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Abstract

This dissertation studies several optimization problems related to multiple gene duplications
and phylogenetic tree construction under the Gene Duplication model. For multiple gene du-
plications, we study the EPISODE- CLUSTERIN? (EC’) problem and the MINIMUM EPISODES
(ME) problem. For the EC problem,\ we‘lmll.)i‘ove ‘Eg_% results of Burleigh et al. with an opti-

mal linear-time algorithm. For the Nrﬁf a81s of the algorithm presented by

Bansal and Eulenstein, we prbpg§{?. i tim a;lggrlffhm For the phylogenetic
5% ) |"

searches and propose a linear-time algoﬂtl}m for the (;orllre$pond1ng LocCAL SEARCH problem.
i
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Chapter 1

Introduction

1.1 Biological Background

In evolutionary molecular biology, phylogenetie analysis helps to realize the evolutionary re-
lationship among various organisms. As gemomic ééquences are easier to obtain, these data
provide sufficient material to conduct large-scale phylogenefic analysis among different species.
One approach for using these geno;nic dat‘ar'i‘s‘j‘co e?lﬁloy the, idea of gene trees. Given a gene
family™ for a set of species, a gene tree is a‘ Qre.@ﬁ;d?picts the phylogeny among the genes of
the gene family sampled from the.set 'of sp;@ ies, ﬂh}le a ispecz'es tree is a tree that represents the
- 4 :

phylogeny of a given set of species.__Ggiver)1k 4 gene tree,:i fghe honiolegous genes in this gene tree
are assumed to evolve in the same way ‘a8 these species from 'which these homologous genes are
sampled. In other words, the gene tree and the corresf)onding species tree are assumed to have
the same topology. However, complicated evolutionary processes, such as gene duplication,
loss, recombination, and horizontal gene transfer, generate gene trees that differ from species
trees [36, 43, 53, 56]. That is to say, gene trees and species trees are inconsistent. In order to
reconstruct the evolutionary history, it is important for evolutionary biologists to explain the
inconsistency between gene trees and species trees.

Gene duplication is an evolutionary process during which one or more genes of a genome are

duplicated, while loss is an evolutionary process during which one or more genes are eliminated.

Many evidences have shown that gene duplications play a major role in the evolution of species

*A gene family is a set of homologous genes assumed to derive from a common ancestor.



on Earth [12, 13, 29, 37, 38, 44, 45, 47, 48, 51|. Therefore, utilizing gene duplication and
loss is an applicable approach to explaining the inconsistency between gene trees and species
trees. Goodman et al. proposed the Gene Duplication (GD) model to explain the inconsistency
between gene trees and species trees by postulating gene duplications and losses [25]. The GD
model has been well studied [14, 18, 26, 27, 35, 39, 57, 58]. Goodman et al. [25] used the
concept of a reconciled tree to reconcile the inconsistent gene trees and a species tree based on
the GD model. The reconciled tree provides the mapping between genes trees and a species
tree, and explains the inconsistency in the evolutionary history by postulating gene duplications
and losses. More details about the GD model are formally described in Section 1.2.2. In this
dissertation, we mainly study some optimization problems under the GD model. According as
the species tree is given or unknown, these optlmlzatlon problems, for a given set of gene trees,
can be categorized into two partsrespectivelys ( ) multlple gene duplication problems, and (2)

phylogenetic tree construction problems.

‘ -~ :‘y".“ w1
1.1.1 Multiple Gene Duplicati?n%gl#lems
T 4

gene; duplﬁdﬁtlons are parts of large multiple gene

For a large-scale genome duplication, malTy
duplication events during which a* large portionsof am orgamsm s genome is duplicated. In
order to distinguish gene duplication evénts and genome duphcatlons Page and Cotton [42]
introduced the term “episode” for gene duplications‘in different gene trees, explainable by a
single gene duplication event. That is, the gene duplications of different gene trees are not
necessarily independent events since they may result from the same gene duplication event
(episode). Unfortunately, since gene losses occur following gene duplications, it is difficult to
detect the number and location of multiple gene duplication episodes.

A series of studies, based on the GD model, have focused on the MULTIPLE GENE DUPLI-
CATION (MGD) problem in order to further understand the number and location of the multiple
gene duplication episodes in the evolutionary history (e.g. [7, 16, 17, 22, 27, 42]). Given a set
of gene trees and a species tree, the goal of the MGD problem is to map each gene duplication

in gene trees onto a species tree and to locate the multiple gene duplication episode such that



the total number of multiple gene duplication episodes is minimized. Guigé et al. [27] inves-
tigated the phylogenetic issues on multiple gene duplications on the basis of the GD model,
and addressed the MGD problem. They set the range on the location of each gene duplication
according to the mapping between gene trees and a species tree. Each gene duplication in the
gene trees can be placed on any species in the species tree within a path between the two most
recent species containing the duplication and its parent, respectively. If the parent does not
exist, the path is located between the most recent species for the duplication and the root of
the species tree. With the definitions of the location of each gene duplication, they proposed
one formulation of the MGD problem: the EPISODE-CLUSTERING (EC) problem [27]. Given a
set of gene trees and a species tree, the EC problem is to find a minimum number of locations
in the species tree for placing all genelduplications. in the gene trees. For the EC problem,
however, Guigé et al. only gave some hints ‘on“how ‘30. solyefthis problem.

Page and Cotton [42] defined the EC problern 1ntr0duced by Guigd et al. more formally,
and presented a heuristic for this problem Fe.].loWs $t al. [22] also proposed another version

L |

t alg()rlthmﬂfor this problem Afterwards, Bansal

i l
and Eulenstein [7] also gave Compréhenswé explorations. of the MGD problem and defined a

of the MGD problem, and preved this veFjlon'tG T)e 'NP hard. Recently, Burleigh et al. [17]

revisited the EC problem and gave an exia

new version of the MGD problem: the MINIMUM EPISODES (ME) problem. Given a set of
gene trees and a species tree, the ME problem is to assign all gene duplications to nodes in
a species tree such that the total number of multiple gene duplication episodes is minimized.
Note that Guigé et al. [27] and Page and Cotton [42] also attempted to solve the ME problem
but turned out to solve the EC problem essentially. In this dissertation, we study the EC and

ME problems and present linear-time algorithms for the two problems.

1.1.2 Phylogenetic Tree Construction Problems

When no preliminary knowledge about the species tree is given, a natural problem in evolu-
tionary molecular biology is to construct a species tree among various species from a set of gene

trees. One possible approach is to reconcile gene trees with species trees under the parsimonious

3



criterion of minimizing the number of gene duplications and losses (also known as the mutation
cost) based on the GD model proposed by Goodman et al. [25]. The corresponding problem
is called the DUPLICATION-LOSS problem [27]. Other approaches use probabilistic models to
reconcile gene trees with species trees [2, 3].

Given a set of gene trees, the DUPLICATION-LOSS problem is to infer a comparable species
tree minimizing the mutation cost. A special case of the DUPLICATION-LOSS problem, the
GENE DUPLICATION problem, is to infer a comparable species tree only minimizing the number
of gene duplications (also called the duplication cost) [27]. The decision versions of the two
problems are NP-hard [34], and some parameterized problems are fixed-parameter tractable [30
50]. Recently, Bansal and Shamir [10] showed that the GENE DUPLICATION problem cannot
be approximated to within a logarithmi¢ factor unless, P = NP. In practice, therefore, heuristics
are applied to solving these problems o condﬁét larlé(.a—scale‘" species tree construction.

Commonly-used heuristics for the DUPLICATION Loss and GENE DUPLICATION problems

are to search all possible species trees by Solvulg al Sﬂrles of instances of the LOCAL SEARCH
| IS5 ﬂ
problem [40, 54]. Given a tree edit operatl?r[ and a cosit criterion, the LOCAL SEARCH problem
] l l I =y
hood"of Sl under the given cost criterion. Given a
| l

tree S and a tree edit operation, the nezghbo;"hood of.S isa set of trees which can be transformed

is to find an optimal tree S* in the nelghqo

by performing the given tree edit operatlons: on . leen a set of gene trees G and an initial
species tree S, the heuristic for the DUPLICATION-LOSS and GENE DUPLICATION problems
proceeds as follows. For the first local search, we solve an instance of the LOCAL SEARCH
problem to find an optimal tree S” in the neighborhood of the initial species tree S. Then the
optimal tree S’ is used as the initial species tree in the second local search, and the process
repeats until a local minimum is obtained. Many studies have proven that these heuristics have
much potential for constructing correct species trees (e.g. [20, 41, 42, 46, 49]).

There are several tree edit operations, such as the nearest neighbor interchange (NNI)
operation [1, 8, 15], the subtree pruning and regrafting (SPR) operation [1, 4, 5, 15, 52, 55, and

the tree bisection and reconnection (TBR) operation [1, 6, 19, 52]. For the GENE DUPLICATION



problem, efficient algorithms for the corresponding local search problems have been proposed
based on the NNI, SPR, and TBR operations [5, 6, 8]. To the best of our knowledge, however,
the corresponding local search problems for the DUPLICATION-LOSS problem only have been
considered based on the SPR and TBR operations by Bansal et al. [4]. In this dissertation,
we study the heuristic for the DUPLICATION-LOSS problem based on the NNI operation and

present a linear-time algorithm for the corresponding local search problem.

1.2 Preliminaries

In the following, we introduce necessary definitions and notation based on those from [7] for
later discussions. Since the EC, ME, and DUPLICATION-LOSS problems are all based on the

GD model, we review some definitions and -conceptstelated to the GD model.
1 e

1.2.1 Basic Definitions and Notations

A tree T is a connected, acyclic graph COHSlstugg.oﬁ a Inode set V( ) and an edge set E(T). T
is rooted if it has exactly one dlStlngUlShﬂd no‘ﬂie,:-c'&ﬂléd thedroot, denoted by Ro(T). Given a
rooted tree T, we denote by <gp the partlla order‘ on "/J| . and say x <7 y if y is a node on
the path from Ro(T') to x. A node Wlth no tchlldren is balled a leaf, and Le(T)) denotes the set
of all leaves in T. If (z,y) € E(T) and r <¥', then‘y is the parent of x, denoted by Pa(x),
and z is a child of y. Let the set of children of'y be C'h(y), and the left and right children of
y are denoted by Left(y) and Right(y) respectively if T is a rooted binary tree. The length
of the path from Ro(T) to a node x, denoted by dr(x), is the depth of z in T. We denote by
Ir(z,y) the length of the unique path between x and y. The least common ancestor (LCA) of
a node subset L C V(T), denoted by lca(L), is the node that is the ancestor of all nodes in L
with the greatest depth. The subtree of T' rooted at x, denoted by T, is the tree induced by all
descendants of x. The height of a tree T', h(T'), is the number of nodes on a maximum-length
path from Ro(T") to a leaf node of T'. A tree T'is a full binary tree if each node in 7" is either a

leaf or has two children. Unless specified otherwise, the tree refers to a rooted full binary tree



T Res(T, L) Tl

a b c d e f g a b d f a b d f

Figure 1.1: An illustration of the restriction and the homomorphic subtree of the tree T" on the
leaf set L = {a,b,d, f}.

throughout this dissertation.

Given a tree T and a set L C Le(T), the restriction of T on L is the minimal subtree
containing L as the leaf set, denoted byyRes(T, L). We'define the homomorphic subtree Ty, of
T on the leaf set L to be the tree resulting ‘frdfn Re.isl(T ) L)by contracting all nodes of degree
two except Ro(Res(T,L)). See Figure 1. I for an 1llustrat10n leen r <p y, we define the
interval [z,y] = {u € V(T)|x <r u <r y} a;a,d :f; alnd y are the starting terminal and the
ending terminal of the interval [z, y], reSpF th'éT" Let Z besa collection of intervals under the

<?lalled a comr of Z ffttor cach interval I € Z, there

! i
exists at least one node v € U such that 2} c il [ fs a cover of minimum cardinality, we

partial order <7. A node set U C V(T) T

call U a minimum cover of . The infersection gmph of a collectlon of intervals Z, denoted by

int(Z), is the graph where V(int(Z)) = Z and E(int(Z)) = {([,I')|I,I' € T and I N 1" # (}.
1.2.2 The Gene Duplication Model

The Gene Duplication (GD) model was first introduced by Goodman et al. [25]. The model
hypothesized that the inconsistency of gene trees and corresponding species tree is caused by
a series of gene duplications and losses, and that each gene duplication can be placed on a
specified interval on the species tree [25, 27, 57]. Given a set of n taxa, a species tree is a full
binary tree, using these n taxa as leaves, which describes their evolutionary history. Given a
gene family for a set of n taxa, a gene tree is a full binary tree that depicts the evolutionary

history among the sequences of the gene family.



