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THESIS ABSTRACT

Graduate Institute of Information Management

National Taiwan University

Student: Yu, Sheng-Feng Month/Year: June, 2010
Advisor: Tsay, Yih-Kuen

Automatic Generation of Penetration Test Cases for
Web Applications

As our daily life increasingly relies on the Web, security of Web applications has be-
come more and more important. There exist quite a few analysis tools that can help
programmers find vulnerabilities in Web applications, but there is still much room for
improvement. These tools can be roughly divided into two groups by their analysis ap-
proaches. One uses static analysis, while the other uses dynamic analysis. The biggest
difference between the two groups is that static analysis does not execute the Web appli-
cations when performing an analysis, but dynamic analysis does. Besides, static analysis
needs to exercise over-approximation techniques to evaluate possible states of the pro-
gram, which might introduce false positives to the analysis results. On the other hand,
dynamic analysis encounters difficulties when it has to generate dynamically as many
test cases as possible to cover all paths in the program. The results of dynamic analysis
usually contain false negatives because of lower path coverage rates. In general, a rigorous
code review process requires human experts to manually inspect the analysis result from
analysis tools. It is an essential but time-consuming and error-prone task.

In this thesis, we propose an approach for combining static analysis and dynamic
testing to confirm the true vulnerabilities and hence reduce the number of vulnerabilities
that human experts have to examine. We apply backward data flow analysis to explore
all executable paths of the corresponding vulnerabilities in the target program. In the
process of exploring all possible paths by the breadth-first search algorithm, our approach
collects simultaneously constraint information along a path. Afterward, we append an
attack pattern to the sink variable and try to generate test cases by manipulating con-
straint solvers to solve collected constraints. Furthermore, given a generated test case, we
provide a Web-based testing which can automatically execute the test case and confirm
the existence of vulnerabilities. On the whole, our approach integrates static analysis
and dynamic testing to provide test cases generation and Web-based test cases execu-
tion, producing high-confidence results.

Keywords: Test Cases, Automatic Testing, Static Analysis, Security Vulnerability,
Web Applications.
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Chapter 1

Introduction

1.1 Background

Web applications are playing an increasingly important role in our life. People like

to go online shopping and accomplish various services that might need their confidential

information such as a credit card number. Because these information are valuable, service

providers have obligation to protect these resources by all means. But, to err is human,

it is hard to establish a correct software. Programmers only can do their best to make

robust Web applications as much as possible.

With the growth of the amount of Web applications, Web application security has

become a significant issue. According to the survey [9], 82% of software security vulner-

abilities come from Web applications. Among them, injection and Cross-Site Scripting

vulnerabilities account for 16% and 19% of Web application vulnerabilities respectively.

Similarly, the latest 2010 report [4] indicates the riskiest vulnerability in recent year is

injection flaws, which ranked two in the 2007 report [3]. Injection flaws mean that an

attacker can use a malicious input string to fabricate a vicious query, and then the query

engine executes it faithfully. At the end, the Web application was defeated. There are

more detail descriptions about Web application vulnerabilities in the section 2.1.

Under the circumstances, service providers can detect Web application vulnerabilities

by manual approaches or automated approaches. Because Web application vulnerabil-

ities usually are covered in a large number of codes and quite complicated. Through

manual approaches to detect vulnerabilities is a time-consuming and error-prone task

that may lead to some potential vulnerabilities are overlooked (called false negative). On
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the other hand, using automated approaches is really an easier and quicker way to find

vulnerabilities. Nowadays, there are many kinds of analysis tools to help service providers

reduce numbers of vulnerabilities to the best of their abilities before deploying the Web

application. However, these tools have several insufficiencies which could be improved

like precision and capability.

1.2 Motivation and Objectives

1.2.1 Motivation

Analysis tools can be roughly divided into two groups by the analysis methodology.

One is static analysis which needs source code to analyze in the process, and the other is

dynamic analysis by running the Web application and generating as much test cases as

possible to penetrate it for strengthening confidence in the security of the Web application.

In fact, most analysis tools regard static analysis and dynamic analysis as two separation

parts; in other words, these tools did not take advantage of two kinds of results to reinforce

their analysis confidence. We know that dynamic analysis might have false negatives

because it has to generate dynamically as many test cases as possible to cover all paths

in the program. As to static analysis, it can help us find most all of vulnerabilities

in the target application, but it usually introduces a lot of false positives because of

over-approximation philosophy.

Table 1.1: Dynamic Analysis versus Static Analysis

Pros Cons

Dynamic analysis More confident results
Lower path coverage rates
Higher false negative rates

Static analysis More complete results Higher false positive rates

We take Figure 1.1 as an example of the false positive result from performing static

analysis. Figure 1.1 shows a program fragment adapted from a real Web application, a

membership authorization management system written in PHP. First, the program as-

signs the value of the variable $ POST[‘usergroup’] to the variable $usergroup at Line

02, and assigns the value of the variable $ POST[‘id’] to the variable $id at Line 03.

2



01<?php
02 $usergroup = $ POST[“usergroup”];
03 $id = $ POST[“id”];
04 if ($usergroup == 1) {
05 //guest
06 echo “Hello, guest”;
07 displayRegistration();
08 }
09 else if ($usergroup == 2) {
10 //member
11 echo “Hello! $id”;
12 displayBasicFun();
13 }
14 else {
15 // admin or supervisor
16 if ($id == “admin”) {
17 echo “Hello! $id”;
18 displayMemberAuthorityManagementFun();
19 }
20 }
21?>

Figure 1.1: Motivating Example

Next, the program checks users’ group to execute corresponding work. Most all of static

analyzers claim that there are two vulnerabilities at line 11 and 17. However, we could

easily understand that the vulnerability at line 17 is a false positive alarm. Because if

the variable $id can pass through the if block at Line 16, it means that the variable $id is

satisfied with the boolean condition. So, the variable $id has a constant value, “admin”,

inside the if block.

1.2.2 Objectives

According to our code review experience, we know that code analysis process always

needs man with security knowledge involved to go through the analysis results. This

is an essential but a time-consuming and error-prone task. Most off-the-shelf analysis

tools regard static analysis and dynamic testing as two separation parts, and few tools

support an overall code review process from performing analysis to doing testing. The
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objective in this thesis is emphasized on that enhances the credibility of analysis results

and enriches the capability of analysis tools. Through our approach provides a way to

minimize time cost of manual code review after using analysis tools. In order to achieve

our goal, we use data flow analysis to generate test cases automatically, and these test

cases can exploit all possibly executable paths with the corresponding vulnerabilities of

Web applications. Because there are fewer static analysis tools can generate test cases

which could really exploit weaknesses. These test cases not merely are produced when

the existence of vulnerabilities. We want to use dynamic testing to confirm the existence

of the vulnerability with executing the penetration test as simulating attackers’ behav-

ior. The most important idea is that this thesis combines static analysis and testing

approaches to produce a more confident analysis report.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• In Chapter 2, introducing several related literatures, and discussing what progress

researches could do until now. Compare these literatures what they are better or

worse than others.

• In Chapter 3, talking about background information regarding this thesis, including

Web application vulnerabilities and basic analysis and testing approaches.

• In Chapter 4, presenting overview approaches of test cases generation and test cases

execution.

• In Chapter 5, describing the implementation work and experimental results.

• In Chapter 6, summarizing our approaches. Finally, mentioning our contributions

and pointing out which parts we could improve in future work.
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Chapter 2

Related Work

2.1 Literature Review

There are numerous methods for detecting vulnerabilities in Web applications, but in

general, they could be classified into three groups. One is using a static analysis approach,

another is testing approach, which executing the program to do analysis. The other is a

hybrid approach using static analysis and testing.

