 1}.
22 else

23 tail[leadfree[Pa(s)]] ← head[lead[s]].

24 head[lead[s]] ← NIL.

25 Construct a mapping F :
⋃

G∈G V (G) → V (S) as follows:

For each node g ∈ ⋃
G∈G V (G),

F(g) =

{
s, if g ∈ lead[s] or g ∈ leadfree[s],

FM(g), otherwise.

26 return F .

Figure 3.2: The algorithm for the Minimum Episodes problem.
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Figure 3.3: An example of executing Algorithm LinearME for the ME problem with gene
trees G1, G2 and a comparable species tree S. For simplicity, the labels of leaves of G1 and G2

are replaced with the corresponding leaf-mapping. (a) Two gene trees G1, G2 and a comparable
species tree S. (b) The valid mapping F returned by Algorithm LinearME.

min len(s) is greater than zero, all leading nodes in F−1
M (s) are free. According to Algo-

rithm ME [7], we change the mapping in this condition and update min len(Pa(s)) to the

value of min{min len(Pa(s)),min len(s)− 1}.

3.2.4 Updating the Mapping from the Gene Trees to the Species
Tree

We now show how to efficiently update the mapping from G to S and, together with the above

three improved approaches, present a linear-time algorithm for the ME problem. First, we
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traverse the species tree S in postorder. When visiting a node s ∈ V (S), we let F1 denote the

mapping just before visiting s and check whether F−1
1 (s) 6= ∅, i.e., head[lead[s]] 6= NIL, and

whether all leading nodes F−1
1 (s) are free, i.e., min len(s) > 0. If both conditions hold, the

mappings of all nodes in lead[s] from s to Pa(s) are changed by moving all nodes in lead[s] to

lead[Pa(s)]. Let F2 be the mapping just after the modification of the mappings of all nodes

in lead[s]. In H(F2, Pa(s)), the nodes originally in lead[s] become nodes of degree zero, i.e.,

trivial trees. In other words, in H(F2, s), all trees induced by the nodes originally in lead[s]

are trivial trees. This implies that the modified mapping does not increase the total number of

episodes. This observation is shown in Lemma 4.

Lemma 4: Let s ∈ V (S) be the node being visited, and assume that F−1
M (s) 6= ∅ and all

nodes in lead[s] are free leading nodes. Let F1 be the mapping just before visiting s, and F2

be the mapping just after the modification of the mappings of all nodes in lead[s] from s to

Pa(s). For all nodes g ∈ lead[s], g is a node of degree zero, i.e., a trivial tree, in H(F2, Pa(s)).

Proof: We know that F1(g) = s and F2(g) = Pa(s). Since g is a free leading node under

the mapping F1, it follows that F1(g) 6= F1(Pa(g)) = F2(Pa(g)) = MG,S(Pa(g)), and that

both s and Pa(s) are in I(g). By Definition 3, MG,S(Pa(g)) does not belong to I(g). Thus,

F2(Pa(g)) is not equal to F2(g) and Pa(g) is not the parent of g under the mapping F2. Let

a and b be the left and right children of g in G, respectively. Since MG,S(a) ≤S MG,S(g) and

MG,S(b) ≤S MG,S(g), g is not the parent of a and b under the mapping F2. Therefore, g is a

trivial tree in H(F2, Pa(s)).

According to Lemma 4, we only need to compare the maximum height among the trees in

H(F2, Pa(s)) with the height of these trivial trees induced by all nodes in lead[s] as follows.

If δ(Pa(s)) ≤ 1, then all nodes in lead[s] are also the leading nodes of Pa(s). Therefore,

tail[lead[Pa(s)]] is changed by pointing to head[lead[s]], and min len(Pa(s)) is updated to the

value of min{min len(Pa(s)),min len(s) − 1}. Otherwise, we use a linked list leadfree[s] to

collect those nodes whose mappings are changed from s to Pa(s) but not the leading nodes in
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F−1
2 (Pa(s)). The procedure is repeated until all nodes in S are visited. Finally, we construct

a new mapping F :
⋃

G∈G V (G) → V (S) in a way that for each node g ∈ ⋃
G∈G V (G), F(g) = s

if g ∈ lead[s] or g ∈ leadfree[s], and F(g) = FM(g) otherwise. The construction is performed

as follows. First, we traverse S in postorder and set F(g) = s for all nodes g in lead[s] and

leadfree[s]. Next, all gene trees G ∈ G are also traversed in postorder. For each node g ∈ V (G),

if flag(g) = 0 then we set F(g) = FM(g) since its mapping has never been changed. F is the

final solution to the ME problem.

Algorithm LinearME for the ME problem is shown in Figure 3.2, and an example of

executing Algorithm LinearME is given in Figure 3.3. Let G1, G2 be two gene trees and S

be a comparable species tree. For Figure 3.3(a), in G1, the boxed value of each internal node

ui denotes the LCA-mapping FM(ui), and the interval I(ui) is marked on the left side of node

ui if ui is a gene duplication, where 1 ≤ i ≤ 5. The same usage applies to G2. In S, the

gray-colored value of each internal node sj denotes the value of min len(sj) computed by lines

6–15 of Algorithm LinearME, and the linked list of leading nodes lead[sj] is shown on the

left side of sj, where 1 ≤ j ≤ 7. ∆(FM) = 17. For Figure 3.3(b), in G1, the boxed value of

each internal node ui denotes the returned mapping F(ui), and the same usage applies to G2.

In S, the computed linked list lead[sj] or leadfree[sj] is shown on the left side of sj, where

1 ≤ j ≤ 7. At the execution of the for-loop in line 16, s7 is the first internal node to be visited,

and this iteration is terminated because lead[s7] = ∅. When s6 is visited, line 23 is executed

since min len(s6) > 0 and δ(s5) > 1. That is, leadfree[s5] = {u4} and lead[s6] = ∅. The

procedure of visiting s5 is similar to s6. Thus, leadfree[s4] = {v4} and lead[s5] = ∅. When s4

is visited, lines 20 and 21 are executed since min len(s4) > 0 and δ(s3) ≤ 1. In other words,

lead[s3] = {v3, u2}, min len(s3) = min {0, 2− 1} = 0, and lead[s4] = ∅. After s1, s2, and s3

are visited, the iterations are terminated because the min len values of the three nodes are all

zero. Finally, a valid mapping F is computed and ∆(F) = 14.
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3.3 Correctness and Complexity

Since Algorithm LinearME is based on Algorithm ME [7], the correctness of Algorithm Lin-

earME follows the proof shown in [7]. We conclude the correctness of Algorithm LinearME

in Theorem 5.