Let G and S be a gene tree and species tree, respectively. G and S are biologically related
only if all genes in Le(G) are sampled from the species in Le(SS). A leaf-mapping Lg s : Le(G) —
Le(S) maps a gene g € Le(G) to a species s € Le(S). That is, a leaf-mapping specifies the
species from which the gene was sampled. G and S are comparable if such a leaf-mapping
L s exists. Let G be a set of gene trees. G and S are comparable if each gene tree G € G is
comparable with S. For convenience, we define the set L;'s(s) = {glg € Le(G) and L s(g) =
s} for each leaf s € Le(S). For a set of gene trees G comparable to the species tree S, let
Lgs = Ugeg Las and Lg5(s) = Ugeg La's(s) for each node s € Le(S). Unless specified
otherwise, we assume that all given gene trees are comparable with S and denote by G a set of
gene trees, where GG € G throughout this dissertation. To correlate a gene tree G with a species
tree S, we require a function to map each gene, g in V(G) to the most recent species in S where

=
g is involved.

Definition 1: Let G and S be a gene trée and spe(nes tree respectively. Given a leaf-

mapping Lg s for G and S, the,LCA- map Z;L‘avlrlg V(G) = V(S5) of Lgs is defined as

Mes(g) = lea(Le s(Le(Gy)) ) for_each noji g Grk% ,
‘ 5 i :

For the convenience, we deﬁne‘ajcnir:le sétE‘M_ e t!oI be {glg € V(G) and Mg s(g) = s}

for each node s € V(S). For a set of gene 'trees g comparable to the species tree S, let

Mg.s = Ugeg Ma,s and Mgly(s) = Ugeg M s(5) for each node s € V().

Definition 2: A node y € V(G) is a gene duplication if there exists a child z of y such that
Mes(z) = Mgs(y). We denote by Dup(G, S) the set of gene duplications in G with respect
to S. Let Dup(G,S) = Ugeg Dup(G, S) for a set of gene trees G.

Definition 3: For each gene duplication g € Dup(G, S), the interval I(g) specifies all possible

placements of the gene duplication g onto the species tree and is defined as follows.
1. If g = Ro(G), I(g) is set to [Mg.s(g), Ro(S)].

2. If ngs(g) = MGVS(P(I(Q)), I(g) is set to [MGVS(Q),qu(g)].

7



G S Sl
[S29 Sl] SH

[54, 53] / = [52, $2] g,

Sq S2
Sq S2 S5 56

a b c e d f a b c d e f g

Figure 1.2: An illustration of a gene tree G and a comparable species tree S. For simplicity,
the labels of leaves of GG are replaced with the corresponding leaf-mapping. For each internal
node in G, the boxed value denotes the LCA-mapping of the internal nodes of G. If a node of
G is a gene duplication, the interval is also shown:

3. Otherwise, I(g) is set to [Me.s(¢)s zjghere z € @h(M e s(Pa(g)))N[Ma.s(g), Ma.s(Pa(g))).

See Figure 1.2 for an illustration. o Lt f
i |

According to [27], we define the number|of losSes and the/mutation cost as follows.

H L w' ‘I | |
Definition 4: Let y be an internal node of the ééﬁe ’crlééi Gland S = S|ze s(re(@))- The number
w1 . ’
of losses Loss(G,S,y) associated to vy is defined as foll*owsg
0 “ i M 5 (y) =
Loss(G,S,y) = .
> leWMgs(y), Mg g(2)) — 1| otherwise.
z€Ch(y)
Let Loss(G, S) = Zer(G)\Le(G‘) Loss(G, S, y) be the total number of losses of G with respect

to S, and Loss(G,S) = > g Loss(G, S).

Definition 5: For a gene tree G and a species tree S, Mut(G, S) = |Dup(G, S)|+ Loss(G, S)
is the mutation cost of G with respect to S. We also let Mut(G,S) = > ..o Mut(G,S) for a

set of gene trees G and a species tree S.

An example is shown in Figure 1.3 to describe how the GD model explains the inconsistency

between a gene tree G and a species tree S by postulated gene duplications and losses. R is

8



Figure 1.3: An illustration for describing hpvlv the GD madel explains the inconsistency between
a gene tree G and a species tree 8. R./s.theweconeiled tree for G and S. For simplicity, the
labels of leaves of G are replaced with.the coftesponding leaf-mapping.

the reconciled tree for G and S. The LCA-mappings Mg s(u1), Mg.s(uz), and Mg s(us) are
vy, v1, and vy, respectively. In the species vy of R, the gene y duplicates into two copies y; and
Y2, and both copies speciate according to the topology of the species tree S. The solid lines in
R represent the embedding of GG into R, while the dashed lines in R represent the losses of G.
Thus, the inconsistency between G and S can be explained by postulating one gene duplication

and four losses.



1.3 Problem Definition and Results

In this section, we define the problems discussed in this dissertation, and state our results for

these problems. These results are summarized in Figure 1.4.

1. The EP1SODE-CLUSTERING (EC) Problem. Given a set of gene tree G = {G, Ga, ..., Gy}
and a species tree S, the EC problem is to find a minimum cover for the collection
of intervals Z = U cp,pg.511(9)} under the partial order <g. For the EC problem,
Burleigh et al. [17] presented an exact algorithm rather than heuristic approaches used
previously. The time complexity of the exact algorithm is O((32F_, m,)? +p Sr_, m; +n)
where m; = |Le(G;)| for all 1 < i < k, p = |E(int(Z))|, and n = |Le(S)|. In this

dissertation, we propose an optimal O(Z i1 st n)=time algorithm.
1 =

2. The TREE INTERVAL COVER (TIC)Problem. Giveh‘a tree T’ and a collection of intervals
I =AlL,1I,...,1,}, the TIC problem is t@ ﬁnd a mlnlmum cover C' for 7 under the partial
order <p. Burleigh et al. [17] showed Eha&:ﬁe Ebﬂproblem is linear-time reducible to the
TIC problem. Thus, Burleigh et al. SL ed ﬂlﬁ EQ problem by proposing an O(A2+pA+n)-
time algorithm for the TIC p;‘qblen!l , Wher.e-p 7 1|E(mt(I))| and n = |Le(T)|. In this

dissertation, we give an optimal O()\ —|— n)-time “algor-lthm for this problem.

3. The MiNntMuM EPISODES (ME) Problem. Given a set of gene trees G = {G1,Gs, ..., Gk}
and a species tree S, the ME problem is to assign duplications to nodes in .S such that
the total number of episodes is minimized, where each duplication g is associated with an
interval I(g) in S describing the locations in which ¢ can be placed. The formal definition
of episodes will be discussed in Chapter 3. For the ME problem, the problem had been
open for a long time. Bansal and Eulenstein [7] were the first to solve it by an exact
algorithm with the time complexity O(Y2F_, mn), where m; = |Le(G;)| for all 1 <4 < k
and n = |Le(S)|. In this dissertation, we give an optimal O(Zf:1 m; +n)-time algorithm

for the ME problem.
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4. The DL-NNI LocAL SEARCH Problem. We consider the heuristic for the DUPLICATION-
Loss problem based on the NNI operation and the corresponding local search problem,
called the DL-NNI LOCAL SEARCH problem. Given a set of gene trees and a species
tree S, the DL-NNI LOCAL SEARCH problem is to find a tree S* with the minimum
mutation cost among the neighborhood of S, where the neighborhood of S is the set of
trees transformed from S by performing an NNI operation on any node of S. For a tree
S and a node x € V(5), an NNI operation performed on x is to swap the subtree rooted
at = and the subtree rooted at the sibling of the parent of . Note that there are ©(n)
trees in the neighborhood of S based on the NNI operation, where n is the number of
leaves in S. Given a set of gene trees G = {G1,Ga,...,GL} and a species tee S, Zhang
presented a linear-time algorithmifor computing the:mutation cost in [57]. Given G and
S, the naive algorithm for the DENNI I:OCAI;I .SEARGH problem computes the mutation
costs for each tree in the nelghborhood of S and takes total O(Z -, m;n+n?) time, where

= |Le(G)| for all 1 <i < k and n/= 1[.&(3){ IIH this dissertation, we propose a linear-
time algorithm for the DL-NNI LO AL 'g'%l-'RChiproblem In addition, Bansal et al. [§]
proposed a near-linear time algorlt forthe NNI LOCAL SEARCH problem under the
duplication cost (the D-NNI LOCAL SEARCH pr('ibllem) and the problem is a special case
of the DL-NNI LOCAL SEARCH problem if we set the number of losses zero. Therefore,

our linear-time algorithm for the DL-NNT LOCAL SEARCH problem also improves the

result in [8].

1.4 Organization of the Dissertation

There are five chapters in this dissertation. In Chapter 2, we discuss the EC problem and
propose an optimal linear-time algorithm for the problem. Chapter 3 describes the ME problem
and provides an optimal linear-time algorithm for the problem. We study the heuristic for the

DuPLICATION-LOSS problem and propose a linear-time algorithm for the DL-NNI LocaL

11



Problem

Previous results Our results

The EPISODE-CLUSTERING Problem | O((XF, my)? + p b, mi +n) 17 | O, m; +n)

The TREE INTERVAL COVER Problem O(A? + p\ +n) [17] O(A+n)

The MINIMUM EPISODES Problem

O, mun) [7] O(%: )

i—1 T +1n

The DL-NNI LocAL SEARCH Problem

O3, min +n?)! o: )

i—1 m; +n

Figure 1.4: Summary of results in this dissertation.

SEARCH problem in Chapter 4. Finally, concluding remarks appear in Chapter 5.

J1®
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e

fOnly naive algorithms were known for this problem. It should be noted that Bansal et al. proposed a near-
linear time algorithm for the D-NNT LOCAL SEARCH problem [8]. In the near-linear time algorithm, the first

instance of the D-NNI LOCAL SEARCH problem can be solved in O(3F_, mn + n?) time, while the following
. . k .
instances can be solved in O(>>,; m; + n) time.

12




Chapter 2

The Episode-Clustering Problem

2.1 A Linear-Time Algorithm for the Episode-Clustering
Problem

In this chapter, we study the EPISODE-CLUSTERING. (EC) problem. Burleigh et al. [17] in-
troduced the TREE INTERVAL COVER (FIC) problem aud showed that the EC problem is a
special case of the TIC problem.“In the following, Ave, give ‘the definition of the EC problem
and propose a linear-time algorithm for the‘TfIé;p;r;(r)‘blem.

Il 'm |
2.1.1 A Linear-Time Algorithnig forthe Tree Interval Cover Problem

11

Given a collection of gene trees G aI.i(i a s!pécies tree S ‘, the EC problem is to find a minimum
cover for the collection of intervals T"=J, (g 511 (g)} under the partial order <s. Now
we turn to introduce the TIC problem. Given a tree T and a collection of intervals 7 =
{I,I5,...,1,} where I; = [a;,b;] and a;,b; € V(T) for i = 1,2,..., A, the TIC problem is
to find a minimum cover C' for Z under the partial order <r. Note that given G and S, the
collection of intervals Z can be computed in linear time using the efficient algorithm for finding
the least common ancestor [11, 57]. As a result, it is not hard to see that the EC problem is
a special case of the TIC problem [17]. Next, we state the linear-time algorithm for the TIC
problem.