• Static analysis approach

– Taint-based

Taint-based method is based on some of the data flow analysis that tracks

data flow from user inputs (called source) to a sensitive operation (called sink).

This type has been applied in numerous papers [15, 16, 26]. Furthermore, most

of these literatures assume that if there is a sanitization function performed

between source and sink, the result is totally safe or not connecting to the

sanitization policy. These policies may result in false alarms.

– String-based

A string-based static analysis focuses on evaluating the possibility value of

variables at any program points. Using this information to make sure that

whether the Web application exists attack strings in sensitive operations or

not. Many papers [19, 23, 28] use this method. For example, in [28] its

forward analysis does this way.
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• Testing approach [25]

The concept of testing focuses on simulating the runtime environment, and on this

environment testers implement their testing plan. Generally speaking, it can be

separated as different types by testing methods or levels. For instance, we divides

testing methods into two types, black box testing and white box testing.

– black box testing

Black box testing means testers don’t know what the testing target implements

in the internal. Therefore, it is efficient when testing on large applications, and

testers don’t be equipped with knowledge of implementation details. However,

on the other hand, it is hard to cover all possible executing paths which may

contain flaws. This paper [8] describes the current state of automated black

box testing.

– white box testing

Comparing to black box testing, testers knows the internal structure of testing

targets. So, testers could use an easier way to find target’s weaknesses and

cover a extensive range of executing paths.

In recent years, there are several papers [6, 12, 13, 18, 24] using testing approach

to detect Web application security and concentrating on automatically generating

test cases, which could be used to exploit vulnerabilities.

• Hybrid approach

Hybrid approach is to combine the first two, and it could take advantage of both

merits and narrow down both defects. However, there is little research [7, 14] has

been done.

In the following sections, we will introduce several much related literatures.
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2.2 Generating Vulnerability Signatures

Yu et al. [28] proposed an automata-based string analysis to automatically generate a

vulnerability characterization which contains all possible nocuous input values given an

attack pattern. The overall workflow is as Figure 2.1.

In this paper, they need PHP source code and an attack pattern in a regular expres-

sion format before performing string analysis. An attack pattern is used to identify if the

PHP source code contains vulnerabilities or not. For the XSS attack, the attack pattern

could be indicated as Σ* <script Σ*.

PHP Source
Code

Dependency
Graph

Forward
Analysis

Backward
Analysis

Report
Vulnerability
Signature

Attack
Patterns

Figure 2.1: An Analysis Flow in [28]

2.2.1 Dependency Graph

In the process of the string analysis, it needs to know the data flow of variables. So,

it has to construct a dependency graph (G) to indicates the data flow of the program.

Formal definition:

• G = 〈N, E 〉, where N is a set of nodes which is finite and has two types.

• E ⊆ N × N is a set of directed edges, and is finite.

Each node n ∈ N could be:
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1. a normal node contained input, constant, variable.

2. an operation node contained concat and replace. A concat node has two prede-

cessors, one is prefix node (n.p) and the other is suffix node (n.s). It stores the

concatenation value of two predecessors.

Besides, they define Succ(n) = {n’ | (n, n’) ∈ E}, and Pred(n) = {n’ | (n’, n) ∈ E},
where n ∈ N. Moreover, Root(G) = {n | Pred(n) = ∅}, and Leaf(G) = {n | Succ(n) = ∅}.
So, if n is concat node, Pred(n) = {n.p, n.s}. So, if there is program written as Figure

2.2 and its corresponding dependency graph is Figure 2.3.

01<?php
02 $article = $ GET[‘article’];
03 $san article = preg replace(
04 “/[ˆA-Za-z0-9 .-@://]/”, “”, $article);
05 $content = “content:”.$san article;
06 echo $content;
07?>

Figure 2.2: An PHP Program

$ GET[‘article’], 1

/[ˆA-Za-z0-9 .-@://]/, 2 “”, 2 $article, 1

preg replace, 2

“content:”, 3 $san article, 2

concat, 3

$content, 3

echo, 4

Figure 2.3: A Dependency Graph
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2.2.2 Vulnerability Analysis

VULANALYSIS(G, Sink, Attk)
{
Init(POST, PRE);
set Vul := {};
FWDANALYSIS(G, POST);
for each n ∈ Sink do
tmp: = POST[n] ∩ Attk;
if L(tmp) �= ∅ then
Vul := Vul ∪ {n};
PRE[n] := tmp;

end if
end for
if Vul �= ∅ then
BWDANALYSIS(G, POST, PRE, Vul);
for each input n do
Report the vulnerability signature PRE[n];

end for
return “Vulnerable”;

else
return “Secure”;

end if
}

Figure 2.4: Vulnerability Analysis

After generating a dependency graph, then starting to perform vulnerability analysis.

Figure 2.4 is the overview of the analysis structure. First, creating two automata vectors

POST and PRE. The POST[n] vector stores values which node n can accept in DFA data

structure. As for PRE[n], its values can be taken to exploit the vulnerability associated

with the given attack pattern. After executing the forward analysis, if the language from

the intersection of the POST vector of sink nodes and the attack pattern is not empty,

then it means that there exist vulnerabilities in this program at the sink nodes. For find-

ing any possible input values to exploit the vulnerabilities, the paper extends analysis

with a backward analysis, which using finite state transducers to model PHP built-in

functions and using widening techniques to accelerate the computation of a fixpoint.
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2.2.3 Conclusion

In this paper, the authors bring up using automata-based string analysis to character

a vulnerability signature. There exists a difficult problem which is to reverse PHP built-in

functions, and the authors develop automata-based functions to stimulate PHP built-in

functions’ pre-image computation. Broadly, it tackles the pre-image computation’s prob-

lem, and calculates all possible values of variables at any program point. But it does not

handle that if a program includes branch or loop statements, which exist commonly in a

program. In other words, if taint input data extracted from the vulnerability signature

do not match boolean expressions in the branch points from input nodes to sink nodes,

and it means that the vulnerabilities will never occur.

10



2.3 Automatic Creation of Test Cases

Kieżun et al. [18] proposed a testing method to create attack vectors which could

exploit vulneralbilities including SQL Injection and Cross-Site Scripting. They observe if

an attack vector could flow from user input into a sensitive operation or not. The whole

analysis process is as Figure 2.5.

PHP Source Code

MySQL Database
Input

Generator

Concrete+Symbolic
Database

Execute/Taint
Propagator

Attack Patterns
Attack

Generator/Checker

Report
Attack Vectors

a set of inputs

a set of taint sets

Figure 2.5: An Analysis Architecture in [18]
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2.3.1 Technique Components

The following is the explanations of components which are more important.

• Input Generator

It executes the program with concrete values and collects symbolic constraints in

the process. Its goal is to generate numerous of input sets, which cover all possible

control flow path from an user input through a program termination point by solving

constraints.

• Execute/Taint Propagator

To run the program with each input set, which created by the input generator. Dur-

ing the process of executing, the taint propagator dynamically monitors the input

data flow by modifying the PHP interpreter engine. When it reaches a sensitive

operation, then outputs a taint set by recording those parameters, whose values

flow into the sink, for each input set.

• Attack Generator/Checker

The purpose of the attack generator is to substitute the values of each taint set for

attack patterns. Then, executing the program again with new input sets, which

contains malicious string, and judging whether these new input sets can result in a

real attack by finding differences when run two related input sets. One is harmless

and the other is malicious.

• Concrete+Symbolic Database

It is used for tracking taint data flow through a database. Therefore, it can be

applied to detect stored XSS.

2.3.2 An Example of the Analysis Flow Process

This section describes an example to make the analysis process more clearly. Figure

2.6 is a snippet program of a message board system modified from this paper. The input

generator runs the program and generates some input sets. At the beginning, the first

input set has nothing information. Then, recursively running the program, it encounters

a branch point on Line 1. The first input is not satisfied with the boolean expression,

12



and the input generator jumps to Line 5 then the program terminates; simultaneously,

the input generator collects a constraint, “ $ GET[‘mode’] == “show” ”, in the way.