Theorem 5: Given a set of gene trees G and a species tree S, Algorithm LinearME computes

a valid mapping F :
⋃

G∈G V (G) → V (S) such that ∆(F) = min {∆(F̂) : F̂ is any valid mapping}.

The time complexity of Algorithm LinearME is analyzed in Theorem 6, and we conclude

that Algorithm LinearME is a linear-time algorithm.

Theorem 6: Given a set of gene trees G = {G1, G2, . . . , Gk} and a species tree S, the time

complexity of Algorithm LinearME is O(
∑k

i=1 mi +n), where |Le(S)| = n and |Le(Gi)| = mi

for all 1 ≤ i ≤ k.

Proof: By Corollary 3 and Lemma 3, it takes O(
∑k

i=1 mi + n) time to compute the LCA

mapping for all nodes in
⋃

G∈G V (G), to find all leading nodes in F−1
M (s), and to compute the

value of ∆(FM, s) for all s ∈ V (S). For all g ∈ Dup(G, S), all intervals I(g) are computed

in O(
∑k

i=1 mi + n) time [11, 57]. The executions of lines 5–15 run in O(
∑k

i=1 mi + n) time.

The for-loop in line 16 executes O(n) times of iterations and each iteration can be completed

in O(1) time. Constructing a new mapping F takes O(
∑k

i=1 mi + n) time. Therefore, Algo-

rithm LinearME solves the ME problem in O(
∑k

i=1 mi + n) time.
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Chapter 4

The DL-NNI Local Search Problem

In this chapter, we study the heuristic for the Duplication-Loss problem based on the NNI

operation and the corresponding local search problem, called the DL-NNI Local Search

problem. We propose a linear-time algorithm for the DL-NNI Local Search problem.

4.1 Preliminaries

First we review the nearest neighbor interchange (NNI) operation [1, 15] and define the DL-

NNI Local Search problem.

Definition 7: For a tree S, we define the valid nodes of S, val(S), to be V (S) \ ({Ro(S)} ∪
Ch(Ro(S))).

Definition 8: Let S be a tree. For each node x ∈ val(S), we denote by NNIS(x) the

resulting tree by swapping the two subtrees Sx and Sy, where y is the sibling of Pa(x). The

tree NNIS(x) is the tree transformed from S by performing the NNI operation on the node x.

For the NNI operation, see Figure 4.1 for an illustration.

Given a set of gene trees G and a species tree S, the DL-NNI Local Search problem is to

find a tree S∗ ∈ {NNIS(x) : x ∈ val(S)} such that Mut(G, S∗) = min
T∈{NNIS(x):x∈val(S)}

Mut(G, T ).

We present a linear-time algorithm for the DL-NNI Local Search in the following. Our

algorithm contains two main steps: (1) initializing the LCA-mapping, the mutation cost, and
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Figure 4.1: The trees S and NNIS(x), where NNIS(x) is obtained by swapping the subtrees
Sx and Sy.

necessary values, and (2) computing the new gene duplications and losses separately after

performing an NNI operation. It should be noted that we only focus on an individual gene tree

G ∈ G in the following discussion, and it can be straightforward extended to all gene trees in

G. For simplicity, we also assume that LG,S(Le(G)) = Le(S) in the following discussion. If

LG,S(Le(G)) 6= Le(S), we can set S to be S|LG,S(Le(G)). After preprocessing S in linear time [11],

the internal nodes of S|LG,S(Le(G)) can be constructed in O(|Le(G)|) time. By traversing S in

postorder, we can construct E(S|LG,S(Le(G))) in O(|Le(G)|+ |Le(S)|) time. The time complexity

of our algorithm for the DL-NNI Local Search problem are not affected. The details of the

algorithm for constructing S|LG,S(Le(G)) for all G ∈ G will be presented in Section 4.5.

4.2 Initializing the LCA-mapping and the Mutation Cost

Given a gene tree and a species tree, Zhang [57] proposed a linear-time algorithm for computing

the LCA-mapping and the mutation cost. We conclude the result in the following theorem.

Theorem 7: [57] Given a gene tree G and a species tree S, computing the LCA-mapping

MG,S, the number of gene duplications |Dup(G,S)|, and the number of losses Loss(G,S) takes

O(m + n) time, where |Le(G)| = m and |Le(S)| = n.

By Theorem 7, the following corollary can be easily derived and we omit the proof here.
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Corollary 3: Given a set of gene trees G = {G1, G2, . . . , Gk} and a species tree S, computing

the LCA-mappingMG,S, the number of gene duplications |Dup(G, S)|, and the number of losses

Loss(G, S) takes O(
∑k

i=1 mi + n) time, where |Le(S)| = n and |Le(Gi)| = mi for all 1 ≤ i ≤ k.

In addition to the LCA-mapping and the mutation cost, we also maintain some values f(g, i)

for each node g ∈ V (G), where i ∈ Ch(Ch(MG,S(g))). The definition of f(g, i) is shown in the

following.

f(g, i) =

{
1 if MG,S(Le(Gg)) ∩ Le(Si) 6= ∅;
0 otherwise.

When f(g, i) = 1, there exists at least one leaf z of Gg such that MG,S(z) belongs to the

leaf set of Si. The information will be useful when we compute the new LCA-mapping after

an NNI operation is performed. For a node g ∈ V (G), now we discuss how to compute the

value of f(g, i) for each i ∈ Ch(Ch(MG,S(g))). By the algorithm proposed by Bender and

Farach-Colton [11], the least common ancestor of any two nodes in the species tree S can be

answered in constant time after S is preprocessed in linear time. For each node g ∈ V (G), we

compute f(g, i) by traversing the gene tree G in a bottom-up fashion. For each node g ∈ V (G),

we initially set the value f(g, i) zero for all i ∈ Ch(Ch(MG,S(g))). We do nothing to all nodes

g where Ch(Ch(MG,S(g))) = ∅. When we visit a node g where Ch(Ch(MG,S(g))) 6= ∅, we

check all nodes in MG,S(Ch(g)) to compute the value f(g, i). Let z be a node in Ch(g). There

are the following four cases to be considered.

1. IfMG,S(z) = MG,S(g), then we set f(g, i) = 1 when f(z, i) = 1 for each i ∈ Ch(Ch(MG,S(z))).

2. Let j be a node in Ch(MG,S(g)). If MG,S(z) = j, then we set the value f(g, k) = 1 for

each k ∈ Ch(j).