The algorithm proceeds as follows. First, we traverse the tree T from Ro(7T') using the

breadth-first search to compute d(v) for each node v € V(T), i.e., the distance between v to

13



Ro(T'). With the value of d(v), we can derive the length, I([;), of each interval I; = [a;, b;]
in Z, by calculating the value of d(a;) — d(b;). For each node v in T, we maintain a value
min_len(v) defined as follows. Let Z(v) be the set of intervals that pass through the node v.
The min_len(v) is used to keep the minimum length of intervals from v to all ending terminals
among the intervals in Z(v). Initially, we set the value of min_len(v) to be the minimum among
the lengths of the intervals using v as the starting terminal. If such value does not exist for the
node v, the value of min_len(v) is set to infinity.

Then we traverse the tree T' in a bottom-up fashion. When we visit a node v in T', we have

the following two cases:

1. If min_len(v) = 0, there exists at least.one interval whose ending terminal is v. Hence,

we must add the node v into the cover €.

2. If min_len(v) # 0, there are no intervals using v asan énding terminal. We just upload the

value min_len(v)—1 to Pa(v) and comp@q&: th@ v&iulhe min._ len( )—1 with min_len(Pa(v)).
l
Then we take the smaller valueias tlre V&*Hf-éf' Thin- len(Pa(v)).

YL l | 3

We call the above method Algorlthm ’l[‘ C, ar;d an echample of executing Algorithm TIC is
given in Figure 2.2. In G4, the boxec! Valpe of each internal node u; denotes the LCA-mapping,
and the interval I(u;) is marked on the left u‘s-ide of n‘t‘)de w; if u; is a gene duplication, where
1 <¢ < 5. The same usage applies to G». In S, the gray-colored value of each internal node s;
denotes the initial value of min_len(s;) computed by Algorithm TIC, where 1 < j < 7. When
Algorithm TIC traverses S in a bottom-up fashion, s; is the first internal node to be visited,
and we do nothing because min_len(s;) = co. When sg is visited, the value of min_len(ss) does
not change since min_len(sg) — 1 > min_len(ss). When s; is visited, s5 is added to the cover
C' since min_len(s;) = 0. When s, is visited, we also do nothing because min_len(ss) = oo.

When s3 is visited, s3 is added to the cover C' since min_len(sz) = 0. When s; and sy are

visited, we do nothing because their min_len values are infinity. Finally, the returned cover

C = {83, 85}.

14



Algorithm TIC(T,T)

Input: A rooted tree T', where |V (T')| = N; a collection of intervals Z = {Iy, Is, ..., I}
under the partial order <7, where I; = [a;,b;] for i =1,... A.

Output: Return a minimum cover C' of Z.

1 Perform the breadth-first search to calculate d(v), the distance between v and Ro(T)

for each v € V(7). 46 aquu!f"ﬂ' f-n_{ud-
2 for each node v € V(T') do AP 1’,_* —&! o
A& o - HQ*T:-J
3 minlen(v) « oo. . O
. A “
4 fori=1to A do :{!: o !:,.:‘ &
5 (L) <« d(a;) — d(b;). \.,{. ' = -
ol
6  if [(L;) < min_len(a;) t‘h’eq . B8
7 min_len(a;) «— I(1 )h"j‘ E
-
8 Apply the postorder traversgl t_f'd e%he\ylsltmg order of nodes.
9 for i =1to N do r-*,—‘-} Ll | ‘J“?_f &
10 if minlen(v;) = 0 then " <2
11 Insert v into the cover C'.

12 else if min_len(v) — 1 < min_ len(

13 min_len(Pa(v)) < min_len(v) —
14 return C.

Figure 2.1: The algorithm for the TREE INTERVAL COVER problem.
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2.1.2 Correctness and Complexity

Now we show the correctness and time complexity of this algorithm.

Lemma 1: Let C' = {c1,¢a,...,¢,} be the cover found by Algorithm TIC. The cover C' must

be a feasible interval cover, i.e., a cover covering all intervals in Z.

Proof: For the purpose of contradiction, assume that I’ = [s1,s;] be an interval that is not
covered by the cover C. Let the path of I’ be (s1,s9,...,;). When initializing the value
min_len(sy), it holds that min_len(s;) < i — 1 by Algorithm TIC. Then Algorithm TIC tra-
verses the tree 7' in a bottom-up fashion. When visiting a node s; where 1 < j <4, it is clear
that min_len(s;) < i— j. Before we encounter-themode Paf(s;), there must exist a node s’ € I’
such that min_len(s") = 0, and the node s’ ‘isu‘jnserté‘d into-our cover C. Therefore, the cover

I’ is covered by the node s’ and our assumiption is a eontradiction. Hence, the cover C' found

by Algorithm TIC is a feasible interval cove'r‘" \ 33 ]
w.:_, ,"I;',‘ 3 |
h '—F' |
| L rh 1 ‘
Theorem 1: Algorithm TIC solves the ’IFE EE 'INTERMAL COVER problem correctly.
i, |

i I
Proof: Let C = {c1,¢a,...,¢,} be th'e“ Cove;‘.found by Aigorithm TIC. By Lemma 1, C is a

feasible interval cover, i.e., a cover covering alliintervals in Z. Therefore, the rest is to show
that the cardinality of C' is equal to that of an optimal cover.

Forv=1,2,...,p, there exists an interval, I.,, having ¢; as an ending terminal and setting
min_len(c;) = 0. We claim that I, N I, = () for all i # j where 1 < i, j < p. For the purpose
of contradiction, assume that I., N 1., # () for some i # j, and ¢; is an ancestor of ¢; without
loss of generality. Since Algorithm TIC traverses the tree T' in a bottom-up fashion, the node
c¢; would be inserted into the cover C' earlier than the node ¢;. When inserting c¢; into C, the
value of min_len(c;) is equal to zero, and min_len(c;) — 1 would not be uploaded to compare
with min_len(Pa(c;)) by Algorithm TIC. In other words, any interval passing through the

node ¢; can not affect the value of min_len(c;). Due to I, N 1., # 0, I, also pass through
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¢;. Therefore, it is impossible that the interval I, is the interval such that min_len(c;) = 0
and our assumption is a contradiction. Hence, for all i # j where 1 < 4,5 < p, the claim that
I, NI, = 0 holds.

By the above claim, we obtain that an optimal cover requires at least p nodes to cover these
non-overlapped intervals I, I.,, ..., I.,. Thus, the cardinality of an optimal cover is equal to

that of the cover C' found by Algorithm TIC. ]

Theorem 2: Given a tree T' and a collection of intervals Z = {1, I, ..., I, }, Algorithm TIC

finds the minimum cover of Z in O(N + \) time, where |V(T)| = N.

Proof: Algorithm TIC takes O(N).time to compute-d(v) for each node v € V(T) using the
L = ‘
breadth-first search. For each node v €V (#); the initial v-alhe of min_len(v) can be computed
in O()\) time, and then Algorithm*TIC traverses the-tree T i'nr,-la bottom-up fashion in O(N)
o NI o)
time. Totally, the time complexity for Algorithi TIIC| i? O(N+ A). ]
- - --.-‘—: I
u I
R |
Ak | !
In the following corollary, we conclude ‘thfa time comgi)]lrzxity of,the EC problem. The corollary
can be easily derived by Theorent 2.and we omit the Droof here.
Corollary 1: Given a set of gene tree G = {G1, G5, ..., G} and a comparable species tree S,
the EC problem can be solved in O(3.F_, m; +n) time, where m; = |Le(G;)| fori =1,2,..., k,

and n = |Le(9)|.
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Figure 2.2: An example of executing Algorithm TIC for the EC problem with gene trees G, Gy
and a comparable species tree S. For simplicity, the labels of leaves of G are replaced with the
corresponding leaf-mapping.
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Chapter 3

The Minimum Episodes Problem

To study the MiNnimum EpisoDES (ME) problem, we first introduce some definitions and
notation proposed by Bansal and Eulenstein [7].

Given a gene tree G and a species tree S, -let Fes: VA(G).— V(S5). Fe.s is valid if for each
node g € V(G), its mapping satisfies the follovﬁng: =

1. If g € Dup(G, S), g is mapped to any ﬁo‘de in“‘t_‘ihie‘ interyal7(g).

el
| — |
| - |

2. Otherwise, F¢ s(g) is the same as /\TITS(ZJ.;;, ‘;

“!‘ L l |

- [
Let the unions of the mappings.F = UGeg Fe.s a?d F o= UGeg Mg for a set of gene

trees G. F is valid if F¢ g is valid for éach gene tree,G eg '
Given a set of gene trees G, a species treeiS;and a valid mapping F, let F~1(s) denote the
node set {g : F(g) = s} and H(F, s) denote the subgraph of G induced by the node set F~1(s),

where s € V(S). Note that H(F,s) must be a forest.

Definition 6: Given a set of gene trees G, a species tree S, and a valid mapping F, A(F,s) =
max {h(T) : T is a tree in H(F,s)}, i.e., the number of episodes at s caused by F, where s €
V(S). Also let A(F) =3 () A(F, s).

Let T be a tree in H(F,s) such that h(T) = A(F,s), where s € V(S). A node g € F1(s)
is a leading node if and only if g is the root of T. A node g € F~1(s) is free if and only if Pa(s)

is in the interval I(g), where s is not the root of S.
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The ME problem is, given a set of gene trees G = {G, Ga, , ..., G} and a species tree S, to
find a valid mapping Fop : Ugeg V(G) — V(S) such that A(F,y) = min {A(F) : F is any valid mapping}.

3.1 Algorithm ME by Bansal and Eulenstein

Algorithm ME [7] first computes the mapping F from G to S and all intervals I(g) for each
node g € Dup(G,S). Let F : Jgeg V(G) — V(S) record the mapping in each step. F is
initialized with Fy, and is modified step by step as follows. S is traversed in postorder, and
each visited node s € V(.9) is checked whether F!(s) # () and all leading nodes in F~!(s) are
free. If both conditions hold, F is updated by changing the mappings of all leading nodes in
F~1(s) from s to Pa(s). When the postorder traversal is terminated, A(F) is minimum, i.e.,
F is an optimal valid mapping. ‘ “

Bansal and Eulenstein [7] gave an analysis‘of Algorithm ME as follows. Let n = |Le(95)|
and m; = |Le(G;)| for all 1 < i <ky The mappmg «7:/\4 1s coniputed in O(ZZ L min) time. All
intervals of the nodes in Dup(G, S) are calculated'm O(Z -, my;) time. For each node s € V(55),
it takes O(3F_, m;) time for each stepyof fi dmgmall leadmg nodes in F!(s), checking if these
leading nodes are free, and updatlng the maijlng . Smce there are O(n) nodes in the species

tree, each of the above three steps takes O(ZZ L mn) t1mei we have the following theorem.

Theorem 3: [7] Given a set of gene trees G and a species tree S, Algorithm ME computes

an optimal valid mapping from the gene trees to the species tree in O(ZZ L m;n) time.

3.2 A Linear-Time Algorithm for the Minimum Episodes
Problem

The time complexity of Algorithm ME is dominated by four steps: (1) computing the LCA-
mapping, (2) finding all leading nodes, (3) checking if these leading nodes are free, and (4)
updating the mapping. We present a linear-time algorithm for the ME problem by separately

improving these steps in the following.
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3.2.1 Computing the LCA-Mapping

Given a gene tree and a species tree, Zhang [57] proposed a linear-time algorithm for computing

the LCA-mapping. We conclude the result in the following.

Theorem 4: [57] Given a gene tree G and a species tree S, computing the LCA-mapping

from G to S takes O(m + n) time, where |Le(G)| = m and |Le(S)| = n.
By Theorem 7, the following corollary can be easily derived and we omit the proof here.

Corollary 2: Given a set of gene trees G = {G1, G, ..., Gy} and a species tree S, computing
the LCA-mapping from G to S takes O(Y2F_, m;+n) time, where |Le(S)| = n and |Le(Gy)| = m;

forall 1 <i¢<k.