Next round, the input generator solves the collected constraints and creates a new input

set which has different path from the previous ones. After exploring all probable paths,

the input generator outputs various input sets. One input set is as Figure 2.7. The

following step is that the executor executes the program again with those input sets.

The taint propagator dynamically tracks whether there is any value of user input may

flow into a sink. If yes, then it outputs an outcome, called a taint set. In Figure 2.7,

the taint propagator detects that the value of the msg variable flow into the sensitive

function (echo) on Line 13 in Figure 2.6. Thus, the taint set of this sensitive function for

this input set contains the msg variable. The attack generator generates a corresponding

malicious input set which replaces the value of the variable from the taint set with a XSS

attack pattern. Now, there are two input sets; one is Figure 2.7, the other is Figure 2.8.

The attack checker takes the input set from Figure 2.8 as input date, and then executes

the program. If the attack checker judges this input set is a real attack, then signals it

as an attack vector.

01 if ($ GET[‘mode’] == “show”){
02 showMessage();
03 }
04 else{
05 exit;
06 }
07
08 function showMessage(){
09 if (!isset($ GET[‘msg’])){
10 exit;
11 }
12 $show msg = $ GET[‘msg’];
13 echo “ Your message is ‘$show msg’ ”;
14 }

Figure 2.6: A Generating Attack Vectors Example
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mode → show
msg → 1
(1 means don’t care)

Figure 2.7: Input Set: I

mode → show
msg → <script>alert(“XSS”)</script>

Figure 2.8: Input Set: I’

2.3.3 Conclusion

In this paper, we can learn how a testing method is used for detecting Web application

vulnerabilities. The analysis results are very useful because testers can take these input

sets to convince programmers that their program contains vulnerabilities. But there are

some difficulties in generating attack vectors. In the goal of testing approach, they hope

the analysis can produce many input sets to cover as much paths as possible. However,

it is a hard problem, especially for scripting languages which usually contain dynamic

language features. Furthermore, when the taint propagator encounters a PHP built-in

function, this paper assumes it is a sanitization function. So, the taint propagator will re-

turn an empty taint set when programmers use PHP built-in functions, which are satisfied

with the sanitization policy of the taint propagator. So, it may lead to a false negative.

On the other hand, this paper does not focus on the correctness of a sanitization function.

So, it cannot generate an attack vector for a program with wrong sanitization functions.
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2.4 Composing Static and Dynamic Analysis

Balzarotti et al. [7] proposed a combining static and dynamic analysis method. This

paper focuses its goals on analyzing the correctness of the applied sanitization through

a program. First of all, it uses static analysis to find out whole probable vulnerabilities,

which may contain false positive. Subsequently, it reconstructs a sanitization graph and

employs dynamic techniques to penetrate the program with attack patterns. Eventually,

to identify whether the program is comprised of incorrect sanitization functions. Figure

2.9 is a brief illustration of the analysis procedure. Then, we discuss in more detail about

static and dynamic analysis components.

PHP Source
Code

Static Analysis
Dynamic
Analysis

Report
Vulnerabilities

Attack
Patterns

Figure 2.9: An Analysis Process in [7]

2.4.1 Static Analysis

In this paper, it makes use of the data flow technique to report a vulnerabilities result

in a conservative approach. It is based on [16] and improved the data flow analysis by

using more precise string analysis. It not only consider variables are taint or not, but

also record possible values of variables by using finite state automata. In their automata

representation, each edge represents either a tainted character (using a dashed line) or

an innocuous character (using a solid line). Figure 2.10 is an example of automata,

which describing a “hi” string and all possible string. In Figure 2.10, the right hand side

automata can stand for an user input like $ GET[‘id’].

15



h i

< . >

Figure 2.10: Automata Samples

Because it needs to compute values of variables, it modifies the dependency graph

in [16]. Its dependency graph represents the dependencies of a variable at a specific

program point like [28] did. But there are some differences in nodes and edges. In this

paper, each edges in the dependency graph has the opposite direction from 2.3. Further,

it contains SCC nodes which use for modeling cyclic string operations. Besides, the

operation nodes are separated into two groups. One group can be precisely modeled by

finite state transducers. The other group is the inverse of the former and is handled in

a over-approximation way in this analysis. Figure 2.11 is the algorithm of dependency

graph decoration. It is worth noting that SCC nodes are handled similarly to the second

kind of operation nodes.

01 decorate(Node n) {
02 decorate all successors of n;
03 if n is a string node:
04 decorate n with an automaton for this string
05 else if n is an <input> node:
06 decorate n depending on type of input
07 else if n is an operation node:
08 simulate the operation’s semantics
09 else if n is a variable node:
10 decorate n with the union of n’s successor automata
11 else if n is a SCC node:
12 decorate n with a star automaton
13 (the taint value of its transition depends on
14 the successor nodes)
15 }

Figure 2.11: The Decoration Algorithm of a Dependency Graph
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2.4.2 Dynamic Analysis

The static analysis result contains lots of false positive, which needs manual inspec-

tions to verify. Consequently, this paper introduces a dynamic analysis to compensate

inadequacies in the static analysis. For the purpose of verifying custom sanitization func-

tions, the paper constructs a sanitization graph which is a slice of the interprocedural

dataflow graph. A sanitization graph is the data structure, which keeps the sequences

of sanitization functions. Figure 2.12 is the sanitization graph of Figure 2.2. Like the

backward analysis in [28], this paper only pays attention to the variables flow into a sink.

Source

preg replace

Sink

Figure 2.12: A Sanitization Graph

Moreover, depending on the sanitization graph, the paper extracts all possible paths,

which are from a source to a sink. For each path, it generates a block of code by con-

catenating the PHP statements. Then, using the PHP interpreter to evaluate the code

with attack patterns. Finally, verifying the correctness of the program with test oracles.
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2.4.3 Conclusion

The intention of this paper is to verify the correctness of using custom sanitization

functions. This paper uses attack patterns to test if there exists an attack pattern which

could bypass the custom sanitization functions and become a real attack scenario or not.

However, custom sanitization functions are maybe tricky, it has to work out a special

case which can only make it big. So, the repository of attack patterns is a critical point

if it is not sufficient to support designing an attack scenario. Therefore, it could make a

conclusion that some vulnerabilities are true positive if it can find an attack string, which

can frustrate custom sanitization functions. Moreover, in the process of generating code

of the dynamic analysis phase, the paper does not take branch and loop statements into

account. This way maybe leads to a false positive.
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Chapter 3

Preliminaries

In this chapter, we introduce fundamental knowledge of this research, including Web

application vulnerabilities, analysis approaches and finite state transducers.

3.1 Common Web Application Vulnerabilities

Table 3.1: OWASP Top 10 Application Security Risks in 2010

OWASP Top 10 - 2010

A1 Injection

A2 Cross-Site Scripting (XSS)

A3 Broken Authentication and Session Management

A4 Insecure Direct Object Reference

A5 Cross-Site Request Forgery (CSRF)

A6 Security Misconfiguration (NEW)

A7 Insecure Cryptographic Storage

A8 Failure to Restrict URL Access

A9 Insufficient Transport Layer Protection

A10 Unvalidated Redirects and Forwards (NEW)

With the development of Web applications, its security have become a essential key

factor in a successful Web application. Many third-party organizations track the trend

of the Web application security, and the most well-known institution is OWASP (The

Open Web Application Security Project). OWASP is a nonprofit and open community,

and there are lots of branches in the worldwide. Moreover, much on-going projects have
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been conducted in full swing, the most famous projects are the Top Ten project and the

WebGoat project. The former raises awareness about what is the critical flaws in Web

applications in recent years. As for the latter, it depends on the Top Ten project for

designing a platform where people can learn what is the root cause of vulnerabilities by

exploiting vulnerabilities during the attack process.