3. Let j be a node in Ch(Ch(MG,S(g))). If MG,S(z) = j, then we set the value f(g, j) = 1.

4. If MG,S(z) /∈ {MG,S(g)} ∪ Ch(MG,S(g)) ∪ Ch(Ch(MG,S(g))), we check whether the

least common ancestor of MG,S(z) and j is equal to j, for each j ∈ Ch(Ch(MG,S(g))).
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If lca(MG,S(z), j) = j, it follows that MG,S(Le(Gg)) ∩ {Le(Sj)} 6= ∅. Thus, we set the

value f(g, j) = 1.

For the technical reasons, we also maintain the value dS(j), i.e., the distance between j

and Ro(S), for each node j ∈ V (S). For each node j ∈ V (S), the value dS(j) can be easily

computed by traversing the species tree S using the breadth-first search. With the value dS(j),

we can derive the distance between any two nodes u and v of S in O(1) time by computing the

value |dS(u)− dS(v)|.
Algorithm InitializeLocalSearch is shown in Figure 4.2. Now we analyze the time

complexity of the algorithm. Note that we assume that LG,S(Le(G)) = Le(S). Let |Le(G)| =
|Le(S)| = m. In Algorithm InitializeLocalSearch, the execution of lines 1 and 2 runs in

O(m) time by Theorem 3 and [11]. Since visiting all nodes in G, the for-loop in line 3 executes

O(m) times totally. Since lines 4–20 take only O(1) time, each iteration of the for-loop in line 3

can be computed in O(1) time. Line 21 performs the breadth-first search on the species tree

S and can be done in O(m) time. Thus, the time complexity of Algorithm InitializeLo-

calSearch is O(m).

Theorem 8: Given a gene tree G and a species tree S, let |Le(G)| = |Le(S)| = m. Al-

gorithm InitializeLocalSearch computes the LCA-mapping, the mutation cost, and the

value f(g, i), where g ∈ V (G), for each node i ∈ Ch(Ch(MG,S(g))) in O(m) time.

4.3 Gene Duplications in NNIS(x)

In the following, we show how to compute all gene duplications Dup(G,S ′), where S ′ =

NNIS(x), after an NNI operation is performed on a node x ∈ V (S). Before the discussion, we

review the result proven by Bansal et al. [8].

Lemma 5: [8] Let g be a node of G and x be a node in val(S). Assume that Pa(x) = β and

Pa(β) = α. If MG,S(g) /∈ {α, β}, thenMG,S′(g) is the same asMG,S(g), where S ′ = NNIS(x).
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Algorithm InitializeLocalSearch(G,S)

Input: A gene tree G and a species tree S.

Output: Compute the LCA-mapping MG,S, the mutation cost, and the value f(g, i) for

each node g ∈ V (G), where i ∈ Ch(Ch(MG,S(g))).

1 Compute the LCA-mapping MG,S, |Dup(G,S)|, and Loss(G,S).

2 Preprocess the species tree S using the algorithm for computing the LCA in [11].

3 for each node g ∈ V (G) visited in the postorder do

4 for each node i ∈ Ch(Ch(MG,S(g))) do

5 f(g, i) ← 0.

6 for each node z ∈ Ch(g) do

7 if MG,S(z) = MG,S(g) then

8 for each node j ∈ Ch(Ch(MG,S(z))) do

9 f(g, j) ← f(z, j).

10 for each node j ∈ Ch(MG,S(g)) do

11 if MG,S(z) = j then

12 for each node k ∈ Ch(j) do

13 f(g, k) ← 1.

14 for each node j ∈ Ch(Ch(MG,S(g))) do

15 if MG,S(z) = j then

16 f(g, j) ← 1.

17 if MG,S(z) /∈ {MG,S(g)} ∪ Ch(MG,S(g)) ∪ Ch(Ch(MG,S(g))) then

18 for each node j ∈ Ch(Ch(MG,S(g))) do

19 if lca(MG,S(z), j) = j then

20 f(g, j) ← 1.

21 Perform the breadth-first search to compute dS(j) for each node j ∈ V (S).

Figure 4.2: The algorithm for computing the LCA-mapping from G to S, the mutation cost,
and the values f(g, i) for each node g ∈ V (G), where i ∈ Ch(Ch(MG,S(g))).
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When we perform an NNI operation on a node x, except the nodes mapped to α or β, the

LCA-mapping of other nodes in G remains the same by Lemma 5. Thus, we focus on the nodes

in G mapped to α and β.

Lemma 6: Let g be a node of G and x be a node in val(S). Assume that Pa(x) = β and

Pa(β) = α. If MG,S(g) = β, then MG,S′(g) is equal to α, where S ′ = NNIS(x).

Proof: Let the siblings of x and β be γ and y, respectively. Since MG,S(g) = β, we

know that MG,S(Le(Gg)) ∩ Le(Sx) 6= ∅, MG,S(Le(Gg)) ∩ Le(Sγ) 6= ∅, and MG,S(Le(Gg)) ⊆
Le(Sx) ∪ Le(Sγ). After performing an NNI operation on the node x, the two subtrees Sx and

Sy are swapped. By Definition 1, it is clear that MG,S′(g) is equal to α.

Lemma 7: Let x ∈ val(S), Pa(x) = β, and Pa(β) = α. Assume that g ∈ V (G) and

MG,S(g) = α. After performing an NNI operation on x, there are two cases to be considered.

(Let S ′ = NNIS(x).)

1. If f(g, x) = 1, then MG,S′(g) = MG,S(g) = α.

2. Otherwise, MG,S′(g) is equal to β.

Proof: Let the siblings of x and β be γ and y, respectively. For Case 1, since MG,S(g) = α,

we know that MG,S(Le(Gg))∩Le(Sy) 6= ∅. Due to f(g, x) = 1, it follows that MG,S(Le(Gg))∩
Le(Sx) 6= ∅. After we perform an NNI operation on x, the two subtrees Sx and Sy are swapped,

and the least common ancestor of Le(Sx) and Le(Sy) is also α. Therefore, by Definition 1,

MG,S′(g) is equal to α.

For Case 2, since MG,S(g) = α and f(g, x) 6= 1, we know that MG,S(Le(Gg))∩Le(Sx) = ∅
and MG,S(Le(Gg)) ∩ Le(Sγ) 6= ∅. After performing an NNI operation on x, it follows that

MG,S′(Le(Gg)) ⊆ Le(S ′y) ∪ Le(S ′γ). Therefore, MG,S′(g) is equal to β.
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By the above two lemmas, we know the new LCA-mapping MG,S′ after an NNI operation

is performed on a nodes x. It is clear that the difference between Dup(G,S) and Dup(G,S ′)

results from those nodes of G, whose LCA-mapping is α or β. Now we turn to discuss the

difference of gene duplications after performing an NNI operation.

