

 i

國立臺灣大學管理學院資訊管理學研究所

博士論文

Department of Information Management

College of Management

National Taiwan University

Doctoral Dissertation

應用於無線感測網路中之物體監控與追蹤演算法

Object Monitoring and Tracking Algorithms in

Wireless Sensor Networks

李政達

Cheng-Ta Lee

指導教授：林永松 博士

Advisor: Frank Yeong-Sung Lin, Ph.D.

中華民國 99 年 7 月

July, 2010

 ii

 i

應用於無線感測網路中之物體監控與追蹤演算法

Object Monitoring and Tracking Algorithms in

Wireless Sensor Networks

By Cheng-Ta Lee

A dissertation submitted to

the Graduate School of Information Management

of National Taiwan University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

July, 2010

 ii

 i

口試委員會審定書

 ii

 iii

謝辭

 「即使是一株雜草也可以學習開花」，這是李小平教授送給我《慧眼初開》

一書裡面的一句話，正說明了我前半生的人生路程：從小至今一直是在挫折中成

長，每遇到難關時，除了靠自己樂天的個性之外，最重要的是身旁有一群關心與

鼓勵我的家人、師長以及朋友，讓我能克服困難，繼續前進。

 回顧這九年來博士班的求學歷程，要感謝許多人的鼓勵與幫忙。首先感謝恩

師林永松教授，恩師在學術研究上認真的態度，對學生細心指導的付出，還有對

學生身教上的典範，不僅將我帶入學術領域的最高殿堂，也是我從事教職的最佳

表率。此外，還有孫雅麗老師、謝清佳老師、李瑞庭老師、莊裕澤老師、蔡益坤

老師、陳靜枝老師與梁定澎老師，我在每一位老師的課堂上都獲益良多，在此致

上我深深的謝意。

 再者，感謝擔任口試委員的孫雅麗教授、呂俊賢教授、林一平教授、莊東穎

教授、趙啟超教授和鐘嘉德教授，由於教授們的細心指導與建議，使我的博士論

文益臻完善。此外，還要感謝王國光教授在一些數學方面的問題，適時地為我解

惑，以及洪瑞文老師與許宏仁老師在英文潤稿上的協助。

 另外，我還要感謝博碩士班同門師兄弟姊妹們：顏宏旭、林志浩、祝國忠、

鄭旭成、彭國維、邱佩玲、溫演福、臧柏皓、林俊甫、許明宗、陳霈語、陳澤龍、

黃健誠、蕭邱漢、王猷順、林書平、林岦毅、許宴毅等，及其他博士班的同學們，

你們每一位都給了我許多的幫忙，謝謝你們。

 我更要感謝我的外婆、父母親和阿姨，沒有你們辛勞的培育和教養，我不可

能會有今日的一點成就。在此，也感謝愛妻平雯，由於你的全心體諒與幫忙，才

能讓我無後顧之憂來攻讀博士；還有愛子尚澔，在博士班最後階段帶給我無限的

歡笑與求學研究的動力，在此特別感謝家人在背後的支持。此外還要感謝愛心爸

爸游火金、愛心媽媽林清翠與愛心奶奶李詠妤對尚澔的照顧，讓我有更多時間來

撰寫論文。

 最後，謹以本論文獻給往生的父親，感謝您從小到大對我的呵護，如今我身

為人父，更能體會您對我的關心與愛心，願您能一同分享這份喜悅。

李政達 謹識

于國立臺灣大學資訊管理學研究所

中華民國九十九年七月

 iv

 v

論文摘要

論文題目：應用於無線感測網路中之物體監控與追蹤演算法
作者：李政達 九十九年七月
指導教授：林永松 博士

無線感測網路(Wireless Sensor Networks, WSNs)的規劃設計上，有兩個重要的

研究議題：首先是如何建構一個能滿足服務品質之應用需求的無線感測網路，第

二則是如何延長無線感測網路之生命期。從應用的觀點來看，改善服務品質之需

求，必須考慮無線感測網路對於應用的支援，如環境監測、物體入侵監控與物體

追蹤等的能力。此外，由於感測器的電力有限，一般而言，很難再充電，故如何

延長無線感測網路的生命期，也是規劃無線感測網路的重要議題。

在本論文中，我們提出物體監控與追蹤相關應用服務之演算法，首先我們發

展了五個演算法，是先將問題描述為數學最佳化模型，這些都是複雜的無線感測

網路規劃問題，我們採用啟發式、系統模擬與拉格蘭日鬆弛法來解決這一系列最

佳化問題。此外，我們發展了一個以預測為基礎的演算法來支援物體追蹤服務。

茲將每一研究主題之內容與成果簡述如下：

 在邊緣監控(boundary monitoring)服務中，我們提出 BMAFS 與 BMAMS 演

算法來支援該服務，BMAFS 演算法是考慮在一個任意拓樸的無線感測網路

中，找出監控範圍（monitoring region）之邊緣感測器節點（boundary nodes），

為了滿足生命期最大化之服務品質，即以電能效率(energy efficiency)為考

量，配置具有 k 個群(group)的無線感測網路之邊緣感測器節點，每個群輪流

支援入侵監測服務。實驗結果顯示，此機制可以有效地延長無線感測網路入

侵監測服務之生命期。在上述研究議題中，我們將容錯的問題考量進來，

BMAMS 演算法考慮當有節點故障或是節點電力耗盡時導致檢核點未被覆

蓋，我們可以規劃將鄰近的節點移動覆蓋至未被覆蓋之系統檢核點(check

points)，使得整個網路的服務不致於中斷。

 我們亦將縱深防禦(in-depth defense)的觀念加諸在上述研究議題中，亦即同

 vi

時考量有縱深的監控範圍，當有入侵者進入監控範圍時，提供早期預警的功

能，讓防禦者有更充裕的時間來因應，此問題並同時將整體系統的防禦率加

入整個縱深防禦系統的規劃中，在此我們提出 LDA 與 NLDA 演算法來支援

縱深防禦服務，LDA 演算法配置具有 k 個群(group) 的無線感測網路之多層

監控範圍節點，每個群輪流支援入侵監測服務。實驗結果顯示，此機制可以

有效地延長無線感測網路入侵監測服務之生命期。此外，NLDA 演算法是將

一個入侵情境轉化成數學規劃問題，用以描述系統之整體防禦率與早期預警

率，並且透過三階段的評估流程找出能有效地延長無線感測網路入侵監測服

務之生命期之群組配置模式。此外，該法能夠用於解決具備不完美資訊特質

的問題，透過適當的情境描述，加入隨機的變異性情況，使問題更貼近於真

實情況，有效地提升縱深防禦系統之生命期。

 在物體追蹤(object tracking)服務中，我們提出 TOTA 與 POTA 演算法來支援

該服務，TOTA 演算法是一個以樹為基礎(tree-based)的物體追蹤演算法，此

研究的實驗結果顯示，所提演算法不但可得到高品質的解，且具有效力

(effectiveness)、擴展性(scalability)與強固性(robustness)。另外，我們亦發展

POTA 演算法以動態預測為基礎(dynamic prediction-based)的物體追蹤演算

法，此法使用喚醒較少的節點來進行物體追蹤，並利用動態預測模式來提升

預測的準確性，利用此機制可以有效地延長感測網路物體追蹤服務之生命

期。

由實驗結果顯示，我們所提出的六個演算法均可有效地支援物體監控與追蹤

之相關應用服務。

關鍵詞：無線感測網路、物體監控、入侵偵測、縱深防禦、物體追蹤、服務品質、

電能效率、系統模擬、拉格蘭日鬆弛法、數學規劃、網路最佳化

 vii

Dissertation Abstract

Object Monitoring and Tracking Algorithms in

Wireless Sensor Networks
By Cheng-Ta Lee

July, 2010
ADVISER: Dr. Frank Yeong-Sung Lin

There are two important challenges in WSNs design. One is to construct an

efficient WSN for applications to guarantee desired quality of service (QoS). The

other challenge is to prolong the lifetime of WSNs. From application viewpoint, the

abilities of environment surveillance, object intrusion detection, and object tracking

have to support the QoS. Besides, it is difficult to recharge or replace the battery for

numerous sensors in the most scenarios. Therefore, how to prolong the lifetime of

WSNs also becomes a key issue.

In this dissertation, we focus on the network planning problem to support object

monitoring and object tracking services from various perspectives. We develop five

algorithms to solve optimization problems based on Lagrangean relaxation method,

simulation techniques, and heuristic approaches. In addition, we develop one

prediction-based algorithm based on modified Viterbi algorithm to solve object

tracking problem. We present each topic briefly as follows:

 For boundary monitoring problem, we propose two algorithms, BMAFS and

BMAMS, to support boundary monitoring services. The BMAFS is to construct

boundary monitoring for grouping capabilities, and it tries to find the maximum

k groups of sensors for boundary monitoring of the sensor field to prolong the

system lifetime. In the test problems, the experiment results show that the

proposed algorithm achieves optimality in the boundary monitoring for grouping

 viii

capabilities. The BMAMS is to address the problem of boundary node relocation,

and it can move previously deployed sensors to cover uncovered check points

due to failure of other nodes or battery exhaustion of other nodes. The

mechanism can further prolong the system lifetime. The experiment results show

that the proposed BMAMS gets effectiveness in the boundary monitoring

services for mobile and grouping capabilities.

 For in-depth defense problem, we propose two algorithms, LDA and NLDA, to

support in-depth defense services. The LDA is to construct layered defense for

wireless sensor networks of grouping capabilities. It tries to find the maximum k

groups of sensors for layered defense of the monitoring region to prolong the

system lifetime. The experiment results show that the proposed LDA gets

efficiency in the layered defense for grouping capabilities. The NLDA is to

construct non-layered defense of supporting different types of intruders for

grouping capabilities, and it tries to find the maximum k groups of sensors for

non-layered defense subject to the constraints of defense rate, early warning rate,

battery capacity, intruder behaviors, and defender strategies. The NLDA can

prolong the system lifetime and provide lead time alarms. The experiment results

show that the proposed NLDA gets applicability and effectiveness in the

non-layered defense services of supporting different types of intruders for

grouping capabilities.

 For object tracking problem, we propose two algorithms, TOTA and POTA, to

support object tracking services. The TOTA is to construct an object tracking tree

for object tracking. Such tree-based algorithm can achieve energy-efficient

object tracking for given arbitrary topology of sensor networks. The experiment

results show that the proposed TOTA gets a near optimization in the

energy-efficient object tracking. Furthermore, the algorithm is efficient and

scalable in terms of the running time. The POTA is to construct a dynamic

prediction-based algorithm for object tracking. Such the POTA can minimize the

number of nodes participating in the tracking activities, minimize out of tracking

 ix

probability, and maximize the accuracy of object predicted position. The POTA

can prolong the system lifetime.

The experiment results show that all six algorithms can support object monitoring

and tracking services efficiently.

Keywords: Wireless sensor networks, object monitoring, intrusion detection,

in-depth defense, object tracking, quality of services, energy-efficiency, system

simulation, Lagrangean relaxation, mathematical modeling, network optimization.

 x

 xi

Table of Contents

口試委員會審定書...i
謝辭.. iii
論文摘要..v
Dissertation Abstract..vii
Table of Contents ..xi
List of Figures ..xv
List of Tables ..xix
Chapter 1 Introduction ...1

1.1 Motivations ..1
1.2 Contributions..2
1.3 Overview..3
1.4 Research Scope ..7
1.5 Dissertation Layout..11

Chapter 2 Background Knowledge and Literature Survey ..13
2.1 Background Knowledge...13

2.1.1 Detection Model..13
2.1.2 Location Model ...15
2.1.3 Sensing Energy Consumption Model ..15
2.1.4 Gauss-Markov Motion Model ...15
2.1.5 Routing Model...16
2.1.6 Location Awareness ..18
2.1.7 Energy Awareness...19
2.1.8 Impact Factors ..20
2.1.9 Quality of Services ..21

2.2 Literature Survey ...23
2.2.1 Boundary Monitoring..23
2.2.2 In-Depth Defense ..25
2.2.3 Object Tracking ..27

2.3 Lagrangean Relaxation Method...32
2.4 Simulation Techniques...35

Chapter 3 Boundary Monitoring Algorithms...37
3.1 Boundary Monitoring Algorithms for Fixed Sensors37

3.1.1 Overview ...38

 xii

3.1.2 Problem Description ...39
3.1.3 Mathematical Model ...46
3.1.4 Solution Procedure ...48
3.1.5 Computational Results ..59
3.1.6 Concluding Remarks ...62

3.2 Boundary Monitoring Algorithm for Mobile Sensors63
3.2.1 Overview ...63
3.2.2 Problem Description ...63
3.2.3 Mathematical Model ...65
3.2.4 Solution Procedure ...67
3.2.5 Computational Results ..71
3.2.6 Concluding Remarks ...73

Chapter 4 In-Depth Defense Algorithms ...75
4.1 Layered Defense Algorithms ...75

4.1.1 Overview ...76
4.1.2 Problem Description ...76
4.1.3 Mathematical Model ...81
4.1.4 Solution Procedure ...83
4.1.5 Computational Results ..91
4.1.6 Concluding Remarks ...94

4.2 Non-Layered Defense Algorithms...95
4.2.1 Overview ...95
4.2.2 Problem Description ...97
4.2.3 Mathematical Model ...104
4.2.4 Solution Procedure ...106
4.2.5 Computational Results ..118
4.2.6 Concluding Remarks ...125

Chapter 5 Object Tracking Algorithms..127
5.1 Tree-based Object Tracking Algorithm...127

5.1.1 Overview ...128
5.1.2 Problem Description ...128
5.1.3 Mathematical Model ...135
5.1.4 Solution Procedure ...140
5.1.5 Computational Results ..147
5.1.6 Concluding Remarks ...150

5.2 Prediction-based Object Tracking Algorithm..152
5.2.1 Overview ...152
5.2.2 Problem Description ...152

 xiii

5.2.3 Prediction Model ..154
5.2.4 Solution Procedure ...155
5.2.5 Computational Results ..161
5.2.6 Concluding Remarks ...167

Chapter 6 Conclusions and Future Work...169
6.1 Conclusions..169
6.2 Future Work ...171

6.2.1 Grouping Algorithm by Voronoi Diagram171
6.2.2 Multiple Sinks for Tree-based Object Tracking................................173

References..175
Appendix A: List of Notations...185
Appendix B: Publications ..189

 xiv

 xv

List of Figures

Figure 1.1. An object monitoring and tracking sensor networks...................................4
Figure 1.2. A scenario of boundary monitoring services for fixed sensors.5
Figure 1.3. A scenario of boundary monitoring for mobile sensors.5
Figure 1.4. A scenario of layered defense services..6
Figure 1.5. A scenario of non-layered defense services. ...6
Figure 1.6. A scenario of tree-based object tracking services.7
Figure 1.7. A scenario of prediction-based object tracking services.7
Figure 1.8. Research scope. ...8
Figure 2.1. Binary sensing model. ...14
Figure 2.2. Probabilistic sensing model...14
Figure 2.3. Hybrid sensing model..14
Figure 2.4. An example of location model. ...15
Figure 2.5. Direct communication routing model..17
Figure 2.6. Multi-hop routing model. ..17
Figure 2.7. Two-tiered hierarchical routing model. ...18
Figure 2.8. Algorithm for finding the border...23
Figure 2.9. The boundary node selection algorithm of three phases.24
Figure 2.10. An example of a message-pruning hierarchy ..28
Figure 2.11. The major concept of Lagrangean relaxation method.33
Figure 2.12. The procedure of Lagrangean relaxation method....................................34
Figure 2.13. The procedure of simulation technique. ..36
Figure 3.1. Check point-based boundary nodes selection..39
Figure 3.2. The boundary nodes selection algorithm...40
Figure 3.3. The communication and sensing radii for arrival and departure of objects.

..41
Figure 3.4. The single ring algorithm. ...42
Figure 3.5. The single ring for arrival and departure objects.......................................43
Figure 3.6. The double ring algorithm. ..44
Figure 3.7. The double ring for arrival and departure objects.44
Figure 3.8. Boundary monitoring for grouping capabilities.45
Figure 3.9. The state diagram of the sensor network...45
Figure 3.10. The upper bound algorithm of system lifetime.49
Figure 3.11. The simple algorithm 1 in boundary monitoring problem.......................51

 xvi

Figure 3.12. An example of deleting redundant awaked sensor node.52
Figure 3.13. The simple algorithm 2 in boundary monitoring problem.53
Figure 3.14. An example of greedy-based sensor node selection.54
Figure 3.15. The procedure of boundary monitoring algorithm for fixed sensors.55
Figure 3.16. The boundary monitoring algorithm for fixed sensors............................57
Figure 3.17. An example of boundary monitoring...59
Figure 3.18. A comparison among the linear model es = rs, quadratic model es = rs

2,
and quadratic model es = 2rs

2. ..61
Figure 3.19. An example of boundary monitoring for mobile sensors........................64
Figure 3.20. The procedure of boundary monitoring algorithm for mobile sensors....68
Figure 3.21. The boundary monitoring algorithm for mobile sensors.69
Figure 3.22. The uncovered check points finding algorithm.70
Figure 3.23. The relocation algorithm. ..71
Figure 3.24. A comparison of the total number of rounds in BMAMS and BMAFS

with the linear model. ..72
Figure 4.1. An example of layered defense..78
Figure 4.2. The layered nodes selection algorithm. ...79
Figure 4.3. An example of layered defense for grouping capabilities.80
Figure 4.4. The simple algorithm 1 of layered defense. ..85
Figure 4.5. The simple algorithm 2 of layered defense. ..87
Figure 4.6 The procedure of layered defense algorithm. ...89
Figure 4.7. The layered defense algorithm. ...91
Figure 4.8. An example of layered defense. (defense rate = 0.8)92
Figure 4.9. An example of layered defense. (defense rate = 0.999)92
Figure 4.10. The non-layered defense model...98
Figure 4.11. The curve of modified logistic function. (λ = 6)....................................100
Figure 4.12. The curve of modified logistic function. (λ = 100)100
Figure 4.13. The deviant angle and deviant range. ..101
Figure 4.14. The trajectory of intruders. (deviant range = π/6)101
Figure 4.15. The initial positions of intruders given ranges of intrusive angle = 2π.

(non-airborne intruders) ...102
Figure 4.16. The initial positions of intruders include both airborne and non-airborne

intruders. ..103
Figure 4.17. The procedure of non-layered defense algorithm..................................109
Figure 4.18. The non-layered defense algorithm. ..110
Figure 4.19. The initial solution algorithm. ... 111
Figure 4.20. The experiment results: the number of total intruders. (D = 0.9, W = 0.9)

..112

 xvii

Figure 4.21. The objective function evaluation algorithm...114
Figure 4.22. The add-and-drop algorithm..116
Figure 4.23. The simple algorithm of non-layered defense.117
Figure 4.24. An example of non-layered defense with non-airborne intruders. (D =

1.0, W = 0.9)...119
Figure 4.25. An example of non-layered defense with airborne intruders. (D = 1.0, W

= 0.9) ..120
Figure 4.26. A comparison of the number of rounds in different nodes and different

scenarios without false positives and false negative................................121
Figure 4.27. A comparison of the number of rounds in airborne intruders without false

positives and false negative. (sn = 400, cp = 100, and airborne ratio = 0.2)
..121

Figure 4.28. A relationship between number of rounds and defense rate without false
positives and false negative given W = 0.8. ...121

Figure 4.29. A relationship between number of rounds and early warning rate without
false positives and false negative given D = 1.0......................................122

Figure 4.30. A comparison of the number of rounds with false positives and false
negative. ...123

Figure 4.31. An example of the false positive nodes. ..123
Figure 4.32. An example of the false negative node..123
Figure 4.33. A relationship between false negative rate and early warning distance.124
Figure 5.1. An example of object tracking...129
Figure 5.2. An example of 2D routing sub-graph. ...130
Figure 5.3. An example of 2D sensor sub-graph. ..131
Figure 5.4. An example of 2D object tracking tree..132
Figure 5.5. An example of an object moves from voronoi cell x to voronoi cell y. ..133
Figure 5.6. An example of calculating communication cost......................................134
Figure 5.7. The procedure of Lagrangean relaxation...140
Figure 5.8. The procedure of tree-based object tracking algorithm...........................145
Figure 5.9. The tree-based object tracking algorithm. ...146
Figure 5.10. An example of LR-based object tracking tree.148
Figure 5.11. The execution results of LR-based algorithm with 12 nodes in the test

problem 1. ..149
Figure 5.12. A scenario of prediction-based object tracking.153
Figure 5.13. A scenario of POTA. ...155
Figure 5.14. The predicted procedure of the POTA of policy 1.158
Figure 5.15. The predicted procedure of the POTA of policy 2.159
Figure 5.16. The predicted procedure of the POTA of policy 3.160

 xviii

Figure 5.17. A comparison of the total energy consumption with different α and
different policies without round advance in the problem 3.165

Figure 5.18. A comparison of the miss rate with different α and different policies
without round advance in the problem 3..165

Figure 5.19. A comparison of the total energy consumption with different round
advance and different policies in the problem 3. (α = 0.9)166

Figure 5.20. A comparison of the miss rate with different round advance and different
policies in the problem 3. (α = 0.9)..166

Figure 5.21. A comparison of the total energy consumption with different α and h_ub.
..166

Figure 5.22. A comparison of the miss rate with different α and h_ub......................167
Figure 6.1. An example of V-points. ..171

 xix

List of Tables

Table 1.1. Scope and problem definition of this dissertation...9
Table 2.1. The types of power consumption of MICAz 2.4GHz.21
Table 2.2. A comparison among the OCO, SBNS, DBNS, BMAFS, and MBAMS. ..25
Table 2.3. A comparison among the IDHH, GIDA, LDA, and NLDA.27
Table 2.4. A comparison among the STUN, DAB, DAT, ZDAT, and TOTA.30
Table 2.5. A comparison among the PES, DPR, and POTA.32
Table 2.6. The applications of Lagrangean relaxation method.35
Table 3.1. Problem description in boundary monitoring problem for fixed sensors. ..46
Table 3.2. Notations of the given parameters in boundary monitoring for fixed sensors

problem. ...46
Table 3.3. Notations of the decision variables in boundary monitoring for fixed

sensors problem. ..47
Table 3.4. The parameters and decision variables in algorithms of boundary

monitoring problem. ..48
Table 3.5. Notation descriptions for new given parameter v.58
Table 3.6. Evaluation of the gap and improvement ratio with different number of

nodes with the linear model es = rs. ...60
Table 3.7. Evaluation of the gap and improvement ratio with different number of

nodes with the quadratic model es = rs
2. ..60

Table 3.8. Evaluation of the gap and improvement ratio with different number of
nodes with the quadratic model es = 2rs

2. ..60
Table 3.9. Problem description in boundary monitoring problem for mobile sensors.64
Table 3.10. Notations of the given parameters in boundary monitoring for mobile

sensors problem. ..65
Table 3.11. Notations of the indicator parameters in boundary monitoring for mobile

sensors problem. ..65
Table 3.12. Notations of the decision variables in boundary monitoring for mobile

sensors problem. ..66
Table 3.13. The parameters and decision variables in algorithms of boundary

monitoring for mobile sensors problem...67
Table 3.14. Evaluation of improvement ratio with different number of nodes with the

linear model. ..72
Table 3.15. Evaluation of improvement ratio with different number of nodes with the

 xx

quadratic model..72
Table 4.1. Problem description in layered defense problem.80
Table 4.2. Notations of the given parameters in layered defense problem.81
Table 4.3. Notations of the decision variables in layered defense problem.................81
Table 4.4. The parameters and decision variables in algorithms of layered defense

problem. ...83
Table 4.5. Evaluation of the improvement ratio with the linear model. (Defense rate =

0.8) ...93
Table 4.6. Evaluation of the improvement ratio with quadratic model. (Defense rate =

0.8) ...93
Table 4.7. Problem description in non-layered defense problem.................................98
Table 4.8. Notation of the controlled parameters in layered defense strategy problem.

..104
Table 4.9. Notation of the given parameters in layered defense strategy problem. ...104
Table 4.10.Notation of the decision variables in layered defense strategy problem..105
Table 4.11. The parameters and decision variables used in algorithms of non-layered

defense problem. ..107
Table 4.12. The parameters of non-layered defense. ...119
Table 4.13. Ratio of airborne intruders. ...119
Table 4.14. Evaluation of the round with different number of nodes and different

scenarios without false positives and false negative................................120
Table 4.15. Evaluation of the round with different λ value without false positives and

false negative. ..122
Table 4.16. Evaluation of the round with false positives and false negative.122
Table 4.17. Evaluation of the improvement ratio with simple algorithm without false

positives and false negative. ..125
Table 5.1. Power model of the MICAz. ...130
Table 5.2. Problem description in tree-based object tracking problem......................135
Table 5.3. Notations of the given parameters in tree-based object tracking.135
Table 5.4. Notation of the indicate parameter in tree-based object tracking.136
Table 5.5. Notations of the decision variables in tree-based object tracking.............136

Table 5.6. The truth table of variables (,) (,), ,x y
i j i jζ ζ and (,)

xy
i jυ138

Table 5.7. Notation of the decision variable (,)
xy
i jυ ...138

Table 5.8. Parameter of Lagrangean relaxation-based algorithm.147
Table 5.9. Evaluation of the gap and improvement ratio with different number of

nodes. ...149

 xxi

Table 5.10. The time complexity of tree-based object tracking tree algorithm.150
Table 5.11. Problem description in prediction-based object tracking problem..........154
Table 5.12. A comparison among the policy 1, policy 2, and policy 3.157
Table 5.13. The parameters of POTA...161
Table 5.14. Evaluation of the performance metrics with different policies and α in the

problem 1. ..162
Table 5.15. Evaluation of the performance metrics with different policies and α in the

problem 2. ..163
Table 5.16. Evaluation of the performance metrics with different policies and α in the

problem 3. ..164
Table 6.1. Notations of the given parameters in grouping algorithm by Voronoi

diagram. ...171
Table 6.2. Notation of the indicate parameter in grouping algorithm by Voronoi

diagram. ...172
Table 6.3. Notations of the decision variables in grouping algorithm by Voronoi

diagram. ...172

 xxii

 1

Chapter 1 Introduction

Object monitoring and tracking are important applications in wireless sensor

networks (WSNs) since 1) the object monitoring is one important issue for overseeing

hostile intrusions and attacks in order to protect the core field; and 2) the object

tracking such as tracking of moving objects has many military and civil applications.

In these applications, sensor nodes collectively track the movements of moving

objects. In this dissertation, we focus on the problem of boundary monitoring,

in-depth defense, and object tracking. In this chapter, the motivations of the

dissertation are described in Section 1.1; the contributions is presented in Section 1.2;

the overview is described in Section 1.3; the research scope presented in Section 1.4;

and the dissertation layout is organized in Section 1.5.

1.1 Motivations

Because of fast develop in the wireless sensor networks (WSNs) techniques, from

either theoretical or practical perspective are new and important research issues.

Numbers of interesting applications for WSNs have been investigated, e.g.,

environment surveillance, object positioning, object intrusion detection, object

tracking, anti-terrorism, and health care. Sensor networks have been forecasted to

apply to various usages, such as the civilian and military domains.

There are two important challenges in WSNs design. One is to construct an

efficient WSN for applications to guarantee desired quality of service (QoS). The

other challenge is to prolong the lifetime of WSNs. From application perspective, the

abilities of environment surveillance, object intrusion detection, and object tracking

have to support the QoS. Besides, it is difficult to recharge or replace the battery for

numerous sensors in the most scenarios. Therefore, how to prolong the lifetime of

 2

WSNs also becomes a key issue.

Therefore, in this dissertation, we focus on the network planning problem to

support object monitoring and object tracking services from various perspectives. We

develop five algorithms to solve optimization problems based on Lagrangean

relaxation method, simulation techniques, and heuristic approaches. In addition, we

develop one prediction-based algorithm based on modified Viterbi algorithm to solve

object tracking problem.

1.2 Contributions

We summarize the contributions of this dissertation as follows.

1. The interesting issues of object monitoring and tracking services in wireless

sensor networks are addressed.

2. We propose two algorithms, BMAFS and BMAMS, to support boundary

monitoring services. The BMAFS is to construct boundary monitoring for

grouping capabilities. In the test problems, it achieves optimal solutions. The

BMAMS is to address the problem of boundary nodes relocation. It can move

previously deployed sensors to cover uncovered check points due to failure of

other nodes or battery exhaustion of other nodes. The mechanism can further

prolong the system lifetime. The experiment results show that the proposed

BMAFS and BMAMS get effectiveness in the boundary monitoring services

for grouping capabilities.

3. The proposed LDA and NLDA to support in-depth defense services. The LDA

is to construct layered defense for wireless sensor networks of grouping

capabilities. The NLDA is to construct non-layered defense of supporting

different types of intruders for grouping capabilities. The NLDA can prolong

the system lifetime and provide lead time alarms. The experiment results show

that the proposed LDA and NLDA can improve system lifetime.

 3

4. We propose the TOTA and POTA, we use the TOTA to support tree-based

object tracking services. The experiment results show that the proposed

algorithm can achieve the near optimal solutions. Furthermore, the algorithm

is efficient and scalable in terms of the running time. The POTA is to

construct a dynamic prediction algorithm for object tracking. Such

prediction-based can minimize the number of nodes participating in the

tracking activities, minimize out of tracking probability, and maximize the

accuracy of object predicted position in the tracking activities. The experiment

results show that the POTA can prolong the system lifetime.