3.2.2 TFinding All Leading Nodes

We present an efficient approach, named Algerlthm LEADINGN QDE to finding all leading nodes

in Fj,(s) for each node s € ¥(9) in the folloﬁqg F(fl“ each node s € V(S), we maintain a

-

value (s) and a linked list lead[s] withutwo rom‘w}rs hea‘d[lead[ ]] and tail[lead[s]], which point

We 1:186 5(: b, 1n1t1ally zero, to keep A(Fpq, s) and
i} ‘

to the head and tail of lead]s], respectwel[y
use lead[s] to store the leading nodes in .7-" t il

We traverse each gene tree G € G by perforrning t“.he breadth-first search from Ro(G). For
each node g € V(G), we keep a value r(g) to store Ro(T), where T is a tree in H(Fn, Faa(g))

with g € V(T'). When g is visited, r(g) is determined according the following three rules:
1. If g = Ro(G), then r(g) = g since g must be Ro(T).
2. If Fmlg) # Fm(Palg)), it follows that Pa(g) ¢ V(T). Thus, r(g) = g.
3. Otherwise, r(g) = r(Pa(g)) since Pa(g) is also a node in 7.

For each node g € V(G), we also maintain a boolean value flag(g), initially zero, to indicate
whether ¢ is a leading node. When visiting g, we let s = F(g) and consider the following two

cases:
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1. If the distance between g and r(g) plus one is greater than d(s), then the elements in
lead[s] are not the leading nodes in Fy (s) and r(g) is a new leading node in Fy, (s). We
delete each node ¢’ € lead[s] and set flag(r(g')) = 0. We also insert r(g) into lead|s], set

flag(r(g)) = 1, and update J(s) to the distance between g and r(g) plus one.

2. If the distance between g and r(g) plus one is equal to §(s) and flag(r(g)) = 0, then r(g)

is also a leading node in Fy  (s). We insert r(g) into lead[s] and set flag(r(g)) = 1.

After processing all gene trees in G, we find all leading nodes in .7-7/[1(3) and compute
A(Fpnm,s) for each node s € V(S). Algorithm LEADINGNODE is given in Figure 3.1. The

correctness and time analysis of Algorithm LEADINGNODE are shown as follows.

Lemma 2: Given a set of gene trees G, a specieslfltree S,sand a valid mapping Fa, Algo-
rithm LEADINGNODE finds all léading nodés in F (9 aind computes A(Fpy, s) for each node

s € V(). —

[ |

‘ i

| %1 |
Y

s—ran
Proof: We need to show that (1) the ele jntaﬁkad[%s] are all leading nodes in Fy,(s), and

afté!fAlgﬁl)fﬁthm LEADINGNODE terminates.

Part (1): Assume that g is a Joading h(&de in .7:;41&54) qndg Z lead[s]. Let g = Ro(T) for

(2) A(Fpm,s) = 0(s) for each node™s € V(

some tree T in H(Fp,s). Since g & .lﬂé‘a‘d[s‘] ;i there ‘existé another tree 7’ in H (Fm,s) with
g" = Ro(T") such that h(T") = 6(s) > h(T) by lines 14 and 21 of Algorithm LEADINGNODE.
Thus, it follows that A(Fuy, s) > h(T') > h(T) and g is not a leading node in Fy, (s), which is
a contradiction.

On the other hand, assume that g € lead[s] and g is not a leading node in Fy,(s). Let
g = Ro(T) for some tree T in H(F4,s). Since g is not a leading node in Fy/(s), there must
exist a tree 7" in H(Fum, s) with ¢ = Ro(T") such that h(T") > h(T). By lines 14 and 21 of
Algorithm LeadingNode, ¢ is not in lead[s], which is a contradiction. Therefore, g is a leading
node in Fy, (s) if and only if g € lead[s] for each node s € V(9).

Part (2): Let T be a tree in H(Fpq, s) with h(T) = §(s), and g = Ro(T). For the purpose

of contradiction, assume that there exists a tree 7" in H(Fpq, s) with h(T") = A(Fu, s) such
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Algorithm LEADINGNODE(G, S, F)

Input: A set of gene trees G, a species tree S, and a valid mapping F .

Output: Return all leading nodes in Fy,(s) and A(F, s) for each node s € V(9).
1 for each node s € V(S) do

2 4(s)=0.

3 head|lead]s]] < NIL.

4 for each gene tree G € G do

5  for each node g € V(@) visited in the breadth-first search from Ro(G) do

6 if ¢ = Ro(G) then

7 r(g) < g. (@l Sleks .f'

8 else if Fa(g) # Fm(Palg )Q then, -4 ,. .

9 o) o F £

10 else "-}“-: - / \

11 1(g) — r(Pa(g)). [ G

12 flag(g) < 0. m ( A -m ] &
= T -

13 Calculate d(g), the distancesbetween grant

14 if 6(Fulg)) < d(g) =ity ]the£ i 8

15 for each element g" 1r; leac ) ! g)] do ey ;

16 Delete ¢’ from lead{}‘- M(g) 1‘-*-’

17 flaglg) —0. T AR w4

18 Insert r(g) into lead[F (g )T ;.-'f.;!,}f“mrj:"r_." @i

19 flag(r(g)) — 1.

20 6(Fmlg)) — d(g) — d(r(g)) + L.

21 else if §(Fr(g)) = d(g) —d(r(g)) + 1 and flag(g) = 0 then

22 Insert r(g) into lead[Fa(g)].

23 flag(r(g)) < L.

24 return lead[s] and §(s) for each s € V(.5).

Figure 3.1: The algorithm for finding the leading nodes in F (s) and for computing A(F, s)
for each node s € V(95).

23



that h(T") > h(T). Let ¢ = Ro(T"). According to line 16 of Algorithm LEADINGNODE, 4(s)
must be set to h(T"), which contradicts the assumption. Thus, we have h(T") < h(T) = J(s)

and A(Fu, s) = 0(s) for each node s € V(5). O

Lemma 3: Given a set of gene trees G = {G1,Go, ..., G}, a species tree S, and a valid
mapping Frq, the time complexity of Algorithm LEADINGNODE is O(Zf:1 m; + n), where
|Le(S)| =n and |Le(G;)| = m; for all 1 <i < k.

Proof: Algorithm LEADINGNODE initializes d(s) and lead[s] for all nodes s € V(.S) in O(n)
time. All gene trees in G are traversed, so there are in total O(Zl m;) visited nodes. The two
for-loops in lines 4 and 5 contain O(ZZ 1 m;) Lterations and each operation in the two for-loops
takes O(1) time except the for-loop indines 15—17 LThe tlme complexity of the two for-loops
in lines 4 and 5 is dominated by the for- loop in hnes 15— 17 Accordlng to lines 18 and 22 of

Algorithm LEADINGNODE, however, a v1slted __Q_de (0 é V(G) brlngs at most one insertion. It

|
implies that O(3>F_, m;) insertions are totrmiy &’-{fﬁeﬁ That is, the total number of deletions

1 1
in line 16 of Algorithm LEADINGNODE IT (ZZ % mzp,ﬂ and the-for- loop in lines 15-17 takes
totally O(ZiC L m;) time. Consequently, ﬂhb tinne complexrcy of Algorithm LEADINGNODE is

O(Zf:l m; +1n). | ! ]

3.2.3 Checking If All Leading Nodes Are Free

In the following, we check if all leading nodes in F~!(s) are free, where F is an arbitrary
valid mapping. For each gene tree G € G, the interval I(g) and the length of I(g) for each
node g € Dup(G,S) are computed in linear time [57] by applying an efficient algorithm for
the LEAST COMMON ANCESTOR problem [11]. For each node s € V(.S), we maintain a value
min_len(s), which is the minimum length of intervals from s to all ending terminals among
all intervals passing through s. Initially, we set min_len(s) to be the minimum among the

lengths of the intervals of all leading nodes in ]-";41(3) using s as the starting terminal. If
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Algorithm LINEARME(G,S)
Input: A set of gene trees G and a species tree S.
Output: Return an optimal mapping F : (Jgeg V(G) — V/(S) such that A(F)
= min {A(]?) . Fis any valid mapping}.
1 Compute the LCA-mapping Fr from G to S.
2 Find all leading nodes in Fy, (s) for each node s € V(5).
3 for each gene tree G € G do
4 Compute the interval I(g) = [ay, by| for each g € Dup(G, S) using the algorithm in [11].
5 Traverse S by the breadth-first search from Ro(S) to calculate d(s), the distance
between s and Ro(S) for each node s € V(.5).
6 for each node s € V(5) do
7 minen(s) < oc.
8 for cach node s € V(S5) do
9  for each node g in lead[s| do 23 =

10 if g € Dup(G, S) then

11 I(I(g)) < d(ag) — d(bg): =

12 else > ___ :‘f"_“ <
13 I(1(g)) — 0. || == 'i |
14 if 1(I(g)) < min_len(Fam(g)) thdn‘ n | f
15 min_len(Fa(g)) = I1(I1(g)). i |

16 for each node s € V() visited in 'postbxkfder do |/
17 if head[lead[s]] # NIL then :

18 if min_len(s) > 0 then

19 if §(Pa(s)) <1 then

20 tailllead[Pa(s)]] < head[lead]s]].

21 min_len(Pa(s)) < min {min_len(Pa(s)), min_len(s) — 1}.
22 else

23 taillleadfree|Pa(s)]] « head|lead]s]].

24 head[lead|[s]| < NIL.

25 Construct a mapping F : (Jgeg V(G) — V(S) as follows:
For each node g € (Jgeq V(G),
s, if g € lead|s] or g € leadfree]s],
) g g

26 return F.

Fmlg), otherwise.

Figure 3.2: The algorithm for the MiNIMUM EPISODES problem.
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Figure 3.3: An example of executing Algorithm LINEARME for the ME problem with gene
trees G, G5 and a comparable speciesitree S For simplicity; the labels of leaves of G and Gy
are replaced with the corresponding leaf-mapping. (a) Two gene trees G, G5 and a comparable
species tree S. (b) The valid mapping F returned by Algorithm LINEARME.

min_len(s) is greater than zero, all leading nodes in JFy,(s) are free. According to Algo-
rithm ME [7], we change the mapping in this condition and update min_len(Pa(s)) to the

value of min{min_len(Pa(s)), min_len(s) — 1}.

3.2.4 Updating the Mapping from the Gene Trees to the Species
Tree

We now show how to efficiently update the mapping from G to S and, together with the above

three improved approaches, present a linear-time algorithm for the ME problem. First, we
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traverse the species tree S in postorder. When visiting a node s € V(5), we let F; denote the
mapping just before visiting s and check whether F, '(s) # 0, i.e., head[lead|s]] # NIL, and
whether all leading nodes F, !(s) are free, i.e., min_len(s) > 0. If both conditions hold, the
mappings of all nodes in lead[s] from s to Pa(s) are changed by moving all nodes in lead][s| to
lead[Pa(s)]. Let Fy be the mapping just after the modification of the mappings of all nodes
in lead[s]. In H(F,, Pa(s)), the nodes originally in lead|s] become nodes of degree zero, i.e.,
trivial trees. In other words, in H(F3,s), all trees induced by the nodes originally in lead]s]
are trivial trees. This implies that the modified mapping does not increase the total number of

episodes. This observation is shown in Lemma 4.

Lemma 4: Let s € V(S) be the node being visited, and assume that Fy (s) # 0 and all
nodes in lead[s] are free leading nodes. Let*F; be tlli_e mapping just before visiting s, and F
be the mapping just after the miodificationfof the mapping:s of all nodes in lead[s| from s to

Pa(s). For all nodes g € lead]s], g‘i’s a nodeof, degree‘zero, fiew, & trivial tree, in H(Fy, Pa(s)).
i ' "--l- " i

Proof: We know that Fi(g) = s and Fa(¢) .—..-‘?Zb{ ') Singe ¢*is a free leading node under
the mapping F, it follows that Fi(g) # | Pﬂfq .7:2 (Pa(g)) = Mcs(Pa(g)), and that
both s and Pa(s) are in I(g). By Deﬁnitlotn 3, ng{}Fa W-does not belong to I(g). Thus,
Fa(Pa(g)) is not equal to Fy(g) and Pa(g) is:not the‘_pa;grit of g under the mapping F». Let
a and b be the left and right children of ¢'in/Gyrespectively. Since Mg s(a) <g Mg s(g) and
M s(b) <s Mas(g), g is not the parent of a and b under the mapping F». Therefore, g is a
trivial tree in H (Fs, Pa(s)). O

According to Lemma 4, we only need to compare the maximum height among the trees in
H(F,, Pa(s)) with the height of these trivial trees induced by all nodes in lead|s] as follows.
If 0(Pa(s)) < 1, then all nodes in lead|[s] are also the leading nodes of Pa(s). Therefore,
tailllead[Pa(s)]] is changed by pointing to head|lead]s]], and min_len(Pa(s)) is updated to the
value of min{min_len(Pa(s)), min_len(s) — 1}. Otherwise, we use a linked list leadfree|s] to

collect those nodes whose mappings are changed from s to Pa(s) but not the leading nodes in
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Fy'(Pa(s)). The procedure is repeated until all nodes in S are visited. Finally, we construct
a new mapping F : Jgeg V(G) — V(S) in a way that for each node g € Jgeg VI(G), Flg) = s
if g € lead[s] or g € leadfree[s], and F(g) = Fm(g) otherwise. The construction is performed
as follows. First, we traverse S in postorder and set F(g) = s for all nodes g in lead[s] and
leadfree[s]. Next, all gene trees G € G are also traversed in postorder. For each node g € V(G),
if flag(g) = 0 then we set F(g) = Fam(g) since its mapping has never been changed. F is the
final solution to the ME problem.