Lemma 8: Let x ∈ val(S), Pa(x) = β, and Pa(β) = α. For a node g ∈ V (G), assume that

MG,S(g) = β. We have that g ∈ Dup(G,S) if and only if g ∈ Dup(G,S ′), where S ′ = NNIS(x).

Proof:

(⇒) Let the siblings of x and β be γ and y, respectively. If g ∈ Dup(G,S), there exists

a child g′ of g such that MG,S(g) = MG,S(g′) = β. Thus, the two sets MG,S(Le(Gg′)) ∩
Le(Sx) and MG,S(Le(Gg′)) ∩ Le(Sγ) are not empty, and MG,S(Le(Gg′)) ⊆ Le(Sx) ∪ Le(Sγ).

After performing an NNI operation on x, the two subtrees Sx and Sy are swapped. Since

MG,S(Le(Gg′)) ∩ Le(Sx) 6= ∅, MG,S(Le(Gg′)) ∩ Le(Sγ) 6= ∅, and MG,S(Le(Gg′)) ⊆ Le(Sx) ∪
Le(Sγ), we know that MG,S′(g

′) is α. By Lemma 6, MG,S′(g) is equal to α. Due to MG,S′(g) =

MG,S′(g
′) = α, it follows that g ∈ Dup(G,S ′).

(⇐) By Lemma 6, we have that MG,S′(g) = α. Since g ∈ Dup(G,S ′), there exists a child g′

of g such that MG,S′(g) = MG,S′(g
′) = α. Due to MG,S(g) = β, we have that MG,S(Le(Gg))∩

Le(Sy) = ∅ andMG,S(Le(Gg′))∩Le(Sy) = ∅. Thus, we know thatMG,S′(Le(Gg′))∩Le(S ′x) 6= ∅,
MG,S′(Le(Gg′)) ∩ Le(S ′γ) 6= ∅, and MG,S′(Le(Gg′)) ⊆ Le(S ′x) ∪ Le(S ′γ). Since the NNI opera-

tion performed on the node x is to swap the two subtrees Sx and Sy, it is easy to verify that

MG,S(g′) = β. Due to MG,S(g) = MG,S(g′) = β, it follows that g ∈ Dup(G, S).

Lemma 9: Let x ∈ val(S), Pa(x) = β, and Pa(β) = α. For a node g ∈ V (G), assume that

MG,S(g) = α and MG,S′(g) = β. We have that g ∈ Dup(G,S) if and only if g ∈ Dup(G,S ′),

where S ′ = NNIS(x).

Proof:
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(⇒) Since MG,S(g) = α and MG,S′(g) = β, it follows that MG,S(Le(Gg)) ∩ Le(Sx) = ∅ by

Lemma 7. Since g ∈ Dup(G,S), there exists a child g′ of g such that MG,S(g) = MG,S(g′) = α.

The fact that MG,S(Le(Gg))∩Le(Sx) = ∅ and MG,S(g′) = α implies MG,S′(g
′) = β according

to Lemma 7. Thus, we have that MG,S′(g) = MG,S′(g
′) = β and obtain that g ∈ Dup(G,S ′).

(⇐) Since MG,S(g) = α and MG,S′(g) = β, it follows that MG,S(Le(Gg)) ∩ Le(Sx) = ∅ by

Lemma 7. Due to g ∈ Dup(G,S ′), there exists a child g′ of g such thatMG,S′(g) = MG,S′(g
′) =

β. The fact that MG,S′(g
′) = β implies MG,S′(Le(Gg′)) ∩ Le(S ′y) 6= ∅, MG,S′(Le(Gg′)) ∩

Le(S ′γ) 6= ∅, and MG,S′(Le(Gg′)) ⊆ Le(S ′y)∪Le(S ′γ). Thus, it is easy to verify that MG,S(g′) =

α before swapping the two subtrees Sx and Sy. We have MG,S(g) = MG,S(g′) = α and obtain

that g ∈ Dup(G,S).

According to Lemmas 8 and 9, the number of gene duplications is not affected by the nodes

in M−1
G,S(β) and {g : MG,S(g) = α and MG,S′(g) = β}. Therefore, the only nodes changing the

number of gene duplications are in the set GD Diff = {g : MG,S(g) = α and MG,S′(g) = α}.
For a node g ∈ GD Diff , we must recompute the LCA-mapping of the children of g with

respect to NNIS(x) to check whether g is a gene duplication or not. By Lemmas 6 and 7,

the re-computation of the LCA-mapping of Ch(g) can be done in O(1) time. Therefore, after

performing an NNI operation, we can determine if a node g ∈ GD Diff is a gene duplication

in O(1) time.

Algorithm ComputeGD is shown in Figure 4.3. Now we analyze the time complexity

of the algorithm. In Algorithm ComputeGD, the for-loop in line 3 executes O(|M−1
G,S(α)|)

times totally. Since lines 4–15 take only O(1) time, each iteration of the for-loop in line 3

can be computed in O(1) time. Thus, the time complexity of Algorithm ComputeGD is

O(|M−1
G,S(α)|).

Theorem 9: Let G be a gene tree, S be a species tree, and x ∈ val(S). Given G, S, x,

|Dup(G,S)|, and MG,S, Algorithm ComputeGD computes the number of gene duplications

|Dup(G,NNIS(x))| in O(|M−1
G,S(α)|) time, where α = Pa(Pa(x)).
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Algorithm ComputeGD(G, S, x, |Dup(G,S)|,MG,S)

Input: A gene tree G, a species tree S, a node x ∈ V (S), the number of gene

duplications |Dup(G,S)|, and the LCA-mapping MG,S.

Output: Return the number of gene duplications |Dup(G,NNIS(x))|.
1 Let Pa(x) = β, Pa(Pa(x)) = α, and S ′ = NNIS(x).

2 |Dup(G,S ′)| ← |Dup(G,S)|.
3 for each node g ∈M−1

G,S(α) do

4 if f(g, x) = 1 then /* MG,S(g) = α. */

5 for each node z ∈ Ch(g) do

6 if MG,S(z) = β then

7 MG,S′(z) ← α.

8 else if MG,S(z) = α and f(z, x) = 1 then

9 MG,S′(z) ← α.

10 else MG,S′(z) ← β.

11 if MG,S(Left(g)) = α or MG,S(Right(g)) = α then /* g ∈ Dup(G, S). */

12 if MG,S′(Left(g)) 6= α and MG,S′(Right(g)) 6= α then

13 |Dup(G,S ′)| ← |Dup(G, S ′)| − 1.