According to the latest report [4], we can know the ten most crucial Web application

security risks in Table 3.1. There are several differences between the report in 2007 [3]

and in 2010. The main difference is that the report in 2010 adopts a concept of risk

management methodology to rank Web application security risks. It considers attack

techniques, the level of weaknesses and business impact associated with each security

risk. The following describes the injection and Cross-Site Scripting risk in detail.

3.1.1 Injection

Attacker User
Vulnerable
Website

1b. Query: SELECT * FROM users
WHERE id = ‘1234 ’;

2b. Query: SELECT * FROM users WHERE id = ‘a’ OR ‘t’ = ‘t’;

1a. Input data($ GET[‘id’] ) = 1234

2a. Input data($ GET[‘id’] ): a’ OR ‘t’ = ‘t

message flow

Figure 3.1: Typical SQL Injection Scenario

The vulnerability occurs when an untrusty data was sent to an interpreter as a

segment of query or command. As a result, the interpreter will execute the query or

command faithfully, then this action will lead to critical information leakage and
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damage. There are some types of injections: SQL, LDAP, XPath, SXLT, HTML, XML

and OS command injection. Figure 3.1 is a typical scenario of SQL Injection. In

general, programmers escape special characters such as a single-quote(’) in user input

data before executing this query or command to prevent SQL Injection attack.

3.1.2 Cross-Site Scripting (XSS)

Attacker Victim
Vulnerable
Website

6. The victim’s browser runs the script and
transmits the cookie to the attacker.

message Victim aware of

1. Post a malicious message onto the bulletin board

<script>document.location=“http://attackersite/
collect.cgi?cookie=” + document.cookie;</script>

2. Logon request

4. Read the bulletin board

3. Set-Cookie

5. Show the malicious script
<script>document.location=“http://attackersite/
collect.cgi?cookie=” + document.cookie;</script>

message Victim unaware of

Figure 3.2: Typical Cross-Site Scripting Scenario

This kind of flaws takes place whenever invalidated data were responded to the

victim’s browser where those tainted data would trigger the script engine in the browser

to carry out a harmful act like stealing victim’s cookie or conducting phishing attacks.

There are three basic types of Cross-Site Scripting: reflected, stored and DOM-based

XSS.

A reflected XSS attack is the easiest way to perform. If an attacker found a website

equipped with a reflected XSS vulnerability, the attacker can spam emails where

included a malicious script to anyone. Then, when an innocent user clicks the link in

the email, the vulnerable website will execute the malicious code. A stored XSS

vulnerability means that a victim’s browser displays malicious scripts which have stored

without validated in a database of the vulnerable website such as the scenario in 3.2.

The third type of XSS is a weakness that an attacker tampers codes or variables in
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scripts to intrude a victim’s browser. Generally, programmers can encode or filter

special characters like a left angle bracket(<) before either responds output strings to a

client or stores user input data in a database.

3.2 Analysis Approaches

3.2.1 Static Analysis

Generally speaking, static analysis is a process of analyzing a program without exe-

cuting it. Static analysis can be used for solving many problems such as type checking,

bug finding and program verifying. Using static analysis has some advantages, one is that

for some defects like race condition, it is hard to detect by using testing methods. But

static analysis can deal with the condition by an easier way. Traditionally, static analysis

has a trade-off issue between precision and scalability, and most of static analysis ap-

proaches adopt a conservative strategy which might lead analysis results to false alarms.

Especially, using static analysis to detect Web applications has such problems because

scripting languages possess dynamic features such as generating a Web page dynamically.

In the process of performing static analysis for Web application, it has to deal with this

situation, so abstraction and over-approximation techniques are inevitable. Figure 3.3 is

the workflow of an analysis tool in using static approach from [10].

Source Code Build Model
Perform
Analysis

Present
Results

Security
Knowledge

Figure 3.3: The Workflow of Analysis Tools Using a Static Analysis

First of all, testers have to get the Web application source code, which the elementary

component in the static analysis. Then, they need to translate them to a model where

testers could perform analysis. Furthermore, testers applies any type of analysis like taint
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analysis or alias analysis on the model depending on what they aim for. To go into details,

in the procedure of constructing a program model, it needs to go through three steps.

First, it has to do a lexical analysis, which takes an action of converting important lan-

guage features of source code into a series of tokens. These tokens are already pre-defined.

For example, if there is a code such as “if (items) sum = unitprice * items;”. After lexical

analyzing, it will output a token stream as “IF LPAREN ID(items) RPAREN ID(sum)

EQUAL ID(unitprice) TIMES ID(items) SEMI”. Futher, using a context-free grammar

(CFG) to define a language, and match the token stream with the context-free grammar.

A context-free grammar is a grammar which consists of a set of production rules that

describe nonterminal or terminal symbols in the language. “Context-free” means that

nonterminal symbols could be rewritten regardless of the context where they occur. For

example, Figure 3.4 is production rules of a context-free grammar. After done a lexical

analysis, it could get a parsing tree corresponding to the code, see Figure 3.5.

stmt:= if stmt | assign stmt
if stmt := IF LPAREN expr RPAREN stmt
expr := lval | expr TIMES expr
assign stmt := lval EQUAL expr SEMI
lval := ID

Figure 3.4: Production Rules of a Context-free Grammar

stmt if stmt expr lval ID(items)

stmt assign stmt lval ID(sum)

expr expr lval ID(unitprice)

expr lval ID(items)

Figure 3.5: A Parsing Tree

However, a parsing tree is not convenient to perform complex analysis, because the
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parse tree has nonterminal symbols that are meaningless. So, for obtaining meaningful

components of a language, it transform a parsing tree to an abstract syntax tree (AST)

which provides a standard view of the program for succeeding analysis. Given an abstract

syntax tree, it can stand for the original program, and applying kinds of analysis to solve

problems that testers focus on.

3.2.2 Testing

Testing is another way to help developers suppress vulnerabilities before the applica-

tion deployment in the software development life cycle. The following Figure 3.6 is an

overview of a testing process [21].

Identify
Testing

Requirements

Determine
Test Coverage

Generate and
Executing
Test Cases

Report Results

Figure 3.6: A Fundamental Testing Process

In the first step, testers have to identify what is the problems they want to test. For

example, they can establish basic requirements of a security policy the application has

to conform. During the second step, testers determine what is the scope they need to

test depending on the requirement. For instance, to test whether all branches presented

in the application contains SQL Injection or Cross-Site Scripting vulnerabilities. In the

third step, generating test cases by artificial or automatic methods. Next, testers need to

determine oracles for each test case and run test cases. Finally, testers assess the results

with pre-defined oracles to recognize flaws in the application.
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Chapter 4

Approach

4.1 Overview

In this thesis, we propose an approach which combines static analysis and dynamic

testing. This approach generates test cases to simulate attack scenarios and reports highly

confident results. The problem we deal with can be divided into two parts.

• How to generate test cases automatically

• How to execute test cases automatically within a Web-based architecture

Figure 4.1 is the architecture of our approach. We generate test cases for target

programs, and then take a test case as an input to perform dynamic testing. The following

sections describe details of our approach.