5. At last, in tree-based object tracking and non-layered defense problems, due to

their non-linear and non-convex natures, are hard to solve by traditional

mathematical programming methods directly. Based on Lagrangean relaxation

and simulation methods, we successfully developed heuristic algorithms,

TOTA and NLDA, to solve these optimization problems.

1.3 Overview

In an object monitoring and tracking sensor networks, a number of sensor nodes

are deployed over a monitoring region with predefined geographical boundaries. The

sink (base station) acts as the interface between the sensor networks and applications

by issuing commands and collecting the data of interests. A sensor node has the

responsibility for objects monitoring and tracking in the monitoring region, and

reporting the states of the mobile objects [1][2]. The object monitoring and tracking

sensor networks are shown in Figure 1.1.

 4

Figure 1.1. An object monitoring and tracking sensor networks.

In some applied circumstances, we just need to record the objects that enter or

leave the boundary of monitored area [3][4][5]. For example, the preservation area

administrators must be notified while the hunters enter or leave the wildlife

preservation area in order to take necessary action. Besides, intrusion detection of

enemies is also required to record whether the objects enter or leave the boundary of

monitored area for further notification and tracking.

In some other applied circumstances, we need to detect the objects that intrude

the safeguard area of in-depth defense [6][7][8][9]. For example, the commander must

be notified while the enemies enter the safeguard area of in-depth defense in order to

take necessary action. Besides, intrusion detection of enemies is also required to

record whether the objects enter monitored area for further notification and tracking.

The in-depth defense includes both layered defense and non-layered defense.

In many applications, a wireless sensor network needs to detect, track, and

predict mobile objects, and reports the sensing data to sink(s)

[10][11][12][13][14][15]. For example, detecting illegal intruders and tracking enemy

vehicles in military applications, and tracking the movement of wild animals in

wildlife preservation area.

Therefore, there are three main research issues in object monitoring and tracking

sensor networks. 1) the boundary monitoring services. It needs to record the objects

monitoring region

userInternetsink

object

sensor nodes

 5

that enter or leave the boundary of monitored area. Figure 1.2 illustrates a scenario of

boundary monitoring for fixed sensor and Figure 1.3 illustrates a scenario of boundary

monitoring for mobile sensor. 2) the in-depth defense services. It needs to detect the

objects that intrude the safeguard area of in-depth defense. Figure 1.4 and Figure 1.5

illustrate two scenarios of layered defense and non-layered defense. 3) the object

tracking services. It needs to detect, track, predict mobile objects, and reports the

sensing data to sink. Scenarios of tree-based and prediction-based object tracking are

shown in Figure 1.6 and Figure 1.7.

Figure 1.2. A scenario of boundary monitoring services for fixed sensors.

Figure 1.3. A scenario of boundary monitoring for mobile sensors.

check points

sensing range

monitoring region

monitoring region

arrival of object

userInternet sink

sensor nodes

departure of object

object

 6

Figure 1.4. A scenario of layered defense services.

Figure 1.5. A scenario of non-layered defense services.

non-layered defense region

movement trajectory
of airborne intruder

userInternet sink

intruder

sensor nodes core

movement trajectory of
non-airborne intruder

layered defense region

userInternet sink

intruder

sensor nodes

core

movement trajectory
of intruder

region of red alert

region of orange alert

region of yellow alert

 7

Figure 1.6. A scenario of tree-based object tracking services.

Figure 1.7. A scenario of prediction-based object tracking services.

1.4 Research Scope

 In this section, we discuss the object monitoring and tracking problems from

types of services, illustrated in Figure 1.8. First is boundary monitoring, it includes

boundary nodes grouping algorithm and boundary nodes mobility algorithm. Second

is in-depth defense, it includes layered defense algorithm and non-layered defense

(xn+1,yn+1)

(xn-1,yn-1)

(xn-h,yn-h)

(xn,yn)
the current predicted node

the predicted destination node
the movement trajectory of predicted object
in the future

the movement trajectory of predicted
object in the past

sensor nodes

the predicted nodes in the past

the real movement trajectory of predicted object

tracking region

object

tracking region

movement trajectory
of object

userInternet sink

object

sensor nodes

communication nodes

sink

object

 8

algorithm. Third is object tracking, it includes tree-based object tracking and

prediction-based object tracking.

Figure 1.8. Research scope.

In this dissertation, we study several object monitoring and tracking problems

(summarized in Table 1.1). Mathematical formulations are used to model these

problems. Based on the proposed mathematical models, Lagrangean relaxation,

simulation techniques, heuristic approaches, and predicted algorithm are adopted to

solve the object monitoring and tracking problems.

Object monitoring and tracking

Boundary monitoring Object tracking

: research scope

In-depth defense

Boundary monitoring

algorithm for fixed

sensors (BMAFS)

Boundary monitoring

algorithm for mobile

sensors (BMAMS)

Tree-based

object tracking

algorithm (TOTA)

Prediction-based

object tracking

algorithm (POTA)

Non-layered defense

algorithm (NLDA)

Layered defense

algorithm (LDA)

 9

Table 1.1. Scope and problem definition of this dissertation.

Problem 1: Boundary monitoring algorithms for fixed sensors

Given parameters

The set of check points, the set of sensor nodes, initial
energy level of each sensor node, energy consumption for
sensor nodes to sense data in each round, and detection
radius of each sensor.

Constraints
Full coverage boundary check points in each round and
battery capacity.

Objective To maximize the boundary monitoring services lifetime.

To determine
To determine whether sensor s is awake or not in the round
r.

Algorithm
Boundary monitoring algorithm for fixed sensors
(BMAFS).

Problem 2: Boundary monitoring algorithm for mobile sensors

Given parameters

The set of check points, the set of sensor nodes, residual
energy level of each sensor node, energy consumption for
sensor nodes to sense data in each round, energy
consumption for sensor node to move one unit, and
detection radius of each sensor.

Constraints
Full coverage of boundary check points in each round and
battery capacity.

Objective To maximize the boundary monitoring services lifetime.

To determine
To determine 1) whether sensor s is awake or not in the
round r, and 2) whether sensor node s moves to cover check
point a or not.

Algorithms
Boundary monitoring algorithm for mobile sensors
(BMAMS).
Problem 3: Layered defense algorithms

Given parameters

The set of check points, the set of sensor nodes, initial
energy level of each sensor node, energy consumption for
sensor nodes to sense data in each round, detection radius of
each sensor, total number of layers, total defense rate, and
the detectability.

Constraints Defense rate, detectability and battery capacity.
Objective To maximize the layered defense services lifetime.

To determine
To determine whether sensor s is awake or not in the round
r.

 10

Algorithms
Simple algorithm 1 (SA1),
simple algorithm 2 (SA2), and
layered defense algorithm (LDA).

Problem 4: Non-layer defense algorithms

Given parameters

The set of sensor nodes, initial energy level of sensor node,
energy consumption for sensor nodes to sense data in each
round, the total evaluation number of times for all intruder
categories in each round, all possible defense strategies,
strategies of an intruder, total defense rate, distance of early
warning, early warning rate, false positive rate, false
negative rate, and location of core field.

Constraints
Defense rate, distance of early warning, early warning rate,
battery capacity, all possible defense strategies, and total
evaluation frequency.

Objective To maximize the non-layered defense services lifetime.

To determine
To determine whether sensor s is awake or not in the round
r.

Algorithm
Simple algorithm (SA) and non-layered defense algorithm
(NLDA).

Problem 5: Tree-based object tracking algorithm

Given parameters
The set of sensor nodes, the communication nodes, the set
of the object moving frequency, and the set of transmission
cost associated with links.

Constraints Routing, tree, and variable-transformation constraints.
Objective To minimize the total communication cost.

To determine Object tracking tree.
Algorithm Tree-based object tracking algorithm (TOTA).

Problem 6: Prediction-based object tracking algorithm
Given parameters The set of sensor nodes and policies of prediction.

Objective

1. To minimize the number of nodes participating in the
object tracking.

2. To maximize the accuracy of object predicted position.
3. To minimize out of probability.

To determine The h value at time interval n.
To predict The location of object at time interval n.
Algorithm Prediction-based object tracking algorithm (POTA).

 11

1.5 Dissertation Layout

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the background knowledge for object monitoring and tracking in WSNs, and reviews

a number of previously proposed approaches of boundary monitoring, in-depth

defense, and object tracking in WSNs. In Chapter 3, we present the grouping and

mobile algorithms for boundary monitoring. In Chapter 4, we propose two grouping

algorithms for in-depth defense. In Chapter 5, we develop the tree-based and

prediction-based algorithms for object tracking. Finally, we describe the conclusions

and the directions of the future work in Chapter 6.

 12

 13

Chapter 2 Background Knowledge and Literature

Survey

In this chapter, we introduce the background knowledge in Section 2.1 and

describe literature survey in Section 2.2.

2.1 Background Knowledge

In this section, we introduce the background knowledge of object monitoring and

tracking. The section is organized as follows. The detection and location models are

described in Sections 2.1.1 and 2.1.2, respectively. The sensing energy consumption

model is discussed in Section 2.1.3. Additionally, the gauss-markov motion model is

presented in Section 2.1.4. The routing model is discussed in Section 2.1.5. The

location awareness and energy awareness are described in Sections 2.1.6 and 2.1.7,

respectively. Furthermore, the impacting factors are discussed in Section 2.1.8, and

the quality of service is presented in Section 2.1.9.

2.1.1 Detection Model

WSNs have three types of sensing models. 1) The binary sensing model [16]. A

location can be either monitored or not monitored by a sensor, depending on whether

the location is within the sensing range of sensor, illustrated in Figure 2.1. 2) The

probabilistic sensing model [17]. A location will be monitored by a sensor according

to some probability function. Figure 2.2 shows the probabilistic sensing model. 3) The

hybrid sensing model [18][39]. For nominal sensing range R, the object is always

detected when it is R − e away or closer, never detected beyond R + e, and has a

 14

1, if (,)
(,)

0, otherwise
i s

i

d u s r
p u s

≤⎧= ⎨
⎩

non-negative chance of detection between R − e and R + e. Kirill et al. found that

setting e = 0.1R comes fairly close to the actual behavior of the sensors used in their

experiments, illustrated in Figure 2.3.

Figure 2.1. Binary sensing model.

Figure 2.2. Probabilistic sensing model.

Figure 2.3. Hybrid sensing model.

1

d(u,si)

p(u,si)

0 rs

Distance d(u,si)

1

Detection probability

p(u,si)

0
rs

Ree (,)

1, if (,)
(,) , if (,)

0, if (,)

i

i
d u s

i i

i

d u s R e
p u s e R e d u s R e

d u s R e

ε−

≤ −⎧
⎪= − < ≤ +⎨
⎪ > +⎩

(,)

1

1, if (,)

(,) 1((,)), if (,)

0, otherwise

i

s

d u s s
i

ri s
i s i s

re d u s

p u s re d u s r d u s r

ε

ε

ε
ε

εε
ε

−

−

−⎧ ≤⎪
⎪= −⎨− − < ≤⎪
⎪
⎩

1srε
ε
−

 15

2.1.2 Location Model

An example of location model is shown in Figure 2.4, it has four types [15]. 1)

The sensor cell, sensor ID, e.g., S3. 2) The triangle, T34, in S3 and adjacent to S4

represents the location of the mobile object. 3) The grid, G13, indicates the ID of the

grid where the object is detected. 4) The coordinates, e.g., (2.8, 2.2).

Figure 2.4. An example of location model.

2.1.3 Sensing Energy Consumption Model

There are two sensing energy consumption models in WSNs. We denote es = f(rs),

where es is the energy consumption and rs is the sensing radius of sensor s. The

function f can be linear or quadratic. The first model is linear model which energy

consumption is a linear function of the sensing radius. The second model is quadratic

model which energy consumption is a quadratic function of the sensing radius

[56][57][58].

2.1.4 Gauss-Markov Motion Model

A Gauss-Markov motion model uses one tuning parameter α to vary the degree

G1 G5

G6

G11

S1 S2

S3

S4

T34

sensors

mobile object

 16

of randomness in the mobility pattern [19].

1

2

1 (1) (1)
nn n xs s s sα α α

−−= + − + −

1

2

1 (1) (1)
nn n xd d d dα α α

−−= + − + −

where sn and dn are the new speed and direction of the intruder at time interval n.

α is the tuning parameter used to vary the randomness, where 0 1α≤ ≤ . s and d

are constants representing the mean value of speed and direction as n ∞. sxn-1 and

dxn-1 are random variables from a Gaussian distribution. Totally random values (or

Brownian motion) are obtained by setting α = 0 and linear motion is obtained by

setting α = 1. Intermediate levels of randomness are obtained by varying the value of

α between 0 and 1.

At each time interval the next location is calculated based on the current location,

speed, and direction of movement. Specifically, at time interval n, the position of an

object is given by the equations:

1 1 1cosn n n nx x s d− − −= +

1 1 1sinn n n ny y s d− − −= +

where (xn, yn) and (xn-1, yn-1) are the x and y coordinates of the positions of an object at
the nth and (n - 1)th time intervals, respectively, and sn-1 and dn-1 are the speeds and
directions of the object, respectively, at the (n - 1)th time interval.

2.1.5 Routing Model

The routing model includes direct communication routing, multi-hop routing, and

hierarchical routing architecture.

Sensor nodes can directly communicate with sink in direct communication

routing model. Figure 2.5 shows an example of a direct communication routing model.

 17

In multi-hop routing model, sensor nodes are hop by hop communication to sink.

Figure 2.6 shows an example of a multi-hop routing model.

Figure 2.5. Direct communication routing model.

Figure 2.6. Multi-hop routing model.

In the proposed boundary monitoring, in-depth defense, and prediction object

tracking models, we assume that the monitoring and tracking systems have a

hierarchical routing architecture to forward sensing data to sink [66][67]. In a

hierarchical routing architecture, nodes will play different roles in the WSNs. The

cluster heads are closer to the sensor nodes than the sink. The cluster heads can do

some aggregation and reduction of data in order to save energy. Figure 2.7 shows an

sink

sensor nodes

sink

sensor nodes

 18

example of a two-tiered hierarchical routing model. Besides, we have calculated

energy consumption for sensor nodes to send sensing data to cluster heads in NLDA

and POTA. However, the energy consumption is not calculated in BMAFS, BMAMS,

and LDA.

In the two-tiered hierarchical routing model, the cluster heads are assumed to

communicate with the sink directly [68]. The sensors use a binary sensing model. A

location can be either monitored or not monitored by a sensor, depending on whether

the location is within the sensing range of sensor, illustrated in Figure 2.1.

Figure 2.7. Two-tiered hierarchical routing model.

2.1.6 Location Awareness

The location awareness includes GPS (Global Positioning System) and anchor

approach [69][70].

The GPS is a space-based positioning system by a group of satellites in earth

orbit that transmit precise signals, allowing GPS receivers to calculate and display

accurate location to sensors. However, GPS is an unattractive solution due to cost and

power constraints.

In this anchor approach [70], a few of the sensor nodes called beacons know their

coordinates in advance, either from satellite information (GPS) or pre-deployment.

sink

sensor nodes

cluster heads

 19

The anchor approach scheme relies on signal strength information. The method is

embedded in the inherent radio frequency communication capabilities of the nodes to

approximate neighbor distances. Each node can hear three beacon neighbors and

determines its own location by tri-angular algorithm and becomes a beacon. The

tri-angular method is used iteratively to find all locations of each node.

2.1.7 Energy Awareness

The energy awareness can be classified according to different protocol layers.

1. Physical layer

In energy aware modulation scheme, A.Y. Wang et al. presented several energy

minimization techniques derived from the unique properties of a practical short range

asymmetric micro sensor system [72]. The techniques include energy efficient

modulation schemes, appropriate multiple access protocols, and fast turn-on

transmitter architecture.

In energy aware packet forwarding, V. Tsiatsis et al. proposed a node architecture

that takes advantage of both the intelligence of the radio hardware and the needs of

applications to efficiently handle the packet forwarding [73].

2. Data link layer

To design a good MAC protocol for the sensor networks, the energy awareness

must be considered. The energy awareness protocols are used to prolong the system

lifetime. In [74], I. Demirkol et al. proposed several MAC protocols for sensor

networks to emphasize their strengths and weaknesses, such as S-MAC, T-MAC,

DSMAC, WiseMAC, TRAMA, SIFT, and DMAC protocols.

3. Network layer

Energy awareness is an essential consideration in routing protocols. J.N.A.

 20

Karaki et al. proposed the design tradeoffs between energy and communication

overhead savings in every routing protocol [75]. For example, LEACH is a

cluster-based routing protocol. LEACH intends to minimize network level energy

consumption and improve the network utilization by balancing communication load

over the whole network. The approach in this protocol is to cluster the whole network

to avoid frequent expensive communications of single nodes.

2.1.8 Impact Factors

The object monitoring and tracking impact factors are described as follows

[14][15]:

1. Number of moving objects

The more moving objects inside the monitoring region is incurred the higher

the total number of sampling and reporting.

2. Reporting frequency

Keeping the reporting frequency low can reduce the number of transmissions.

Hence, it can increase the lifetime of the object monitoring and tracking. They are

two types of report, regular report and event-driven report.

3. Data precision [40]

A higher data precision requires more data collection, more computation and

more update packets, which results in more energy consumption on sensing,

computing and communications

4. Sensor sampling frequency

High sampling frequency incurs more energy consumptions.

 21

5. Object moving speed

An object monitoring and tracking algorithm needs to sample more frequently

on a high speed moving object.

6. Location models

Based on the location identification techniques used in the object monitoring

and tracking services, location model can be categorized as geometric model (e.g.,

Coordinate) and symbolic model (e.g., Sensor ID).

2.1.9 Quality of Services

The quality of services is described as follows [20]:

1. Power consumption [43][48]

Sensor nodes are highly energy-constrained, because of the limitation of

hardware and the infeasibility of recharging the battery under a harsh environment.

Therefore, energy consumption of sensor nodes becomes one of the popular issues.

Unused sensor nodes turn to sleeping mode in order to prolong the system lifetime.

The types of power consumption of MICAz 2.4GHz are illustrated in Table 2.1 [21].

Table 2.1. The types of power consumption of MICAz 2.4GHz.

CPU RF Transceiver
Types

Active Sleep Receive
TX

-10dBm
TX

-5dBm
TX

dBm Idle Sleep

Power 8mA <15μA 19.7mA 11mA 14mA 17.4mA 20μA 1μA

2. Accuracy [50]

In WSNs, the position error exists in the predicted position and the real

position. To improve the accuracy of object position needs to merge more nodal

data. This causes higher energy consumption.

3. Cost per detected position

 22

It is the ratio of the energy consumption to the number of detected positions.

4. Lifetime [41][47]

It is the time when the first node of the network runs out of energy or the

network can not provide services.

5. Monitoring resolution

The requirements of monitoring resolution are different for various

applications. The granularity of data resolution is highly related to the sampling rate

of sensors. The higher the data resolution is demanded, the more monitoring

information is needed. Hence, the sampling rate needs to be set higher.

6. Scalability

Most applications consist of a great amount of sensors. The communication

load and system load are scale to the size of the sensor network. It is an important

factor to measure the performance of the applications. A principle of designing

applications is to avoid waking up all sensors.

7. Response time

The main challenge in developing a real-time control system using sensor

networks is the inconsistency in sensor measurements due to packet loss,

communication delay, and false detections.

8. Fault tolerance

Moving sensors to cover uncovered regions while the nodes failed or node

battery exhausted. The mechanism can prolong the system lifetime.

 23

2.2 Literature Survey

2.2.1 Boundary Monitoring

Sink is to be noticed that some applications may need to record the information of

objects entering or leaving the boundary of the monitoring region.

Under some applied circumstances, we just need to record the objects that enter

or leave the boundary of monitored area [3][4][5][59]. For example, the preservation

area administrators must be notified when the hunters enter or leave the wildlife

preservation area in order to take necessary action. Besides, intrusion detection of

enemies and in-depth defense are also required to record whether the objects enter or

leave the boundary of monitored area for further notification and following track.

In the prior studies [22][23][24], In [22], Sam, et al. proposed a optimized

communication and organization method called OCO to find the boundary nodes. The

authors develop the border detection algorithm to identify a list of points that traverse

the border of the geographic image, called border points. The border detection

algorithm is shown in Figure 2.8.

Step1. For each pixel in an image, check if the color value = 1.

Step2. If true, scan all their neighbors to see if any of them having the color value = 0.

If true, this pixel belongs to the border.

Figure 2.8. Algorithm for finding the border.

In [23], Sahoo, et al. proposed two boundary node selection algorithms, called

SBNS and DBNS, to find out the boundary nodes. The two methods have three phases

to find out the boundary nodes. The DBNS approach tries to find out the boundary

nodes by distributed method. The algorithm of three phases is shown in Figure 2.9

 24

The initial phase: Each sensor node in the monitoring region could be classified as

boundary nodes or non-boundary nodes after the initial phase is

executed.

The selection phase: The ring of boundary node can be found.

The pruning phase: The redundant boundary nodes are changed to non-boundary

nodes.

Figure 2.9. The boundary node selection algorithm of three phases.

In [24], P.L. Chiu, et al. construct the sensor network such that it includes k

mutually exclusive sets (number k is given). These sets are called covers. The covers

are disjoint for each other. The method can find out the boundary nodes and prolong

the system lifetime.

From papers review, we find that this study differs from prior works in several

points. First, we consider both the energy conservation and lifetime extending during

the sensor deployment phase of boundary monitoring. Second, we present a

mathematical model to describe the optimization problem. Third, the relationship

between the grouping capabilities of boundary node and the maximum extension of

system lifetime is investigated. Fourth, we present a new concept of the check point.

Fifth, we can find boundary nodes in user define disjoint monitoring region. A

comparison among the OCO, SBNS, DBNS, BMAFS, and MBAMS are listed in

Table 2.2.

 25

Table 2.2. A comparison among the OCO, SBNS, DBNS, BMAFS, and MBAMS.
Factors of

consideration

Algorithms

Boundary

monitoring

User define

disjoint

monitoring

region

Arrival and

departure

of objects

Maximizing

the lifetime

Mobility

capability
Researchers

Optimized

communication

and

organization

(OCO)

● ●
Tran, et al.

[22]

Sequential

boundary node

selection

(SBNS) and

distributed

boundary node

selection

(DBNS)

● ●
Sahoo, et

al. [23]

Our work

(BMAFS)
● ● ● ●

Lee, et al.

[59]

Our work

(BMAMS)
● ● ● ● ● Lee, et al.

2.2.2 In-Depth Defense

An in-depth defense also called a defense in depth. Under some applied

circumstances, we need to detect the objects that intrude the safeguard area

[6][7][8][9][61]. For example, the commander must be notified when the enemies

enter the safeguard area in order to take necessary action. Besides, intrusion detection

of enemies is also required to record whether the objects enter monitored area for

further notification and following track.

In WSNs security, the in-depth defense is used to describe a security system that

is built using multiple rings or a group of neighboring nodes and policies to safeguard

core area of the WSNs against multiple threats including enemy attacks and other

 26

security considerations.

In the prior studies [6][7][8][24][51], In [6], Yun, et al. analyze the intrusion

detection problem in both homogeneous and heterogeneous WSNs. The work

provides insights in designing homogeneous and heterogeneous WSNs and helps in

selecting critical network parameters so as to meet the application requirements. The

study can be summarized as follows:

1. The authors propose an analytical model for intrusion detection in wireless

sensor networks, and mathematically analyzing the detection probability with

respect to various network parameters such as node density and sensing range.

2. Using the analytical model to single-sensing detection and multiple-sensing

detection scenarios for homogeneous and heterogeneous wireless sensor

networks.

3. The authors discuss the network connectivity and broadcast reachability.

In [7][8], Li, et al. proposed a distributed group-based intrusion detection scheme

that meets all the above requirements by partitioning the sensor networks into many

groups. The group-based intrusion detection scheme involves two phases: grouping

the sensor networks and running the group-based intrusion detection algorithm in

each group. The group-based intrusion detection scheme can save power

consumption.

In [24], Chiu, et al. construct the sensor network such that it includes k mutually

exclusive sets (number k is given). These sets are called covers. The covers are

disjoint for each other. The method can find out the group of nodes for in-depth

defense and prolong the system lifetime.

In [51], Li, et al. focus on the survivability of wireless sensor network and

develop a model to evaluate the tradeoffs between the cost of defense mechanisms for

Wireless Sensor Network and the resulting expected survivability after a network

attack.

From papers review, we find that this study differs from prior works in four

points. First, we consider both the energy conservation and lifetime extending during

 27

the sensor deployment phase of in-depth defense. Second, we present a mathematical

model to describe the optimization problem. Third, the relationship between the

grouping capabilities of in-depth defense and the maximum extension of system

lifetime is investigated. Fourth, we present a new concept of the check point. A

comparison among the IDHH, GIDA, LDA, and NLDA are listed in Table 2.3.

Table 2.3. A comparison among the IDHH, GIDA, LDA, and NLDA.

Factors of consideration

Algorithms

In-depth

defense

Quality of

intrusion

detection

Maximizing

the lifetime

Behaviors

of intruders
Researchers

Intrusion detection in

homogeneous and

heterogeneous wireless

sensor networks (IDHH)

● ●
Yun, et al.

[6]

Group-based intrusion

detection algorithm (GIDA)
● ●

Li, et al.

[7][8]

Our work (LDA) ● ● ● Lee, et al.

Our work (NLDA) ● ● ● ●
Lee, et al.

[61]

2.2.3 Object Tracking

Object tracking is the key application issue of WSNs which is widely deployed

for military and wildlife animal tracking. Object tracking wireless sensor networks

have two critical operations [13][14][15]. One is monitoring. Sensor nodes are

required to detect and track the moving states of mobile object. The other is reporting.

The nodes sensing the object need to report their discoveries to the sink. These two

operations are interleaved during the entire object tracking process.

Object tracking algorithm has two cases. One is tree-based. For example,

optimized communication and organization (OCO) algorithm [22], scalable tracking

using networked sensors (STUN) [10], and deviation-avoidance tree (DAT) [11][12].

 28

Another is prediction-based. For example, dual prediction-based reporting (DPR) [15],

and distributed prediction tracking (DPT) [52].

2.2.3.1 Tree-based Object tracking

Our focus, in the prior studies [10][11][12], has been on developing strategies for

reducing the energy consumption in reporting operations. In [10], H.T. Kung, et al.

proposed a scalable tracking method using network sensors called STUN for sensor

tracking system. The tracking system is a scalable tracking architecture that employs

hierarchical structure to allow the system to handle a large number of tracked objects.

Furthermore, authors proposed a drain-and-balance (DAB) method to construct a

hierarchical structure of STUN based on expected properties of the object movement

patterns such as the frequency of object movements over a monitoring region.

For example, consider those detection messages from sensors that detect the

arrival of the object. Message of sensor 1 will update the detected sets of all its

ancestors. The messages from sensors 2 and 4 do not update the detected sets of their

parents and thus will be pruned there. The message from sensor 3 updates only its

parent z and thus will be pruned at x. An example of a message-pruning hierarchy is

shown in Figure 2.10.

Figure 2.10. An example of a message-pruning hierarchy

1 2 3 4

y z

x

object

…

…

 29

In [11][12], C.Y. Lin, et al. proposed two message-pruning tree structures called

DAT and Z-DAT for object tracking. The two methods are used to construct an object

tracking tree for reducing the communication cost of location update. The Z-DAT

approach tries to divide the sensing area into square-like zones and recursively

combine these zones into a tree.

This study is an extension of the work in [10][11][12]. The prior studies are

expanded to the energy-efficient object tracking in wireless sensor networks. We

focus on the problem of constructing an energy-efficient wireless sensor networks for

object tracking services using the object tracking tree. This tree is to propose a data

aggregation model for object tracking [25][26][27][28][29][30][60]. Therefore, we

motivate to propose a heuristic strategy to cope with the problem. With a given sensor

network arbitrary topology, we particularly consider the bi-directed moving objects

with given frequencies for each pair of sensor nodes and link transmission cost. The

total communication cost can be computed and minimized by object tracking tree.

The object tracking tree is a weighted spanning graph of given sensor and

communication nodes [49]. The tree is used to minimize total communication cost.

Therefore, constructing the object tracking tree is an NP-complete problem [31]. A

method called Lagrangean relaxation which has been successfully adopted to solve

many famous NP-complete problems [32][33][34].

From papers review [10][11][12], this study differs from the prior works in two

points. First, we consider the bi-directed moving objects with given frequencies for

each pair of sensor nodes and link transmission cost. Second, we present a LR

mathematical model to describe the optimization problem and propose LR-based

heuristic algorithm to solve the problem. A comparison among the STUN, DAB,

DAT, ZDAT, and TOTA are listed in Table 2.4.

 30

Table 2.4. A comparison among the STUN, DAB, DAT, ZDAT, and TOTA.

Factors of consideration

Algorithms

Object

tracking

Update

cost

Query

cost

Bi-directed

moving

objects and

link

transmission

cost

Entering and

leaving of

object in

monitoring

region

Researchers

Tracking using networked sensors

(STUN) and drain-and-balance

(DAB)

● ●
Kung, et al.

[10]

Deviation-avoidance tree (DAT)

and zone-based

deviation-avoidance tree (Z-DAT)

● ● ●
Lin, et al.

[11][12]

Our work (TOTA) ● ● ● ● ●
Lee, et al.

[60]

2.2.3.1 Prediction-based Object tracking

Prediction can minimize the number of nodes participating in the tracking

[13][14][15]. The wake-up mechanisms and recovery mechanisms of different

prediction models will affect the system performance. Prediction model works well if

one can tolerate “small amount of errors” in predictions and “latency” in generating

prediction models.