14 else if MG,S′(Left(g)) = α or MG,S′(Right(g)) = α then

15 |Dup(G,S ′)| ← |Dup(G,S ′)|+ 1.

16 return |Dup(G,S ′)|.

Figure 4.3: The algorithm for computing the number of gene duplications |Dup(G,NNIS(x))|.
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4.4 Losses in NNIS(x)

In this section, we show how to compute Loss(G, S ′), where S ′ = NNIS(x), after performing

an NNI operation on a node x ∈ val(S). Unless specified otherwise, we assume that (1)

x ∈ val(S), S ′ = NNIS(x), (2) Pa(x) = β, Pa(β) = α, and (3) the siblings of x and β are γ

and y, respectively, throughout this section. See the left part of Figure 4.1 for an illustration.

Let g be a node in G. We will consider the node g in the following five cases: (1) MG,S(g) ∈
{α, β} (Lemma 10), (2) MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈ {α, β} for some g′ ∈ Ch(g)

(Lemma 11), (3) MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈ V (Sy) ∪ V (Sx) for some g′ ∈ Ch(g)

(Lemma 12), (4) MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈ (V (S)\V (Sα)) ∪ V (Sγ) for each

g′ ∈ Ch(g), and (5) MG,S(g) ∈ V (Sy) ∪ V (Sx) ∪ V (Sγ).

Observation 1 : Let g be a node in G. If MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈
(V (S)\V (Sα)) ∪ V (Sγ) for each g′ ∈ Ch(g), then Loss(G, S ′, g) = Loss(G,S, g).

Observation 2 : Let g be a node in G. If MG,S(g) ∈ V (Sy) ∪ V (Sx) ∪ V (Sγ), then

Loss(G,S ′, g) = Loss(G,S, g).

Observations 1 and 2 show that Cases (4) and (5) do not change the number of losses after

an NNI operation is performed. Except Cases (4) and (5), the remaining cases all change the

number of losses. In the following, we discuss how to compute the number of losses for the

remaining cases separately.

Lemma 10: Let g be a node in G. If MG,S(g) ∈ {α, β}, then Loss(G,S ′, g) can be computed

in O(1) time.

Proof: By Lemmas 5, 6, and 7, the mappings MG,S′(g) and MG,S′(g
′) can be derived for each

node g ∈ V (G) and for each node g′ ∈ Ch(g) in O(1) time. With MG,S′(g) and MG,S′(g
′) for

each node g′ ∈ Ch(g), we can compute Loss(G,S ′, g) by Definition 4. Note that we compute

the distance lS(MG,S(g),MG,S(g′)) by computing the value |dS(MG,S(g)) − dS(MG,S(g′))|,
and it can be done in O(1) time. However, after performing an NNI operation on the node
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x ∈ V (S), the two subtrees Sx and Sy are swapped and the value dS′(MG,S′(g
′)) may differ

from dS(MG,S(g′)), where g′ ∈ Ch(g). There are the following two conditions to be considered.

• If MG,S(g′) ∈ V (Sx), then dS′(MG,S′(g
′)) = dS(MG,S(g′))− 1.

• If MG,S(g′) ∈ V (Sy), then dS′(MG,S′(g
′)) = dS(MG,S(g′)) + 1.

It should be mentioned that deciding whetherMG,S(g′) ∈ V (Sx) (orMG,S(g′) ∈ V (Sy)) can

be done by checking if lca(MG,S(g′), x) = x (or lca(MG,S(g′), y) = y) in O(1) time. Therefore,

Loss(G,S ′, g) can be computed in O(1) time.

Lemma 11: Let g be a node in G. If MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈ {α, β} for

some g′ ∈ Ch(g), then Loss(G,S ′, g) can be computed in O(1) time.

Proof: We consider the LCA-mapping of g′ ∈ Ch(g) after performing an NNI operation on

x. Note that there exists exactly one child g′ ∈ Ch(g) such that MG,S(g′) ∈ {α, β} since

MG,S(g) ∈ V (S)\V (Sα). There are two conditions to be considered.

• If MG,S(g′) = β, Loss(G, S ′, g) is equal to Loss(G,S, g) − 1 since MG,S′(g
′) = α by

Lemma 6. For the computation, we only check each node i ∈M−1
G,S(β). If MG,S(Pa(i)) /∈

{α, β}, then Loss(G,S ′, Pa(i)) = Loss(G,S, Pa(i))− 1.

• If MG,S(g′) = α, we check whether MG,S′(g
′) is equal to α or β in O(1) time according

to Lemma 7. If MG,S′(g
′) = α, then Loss(G, S ′, g) = Loss(G,S, g). If MG,S′(g

′) = β,

then Loss(G,S ′, g) = Loss(G,S, g) + 1. For the computation, we only check each node

i ∈ M−1
G,S(α). If MG,S(Pa(i)) 6= α, we decide the value Loss(G,S ′, Pa(i)) by checking

the new mapping MG,S′(i) according to Lemma 7.

Thus, Loss(G, S ′, g) can be computed in O(1) time.
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Before discussing Case (3), we define the values ∆2(j) and ∆3(j) for each node j ∈ V (S).

We can compute the number of losses associated to those nodes in Case (3) by using ∆2 and

∆3.

Definition 9: For each node j ∈ V (S), define ∆2(j) to be the number of nodes i ∈ V (G)

such that MG,S(i) ∈ V (Sj) and MG,S(Pa(i)) ∈ V (S)\V (SPa(j)). In other words, ∆2(j) is

equal to |{i ∈ V (G) : i ∈ M−1
G,S(V (Sj)) and lS(MG,S(Pa(i)),MG,S(i)) − lS(j,MG,S(i)) ≥ 2}|.

Similarly, define ∆3(j) to be the number of nodes i ∈ V (G) such that MG,S(i) ∈ V (Sj)

and MG,S(Pa(i)) ∈ V (S)\V (SPa(Pa(j))). In other words, ∆3(j) is equal to |{i ∈ V (G) : i ∈
M−1

G,S(V (Sj)) and lS(MG,S(Pa(i)),MG,S(i))− lS(j,MG,S(i)) ≥ 3}|.