Programs
Test Cases
Generation

Test Cases
Test Cases
Execution

Test Case
Results

Attack
Patterns

Figure 4.1: An Approach Architecture
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4.2 Test Cases Generation

Because we want to generate test cases which are corresponding to different paths they

took, our approach have to explore all executable paths in programs. So, the main method

to generate test cases is using backward data flow analysis in the breadth-first search

method. In the process of expanding all possible paths, the approach simultaneously

collects constraint information along a path. When a path has no predecessor, then

it invokes a constraint solver to solve collected constraints. If the solver can solve the

constraints, the approach generates a test case according to the path, or it applies another

attack pattern and invokes the solver again until all attack patterns are used or constraints

are solved. Figure 4.2 is the flow diagram of test cases generation.

4.2.1 Flow Diagram

Programs
Perform Data
Flow Analysis

Raw
Constraints

(Path & Value)
Solve Attack Vectors

Attack
Patterns

Append
Attack Pattern

Generate
Test Case

Constraints (with
Attack Pattern)

Test Case (with
Test Inputs)

False True

Figure 4.2: The Flow Diagram of Test Cases Generation
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4.2.2 Pseudo-code for Algorithm

Figure 4.3 is the algorithm of our analysis. The inputs of the algorithm contain a

program, sink statements and attack patterns. The results of the algorithm are several

test cases.

• First, the algorithm constructs the control flow graph of the program.

• Second, it does preprocessing works to collect constraints for each sink statements

and puts them as a path in the input queue.

– A path contains two parts; one is the identifier of the currently processing

statement and the other is collected constraints.

• Next step is to check if the input queue is empty.

– If the input queue is empty, it means that there are no vulnerabilities in the

program.

– Otherwise, the algorithm takes one node from the input queue and checks if

the node has predecessors.

∗ If the node has no any predecessors, it means that the path comes to

the end and the algorithm appends an attack pattern to the collected

constraints. Then the algorithm transforms the collected constraints to

conform the static single assignment form (SSA form). Afterward, the

algorithm invokes a constraint solver to solve transformed constraints.

∗ If the node has predecessors, it means that there are different paths which

can go to this processing node. So, the algorithm collects constraints

of the preceding statement and concatenates these two constraints of the

processing node and the preceding statement. Subsequently, the algorithm

puts the new constraints and the identifier of the preceding statement as

a new path node to the input queue.
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parameter: Program P, SinkStmts S, AttackPatterns AP
result: Test cases in P
constructCFG(P); // construct control flow graph
inputQueue := emptyQueue();
// path contains : (1) stmtid: current processing statement id
// (2) constraints: collected constraints along the path
// preprocessing
foreach sink in S do
path.stmtid := sink;
path.constraints := collectConstraints(sink);
enqueue(inputQueue, path); // put a sink in the queue

end
// perform backward data flow analysis in Breadth-First Search
while notEmpty(inputQueue) do
predecessorQueue := emptyQueue();
enqueue(predecessorQueue, path.stmtid.predecessor);
// the statement has no predecessor
if empty(predecessorQueue) then
apQueue := emptyQueue();
enqueue(apQueue, AP);
while notEmpty(apQueue) do
ap := dequeue(apQueue);
apConstraints := appendAP(sinkvar, ap); // append an attack pattern to the sink variable
constraints := concatConstraints(path.constraints, apConstraints);
solverInput := translateToSSA(constraints); // translate input to conform SSA form
if satisfiable(solverInput) then // invoke constraint solver
result := solve(solverInput);
generateTestCase(result); // generate a test case
break;

end
end

end
// the statement has predecessor
while notEmpty(predecessorQueue) do
stmtid := dequeue(predecessorQueue);
newPath.stmtid := stmtid;
newConstraints := collectConstraints(stmtid);
newPath.constraints := concatConstraints(path.constraints, newConstraints);
enqueue(inputQueue, newPath);

end
end

Figure 4.3: Data Flow Analysis
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4.2.3 Constraints Specification Language

We applied the Kaluza constraint solver in our implementation, which is developed

by a team in Berkeley in 2010 [20]. We introduce the simplified syntax of the Kaluza

core language as Figure 4.4. Also, we give an example to interpret mapping relationship

between a program in Figure 4.5 and constraints in Figure 4.6.

Constraints ::= Constraints Constraint
Constraint ::= LHS OP RHS “;”

| LHS SOP ““” ConstantStr “”” “;”
| LHS \in “/” RegExp “/” “;”
| LHS \notin “/” RegExp “/” “;”

LHS ::= Var
RHS ::= Var

| Int
ConstantStr ::= [a-zA-Z0-9][a-zA-Z0-9]*
Int ::= [0-9][0-9]*
OP ::= SOP

| >
| >=
| <
| <=

SOP ::= ==
| !=

Figure 4.4: The Formal Specification of Constraints

01 <?php
02 if($ GET[‘mode’] == “add”){
03 if(!isset($ GET[‘msg’]) || !isset($ GET[‘poster’])){
04 exit;
05 }
06 $my msg = $ GET[‘msg’];
07 $my poster = $ GET[‘poster’];
08 if (strlen($my msg) > 16){
09 echo “Thank you for posting the message $my msg”;
10 }
11 }
12 ?>

Figure 4.5: An Example of PHP Program
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T 1 == var 0xINPUT mode;
T 1 == “add”;
T 2 == var 0xINPUT msg;
T 2 != “”;
T 3 == var 0xINPUT poster;
T 3 != “”;
T mymsg == T 2;
T myposter == T 3;
Len(T mymsg) > 16;
T mymsg \in /.*<script>.*/;

Figure 4.6: The Collected Constraints of Figure 4.5

In the analysis process, we collected two kinds of constraints in programs. One is

path constraints, like Boolean expression in IF statements or SWITCH CASE statements.

The other is value constraints, like assignment statements. In Figure 4.5, path constraints

contains “$ GET[‘mode’] == “add””, “!isset($ GET[‘msg’])”, “!isset($ GET[‘poster’])”

and “strlen($my msg) > 16”. Value constraints include “$my msg = $ GET[‘msg’];”,

“$my poster = $ GET[‘poster’];” and “echo “Thank you for posting the message $my msg”;”.

We use Table 4.1 to represent the relation between Figure 4.5 and Figure 4.6. It is worth

talking about the final row in Table 4.1. As mentioned above, we append different attack

patterns to generate test cases in our approach. In this example, the appended attack

pattern is “.*<script>.*”.

Table 4.1: The Mapping between A Program and Constraints

Program Constraints

$ GET[‘mode’] T 1 == var 0xINPUT mode;

$ GET[‘mode’] == “add” T 1 == “add”;

$ GET[‘msg’] T 2 == var 0xINPUT msg;

!isset($ GET[‘msg’]) T 2 != “”;

$ GET[‘poster’] T 3 == var 0xINPUT poster;

!isset($ GET[‘poster’]) T 3 != “”;

$my msg = $ GET[‘msg’]; T mymsg == T 2;

$my poster = $ GET[‘poster’]; T myposter == T 3;;

strlen($my msg) > 16 Len(T mymsg) > 16;

echo “Thank you for posting the message $my msg”; T mymsg \in /.*<script>.*/;
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4.2.4 Static Single Assignment Form

Before solving collected constraints, we have to translate those constraints in static

single assignment form. For example in Figure 4.7, there is one vulnerability at Line 08

when the $id variable is equal to constant strings, “bob” or “admin”. In our approach,

we generate two executable paths in this example, and we could see each collected con-

straints in Table 4.2. We found that if we do not translate constraints into static single

assignment form, the constraints in path 1 are unsolvable. In fact, attackers can exploit

the vulnerability at Line 08 along two different paths. So, we have to translate collected

constraints into static single assignment form. The simplified method is as following.

• Step 1: Create two hash tables, one stores distinct variables in LHS and the other

stores matched variables in LHS and its substitutions.

• Step 2: Take a constraint from collected constraints of one path.

• Step 3: Check it if the syntax of the constraint is conformed to the format, “LHS

op RHS”. If conformed, then go to step 4, or go back to step 2 to take another

constraint.