Algorithm LINEARME for the ME problem is shown in Figure 3.2, and an example of
executing Algorithm LINEARME is given in Figure 3.3. Let G, G5 be two gene trees and S
be a comparable species tree. For Figure 3.3(a), in G, the boxed value of each internal node
u; denotes the LCA-mapping F(u;), and the mterval I(u;).is marked on the left side of node
u; if w; is a gene duplication, where ¥ < 4 < 5. The saine usage applies to Gy. In S, the
gray-colored value of each internal'node’s; denotes the value of mm len(s;) computed by lines
6-15 of Algorithm LINEARME, and the hered..hsgﬂ of %eadmg nodes lead[s;] is shown on the
left side of s;, where 1 < j < 7. A(]:M)i mljor f;"lgure 3. 3(b), in (1, the boxed value of
each internal node u; denotes the returne(il apping ]:i( i) and the same usage applies to Gj.
In S, the computed linked list lead[sj] or leadfree[sj] 1S, shoWn on the left side of s;, where
1 <5 < 7. At the execution of the for-loop ini line 16 ‘37 is.the first internal node to be visited,
and this iteration is terminated because lead[s;] = (). When sg is visited, line 23 is executed
since min_len(sg) > 0 and 0(s5) > 1. That is, leadfree[ss] = {us} and lead[sg] = 0. The
procedure of visiting ss is similar to sg. Thus, leadfree[s,] = {v4} and lead[s5] = (). When s,4
is visited, lines 20 and 21 are executed since min_len(sy) > 0 and d(s3) < 1. In other words,
lead[ss] = {vs,us}, min_len(s3) = min{0,2 — 1} = 0, and lead[sy] = . After sq,ss, and s3
are visited, the iterations are terminated because the min_len values of the three nodes are all

zero. Finally, a valid mapping F is computed and A(F) = 14.
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3.3 Correctness and Complexity

Since Algorithm LINEARME is based on Algorithm ME [7], the correctness of Algorithm LIN-
EARME follows the proof shown in [7]. We conclude the correctness of Algorithm LINEARME

in Theorem 5.

Theorem 5: Given a set of gene trees G and a species tree S, Algorithm LINEARME computes

a valid mapping F : Jgeg V(G) — V/(S) such that A(F) = min {A(F) : F is any valid mapping}.

The time complexity of Algorithm LINEARME is analyzed in Theorem 6, and we conclude

that Algorithm LINEARME is a linear-time algorithm.

Theorem 6: Given a set of gene trees G = Gy, Ga,. .., G} and a species tree S, the time
| ¥ e

complexity of Algorithm LINEARME 1§-0 (3% m, *m), where |Le(S)| = n and |Le(G;)| = m;

forall 1 <i¢<k. =

|~ :‘w',“ - |
Proof: By Corollary 3 and Lemma 3, it tak&?’ﬁgiﬁzl m; /4 1) time to compute the LCA
mapping for all nodes in J,q V(&) to fin allﬂégdiﬂ‘g‘l nodes i’ £, (s), and to compute the
value of A(F,s) for all s € V(S)‘-:“'iFormtﬂ g & Duﬂf("g, S);-all intervals I(g) are computed
in O(3F  m; + n) time [11, 57]. The "“e";(ecutions of!‘hne..s::‘5~15 run in O(3F_ m; + n) time.
The for-loop in line 16 executes O(n) times of iterations and each iteration can be completed

in O(1) time. Constructing a new mapping F takes O(3.%_ m; + n) time. Therefore, Algo-

rithm LINEARME solves the ME problem in O(Zf:1 m; +n) time. U
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Chapter 4

The DL-NNI Local Search Problem

In this chapter, we study the heuristic for the DUPLICATION-LOSS problem based on the NNI
operation and the corresponding local search problem, called the DL-NNI LOCAL SEARCH

problem. We propose a linear-time algorithm for the«.DT.-NNI LOCAL SEARCH problem.

4.1 Preliminaries

First we review the nearest neighbor interchaigé (NNI) operation {1, 15] and define the DL-
I "'-.-

g

=
- |

NNI LOCAL SEARCH problem. ! i }1‘7“ | ‘?
Definition 7: For a tree S, we défine the lvalidsnodes of S, val(s), to be V(S) \ ({Ro(5)} U
Ch(Ro(S))). |

Definition 8: Let S be a tree. For each node z € wval(S), we denote by NNIg(x) the
resulting tree by swapping the two subtrees S, and S,, where y is the sibling of Pa(x). The

tree NN Ig(x) is the tree transformed from S by performing the NNI operation on the node x.

For the NNI operation, see Figure 4.1 for an illustration.
Given a set of gene trees G and a species tree S, the DL-NNI LOCAL SEARCH problem is to
find atree S* € {NNIg(x) : x € val(S)} such that Mut(G, S*) = min Mut(G,T).
Te{NNIg(x):zcval(S)}
We present a linear-time algorithm for the DL-NNI LOCAL SEARCH in the following. Our

algorithm contains two main steps: (1) initializing the LCA-mapping, the mutation cost, and
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Figure 4.1: The trees S and NNIg(x), where NNIg(x) is obtained by swapping the subtrees
Sy and S,

necessary values, and (2) computing the,néw' gene duplications and losses separately after
performing an NNI operation. It should be neted that we only focus on an individual gene tree
G € G in the following discussion, and it ean be Straightfdrward extended to all gene trees in

G. For simplicity, we also assume .that E‘G;(Le(Gp)——T Le(S)“n the following discussion. If
Les(Le(G)) # Le(S), we can setsS tig be S|¢G3%;T@ﬁ IiAfter preprocessing S in linear time [11],
the internal nodes of S|, ¢(Le(c)j-€an be ¢ nstr_ﬂé.ted ?I;I O(|Le(G)]) time. By traversing S in
postorder, we can construct E(S|£G7‘§@e(g)])‘g‘in O([Le(@)rgl +]Le(S)]) time. The time complexity
of our algorithm for the DL-NNI LOC'A"“Ll SEARCH prQ_ble;ﬁ are not affected. The details of the

algorithm for constructing S|r s(Le(q)) for-alllGi€ G will be presented in Section 4.5.

4.2 Initializing the LCA-mapping and the Mutation Cost

Given a gene tree and a species tree, Zhang [57] proposed a linear-time algorithm for computing

the LCA-mapping and the mutation cost. We conclude the result in the following theorem.

Theorem 7: [57] Given a gene tree G and a species tree S, computing the LCA-mapping
Mg.s, the number of gene duplications |Dup(G, S)|, and the number of losses Loss(G, S) takes
O(m + n) time, where |Le(G)| = m and |Le(S)| = n.

By Theorem 7, the following corollary can be easily derived and we omit the proof here.
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Corollary 3: Given a set of gene trees G = {G1, G, ..., Gy} and a species tree S, computing
the LCA-mapping Mg g, the number of gene duplications | Dup(G, S)|, and the number of losses
Loss(G, S) takes O(S2F_, m; +n) time, where |Le(S)| = n and |Le(G;)| = m; for all 1 < i < k.

In addition to the LCA-mapping and the mutation cost, we also maintain some values f(g, 1)
for each node g € V(G), where i € Ch(Ch(Mg,s(g))). The definition of f(g,%) is shown in the
following.

1 if Mg s(Le(Gy)) N Le(S;) # 0;

0 otherwise.

f(g,9) :{

When f(g,i) = 1, there exists at least one leaf z of G, such that Mg s(z) belongs to the
leaf set of S;. The information will be useful when we.compute the new LCA-mapping after
an NNI operation is performed. For a node g € V(G), now: we discuss how to compute the
value of f(g,i) for each i € Ch(Ch(Mags(g))). By theﬂn‘éﬂgorr‘ithm proposed by Bender and
Farach-Colton [11], the least comrfl.on anc?s?giﬁl of :];ny ‘two nodes in the species tree S can be
answered in constant time after S is prepré‘ esg:r;;n; II}IJ'ear time.* For each node g € V(G), we
compute f(g,) by traversing the gene tree ¢ in _9&?0“?1?}1‘“1) faghion. For each node g € V(G),
we initially set the value f(g, ) zerofor a1 & € C’h(C’hq./FMGYS(g'))). We do nothing to all nodes
g where Ch(Ch(Mgs(g))) = 0. Whéﬁ’nv&e visit a nqdeu:“gf” where Ch(Ch(Mgs(g))) # 0, we
check all nodes in Mg s(Ch(g)) to compute ’ghe value f(g,7). Let z be a node in Ch(g). There

are the following four cases to be considered.

1. f Mgs(z) = Mgs(g), then weset f(g,i) = 1 when f(z,i) = 1 foreachi € Ch(Ch(Mgs(2))).

2. Let j be a node in Ch(Mg,s(g)). If Mg s(2) = j, then we set the value f(g,k) = 1 for
each k € Ch(j).

3. Let j be a node in Ch(Ch(Mgs(g))). If Mg s(2) = j, then we set the value f(g,j) = 1.

4. If Mags(z) ¢ {Mes(g9)} UCh(Mes(g)) U Ch(Ch(Megs(g))), we check whether the

least common ancestor of Mg ¢(z) and j is equal to j, for each j € Ch(Ch(Mgs(g))).
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If lca(Mg.s(z),j) = J, it follows that Mg s(Le(Gy)) N{Le(S;)} # 0. Thus, we set the

value f(g,7) = 1.

For the technical reasons, we also maintain the value dg(j), i.e., the distance between j
and Ro(9), for each node j € V(S). For each node j € V(S5), the value dg(j) can be easily
computed by traversing the species tree S using the breadth-first search. With the value dg(j),
we can derive the distance between any two nodes u and v of S in O(1) time by computing the
value |dg(u) — dg(v)].

Algorithm INITIALIZELOCALSEARCH is shown in Figure 4.2. Now we analyze the time
complexity of the algorithm. Note that we assume that Lg s(Le(G)) = Le(S). Let |Le(G)| =
|Le(S)| = m. In Algorithm INITIALIZELOCGALSEARGH, the execution of lines 1 and 2 runs in
O(m) time by Theorem 3 and [11].,Since visiting alll'alll‘odes in G, the for-loop in line 3 executes
O(m) times totally. Since lines 4-20 takeionly O(1) time, ‘é‘a‘(nzh iteration of the for-loop in line 3
can be computed in O(1) time. Iine 21 He;fgn@s ‘?he "\preadth-'ﬁrst search on the species tree
S and can be done in O(m) time. Thus; 'the%&g, %o!mplexity of Algorithm INITIALIZELO-
CALSEARCH is O(m). | q, . ‘

Theorem 8: Given a gene tree (7 and a-species, tree 93 letifLe(G)| = |Le(S)] = m. Al-
gorithm INITIALIZELOCALSEARCH comﬁute‘svthe LdA—mapping, the mutation cost, and the

value f(g,1), where g € V(QG), for each node : € Ch(Ch(Mg.s(g))) in O(m) time.