Now we present an efficient algorithm to compute the values ∆2 and ∆3 for each node

j ∈ V (S). We compute the value ∆2 by traversing the species tree S in a bottom-up fash-

ion. For each leaf z ∈ Le(S), the value ∆2(z) can be obtained by computing the number of

nodes i ∈ M−1
G,S(z) satisfying lS(MG,S(Pa(i)), z) ≥ 2. When visiting an internal node j ∈

V (S)\Le(S), we compute the number of nodes i ∈M−1
G,S(j) satisfying lS(MG,S(Pa(i)), j) ≥ 2,

and denote the number by π(j). Let the value δ(j) = |{i ∈ V (G) : i ∈ M−1
G,S(V (SLeft(j)) ∪

V (SRight(j))) and MG,S(Pa(i)) = Pa(j)}|. It is easy to verify that the value ∆2(j) is equal to

∆2(Left(j)) + ∆2(Right(j)) + π(j)− δ(j).

The remainder is to compute the value δ(j). For each node z ∈ M−1
G,S(Pa(j)), we only

check if there exists some child z′ of z satisfying that MG,S(z′) ∈ V (SLeft(j)) ∪ V (SRight(j)).

The checking can be done in O(1) time by verifying whether lca(MG,S(z′), Left(j)) = Left(j)

or lca(MG,S(z′), Right(j)) = Right(j).

The computation of ∆3 is similar to that of ∆2. To compute ∆3, we also traverse the species

tree S in a bottom-up fashion. For each leaf z ∈ Le(S), the value ∆3(z) can be obtained by

computing the number of nodes i ∈M−1
G,S(z) satisfying ls(MG,S(Pa(i)), z) ≥ 3. When visiting

an internal node j ∈ V (S)\Le(S), we first compute the number of nodes i ∈M−1
G,S(j) satisfying

ls(MG,S(Pa(i)), j) ≥ 3, and denote the number by π′(j). Let the value δ′(j) = |{i ∈ V (G) :

i ∈M−1
G,S(V (SLeft(j)) ∪ V (SRight(j))) and MG,S(Pa(i)) = Pa(Pa(j))}|. It is easy to verify that
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∆3(j) = ∆3(Left(j)) + ∆3(Right(j)) + π′(j) − δ′(j). The computation of δ′(j) is also similar

to that of δ(j). For each node z ∈ M−1
G,S(j), we check whether there exists a node z′ ∈ Ch(z)

satisfying that MG,S(z′) ∈ V (SLeft(j)) ∪ V (SRight(j)). This checking can be done in O(1) time

by verifying if lca(MG,S(z′), Left(j)) = Left(j) or lca(MG,S(z′), Right(j)) = Right(j).

After computing the values ∆2(j) and ∆3(j) for each node j ∈ V (S), we can cope with

Case (3) easily. Let Γ ⊆ V (G) be the node set in Case (3), i.e., Γ = {g ∈ V (G) : MG,S(g) ∈
V (S)\V (Sα) and MG,S(g′) ∈ V (Sy) ∪ V (Sx) for some g′ ∈ Ch(g)}. After performing an NNI

operation on the node x ∈ V (S), it is easy to see that the total difference of the number of losses

caused by the node set Γ is equal to ∆2(y) − ∆3(x). We conclude the result in the following

lemma.

Lemma 12: Let Γ be the node set {g ∈ V (G) : MG,S(g) ∈ V (S)\V (Sα) and MG,S(g′) ∈
V (Sy) ∪ V (Sx) for some g′ ∈ Ch(g)}. We have that

∑
g∈Γ(Loss(G,S ′, g) − Loss(G,S, g)) =

∆2(y)−∆3(x).

Algorithm ComputeDelta is shown in Figure 4.4. Now we analyze the time complexity

of the algorithm. We assume that LG,S(Le(G)) = Le(S), and let |Le(G)| = |Le(S)| = m. Since

visiting all nodes of S, the for-loop in line 1 executes O(m) times. For each iteration of the

for-loop in line 1, the time is dominated by the for-loops in lines 3, 11, and 16. Since we visit

all nodes of S, the for-loops in lines 3, 11, and 16 totally execute at most 3 · |V (G)|+ |V (S)| =
O(m) times, and each iteration can be done in O(1) time. Therefore, the time complexity of

Algorithm ComputeDelta is O(m), and we conclude the result in the following.

Theorem 10: Given a gene tre G, a species tree S, and the LCA-mapping MG,S, Algo-

rithm ComputeDelta computes the values ∆2(j) and ∆3(j) for each node j ∈ V (S) in O(m)

time, where |Le(G)| = |Le(S)| = m.

Algorithm ComputeLoss is shown in Figure 4.5. Before we close this section, we analyze

the time complexity of the algorithm. In Algorithm ComputeLoss, the time complexity is

dominated by the for-loops in lines 3 and 21. The for-loops in lines 3 and 21 execute at most
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Algorithm ComputeDelta(G,S,MG,S)

Input: A gene tree G, a species tree S, and the LCA-mapping MG,S.

Output: Compute the values ∆2(j) and ∆3(j) for each node j ∈ V (S).

1 for each node j ∈ V (S) visited in the postorder do

2 ∆2(j) ← 0, ∆3(j) ← 0, π(j) ← 0, δ(j) ← 0, π′(j) ← 0, δ′(j) ← 0.

3 for each node i ∈M−1
G,S(j) do

4 if |dS(MG,S(i))− dS(MG,S(Pa(i)))| ≥ 2 then

5 π(j) ← π(j) + 1.

6 if |dS(MG,S(i))− dS(MG,S(Pa(i)))| ≥ 3 then

7 π′(j) ← π′(j) + 1.

8 if j ∈ Le(S) then

9 ∆2(j) ← π(j), ∆3(j) ← π′(j).

10 else

11 for each node z ∈M−1
G,S(Pa(j)) do

12 for each node z′ ∈ Ch(z) do

13 if lca(MG,S(z′), Left(j)) = Left(j) or lca(MG,S(z′), Right(j)) = Right(j) then

14 δ(j) ← δ(j) + 1.

15 ∆2(j) ← ∆2(Left(j)) + ∆2(Right(j)) + π(j)− δ(j).

16 for each node z ∈M−1
G,S(Pa(Pa(j))) do

17 for each node z′ ∈ Ch(z) do

18 if lca(MG,S(z′), Left(j)) = Left(j) or lca(MG,S(z′), Right(j)) = Right(j) then

19 δ′(j) ← δ′(j) + 1.

20 ∆3(j) ← ∆3(Left(j)) + ∆3(Right(j)) + π′(j)− δ′(j).

Figure 4.4: The algorithm for computing the values ∆2(j) and ∆3(j) for each node j ∈ V (S).