• Step 4: Take a look at the variable in RHS. If the variable in RHS is matched in the

later hash table, then replace it to its substitution. Or if not matched, do nothing.

• Step 5: Take a look at the variable in LHS. If the variable in LHS is matched in

the former hash table, then check if this variable has occurred in the later hash

table. If the variable in LHS is matched in the later hash table, then create a new

mapping substitution, replace this variable to its new substitution, and update the

substitution of this variable in the later hash table. Or if not matched in the later

hash table, add this variable to the later hash table and also create a substitution

and replace this matched variable to its substitution. Or if not matched in the

former hash table, then add this variable to the former hash table.

• Step 6: Continue step 2 to 5 until all constraints are processed, and we can transform

collected constraints of paths in static single assignment form.
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01 <?php
02 $id = $ GET[‘id’];
03 $name = $ GET[‘name’];
04 if($id == “bob”){
05 $id = “admin”;
06 }
07 if($id == “admin”){
08 echo “Hi $name”;
09 }
10 ?>

Figure 4.7: An Tricky Example of PHP Program

Table 4.2: Two Executable Paths

Program Constraints in Path 1 Constraints in Path 2

$ GET[‘id’] T 1 == var 0xINPUT id; T 1 == var 0xINPUT id;

$id = $ GET[‘id’] T id == T 1; T id == T 1;

$ GET[‘name’] T 2 == var 0xINPUT name; T 2 == var 0xINPUT name;

$name = $ GET[‘name’] T name == T 2; T name == T 2;

$id == “bob” T id == “bob”;

$id = “admin” T id == “admin”;

$id == “admin” T id == “admin”; T id == “admin”;

4.3 Test Cases Execution

After generating test cases, we want to automatically run test cases under a Web-

based architecture and make sure those can really exploit the vulnerability. There are

many test tools which can automatically demonstrate test scenarios for Web applications.

Traditionally, these tools always need to install components in where you want to execute

these tests. It is rare that executing test cases takes place under a Web-based architecture.

Moreover, we want those people who execute test cases do not need to install tools at their

computers. So, we conceive an approach which can fulfill these requirements which are

automatically demonstrating test scenarios under a Web-based architecture and installing

nothing in the client-side. There are four components in our approach to execute a test

case.
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• Target Application : the target of test cases

• JavaScript Code : the main component in our approach which is used to manipulate

DOM objects in a Web page. The fragment code is shown in Appendix A1.

• Test Case : a test case from the step of test cases generation

• GetStep Code : retrieving step information from a test case. The fragment code is

shown in Appendix A2.

The whole process of test cases execution is described in the following. First, we need

to build applications under test (AUT). This step is to duplicate the origin environment

where the application is to our server and make sure it can be run on our server properly.

After the process of test cases generation, we could have some test cases if the application

is vulnerable. Each test case is an attack scenario which we want to demonstrate and

confirm it as a true positive. So for a test case, we have to understand which of Web pages

need to be instrumented and this information are described in the test case. Depends

on these information, we instrument those Web pages with the JavaScript Code. After

instrumentation, we redirect the Web page to the beginning page which described in the

test case and start to demonstrate the attack scenario. We show the process of instrumen-

tation in Figure 4.8. After redirecting the beginning page, the instrumented JavaScript

Code uses the Ajax method to automatically send an asynchronous Httprequest from a

client to our server. The Httprequest requests a step to manipulate by communicating

with the server-side code (the GetStep Code). According to the value of the SESSION

variable, we know which step has to be dealt with and return it to the JavaScript Code.

After acquiring the untreated step information, the JavaScript Code manipulates DOM

objects of the Web page depends on these information. After manipulating this step, the

instrumented JavaScript Code automatically send another asynchronous Httprequest to

our server until all steps in the test case are processed. We show programs of the Get-

Step Code and the JavaScript Code in Figure 4.9 and Figure 4.10 respectively. Moreover,

Figure 4.11 describes the flow diagram of test cases execution mechanism. This approach

can apply to any server-side language because the JavaScript Code is independent with

a server-side language.
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01 parameter: TestCase TC
02 // check the existence of the test case
03 if checkFileExist(TC) then
04 // collect pages which need to be instrumented
05 instrumentPages := getInstrumentPagesInfo(TC);
06 foreach page in instrumentPages do
07 // instrument the JavaScript code
08 instrumentJS(page);
09 end
10 // get the beginning page in this test case
11 beginningPage := getBeginningPageInfo(TC);
12 // keep the processed step information in the SESSION variable
13 // which is a global variable, the default value is 0
14 SESSION.step := 0;
15 // redirect to the beginning page and start to demonstrate an attack scenario
16 redirectToPage(beginningPage);
17 end

Figure 4.8: The Process of Instrumentation

01 parameter: TestCase TC, SESSION S
02 result: Step information in TC
03 // check the existence of the test case
04 if checkFileExist(TC) then
05 // get the processed step number in the SESSION variable
06 stepNum := getStepNum(S);
07 // get the next step information in the test case
08 // a step contains: (1) action: which action the JavaScript Code takes
09 // (2) targetId: a DOM object’s id
10 step := getStepInfo(TC, stepNum+1);
11 S.step := stepNum+1;
12 return step;
13 end

Figure 4.9: The Program of The GetStep Code
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01 // automatically send an asynchronous Httprequest to the GetStep Code,
02 // and then get a step infomation
03 step := sendAJAX(GetStep);
04 while notEmpty(step) do
05 // according to the action and the target id
06 // to manipulate the DOM object of the Web page
07 doAction(step.action,step.targetId);
08 // get a next step
09 step := sendAJAX(GetStep);
10 end

Figure 4.10: The Program of The JavaScript Code

Target
Application

Instrument
JS code

DOM
Object

manipulate

JavaScript
Code

Instrumented Target Application

GetStep
Code

JavaScript
Code

Test Case

HttpRequest

HttpResponse

Figure 4.11: The Flow Diagram of Test Cases Execution
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Chapter 5

Implementation and Evaluation

5.1 Implementation

PHP HTML JavaScript SQL Database
Configuration

File

Parser Parser Parser Parser Translator Translator

CIL Intermediate Representation

Static Analysis Dynamic Analysis

Data Flow Analysis
Vulnerabilities

Detection
Test Cases
Generation

Vulnerabilities
Confirmation

Figure 5.1: Architecture of the Environment

Our approach is implemented as a part of CANTU environment which depicted in

Figure 5.1. The transformation approach from target programs to programs in CIL for-

mat is purposed by [11, 22, 27]. Our effort acts on the below right part of the Figure

5.1, which is filled in light gray. We focus on using data flow analysis to generate test

cases and applying dynamic testing to confirm the existence of vulnerabilities under a

Web-based architecture. Also, we generate test cases to describe attack scenarios.
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5.1.1 Test Cases Generation

Under the CANTU architecture, the target programs will be transformed in C Inter-

mediate Language. Relying on the efforts of [22, 27], the input program of our analysis

algorithm is a program in C Intermediate Language. The program in CIL contains com-

plete information of the target application, and we apply our approach on it. Furthermore,

sink statements, one parameter of analysis input, are obtained from the taint analysis

result in [27]. The analysis algorithm is implemented in OCaml. Besides, we need a

constraint solver to solve collected constraints which could be in types of arithmetic or

string. We find that most constraint solvers can only solve one type of constraints at a

time. For example, choco [1] and lp solve [2] are arithmetic solvers, and hampi [17] is a

string solver. There are few solvers which could solve arithmetic and string constraints at

the same time. Finally, we find out the Kaluza constraint solver, which is developed by

a team in Berkeley in 2010 [20]. It supports a rich set of constraints over string, integer

and Boolean variables, including most possible constraints that Web applications may

have. So, we adopt the Kaluza constraint solver in our implementation.