4.3 Gene Duplications in NNIg(x)

In the following, we show how to compute all gene duplications Dup(G,S’), where S’ =
NNIg(z), after an NNI operation is performed on a node z € V(S). Before the discussion, we

review the result proven by Bansal et al. [8].

Lemma 5: [8] Let g be a node of G and z be a node in val(S). Assume that Pa(x) = and
Pa(B) = a. It Mgs(g) ¢ {a, 3}, then Mg s(g) is the same as Mg 5(g), where S" = NNIg(z).
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Algorithm INITIALIZELOCALSEARCH(G, S)

Input: A gene tree G and a species tree S.

Output: Compute the LCA-mapping M g, the mutation cost, and the value f(g,%) for
each node g € V(G), where i € Ch(Ch(Mgs(g))).

1 Compute the LCA-mapping Mg s, |[Dup(G, S)|, and Loss(G, S).

2 Preprocess the species tree S using the algorithm for computing the LCA in [11].

3 for each node g € V(G) visited in the postorder do

4 for each node i € Ch(Ch(Mgs(g))) do

5 f(g,i) < 0.

6  for each node z € Ch(g) do =4

7 if Mg s(z) = Mgs(g) then o -

8 for each node j € Gh(Ch(Megs(z))) do

9 o) = QB AN
10 for each node j € Ch(Mcgi(g)) dd'"_“:_y- :1”:':“] ‘i
11 if Mgs(z) =] then | == ||
12 for each node k e-Ch(j) d.lo fml 1
13 flg.k) = 100 s !r el :5!
14 for each node j € Ch(C’h(MG,S(gt))) do =
15 if Mgs(2) = j then Y oh :
16 flg.j) < 1.

17 if Mg s(2) & {Mas(9)} UCh(Mqgs(g)) UCh(Ch(Mg,s(g))) then
18 for each node j € Ch(Ch(Mgs(g))) do

19 if lca(Mg s(2),j) = j then

20 f(g,7) < L.

21 Perform the breadth-first search to compute dg(7) for each node j € V(S).

Figure 4.2: The algorithm for computing the LCA-mapping from G to S, the mutation cost,
and the values f(g,4) for each node g € V(G), where i € Ch(Ch(Mg¢s(g))).
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When we perform an NNI operation on a node x, except the nodes mapped to «a or (3, the
LCA-mapping of other nodes in GG remains the same by Lemma 5. Thus, we focus on the nodes

in G mapped to a and (5.

Lemma 6: Let g be a node of G and x be a node in val(S). Assume that Pa(x) = 8 and

Pa(f) = a. If Mg s(g) = 0, then Mg s(g) is equal to a, where S" = NN Ig(z).

Proof: Let the siblings of x and § be v and y, respectively. Since Mggs(g9) = 3, we
know that Mg s(Le(Gy)) N Le(Sy) # 0, Mg s(Le(Gy)) N Le(S,) # 0, and Mg s(Le(G,)) C
Le(S;) U Le(S,). After performing an NNI operation on the node x, the two subtrees S, and
S, are swapped. By Definition 1, it is clear that Mg ¢/(g) is equal to a. ]

II_“
Lemma 7: Let x € val(S); Pa(x) &= B, and Pa(f) - a... Assume that ¢ € V(G) and

Me.s(g) = a. After performing an NNI oFerr_g;;tion @ni }k, there ‘are two cases to be considered.

- I

(Let 8" = NNIg(x).)

1 If f(g,2) = 1, then Mgald) = MGISI 9) 2%
|‘

=

2. Otherwise, Mg ¢ (g) is equal to ﬁ

Proof: Let the siblings of x and 3 be v and y, respectively. For Case 1, since Mg s(g) = a,
we know that M s(Le(G,)) N Le(S,) # 0. Due to f(g,z) = 1, it follows that Mg s(Le(G,))N
Le(S;) # (0. After we perform an NNI operation on x, the two subtrees S, and S, are swapped,
and the least common ancestor of Le(S,) and Le(S,) is also a. Therefore, by Definition 1,
M s(g) is equal to a.

For Case 2, since Mg s(g9) = a and f(g,z) # 1, we know that Mg s(Le(Gy)) N Le(S,) =0
and Mg s(Le(Gy)) N Le(S,) # 0. After performing an NNI operation on z, it follows that
Mg s (Le(Gy)) C Le(S,) U Le(S!). Therefore, Mg s/(g) is equal to 3. O
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By the above two lemmas, we know the new LCA-mapping M ¢ after an NNI operation
is performed on a nodes x. It is clear that the difference between Dup(G,S) and Dup(G, S")
results from those nodes of GG, whose LCA-mapping is o or 3. Now we turn to discuss the

difference of gene duplications after performing an NNI operation.

Lemma 8: Let z € val(S), Pa(z) = 3, and Pa(f) = a. For a node g € V(G), assume that
M s(g) = 8. We have that g € Dup(G, S) if and only if g € Dup(G, S’), where 8" = NNIg(x).

Proof:

(=) Let the siblings of x and 3 be 7 and y, respectively. If g € Dup(G,.S), there exists
a child ¢’ of g such that Mg s(9) = Mgs(¢') = B. Thus, the two sets Mg s(Le(Gy)) N
Le(S,) and Mg s(Le(Gy)) N Le(S,) ate not emptyy and M s(Le(Gy)) € Le(S;) U Le(S,).
After performing an NNI operation eh-x, fhé two I;ubtreés Szand S, are swapped. Since
Mas(Le(Gy)) 1 Le(S,) # 0, Mg (RGN De(S2) 2, 8 Mo s(Le(Giy)) € Le(S) U
Le(S,), we know that Mg s/(¢) is ol By L@fhma-G; MG s(g) 1s equal to a. Due to Mg s/(g) =
Me.s(g') = a, it follows that g € Dup G,'j <= | l

) =

rh | ¢

(<) By Lemma 6, we have that MG 3* p= s Slnd:é, g€ Dup(G S"), there exists a child ¢/
of g such that Mg s/(9) = Mg, s(g ) = [Bue to MG s(g)= /3, we have that Mq s(Le(Gy))N
Le(S,) = 0 and Mg s(Le(Gy))NLe(S ) 0-“Thus, wo know that Mg s/ (Le(Gy))NLe(SL) # 0,
Ma,s/(Le(Gy)) N Le(S!) # 0, and Mgs/(Le(Gy)) € Le(S;) U Le(S). Since the NNI opera-

tion performed on the node z is to swap the two subtrees S, and S, it is easy to verify that

Me.s(g') = 8. Due to Mg s(g) = Mas(g') = 3, it follows that g € Dup(G, 5). OJ

Lemma 9: Let z € val(S), Pa(z) = 3, and Pa(f) = a. For a node g € V(G), assume that
Mes(g) = a and Mg s(g) = 3. We have that g € Dup(G, S) if and only if g € Dup(G, S’),
where S = NNIg(x).

Proof:
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(=) Since Mg s(g) = a and Mg s(g) = S, it follows that Me s(Le(G,)) N Le(S,) = 0 by
Lemma 7. Since g € Dup(G, S), there exists a child ¢’ of g such that Mg s(g) = Mg s(¢) = «
The fact that Mg s(Le(G,)) N Le(S,) = 0 and Mg s(¢9') = o implies Mg o(¢') = ( according
to Lemma 7. Thus, we have that Mg ¢ (9) = Mg,s(¢') = 5 and obtain that g € Dup(G, S").

(<) Since Mg s(9) = @ and Mg g(g) = 3, it follows that M¢ s(Le(G,)) N Le(S,) = 0 by
Lemma 7. Due to g € Dup(G, S’), there exists a child ¢’ of g such that Mg s/(g9) = Mg (9') =
B. The fact that Mg s (g') = B implies Mg s/(Le(Gy)) N Le(S,) # 0, Mas(Le(Gy)) N
Le(S)) # 0, and Mg s (Le(Gy)) € Le(S,)U Le(S!). Thus, it is easy to verify that Mg s(g') =
a before swapping the two subtrees S, and S,. We have Mg 5(g9) = Mg s(¢') = a and obtain
that g € Dup(G, 5). O

: | -

According to Lemmas 8 and 9, the'number of genigiduplications is not affected by the nodes
in Mals( B) and {g : Mg s(g9) = eand MG St (g) ﬁ} Therefofe the only nodes changing the
number of gene duplications are in the set ‘GD -B-fo 1:‘{9 Mes(g) = a and Mg s (g) = a}.
For a node g € GD_Diff, we must reco}rr‘putqlthe t@A—mappmg of the children of g with
respect to NNIg(z) to check Whether g }SE a gene dthcatlon or'mot. By Lemmas 6 and 7,
the re-computation of the LCA- mappmg ofJ Ch(g) can be done in O(1) time. Therefore, after
performing an NNI operation, we can determine 1f a node g € GD_Diff is a gene duplication
in O(1) time.

Algorithm CoOMPUTEGD is shown in Figure 4.3. Now we analyze the time complexity
of the algorithm. In Algorithm COMPUTEGD, the for-loop in line 3 executes O(|M5}S(a)|)
times totally. Since lines 4-15 take only O(1) time, each iteration of the for-loop in line 3

can be computed in O(1) time. Thus, the time complexity of Algorithm CoMPUTEGD is

O(IMgs(a)l).

Theorem 9: Let G be a gene tree, S be a species tree, and = € val(S). Given G, S, z,
|Dup(G, S)|, and Mg s, Algorithm COMPUTEGD computes the number of gene duplications
|Dup(G, NNIg(z))| in O(|M5}S(a)|) time, where aw = Pa(Pa(x)).
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Algorithm CoMpPUTEGD(G, S, z, |Dup(G, S)|, Mc.s)

Input: A gene tree GG, a species tree S, a node x € V(S), the number of gene
duplications |Dup(G, S)|, and the LCA-mapping Mg s.

Output: Return the number of gene duplications |Dup(G, NNIg(z))|.

1 Let Pa(z) = 3, Pa(Pa(z)) = a, and S" = NNIg(z).

2 [Dup(G,5")| < [Dup(G, S)|.

3 for each node g € Mg (o) do _qr:::lj':-'f ‘ :5 1*_ f{

4 if f(g,z) =1 then /* Mgks(‘g) ~ %

5 for each node z € C’h(ng do * \ A L
6 if Mcs(z) =2 tireniu m ":: *_
7 Mes(z) — a&.ﬁ ' ﬂrrl-_:“-'r.q ' m
8 else if M¢ s(2) = o’and. f(z,2) =4 then "R
: Mas(2) = od 8 1\ Psh
10 else Mg g/(z) — /3" ap, | y | H'"
11 if Mgs(Left(g)) =« Qf—‘-M ij,L{‘:: en’ /’ﬁ. g€ Dup(G,S). */
12 if Me.s(Left(g) #a ayd '?\/lg{s#(Rzg t@))# Qf’then
13 |Dup(G, S")| < |Dup(G S’»ﬂ Gy oy [ JEL o

14 else if M¢ o (Left(g)) = a or Mg s (Right(g)) = o then
15 |Dup(G, S")| < |Dup(G, S")| + 1.

16 return |Dup(G, S’)|.

Figure 4.3: The algorithm for computing the number of gene duplications |Dup(G, NNIg(x))|.
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4.4 Losses in NNIg(z)

In this section, we show how to compute Loss(G,S’), where S’ = NNIg(x), after performing
an NNI operation on a node = € wval(S). Unless specified otherwise, we assume that (1)
x € val(S),S" = NNlIg(z), (2) Pa(z) = ,Pa(f) = «, and (3) the siblings of = and 3 are v
and y, respectively, throughout this section. See the left part of Figure 4.1 for an illustration.

Let g be anode in G. We will consider the node g in the following five cases: (1) Mg s(g) €
{0, 8} (Lemma 10), (2) Me,s(g) € V(S)\V(Sa) and Mgs(g') € {a. B} for some ¢’ € Ch(g)
(Lemma 11), (3) Mgs(g) € V(S)\V(S,) and Mg s(g') € V(S,) UV (S,) for some ¢ € Ch(g)
(Lemma 12), (4) Mgs(g9) € V(S)\V(S,) and Mg s(g) € (V(S)\V(Sa)) U V(S,) for each
J € Chlg), and (5) Ma s(g) € V(S,) U V(SeHOVi(Ss):

Observation 1:  Let g be a nodésin G If /\/Ilas(g) e V(S)\V(S,) and Mgs(g) €
(V(S)\V(Sa)) U V(S,) for each g€ Ch(g ) then Loss(G’ 8 ): Loss(G, S, g).