2 · (|M−1
G,S(α)| + |M−1

G,S(β)|) = O(|M−1
G,S(α)| + |M−1

G,S(β)|) times. It is easy to verify that

each iteration of the two for-loops can be done in O(1) time. Thus, the time complexity of

Algorithm ComputeLoss is O(|M−1
G,S(α)|+ |M−1

G,S(β)|).

Theorem 11: Let G be a gene tree, S be a species tree, and x be a node in val(S). Given G,

S, x, Loss(G,S), MG,S, ∆2, and ∆3, Algorithm ComputeLoss computes the number of losses

Loss(G,NNIS(x)) in O(|M−1
G,S(α)|+ |M−1

G,S(β)|) time, where α = Pa(Pa(x)) and β = Pa(x).
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Algorithm ComputeLoss(G, S, x, Loss(G,S),MG,S, ∆2, ∆3)

Input: A gene tree G, a species tree S, a node x ∈ val(S), the number of losses

Loss(G,S), the LCA-mapping MG,S, and ∆2(j) and ∆3(j) for each node j ∈ V (S).

Output: Return the number of losses Loss(G, NNIS(x)).

1 Let Pa(x) = β, Pa(Pa(x)) = α, S ′ = NNIS(x), and y be the sibling of β.

2 Diff1 ← 0, Diff2 ← 0, and Diff3 ← ∆2(y)−∆3(x).

3 for each node g ∈M−1
G,S(α) ∪M−1

G,S(β) do

4 Compute the number of losses Loss(G,S, g).

5 if MG,S(g) = α and f(g, x) 6= 1 then

6 MG,S′(g) ← β.

7 else MG,S′(g) ← α.

8 for each node z ∈ Ch(g) do

9 if MG,S(z) /∈ {α, β} then

10 MG,S′(z) ←MG,S(z).

11 if lca(MG,S(z), x) = x then

12 dS′(MG,S′(z)) ← dS(MG,S(z))− 1.

13 else if lca(MG,S(z), y) = y then

14 dS′(MG,S′(z)) ← dS(MG,S(z)) + 1.

15 else dS′(MG,S′(z)) ← dS(MG,S(z)).

16 else if MG,S(z) = α and f(z, x) 6= 1 then

17 MG,S′(z) ← β.

18 else MG,S′(z) = α.

19 Compute the number of losses Loss(G,S ′, g).

20 Diff1 ← Diff1 + Loss(G,S ′, g)− Loss(G,S, g).

21 for each node i ∈M−1
G,S(β) ∪M−1

G,S(α) do

22 if MG,S(i) = β and MG,S(Pa(i)) /∈ {α, β} then

23 Diff2 ← Diff2 − 1.

24 if MG,S(i) = α and MG,S(Pa(i)) 6= α and ix 6= 1 then

25 Diff2 ← Diff2 + 1.

26 return Loss(G, S ′) ← Loss(G,S) + Diff1 + Diff2 + Diff3.

Figure 4.5: The algorithm for computing the number of losses Loss(G,NNIS(x)).

44



4.5 A Linear-Time Algorithm for the DL-NNI Local Search

Problem

In this section, we present a linear-time algorithm for the DL-NNI Local Search problem

and give the time analysis of this algorithm.

The algorithm proceeds as follows. First, we show how to construct S|LG,S(Le(G)) for each

gene tree G ∈ G in linear time. After preprocessing the species tree S according to [11], the

least common ancestor of any two nodes of S can be answered in O(1) time. For each gene

tree G, we maintain a linked list leaf [G]. Then we scan the leaves of S in postorder. When

we scan a leaf z ∈ V (S), we check each node g ∈ M−1
G,S(z). If g ∈ V (G) and z /∈ leaf [G], then

we insert z into the tail of leaf [G]. After scanning all leaves of S, we complete leaf [G] for all

G ∈ G. Since we scan the leaves of S in postorder, the elements in leaf [G] are also stored in

postorder of S for each gene tree G ∈ G. For each internal node s ∈ V (S), we maintain a linked

list node[s]. Let leaf [G] = {s1, s2, . . . , sj}. For each linked list leaf [G], we query lca(si, si+1)

and insert the label ‘G’ into node[lca(si, si+1)] for all i = 1, . . . , j − 1. Note that these least

common ancestors are the internal nodes of S|LG,S(Le(G)). Thus, the vertex set of S|LG,S(Le(G))

is V (S|LG,S(Le(G))) = {s1, s1, ..., sj} ∪ {lca(si, si+1 : i = 1, . . . , j − 1)}. Finally, we traverse the

species tree S in postorder. When visiting an internal node s ∈ V (S), we check each element

in the linked list node[s]. If a label ‘G’ is in node[s], then we insert two edges (s, Left(s)) and

(s,Right(s)) into the edge set E(S|LG,S(Le(G))). After completing the traversal of S, we obtain

S|LG,S(Le(G)) for each gene tree G ∈ G.

For each gene tree G ∈ G and S|LG,S(Le(G)), we invoke Algorithm InitializeLocalSearch

and Algorithm ComputeDelta to compute the LCA-mapping, the mutation cost, ∆2, and ∆3.

For each node x ∈ val(S), we apply Algorithm ComputeGD and Algorithm ComputeLoss

to computing the numbers of gene duplications and losses after performing an NNI operation

on the node x. Then we select the node x∗ such that the mutation cost of NNIS(x∗) is the

minimum and output the tree NNIS(x∗).

Algorithm LinearNNI is shown in Figure 4.6. Finally, we give the time analysis of the

45



algorithm. Let the set of gene trees G be {G1, G2, . . . , Gk} and the species tree be S, where

|Le(Gi)| = mi for all 1 ≤ i ≤ k and |Le(S)| = n. By [11], line 1 can be done in O(n) time.

Lines 2–18 construct S|LG,S(Le(G)) for all G ∈ G, and it is easy to verify that the execution

time of lines 2–18 is O(
∑k

i=1 mi + n) totally. The for-loop in line 20 executes total O(k) times.

By Theorem 8 and Theorem 10, lines 21 and 22 can be done in O(|Le(G)|) time. Thus, the

total execution time of the for-loop in line 20 is O(
∑k

i=1 mi). The for-loop in line 25 executes

O(|val(S)|) times. The time complexity of each iteration of the for-loop in line 25 is dominated

by lines 27–29. By Theorem 9 and Theorem 11, the total execution time of lines 27–29 is

O(
∑

x∈val(S) |M−1
G,S(Pa(Pa(x)))| + |M−1

G,S(Pa(x))|) = O(
∑

x∈V (S)M−1
G,S(x)) = O(

∑k
i=1 mi + n).