Our focus, in the prior studies [13][14][15], has been on developing strategies for

reducing the energy consumption in object tracking operations. In [13], Y. Xu, et al.

proposed the localized prediction paradigm for power-efficient object tracking sensor

network. Localized prediction consists of a localize network architecture and a

prediction mechanism called dual prediction, which can achieve power savings by

allowing most of the sensor nodes to stay in sleep mode and by reducing the amount

of long-range transmissions. The basic method for dual prediction is to have sensor

nodes and their cluster heads both calculate the next states of tracked objects. The

sensor nodes do not send an update of object movement to its cluster head unless it is

different from the prediction. In addition, no prediction values need to be sent from

 31

cluster heads to sensor nodes. However, the saving of long distance transmissions

between a sensor node and its cluster head comes with a small price, i.e., transfer of

moving history from a current node to the destination node. As we will show later in

the performance evaluation, this cost is well justified because it consumes less power

for transmission to a neighbor sensor node and it occurs only when the tracked object

moves into a new detection area.

In [14], Y. Xu, et al. proposed a prediction-based energy saving scheme, called

PES, to reduce the energy consumption for object tracking under acceptable

conditions. PES tries to approach to the ideal scheme by minimizing both of the

sampling frequency and the number of nodes involved in object tracking, while

balances off the overhead caused by missing the objects. PES consists of three parts: 1)

a prediction model which anticipates the future movement of an object so only the

sensor nodes expected to discover the object will be activated; 2) a wake up

mechanism that, based on some heuristics taking both energy and performance into

accounts, sets up which nodes and when they should be activated; 3) a recovery

mechanism initiated only when the network loses the track of an object.

In [15], Y. Xu, et al. proposed the dual prediction reporting (DPR) mechanism, in

which the sensor nodes make intelligent decisions about whether or not to send

updates of objects movement states to the base station and thus save energy. DPR

consists of two major components, i.e., location model and prediction model. The

choice of a location model determines the granularity of the movement states of

mobile objects. A prediction model decides how to estimate the future movement of

objects from their movement history.

From papers review [13][14][15], this study differs from the prior works in two

points. First, we consider entering and leaving of object in boundary of monitoring

region. Second, we develop one prediction-based algorithm based on modified Viterbi

algorithm to solve object tracking problem. A comparison among the PES, DPR, and

POTA are listed in Table 2.5. The dynamic prediction algorithm, POTA, maintains

n-1, n-2, and n-h speed and direction of the object at time interval n. The mechanism

 32

can improve accuracy of object predicted position.

Table 2.5. A comparison among the PES, DPR, and POTA.

Factors of consideration

Algorithms

Object

tracking

Entering and

leaving of

object in

monitoring

region

Dynamic

prediction
Researchers

Prediction-based energy saving

(PES)
●

Xu, et al.

[14]

Dual prediction-based reporting

(DPR)
●

Xu, et al.

[14]

Our work (POTA) ● ● ● Lee, et al.

2.3 Lagrangean Relaxation Method

Many approaches had been proposed in 1970s [32][33][34], most of them used

the divide-and-conquer technique to decompose a complicated problem into several

plain sub-problems and solve them one by one. Lagrangean relaxation method is one

of the popular approaches used for solving some mathematical problems, like integer

programming problems [34]. Since it is flexible and provides excellent solutions for

these problems, it has become one of the best tools for solving optimization problems,

such as integer programming, linear programming combinatorial optimization, and

non-linear programming problems. We briefly describe the Lagrangean relaxation

method as follow.

First, we remove some complex constraints of the primal mathematical model to

the objective function with corresponding multiplier, and then the original problem

will be transformed into a new Lagrangean relaxation problem. Second, by relaxing

the complicated constraints, we can divide the primal problem into several simple and

easily solvable sub-problems. For each sub-problem, we can optimally solve it by

some well-known algorithms.

 33

By solving the Lagrangean relaxation problems, we can get a boundary value to

the objective function of the original primal problem. The solution of the Lagrangean

relaxation problem is always the lower bound of the original minimization problem.

Then we use the decision variables and multipliers got from the Lagrangean

relaxation problem to design a heuristic approach to get a primal feasible solution.

Furthermore, in order to improve the solution quality by minimizing the gap between

the primal problem and Lagrangean relaxation problem, we use the subgradient

method to adjust the multipliers per iteration.

The major concept of Lagrangean relaxation method is shown in Figure 2.11, and

the Lagrangean relaxation method procedure is shown in Figure 2.12.

Figure 2.11. The major concept of Lagrangean relaxation method.

Primal Problem ZIP

UB

LB
Lagrangean Relaxation

Problem ZLR

Subproblem
(Sub 1)

Subproblem
(Sub n)

Lagrangean
Dual Problem

LB Optimal solution UB≦ ≦

Decomposition

Optimal Solution Optimal Solution

Adjust Lagrangean Mulipliers

 34

STOP

Solve Lagrangean Relaxation
Problem

1. Solve each subproblem of
(LR kμ) optimally

2. Get decision variable xk and
optimal value ZD(μk).

1. If i reaches the Improvement
Counter Limit, λ = λ / 2, i = 0

2. D
2

(* ())

+

k
k

k k

Z Zt
Ax b

λ μ−=

3. uk+1 = max(0, uk + tk (Axk + b))
4. k = k + 1.

Adjustment of Multiplier

Check Termination

If (|Z* - LB|) / min (|LB|, |Z*|) < ε
or

k reaches Iteration Counter Limit
 or

LB ≥ Z*?

• Z* – Best known feasible solution value of (P) = Initial feasible solution
• 0μ – Initial multiplier value = 0
• k – Iteration count = 0
• i – Improvement count = 0
• LB – Lower bound of (P) = -∞
• 0λ – Initial step size coefficient = 2.

Initialization

Get Primal Feasible Solution

• If xk is feasible in (P), the resulting

value is a UB of (P)

• If xk is not feasible in (P), tune it

with proposed heuristics.

Update Bounds

1. Z* = min (Z*, UB)

 LB = max (LB, ZD(μk))

2. i = i + 1 if LB does not change.

Figure 2.12. The procedure of Lagrangean relaxation method.

In reference [34], R.K. Ahuja et al. provide a guide to use Lagrangean relaxation

and describe several applications in which Lagrangean relaxation method has been

used to solve many well-known hard problems. We only list partial problems in Table

2.6.

 35

Table 2.6. The applications of Lagrangean relaxation method.

Problems Embedded network structure

Network with side constraints problem
 Minimum cost flows

 Shortest paths

Traveling salesman problem
 Assignment

 Minimum cost flows

Network design problem Shortest paths

2.4 Simulation Techniques

Operation research can be classified into two models: 1) deterministic model and

2) probabilistic model. The methods of deterministic model do not contain the

element of probability. For example, linear programming, non-linear programming,

and dynamic programming, etc. The methods of probabilistic model contain the

element of probability. For example, Markovian decision processes, queueing theory,

forecasting, reliability, and simulation techniques, etc. [53][54][71]

Operation researchers typically use simulation technique when the involved

stochastic system is too complex to be analyzed satisfactorily by variety of analytical

models [54].

In general, a simulation model is used in order to study real-life systems which do

not currently exist. In particular, one is interested in quantifying the performance of a

system under study for various values of its input parameters. Such quantified

measures of performance can be very useful in the process of managerial decision.

The basic steps of simulation are shown in Figure 2.13. [53]

First is to define the problem that we want to resolve. Second is to formulate

model of simulation. Third is to write the simulator. Forth is to validate the model.

Fifth is to run the simulator. Finally is to analyze the results.

 36

Figure 2.13. The procedure of simulation technique.

Define problem

Formulate model

Write simulator

Validate model

Run simulator

Analyze results

 37

Chapter 3 Boundary Monitoring Algorithms

In this chapter, we propose two algorithms, BMAFS and BMAMS, to support

boundary monitoring services. The BMAFS algorithm is to construct boundary

monitoring for grouping capabilities. It tries to find the maximum k groups of sensors

for boundary monitoring of the sensor field to prolong the system lifetime. The

BMAMS algorithm is to address the problem of boundary nodes relocation. It can

move previously deployed sensors to cover uncovered check points while the nodes

failed or node battery exhausted. The mechanism can further prolong the system

lifetime.

In this chapter, the boundary nodes grouping algorithms are described in Section

3.1 and boundary nodes mobility algorithm is presented in Section 3.2.

3.1 Boundary Monitoring Algorithms for Fixed Sensors

In this section, we develop three algorithms to construct efficient boundary

monitoring for wireless sensor networks of grouping capabilities. We try to find the

maximum k groups of sensors for boundary monitoring of the sensor field. The

mechanism can prolong the system lifetime. This problem is formulated as a 0/1

integer-programming problem. Three algorithms are proposed for solving the

optimization problem. The experiment results show that the proposed boundary

monitoring algorithm (BMAFS) gets a near optimization in the efficient boundary

monitoring for grouping capabilities.

The rest of this section is organized as follows. The overview is described in

Section 3.1.1. The problem and mathematical models are described in Sections 3.1.2

and 3.1.3, respectively. In addition, the solution procedure is presented in Section

3.1.4. Furthermore, the computational results are discussed in Section 3.1.5, and

conclusions are presented in Section 3.1.6.

 38

3.1.1 Overview

In this section, we focus on the sensor grouping problem to support boundary

monitoring services. First, we try to find the boundary nodes from the monitoring

region. Second, we will deal with the problem of arrival and departure for the objects.

Third, we want to find the maximum k groups of sensors to monitor a sensor field

boundary. This mechanism can prolong the system lifetime of boundary monitoring.

We introduce the concept of check points. The check points are virtual points,

which can check full coverage. Besides, it can save energy consumption because the

concept can check full coverage more efficiently for arbitrary topology and disjoint

monitoring regions. And further, we find the maximum k sets of sensors to support

boundary monitoring services on the monitoring region. These sets can be joint or

disjoint. Each of them, is called a group, can provide full coverage of the boundary of

the sensor field. Each group is activated in turn to monitor the boundary of the

monitoring region. Generally, the power consumption for inactive sensors can be

neglected, and the system lifetime can be effectively prolonged up to k times. We

present a mathematical model to describe the optimization problem and three

heuristic-based algorithms are proposed to solve the problem.

We formulate the problem as a 0/1 integer programming problem where the

objective function is the maximization of the system lifetime of the boundary of the

monitoring region subject to the constraints full coverage, battery capacity, and

integer variables. We construct three heuristic-based algorithms to solve the problem.

The problem is formulated as a linear optimization-based problem with three

different decision variables: wakeup sensors, covered check points, and full coverage

in the round r. Wakeup sensors are 1 if sensor s is awake in the round r, and 0

otherwise. Covered check points are 1 if check point a is covered by at least one

awake sensor in the round r, and 0 otherwise. Full coverage is 1 if full coverage

boundary check points in the round r, and 0 otherwise. In the further experiments, the

 39

proposed boundary monitoring for grouping capabilities algorithm is expected to be

efficient and effective in dealing with the optimization problem.

3.1.2 Problem Description

3.1.2.1 Boundary Nodes Selection

In this section, we use the mathematical method to select boundary node. We

particularly introduce novel concept of check points for full coverage check points.

The monitoring region can be represented as a collection of 2D region. It includes

check points and sensor nodes, as illustrated in Figure 3.1. The positioning resolution

of application determines the granularity of check points and sensing range. We

assume that sensors are randomly deployed in boundary of monitoring region.

Figure 3.1. Check point-based boundary nodes selection.

The check points are virtual points. We assume that the distance of each

neighboring check points is small or equal to the minimum size of monitoring object.

The boundary of monitoring region is fully covered if all check points are covered by

awaked sensors. It is a typical full coverage if check points are deployed in high

density and check points are fully covered.

monitoring region

userInternetsink

check points

sensing range

 40

The proposed boundary nodes selection algorithm (BNSA) is shown in Figure

3.2.

We aimed at each sensor checking of the whole check points. If there is any

radius of sensor covering the check point, then we should put the sensor into the set of

boundary nodes.

Algorithm Boundary Nodes Selection

Input: Coordinates of check points and sensor nodes, and sensing radius of sensor

nodes

Output: Boundary nodes (BNSet)
1: begin
2: BNSet=∅ ; /* BNSet: the set of boundary nodes */
3: UncoverSet=∅ ; /* UncoverSet: the set of uncovered check points */
4: for a=1 to cp do /* cp: number of check points */
5: flaga=0;
6: for a=1 to cp do
7: begin
8: for s=1 to sn do /* sn: number of sensor node*/
9: begin

10: if check point a is covered by sensor node s

/* 2 2() ()s a s a sx x y y r− + − ≤ */

11: then BNSetsensor node s and flaga=1
12: end
13: if flaga=0
14: then UncoverSet check point a
15: end
16: if Uncoverset ≠ ∅
17: then boundary of monitoring region is not fully covered
18: else boundary of monitoring region is fully covered

 and boundary nodes=BNSet
19: end

Figure 3.2. The boundary nodes selection algorithm.

 41

In this algorithm, steps 2-5 set initialize values. Steps 6-15 are used to find

boundary node set. Steps 16-18 check full coverage.

The computational complexity of the boundary nodes selection algorithm at steps

4-5 is O(|A|), where |A| is number of check points. From steps 6-15 is O(|S||A|), where

|S| is number of sensor nodes. Therefore, the computational complexity is O(|S||A|).

Hence, the computational complexity of the boundary nodes selection algorithm

should be O(|S||A|).

We use above BNSA to find out boundary nodes and check full coverage of

boundary.

3.1.2.2 Arrival and Departure of Objects

We assume that rc ≧ 2max rs + w and w > 2max rs, where rc is communication

radius, rs is sensing radius, and w is minimum size of monitoring object, as shown in

Figure 3.3. The assumption is in order to avoid unidentifiable arrival or departure of

objects.

Figure 3.3. The communication and sensing radii for arrival and departure of objects.

We propose two algorithms, single ring algorithm (SRA) and double ring

algorithm (DRA), to deal with the problem of arrival and departure of objects. In the

single ring algorithm, an object is sensed by boundary nodes (BNs) while it touches

the monitoring region, and BNs will wake up their neighboring non-boundary nodes

check points of boundary
sensing range

w

w > 2 max rs

r
c ≧ 2max r

s + w

check points of non -boundary

 42

(non-BNs). For the next moment, if BNs do not sense the object but neighboring

non-BNs sense the object, the object is entering the monitoring region.

Similarly, the neighboring non-BNs of BNs detect the object. For the next

moment, if BNs sense the object and soon after they do not sense the object, and

neighboring non-BNs do not sense the object, the object is leaving the monitoring

region, as shown in Figure 3.5.

The proposed single ring algorithm is shown in Figure 3.4.

Algorithm Single Ring

Input: Coordinate of boundary nodes and non-boundary sensor nodes, and sensing

radius of sensor nodes

Output: Arrival or departure of objects

1: begin
2: boundary nodes always wake up
3: for (;;) /* infinite loop */
4: begin
5: if BNs can sense the object
6: then wake up its neighboring non-boundary nodes
7: if BNs do not sense the object and

neighboring non-BNs can sense the object for the next moment
8: then the object is entering the monitoring region
9: else if BNs sense the object and soon after do not sense the object

and neighboring non-BNs do not sense the object for the next moment
10: then the object is leaving the monitoring region
11: end
12: end

Figure 3.4. The single ring algorithm.

In single ring algorithm, from steps 5-6 wake up its neighboring non-boundary

nodes when boundary node senses the object. Steps 7-8 the object is entering the

monitoring region when boundary node do not sense the object and neighboring

non-boundary node sense the object for the next moment. Steps 9-10 the object is

 43

leaving the monitoring region when boundary node sense the object and soon after do

not sense the object, and neighboring non-boundary node do not sense the object for

the next moment.

Figure 3.5. The single ring for arrival and departure objects.

In the double ring algorithm, an object is sensed by BNs of outer ring while the

object touches the monitoring region. For the next moment, if outer ring BNs do not

sense the object and inner ring non-BNs sense the object, the object is entering the

monitoring region.

Similarly, the inner ring non-BNs detect the object. For the next moment, if outer

ring BNs sense the object and presently do not sense the object, and inner ring

non-BNs do not sense the object, then the object is leaving the monitoring region, as

shown in Figure 3.7.
The proposed double ring algorithm is shown in Figure 3.6.

Algorithm Double Ring

Input: Coordinate of inner ring and outer ring sensor nodes, and sensing radius of

sensor nodes

Output: Arrival or departure of object

1: begin
2: boundary nodes always wake up

monitoring region

userInternetsink

sensor nodes

object

object

boundary node

non-boundary

 44

3: for (;;) /* infinite loop */
4: begin
5: if outer ring BNs sense the object, and for the next moment, outer ring

BNs do not sense the object and inner ring non-BNs sense the object
6: then the object is entering the monitoring region
7: if inner ring BNs sense the object, and for the next moment,

inner ring BNs do not sense the object and outer ring non-BNs
sense the object and soon after do not sense the object

8: then the object is leaving the monitoring region
9: end

10: end

Figure 3.6. The double ring algorithm.

In double ring algorithm, from steps 5-6 the object is entering the monitoring

region when outer ring boundary node sense the object, for the next moment, outer

ring boundary node do not sense the object and inner ring non-boundary node sense

the object. Steps 7-8 the object is leaving the monitoring region when inner ring

boundary node sense the object, for the next moment, inner ring boundary node do not

sense the object and outer ring non-boundary node sense the object and presently do

not sense the object.

Figure 3.7. The double ring for arrival and departure objects.

monitoring region

userInternetsink

sensor nodes

object

object

outer ring
inner ring

 45

3.1.2.3 Boundary Monitoring Algorithms for Grouping Capabilities

We try to find maximum k sets of sensors to support boundary monitoring

services on the monitoring region, as shown in Figure 3.8. Each of them, is called a

group, can provide full coverage of the field. Each group is activated in turn to

monitor the boundary. Figure 3.9 shows the state transitions of the sensor network.

From the network viewpoint, two operation states exist: the sleeping state and the

active states. Only one group sensors are activated in turn to monitor the boundary,

and the other group sensors are sleeping at one time. The system lifetime can be

effectively prolonged up to k times. The detailed descriptions are shown in Table 3.1.

Figure 3.8. Boundary monitoring for grouping capabilities.

Figure 3.9. The state diagram of the sensor network.

check points

group 1

group 2

Sleeping Active

Wake up

Sleeping

1 group Other groups

 46

Table 3.1. Problem description in boundary monitoring problem for fixed sensors.

Given

1. The set of check points.
2. The set of sensor nodes.
3. Initial energy level of each sensor node.
4. Energy consumption for sensor nodes to sense data in each

round.
5. Detection radius of each sensor.

Objective To maximize the boundary monitoring service lifetime.

Subject to
1. Full coverage of boundary check points in each round
2. Battery capacity.

To determine To determine whether sensor s is awake or not in the round r.

3.1.3 Mathematical Model

In this section, we formulate the problem as a 0/1 integer programming problem

where the objective function is the maximization of the amount of cover k required to

full coverage under a given boundary of sensor networks. The problem is a variant of

the set k-cover problem and thus is NP-complete [35].

The notations used to model the problem are listed in Table 3.2 and Table 3.3.

Table 3.2. Notations of the given parameters in boundary monitoring for fixed sensors

problem.
Given Parameters

Notation Description
S The set of all sensor nodes.

A
Index set of the service check points in the monitoring region
boundary.

Cs The initial energy level of each sensor node s.

Es
The energy consumption for aware sensor node s to sense data in each
round.

R The upper bound number of rounds.

bsa
The indicator function which is 1 if the check point a is in the sensing
range of the sensor node s, and 0 otherwise.

 47

Table 3.3. Notations of the decision variables in boundary monitoring for fixed

sensors problem.
Decision Variables

Notation Description
srπ 1 if sensor s is awake in the round r, and 0 otherwise.

yar
1 if check point a at least is covered by one awake sensor in the round
r, and 0 otherwise.

zr
1 if full coverage boundary check points in the round r, and 0
otherwise.

Problem (IP):
 max r

r R
z

∈
∑ (IP)

subject to:
 The full coverage boundary check points constraints

 ary ≤ sa sr
s S

b π
∈
∑ ,a A r R∀ ∈ ∈ (1)

 rz ≤
ar

a A

y

A
∈
∑

 r R∀ ∈ (2)

 The battery capacity constraint

 sr s
r R

Eπ
∈
∑ ≤ sC s S∀ ∈ (3)

 The integer constraints
 srπ = 0 or 1 s S∀ ∈ , r R∈ (4)
 ary = 0 or 1 ,a A r R∀ ∈ ∈ (5)
 zr = 0 or 1 r R∀ ∈ . (6)

The objective function is to maximize the system lifetime of the monitoring

region boundary. The lifetime is defined as the total number of rounds.

Constraints (1)-(2): Full coverage boundary check points constraints.

Constraint (3): For each sensor node s, the total sensing consumption can not exceed

its initial energy level.

Constraints (4)-(6): The integer constraints for decision variables srπ , yar, and zr.

 48

3.1.4 Solution Procedure

The parameters and decision variables used to model boundary monitoring

algorithms in this section are listed in Table 3.4.

Table 3.4. The parameters and decision variables in algorithms of boundary
monitoring problem.

Notation Description
max_k The upper bound of system lifetime.

cp The number of check points.
sn The number of sensor nodes.

cpc_no[a] The number of covered rounds in each check point a.
cap The initial energy level.
cs[s] The energy level of sensor node s.

es[s]
The energy consumption for aware sensor node s to sense data in
each round.

max_round The system lifetime.
c_bsa[a] The number of covered times in check point a by waked sensors.
count[s] The number of covered check points by awaked sensor s.

c_s[s]
The number of covered check points under sensing range of
sensor s.

t_cover The number of full coverage in each iteration.

bsa[s][a]
The indicator function which is 1 if the check point a is in the
sensing range of the sensor node s and 0 otherwise.

full_coverage[r]
The decision variable which is equal to cp if full coverage
boundary check points in the round r, and less than cp otherwise.

p[s][r]
The decision variable which is 1 if sensor s is awake in the round
r, and 0 otherwise.

cover[a][r]
The decision variable which is 1 if check point a is covered by at
least one awake sensor in the round r, and 0 otherwise.

3.1.4.1 Upper Bound of the Maximum Rounds

In this section, we study the upper bound of maximum rounds in boundary

 49

monitoring.

We can calculate the upper bound (UB) of system lifetime by follow algorithm in

Figure 3.10.

We use initial energy level of sensor node s divided by energy consumption for

aware sensor node s to sense data in each round. The rounds can get in each sensor

nodes. The upper bound of system lifetime is that we search for the minimum round

for all sensor nodes.

Algorithm Upper Bound of the Maximum Rounds

Input: The initial energy level of sensor node s, the energy consumption for aware

sensor node s to sense data in each round

Output: The upper bound of system lifetime (max_k)
1: begin
2: max_k=∞;
3: for a=1 to cp do
4: cpc_no[a]=0;
5: for s=1 to sn do
6: for a=1 to cp do
7: if (bsa[s][a]=1)
8: then cpc_no[a]=cpc_no[a]+(cs[s]/es[s])
9: for a=1 to cp do

10: if (cpc_no[a]<max_k)
11: then max_k=cpc_no[a]
12: end

Figure 3.10. The upper bound algorithm of system lifetime.

In this upper bound of the maximum rounds algorithm, steps 2-4 are setting

initialize value, steps 5-8 are finding the maximum rounds value for each check point.

Steps 9-11 are used to get system upper bound of the maximum rounds.

The computational complexity of the upper bound algorithm of system lifetime at

steps 3-4 is O(|A|), where |A| is number of check points. At steps 5-8 is O(|S||A|),

where |S| is number of sensor nodes. From steps 9-11 is O(|A|). Therefore, the

 50

computational complexity is O(|S||A|). Hence, the computational complexity of the

upper bound algorithm of system lifetime should be O(|S||A|).

3.1.4.2 Simple Algorithm 1

We compare the proposed iteration-based algorithm (boundary monitoring

algorithm for fixed sensors) with non-iteration-based algorithms (simple algorithms 1

and 2) that use the concept of “cover” to determine whether sensor s is awake or not

in the round r. The “cover” is 1 if the check point a is in the sensing range of the

sensor node s and 0 otherwise.

In each round, we first find sensor s to cover check point a, and then sensor s is

awake in the round r, and repeat the assignment process until all check points have

been covered.

A simple algorithm 1 (SA1) is listed in Figure 3.11.

Algorithm Simple 1

Input: The initial energy level of sensor node s, the energy consumption for aware

sensor node s to sense data in each round, and the upper bound of system lifetime

max_k

Output: The maximum rounds (max_round)

1: begin
2: max_round=0;
3: for r=1 to max_k do
4: begin
5: full_coverage[r]=0;
6: for s=1 to sn do
7: p[s][r]=0;
8: end
9: for r=1 to max_k do

10: begin
11: for s=1 to sn do
12: for a=1 to cp do
13: if ((bsa[s][a]=1) and (cs[s]>=es[s]) and (cover[a][r]=0)) then
14: begin

 51

15: p[s][r]=1;
16: cs[s]=cs[s]-es[s];
17: for a=1 to cp do
18: if ((bsa[s][a]=1) and (cover[a][r]=0))
19: then cover[a][r]=1 and

full_coverage[r]=full_coverage[r]+1;
20: end
21: end
22: for r=1 to max_k do
23: if (full_coverage[r]=cp)
24: then boundary of monitoring region in round r is fully covered

 and max_round=max_round+1;;
25: end

Figure 3.11. The simple algorithm 1 in boundary monitoring problem.

In the simple algorithm 1, steps 2-8 are setting initialize value, steps 9-21

determine whether sensor s is awake or not in the round r. Steps 22-24 are used to get

system maximum rounds.

The computational complexity of the simple algorithm 1 in boundary monitoring

problem at steps 3-8 is O(|R||S|), where |R| is total number of rounds and |S| is number

of sensor nodes. At steps 9-21 is O(|R||S||A|2), where |A| is number of check points.

From steps 22-24 is O(|R|). Therefore, the computational complexity is O(|R||S||A|2).

Hence, the computational complexity of the simple algorithm 1 in boundary

monitoring problem should be O(|R||S||A|2).

3.1.4.3 Simple Algorithm 2

Simple algorithm 1 wastes on energy consumption, because system has redundant

awaked sensor nodes. Therefore, we propose simple algorithm 2 (SA2) to deal with

the problem. For example, s2 is redundant sensor node as shown in Figure 3.12.

 52

Figure 3.12. An example of deleting redundant awaked sensor node.

A simple algorithm 2 is listed in Figure 3.13.

Algorithm Simple 2
Input: The initial energy level of sensor node s, the energy consumption for aware
sensor node s to sense data in each round, and the upper bound of system lifetime
max_k
Output: The maximum rounds (max_round)

1: begin
2: max_round=0;
3: for r=1 to max_k do
4: begin
5: full_coverage[r]=0;
6: for s=1 to sn do
7: p[s][r]=0;
8: end
9: for r=1 to max_k do

10: begin
11: for s=1 to sn do
12: for a=1 to cp do
13: if ((bsa[s][a]=1) and (cs[s]>=es[s]) and (cover[a][r]=0)) then
14: begin
15: p[s][r]=1;
16: cs[s]=cs[s]-es[s];
17: for k=1 to cp do
18: if (bsa[s][a]=1)
19: then c_bsa[a]=c_bsa[a]+1;
20: if ((bsa[s][a]=1) and (cover[a][r]=0))
21: then cover[a][r]=1 and
 full_coverage[r]=full_coverage[r]+1;

check points

sensing range

s2 s3 s1

 53

22: end
23: if (full_coverage[r]=cp) then /* delete redundant nodes */
24: for s=1 to sn do
25: begin
26: for a=1 to cp do
27: begin
28: if ((p[s][r]=1) and (bsa[s][a]=1) and (c_bsa[a]>=2))
29: then count[s]=count[s]+1;
30: if (count[s]=c_s[s])
31: begin
32: cs[s]=cs[s]+es[s]; /* energy recovery */
33: p[s][r]=0;
34: for a=1 to cp do
35: if (bsa[s][a]==1)
36: then c_bsa[a]=c_bsa[a]-1;
37: end
38: end
39: end
40: end
41: for r=1 to max_k do
42: if (full_coverage[r]=cp)
43: then boundary of monitoring region in round r is fully covered

 and max_round=max_round+1;;
44: end

Figure 3.13. The simple algorithm 2 in boundary monitoring problem.

In the simple algorithm 2, steps 2-8 are setting initialize value, steps 9-22

determine whether sensor s is awake or not in the round r. Steps 23-40 are used to

delete redundant awaked sensor nodes in the round r. Steps 41-43 are used to get

system maximum rounds.

The computational complexity of the simple algorithm 2 in boundary monitoring

problem at steps 3-8 is O(|R||S|), where |R| is total number of rounds and |S| is number

of sensor nodes. At steps 9-40 is O(|R||S||A|2), where |A| is number of check points.

From steps 41-43 is O(|R|). Therefore, the computational complexity is O(|R||S||A|2).

Hence, the computational complexity of the simple algorithm 2 in boundary

monitoring problem should be O(|R||S||A|2).

 54

3.1.4.4 Boundary monitoring algorithm for fixed sensors

In this section, we present a heuristic-based boundary monitoring algorithm for

fixed sensors (BMAFS) to improve SA1 and SA2 algorithms.