5.1.2 Test Cases Specification

IEEE 829-2008 [5] is an IEEE standard that specifies the format of a set of documents

for use in eight defined stages of software testing, each stage potentially producing its

own separate type of document. In the standard, a test case means a set of test inputs,

execution conditions, and expected results developed for a particular objective, such as to

exercise a particular program path or to verify compliance with a particular requirement.

The format of our test cases is referenced from the IEEE 829-2008 standard, and

we modify some elements to meet our needs in automatically executing these test cases.

We formally define a test case in Figure 5.2, and a test case is represented in the XML

format. The contents of a test case include its identifier, vulnerability type, scenario and

expected result. The following introduces the motive of each element, and we show an

actual test case in Appendix B2.
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• TestCase : contains identifier, vulnerability type, scenario and expected result

• TCId : the identifier of a test case

• Vul : vulnerability type that the test case describes

• Scenario : a sequence of steps

– TestStep : contains step identity, target page, action, target component and

type string when the action is to type

– StepAct : actions we handled, included browse, type, click and confirm action

– StepTarget : the target of the action

– StepTypeStr : for typing in the target

• ExpValue : for confirming the test case result

– ExpType : types of confirming methods

– ExpInfo : the expected string

We also formally define a test case result in Figure 5.3. The contents of a test case

result include a test case identifier, project name, project version and actual result. We

show a test case result in Appendix B3.
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TestCase ::= “<TestCase>” TCId Vul Scenario ExpValue “</TestCase>”
TCId ::= “<tcId>” ConstantStr “</tcId>”
Vul ::= “<vulnerability>” VulSpec “</vulnerability>”
VulSpec ::= “XSS”

| “SQLI”
Scenario ::= “<scenario>” TestStepList “</scenario>”
TestStepList ::= TestStep

| TestStepList TestStep
TestStep ::= “<step>” StepID StepPage StepAct StepTarget StepTypeStr “</step>”
StepID ::= “<id>” Int “</id>”
StepPage ::= “<page>” FileName “</page>”
FileName ::= ConstantStr “.” FileTypeSpec
FileTypeSpec ::= “php”

| “html”
StepAct ::= “<action>” StepActSpec “</action>”
StepActSpec ::= “browse”

| “type”
| “click”
| “confirm”

StepTarget ::= “<target>” TargetID TargetName “</target>”
TargetID ::= “<id>” ConstantStr “</id>”
TargetName ::= “<name>” ConstantStr “</name>”
StepTypeStr ::= “<typingString>” ConstantStr “</typingString>”
ExpValue ::= “<expectedValue>” ExpType ExpInfo “</expectedValue>”
ExpType ::= “<type>” ExpTypeSpec “</type>”
ExpTypeSpec ::= “title”

| “document”
ExpInfo ::= “<info>” ConstantStr “</info>”
ConstantStr ::= [a-zA-Z0-9][a-zA-Z0-9]*
Int ::= [0-9][0-9]*

Figure 5.2: The Formal Specification of A Test Case

TestCaseResult ::= “<TestCaseResult>” TCId Project Result “</TestCaseResult>”
TCId ::= “<tcId>” ConstantStr “</tcId>”
Project ::= “<project>” ProjectName ProjectVersion “</project>”
ProjectName ::= “<projectName>” ConstantStr “</projectName>”
ProjectVersion ::= “<projectVersion>” ConstantStr “</projectVersion>”
Result ::= “<result>” ResultSpec “</result>”
ResultSpec ::= “” | “Passed” | “Failed”
ConstantStr ::= [a-zA-Z0-9][a-zA-Z0-9]*
Int ::= [0-9][0-9]*

Figure 5.3: The Formal Specification of A Test Case Result
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5.1.3 Confirm XSS and SQL Injection

We use prepared attack patterns and its corresponding expected result to confirm the

penetration test passed or failed. So, for each attack pattern, they have their own corre-

sponding expected result we need to know. First, we have to consider how a vulnerability

will be exploited, and then under the context to build an attack pattern which can help

us to confirm the result.

The following describes the root cause of the existence of vulnerabilities

• XSS

– If there is XSS vulnerability, it means that the return string to the client-side

browser contains malicious input which included angle brackets and “script”

string.

– For example, <script> ... </script>, and “...” could be any words which can

be composed by JavaScript grammar

• SQL Injection

– If there is SQL Injection vulnerability, it means that the parameterized SQL

query contains user input and the input has unwilling characters (single quote)

and SQL reserved words which make the SQL query has a different structure

and meaning which not conformed to programmers’ original intentions.

– For example, a SQL query like

SELECT name FROM user WHERE id = ‘ ... ’. “...” is the values from user

input, and the most well-known injection string is ’ OR ‘1’ = ‘1 which contains

single quotes and SQL reserved words and the string makes the WHERE

clause is a tautology.
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The following is our collected attack patterns which one for penetrate the XSS vul-

nerability and another for SQL Injection vulnerability. In Table 5.1, we could realize

that

• XSS

– <script> ... </script> : the root element of a XSS vulnerability

– document.title=“xss”; : For the purpose of confirming, the Web page title

has the “xss” string.

• SQLI

– For example, a SQL query like

SELECT name FROM user WHERE id = ‘ ... ’

– ’ AND ‘1’ <> ‘1’ : makes the first SELECT statement has no any result

– UNION : concatenates two SQL statement results

– CONCAT(parameter1, parameter2) : returns the concatenation of pa-

rameter1 and parameter2

– # : a comment sign

– ’ AND ‘1’ <> ‘1’ UNION SELECT CONCAT(‘sql-’,‘injection’) # :

For the purpose of confirming, the Web page document has the “sql-injection”

string.

Table 5.1: Attack Patterns

Vulnerability Type Attack Pattern
Expected Value

Type Info

XSS <script>document.title=“xss”;</script> title xss

SQLI
’ AND ‘1’ <> ‘1’ UNION SELECT

CONCAT(‘sql-’, ‘injection’) #
document sql-injection
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5.2 Evaluation

We designed five programs which are shown in Appendix C to evaluate the correctness

of our analysis. Table 5.2 shows the experimental results of our analysis. The following

describes the contents of each column’s header.

• Program : the test program

• Num of Line : the total number of program lines

• C/F Tool : commercial static analyzers

– Num of Vul : the total number of vulnerabilities which the tool detected in

the test program

– Line of Vul : the number of lines of the vulnerability

• Our Analyzer : our tool in [11, 27]

– Num of Vul & Line of Vul : the same in the above

– Test Case Generation : the results of our approach

∗ Num of Path : the total number of paths which can reach the vulnerability

∗ TP (solve) : the total number of true positives (the solver can solve)

∗ FP : the total number of false positives

∗ FN : the total number of false negatives

The following describes the motive of each program.

• Ex1 : We can handle a basic case which only contains assignments.

• Ex2 (branch) : We can handle a case which contains one branch.

• Ex3 (falsepositive) : We show our value by writing a case which makes most static

analyzers report a result which contains a false positive.

• Ex4 (multibranches) : We make sure our analysis could really explore many paths.

• Ex5 (different paths) : We express that only specific paths can exploit the vulner-

ability.
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We compare our analysis result with commercial tools, and we can find that these

tool results contain false positives in Ex3 and Ex4. So, if applying our approach in the

process of static analysis, the analysis result can be more confident. We also execute

test cases which generated by the process of test cases generation, and the Web-based

testing can exactly automatically execute and confirm these test cases. We show the

target programs with the instrumented JavaScript code, an actual test case and a test

case result in Appendix B.