Therefore, the time complexity of Algorithm LinearNNI is O(
∑k

i=1 mi + n) and we conclude

the result in the following theorem.

Theorem 12: Given a set of gene tree G and a species tree S, the DL-NNI Local Search

problem can be solved by Algorithm LinearNNI in linear time.

46



Algorithm LinearNNI(G, S)

Input: A set of gene trees G and a species tree S.

Output: A tree S∗ such that Mut(G, S∗) = min
T∈{NNIS(x):x∈val(S)}

Mut(G, T ).

1 Preprocess the species tree S using the algorithm for computing the LCA in [11].

2 for each gene tree G ∈ G do

3 head[leaf [G]] ← NIL, V (S|LG,S(Le(G))) ← ∅, E(S|LG,S(Le(G))) ← ∅.
4 for each leaf z ∈ Le(S) visited in postorder do

5 for each node g ∈ L−1
G,S(z) do

6 if g ∈ V (G) and z ∈ leaf [G] then

7 Insert z into the tail of leaf [G].

8 for each internal node s ∈ V (S) do

9 head[node[s]] ← NIL.

10 for each gene tree G ∈ G do

11 Let the linked list leaf [G] be {s1, s2, . . . , sj}.
12 for i ← 1 to j − 1 do

13 V (S|LG,S(Le(G))) ← V (S|LG,S(Le(G))) ∪ {si, lca(si, si+1)}.
14 Insert G into the tail of node[lca(si, si+1)].

15 V (S|LG,S(Le(G))) ← V (S|LG,S(Le(G))) ∪ {sj}.
16 for each internal node s ∈ V (S) do

17 for each element G in node[s] do

18 E(S|LG,S(Le(G))) ← E(S|LG,S(Le(G))) ∪ {(s, Left(s)), (s,Right(s))}.
19 |Dup(G, S)| ← 0, Loss(G, S) ← 0.

20 for each gene tree G ∈ G do

21 InitializeLocalSearch(G,S|LG,S(Le(G))).

22 ComputeDelta(G,S,MG,S|LG,S(Le(G))
).

23 |Dup(G, S)| ← |Dup(G, S)|+ |Dup(G,S)|, Loss(G, S) ← Loss(G, S) + Loss(G,S).

24 MIN ← |Dup(G, S)|+ Loss(G, S).

25 for each node x ∈ val(S) do

26 GD ← 0, LOSS ← 0.

27 for each gene tree G ∈ G do

28 GD ← GD + ComputeGD(G,S|LG,S(Le(G)), x, |Dup(G,S)|,MG,S).

29 LOSS ← LOSS + ComputeLoss(G,S|LG,S(Le(G)), x, Loss(G,S),MG,S, ∆2, ∆3).

30 if MIN > GD + LOSS then

31 MIN ← GD + LOSS, pivot ← x.

32 return NNIS(pivot).

Figure 4.6: The algorithm for the DL-NNI Local Search problem.
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Chapter 5

Concluding Remarks

In this chapter, we summarize the results and discuss the possible future work for the problems

studied in this dissertation.

5.1 Summary

In this dissertation, we study two versions of the Multiple Gene Duplication problems:

the Episode-Clustering (EC) problem and the Minimum Episodes (ME) problem. In

Chapter 3, we give an optimal linear-time algorithm for the EC problem. As a byproduct,

we solve the Tree Interval Cover (TIC) problem in linear time. In Chapter 4, we also

improve the results in [7] and propose an optimal linear-time algorithm for the ME problem.

In addition to the Multiple Gene Duplication problems, we study the heuristic for the

Duplication-Loss problem based on the NNI local search and propose a linear-time algorithm

for the DL-NNI Local Search problem in Chapter 5.

5.2 Future Work

5.2.1 The Weighted Episode-Clustering Problem

In the EC problem, we want to find a minimum number of locations in the species tree

for placing all duplications in the gene trees. We also call this problem the Unweighted

Episode-Clustering (Unweighted EC) problem since the locations in the species tree are

unweighted. The Unweighted EC problem is based on the assumption that all species in
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the species tree have the same gene duplication rate. However, there are many studies showing

that different species may have different gene duplication rates [21, 31, 32, 33]. For different

gene duplication rates of different species in a species tree, therefore, it is reasonable to extend

the Unweighted EC problem to the Weighted EC problem.

Let G be a set of gene trees and S be a species tree. Let W : V (S) → R+ be a weight function

for each node s ∈ V (S). Given G, S, and W , the Weighted EC problem is to find a set of

nodes U in S for placing all duplications in Dup(G, S) such that the sum of weights
∑

s∈U W (s)

is the minimum. Guo and Niedermeier [28] studied the Tree-Like Weighted Set Cover

problem and showed that the problem is NP-complete. However, they also showed that the

Tree-Like Weighted Set Cover problem is fixed-parameter tractable with respect to the

maximum subset size. The Weighted EC problem is linear-time reducible to the Tree-Like

Weighted Set Cover problem, but the time complexity is exponential. To the best of our

knowledge, so far there exist no efficient algorithms for the Weighted EC problem. We would

like to investigate the Weighted EC problem and see if there exists any efficient algorithm

for it.

5.2.2 The DL-k-NNI Local Search Problem

Bansal et al. [8] extended the neighborhood of the NNI operation to the k-NNI neighbor-

hood. Given a tree S, the k-NNI neighborhood of S, denoted by k-NNIS, is the set of

trees transformed from S by performing at most k successive NNI operations on any node

of S. Given a set of gene tree G and a initial comparable species tree S, the DL-k-NNI

Local Search problem is to find a comparable species tree S∗ among k-NNIS such that

Mut(G, S∗) = minT∈k-NNIS
Mut(G, T ). Given a tree S, it has been shown that 2-NNIS and 3-

NNIS have very little overlap with the SPR and TBR neighborhoods of S [23, 24]. Bansal et al.

proposed near-linear time algorithms for the 2-NNI and 3-NNI Local search problems un-

der the duplication cost in [8]. We would like to devise linear-time algorithms for the DL-2-NNI

and DL-3-NNI Local Search problems.
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5.2.3 The SPR Local Search Problem

For the Gene Duplication problem, the local search heuristic based on the SPR operation

has been considered by Bansal et. al. [5, 9]. They presented an O(kn2)-time algorithm for

the corresponding local search problem, where k is the number of gene trees and n is the size

of the resulting species tree. As a result of the quadratic time complexity, their algorithm is

unfavorable to construct the species tree for a large-scale phylogenetic analysis. It should be a

challenge to devise a subquadratic time algorithm for the SPR-based local search problem.
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