To solve the original problem near-optimally, we use the full_coverage[r] to

check full coverage in the round r. The decision variable is equal to cp if full

coverage boundary check points are in the round r, and 0 otherwise. Then, in each

round, we use different sensor node id to cover uncheck point a given minimum be

cover check points and then sensor s is awake in the round r, and repeat the

assignment process until all check points have been covered. For example, system

prioritizes to select s1 sensor node, because s1 sensor node has not covered selected

check points. If system can not find the s1 sensor node, then second priority is s2

sensor node, as shown in Figure 3.14.

Figure 3.14. An example of greedy-based sensor node selection.

The procedure of boundary monitoring algorithm for fixed sensors is shown in

Figure 3.15. First of all is to initialize. Second is to determine whether sensor s is

awake or not in the round r. Third is to delete redundant awaked sensor nodes. Forth

is to get system maximum rounds. Finally is to check whether it is a stop condition or

not. If the answer is negative, go back to the first step.

Check points

Sensing range of awake sensor

Sensing range of sleeping sensor

s3 s2 s1

s0

 55

Figure 3.15. The procedure of boundary monitoring algorithm for fixed sensors.

A boundary monitoring algorithm for fixed sensors is listed in Figure 3.16.

Algorithm Boundary Monitoring for Fixed Sensors
Input: The initial energy level of sensor node s, the energy consumption for aware
sensor node s to sense data in each round, and max_k
Output: The maximum rounds (max_round)

1: begin
2: for iteration=1 to sn do
3: begin
4: for r=1 to max_k do
5: begin
6: full_coverage[r]=0;
7: for s=1 to sn do
8: p[s][r]=0 and cs[s]=cap;
9: end

10: for r=1 to max_k do
11: begin

Initialize

To determine whether sensor s
is awake or not in the round r

Delete redundant awaked
sensor nodes

Stopping criteria

Get system maximum rounds

End

Y

N

 56

12: s=iteration;
13: for i=1 to sn do
14: for a=1 to cp do
15: if ((bsa[s][a]=1) and (cs[s]>=es[s]) and (cover[a][r]=0)) then
16: begin
17: p[s][r]=1;
18: cs[s]=cs[s]-es[s];
19: for k=1 to cp do
20 : if (bsa[s][a]=1)
21 : c_bsa[a]=c_bsa[a]+1 ;
22: if ((bsa[s][a]=1) and (cover[a][r]=0))
23: then cover[a][r]=1 and

full_coverage[r]=full_coverage[r]+1;
24: s=(s+1)%sn;
25: end
26: if (full_coverage[r]=cp) then /* delete redundant nodes */
27: for s=1 to sn do
28: begin
29 : for a=1 to cp do
30: if ((p[s][r]=1) and (bsa[s][a]=1) and (c_bsa[a]>=2))
31 : then count[s]=count[s]+1;
32: if (count[s]=c_s[s]) then
33: begin
34 : cs[s]=cs[s]+es[s] ; /* energy recovery */
35 : p[s][r]=0 ;
36 : for a=1 to cp do
37 : if (bsa[s][a]=1)
38 : c_bsa[a]=c_bsa[a]-1 ;
39 : end
40 : end
41: end
42: t_cover=0;
43: for r=1 to max_k do
44: if (full_coverage[r]=cp)
45: then boundary of monitoring region in round r

is fully covered and t_cover=t_cover+1;
46: if (round< t_cover)
47: then round= t_cover;
48: if (max_round<round)
49: then max_round=round;
50: round=-∞;

 57

51: if (max_round=max_k)
52: then break;
53: end
54: end

Figure 3.16. The boundary monitoring algorithm for fixed sensors.

In the boundary monitoring algorithm, steps 2, 12, and 24 are iteratively to

improve system maximum rounds. From steps 4-9 are to set initial values, steps 10-11,

and 13-23 are to determine whether sensor s is awake or not in the round r. Steps

26-41 are used to delete redundant awaked sensor nodes. Steps 42-50 are used to get

system maximum rounds.

The computational complexity of the boundary monitoring algorithm for fixed

sensors at steps 4-9 is O(|R|), where |R| is total number of rounds. At steps 10-41 is

O(|R||S||A|2), where |S| is number of sensor nodes and |A| is number of check points.

From steps 43-45 is O(|R|). Above steps from steps 2-53 run |S| times. Therefore, the

computational complexity is O(|R||S|2|A|2). Hence, the computational complexity of

the boundary monitoring algorithm for fixed sensors should be O(|R||S|2|A|2). This

makes the algorithm scalable to a large scale WSNs.

After solving the problem, a set of feasible solutions of the problem (IP) can be

obtained. The feasible solution is a lower bound (LB) of the problem (IP), and the

max_k is the upper bound (UB) of the problem (IP). We get the UB and the LB,

respectively. The gap between UB and LB, computed by () / *100%UB LB LB− ,

illustrates the optimality of problem solution. The smaller the gap computed, the

better the optimality.

3.1.4.5 Varieties of the model

We can extend the model to two different scenarios to fulfill more applications.

 58

Scenario 1:

In some scenario, the lower energy of sensor results the decrease of sensing range.

In such scenario, we can periodically run the BMAFS to ensure full coverage of the

check points.

Scenario 2:

In some application, the coverage rate of check points does not need to be 100%.

We only modify our model that adds the given parameter v. Table 3.5 shows the

description of v.

Table 3.5. Notation descriptions for new given parameter v.

Given Parameter
Notation Description

v The coverage rate.

The coverage rate constraints can be modified to our mathematical model as

followings:

 The coverage rate constraints

 ary ≤ sa sr
s S

b π
∈
∑ ,a A r R∀ ∈ ∈ (1)

 rz ≤
/ar

a A

y A

v
∈
∑

 r R∀ ∈ (2)

The scenarios described above are only different from the original model on

simple mathematical calculation. Hence, we only consider the original problem in

experiments, and the others can be easily inferred.

 59

3.1.5 Computational Results

To evaluate the performance of the proposed algorithms, we conduct an

experiment. The performance is assessed in terms of total number of rounds.

3.1.5.1 Scenario

The proposed algorithm is coded in C under a Dev C++ 4.9.9.2 development

environment. All the experiments are performed on a Core 2 Duo 2.2GHz CPU

running Microsoft Windows Vista. The algorithm is tested on a 2D sensor field. We

distribute 100, 400, and 1600 sensor nodes and 36, 72, and 156 check points

respectively in 2D sensor field. The radii of different sensors types sa, sb, sc, and sd are

1, 2, 3, and 4, respectively. The energy consumption of aware different sensor types sa,

sb, sc, and sd are 1, 2, 3, and 4, respectively, with linear model es = rs; 1, 4, 9, and 16,

respectively, with quadratic model es = rs
2; and 2, 8, 18, and 32, respectively, with

quadratic model es = 2rs
2 in each round. The initial energy level of each sensor node is

32.

3.1.5.2 Experiment results

Figure 3.17 shows an example of boundary monitoring.

Figure 3.17. An example of boundary monitoring.

check points

sensing range

 60

Table 3.6, Table 3.7, and Table 3.8 show the maximum total number of rounds

calculated by different algorithms. We can see that the BMAFS outperforms the SA1

and SA2.

Table 3.6. Evaluation of the gap and improvement ratio with different number of
nodes with the linear model es = rs.

Number of Nodes
(check points,
sensor nodes)

Monitoring
Region

(m2)
BMAFS UB Gap SA1 Improvement

Ratio to SA1 SA2 Improvement
Ratio to SA2

(36, 100) 10 × 10 94 94 0 52 0.81 78 0.21
(76, 400) 20 × 20 86 86 0 58 0.48 76 0.13

(156, 1600) 40 × 40 60 60 0 50 0.20 52 0.15
(316, 6400) 80 × 80 50 50 0 34 0.47 42 0.19

Table 3.7. Evaluation of the gap and improvement ratio with different number of
nodes with the quadratic model es = rs

2.

Number of Nodes
(check points,
sensor nodes)

Monitoring
Region

(m2)
BMAFS UB Gap SA1 Improvement

Ratio to SA1 SA2 Improvement
Ratio to SA2

(36, 100) 10 × 10 29 29 0 18 0.61 21 0.38
(76, 400) 20 × 20 23 23 0 15 0.53 20 0.15

(156, 1600) 40 × 40 20 20 0 16 0.25 18 0.11
(316, 6400) 80 × 80 13 13 0 9 0.44 11 0.18

Table 3.8. Evaluation of the gap and improvement ratio with different number of
nodes with the quadratic model es = 2rs

2.

Number of Nodes
(check points,
sensor nodes)

Monitoring
Region

(m2)
BMAFS UB Gap SA1 Improvement

Ratio to SA1 SA2 Improvement
Ratio to SA2

(36, 100) 10 × 10 11 11 0 7 0.58 8 0.38
(76, 400) 20 × 20 10 10 0 7 0.43 9 0.11

(156, 1600) 40 × 40 9 9 0 8 0.13 8 0.13
(316, 6400) 80 × 80 6 6 0 4 0.50 5 0.20

 61

94
86

60

50

29
23 20

1311 10 9 6
0

20

40

60

80

100

(36, 100) (76, 400) (156, 1600) (316, 6400)

Number of Nodes (check points, sensor nodes)

R
ou

nd
s

Figure 3.18. A comparison among the linear model es = rs, quadratic model es = rs
2,

and quadratic model es = 2rs
2.

3.1.5.3 Discussion

The experiment results show that the algorithm is not only better than the other

heuristic algorithms, such as SA1 and SA2 algorithms, but the gap is also small.

Compared with SA1 and SA2 algorithms, the proposed BMAFS algorithm can

improve the percentage of energy consumption from 11% to 81%. In the test problems,

BMAFS also achieves optimality since the gaps are 0%, as shown in Table 3.6, Table

3.7, and Table 3.8. Therefore, the results show that the proposed algorithm can

achieve boundary monitoring for grouping capabilities. Furthermore, the algorithm is

very efficient and scalable in terms of the running time. Besides, Total rounds of

quadratic model, es = rs
2, are exponential decrease than total rounds of linear model, es

= rs, as shown in Table 3.6, Table 3.7, and Figure 3.18. Total rounds of quadratic

model, es = 2rs
2, are approximately double decrease than total rounds of quadratic

model, es = rs
2, as shown in Table 3.7, Table 3.8, and Figure 3.18.

s se r=
2

s se r=
22s se r=

 62

3.1.6 Concluding Remarks

This study proposes a boundary monitoring algorithm in wireless sensor networks.

To our best knowledge, the proposed algorithm is truly novel and it has not been yet

discussed in previous researches. This study first formulates the problem as a 0/1

integer programming problem, and then proposes a heuristic-based algorithm for

solving the optimization problem. The proposed approach can prolong system lifetime

for wireless sensor networks of grouping capabilities.

As to the next section, we describe to further investigate mobile capabilities

model based on boundary monitoring application requirements.

 63

3.2 Boundary Monitoring Algorithm for Mobile Sensors

In this section, we address the problem of boundary node relocation, i.e., moving

previously deployed sensors to cover uncovered check points due to failure of other

nodes or battery exhaustion of other nodes.

The rest of this section is organized as follows. The overview is described in

Section 3.2.1. The problem and mathematical model are described in Sections 3.2.2

and 3.2.3, respectively. Additionally, the solution procedure is presented in Section

3.2.4. Furthermore, the computational results are discussed in Section 3.2.5, and

conclusions are presented in Section 3.2.6.

3.2.1 Overview

We propose a BMAMS for relocating mobile sensors in a timely and efficient. In

our framework, sensor relocation consists of two phases. First, we propose a solution

to find the uncovered check points. Second, we propose a relocation solution to

quickly locate the sensors with low message overhead. This problem is formulated as

0/1 integer-programming problem. The BMAMS is proposed for solving the

optimization problem. Experiment results show that the proposed heuristic algorithm

is very effective in reducing the relocation time and the energy consumption.

3.2.2 Problem Description

We also address the problem of boundary nodes relocation [36][37][46]. We can

move previously deployed sensors to cover uncovered check points, when failure of

other nodes or battery exhaustion of other nodes. The mechanism also can prolong the

system lifetime. Figure 3.19 shows an example of boundary monitoring for mobile

sensors. We assume that sensors are randomly deployed in boundary of monitoring

 64

region. Besides, we assume that global position system (GPS) is installed in each

sensor node and sensor node is implemented by ground robot [78].

The purpose of this section is to study an energy-efficient sensors mobility

algorithm for full coverage boundary in wireless sensor networks (WSNs). Such

sensor network has to be designed to achieve full coverage boundary for given

arbitrary topology of sensor network. We propose algorithms for sensors mobility for

full coverage boundary. The experiment results show that the proposed algorithm can

prolong the system lifetime than BMAFS.

Figure 3.19. An example of boundary monitoring for mobile sensors.

We use boundary node selection algorithm to check full coverage boundary. And

if the monitoring region boundary is not full coverage, we can move sensor nodes to

achieve full coverage of the monitoring region boundary. The detailed descriptions are

shown in Table 3.9.

Table 3.9. Problem description in boundary monitoring problem for mobile sensors.

Given

1. The set of check points.
2. The set of sensor nodes.
3. Residual energy level of each sensor node.
4. Energy consumption for sensor node to move one unit.
5. Energy consumption for sensor nodes to sense data in each

round.
6. Detection radius of sensor.

Objective To maximize the boundary monitoring services lifetime.

check points

sensing range

 65

Subject to
1. Full coverage boundary check points in each round.
2. Battery capacity.

To determine
1. whether sensor s is awake or not in the round r.
2. whether sensor node s moves to cover check point a or not.

3.2.3 Mathematical Model

Table 3.10. Notations of the given parameters in boundary monitoring for mobile
sensors problem.

Given Parameters
Notation Description

S The set of all sensor nodes.

A
Index set of the service check points in the monitoring region
boundary.

dsa
Euclidean distance for sensor node s moves to cover uncovered service
check point a, ,s S a A∈ ∈ .

e(dsa)
Energy consumption for sensor node s moves to cover uncovered
service check point a.

Es The energy level of each sensor node s, s S∈ .
Em The energy consumption for sensors node to sense data in each round.

Table 3.11. Notations of the indicator parameters in boundary monitoring for mobile
sensors problem.

Indicator Parameters
Notation Description

ρsa
The indicator function which is 1 if the check point a is in the
coverage of the non-moved sensor node s and 0 otherwise.

σsa
The indicator function which is 1 if the check point a is in the
coverage of the moved sensor node s and 0 otherwise.

 66

Table 3.12. Notations of the decision variables in boundary monitoring for mobile
sensors problem.

Decision Variables
Notation Description

ιs 1 if sensor node s does not move, and 0 otherwise. s S∈ .

ξsa
1 if sensor node s moving to cover uncovered check point a, and 0
otherwise. a A∈ .

srπ 1 if sensor s is awake in the round r; otherwise is equal to 0.

yar
1 if check point a at least is covered by one awake sensor in the round
r, and 0 otherwise.

zr 1 if full coverage check points in the round r, and 0 otherwise.

Problem (IP):

 max r
r R

z
∀ ∈
∑ (IP)

subject to:
 The full coverage check points constraint

 ary ≤ ()s sr sa sa sr sa
s S b A

ι π ρ ξ π σ
∈ ∈

+∑ ∑ ,a A r R∀ ∈ ∈ , (1)

 rz ≤
ar

a A

y

A
∈
∑

 r R∀ ∈ (2)

 sb
b A

ξ
∈
∑ = 1 s S∀ ∈ (3)

 The battery capacity constraints

 ()sr m sa sa
r R a A

E e dπ ξ
∈ ∀ ∈

+∑ ∑ ≤ sE s S∀ ∈ (4)

 The integer constraints
 ιs = 0 or 1 s S∀ ∈ (5)
 ξsa = 0 or 1 a A∀ ∈ , s S∈ (6)
 srπ = 0 or 1 s S∀ ∈ , r R∈ (7)
 yar = 0 or 1 a A∀ ∈ , r R∈ (8)
 zr = 0 or 1 r R∀ ∈ . (9)

The objective function is to maximize the system lifetime of the sensor network

given sensor network.

 67

Constraints (1)-(2): Full coverage boundary check points constraint in each round r.
Constraint (3): Sensor node s only moving to one check point a.
Constraint (4): For each sensor node s, the moving power consumption and total
sense data consumption can not exceed its energy level.
Constraints (5)-(9): The integer constraints for decision variables ιs, ξsa, srπ , yar,
and zr.

3.2.4 Solution Procedure

In this section, we propose a boundary monitoring algorithm for mobile sensors

to solve the problem. The parameters and decision variables used to model our

algorithms in this section are listed in Table 3.13.

Table 3.13. The parameters and decision variables in algorithms of boundary
monitoring for mobile sensors problem.

Notation Description
max_k The upper bound of system lifetime.

cp The number of check points.
sn The number of sensor nodes.

BNSet The boundary nodes set.
UncoverSet The uncovered check points set.

c[j] The number of cover for check point j.
s[i] The sensor node i.
a[j] The check point j.

x[i][j]
The decision variable which is 1 if aj is covered by sensor si, and
0 otherwise.

The procedure of boundary monitoring algorithm for mobile sensors is shown in

Figure 3.20. First is to initialize. Second is to find the uncovered check points in the

round r. Third is to move sensor node to cover uncovered check points in the round r.

Forth is to delete redundant awaked sensor nodes in the round r. Finally is to check

whether it is stopping criteria or not. If the answer is negative, go back to the first

step.

 68

Figure 3.20. The procedure of boundary monitoring algorithm for mobile sensors.

The BMAMS includes two phases. First, the uncovered check points finding

phase, we propose a heuristic algorithm for finding the uncovered check points.

Second, the relocation phase, we propose a heuristic algorithm for relocating the

sensor nodes with low message. The boundary monitoring algorithm for mobile

sensors (BMAMS) is listed in Figure 3.21.

Initialize

Find the uncovered check
points in the round r

Delete redundant awaked
sensor nodes in round r

Stopping criteria

Get system maximum rounds

End

Y

N

Move sensor node to cover
uncovered check point in round

r

 69

Algorithm Boundary Monitoring for Mobile Sensors
Input: The initial energy level of sensor node s, the energy consumption for aware
sensor node s to sense data in each round, and max_k
Output: The maximum rounds (max_round)

1: begin
2: for r=1 to max_k do
3: begin
4: uncovered check points finding phase(); /* phase 1 */
5: relocation phase(); /* phase 2 */
6: end
7: end

Figure 3.21. The boundary monitoring algorithm for mobile sensors.

In uncovered check points finding phase, each sensor shall check every check

points. If there is any check point out of the radius of sensor, then we should put the

check point into the uncovered check points set. An uncovered check point finding

algorithm (UCPFA) is listed in Figure 3.22.

Algorithm Uncovered Check Point Finding

Input: Coordinate of check points and sensor nodes, and sensing radius of sensor

nodes

Output: The uncovered check points
1: begin
2: BNSet=∅
3: UncoverSet=∅
4: for j=1 to cp do
5: begin
6: c[j] = 0;
7: for i=1 to sn do
8: x[i][j] = 0;
9: end

10: for j=1 to cp do
11: begin
12: for i=1 to sn do
13: begin

 70

14: if a[j] is covered by sensor s[i] /* 2 2() ()i j i j ix x y y r− + − ≤ */

15: then BNSet s[i], x[i][j]=1, and c[j] = c[j] +1
16: end
17: if c[j] =0
18: then UncoverSet a[j]
19: end
20: end

Figure 3.22. The uncovered check points finding algorithm.

In the uncovered check point finding algorithm, steps 2-9 are setting initialize

value, steps 10-19 find uncovered check points.

In relocation phase, we relocate previously deployed sensors to cover uncovered

check points due to failure or battery exhaustion of other nodes. Let check points,

a[j-1] or a[j+1], are neighbors of uncovered check points, a[j]. If either (x[i][j-1] = 1

and c[j-1] >=2) or (x[i][j+1] = 1 and c[j+1] >= 2) is satisfied for each neighbor check

point, a[j-1] or a[j+1], which is covered by sensor s[i], then we move the s[i] to cover

the check point a[j]. A relocation algorithm (RA) is listed in Figure 3.23.

Algorithm Relocation

Input: c[j] is number of cover for check point j, x[i][j] is 1 if a[j] is covered by sensor

s[i]

Output: To determine 1) whether sensor s is awake or not in the round r, and 2)

whether sensor node s moves to cover check point a or not
1: begin
2: for j=1 to cp do
3: if c[j] =0
4: begin
5: for i=1 to sn do
6: if (x[i][j-1] =1) and (c[j-1] >=2)
7: then move s[i] to cover check point a[j]

8: else if (x[i][j+1] =1) and (c[j+1] >=2)
9: then move s[i] to cover check point a[j]

10: if system can not find ((x[i][j-1] =1) and (c[j-1] >=2))

 71

 or ((x[i][j+1] =1) and (c[j+1] >=2))
11: then if (x[i][j-1] =1) and (c[j-1] =1)
12: then move s[i] to cover check point a[j]

13: end
14: end

Figure 3.23. The relocation algorithm.

In the relocation algorithm, if either (xij-1 = 1 and cj-1 >= 2) or (xij+1 =1 and cj+1 >=

2) is satisfied, then steps 4-7 move the si to cover the check point aj. Steps 8-10 move

the si to the check point aj, if (xij-1 = 1) and (cj-1 = 1) and system can neither find ((xij-1

= 1) and (cj-1 >= 2)) or ((xij-1 = 1) and (cj-1 >= 2)).

The computational complexity of the boundary monitoring algorithm for mobile

sensors in uncovered check points finding phase is O(|S||A|), where |S| is number of

sensor nodes and |A| is number of check points. In relocation phase is O(|S||A|). Above

steps from steps 3-6 run |R| times, where |R| is total number of rounds. Therefore, the

computational complexity is O(|R||S||A|). Hence, the computational complexity of the

boundary monitoring algorithm for mobile sensors should be O(|R||S||A|).

3.2.5 Computational Results

To evaluate the performance of the proposed algorithms, we conduct an

experiment. The performance is assessed in terms of total number of rounds.

3.2.5.1 Scenario

The proposed algorithm is coded in C under a Dev C++ 4.9.9.2 development

environment. All the experiments are performed on a Core 2 Duo 2.2GHz CPU

running Microsoft Windows Vista. The algorithm is tested on a 2D sensor field. We

distribute 100, 400, and 1600 sensor nodes and 36, 72, and 156 check points

respectively in 2D sensor field. The radii of different sensors types sa, sb, sc, and sd are

1, 2, 3, and 4, respectively. The energy consumption of aware different sensor types sa,

 72

sb, sc, and sd are 1, 2, 3, and 4, respectively, with linear model es = rs; and 1, 4, 9, and

16, respectively, with quadratic model es = rs
2. The initial energy level of each sensor

node is 32. The energy consumption is 1 when sensor node moves one unit.

3.2.5.2 Experiment results

Table 3.14 and Table 3.15 show the maximum total number of rounds calculated

by different algorithms. We can see that the BMAMS outperforms the BMAFS.

Table 3.14. Evaluation of improvement ratio with different number of nodes with the
linear model.

Number of Nodes
(check points, sensor nodes)

Monitoring
Region (m2) BMAMS BMAFS Improvement Ratio

to BMAFS
(36, 100) 10 × 10 100 94 0.06
(76, 400) 20 × 20 93 86 0.08

(156, 1600) 40 × 40 66 60 0.10

Table 3.15. Evaluation of improvement ratio with different number of nodes with the
quadratic model.

Number of Nodes
(check points, sensor nodes)

Monitoring
Region (m2) BMAMS BMAFS Improvement Ratio

to BMAFS
(36, 100) 10 × 10 39 29 0.35
(76, 400) 20 × 20 25 23 0.09

(156, 1600) 40 × 40 20 20 0

100
93

6694
86

60

0

20

40

60

80

100

120

(36, 100) (76, 400) (156, 1600)

Number of Nodes

(check points, sensor nodes)

R
ou

nd
s

BMAMS

BMAFS

Figure 3.24. A comparison of the total number of rounds in BMAMS and BMAFS
with the linear model.

 73

3.2.5.3 Discussion

The experiment results show that the algorithm is better than the BMAFS.

Compared with BMAFS, the proposed BMAMS can improve the lifetime of boundary

monitoring services from 0% to 35%, as shown in Table 3.14, Table 3.15, and Figure

3.24. Therefore, the results show that the proposed algorithm can achieve boundary

monitoring for mobile and grouping capabilities. Furthermore, the proposed approach

can prolong system lifetime in boundary monitoring for mobile sensors. Besides,

Total rounds of quadratic model es = rs
2 are exponential decrease than total rounds of

linear model es = rs, as shown in Table 3.14 and Table 3.15.

3.2.6 Concluding Remarks

This study proposes a boundary monitoring algorithm for mobile sensors. To our

best knowledge, the proposed algorithm is truly novel and it has not been yet

discussed in previous researches. This study first formulates the problem as a 0/1

integer programming problem, and then proposes a heuristic-based algorithm for

solving the optimization problem. The proposed approach can prolong system lifetime

for wireless sensor networks of mobile and grouping capabilities. The proposed

BMAMS can improve the lifetime of boundary monitoring services from 0% to 35%

than BMAFS.

 74

 75

Chapter 4 In-Depth Defense Algorithms

In this chapter, we propose two algorithms, LDA and NLDA, to support in-depth

defense services. The LDA is to construct layered defense for wireless sensor

networks of grouping capabilities. It tries to find the maximum k groups of sensors for

layered defense of the monitoring region to prolong the system lifetime. The NLDA is

to construct non-layered defense of supporting different types of intruders for

grouping capabilities, and it tries to find the maximum k groups of sensors for

non-layered defense subject to the constraints of defense rate, early warning rate,

battery capacity, intruder behaviors, and defender strategies. The NLDA can prolong

the system lifetime and provide lead time alarms.

In this chapter, the layered defense algorithms are described in Section 4.1 and

non-layered defense algorithm supporting different types of intruders is presented in

Section 4.2.

4.1 Layered Defense Algorithms

In this section, we develop three algorithms to construct Layered Defense for

wireless sensor networks of grouping capabilities. We try to find the maximum k

groups of sensors for layered defense of the sensor field. The mechanism can prolong

the system lifetime. This problem is formulated as a 0/1 integer-programming

problem. Three heuristic-based algorithms are proposed for solving the optimization

problem. The experiment results show that the proposed layered defense algorithm

(LDA) gets a near optimization in the layered defense for grouping capabilities.

The rest of this chapter is organized as follows. The overview is described in

Section 4.1.1. The problem and mathematical models are described in Sections 4.1.2

and 4.1.3, respectively. Additionally, the solution procedure is presented in Section

 76

4.1.4. Furthermore, the computational results are discussed in Section 4.1.5, and

conclusions are presented in Section 4.1.6.

4.1.1 Overview

In this section, we focus on the sensor grouping problem to support layered

defense services. First, we try to find the nodes of each layer from the monitoring

region. Second, we want to find the maximum k groups of sensors to monitor a

layered defense in sensor networks. This mechanism can prolong the system lifetime

of layered defense.

The problem is similar to that of Section 3.1. In Section 3.1, boundary monitoring

algorithm for fixed sensors considers only one layer. However, in this section, layered

defense algorithm considers multiple layers.

We formulate the problem as a 0/1 integer programming problem where the

objective function is the maximization of the system lifetime of the layered defense

subject to the constraints of defense rate, battery capacity, and integer variables.

The problem is formulated as a linear optimization-based problem with three

different decision variables: wakeup sensors, covered check points, and satisfy

defense rate in the round r. Wakeup sensor is 1 if sensor s is awake in the round r, and

0 otherwise. Covered check point is 1 if check point a is covered by at least one

awake sensor in the layer j and round r, and 0 otherwise. Satisfy defense rate is 1 if

defense rate is satisfied in the round r, and 0 otherwise. In the further experiments, the

proposed layered defense algorithm is expected to be efficient and effective in dealing

with the optimization problem.

4.1.2 Problem Description

4.1.2.1 Layered Nodes Selection Algorithm

 77

In this section, we use the mathematical method to construct layered defense. We

particularly introduce novel defense rate definition for layered defense. The

monitoring region can be represented as a collection of two-dimensional check points

in multiple layers, as illustrated in Figure 4.1. We assume that sensors are randomly

deployed in boundary of each layer of layered defense region.

Definition 4.1 The defense rate of layer j: The number of covered check points (Bj)

divided by the total number of check points (Aj) in layer j. Defense rate of layer j is

/j jB A .

Definition 4.2 The defense rate of layered defense (Q) is 1 (1)j

j J j

B
A∈

− −∏ , where J is

total number of layers.
Definition 4.3 The early warning distance of layer j (mj): The shortest distance from
layer j to core, the protected area.
Definition 4.4 The detectability of layer j: The defense rate of layer j multiplied by

early warning distance of layer j. The detectability of layer j is j
j

j

B
m

A
.

Definition 4.5 The detectability of layered defense (P) is () /j
j

j J j

B
m J

A∈
∑ , where J

is total number of layers.

The positioning resolution of application determines the granularity of check

point and sensing range. The layered defense region illustrated in Figure 4.1 has 3

layers and 32 sensors are placed on the layers. For example, the defense rate of

system is 1-[(1-0.8) *(1-0.9)*(1-0.95)] = 0.999 in Figure 4.1.

 78

Figure 4.1. An example of layered defense.

The proposed layered nodes selection algorithm (LNSA) is shown in Figure 4.2.

We aimed at each sensor checking of the whole check points. If there is any

radius of sensor covered the check point, then we should put the sensor into the nodes

set of layer j.