Observation 2:  Let g be a node in Vg g e VJ(Sy) U V(S,) UV(S,), then

Loss(G,S',g) = Loss(G, S, g)- .I rﬁn |
|

Observations 1 and 2 show that ‘C'éses (Zi) andy(5) dd not change the number of losses after

an NNI operation is performed. Except Cages'(4) and (5 ), the remaining cases all change the
number of losses. In the following, we discuss‘how to compute the number of losses for the

remaining cases separately.

Lemma 10: Let g be anodein G. If Mg s(g) € {o, B}, then Loss(G, S’, g) can be computed

in O(1) time.

Proof: By Lemmas 5, 6, and 7, the mappings M ¢ (g) and Mg ¢ (¢g') can be derived for each
node g € V(G) and for each node ¢’ € Ch(g) in O(1) time. With Mg ¢(g) and Mg s (g') for
each node ¢’ € Ch(g), we can compute Loss(G,S’, g) by Definition 4. Note that we compute
the distance ls(Mgs(g9), Mas(g')) by computing the value |dg(Meg.s(9)) — ds(Mea.s(g))],

and it can be done in O(1) time. However, after performing an NNI operation on the node
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xz € V(9), the two subtrees S, and S, are swapped and the value dg/(Mg s(¢')) may differ

from dg(Mgs(g')), where ¢’ € Ch(g). There are the following two conditions to be considered.

[ If MG,S(Q,) € V(Sx), then dS/(MG,S’(g/)) = ds(MGﬁ(g,)) — 1.
o If Mg s(g') € V(S,), then dgr(Mg.s:(9')) = ds(Mas(g')) + 1.

It should be mentioned that deciding whether M 5(¢") € V(S;) (or M s(g') € V(S,)) can
be done by checking if lca(Mgs(g'),x) = z (or leca(Mgs(¢'),y) = y) in O(1) time. Therefore,
Loss(G, S, g) can be computed in O(1) time. O

Lemma 11: Let g be a node in Gy If Mgis(g) @V (SN\K(S.) and Mas(g') € {a, B} for
| == E! ‘
some g’ € Ch(g), then Loss(G,S%¢) ¢an bes€omputed in-O(1) time.

Ty

Proof: We consider the LCA—méipf)ing oﬁ "Q C’lfn(‘g)n“'nafter pérforming an NNI operation on

.
ik

||

n

z. Note that there exists exactly ome chil g.-%"'-@@(%) such that M¢s(g') € {a, 5} since
Me.s(g) € V(S)\V(Sa). There are two C(i) ditic}lé__« to HF considered.

i
e A\ I \) |
o If Mcs(9') = B, Loss(G, S’,g),is:-‘eq‘ual to Loss(G,5,g) — 1 since Mg s(g) = a by

Lemma 6. For the computation, weonly chéck eachfiode i € MG (B). If Me,s(Pali)) ¢
{a, B}, then Loss(G, S, Pa(i)) = Loss(G, S, Pa(i)) — 1.

o If Mg s(g') = a, we check whether Mg ¢(¢') is equal to o or 5 in O(1) time according
to Lemma 7. If Mg o (g') = a, then Loss(G,S',g) = Loss(G, S, g). If Mgs(g') = B,
then Loss(G,S’,g) = Loss(G, S, g) + 1. For the computation, we only check each node
i € Mé,lsm)- If Mg s(Pa(i)) # «, we decide the value Loss(G, S, Pa(i)) by checking

the new mapping Mg ¢ (i) according to Lemma 7.

Thus, Loss(G, S, g) can be computed in O(1) time. O
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Before discussing Case (3), we define the values Ay(j) and Asz(j) for each node j € V().
We can compute the number of losses associated to those nodes in Case (3) by using Ay and

As.

Definition 9: For each node j € V(S), define Ay(j) to be the number of nodes i € V(G)
such that Mg s(i) € V(S;) and Mg s(Pa(i)) € V(S)\V(Spa(j). In other words, Ay(j) is
equal to [{i € V(G) : i € Mgs(V(S;)) and ls(Ma,s(Pa(i)), Mas(i) — (4, Ma,s(i) > 2}].
Similarly, define As(j) to be the number of nodes i € V(G) such that Mgs(i) € V(S;)
and Mg s(Pa(i)) € V(S)\V(Spa(ra(jy)- In other words, Az(j) is equal to |{i € V(G) : i €
Mgs(V(85)) and ls(Meg,s(Pa(i)), M s(i)) — Is(d, Ma,s(i)) > 3}.

Now we present an efficient algorithm to computesthe values A, and Ay for each node
j € V(S). We compute the value!Ay by traversiig ‘the species tree S in a bottom-up fash-

ion. For each leaf z € Le(95), the Value Ag z) can be obféined by computing the number of

/\]/_\

nodes @ € Mc_;,ls(z) satisfying ZS(MGS P ))—_) E 2H When Vlsltlng an internal node j €

V(S)\Le(S), we compute the nuthber, of es-‘t{'?f/lg%( ) satistying ls(Me.s(Pa(i)), ) > 2,
and denote the number by 7(j). Let the I alueil () \{z € V(G) : i € MG(V(SLes(s)) U
V(Srighi(j))) and Mg,s(Pa(i)) = F
Ay(Left(5)) + Aa(Right(j)) + m(5) = 5( )

The remainder is to compute the value é(j). For each node z € M&}S(Pa(j)), we only

it is easy t(g %verlfy that the value Ay(j) is equal to

check if there exists some child 2’ of z satisfying that Mg s(2') € V(Srepi)) UV (Sright(s))-
The checking can be done in O(1) time by verifying whether lca(Mg s(2'), Left(j)) = Left(j)
or lea(Mgs(Z"), Right(j)) = Right(j).

The computation of Az is similar to that of A,. To compute Az, we also traverse the species
tree S in a bottom-up fashion. For each leaf z € Le(S), the value Az(z) can be obtained by
computing the number of nodes i € M(_;ls(z) satisfying ls(Mg s(Pa(i)), z) > 3. When visiting
an internal node j € V(5)\Le(S), we first compute the number of nodes i € M 's(j) satisfying
ls(Mgs(Pa(i)),j) > 3, and denote the number by 7'(j). Let the value §'(j) = |{i € V(G) :
i€ M&}S(V(SLeft(j)) UV (Shright(j))) and Mg s(Pa(i)) = Pa(Pa(j))}]. It is easy to verify that
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As(7) = As(Left(j)) + As(Right(5)) + 7'(7) — §'(4). The computation of ¢’(j) is also similar
to that of §(j). For each node z € Mg'4(j), we check whether there exists a node 2’ € Ch(z)
satisfying that Mg g(2") € V(SLesi(j)) U V (Srighe(j)). This checking can be done in O(1) time
by verifying if lca(Mg s(2'), Left(j)) = Left(j) or lca(Mes(2'), Right(j)) = Right(j).

After computing the values Ay(j) and As(j) for each node j € V(S), we can cope with
Case (3) easily. Let I' C V(G) be the node set in Case (3), i.e., ' = {g € V(G) : Mgs(g) €
V(S)\V(S,) and Mg s(g') € V(S,) UV(S;) for some ¢ € Ch(g)}. After performing an NNI
operation on the node z € V(59), it is easy to see that the total difference of the number of losses
caused by the node set I' is equal to As(y) — Asz(z). We conclude the result in the following

lemma.

Lemma 12: Let I' be the node set {g € ¥(G) :'-,).\/lag(g) € V(S)\V(Sa) and Mg s(g') €

V(S,) UV(S,) for some ¢ € Ch(g)}. ' We have that Zééf(Loss(G, S’ g) — Loss(G, S, g)) =
Ag(y) - Ag(l’) - ( i’ -

l
| F
|

i

i)

. |
= I
TR
Algorithm COMPUTEDELTA is shewn r | Frg'&'é' "4.‘4.H Now we analyze the time complexity
) .:=£e(5bi and let "|L6(G)| = |Le(S)| = m. Since

of the algorithm. We assume that EG’S(Lei(
visiting all nodes of S, the for—loop“"“i'ﬁ "lilnle t‘l executes“l C!)(m) times. For each iteration of the
for-loop in line 1, the time is domina,te;d"by the for—lobps 1n lines 3, 11, and 16. Since we visit
all nodes of S, the for-loops in lines 3, 11, and 16 totally execute at most 3-|V(G)| + |V (5)| =
O(m) times, and each iteration can be done in O(1) time. Therefore, the time complexity of

Algorithm CoMPUTEDELTA is O(m), and we conclude the result in the following.

Theorem 10: Given a gene tre (G, a species tree S, and the LCA-mapping Mg g, Algo-
rithm COMPUTEDELTA computes the values Ay(j) and Az(j) for each node 57 € V(S) in O(m)

time, where |Le(G)| = |Le(S)| = m.

Algorithm CoOMPUTELOSS is shown in Figure 4.5. Before we close this section, we analyze
the time complexity of the algorithm. In Algorithm CoMPUTELOSS, the time complexity is

dominated by the for-loops in lines 3 and 21. The for-loops in lines 3 and 21 execute at most
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Algorithm CoMPUTEDELTA(G, S, M s)

Input: A gene tree GG, a species tree S, and the LCA-mapping Mg s.
Output: Compute the values Ay(j) and As(j) for each node j € V(.5).
1 for each node j € V(9) visited in the postorder do

2

© 00 3 O Ot B~ W

11
12
13
14
15
16
17
18
19
20

As(j) — 0, Dg(j) — 0, 7(j) — 0, 8(j) — 0, 7'(j) — 0, &'(j) — 0.
for each node i € M's(j) do
if |[ds(Mgs(i)) — ds(Mgs(Pa(i)))| > 2 then
7(j) = 7(j) + 1
if |ds(Mgs(i)) — ds(Me,s(Pa(i)))] > 3 then
() = w() + 1.
if j € Le(S) then
As() — 7(3), Ds(d) — 7).
else
for each node z € Mg's(Pa(j)) do =
for each node 2’ € Ch(z)"do

if lca(Mg s(2)s Left(j))= Left( ) or lca(MG gr.(z’),Right(j)) =

6(j) < 6(j)+ 1. [ AL
As(5) — Ag(Left(5)) +.2a( Rzghtq ;g';(_g |
for each node z € Mg's(Pa Pa([] dm' | ‘
for each node 2’ € Ch(z)'do | s | n
if lea(Me,s(2'), Left() )= Left(g) or .léa(Ma;s(Z’), Right(5))
0'(j) — &) + 1. v a ™
As(j) — As(Left(h)) + As(Right(5)) + ' (7) =8/()).-

Right(j) then

= Right(j) then

Figure 4.4: The algorithm for computing the values Ay(j) and As(j) for each node j € V(.5).

2+ (IMgs(a)l + Mes(B)) = O(IMgg(@)] + Mg s(B)]) times.

It is easy to verify that

each iteration of the two for-loops can be done in O(1) time. Thus, the time complexity of

Algorithm CoMPUTELOSS is O(|Mglg(@)] + M (8)]).

Theorem 11: Let G be a gene tree, S be a species tree, and x be a node in val(S). Given G,

S, x, Loss(G, S), Mg.s, Ag, and Asz, Algorithm COMPUTELOSS computes the number of losses

Loss(G,NNIs(x)) in O(|Mgls(a)] + [IMgl(B)]) time, where a = Pa(Pa(z)) and 3 = Pa(x).
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Algorithm CoMPUTELOSS(G, S, x, Loss(G, S), Mg, s, Ag, Ag)
Input: A gene tree G, a species tree S, a node x € val(.S), the number of losses
Loss(G,S), the LCA-mapping Mg g, and Ay(j) and As(j) for each node j € V/(5).
Output: Return the number of losses Loss(G, NNIg(x)).
1 Let Pa(z) = B, Pa(Pa(z)) = a, S"= NNIg(x), and y be the sibling of j.
2 Diffi <0, Dif fy < 0, and Dif f3 « Aa(y) — As(z).
3 for each node g € Mgls(a) UM (3) do
4 Compute the number of losses Loss(G, S, g).