Table 5.2: Experimental Results

Program
Name

Num
of Line

C/F Tool Our Analyzer

Num
of Vul

Line
of Vul

Num
of Vul

Line
of Vul

Test Case Generation
Num of
Path

TP
(solve)

FP FN

Ex1 4 1 3 1 3 1 1 0 0
Ex2

(branch)
12 1 6 1 6 1 1 0 0

Ex3
(falsepositive)

15 2
6

2
6 1 1 0 0

12 12 1 0 True 0

Ex4
(multibranches)

20 4

6

4

6 1 1 0 0

10 10 1 0 True 0

14 14 2 0 True 0

18 18 2 2 0 0

Ex5
(different paths)

17 2
13

2
13 2 1 0 0

15 15 4 2 0 0

43



Chapter 6

Conclusion

Many tools have been developed that use static or dynamic analysis to detect security

vulnerabilities in Web applications. However, few tools can support a comprehensive code

review process from analysis to testing. In this thesis, we proposed an approach that com-

bines static analysis and dynamic testing for detecting Web application vulnerabilities

to produce high-confidence analysis results and enhance the capability of analysis tools.

Generally speaking, a rigorous code review process requires human experts to manually

inspect the analysis result which are produced by analysis tools. This is an essential but

time-consuming and error-prone task. Our approach could reduce the number of vulner-

abilities that a human expert has to examine and hence avoid errors made by men and

minimize the cost of manual code review.

Our approach can be divided into two parts. One is test cases generation, and the

other is test cases execution. In the part of test cases generation, we used backward data

flow analysis to expand all executable paths in the target program, and generated test

cases by solving constraints which are collected when performing the analysis. Further,

we took these test cases as an evidence of the vulnerability and applied the automatically

Web-based testing to confirm the vulnerability is a true positive.

6.1 Contributions

We summarize our contributions as follows.

• Combine static analysis and dynamic testing
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As we mentioned above, quite a few analysis tools can detect vulnerabilities in Web

applications, but none of them integrate analysis and testing process. Moreover,

because of dynamic features of web applications, in the process of performing static

analysis for Web application, it has to apply abstraction and over-approximation

techniques which might introduce false positives to the analysis results. As to

applying dynamic testing to detect vulnerabilities, it may encounter path coverage

problems. So, our approach combined two ways to make use of both advantages.

• Propose an automatic testing method on a Web-based architecture

Traditionally, automatical testing needs to install tools to execute test cases. In

this thesis, we proposed a Web-based approach which needs no installing tools in

client-side, and it also can achieve the objective of automatic testing.

• Provide an easier way to confirm vulnerabilities automatically

We designed different types of attack patterns to help us confirm the existence of

vulnerabilities and convince the programmers that their programs have weaknesses.

6.2 Further Work

Our work may be extended in two ways

• Improve the efficiency of test cases generation by

– sharing information of common sub paths and applying program slicing tech-

nique to remove all the code that cannot affect the outcome of the constraints.

Besides, we only need to know if the target program contains an exploitable

path from a source to a sink. So, if there are numerous exploitable paths from

a source to sink, we can merge the same source and sink paths.

• Enhance capabilities of test cases execution by

– dealing with more features of DOM objects and offering more ways to con-

firming the existence of vulnerabilities. For example, we just provide test

information of steps and let users manipulate Web pages by themselves.
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Appendix

A. Test Cases Execution Components
A1. A Fragment Code of JavaScript Code
function sendAJAXrequest(){}
function getStep(){
sendAJAXrequest();
xmlHttp.onreadystatechange = getStep r;

}
function getStep r(){
doAction(); // manipulate DOM object
setTimeout(“getStep()”, 2000); // get next step

}
function doAction(){
if (action == “type”){
// insert a string into a target object

}
else if (action == “click”){
// click a target object

}
else if (action == “confirm”){
// confirm this test case

}
}
getStep(); // initially invoke
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A2. A Fragment Code of GetStep Code
<?php
//get a step from a test case file
if (file exists(“testcase.xml”)) {
$stepNo = $ SESSION[“testStep”];
$stepNo++;
$xml = simplexml load file(“testcase.xml”);
$action = $xml->scenario->step[$stepNo]->action;
$targetId = $xml->scenario->step[$stepNo]->target->id;
$targetName = $xml->scenario->step[$stepNo]->target->name;
$typeStr = $xml->scenario->step[$stepNo]->typingString;
echo $action.“ ”.$targetId.“ ”.$targetName.“ ”.$typeStr;
$ SESSION[“testStep”] = $stepNo;

}
else {
exit(‘Failed to open ’.$path.‘.’);

}
?>
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B. An Example of A Test Case
B1. Target Programs with the Instrumented JavaScript Code
//a.php
01<html>
02<head>
03<title>Reflected XSS</title>
04</head>
05<body id=“aaa”>
06 Enter your name:
07 <form id=“form1” action=“b.php” method=“GET”>
08 <input id=“txtname” type=“text” name=“txtname” size=30><br>
09 <input id=“btn1” type=“submit” value=“enter”><br>
10 <input id=“btn2” type=“reset” value=“reset”>
11 </form>
12</body>
13</html>
14<br/><!–instrument code –><br/>
15<script src=“../../simulate.js”></script>

//b.php
01<html>
02<head>
03<title>Reflected XSS2</title>
04</head>
05<?
06 $name = $ GET[“txtname”];
07 echo “Hi, ”;
08 echo $name;
09?>
10</body>
11</html>
12<br/><!–instrument code –><br/>
13<script src=“../../simulate.js”></script>
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B2. An Actual Output of A Test Case
<TestCase>
<tcId>tc1</tcId>
<vulnerability>XSS</vulnerability>
<scenario>
<step>
<id>1</id>
<page>a.php</page>
<action>browse</action>
<target><id></id><name></name></target>
<typingString></typingString>

</step>
<step>
<id>2</id>
<page>a.php</page>
<action>type</action>
<target><id>txtname</id><name>txtname</name></target>
<typingString>&lt;script&gt;document.title = “xss”&lt;/script&gt;</typingString>

</step>
<step>
<id>3</id>
<page>a.php</page>
<action>click</action>
<target><id>btn1</id><name>btn1</name></target>
<typingString></typingString>

</step>
<step>
<id>4</id>
<page>b.php</page>
<action>confirm</action>
<target><id></id><name></name></target>
<typingString></typingString>

</step>
<expectedValue>
<type>title</type>
<info>xss</info>

</expectedValue>
</TestCase>
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B3. An Actual Output of A Test Case Result
<TestCaseResult>
<tcId>tc1</tcId>
<project>
<projectName>myProject1</projectName>
<projectVersion>v1</projectVersion>

</project>
<result>Passed</result>

</TestCaseResult>
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C. Test Data in the Evaluation Section
C1. Ex1
<?php
$name = $ GET[‘name’];
echo “Welcome $name”;

?>

C2. Ex2(branch)
<?php
$group = $ GET[‘group’];
$name = $ GET[‘name’];
if ($group == 1)
{
echo “Hello! $name”;

}
else
{
echo “str”;

}
?>

C3. Ex3(falsepositive)
<?php
$group = $ GET[‘group’];
$name = $ GET[‘name’];
if ($name != “admin”)
{
echo “Hello! $name”;

}
else
{
if ($group == 99)
{
echo $name;

}
}

?>
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C4. Ex4(multibranches)
<?php
$id = $ GET[‘id’];
$name = $ GET[‘name’];
if ($id != “123”)
{
echo $id;

}
else
{
echo $id;

}
if ($name == “abc”)
{
echo $name;

}
else
{
echo $name;

}
?>

C5. Ex5(different paths)
<?php
$id = $ GET[‘id’];
$group = $ GET[‘group’];
$name = $ GET[‘name’];
if ($group == 1)
{
$id = “guest”;

}
if ($name == $id)
{
if ($group == 99)
{
echo $id;

}
echo “Hello! $name”;

}
?>
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