Algorithm Layered nodes selection

Input: Coordinates of check points and sensor nodes, and sensing radii of sensor

nodes

Output: Nodes of each layer (LNSet[j])
1: begin
2: LNSet[j]=∅ ; /* LNSet[j] is nodes set of layer j */
3: UncoverSet[j]=∅ ; /* UncoverSet[j] is uncovered check points

set of layer j */
4: for j = 1 to J do /* J: the number of layers */
5: for a = 1 to cp do /* cp: number of check points */
6: flaga

l = 0;
7: for j = 1 to J do
8: for a = 1 to cp do
9: begin

10: for s = 1 to sn do /* sn: number of sensor node*/
11: begin
12: if check_pointa

j is covered by sensor s

95% defense rate

80% defense rate long distance of early warning

short distance of early warning

check points

sensing range
core

region of red alert

region of orange alert

region of yellow alert

90% defense rate

layered defense region

 79

/* 2 2() ()s a s a sx x y y r− + − ≤ */

13: then LNSet[j] s and flaga
j = 1

14: end
15: if flaga

j = 0
16: then UncoverSet[j] check_pointa

j
17: end

18: if 1 (1 /)j j
j J

LNSet A D
∈

− − ≥∏ /* D: The total defense rate */

19: then defense rate is satisfied and
nodes of layer j = LNSet[j]

20: else defense rate is not satisfied
21: end

Figure 4.2. The layered nodes selection algorithm.

In this algorithm, from steps 2-6 set initialize values. Steps 7-17 are used to find

node set of each layer. Steps 16-20 check defense rate is satisfied.

The computational complexity of the layered nodes selection algorithm at steps

4-6 is O(|J||A|), where |J| is the number of layers and |A| is number of check points.

From steps 7-20 is O(|J||A||S|), where |S| is number of sensor nodes. Therefore, the

computational complexity is O(|J||A||S|). Hence, the computational complexity of the

layered nodes selection algorithm should be O(|J||A||S|).

We use the above LNSA to find out layered nodes and check whether total

defense rate is satisfied.

4.1.2.2 Layered defense Algorithms for Grouping Capabilities

We try to find maximum k sets of sensors to support layered defense services on

layered defense region, as shown in Figure 4.3. Each of them, is called a group, can

provide defense rate is satisfied of the layered defense region. Each group is activated

in turn to monitor the layered defense region. Each group is activated in turn to

monitor the monitoring region as illustrated in Figure 3.9 of Section 3.1. From the

network viewpoint, two operation states exist: the sleeping state and the active state.

 80

Only one group sensors are activated to monitor the layered defense region, and the

other group sensors are sleeping at the same time. The system lifetime can be

effectively prolonged to k times. The detailed descriptions are shown in Table 4.1.

Figure 4.3. An example of layered defense for grouping capabilities.

Table 4.1. Problem description in layered defense problem.

Given

1. The set of check points.
2. The set of sensor nodes.
3. Initial energy level of sensor node.
4. Energy consumption for sensor nodes to sense data in each

round.
5. Detection radius of sensor.
6. Total number of layers.
7. Total defense rate.
8. The detectability.

Objective To maximize the layered defense services lifetime.

Subject to

1. Total defense rate.
2. The detectability of system.
3. Battery capacity.

To determine To determine whether sensor s is awake or not in the round r.

check points
group 1
group 2

 81

4.1.3 Mathematical Model

In this section, we formulate the problem as a 0/1 integer programming problem

where the objective function is the maximization of the amount of cover k required to

satisfy defense rate under a given layered defense region. The problem is a variant of

the set k-cover problem and thus is NP-complete [35].

The notations used to model the problem are listed in Table 4.2 and Table 4.3.

Table 4.2. Notations of the given parameters in layered defense problem.

Given Parameters
Notation Description

S The set of all sensor nodes.
Aj Index set of the service check points of layer j in the layered defense.
Cs The initial energy level of sensor node s.
Em The energy consumption for sensor nodes to sense data.
bsaj The indicator function which is 1 if the check point a is in the radius of

the sensor node s on layer j, and 0 otherwise.
R The upper bound number of rounds.
J The total number of layers.
dj The defense rate of layer j.
Q The total defense rate.
mj The distance of early warning of layer j.
P The detectability of system.

Table 4.3. Notations of the decision variables in layered defense problem.

Decision Variables
Notation Description

srπ 1 if sensor s is awake in the round r, and 0 otherwise.
yarj 1 if check point a at least is covered by one awake sensor on layer j in

the round r, and 0 otherwise.
zr 1 if satisfy total defense rate in the round r, and 0 otherwise.

Problem (IP):
 max r

r R
z

∀ ∈
∑ (IP)

 82

subject to:
 The defense rate constraints

 arjy ≤ saj sr
s S

b π
∈
∑ ,a A r R∀ ∈ ∈ ,

j J∈ (1)

 1 (1)
arj

a A

j J j

y

A
∈

∈

− −
∑

∏ ≥ D r R∀ ∈ (2)

 ((1 (1)))
arj

a A
r

j J j

y
z D

A
∈

∈

− − − −
∑

∏ ≤ 1 r R∀ ∈ (3)

 The detectability constraint

(*)

(*)

arj
a A

j
j J j

r
arj

a A
j

j J l

y
m

A
P

Jz
y

m
A

P
J

∈

∈

∈

∈

−
−

+

∑
∑

∑
∑

≤ 1 r R∀ ∈ (4)

 The battery capacity constraint

 sr m
r R

Eπ
∈
∑ ≤ sC s S∀ ∈ (5)

 The integer constraints
 srπ = 0 or 1 s S∀ ∈ , r R∈ (6)

 yarj = 0 or 1
,a A r R∀ ∈ ∈ ,

j J∈ (7)

 zr = 0 or 1 r R∀ ∈ . (8)

The objective function is to maximize the system lifetime of the given sensor

network. The lifetime is defined as the total number of rounds.

Constraints (1)-(3): If defense rate constraint is satisfied then enforce zr=1.
Constraint (4): The detectability constraint.
Constraint (5): For each sensor node s, the total sensing consumption can not exceed
its initial energy level.
Constraints (6)-(8): The integer constraints for decision variables srπ , yarj, and zr.

 83

4.1.4 Solution Procedure

The parameters and decision variables used to model layered defense algorithms

in this section are listed in Table 4.4.

Table 4.4. The parameters and decision variables in algorithms of layered defense
problem.

Notation Description
max_k The upper bound of system lifetime.

J The total number of layers

D The total defense rate.

P The detectability of system.
mj The distance of early warning of layer j.

layer[r]
The number of layers that satisfy defense rate of layer in the round
r.

cp[j] The number of check points on layer j.
sn The number of sensor nodes.

cpc_no[a] The number of covered rounds in each check point a.
cs[s] The initial energy level of sensor node s.

es[s]
The energy consumption for aware sensor node s to sense data in
each round.

max_round The system lifetime.
c_bsa[a] The number of covered times in check point a.
count[s] The number of covered check points by awaked sensor i.

c_s[i]
The number of covered check points under sensing range of sensor
i.

sat_ldr[r] The number of covered check points by awaked sensor in round r.

bsa[s][a][j]
The indicator function which is 1 if the check point a is in the
sensing range of the sensor node s in layer j, and 0 otherwise.

sat_dr[r]
The decision variable which is 1 if total defense rate is satisfied in
the round r, and 0 otherwise.

p[s][r]
The decision variable which is 1 if sensor s is awake in the round
r, and 0 otherwise.

cover[a][r][j]
The decision variable which is 1 if layer j check point a is covered
by at least one awake sensor in the round r, and 0 otherwise.

 84

4.1.4.1 Simple Algorithm 1

We compare the proposed iteration-based algorithm with non-iteration-based

algorithms (simple algorithm 1 and 2) that use the concept of “cover” to determine

whether sensor s is awake or not in the round r. The “cover” is 1 if the check point a

is in the sensing range of the sensor node s, and 0 otherwise.

In each round, we first find sensor s to cover check point a, and then sensor s is

awake in the round r, and repeat the assignment process until total defense rate and

detectability are satisfied in round r.

The simple algorithm 1 (SA1) is listed in Figure 4.4.

Algorithm Simple 1
Input: The initial energy level of sensor node s, the energy consumption for aware
sensor node s to sense data in each round
Output: The maximum rounds (max_round)

1: begin
2: max_round=0;
3: for r=1 to max_k do
4: begin
5: sat_dr[r]=0;
6: layer[r]=0;
7: for j=1 to J do
8: sat_ldr[r][j]=0;
9: for s=1 to sn do

10: p[s][r]=0;
11: end
12: for r=1 to max_k do
13: begin
14: for s=1 to sn do
15: begin
16: for j=1 to J do
17: begin
18: for a=1 to cp[j]do
19: begin
20: if ((bsa[s][a][j]=1) and (cs[s]>=es[s])

 and (cover[a][r][j]=0)) then
21: begin

 85

22: if p[s][r]=0 then
23: begin
24: p[s][r]=1;
25: cs[s]=cs[s]-es[s];
26: end
27: for a=1 to cp[j] do
28: if ((bsa[s][a][j]=1) and (cover[a][r][j]=0))
29: then cover[a][r][j]=1 and

sat_ldr[r][j]=sat_ldr[r][j]+1;
30: end
31: end
32: end
33: if ((1 (1 (_ [][]/ []))

j J

sat ldr r j cp j D
∈

− − ≥∏) and ((_ [][]/ []) /j
j J

sat ldr r j cp j m J P
∈

≥∑))

34: then sat_dr[r]=1 and break;
35: end
36: for r=1 to max_k do
37: if (sat_dr[r]=1)
38: then total defense rate is satisfied in round r and
 max_round=max_round+1;
39: end

Figure 4.4. The simple algorithm 1 of layered defense.

In the simple algorithm 1 of layered defense, steps 2-11 are setting initialize value,

steps 12-32 determine whether sensor s is awake or not in the round r. Steps 33-34 are

used to check whether total defense rate is satisfied in round r. Steps 36-38 are used to

get system maximum rounds.

The computational complexity of the simple algorithm 1 in layered defense at

steps 3-11 is O(|R|), where |R| is total number of rounds. At steps 12-32 is

O(|R||S||J||A|2), where |S| is number of sensor nodes, |J| is number of layers and |A| is

number of check points. From steps 36-38 is O(|R|). Therefore, the computational

complexity is O(|R||S||J||A|2). Hence, the computational complexity of the simple

algorithm 1 in layered defense problem should be O(|R||S||J||A|2).

 86

4.1.4.2 Simple Algorithm 2

Simple algorithm 1 wastes on energy consumption, because system has redundant

awaked sensor nodes. Therefore, we propose a simple algorithm 2 (SA2) to deal with

the problem. An example of deleting redundant awaked sensor node as illustrated in

Figure 3.12 of Section 3.1.

The simple algorithm 2 is listed in Figure 4.5.

Algorithm Simple 2

Input: The initial energy level of sensor node s, the energy consumption for awaked

sensor node s to sense data in each round

Output: The maximum rounds (max_round)
1: begin
2: max_round=0;
3: for r=1 to max_k do
4: begin
5: sat_dr[r]=0;
6: for s=1 to sn do
7: p[s][r]=0;
8: end
9: for r=1 to max_k do

10: begin
11: for s=1 to sn do
12: for j=1 to J do
13: for a=1 to cp do
14: if ((bsa[s][a][j]=1) and (cs[s]>=es[s]) and (cover[a][r][j]=0))
 then
15: begin
16: p[s][r]=1;
17: cs[s]=cs[s]-es[s];
18: for k=1 to cp do
19: if (bsa[s][a][j]=1)
20: then c_bsa[a]=c_bsa[a]+1;
21: if ((bsa[s][a][j]=1) and (cover[a][r][j]=0))
22: then cover[a][r][j]=1 and

sat_ldr[r][k]=sat_ldr[r][k]+1;
23: end
24: for s=1 to sn do /* delete redundant nodes */
25: begin
26: for a=1 to cp do

 87

27: begin
28: if ((p[s][r]=1) and (bsa[s][a][j]=1) and (c_bsa[a]>=2))
29: then count[s]=count[s]+1;
30: if (count[s]=c_s[i])
31: begin
32: cs[s]=cs[s]+es[s]; /* energy recovery */
33: p[s][r]=0;
34: for a=1 to cp do
35: if (bsa[s][a][j]==1)
36: then c_bsa[a]=c_bsa[a]-1;
37: end
38: end
39: end
40: end
41: if ((1 (1 (_ [][]/ []))

j J

sat ldr r j cp j D
∈

− − ≥∏) and ((_ [][]/ []) /j
j J

sat ldr r j cp j m J P
∈

≥∑))

42: then sat_dr[r]=1 and break;
43: end
44: for r=1 to max_k do
45: if (sat_dr[r]=1)
46: then total defense rate is satisfied in round r and

max_round=max_round+1;
47: end

Figure 4.5. The simple algorithm 2 of layered defense.

In the simple algorithm 2, steps 2-8 are setting initialize value, steps 9-23

determine whether sensor s is awake or not in the round r. Steps 24-40 are used to

delete redundant awaked sensor nodes. Steps 41-42 are used to check whether total

defense rate is satisfied in round r. Steps 44-46 are used to get system maximum

rounds.

The computational complexity of the simple algorithm 2 in layered defense at

steps 3-8 is O(|R|), where |R| is total number of rounds. At steps 9-43 is O(|R||S|2|J||A|2),

where |S| is number of sensor nodes, |J| is number of layers and |A| is number of check

points. From steps 44-46 is O(|R|). Therefore, the computational complexity is

O(|R||S|2|J||A|2). Hence, the computational complexity of the simple algorithm 2 in

 88

layered defense problem should be O(|R||S|2|J||A|2).

4.1.4.3 Layered Defense Algorithm

In this section, we present an iteration-based layered defense algorithm (LDA) to

improve SA1 and SA2 algorithms.

To solve the original problem near-optimally. In each round, we first use different

sensor node id to cover first check point a and then sensor s is awake in the round r,

and repeat the assignment process until total defense rate and detectability are satisfied

in round r. We improve the object function by solving the problem optimally and use

the different sensor node id to improve the maximum rounds per iteration.

The procedure of layered defense algorithm is shown in Figure 4.6. First of all is

to initialize. Second is to determine whether sensor s is awake or not in the round r.

Third is to delete redundant awaked sensor nodes. Forth is to check whether defense

rate is satisfied in round r or not. Fifth is to get system maximum rounds. Finally is to

check whether it is a stop condition or not. If the answer is negative, go back to the

first step.

 89

Figure 4.6 The procedure of layered defense algorithm.

The layered defense algorithm is listed in Figure 4.7.

Algorithm Layered Defense
Input: The initial energy level of sensor node s, the energy consumption for awaked
sensor node s to sense data in each round
Output: The maximum rounds (max_round)

1: begin
2: for iteration=1 to sn do
3: begin
4: for r=1 to max_k do

Initialize

To determine whether sensor s
is awake or not in the round r

Delete redundant awaked
sensor nodes

Stopping criteria

Get system maximum rounds

End

Y

Check whether defense rate is
satisfied in round r or not

N

 90

5: begin
6: sat_dr[r]=0;
7: for s=1 to sn do
8: p[s][r]=0;
9: end

10: for r=1 to max_k do
11: begin
12: s=iteration;
13: for i=1 to sn do
14: for j=1 to J do
15: for a=1 to cp do
16: if ((bsa[s][a][j]=1) and (cs[s]>=es[s]))

 and (cover[a][r][j]=0)) then
17: begin
18: p[s][r]=1;
19: cs[s]=cs[s]-es[s];
20: for k=1 to cp do
21: if (bsa[s][a][j]=1)
22: c_bsa[a]=c_bsa[a]+1;
23: if ((bsa[s][a][j]=1) and (cover[a][r][j]=0))
24: then cover[a][r][j]=1 and

sat_dr[r]=sat_dr[r]+1;
25: s=(s+1)%sn;
26: end
27: if (sat_dr[r]=cp) then /* delete redundant nodes */
28: for s=1 to sn do
29: begin
30: for a=1 to cp do
31: if ((p[s][r]=1) and (bsa[s][a][j]=1)

 and (c_bsa[a]>=2))
32: then count[s]=count[s]+1;
33: if (count=c_s[i]) then
34: begin
35: cs[s]=cs[s]+es[s]; /* energy recovery */
36: p[s][r]=0;
37: for a=1 to cp do
38: if (bsa[s][a][j]=1)
39: c_bsa[a]=c_bsa[a]-1;
40 : end
41: end
42: end

 91

43: if ((1 (1 (_ [][]/ []))
j J

sat ldr r j cp j D
∈

− − ≥∏) and ((_ [][]/ []) /j
j J

sat ldr r j cp j m J P
∈

≥∑))

44: then sat_dr[r]=1 and break;
45: end
46: for r=1 to max_k do
47: if (sat_dr[r]=1)
48: then total defense rate is satisfied in round r and

max_round=max_round+1;
49: end
50: end

Figure 4.7. The layered defense algorithm.

In the layered defense algorithm, steps 2, 12, and 25 are iteratively to improve

system maximum rounds. Steps 4-9 are to set initial values, steps 10-11 and 13-24 are

to determine whether sensor s is awake or not in the round r. Steps 27-42 are used to

delete redundant awaked sensor nodes. An example of deleting redundant awaked

sensor node as illustrated in Figure 3.12 of Section 3.1. Steps 43-44 are used to check

whether total defense rate is satisfied in round r. Steps 46-48 are used to get system

maximum rounds.

The computational complexity of the layered defense algorithm at steps 4-9 is

O(|R|), where |R| is total number of rounds. At steps 10-45 is O(|R||S|2|J||A|2), where |S|

is number of sensor nodes, |J| is the number of layers and |A| is number of check

points. From steps 46-48 is O(|R|). Above steps from steps 2-49 run |S| times.

Therefore, the computational complexity is O(|R||S|3|J||A|2). Hence, the computational

complexity of the layered defense algorithm should be O(|R||S|3|J||A|2). This makes the

algorithm scalable to a large scale WSNs.

4.1.5 Computational Results

To evaluate the performance of the proposed algorithms, we conduct an

experiment. The performance is assessed in terms of total number of rounds.

 92

4.1.5.1 Scenario

The proposed algorithms are coded in C under a Dev C++ 4.9.9.2 development

environment. All the experiments are performed on a Core 2 Duo 2.2GHz CPU

running Microsoft Windows Vista. The algorithm is tested on a 2D sensor field. We

distribute 1600 and 6400 sensor nodes and 720 and 1440 check points respectively in

2D sensor field.

4.1.5.2 Experiment results

Figure 4.8 and Figure 4.9 show the example of layered defense strategies.

(Defense rate =0.8 and 0.999)

Figure 4.8. An example of layered defense. (defense rate = 0.8)

Figure 4.9. An example of layered defense. (defense rate = 0.999)

core sensing range

sensing range core

 93

We set detectability =
((1 (1))*)J

j
j J

D m

J
∈

− −∑
. Table 4.5 and Table 4.6 show the

maximum total number of rounds calculated by different algorithms. We can see that
the LDA outperforms the SA1 and SA2 algorithms.

Table 4.5. Evaluation of the improvement ratio with the linear model. (Defense rate =
0.8)

Number of Nodes

(check points, sensor nodes)
D LDA SA1

Improvement

Ratio to SA1
SA2

Improvement

Ratio to SA2

(720, 1600) 0.7 78 70 0.11 76 0.03

(720, 1600) 0.8 60 52 0.15 54 0.11

(720, 1600) 0.9 42 36 0.17 40 0.05

(720, 1600) 0.99 18 18 0 18 0

Table 4.6. Evaluation of the improvement ratio with quadratic model. (Defense rate =
0.8)

Number of Nodes

(check points, sensor nodes)
D LDA SA1

Improvement

Ratio to SA1
SA2

Improvement

Ratio to SA2

(720, 1600) 0.7 27 25 0.08 26 0.04

(720, 1600) 0.8 19 17 0.12 18 0.06

(720, 1600) 0.9 13 11 0.18 12 0.08

(720, 1600) 0.99 5 5 0 5 0

4.1.5.3 Discussion

The experiment results show that the algorithm is better than the other heuristic

algorithms, such as SA1 and SA2 algorithms. Compared with SA1 and SA2

algorithms, the proposed LDA can improve the percentage of energy consumption

from 0% to 18%, as shown in Table 4.5 and Table 4.6. Therefore, the results show that

 94

the proposed algorithm can achieve layered defense for grouping capabilities.

Furthermore, the algorithm is very efficient and scalable in terms of the running time.

Besides, Total rounds of quadratic model es = rs
2 are exponential decrease than total

rounds of linear model es = rs, as shown in Table 4.5 and Table 4.6.

4.1.6 Concluding Remarks

This study proposes a layered defense algorithm in wireless sensor networks. To

our best knowledge, the proposed algorithm is truly novel and it has not been yet

discussed in previous researches. This study first formulates the problem as a 0/1

integer programming problem, and then proposes a heuristic-based algorithm for

solving the optimization problem.

 95

4.2 Non-Layered Defense Algorithms

In this section, we focus on non-layered defense for wireless sensor networks of

grouping capabilities. We try to find the maximum k groups of sensors for

non-layered defense subject to defense rate, early warning rate, battery capacity,

intruder behavior, and defender strategies constraints. The mechanism can prolong the

system lifetime and provide lead time alarms [42]. The problem is modeled as a

generic mathematical programming problem. A novel solution procedure of three

phases, which well combines mathematical programming and simulation techniques,

is proposed. The experiment results show that the proposed non-layered defense

algorithm (NLDA) gets applicability and effectiveness in the non-layered defense for

grouping capabilities.

The rest of this section is organized as follows. The overview is described in

Section 4.2.1. The problem and mathematical models are described in Sections 4.2.2

and 4.2.3, respectively. In addition, the solution procedure is presented in Section

4.2.4. Furthermore, the computational results are discussed in Section 4.2.5, and

conclusions are presented in Section 4.2.6.

4.2.1 Overview

In this section, we focus on the sensor grouping problem to support non-layered

defense services. First, we try to find out the sensors nodes to cover the monitoring

region for non-layered defense and early warning rate. Second, we will describe the

behavior of intruders. Third, we want to describe the defender strategies. Forth, we

want to find the maximum k groups of sensors for non-layered defense in sensor

networks. This mechanism can prolong the system lifetime.

The problem is modeled as a generic mathematical programming problem, and a

novel solution of three phases, which well combines mathematical programming and

 96

simulation techniques, is proposed. In the first phase, the “initial solution phase”, we

propose an efficient heuristic algorithm for initial solution. In the second phase, the

“objective function evaluation phase”, we propose efficient and effective simulations

to evaluate the effectiveness of the current defense policy. In the third phase, the

“add-and-drop phase”, we use an add-and-drop algorithm to improve and satisfy the

defender strategies. From experiments in WSNs, applicability and effectiveness of the

proposed framework and algorithms are clearly demonstrated.

In this section, we use the concept of check point, which can check full coverage

and coverage rate of each layer. Besides, it can save energy consumption because the

concept can check full coverage and coverage rate of each layer more efficiently for

arbitrary topology. The concept of check points is introduced in Section 3.1.1. And

further, we find the maximum k sets of sensors to support non-layered defense

services on the monitoring region. These sets can be joint or disjoint. Each of them, is

called a group, can provide full coverage of the boundary of the sensor field. Each

group is activated in turn to monitor the each layer of non-layered defense regions.

Generally, the power consumption for inactive sensors can be neglected, and the

system lifetime can be effectively prolonged to k times. We present a mathematical

model to describe the optimization problem and a heuristic-based algorithm is

proposed to solve the problem.

To the best of our knowledge, this work is the first effort to model the

non-layered defense with consideration of behaviors of intruders in wireless sensor

networks. We formulate the problem as a generic mathematical programming problem

where the objective function is the maximization of the system lifetime of non-layered

defense subject to defense rate, early warning rate, battery capacity, intruder behavior,

and defender strategies constraints. We construct a heuristic-based algorithm to solve

the problem.

The problem is formulated as an optimization-based problem with two different

main decision variables: wakeup sensor s in the round r and satisfying defense

policies F
uv

 in the round r. wakeup sensor s in the round r is 1 if sensor s is awake in

 97

the round r, and 0 otherwise. Satisfying defense policies F
uv

 in the round r is 1 if total

defense rate and early warning rate in the round r are satisfied, and 0 otherwise. In the

further experiments, the proposed non-layered defense for grouping capabilities

algorithm is expected to be efficient and effective in dealing with the optimization

problem.

4.2.2 Problem Description

4.2.2.1 Non-Layered Defense for Grouping Capabilities

In this section, we describe the problem and propose the intruder and defense

scenario with specific assumptions. The definitions use in the proposed non-layered

defense algorithm, they are illustrated as follows:

Definition 4.6 The defense rate of non-layered defense (D): The number of detected

intruders (G) divided by the total number of intruders (K). The defense rate of

non-layered defense D = G / K.

Definition 4.7 The early warning rate (W): The number of detected intruders (H)

satisfied early warning distance L divided by the total number of intruders (K). Early

warning rate W = H / K.

For example, assume the defense rate is 0.9 and the early warning rate is 0.8. If

defenders deploy the topology of sensor to satisfy the condition, then the strategies

can prevent 90% intruders and satisfy 80% early warning. Defenders use the defense

strategies to protect core field. Furthermore, the defense strategies can support object

tracking and detect airborne intruders.

We try to find maximum k sets of sensors to support non-layered defense services,

as shown in Figure 4.10. Each of them, called a group, can satisfy total defense rate

and early warning rate of the monitoring region. Each group is activated in turn to

monitor the monitoring region as illustrated in Figure 3.9 of Section 3.1. From the

network viewpoint, two operation states exist: the sleeping state and the active state.

 98

Only one group sensors are activated to monitor the monitoring region, and the other

group sensors are sleeping at the same time. The system lifetime can be effectively

prolonged to k times. We assume that sensors are randomly deployed in non-layered

defense region.

Figure 4.10. The non-layered defense model.

The objective of each intruder is to attack the core field in the given sensor

network. The defender has perfect knowledge of the sensor network. The defender

tries to find the maximum k groups of sensors for non-layered defense subject to

defense rate, early warning rate, battery capacity, intruder behavior, and defender

strategies constraints. However, the intruders are not aware that the defender has

deployed topology in the sensor network; in other words, their knowledge of the

network is imperfect. In addition, we assume that each intruder only has information

about the core field location. The detailed descriptions are shown in Table 4.7.

Table 4.7. Problem description in non-layered defense problem.

Given

1. The set of sensor nodes.
2. Initial energy level of sensor node.
3. Energy consumption for sensor nodes to sense data in each

round.
4. Detection radius of sensor.
5. The total evaluation number of times for all intruder

group 1

core field

group 2 group n

sensing range

…

 99

categories in each round.
6. All possible defense strategies.
7. All possible intrusion strategies.
8. Total defense rate.
9. Distance of early warning.
10. Early warning rate.
11. Location of core field.
12. False positive rate.
13. False negative rate.

Objective To maximize the non-layered defense services lifetime.

Subject to

1. Total defense rate.
2. Early warning rate.
3. Battery capacity.

To determine To determine whether sensor s is awake or not in the round r.

As mentioned earlier, we classify intruders based on their attack behaviors. The

behaviors are as follows:

4.2.2.2 Behaviors of Intruders

We describe the behaviors of intruders as follows.

1. Motion model

Gauss-Markov motion model is introduced in Section 2.1.4. We set the

value of α by the modified logistic function, as shown in Figure 4.11 and

Figure 4.12. Because most intruder attack path is near a straight-line. The

modified logistic function is shown as follow:

1
1

x

x

e
e

λ

λα
−

−

−=
+

, where 0 1x≤ ≤ and 6λ ≥

 100

α

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 x

Figure 4.11. The curve of modified logistic function. (λ = 6)

α

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 x

Figure 4.12. The curve of modified logistic function. (λ = 100)

2. Deviant angle and deviant range

Intruders eventually move to core field, because intruders know core field

location. We propose deviant angle and deviant range to fulfill this assumption.

Figure 4.13 shows the deviant angle and deviant range. The trajectory of

intruders is shown in Figure 4.14.
Definition 4.8 Deviant angle da = 2 2 2arccos(() / 2)a b c ab+ − , where

a= 2 2() ()core cur core curx x y y− + − , b= 2 2() ()core init core initx x y y− + − , and

c= 2 2() ()cur init cur initx x y y− + − , (xcore,ycore) is coordinate of core, (xcur,ycur) is

current coordinate, (xinit,yinit) is coordinate of initial intruder, the deviant angle
is found by law of cosines.

Definition 4.9 Deviant range (dr): The controlled parameter. It is used to ensure
that intruders eventually move to core field.

 101

If deviant angle is greater than or equal to deviant range, we set the

init nx x= , init ny y= , and thetan= arctan(() /())n core n corey y x x π− − + , where (xcore,ycore)

is the coordinate of core, (xn,yn) is the current coordinate, (xinit,yinit) is the

coordinate of the initial intruder, and thetan is the new intrusion angle. We set

(xn,yn) is the coordinate of the initial intruder (init nx x= , init ny y=). The

mechanism can ensure that intruders eventually move to core field.

Figure 4.13. The deviant angle and deviant range.

-1500

-1000

-500

0

500

1000

1500

2000

0 500 1000 1500 2000

intruder 1
intruder 2
intruder 3
intruder 4
intruder 5

core

Figure 4.14. The trajectory of intruders. (deviant range = π/6)

3. Intrusive angle

An intrusive angle model uses one tuning parameter to vary the degree of

randomness in the intrusive angle pattern by using the random distribution. The

core field

sensing range

intrusion path (xintrusion,yintrusion)

(xn,yn)

(xcore,ycore)

intruder location

deviant angle
deviant range

 102

initial angle and location are as follows:

angle of initial location (θ) = randomize(0~1) * range of intrusive angle

initial location x = xcore + r cosθ
initial location y = ycore + r sinθ

where randomize (0 ~ 1) is random number between 0 and 1, (x, y) and

(xcore, ycore) are the x and y coordinates of the initial position of intruder, the xcore

and ycore coordinates of the core position, and r is distance between core and

initial position of intruder. Figure 4.15 shows the initial position of intruders.