5 if Mgs(g) =a and f(g,z) # 1 then

6 Meg,s(g) — b

7 else Mg g(g) «— .

8  for each node z € Ch(g) do

9 if MG75(Z) ¢ {Oé,ﬁ} then

10 qu/(z) — qu(z). ‘ '-, 3
11 if lca(M¢ s(2),x) = then

12 dS’(MG,S’(Z)) <5 dS‘.(MG,S(Z)_)_ — 1 =
13 else if lca(Mcs(2),y) # y then || [ - \
14 ds (Mo, (2)) - ds(M s () s 'i |
15 else dS’(MG,S’(Z)) — dS(MG'IS‘ Z))m' I H
16 else if Mg s(2) = a and f(z,x)i 1 then | 'g
17 Me.s(2) — B. 3N | 1
18 else Mg o (2) = a. L

19  Compute the number of losses Loss(G; S’ q).

20  Diffy < Diffi + Loss(G,S’, g) — Loss(G,'S, g).
21 for each node i € Mg'4(3) UMgly() do

22 if Mg (i) = 6 and Mg g(Pa(i)) ¢ {«, 5} then

23 Diffy «— Diffy — 1.
24 if Mgs(i) = a and Mg s(Pa(i)) # o and i* # 1 then
25 Diffy «— Diffs + 1.

26 return Loss(G,S’) < Loss(G,S) + Dif fi + Dif fo + Dif fs.

Figure 4.5: The algorithm for computing the number of losses Loss(G, NNIg(z)).
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4.5 A Linear-Time Algorithm for the DL-NNI Local Search
Problem

In this section, we present a linear-time algorithm for the DL-NNI LOCAL SEARCH problem
and give the time analysis of this algorithm.

The algorithm proceeds as follows. First, we show how to construct S| Lo.s(Le(q)) for each
gene tree G € G in linear time. After preprocessing the species tree S according to [11], the
least common ancestor of any two nodes of S can be answered in O(1) time. For each gene
tree G, we maintain a linked list leaf[G]. Then we scan the leaves of S in postorder. When
we scan a leaf z € V(.S), we check each node g € /\/lgls(z) If g € V(G) and z ¢ leaf[G], then
we insert z into the tail of leaf[G]. After scanningall leaves of S, we complete lea f[G] for all
G € G. Since we scan the leaves of S in postorder; '.’phe elements in lea f[G] are also stored in
postorder of S for each gene tree G € . For each internal Hode 5 & V(S), we maintain a linked
list node[s]. Let leaf[G] = {s1, 52,7.'. , SiH For each linked list-Tea f[G], we query lca(s;, Sit1)
and insert the label ‘G’ into mode[lca(s;, 8“[1 ﬁg,_all“ 4= 1,...,7 = 1. Note that these least
common ancestors are the internal nodes L) S| [Jl L (Le(& ) Thus; the vertex set of S| La.s(Le(G))

V(S|cesre@)) = 151,51, -, 851 U {lca(!si, Sz+;.--2 —.L, 4. ¢j=1)}. Finally, we traverse the
species tree S in postorder. When visiting hanr internal node s €V (S), we check each element
in the linked list node[s]. If a label ‘G” 18 in ﬁode[s], then we insert two edges (s, Left(s)) and
(s, Right(s)) into the edge set E (S| s(Le(q))). After completing the traversal of S, we obtain
S| e s(Le(ay for each gene tree G € G.

For each gene tree G € G and S|, 4(Le(q)), We invoke Algorithm INITIALIZELOCALSEARCH
and Algorithm COMPUTEDELTA to compute the LCA-mapping, the mutation cost, Ay, and As.
For each node = € val(S), we apply Algorithm CoMpPUTEGD and Algorithm CoOMPUTELOSS
to computing the numbers of gene duplications and losses after performing an NNI operation
on the node z. Then we select the node z* such that the mutation cost of NNIg(z*) is the
minimum and output the tree NN Ig(z*).

Algorithm LINEARNNTI is shown in Figure 4.6. Finally, we give the time analysis of the
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algorithm. Let the set of gene trees G be {Gy,Ga,...,G} and the species tree be S, where
|Le(G;)| = m; for all 1 < i < k and |Le(S)| = n. By [11], line 1 can be done in O(n) time.
Lines 2-18 construct S|z, s(re()) for all G € G, and it is easy to verify that the execution
time of lines 2-18 is O(Zle m; + n) totally. The for-loop in line 20 executes total O(k) times.
By Theorem 8 and Theorem 10, lines 21 and 22 can be done in O(|Le(G)|) time. Thus, the
total execution time of the for-loop in line 20 is O(3.F_, m;). The for-loop in line 25 executes
O(Jval(S)|) times. The time complexity of each iteration of the for-loop in line 25 is dominated
by lines 27-29. By Theorem 9 and Theorem 11, the total execution time of lines 27-29 is
O(S s cous) MG (Pa(Pa(e)] + [MGL(Pa(@))]) = O(S,eyis) Mahs(@) = O my + ).
Therefore, the time complexity of Algorithm LINEARNNT is O(32F_, m; 4+ n) and we conclude

. . il L WS
the result in the following theorem. p I . —— 'gr_”._,_
4, = = B
p & G, e
:"" - ¥ '\'f
Theorem 12: Given a set of gene tree d a spec \*é’e S, the DL-NNI LOCAL SEARCH

problem can be solved by Algéiit'ﬁfﬂl. INE(;UQ{E ﬂ \
| & q

I in linear t

=

-
1
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Algorithm LINEARNNI(G, 5)
Input: A set of gene trees G and a species tree S.
Output: A tree S* such that Mut(G,S*) = min Mut(G,T).

Te{NNIg(z):zcval(S)}

1 Preprocess the species tree S using the algorithm for computing the LCA in [11].
2 for each gene tree G € G do

3

head[leaf[GH — NIL, V<S|EG,S(L€(G))) — ®7 E(Slﬁc,s(Le(G))) 0.

4 for each leaf z € Le(S) visited in postorder do

5
6
7

for each node g € E;g(z) do
if g € V(G) and z € leaf[G] then
Insert z into the tail of lea f[G].

8 for each internal node s € V(5) do

9

head[node|s]] «— NIL.

10 for each gene tree G € G do

11 Let the linked list leaf[G] be {5182, 5;}. 7

12 fori«— 1toj—1do Joc :

13 V(Sleeste@n) < V(Slee s re@U {5 lcalSigsi)}-

14 Insert G into the tail of nbde[lca(‘sm-szﬂ)].;_ \

15 V(Sleasetan) = V(Slee sean) U fonke SO |

16 for each internal node s € V'(5) do | | = | ”

17 for each element G in nodes] 'do | m, I ‘ |

18 B(Sle o) — E@lf ol (B L)), Fight(s)}.

19 |Dup(G, S)| < 0, Loss(G, S) « 0" P ! |
20 for each gene tree G € G do L

21
22

23

INITIALIZELOCALSEARCH(G, S|£G,S(Le@)).
COMPUTEDELTA(G, S, Me.si,, S<LE<G>>).
|Dup(G, S)| < |Dup(G, S)| + |Dup(G, S)|, Loss(G, S) < Loss(G,S) + Loss(G,S5).

24 MIN « |Dup(G,S)| + Loss(G, S).
25 for each node = € val(S) do

26
27
28
29
30
31

GD «— 0,LOSS « 0.
for each gene tree G € G do

GD «— GD + COMPUTEGD(G, S‘ﬁc,s(Le(G))u x, ]Dup(G, S)‘, qu).

LOSS «— LOSS + COMPUTELOSS(G, S|£G75(L€(G))7 x, LOSS(G, S), Me.s, Ao, Ag)
if MIN >GD + LOSS then

MIN «— GD + LOSS, pivot «— =.

32 return N NIg(pivot).

Figure 4.6: The algorithm for the DL-NNI LOCAL SEARCH problem.
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Chapter 5

Concluding Remarks

In this chapter, we summarize the results and discuss the possible future work for the problems

studied in this dissertation.

5.1 Summary

In this dissertation, we study two versions.ef the MULTIPLE GENE DUPLICATION problems:
the EPISODE-CLUSTERING (EC) problem and,"_‘,ﬂle MiNniMUuM EPISODES (ME) problem. In
Chapter 3, we give an optimal hnear—tlm{e algo.]pt;l‘;nH for «the EC problem. As a byproduct,
we solve the TREE INTERVAL COVER (TI ) problem in limear time. In Chapter 4, we also
improve the results in [7] and propose an optimal hnear time algorithm for the ME problem.
In addition to the MULTIPLE GENE DUPLICATION problems, we study the heuristic for the

DuPLICATION-LOSS problem based on the NNI local search and propose a linear-time algorithm

for the DL-NNI LOCAL SEARCH problem in Chapter 5.

5.2 Future Work

5.2.1 The Weighted Episode-Clustering Problem

In the EC problem, we want to find a minimum number of locations in the species tree
for placing all duplications in the gene trees. We also call this problem the UNWEIGHTED
EPISODE-CLUSTERING (UNWEIGHTED EC) problem since the locations in the species tree are

unweighted. The UNWEIGHTED EC problem is based on the assumption that all species in
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the species tree have the same gene duplication rate. However, there are many studies showing
that different species may have different gene duplication rates [21, 31, 32, 33]. For different
gene duplication rates of different species in a species tree, therefore, it is reasonable to extend
the UNWEIGHTED EC problem to the WEIGHTED EC problem.

Let G be a set of gene trees and S be a species tree. Let W : V(S) — R* be a weight function
for each node s € V(S). Given G, S, and W, the WEIGHTED EC problem is to find a set of
nodes U in S for placing all duplications in Dup(G, S) such that the sum of weights » __;,; W(s)
is the minimum. Guo and Niedermeier [28] studied the TREE-LIKE WEIGHTED SET COVER
problem and showed that the problem is NP-complete. However, they also showed that the
TREE-LIKE WEIGHTED SET COVER problem is fixed-parameter tractable with respect to the
maximum subset size. The WEIGHTED EC problem. 1s linear-time reducible to the TREE-LIKE
WEIGHTED SET COVER problem, bubithe tilﬁe conlllll)lexity‘" is exponential. To the best of our
knowledge, so far there exist no efficient algonthms for the WEIGHTED EC problem. We would

like to investigate the WEIGHTED EC probfem...and ﬁee if there exists any efficient algorithm
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5.2.2 The DL-k-NNI Local S¢arch PraBlen:
1 | ) !

Bansal et al. [8] extended the neighb.(;r"ilood of the “\NN.f bperation to the k-NNI neighbor-
hood. Given a tree S, the k-NNI neighborheod of S, denoted by k-NNIg, is the set of
trees transformed from S by performing at most k successive NNI operations on any node
of S. Given a set of gene tree G and a initial comparable species tree S, the DL-k-NNI
LOCAL SEARCH problem is to find a comparable species tree S* among k-NNIg such that
Mut(G, S*) = minpep-nnrg Mut(G,T). Given a tree S, it has been shown that 2-NNIg and 3-
N NIg have very little overlap with the SPR and TBR neighborhoods of S [23, 24]. Bansal et al.
proposed near-linear time algorithms for the 2-NNT and 3-NNI LOCAL SEARCH problems un-
der the duplication cost in [8]. We would like to devise linear-time algorithms for the DL-2-NNI

and DL-3-NNI LOCAL SEARCH problems.
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5.2.3 The SPR Local Search Problem

For the GENE DUPLICATION problem, the local search heuristic based on the SPR operation
has been considered by Bansal et. al. [5, 9]. They presented an O(kn?)-time algorithm for
the corresponding local search problem, where k is the number of gene trees and n is the size
of the resulting species tree. As a result of the quadratic time complexity, their algorithm is
unfavorable to construct the species tree for a large-scale phylogenetic analysis. It should be a

challenge to devise a subquadratic time algorithm for the SPR-based local search problem.
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