-2000

-1000

0

1000

2000

3000

-2000 -1000 0 1000 2000 3000

initial location of intruderscore

Figure 4.15. The initial positions of intruders given ranges of intrusive angle = 2π.
(non-airborne intruders)

4. Airborne intruders

We use special airborne intruder to make intrusive behavior more general.

The airborne rate is the ratio of number of airborne intruders to number of all

intruders. The initial angle, radius, and location of airborne intruder are as

follows:

 103

angle of initial location (θ) = randomize(0 ~ 1) * 2π
initial location rairborne = (randomize(0 ~ r) % r) + 1

initial location x = xcore + rairborne cosθ
initial location y = ycore + rairborne sinθ

 where (x, y) and (xcore, ycore) are the initial x and y coordinates of the

airborne intruders, the xcore and ycore coordinates of the core position, r is

distance between core and initial position of non-airborne intruder, and rairborne

is distance between core and initial position of airborne intruder. The airborne

intruder ratio is the number of airborne intruders to the total number of

intruders. Figure 4.16 shows the initial position of intruders.

-2000

-1000

0

1000

2000

3000

-2000 -1000 0 1000 2000 3000

initial location of intruderscore

Figure 4.16. The initial positions of intruders include both airborne and non-airborne
intruders.

The definitions of false positives (also called false alarm) and false negatives

(also called miss) are illustrated as follows [76][77]:

Definition 4.10 False positive: the situation that alarm is raised without intrusion.

Definition 4.11 False negative: the situation that intrusion occurs without alarm.

 104

4.2.3 Mathematical Model

The notations used to model the problem are listed as follows.

Table 4.8. Notation of the controlled parameters in layered defense strategy problem.

Controlled parameters
Notation Description

Mr The total evaluation frequency for all intruder categories in round r.
η False positive rate.
τ False negative rate.

Table 4.9. Notation of the given parameters in layered defense strategy problem.

Given parameters
Notation Description

K The total intruder categories.

Tkr
Total evaluation frequency of each intruder type in round r (where
k∈K, r∈R).

F All possible defense strategies.

kI
uv

The strategies of an intruder, comprising his motion and intrusive
angle.

(,)kjr kG F I
uv v

1 if intruder j of the kth intruder category has alarm raised under F
uv

defense strategies and kI
uv

 intruder strategies in round r without

false positive and false negative, and 0 otherwise (where k∈K).
S The set of all sensor nodes.
Cs The initial energy level of sensor node s.
Em The energy consumption for sensor nodes to sense data.
R The upper bound number of rounds.
D The defense rate.
L The distance of early warning.
W The early warning rate.

C
Core field: 2 2 2

c cx y h+ ≤ , (xc, yc) is coordinate of core and h is radius

of core.
N The set of candidate location (x, y) if intruder be detected.

 105

Table 4.10.Notation of the decision variables in layered defense strategy problem.

Decision Variables
Notation Description

srπ 1 if sensor s is awake in the round r; and 0 otherwise.

zr
1 if satisfy total defense rate and early warning rate in the round r,
and 0 otherwise.

F
v

 The strategies of defender that sensor s is awake in the round r.

(,)

kjr

x yu

1 if the intruder j of the kth intruder category that Euclidean distance
between location (x,y) and core greater than or equal to L in round r,
and 0 otherwise.

Problem (IP):
 max r

r R

z
∀ ∈

∑ (IP)

subject to:
 The defense rate constraint

 1 1
(,)

()r

TK

kjr k
k j

r

kr
G F I

M
z D= =− −

∑∑
v v

≤ 1 r R∀ ∈ (1)

 The early warning rate constraints

(,)

kjr

x yu −
2 2

2 2

x y L

x y L

+ −

+ +
≤ 1

, kk K j T∀ ∈ ∈ ,
r R∈ , (,)x y N∈ (2)

 (,)
1 1()r

kr

r

TK
kjr
x y

k j

M
z W

b
= =− −
∑∑

≤ 1 r R∀ ∈ , (,)x y N∈ (3)

 The battery capacity constraints

 ()sr m
r R

Eπ
∈

∑ ≤ sC s S∀ ∈ (4)

 The all possible defense strategies constraints
 F

uv
∈ F (5)

 The total evaluation frequency constraints

1

K

kr
k

T
=

∑ = Mr r R∀ ∈ (6)

 The integer constraints
 srπ = 0 or 1 s S∀ ∈ , r R∈ (7)

 106

 zr = 0 or 1 r R∀ ∈ (8)

(,)

kjr

x yu = 0 or 1
, kk K j T∀ ∈ ∈ ,

r R∈ , (,)x y N∈ . (9)

The objective function is to maximize the system lifetime of the given sensor

network. The lifetime is defined as the total number of rounds.

Constraint (1): If defense rate constraint is satisfied then set zr=1.
Constraints (2)-(3): The early warning rate constraints. If early warning rate
constraints is satisfied then set zr=1.
Constraint (4): For each sensor node s, the total sensing consumption can not exceed
its initial energy level.
Constraint (5): The all possible defense strategies constraints.
Constraint (6): The total evaluation frequency constraints

Constraints (7)-(9): The integer constraints for decision variables srπ , zr, and
(,)

kjr

x yu .

4.2.4 Solution Procedure

In this section, we propose a non-layered defense strategies algorithm to solve the

problem. The algorithm includes three phases. First, the “initial solution phase”, we

propose a heuristic algorithm for initial defense policy. Second, the “objective

function evaluation phase”, we propose efficient and effective simulations to evaluate

the effectiveness of the current defense policy. Third, the “add-and-drop phase”, we

use an add-and-drop algorithm to improve and satisfy the defender strategies.

The parameters and decision variables used to model non-layered defense

algorithms in this section are listed in Table 4.11.

 107

Table 4.11. The parameters and decision variables used in algorithms of non-layered
defense problem.

Notation Description
max_k The upper bound of system lifetime.

no_improve_ub The upper bound of no improving counter.

counterno_improve No improve counter.

L The distance of early warning.

D The defense rate.

W The early warning rate.

max_a_d (X) The upper bound of times of add-and-drop.

M
The total evaluation frequency for all intruder categories in each
round.

sn The number of sensor nodes.
cp The number of check points.

gap
The controlled parameter which is tolerant degree of defense rate
and early warning rate.

s_no
The number of wake up sensor nodes for full coverage check
points.

cs[s] The initial energy level of sensor node s.

es[s]
The energy consumption for aware sensor node s to sense data in
each round.

round The system lifetime.

coverage_rate
The number of covered check points divided by the total number
of check points.

c_bsa[a] The number of covered times in check point a.
count[s] The number of covered check points by waked sensor s.

c_s[s]
The number of covered check points under sensing range of
sensor s.

air_yn
The controlled parameter which is 1 if monitoring region has
airborne intruders, and 0 otherwise.

airborne_rate The controlled parameter which is ratio of airborne intruders.
o_l The initial location of intruder.
o_r The initial distance between core and non-airborne intruder.

intrusion_theta The initial angle between core and location of initial intruder.
max_s_s (Y) The upper bound of step size.

sn The speed of the intruder at time interval n.

 108

dn The direction of the intruder at time interval n.
(xn, yn) The coordinate of intruder at time interval n.

(xnow, ynow) The coordinate of intruder at now.
(xcore, ycore) The coordinate of core.
(xintrusion,
yinyrusion)

The coordinate of initial intruder l.

countd The number of detected intruders in each round.
countl The number of satisfying distance of leader time in each round.

t_energy The sum of all sensor energy.
threshold_e The threshold of total remaining energy.

bsa[s][a]
The indicator function is 1 if the check point a is in the sensing
range of the sensor node s, and 0 otherwise.

p[s][r]
The decision variable is 1 if sensor s is awake in the round r, and
0 otherwise.

sat_d[r]
The decision variable is 1 if round r satisfies defense rate and
early warning rate, and 0 otherwise.

cover[a][r]
The decision variable is 1 if check point a at least is covered by
one awake sensor in the round r, and 0 otherwise.

4.2.4.1 Non-Layered Defense Algorithm

We present a non-layered defense algorithm (NLDA) to solve the problem. For

solving the original problem near-optimally, we use the sat_d[r] to check defense rate

and early warning rate in the round r. The decision variable is 1 if defense rate and

early warning rate are satisfied, and 0 otherwise. Then, in each round, we first use set

of sensor node to cover subset of check point in initial solution and then awake sensor

s in the round r. Objective function evaluation is to check whether to satisfy defense

rate and early warning rate or not. We use the add-and-drop phase to improve the

objective function in each round. The procedure of non-layered defense algorithm is

shown in Figure 4.17.

 109

Figure 4.17. The procedure of non-layered defense algorithm.

The non-layered defense algorithm is listed in Figure 4.18.

Algorithm Non-layered Defense
Input: Coordinate of check points and sensor nodes, and sensing radius of sensor
nodes
Output: The defense strategies of defenders (F

uv
)

1: begin
2: for r=1 to max_k do
3: begin
4: initial solution phase(); /* phase 1 */
5: for add_drop =1 to max_a_d do

Initial solution phase

Objective function
 evaluation phase

Stopping criteria

Add-and-drop phase

End

Y

N

Add-and-drop
stopping criteria

Y

N

 110

6: begin
7: objective function evaluation phase(); /* phase 2 */
8: add-and-drop phase(); /* phase 3 */
9: end

10: if ((t_energy<threshold_e) or (counterno_improve =no_improve_ub))
11: then break;
12: end
13: end

Figure 4.18. The non-layered defense algorithm.

1. Initial solution phase

To solve the original problem efficiently, we use the concept of “cover” to

determine whether sensor s is awake or not in the round r. The “cover” is 1 if the

check point a is in the sensing range of the sensor node s, and 0 otherwise.

The concept of check points is introduced in Section 3.1.1, which can check

coverage rate. The coverage rate is the number of check points covered by awake

sensors divided by the total number of checks points. Besides, check points can save

energy consumption because they check the coverage rate more efficiently for

arbitrary topology.

We first find sensor s to cover check point a, and then sensor s is awaken by this

phase in the round r, and repeat the assignment process until this phase satisfies the

coverage rate. In addition, we must turn off redundant awake sensor nodes in the

phase.

The initial solution algorithm is listed in Figure 4.19.

Algorithm Initial solution
Input: The round r, the initial energy level of sensor node s, the energy consumption
for aware sensor node s to sense data in each round, and coverage rate
Output: The initial solution (p[s][r])

1: begin
2: for s=1 to sn do
3: p[s][r]=0;
4: while (coverage_rate is not satisfied) do
5: begin

 111

6: for s=1 to sn do
7: for a=1 to cp do
8: if ((bsa[s][a]=1) and (cs[s]>=es[s]) and (cover[a][r]=0))

then
9: begin

10: p[s][r]=1;
11: cs[s]=cs[s]-es[s];
12: for k=1 to cp do
13: if (bsa[s][a]=1)
14: then c_bsa[a]=c_bsa[a]+1;
15: if ((bsa[s][a]=1) and (cover[a][r]=0))
16: then cover[a][r]=1;
17: end
18: end
19: for s=1 to sn do /* delete redundant sensor nodes */
20: begin
21: for a=1 to cp do
22: begin
23: if ((p[s][r]=1) and (bsa[s][a]=1) and (c_bsa[a]>=2))
24: then count[s]=count[s]+1;
25: if (count[s]=c_s[s])
26: begin
27: cs[s]=cs[s]+es[s]; /* recovery energy */
28: p[s][r]=0;
29: for a=1 to cp do
30: if (bsa[s][a]=1)
31: then c_bsa[a]=c_bsa[a]-1;
32: end
33: end
34: end
35: for s=1 to sn do
36: if (p[s][r]=1)
37: then s_no=s_no+1;
38: end

Figure 4.19. The initial solution algorithm.

In the algorithm, from steps 2-3 are used to set initial value, steps 4-18 are used to

decide whether sensor s is awaken in the round r. Steps 19-34 are used to delete

 112

redundant awaked sensor nodes. An example of deleting redundant awaked sensor

node as illustrated in Figure 3.12 of Section 3.1. Steps 35-37 are used to calculate

number of wake up sensor nodes in initial phase.

2. Objective function evaluation phase

Since the scenario and environment are dynamic, it is difficult to solve the

problem only by mathematical programming. The proposed evaluation process

enables us to better describe the behavior of different intruders. In each intruder

category, there is some randomness in the behavior of intruders, even intruders are the

same type.

The number of total intruders is set to the same value as M, which is determined

by experiment. First, we select an initial value, for example, 10000. Then, if the

diagram shows a stable trend, it implies that the value of M is ideal. On the other hand,

if the diagram shows an unstable result, it shows that M is too small; therefore, we set

M to a larger number to run the test experiment. Figure 4.20 shows the experiment

results, and M is set to 2000 intruders.

0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0 2000 4000 6000 8000 10000

Number of Intruders

A
ve

ra
ge

 R
at

e

defense rate
early warning rate

Figure 4.20. The experiment results: the number of total intruders. (D = 0.9, W = 0.9)

After deciding the value of M and initial solution configuration, we apply the

evaluation process to simulate behavior of intruders. Based on this, we run the

evaluation M times with different categories of intruders to attack the core field. Then,

 113

we divide this frequency by M to obtain the average defense rate and average early

warning rate. We take this result as the benchmark to evaluate the performance of

each round.

An objective function evaluation algorithm is listed in Figure 4.21.

Algorithm Objective Function Evaluation
Input: The round r, initial solution, and intruder behavior
Output: Defense rate and early warning rate

1: begin
2: for intruder=1 to M do /* simulation */
3: begin
4: if (((intruder%(1/airborne_rate))=0) and (air_yn=1)) then
5: o_l=(randomize(0~1)%o_r)+1;
6: else
7: o_l=o_r;
8: calculate α (using modified logistic function) and

 intrusion_theta (using (randomize(0~1)*2π)+π)
9: for n=1 to max_s_s do

10: begin
11: calculate ns , nd , nx , ny ,and deviant_theta
12: if deviant_theta> deviant_range then
13: begin
14: xintrusion=xn;
15: yintrusion=yn;
16: thetan= arctan(() /())n core n corey y x x π− − + ;
17: xn-1=xintrusion;
18: yn-1=yintrusion;

19: end
20: for s=1 to sn do
21: begin
22: if 2 2

() ()s n s n sx x y y r− + − ≤ then
23: begin
24: countd= countd+1;
25: if 2 2

() ()core n core nx x y y L− + − ≥ then
26: countl= countl+1;
27: break;
28: end
29: end

 114

30: if 2 2

() ()s n s n sx x y y r− + − ≤
31: then break;
32: if 2 2

() ()core n core n corex x y y r− + − ≤
33: then attack success and break;
34: end
35: end
36: defense_rate= countd/M;
37: early_warning_rate= countl/M;
38: if (satisfy defense_rate and early_warning_rate) then
39: begin
40: sat_d[r]=1;
41: round=round+1;
42: deleting redundant awaked nodes and break;
43: end
44: end

Figure 4.21. The objective function evaluation algorithm.

In the algorithm, from steps 4-7 deal with airborne intruders, and steps 8-19

decide behavior of intruders. Steps 20-34 are used to check whether intruders are

detected and distance of lead time is satisfied. Steps 36-43 are used to check whether

defense rate and early warning rate are satisfied.

3. add-and-drop phase

In this phase, we improve the quality of the solution by removing wake up sensor

nodes and adding sleep sensor nodes to wake up sensor nodes. Then, we run the

evaluation another M times using the adjusted defense parameters and obtain the

average defense rate and average early warning rate. Finally, we check whether one of

the stopping criteria is satisfied. If it is, we terminate the procedure.

The stopping criteria can be divided into two concepts. The first is the total

remaining energy, which we set to be no more than threshold_e. The value of

threshold is decided by ratio of total sensor energy. If total remaining energy is below

the threshold_e, then terminate the procedure. The second is that when the number of

iteration reaches the no_improve_ub, then terminate the procedure.

 115

An add-and-drop algorithm is listed in Figure 4.22.

Algorithm Add-and-drop
Input: Defense rate, early warning rate, and s_no
Output: Which sensor s is awaken in round r (p[s][r])

1: begin
2: k= (_ -)defense rate D s_no×⎢ ⎥⎣ ⎦ ;
3: if (satisfy D and W)
4: then
5: begin
6: if (add_flag=1)
7: then k= k/2;
8: drop_flag =1;
9: add_flag =0;

10: for drop=1 to k⎢ ⎥⎣ ⎦ do
11: begin
12: drop the sensors in high priority whose radii

have not covered any intruder in previous simulation;
13: cs[s]=cs[s]+es[s]; /* energy recovery */
14: p[s][r]=0;
15: end
16: end
17: else
18: begin
19: if (drop_flag =1)
20: then k= k/2;
21: add_flag =1;
22: drop_flag =0;
23: for add=1 to k⎡ ⎤⎢ ⎥ do
24: begin
25: add the sensors whose radii have covered the intruders and

keep sleeping in previous simulation;
26: p[s][r]=1;
27: cs[s]=cs[s]-es[s];
28: for k=1 to cp do
29: if (bsa[s][a]=1)
30: then c_bsa[a]=c_bsa[a]+1;
31: if ((bsa[s][a]=1) and (cover[a][r]=0))
32: then cover[a][r]=1;
33: end

 116

34: end
35: for s=1 to sn do /* delete redundant sensor nodes */
36: begin
37: for a=1 to cp do
38: begin
39: if ((p[s][r]=1) and (bsa[s][a]=1) and (c_bsa[a]>=2))
40: then count[s]=count[s]+1;
41: if (count[s]=c_s[s])
42: begin
43: cs[s]=cs[s]+es[s]; /* energy recovery */
44: p[s][r]=0;
45: for a=1 to cp do
46: if (bsa[s][a]=1)
47: then c_bsa[a]=c_bsa[a]-1;
48: end
49: end
50: end
51: end

Figure 4.22. The add-and-drop algorithm.

In the algorithm, from steps 5-16 are to drop redundant awaked sensors. Steps

18-34 are to wake up sensors to satisfy defense rate and early warning rate. Steps

35-50 are used to delete redundant awaked sensor nodes. An example of deleting

redundant awaked sensor node as illustrated in Figure 3.12 of Section 3.1.

The computational complexity of the non-layered defense algorithm in initial

solution is O(|S||A|2), where |S| is number of sensor nodes and |A| is number of check

points. In objective function evaluation phase is O(|M||Y||S|), where |M| is the total

evaluation frequency for all intruder categories in each round and |Y| is the upper

bound of step size. In add-and-drop phase is O(|S||A|). In non-layered defense

algorithm, from steps 6-9 run O|R||X| times, where |R| is the upper bound of number of

rounds and |X| is the upper bound of times of add-and-drop. Therefore, the

computational complexity is O(|R||X||M||Y||S|). Hence, the computational complexity

of the non-layered defense algorithm should be O(|R||X||M||Y||S|).

 117

4.2.4.2 Simple algorithm

We first find sensor s to cover check point a, and then sensor s is awaken by this

phase in the round r, and repeat the assignment process until fully cover all check

points (coverage_rate = 1). A simple algorithm is listed in Figure 4.23.

Algorithm Simple
Input: The initial energy level of sensor node s, the energy consumption for aware
sensor node s to sense data in each round
Output: Which sensor s is awaken in round r (p[s][r])

1: begin
2: for r=1 to max_k do
3: begin
4: for s=1 to sn do
5: p[s][r]=0;
6: while (coverage_rate is not 1) do
7: begin
8: for s=1 to sn do
9: for a=1 to cp do

10: if ((bsa[s][a]=1) and (cs[s]>=es[s]) and (cover[a][r]=0))
 then

11: begin
12: p[s][r]=1;
13: cs[s]=cs[s]-es[s];
14: for k=1 to cp do
15: if ((bsa[s][a]=1) and (cover[a][r]=0))
16: then cover[a][r]=1;
17: end
18: end
19: objective function evaluation ();
20: if (defense_rate and early_warning_rate are not satisfied) then
21: begin
22: cs[s]=cs[s]+es[s]; /* recovery energy */
23: p[s][r]=0;
24: end
25: end
26: end

Figure 4.23. The simple algorithm of non-layered defense.

 118

In the algorithm, from steps 4-5 are used to set initial value, steps 6-18 are used to

decide whether sensor s is awaken in the round r. Step 19 is used to check whether

defense rate and early warning rate are satisfied. The procedure is same to objective

function evaluation algorithm. Steps 20-24 are used to recovery energy for sensor s in

the round r which defense rate and early warning rate are not satisfied.

The computational complexity of the simple algorithm of non-layered defense at

steps 4-5 is O(|S|), where |S| is number of sensor nodes. From steps 8-17 is O(|S||A|),

where |A| is number of check points. In objective function evaluation phase is

O(|M||Y||S|), where |M| is the total evaluation frequency for all intruder categories in

each round and |Y| is the upper bound of step size. Above steps from steps 2-5 run |R|

times, where |R| is the upper bound of number of rounds. Therefore, the computational

complexity is O(|R||M||Y||S|). Hence, the computational complexity of the simple

algorithm of non-layered defense should be O(|R||M||Y||S|).

4.2.5 Computational Results

We conduct an experiment to evaluate the performance of the proposed algorithm.

The performance is assessed in terms of total number of rounds.

4.2.5.1 Experiment Environment

The proposed algorithm is coded in C under a Dev C++ 4.9.9.2 development

environment. All the experiments are performed on a Core 2 Duo 2.2GHz CPU

running Microsoft Windows Vista. The algorithm is tested on a 2D monitoring region.

We distribute 400 and 1600 sensor nodes and 100 and 400 check points respectively

in 2D monitoring region. The radius of different sensors types sa and sb is 100 and 200.

The energy consumption of aware different sensor types sa and sb is 1 and 4 in each

round.

Before the evaluation process, we need to determine the value of M. Therefore,

we run a number of experiments to find the proper value for our scenario. The

 119

diagram in Figure 4.20 shows a stable trend in M = 2000. Hence, we set M as 2000.

The important parameters and ratio of airborne intruders are listed in Table 4.12 and

Table 4.13.

Table 4.12. The parameters of non-layered defense.

Parameters Value
Battery capacity levels 5

Deviant range π/6
Lambda (λ) 6

Number of sensor node (sn) 400 and 1600
Number of check point (cp) 100 and 400

Distance of early warning (L) 300 and 600

Monitoring Region (m2) 1000 × 1000 and
2000 × 2000

False positive rate 0.02
False negative rate 0.05

Total number of intruders in one
round (M) 2,000

Table 4.13. Ratio of airborne intruders.

Types of Intruder Ratio
Airborne Intruders 20%

Non-airborne Intruders 80%

4.2.5.2 Experiment results

Figure 4.24 shows an example of non-layered defense with non-airborne

intruders. And Figure 4.25 shows an example of non-layered defense with airborne

intruders.

Figure 4.24. An example of non-layered defense with non-airborne intruders.

(D = 1.0, W = 0.9)

sensing range core

 120

Figure 4.25. An example of non-layered defense with airborne intruders. (D = 1.0,

W = 0.9)

 Table 4.14 shows the maximum total number of rounds calculated by different

scenarios. Figure 4.26 shows a comparison of the number of rounds in different nodes

and different scenarios. Figure 4.27 shows a comparison of the number of rounds in

airborne intruders. Figure 4.28 shows a comparison of the number of rounds in

different nodes and defense rate given W=0.8. Figure 4.29 shows a comparison of the

number of rounds in different nodes and Early warning rate given D=1.0. Table 4.15

shows the evaluation of the round with different λ value. Table 4.16 shows an

evaluation of the round with false positives and false negative. Figure 4.30 shows a

comparison of the number of rounds with false positives and false negative. Figure

4.31 shows an example of the false positive nodes. Figure 4.32 shows an example of

the false negative node. Figure 4.33 shows a relationship between false negative rate

and early warning distance.

Table 4.14. Evaluation of the round with different number of nodes and different
scenarios without false positives and false negative.

Number of nodes
(check points,
sensor nodes)

Monitoring
region (m2)

Airborne
intruders

D=0.8
W=0.8

D=0.9
W=0.8

D=0.9
W=0.9

D=1.0
W=0.8

D=1.0
W=0.9

D=1.0
W=0.99

(400, 1600) 2000×2000 no 87 80 71 63 57 47
(400, 1600) 2000×2000 yes 60 48 38 41 36 0
(100, 400) 1000×1000 no 51 50 41 38 37 30
(100, 400) 1000×1000 yes 43 42 27 31 28 0

core sensing range

 121

87
80

71
63 57

47

51 50
41 38 37

30

0

20

40

60

80

100

120

D=0.8
W=0.8

D=0.9
W=0.8

D=0.9
W=0.9

D=1.0
W=0.8

D=1.0
W=0.9

D=1.0
W=0.99

Defense rate and early warning rate

Ro
un

ds sn=1600, cp=400
sn= 400, cp=100

Figure 4.26. A comparison of the number of rounds in different nodes and different
scenarios without false positives and false negative.

51 50

41 38 37
30

43 42

27
31 28

00

10

20

30

40

50

60

D=0.8
W=0.8

D=0.9
W=0.8

D=0.9
W=0.9

D=1.0
W=0.8

D=1.0
W=0.9

D=1.0
W=0.99

Defense rate and early warning rate

Ro
un

ds non-airborne intruders
airborne intruders

Figure 4.27. A comparison of the number of rounds in airborne intruders without false
positives and false negative. (sn = 400, cp = 100, and airborne ratio = 0.2)

51 50

38
43 42

31

0

10

20

30

40

50

60

0.8 0.9 1

Defense rate given W=0.8

R
ou

nd
s

non-airborne intruders

airborne intruders

Figure 4.28. A relationship between number of rounds and defense rate without false
positives and false negative given W = 0.8.

 122

38 37

3031
28

00

10

20

30

40

0.8 0.9 0.99

Early warning rate given D=1.0

R
ou

nd
s

non-airborne intruders

airborne intruders

Figure 4.29. A relationship between number of rounds and early warning rate without
false positives and false negative given D = 1.0.

Table 4.15. Evaluation of the round with different λ value without false positives and
false negative.

Number of nodes
(check points,
sensor nodes)

Monitoring
region (m2) λ D=0.8

W=0.8
D=0.9
W=0.8

D=0.9
W=0.9

D=1.0
W=0.8

D=1.0
W=0.9

D=1.0
W=0.99

(100, 400) 1000 × 1000 6 51 50 41 38 37 30
(100, 400) 1000 × 1000 100 51 50 40 38 37 26

Table 4.16. Evaluation of the round with false positives and false negative.

Number of nodes
(check points,
sensor nodes)

False positives
rate (FP) and
false negative

rate (FN)

Airborne
intruders

D=0.8
W=0.8

D=0.9
W=0.8

D=0.9
W=0.9

D=1.0
W=0.8

D=1.0
W=0.9

D=1.0
W=0.99

(100, 400) FP=0, FN=0 no 51 50 41 38 37 30
(100, 400) FP=0.02, FN=0 no 47 49 39 37 35 36
(100, 400) FP=0, FN=0.05 no 47 43 40 39 35 27
(100, 400) FP=0.02, FN=0.05 no 46 44 35 34 34 23

 123

51 50

41

38
37

30

47

49

39

37

35

26

47

43

40
39

35

27

46

44

35
34 34

2320

30

40

50

D=0.8

W=0.8

D=0.9

W=0.8

D=0.9

W=0.9

D=1.0

W=0.8

D=1.0

W=0.9

D=1.0

W=0.99

Defense rate and early warning rate

R
ou

nd
s

FP=0
FN=0

FP=0
FN=0.05

FP=0.02
FN=0

FP=0.02
FN=0.05

Figure 4.30. A comparison of the number of rounds with false positives and false
negative.

Figure 4.31. An example of the false positive nodes.

Figure 4.32. An example of the false negative node.

the false negative node

the false positive nodes

 124

0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False negative rate

E
ar

ly
 w

ar
ni

ng
 d

is
ta

nc
e

(m
)

Early warning distance

Figure 4.33. A relationship between false negative rate and early warning distance.

4.2.5.3 Discussion

The experiment results show that the large region of lower defense rate has higher

rounds than that of small region in same deployment density, as shown in Figure 4.26,

because large scale region has larger depth. Therefore, defenders can use lower

density of sensors to cover monitoring region. The airborne intruder cases have lower

rounds than that of non-airborne intruder cases. In addition, the rounds is 0 in D = 1

and W = 0.99, because airborne intruders drop randomly in the monitoring region.

Therefore, the distance of early warning is not satisfied, as shown in Figure 4.27. The

proposed approach can prolong system lifetime by lower defense rate and lower early

warning rate, as shown in Figure 4.28 and Figure 4.29.

Without false positive and false negative cases have higher rounds than that with

false positive and false negative cases, as shown in Table 4.16 and Figure 4.30. The

reason is that false positive case turns on some redundant sensors and false negative

case must turn on inner sensor to detect intruder, as shown in Figure 4.31 and Figure

4.32. In addition, system asks sensors two times to reduce false positive probability

when alarms are raised. The high false negative rate leads to shorten the early warning

distance as shown in Figure 4.33.

Table 4.17 shows the maximum total number of rounds calculated by different

algorithms. We can see that the NLDA outperforms the simple algorithm.

 125

Table 4.17. Evaluation of the improvement ratio with simple algorithm without false
positives and false negative.

Number of nodes
(sensor nodes, check points) Monitoring Region (m2) NLDA

(D=1, W=0.99)
Simple Algorithm

(D=1, W=0.99)
Improvement Ratio
to Simple Algorithm

(1600, 400) 2000×2000 52 22 136%
(400,100) 1000×1000 27 17 59%

The results show that the algorithm is better than the simple algorithm. The

proposed NLDA can improve the percentage of energy consumption from 59% to
136%.

4.2.6 Concluding Remarks

This study proposes a non-layered defense algorithm for wireless sensor networks

of grouping capabilities. To our best knowledge, the proposed algorithm is truly novel

and it has not been yet discussed in previous researches. The study first formulates the

problem as combining mathematical programming problem, and then proposes a

heuristic-based algorithm for solving the optimization problem.

We find the maximum k groups of sensors for non-layered defense subject to

defense rate, early warning rate, battery capacity, intruder behavior, and defender

strategies constraints. The mechanism can prolong the system lifetime and provide

lead time alarms. A novel three-phase solution procedure, which well combines

mathematical programming and simulation techniques, is proposed. Compared with

simple algorithm, the proposed NLDA can improve system lifetime since the

improvement ratio is from 59% to 136%. Therefore, the experiment results show that

the proposed non-layered defense algorithm gets applicability and effectiveness in the

non-layered defense for grouping capabilities.

Our main contribution is that we combine mathematical programming with

simulations and develop a novel approach to solve the problem with the imperfect

knowledge property. This mechanism helps us prolong the system lifetime of

non-layered defense in WSNs.

 126

 127

Chapter 5 Object Tracking Algorithms

In this chapter, we propose two algorithms, TOTA and POTA, to support object

tracking services. The TOTA is to construct an object tracking tree for object tracking.

Such tree-based algorithm can achieve energy-efficient object tracking for given

arbitrary topology of sensor networks. The POTA is to construct a prediction-based

algorithm for object tracking. Such prediction-based can minimize the number of

nodes participating in the tracking activities, minimize out of tracking probability, and

maximize the accuracy of object predicted position in the tracking activities. The

POTA can prolong the system lifetime.

In this chapter, the tree-based object tracking algorithm is described in Section

5.1 and the prediction-based object tracking algorithm is presented in Section 5.2.

5.1 Tree-based Object Tracking Algorithm

In this section, we propose an energy-efficient tree-based object tracking

algorithm (TOTA) in wireless sensor networks. Such sensor network has to be

designed to achieve energy-efficient object tracking for given arbitrary topology of

sensor networks. We particularly consider the bi-directed moving objects with given

frequencies for each pair of sensor nodes and link transmission cost. This problem is

formulated as a 0/1 integer-programming problem. A tree-based object tracking

algorithm (TOTA) is proposed for solving the optimization problem. Experiment

results show that the proposed algorithm gets a near optimization in the

energy-efficient object tracking. Furthermore, the algorithm is very efficient and

scalable in terms of the running time.

The rest of this section is organized as follows. The overview is described in

Section 5.1.1. The problem and mathematical models are described in Sections 5.1.2

and 5.1.3, respectively. In addition, the solution procedure is presented in Section

 128

5.1.4. Furthermore, the computational results are discussed in Section 5.1.5, and

conclusions are presented in Section 5.1.6.

5.1.1 Overview

In this section, we formulate the problem as a 0/1 integer-programming problem

where the objective function is to minimize the total communication cost subject to

routing, tree, and variable-transformation constraints. To fulfill the timing and the

quality requirements of the optimal decisions, the Lagrangean relaxation method is

used. We use the LR-based heuristic algorithm to solve the problem and obtain a

primal feasible solution. In the further experiments, the proposed object tracking

algorithm is expected to be efficient and effective in dealing with the complicated

optimization problem.

5.1.2 Problem Description

Our approach uses hierarchical object tracking tree to record information about

presence of the object and keep this information up to date. Sensor nodes are required

to detect and track the moving states of mobile objects. The information about

presence of the detected objects is stored at communication nodes and each

communication node particularly stores the set of objects that was detected jointly by

its descendants. This set is called the detected set. For example, the detected set of a

sensor at a leaf node consists of the objects within the detection range of sensor while

the detected set of sink node contains all objects presented in the sensor field [10]. We

assume that the moving frequencies of the sensor field are not uniformly distributed.

For example, the moving frequencies of wild animals are not uniform in a wildlife

protective zone, because animals usually move in their customary paths.

 129

Figure 5.1 illustrates a scenario of object tracking. Sensor u will detect the object

and deliver the object’s location information to sink node when object enters the

sensor filed, and sensor v will only forward the new location information to

communication node c when object moves from sensor u to sensor v. This scenario

can be performed through the entire sensor field. Finally, sensor z will forward the

leaving information to sink node when object leaves sensor field from sensor z. The

problem is solved in planning stage.

Figure 5.1. An example of object tracking.

The energy-efficient object tracking in WSNs problem is modeled as a graph,

G(V,L), where V is a set of communication nodes and sensor nodes randomly

deployed in a 2D sensor field, and L is a set of links connect a pair of adjacent

communication nodes or between a pair of a sensor node and a communication node.

For example, Figure 5.2 illustrates a 2D sensor field’s routing sub-graph with

each edge connecting a pair of adjacent communication nodes or between a pair of a

sensor node and a communication node. Each weight of link represents link

transmission cost. In [64], J. Cartigny, et al. define the energy consumption model of

transmitting data which is measured as r cα + , where r is Euclidean distance between

any two nodes, α is a signal attenuation constant, and c is a positive constant that

sensor field sink

a

d

v w

b

c e

u y z x

object

sensor node

communication node

communication link

reporting path
object moving path

sensor-communication link

 130

represents signal processing. Table 5.1 presents power model for the MICAz

hardware platform. As the table shows, transmission power and received power are

different. To be more generic, we redefine the link transmission cost as the power

consumption of transmission power and received power, which is measured as

r x cα + + , where x is received power.

Figure 5.2. An example of 2D routing sub-graph.

The sensor sub-graph in Figure 5.3 illustrates a 2D sensor field with each edge

connecting a pair of adjacent sensors. We use (i,j) to represent the weight of link

which is the moving object frequency of a sensor node i and a senor node j. The link

weight of artificial node is the moving frequency of object between sensor field and

outside the sensor field.

Table 5.1. Power model of the MICAz.

Mode Current
Rx 19.7 mA

Tx(-10 dBm) 11 mA
Tx(-5 dBm) 14 mA

Radio

Tx(0 dBm) 17.4 mA

sensor node
communication node
communication link

sensor field

u

v

t

x

z

w

y

 sink

a b

c d

3

2

3

2
4

1

5
3

4 3

3

3 4

5 7

3 4

6

2

sensor-communication link

 131

Figure 5.3. An example of 2D sensor sub-graph.

Figure 5.4 illustrates an object tracking tree of 2D sensor field with each edge

connecting a pair of adjacent nodes. Each weight of link represents the link

transmission cost between a pair of adjacent communication nodes, or between a pair

of a sensor node and a communication node. The root is sink node.

artificial

node

sensor field
u

v

t

x

z

w

y

6

4

10

4

10

2
22

2

5

7

6
10

15
7

8

2
20

7

15
6

8

2

7

3
20

15

35

35

24

11

 132

Figure 5.4. An example of 2D object tracking tree.

In this section, we consider a given arbitrary topology of sensor networks,

bi-directed moving objects with given frequencies for each pair of sensor nodes, and

link transmission cost. The sensor field consists of sensor nodes and communication

nodes. We deploy hierarchical network topology architecture. All sensor nodes send

data to upper layer communication nodes. Eventually, the sensing information is sent

to sink node. We assume that G is connected. The location model is a sensor cell

model constructed by voronoi diagram. For example, an object moves from sensor x

to sensor y means that the object moves from voronoi cell of sensor x to voronoi cell

of sensor y as shown in Figure 5.5.

sensor field

sensor node

communication node
communication link

u

v

t

x

z

w

y

 sink

a b

c d

3 4

4

6

5

3
3

3
2

3

2

sensor-communication link

 133

Figure 5.5. An example of an object moves from voronoi cell x to voronoi cell y.

A good tracking method is characterized by a low total communication cost [10].

Given a sensor graph, we can compute the total communication cost.

The calculating communication cost is different from that of prior studies

[10][11][12]. First, we consider the bi-directed moving objects with given frequencies

for each pair of sensor nodes because the round-trip traffic cost of each pair of sensor

nodes is different. Second, we consider the link transmission cost since each link

transmission cost is also different. Figure 5.6 illustrates an example of calculating

communication cost. The weight of each solid link represents link transmission cost

between a pair of adjacent communication nodes or between a pair of a sensor node

and a communication node. The weight of each dash link represents the frequency of

moving objects between a pair of adjacent sensors. When an object moves from

sensor x to sensor y, sensor y needs to deliver the tracking information upward to the

nearest common ancestor p via the tree links. We call the tree links as the tracking

links [10]. For example, the link between communication node p and sensor node y is

a tracking link.

x y

object

z

 134

Figure 5.6. An example of calculating communication cost.

We define the communication cost of an object tracking tree T as the sum of the

individual contributions of all pairs of sensors adjacent in G. Since the adjacent tree

nodes may be physically in a distance, we define the costs of tree links used in the

path to be Euclidean distances. Thus, the communication cost reflects the power

consumption degree of required radio.

The communication cost of inside network, define as

(G,T)inside = (,) (,) (,)
(,)

(1) ,x y
i j i j xy i j

i j

x y Sζ ζ θ ω
∈Λ

− ∀ ∈∑ .

The communication cost of entering the sensor filed, define as

(G,T)enter = (,) (,)
(,)

s
i j os i j

i j

s Sζ θ ω
∈Λ

∀ ∈∑ .

The communication cost of leaving the sensor filed, define as

(G,T)leave = (,) (,)
(,)

s
i j so i j

i j

s Sζ θ ω
∈Λ

∀ ∈∑ .

Where S is the set of all sensor nodes and Λ is the set of all links. (,)i jω is the

transmission cost associated with link (i,j). xyθ is the frequency of moving object

from x to y, osθ is the frequency while object enters sensor field, soθ is the

sink

p

q

x y

8
6

3

2

5

sensor node

communication node

link transmission cost

moving object frequency

 135

frequency when object leaves sensor field, and the tree links, (,)
s
i jζ , are the links of

object tracking tree. The decision variable (,) 1s
i jζ = if the sensor node s uses the tree

link (i,j) to reach the sink node, and 0 otherwise.

For example, in Figure 6, communication cost is 5 × 8 = 40 when object moves

from sensor x to sensor y, and communication cost is (3+2) × 6 = 30 when object

moves from sensor y to sensor x.

Therefore, the total communication cost for tree T as the sum of counting the

number of events transmitted in G:
Total Communication Cost (G,T) =

(,) (,) (,) (,) (,)
(,) (,)

(1) ()yx s
xy os soi j i j i j i j i j

x S y S s Si j i j
θ ω ζζ ζ θ θ ω

∈ ∈ ∈∈Λ ∈Λ
− + +∑∑ ∑ ∑ ∑

The detailed descriptions are shown in Table 5.2.

Table 5.2. Problem description in tree-based object tracking problem.

Given

1. The set of sensor nodes.
2. The communication nodes.
3. The set of the object moving frequency.
4. The set of transmission cost associated with link.

Objective To minimize the total communication cost.

Subject to

1. Routing constraints.
2. Tree constraint.
3. Variable-transformation constraints.

To determine Object tracking tree.

5.1.3 Mathematical Model

The notations used to model the problem are listed as follows.

Table 5.3. Notations of the given parameters in tree-based object tracking.

Given Parameters
Notation Description

S The set of all sensor nodes.
Γ The set of all communication nodes, including sink node.

 136

o Artificial node outside the sensor field.

Θ
The set of the object moving frequency from x to y,

, { }x y S o∀ ∈ U , x y≠ .

Λ The set of all links, (,)i j ∈ Λ , i≠j.

Ω The set of transmission costs (,)i jω associated with link (,)i j .

Φs
The set of all candidate paths φ between a pair of nodes, s and
sink, s S∀ ∈ .

Table 5.4. Notation of the indicate parameter in tree-based object tracking.

Indicate Parameter
Notation Description

(,)i jϕδ The value of indicator function is 1 if link (,)i j is on path φ,

and 0 otherwise.

Table 5.5. Notations of the decision variables in tree-based object tracking.

Decision Variables
Notation Description

xsφ
1 if the sensor node s uses the path φ to reach the sink node, and
0 otherwise.

(,)
s
i jζ

1 if the sensor node s uses the link (,)i j to reach the sink node,
and 0 otherwise.

Problem (IP1):
Objective function:

IPZ =
min

(,) (,) (,) (,) (,)
(,) (,)

(1) ()yx s
xy os soi j i j i j i j i j

x S y S s Si j i j
θ ω ζζ ζ θ θ ω

∈ ∈ ∈∈Λ ∈Λ
− + +∑∑ ∑ ∑ ∑ (IP1)

subject to:

s

sx ϕ
ϕ∈Φ
∑ = 1 s S∀ ∈ (1.1)

(,)
s
i j

j

ζ
∈Γ
∑ = 1

s S∀ ∈ , { }i S sink∈ Γ −U ,
i j≠ (1.2)

(,)
s

sp p i jx
ϕ

δ
∈Φ
∑ ≤ (,)

s
i jζ s S∀ ∈ , (,)i j ∈ Λ , i j≠ (1.3)

 137

(,) (,)
(,)

(1)x y
i j i j

i j

ζ ζ
∈Λ

−∑ ≥ 1 , ,x y S∀ ∈ x y≠ and i j≠ (1.4)

sx ϕ = 0 or 1 s S∀ ∈ , sϕ ∈Φ (1.5)

(,)
s
i jζ = 0 or 1 s S∀ ∈ , (,)i j ∈ Λ , and i j≠ . (1.6)

The objective function (IP1) of this problem is to minimize the total

communication cost subject to:

Constraint (1.1): Routing constraint which uses one path from sensor node s to sink

node only.

Constraint (1.2): Tree constraint of avoiding cycle. Any outgoing link of a node to

communication node is equal to 1 on the object tracking tree.

Constraint (1.3): Routing constraint. Once the path, sx ϕ , is selected and the tree link

(,)i j is on the path, the decision variable, (,)
s
i jζ , must set to be 1.

Constraint (1.4): Sensor y must use one or more tree links (i,j) to report location of
object when object moves from sensor x to sensor y. Therefore,

(,) (,)
(,)

(1)x y
i j i j

i j

ζ ζ
∈Λ

−∑ must be greater than or equal to 1.

Constraints (1.5)-(1.6): Decision variables sx ϕ and (,)
s
i jζ equal to 0 or 1.

Problem (IP1) is hard to solve, since original objective function,

(,) (,) (,) (,) (,)
(,) (,)

min (1) ()yx s
xy os soi j i j i j i j i j

x S y S s Si j i j
θ ω ζζ ζ θ θ ω

∈ ∈ ∈∈Λ ∈Λ
− + +∑∑ ∑ ∑ ∑ , and constraint (1.4)

are nonlinear.

An auxiliary variable (,)
xy
i jυ is introduced. Tracking links, (,)

xy
i jυ , are the links

when object moves from sensor x to sensor y, and then sensor y delivers tracking

information upward to the nearest common ancestor via the tracking links,

where (,) (,) (,)(1)xy x y
i j i j i jυ ζ ζ= − . Table 5.6 shows the truth table for variables

(,) (,), ,x y
i j i jζ ζ and (,)

xy
i jυ .

 138

Table 5.6. The truth table of variables (,) (,), ,x y
i j i jζ ζ and (,)

xy
i jυ .

(,)
x
i jζ (,)

y
i jζ (,)

xy
i jυ

0 0 0
0 1 1
1 0 0
1 1 0

We also add variable-transformation constraints (2.4 and 2.5) to fulfill the truth

table. If (,) 0x
i jζ = I (,) 1y

i jζ = , (,)
xy
i jυ must set to be 1, and 0 otherwise.

The constraints can transform nonlinear original objective function to a linear

objective function, (,) (,) (,) (,)
(,) (,)

min ()xy s
i j xy i j i j os so i j

x S y S i j s S i j

υ θ ω ζ θ θ ω
∈ ∈ ∈Λ ∈ ∈Λ

+ +∑∑ ∑ ∑ ∑ , and

linear constraint (2.6).

Therefore, we add the new decision variable, (,)
xy
i jυ , to reformulate the problem as

follows.

Table 5.7. Notation of the decision variable (,)
xy
i jυ .

Decision Variables
Notation Description

(,)
xy
i jυ

1 if (,) 0x
i jζ = I (,) 1y

i jζ = (reporting object’s location uses the link

(i,j) when object moves from sensor x to sensor y), and 0
otherwise, x y≠ .

Problem (IP2):
Objective function:

IPZ = min (,) (,) (,) (,)
(,) (,)

()xy
i j

s
xy os soi j i j i j

x S y S s Si j i j
υ θ ω ζ θ θ ω

∈ ∈ ∈∈Λ ∈Λ
+ +∑∑ ∑ ∑ ∑ (IP2)

subject to:

s

sx ϕ
ϕ∈Φ
∑ = 1 s S∀ ∈ (2.1)

 139

(,)
s
i j

j

ζ
∈Γ
∑ = 1

s S∀ ∈ , { }i S sink∈ Γ −U ,
i j≠ (2.2)

(,)
s

s i jx ϕ ϕ
ϕ

δ
∈Φ
∑ ≤ (,)

s
i jζ s S∀ ∈ , (,)i j ∈ Λ , i j≠ (2.3)

(,)2 xy
i jυ ≤ (,) (,) 1y x

i j i jζ ζ− + , ,x y S∀ ∈ (,)i j ∈ Λ , i j≠ (2.4)

(,) (,) 1y x
i j i jζ ζ− + ≤ (,) 1xy

i jυ +
, ,x y S∀ ∈ (,)i j ∈ Λ , x y≠

and i j≠ (2.5)

(,)
(,)

xy
i j

i j

υ
∈Λ
∑ ≥ 1 , ,x y S∀ ∈ x y≠ and i j≠ (2.6)

sx ϕ = 0 or 1 s S∀ ∈ , sϕ ∈Φ (2.7)

(,)
s
i jζ = 0 or 1 s S∀ ∈ , (,)i j ∈ Λ , and i j≠ (2.8)

(,)
xy
i jυ = 0 or 1

, ,x y S∀ ∈ (,)i j ∈ Λ , x y≠
and i j≠ . (2.9)

The objective function (IP2) of this problem is to minimize the total

communication cost subject to:

Constraint (2.1): Routing constraint which uses one path from sensor node s to sink

node only.

Constraint (2.2): Tree constraint of avoiding cycle. Any outgoing link of node to

communication node is equal to 1 on the object tracking tree.

Constraint (2.3): Routing constraint. Once the path, sx ϕ , is selected and the tree link

(,)i j is on the path, the decision variable, (,)
s
i jζ , must set to be 1.

Constraint (2.4)-(2.5): There are variable-transformation constraints. If

(,) 0x
i jζ = I (,) 1y

i jζ = , reporting location of object will use the

tracking link (,)i j when object moves from sensor x to sensor y,

(,)
xy
i jυ must set to be 1, and 0 otherwise.

Constraint (2.6): Sensor y must use one or more tracking link (i,j) to report object’s
location when object moves from sensor x to sensor y. Therefore,

(,)
(,)

xy
i j

i j

υ
∈Λ
∑ must be greater than or equal to 1.

Constraints (2.7)-(2.9): Decision variables sx ϕ , (,)
s
i jζ , and (,)

xy
i jυ equal to 0 or 1.

 140

5.1.4 Solution Procedure

5.1.4.1 Lagrangean Relaxation

Using the Lagrangean relaxation method successfully adopted to solve many

famous NP-complete problems [32][33][34]. The overall procedure to solve the

network planning problem is shown in Figure 5.7. The relaxation of the primal

problem is developed first which provides lower bound (LB) on the optimal solutions.

Since we relax three constraints of the problem (IP2), the boundary is used to design a

heuristic approach to get a primal feasible solution. To solve the original problem

near-optimally and minimize the gap between the primal problem and the Lagrangean

dual problem, we improve the LB by solving the four sub-problems optimally and use

the subgradient method to adjust the multipliers per iteration. Then, subgradient

optimization procedure is used for further improving these solutions by updating the

Lagrangean multipliers.

Figure 5.7. The procedure of Lagrangean relaxation.

We can transform the primal problem (IP2) into the following Lagrangean

relaxation problem (LR) where constraints (2.3), (2.4), and (2.5) are relaxed. For a

Primal Problem ZIP2

UB

LB
Lagrangean Relaxation

Problem ZLR

Subproblem
(Sub 1)

Subproblem
(Sub 4)

Lagrangean

Dual Problem

LB Optimal solution UB≦ ≦

Decomposition

Optimal Solution Optimal Solution

Adjust Lagrangean Mulipliers

 141

vector of non-negative Lagrangean multipliers, a Lagrangean relaxation problem of

(IP2) is given by:

Problem (LR):
Objective function:

1 2 3

(,) (,) (,)(, ,)LR s i j xy i j xy i jZ u u u = (,) (,) (,) (,)
(,) (,)

min{ ()xy s
i j xy i j i j os so i j

x S y S i j s S i j
υ θ ω ζ θ θ ω

∈ ∈ ∈Λ ∈ ∈Λ

+ +∑∑ ∑ ∑ ∑

1 1

(,) (,) (,) (,)
(,) (,)s

s

s i j i j s i j i j
s S i j s S i j

u x uϕ ϕ
ϕ

δ ζ
∈ ∈Λ ∈Φ ∈ ∈Λ

+ −∑ ∑ ∑ ∑ ∑

2 2

(,) (,) (,) (,) (,)
(,) (,)

2 (1)xy y x

xy i j i j xy i j i j i j
x S y S i j x S y S i j

u uυ ζ ζ
∈ ∈ ∈Λ ∈ ∈ ∈Λ

+ − − +∑∑ ∑ ∑∑ ∑

3 3

(,) (,) (,) (,) (,)
(,) (,)

(1) (1)}y x xy

xy i j i j i j xy i j i j
x S y S i j x S y S i j

u uζ ζ υ
∈ ∈ ∈Λ ∈ ∈ ∈Λ

+ − + − +∑∑ ∑ ∑∑ ∑

(LR)

subject to: (2.1), (2.2), (2.6), (2.7), (2.8), and (2.9).

Where 1
(,)s i ju , 2

(,)xy i ju , and 3
(,)xy i ju are Lagrangean multipliers and 1

(,)s i ju , 2
(,)xy i ju ,

and 3
(,) 0xy i ju ≥ . To solve (LR), we can decompose (LR) into the following four

independent and easily solvable optimization sub-problems.
1 2 3 4LR sub sub sub subZ Z Z Z Z= + + +

Sub-problem 1: (related to the decision variables (,)
xy
i jυ)

Objective function:

2 3

1 (,) (,)(,)sub xy i j xy i jZ u u =
2 3

(,) (,) (,) (,)
(,)

min (2)xy

i j xy i j xy i j xy i j
x S y S i j

u uθυ ω
∈ ∈ ∈Λ

+ −∑∑ ∑ (sub 1)

subject to: (2.6) and (2.9).

This sub-problem is related to decision variable (,)
xy
i jυ , which can be further

decomposed into 2S Λ sub-problems.

Constraint (2.6) is a redundant constraint used to reduce the duality gap. The

duality gap is defined as the difference between the optimal primal objective value

 142

and the optimal dual objective value. The smaller duality gap computed, the better the

optimality.

Two cases are listed below to determine the value of (,)
xy
i jυ .

Let (,)xy i jβ denote the weight of the object while moving from sensor x to sensor

y using the tracking link (i, j), we get

(,)xy i jβ = 2 3
(,) (,) (,)(2)xy i j xy i j xy i ju uθ ω + −

Case 1: If (,)xy i jβ < 0, then assign (,)
xy
i jυ = 1

Case 2: If (,)xy i jβ 0≥ , then assign (,)
xy
i jυ = 0.

If the sum of each pair of node (,)
xy
i jυ is zero, we enforce to select the minimum

positive objective value (,)xy i jβ and set (,)
xy
i jυ =1 to fulfill the constraint (6).

Sub-problem 2: (related to the decision variables sx ϕ)

Objective function:

1

2 (,)()sub s i jZ u = (,)

1
(,)

(,)

min ()
i js i j s

s S i j

u x
ϕϕ

ϕ

δ
∈ ∈Λ ∈Φ
∑ ∑ ∑ (sub 2)

subject to: (2.1) and (2.7).

The sub-problem 2 can be further decomposed into S independent shortest

path problems with nonnegative arc weight whose value is 1
(,)s i ju . The value of

spx can be determined by the link cost, 1
(,)s i ju . This sub-problem is related to the

decision variables spx , which can use the Dijkstra’s algorithm to solve the single

source shortest path problem. The time complexity of Dijkstra’s algorithm is O(2S).

The time complexity of the sub-problem is O(3S).

 143

Sub-problem 3: (related to the decision variables (,)
s
i jζ)

Objective function:

1 2 3

3 (,) (,) (,)(, ,)sub s i j xy i j xy i jZ u u u =

1 3 2 3 2
(,) (,) (,) (,) (,) (,) (,)

(,)

min [() () ()] s
os so i j s i j xs i j xs i j sy i j sy i j i j

s S i j x S y S

u u u u uθ θ ω ζ
∈ ∈Λ ∈ ∈

+ − + − − −∑ ∑ ∑ ∑
(sub 3)

subject to: (2.2) and (2.8).

This sub-problem is related to the decision variables (,)
s
i jζ which can be further

decomposed into S sub-problems.

Let (,)s i jψ denote the weight of the sensor nodes s using the tree link (i, j), we

get

(,)s i jψ = 1 3 2 3 2
(,) (,) (,) (,) (,) (,)() () ()os so i j s i j xs i j xs i j sy i j sy i j

x S y S
u u u u uθ θ ω

∈ ∈
+ − + − − −∑ ∑

(,)
s
i jζ must be enforced to 1 when choosing the minimum of (,)s i jψ for each s

and i to fulfill the constraint (2.2). The time complexity of this sub-problem is

O(2S Λ).

Sub-problem 4: (Constant Part)
Objective function:

2
4 (,)()sub xy i jZ u =

2
(,)

(,)
xy i j

x S y S i j

u
∈ ∈ ∈Λ

−∑∑ ∑ (sub 4)

The sub-problem 4 is constant part. The time complexity of the sub-problem is

O(2S Λ).

According to the weak Lagrangean duality theorem [5, 6],
1 2 3
(,) (,) (,)(, ,)D s i j xy i j xy i jZ u u u is a lower bound (LB) on IPZ when 1

(,)s i ju , 2
(,)xy i ju , and

 144

3
(,) 0xy i ju ≥ . The following dual problem (D) is then constructed to calculate the

tightest lower bound.

Dual Problem (D):
Objective function:

DZ

= 1 2 3
(,) (,) (,)max (, ,)LR s i j xy i j xy i jZ u u u (D)

subject to:

1
(,)s i ju , 2

(,)xy i ju , and 3
(,)xy i ju ≥ 0 (2.10)

There are several methods for solving the dual-mode problem (D). One of the

most popular approach is the subgradient method.

5.1.4.2. Getting Primal Feasible Solutions

After optimally solving the Lagrangean dual problem, we get a set of decision

variables and develop tree-based heuristic algorithm to tune these decision variables.

A set of feasible solutions of the primal problem (IP2) therefore can be obtained. The

primal feasible solution is an upper bound (UB) of the primal problem (IP2), and the

Lagrangean dual problem solution guarantees the lower bound (LB) of the primal

problem (IP2). Iteratively, by solving primal feasible solution and Lagrangean dual

problem, we get UB and LB, respectively.

The procedure of tree-based object tracking algorithm is shown in Figure 5.8.

 145

Figure 5.8. The procedure of tree-based object tracking algorithm.

Initialize

Get dual and primal solution

Get the solution set of {xsp}

Update bounds

Stopping criteria

Update parameters and
multipliers

End Y

N

 146

A tree-based object tracking algorithm is listed in Figure 5.9.

Algorithm Tree-based Object Tracking
Input: 2D routing and sensor sub-graphs
Output: Object tracking tree
1: begin
2: Initialize the Lagrangean multiplier vectors (1 2 3, ,u u u) to be zero vectors;
3: UB:=total communication cost of shortest path tree; LB:=very small value;
4: improve_counter:=0; step_size_coefficient:=2; improve_Threshold:=50;
5: Using the shortest path tree algorithm (SPA) to find the initial primal value;
6: for iteration:=1 to Max_Iteration_Number do
7: begin
8: run sub-problem(SUB1);
9: run sub-problem(SUB2);
10: run sub-problem(SUB3);
11: run sub-problem(SUB4);
12: calculate DZ ;
13: if DZ >LB then LB:= DZ and improve_counter:=0;

14: else improve_counter:= improve_counter+1;
15: if improve_counter= improve_Threshold then
16: improve_counter:=0; : / 2α α= ;

17: Adjust arc weight 1

(,) (,)i j s i j
s S

c u
∈

= ∑ for each link (i,j)

 and then run the Dijkstra algorithm to get the solution set of {xsφ};

18: Once {xsφ} is determined, (,)
xy
i jυ and (,)

s
i jζ are also determined;

19: Get a new object tracking tree and calculate newly upper bound ub
20: if ub<UB then UB:=ub;
21: run updata-step-size;
22: run updata-Lagrangean-multiplier;
23: end;
24: end;

Figure 5.9. The tree-based object tracking algorithm.

In the algorithm, from steps 2-4 are setting initialize value, step 5 is finding the

initial primal value. Steps 8-11 solve the sub-problems 1-4. Steps 12-16 and 20-22

 147

update the parameters and multipliers. Steps 17-19 are used to get primal feasible

solution.

5.1.5 Computational Results

To evaluate the performance of the proposed algorithm, we conduct an

experiment. The performance is assessed in terms of the total communication cost.

5.1.5.1. Scenario

The proposed algorithm is coded in C++ under a Microsoft Visual C++ 6.0

development environment. All the experiments are performed on a Core 2 Duo-2.2

GHz PC with 4GB memory running Microsoft Windows VISTA. The algorithm is

tested on a 2D sensor field. We distribute 12, 23, 36, 50, and 105 sensor and

communication nodes, respectively, in a 2D sensor field.

The parameters listed in Table 5.8 are used for the all cases of experiments.

Table 5.8. Parameter of Lagrangean relaxation-based algorithm.

Parameter Value
Number of nodes 12 ~ 105 (depend on each case)

Number of iterations 5,000
Improvement counter threshold 49

Initial upper bound 1010
Initial upper bound -1010

Initial scalar of step size 2
Initial multiplier 0

5.1.5.2. Experiment results

In order to evaluate the proposed tree-based algorithm, we compare the algorithm

with another heuristic algorithm, shortest path tree (SPT) algorithm. We also compare

the proposed tree-based algorithm with the lower bound (LB) of the dual mode

problem.

 148

Figure 5.10 shows an example of LR-based object tracking tree.

Figure 5.10. An example of LR-based object tracking tree.

Table 5.9 shows the total transmission cost calculated by different algorithms

under the number of nodes 12, 23, 36, 50, and 105 respectively. We can see that the

tree-based heuristic algorithm outperforms the SPT algorithm. We denote the dual

solution as “Zdu” (LB), and tree-based heuristic solution as “ZIP2” (UB). The gap

between UB and LB is computed by () / *100%UB LB LB− which illustrates the

optimality of problem solution.

sensor node

communication node
communication link

sensor field

 u

v

t

x

z

w

y

sink

a b

c d

3 4
2

2

3
3

3

4
3

3

2

sensor-communication link

 149

Table 5.9. Evaluation of the gap and improvement ratio with different number of
nodes.

Number of nodes Zdu ZIP2 Gap SPT Improvement Ratio to SPT
Problem 1 2774 3127 0.13 3630 0.16

12
Problem 2 3416 3906 0.14 4460 0.14
Problem 1 17850 20725 0.16 22491 0.09

23
Problem 2 17385 20282 0.17 21839 0.08
Problem 1 42410 49970 0.18 57553 0.15

36
Problem 2 42775 50411 0.18 57787 0.15
Problem 1 89824 78807 0.14 99639 0.11

50
Problem 2 77905 88195 0.13 102796 0.17
Problem 1 326529 371438 0.14 508314 0.37

105
Problem 2 328911 355546 0.08 511402 0.44

Figure 5.11 shows an example of the trend line for getting the primal problem

solution values (UB) and dual mode problem values (LB). The UB curve tends to

decrease to get the minimum feasible solution. In contrast, the LB curve tends to

increase and converge rapidly to reach the optimal solution. The LR-based method

ensures the optimization results between UB and LB so that we can keep the duality

gap as small as possible in order to improve the quality of our solution and achieve

near optimization.

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800 1000

The number of iterations

To
ta

l c
om

m
un

ic
at

io
n

co
st

s .

SPT
LR-based (UB)
LB

Figure 5.11. The execution results of LR-based algorithm with 12 nodes in the test
problem 1.

 150

Table 5.10 shows that the time complexity of our LR-based solution is dominated

by Lagrangean dual problem. The Lagrangean dual problem has been solved by the

above four sub-problems with the maximum number of iteration I.

Table 5.10. The time complexity of tree-based object tracking tree algorithm.

Problem Time Complexity
Sub-problem (SUB1) 2()O S Λ

Sub-problem (SUB2) 3()O S

Sub-problem (SUB3) 2()O S Λ

Sub-problem (SUB4) 2()O S Λ

Getting primal feasible solutions 2()O S

Lagrangean dual problem 2 *()O I S Λ

*Parameter I means the maximum number of iterations

5.1.5.3 Discussion

The experiment results show that the algorithm is better than the shortest path

tree algorithm, and the gap is also small. In other words, when compared with SPT

algorithm, the proposed TOTA can improve the percentage of energy consumption

from 8% to 44%. It also achieves the near optimal solution since the gaps are only

from 8% to 18%, as shown in Table 5.9. Therefore, the results show that the proposed

tree-based algorithm can achieve energy-efficient object tracking. Furthermore, the

algorithm is very efficient and scalable in terms of the running time.

5.1.6 Concluding Remarks

This study proposes an object tracking algorithm in wireless sensor networks. To

our best knowledge, the proposed LR-based algorithm is truly novel and it has not

been discussed in previous researches. This study first formulates the problem as a 0/1

integer programming problem, and then proposes a tree-based heuristic algorithm to

solve the optimization problem.

 151

We are planning to further investigate response time model based on object

tracking application requirements and heuristic algorithms in the near future. In

addition, we are looking into the tradeoff of total communication cost with various

system issues, such as response time, report frequency, and number of sinks, etc.

 152

5.2 Prediction-based Object Tracking Algorithm

This section is organized as follows. The overview is described in Section 5.2.1.

The problem and prediction model are described in Sections 5.2.2 and 5.2.3,

respectively. In addition, the solution procedure is presented in Section 5.2.4.

Furthermore, the computational results are discussed in Section 5.2.5, and conclusions

are presented in Section 5.2.6.

5.2.1 Overview

The prediction-based algorithm can minimize the number of nodes participating

in the tracking. In addition, the mechanism can prolong the system lifetime since the

cost of computation less than the cost of communication. The varieties of wake up

mechanisms and recovery mechanisms will affect the system performance. The

prediction model works well if it tolerates small number of errors and some latency.

The basic method is that the sensors do not have to transmit the expected readings

[13][14][15].

5.2.2 Problem Description

 In the prediction-based object tracking model. There are three basic prediction

models are as follows.

1. Linearly Prediction

Linearly prediction uses the previous two locations of an object to predict the

third location linearly. It assumes that the object will stay in the current speed and

direction.

2. Averagely Prediction

Averagely prediction uses the average of the object’s moving track history to

 153

derive the future speed and direction.

3. Dynamically Prediction

Dynamically prediction assigns different weights to the different stages of

history.

Figure 5.12 illustrates a scenario of prediction-based object tracking.

Prediction-based approach is used to predict the upcoming location of mobile object

for energy saving. System uses the historical data to predict next location of mobile

object.

Figure 5.12. A scenario of prediction-based object tracking.

We assume that sensors are regularly deployed in tracking field. We develop a

prediction-based algorithm based on dynamically prediction model to solve object

tracking problem. The prediction-based approach can reduce the power consumption

in wireless sensor networks by limiting the sensor active time. The tracking algorithm

supports the sensor sleeping mechanism to save energy and prolong the system

lifetime.

(xn+1,yn+1)

(xn,yn)
the current predicted node

the predicted destination node
the movement trajectory of predicted object
in the future

the movement trajectory of predicted
object in the past

sensor nodes

the predicted nodes in the past

the real movement trajectory of predicted object

object

 154

5.2.3 Prediction Model

In this section, we use the concept of Viterbi algorithm to calculate object

location [38]. The system maintains n - 1, n - 2, and n - h speed and direction of the

object at time interval n. The algorithm is called prediction-based object tracking

algorithm (POTA). The detailed descriptions are shown in Table 5.11.

Table 5.11. Problem description in prediction-based object tracking problem.

Given The set of sensor nodes.

Objective

1. To minimize the number of nodes participating in the object
tracking.

2. To maximize the accuracy of object predicted position.
3. To minimize out of tracking probability.

To determine The h value at time interval n.
To predict The location of object at time interval n.

The model uses tuning parameters α and h to vary the degree of movement in the

modified Viterbi algorithm. The parameter α is to vary the degree of randomness in

mobility pattern in Section 2.1.4.

(1, 2) (1,)(1)n n n n n hs s sβ β− − − −= + −

(1, 2) (1,)(1)n n n n n hd d dβ β− − − −= + −

where sn and dn are the new estimative speed and direction of the object at time

interval n; where 0 1α≤ ≤ , is the tuning parameter used to vary the object; s(n-1,n-2) and

d(n-1,n-2) are speed and direction trends in short term, and s(n-1,n-h) and d(n-1,n-h) are speed

and direction trends in long term. Totally short term is obtained by setting β =1 and

long term is obtained by setting β =0. Intermediate levels of speed and direction are

obtained by varying the value of a between 0 and 1.

 155

 At each time interval the next location is calculated based on the current location,

speed, and direction of movement. Specifically, at time interval n, a position of object

is given by the following equations:

1 cosn n n nx x s t d+ = +

1 sinn n n ny y s t d+ = +

 where (xn, yn) and (xn+1, yn+1) are the x and y coordinates of the object’s position

at the nth and (n + 1)th time intervals, respectively, t is time unit, and sn and dn are the

speed and direction of the object, respectively, at the nth time interval.

Figure 5.13 illustrates a scenario of POTA.

Figure 5.13. A scenario of POTA.

System parameters, α and h, depend on object movement behavior.

5.2.4 Solution Procedure

We formulate the problem as a multiple criteria decision problem with 3 goals

[62][65]:

1 2 3{ ()} { (), (), ()}i i i iMinimize U p f U p U p U p=

The combined objective function can be defined as

(xn+1,yn+1)

(xn-1,yn-1)

(xn-h,yn-h)

(xn,yn)
the current predicted node

the predicted destination node
the movement trajectory of predicted object
in the future

the movement trajectory of predicted
object in the past

sensor nodes

the predicted nodes in the past

the real movement trajectory of predicted object

object

 156

3

1

{ ()}j j i
j

Minimize w U p
=
∑

where w1, w2, and w3 are significant weights reflecting the relative importance of each

goal.

Where 1()iU p measures the energy consumption under the policy of prediction

pi, 2 ()iU p measures the miss rate under the policy of prediction pi, and 3()iU p

measures the maximum latency of one step under the policy of prediction pi.

The relative importance of these utility functions is defined by the weights w1, w2,

and w3. Weights are used to assign different importance to the different performance

metrics. For example, if the miss rate is a critical factor, then a high value should be

assigned to w2.

In the prediction-based object tracking algorithm, we propose 3 policies to deal

with the problem.

The policy 1 includes two cases. First case is to predict object location and turn

on predicted destination node and 1 hop neighbors without round advance. The

meaning of round advance is to skip current round when object is out of tracking in

current round. System turns on all sensor nodes on the next round if system is also out

of tracking. Second case is to predict object location and turn on predicted destination

node and 1 hop neighbors with round advance. The predicted procedure of the POTA

of policy 1 is shown in Figure 5.14.

The policy 2 includes two cases. First case is to predict object location and turn

on predicted destination node and 1 hop neighbors without round advance. It turns on

2 hop neighbors, if system can not find the object. Second case is to predict object

location and turn on predicted destination node and 1 or 2 hops neighbors with round

advance. The predicted procedure of the POTA of policy 2 is shown in Figure 5.15.

The policy 3 includes two cases. First case is to predict object location, and turn

on predicted destination node, 1 hop and 2 hops neighbors without round advance. It

turns on 1 hop neighbors, if system can find the object in the past 2_hop_ub times.

And it turns on 1 hop and 2 hops neighbors, if system can not find the object in the

 157

past 1_hop_ub times. Second case is to predict object location, and turn on predicted

destination node, 1 hop and 2 hops neighbors with round advance. The predicted

procedure of the POTA of policy 3 is shown in Figure 5.16.

Table 5.12 illustrates a comparison among the policy 1, policy 2, and policy 3.

Besides, the h parameter adds 1 when h < h_ub and object is found. The h

parameter subtracts 1 when deviant range > ± deviant angle, h > h_lb, and object is

not found.

Table 5.12. A comparison among the policy 1, policy 2, and policy 3.

 Policy 1 Policy 2 Policy 3

Prediction
mechanism

Turn on predicted
destination node
and 1 hop
neighbors

Turn on predicted
destination node
and 1 or 2 hops
neighbors

Turn on predicted
destination node
and 1 or 2 hops
neighbors

Turn on 2 hops
neighbors

-

Turn on 2 hops
neighbors if
system misses the
object when
turning on
predicted
destination node
and 1 hop
neighbors

Turn on 2 hops
neighbors if
system can not find
the object and
continuous
1_hop_ub times
turn on predicted
destination node
and 1 hop
neighbors

Turn on 1 hop
neighbors

- -

Turn on 1 hop
neighbors if
system can find the
object and
continuous
2_hop_ub times
turn on predicted
destination node
and 2 hops
neighbors

Latency 2 3 2

 158

Turn on all
boundary sensors
and ad_count=0

Turn on 1 and 2
hops neighbors of
the current sensor

Find?

2 points perdition
and turn on
predicated

destination node and
1 hop neighbors

Find?

3 points perdition,
adjust h value
, and turn on
predicated

destination node and
1 hop neighbors

Intruder?

Turn on all sensors

Leave?

Round advance=1
and ad_count≠1

Turn on all sensors

Leave?

Y

N

Y

N

N

Y

N

Y

N

YN

Y

Ad_count++

Ad_count=0

Ad_count=0

Figure 5.14. The predicted procedure of the POTA of policy 1.

 159

Turn on all
boundary sensors
and ad_count=0

Turn on 1 and 2
hops neighbors of
the current sensor

Find?

2 points perdition
and turn on
predicated

destination node and
1 hop neighbors

Intruder?

Turn on all sensors

Leave? Turn on 2 hop
neighbors

Round advance=1
 and ad_count≠1

Turn on all sensors

Leave?

Y

N

Y

N

N

Y

N

YN

Y

Find?
Y

N

Find?

3 points perdition,
adjust h value
, and turn on
predicated

destination node and
1 hop neighbors

Y

N

Ad_count++

Ad_count=0

Ad_count=0

Figure 5.15. The predicted procedure of the POTA of policy 2.

 160

Turn on all
boundary sensors,
1_hop_count=0,
2_hop_count=0,

1_hop_flag=0, and
ad_count=0

Turn on 1 and 2
hops neighbors of
the current sensor

Find?

2 points perdition
and turn on
predicated

destination node and
1 hop neighbors

Find?

1_hop_flag=1,
2_hop_count=0,

3 points perdition,
adjust h value
, and turn on
predicated

destination node and
1 hop neighbors

Intruder?

Turn on all sensors

Leave?

Round advance=1
 and ad_count≠1

Turn on all sensors

Leave?

Y

N

Y

N

N

Y

N

Y

N

YN

Y

1_hop_flag=0,
1_hop_count=0,

3 points perdition,
adjust h value
, and turn on
predicated

destination node and
2 hop neighbors

2_hop_count
=2_hop_ub?

1_hop_count
=1_hop_ub?

YN

2_hop_count++ and
ad_count=0

1_hop_count++

Y

N

Ad_count++

1_hop_flag=1?

N

Y

Figure 5.16. The predicted procedure of the POTA of policy 3.

 161

5.2.5 Computational Results

To evaluate the performance of the proposed algorithm, we conduct an

experiment. The performance is assessed in terms of total number of rounds.

5.2.5.1 Experiment Environment

The proposed algorithm is coded in C under a Dev C++ 4.9.9.2 development

environment. All the experiments are performed on a Core 2 Duo 2.2GHz CPU

running Microsoft Windows Vista. The algorithm is tested on a 2D monitoring region.

We distribute 10201 sensor nodes in 2D monitoring region. The radius of sensors

is 25/ 2 .

5.2.5.2 Experiment results

The parameters of POTA is listed in Table 5.13.

Table 5.13. The parameters of POTA.

Problem1 Problem 2 Problem 3 Parameters
Value Value Value

β 0.7 0.9 0.9
h_lb 3 3 3
h_ub 7 7 5

Deviant angle π/3 π/3 π/3
The radius of sensors 25/ 2 25/ 2 25/ 2

Number of sensor node (sn) 10201 10201 10201
Monitoring region (m2) 500 × 500 500 × 500 500 × 500

The evaluation of the performance metrics with different policies and α is listed

in Table 5.14, Table 5.15 and Table 5.16.

 162

Table 5.14. Evaluation of the performance metrics with different policies and α in the
problem 1.

Policy 1 Policy 2 Policy 3

α Performance
metrics

Turn on 1
hop

neighbors

Turn on 1
hop

neighbors
and round
advance =

1

Turn on 1
or 2 hop

neighbors

Turn on 1
or 2 hop

neighbors
and round
advance =

1

Dynamic
turn on 1
or 2 hop

neighbors

Dynamic
turn on 1
or 2 hop

neighbors
and round
advance =

1
Total energy
consumption 1087875 793834 951340 710406 961140 719751

Miss rate 0.38 0.53 0.32 0.48 0.33 0.49 0.4
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 612076 445461 485060 364227 485060 373586

Miss rate 0.36 0.51 0.28 0.42 0.28 0.43 0.5
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 450430 332825 440955 312280 440955 312280

Miss rate 0.34 0.49 0.33 0.47 0.33 0.47 0.6
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 297018 208816 209050 182724 238448 182706

Miss rate 0.33 0.43 0.23 0.41 0.26 0.41 0.7
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 265197 206378 206613 189280 216406 189259

Miss rate 0.32 0.46 0.24 0.49 0.26 0.49 0.8
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 200307 151289 171068 146310 180870 145906

Miss rate 0.30 0.44 0.25 0.44 0.27 0.46 0.9
Maximum
latency of
one step

2 2 3 3 2 2

 163

Table 5.15. Evaluation of the performance metrics with different policies and α in the
problem 2.

Policy 1 Policy 2 Policy 3

α Performance
metrics

Turn on 1
hop

neighbors

Turn on 1
hop

neighbors
and round
advance =

1

Turn on 1
or 2 hop

neighbors

Turn on 1
or 2 hop

neighbors
and round
advance =

1

Dynamic
turn on 1
or 2 hop

neighbors

Dynamic
turn on 1
or 2 hop

neighbors
and round
advance =

1
Total energy
consumption 1029095 774249 843573 681829 872943 700559

Miss rate 0.35 0.52 0.28 0.46 0.29 0.48 0.4
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 543458 376839 338125 317230 416478 345319

Miss rate 0.31 0.42 0.18 0.35 0.23 0.39 0.5
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 421032 323006 362557 265256 362563 274633

Miss rate 0.32 0.48 0.27 0.38 0.20 0.40 0.6
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 238206 189220 169880 116927 218845 145078

Miss rate 0.26 0.40 0.18 0.24 0.24 0.31 0.7
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 225967 206393 138040 142272 177222 180235

Miss rate 0.27 0.47 0.15 0.35 0.20 0.45 0.8
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 161097 131693 73106 71120 122083 108685

Miss rate 0.24 0.37 0.08 0.17 0.17 0.31 0.9
Maximum
latency of
one step

2 2 3 3 2 2

 164

Table 5.16. Evaluation of the performance metrics with different policies and α in the
problem 3.

Policy 1 Policy 2 Policy 3

α Performance
metrics

Turn on 1
hop

neighbors

Turn on 1
hop

neighbors
and round
advance =

1

Turn on 1
or 2 hop

neighbors

Turn on 1
or 2 hop

neighbors
and round
advance =

1

Dynamic
turn on 1
or 2 hop

neighbors

Dynamic
turn on 1
or 2 hop

neighbors
and round
advance =

1
Total energy
consumption 989877 695822 618256 540868 804378 606531

Miss rate 0.34 0.45 0.20 0.35 0.27 0.40 0.4
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 553273 386636 279337 279623 416486 316725

Miss rate 0.32 0.42 0.14 0.30 0.23 0.36 0.5
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 391615 303401 205832 199468 274383 218216

Miss rate 0.29 0.44 0.13 0.27 0.19 0.30 0.6
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 218595 189223 101310 107525 169870 173275

Miss rate 0.24 0.40 0.09 0.21 0.18 0.39 0.7
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 196575 167193 79270 85884 147824 152011

Miss rate 0.23 0.38 0.07 0.19 0.16 0.36 0.8
Maximum
latency of
one step

2 2 3 3 2 2

Total energy
consumption 121880 102273 43733 42933 112281 89875

Miss rate 0.17 0.27 0.03 0.07 0.15 0.24 0.9
Maximum
latency of
one step

2 2 3 3 2 2

 165

Figure 5.17 shows a comparison of the total energy consumption with different α

and different policies in the problem 3. Figure 5.18 shows a comparison of the miss

rate with different α and different policies in the problem 3. Figure 5.19 shows a

comparison of the total energy consumption with different round advance and

different policies in the problem 3. Figure 5.20 shows a comparison of the miss rate

with different round advance and different policies in the problem 3. Figure 5.21

shows a comparison of the total energy consumption with different α and h_ub.

Figure 5.22 shows a comparison of the miss rate with different α and h_ub.

0

200000

400000

600000

800000

1000000

1200000

0.4 0.5 0.6 0.7 0.8 0.9

α

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n

policy 1

policy 2

policy 3

Figure 5.17. A comparison of the total energy consumption with different α and
different policies without round advance in the problem 3.

0

0.1

0.2

0.3

0.4

0.4 0.5 0.6 0.7 0.8 0.9

α

M
is

s
ra

te policy 1

policy 2

policy 3

Figure 5.18. A comparison of the miss rate with different α and different policies
without round advance in the problem 3.

 166

0

50000

100000

150000

1 2 3

Policy

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n

non-round
advance

round advance

Figure 5.19. A comparison of the total energy consumption with different round
advance and different policies in the problem 3. (α = 0.9)

0

0.1

0.2

0.3

1 2 3

Policy

M
is

s
ra

te

non-round
advance

round advance

Figure 5.20. A comparison of the miss rate with different round advance and different
policies in the problem 3. (α = 0.9)

0

200000

400000

600000

800000

1000000

0.4 0.5 0.6 0.7 0.8 0.9

α

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n

h_lb=3 and
h_ub=7

h_lb=3 and
h_ub=5

Figure 5.21. A comparison of the total energy consumption with different α and h_ub.

 167

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.5 0.6 0.7 0.8 0.9

α

M
is

s
ra

te h_lb=3 and
h_ub=7

h_lb=3 and
h_ub=5

Figure 5.22. A comparison of the miss rate with different α and h_ub.

5.2.5.3 Discussion

The experiment results show that the policy 2 is better than policy 1 and policy 3,

as shown in Figure 5.17 and Figure 5.18. Policy 2 is more energy saving and lower

miss rate than policies 1 and 3. Because policy 2 eventually turns on 1 hop and 2 hops

neighbor sensor nodes before turns on all sensor nodes. In addition, large α value has

more energy saving and lower miss rate than small α value. Because large α value

results the object moving near linearly. In the total energy consumption, we can see

the round advance case is better than non-round advance case, as shown in Figure

5.19. In the miss rate, we can see that the non-round advance case is better than round

advance case, as shown in Figure 5.20. Therefore, users choose round advance

approach if the energy consumption is a critical concern. On the contrary, users

choose non-round advance approach if the miss rate is a critical concern. The large

h_ub is not suitable, because large h_ub results in high energy consumption and miss

rate, as shown in Figure 5.21 and Figure 5.22.

5.2.6 Concluding Remarks

This study proposes a dynamic prediction-based algorithm in wireless sensor

networks. To our best knowledge, the proposed modified Viterbi algorithm is truly

novel and it has not been discussed in previous researches. This study first formulates

 168

the problem as a multiple criteria decision problem with 3 goals, energy consumption,

miss rate, and latency, in the combined objective function.

We introduce round advance approach, which effectively help users to choose

proper method according to the concern of energy consumption or miss rate.

 169

Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have proposed five algorithms, BMAFS, BMAMS, LDA,

NLDA, and TOTA, to solve optimization problems based on Lagrangean relaxation

method, system simulation, and heuristic approaches. In addition, we develop one

POTA based on modified Viterbi algorithm to solve prediction-based object tracking

problem.

We propose two algorithms, BMAFS and BMAMS, to support boundary

monitoring services. The BMAFS is to construct boundary monitoring for grouping

capabilities. The experiment results show that the proposed BMAFS can improve the

percentage of energy consumption from 11% to 81% while compared with SA1 and

SA2. It also achieves the optimal solution since the gaps are 0% in the test problems.

The BMAMS is to address the problem of boundary nodes relocation. It can move

previously deployed sensors to cover uncovered check points due to nodes failed or

nodes battery exhausted. The mechanism can further prolong the system lifetime.

Compared with BMAFS, the proposed BMAMS can improve the lifetime of boundary

monitoring services from 0% to 35%. The experiment results show that the proposed

BMAMS gets effectiveness in the boundary monitoring services for grouping

capabilities.

The proposed LDA and NLDA are to support in-depth defense services. The LDA

is to construct layered defense for wireless sensor networks of grouping capabilities.

The experiment results show that the proposed BMAFS can improve the percentage

of energy consumption from 0% to 18% while compared with SA1 and SA2. The

NLDA is to construct non-layered defense of supporting different types of intruders

for grouping capabilities. The NLDA can prolong the system lifetime and provide

 170

lead time alarms. The experiment results show that the proposed NLDA can improve

system lifetime since the improvement ratio is from 59% to 136% while compared

with simple algorithm.

At last, in the TOTA and POTA, we use the TOTA to support tree-based object

tracking services. The experiment results show that the proposed heuristic algorithm

can improve the percentage of energy consumption from 8% to 44% while compared

with shortest path tree algorithm. It also achieves the near optimal solution since the

gaps are only from 8% to 18%. Furthermore, the algorithm is efficient and scalable in

terms of the running time. The POTA is to construct a prediction-based algorithm for

object tracking. Such prediction-based can minimize the number of nodes

participating in the tracking activities, minimize out of tracking probability, and

maximize the accuracy of object predicted position in the tracking activities. The

POTA can prolong the system lifetime.

The experiment results show that all six algorithms can support object monitoring

and tracking services efficiently. They also support quality of services and prolong the

system lifetime in object monitoring and tracking of wireless sensor networks.

 171

6.2 Future Work

In the future, the subsequent studies can be conducted as follows. The grouping

algorithm by Voronoi diagram is described in Section 6.2.1. The multiple sinks for

tree-based object tracking is presented in Section 6.2.2.

6.2.1 Grouping Algorithm by Voronoi Diagram

The V-points include intersection points of Voronoi diagram, intersection points

of border, and corner points. The monitoring region is fully covered if all V-points are

covered by awaked sensors.

Figure 6.1. An example of V-points.

The notations used to model the problem are listed as follows.

Table 6.1. Notations of the given parameters in grouping algorithm by Voronoi
diagram.

Given Parameters

Notation Description

S The set of all sensor nodes.
V The set of the all candidate v-points in the monitoring region.
Cs The initial energy level of each sensor node s.

V-points

sensors

monitoring region

 172

Em The energy consumption for sensor nodes to sense data.
R The total number of rounds.

Pr The set of all candidate v-points in the run r.

Table 6.2. Notation of the indicate parameter in grouping algorithm by Voronoi
diagram.

Indicate Parameter

Notation Description

bsv
The indicator function which is 1 if the v-point v is in the
coverage of the sensor node s and 0 otherwise.

Table 6.3. Notations of the decision variables in grouping algorithm by Voronoi
diagram.

Decision Variables

Notation Description

yvr
1 if v-point v at least is covered by one awake sensor in the
round r, and 0 otherwise.

zr 1 if full coverage v-points in the round r, and 0 otherwise.
srπ 1 if sensor s is awake in the run r; otherwise is equal to 0.

Problem (IP):

Objective function:

IPZ = max r
r R

z
∀ ∈
∑ (IP)

subject to:

The full coverage v-points constraints

vry ≤ sv sr
s S

b π
∈
∑ ,v V r R∀ ∈ ∈ (1)

rz ≤
vr

v V

r

y

P
∈
∑

 r R∀ ∈ (2)

 173

The battery capacity constraint

sr m
r R

Eπ
∈
∑ ≤ sC s S∀ ∈ (3)

The integer constraints

srπ = 0 or 1 s S∀ ∈ , r R∈ (4)

ary = 0 or 1 ,a A r R∀ ∈ ∈ (5)

zr = 0 or 1 r R∀ ∈ . (6)

The objective function is to maximize the system lifetime of the given sensor

network. The lifetime is defined as the total number of rounds.

Constraints (1)-(2): Full coverage V-points constraint in each round r.
Constraint (3): For each sensor node s, the total sensing consumption can not exceed
its initial energy level.
Constraints (4)-(6): The integer constraints for decision variables stπ , ary , and zr.

6.2.2 Multiple Sinks for Tree-based Object Tracking

It is planned to further take the load balancing and residual energy capacity into

consideration to prevent the “hot spot” failing the object tracking tree. In addition, it is

intended to extend the model to multiple sinks of object tracking tree in near future

[44][45], since the multiple sinks can provide load balancing and fault tolerance.

 174

 175

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on

Wireless Sensor Network,” IEEE Communication Magazine, pp. 102-114,

August 2002.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor

Network: A Survey,” Computer Networks, vol. 38, pp. 393-422, 2002.

[3] Z. Guo, M.C. Zhou, and G. Jiang, “Adaptive Sensor Placement and Boundary

Estimation for Monitoring Mass Objects,” Part B, IEEE Transactions on

Systems, Man, and Cybernetics, vol. 38, pp. 222-232, 2008.

[4] C. Zhang, Y. Zhang, and Y. Fang, “Detecting Coverage Boundary Nodes in

Wireless Sensor Networks,” IEEE International Conference on Networking,

Sensing and Control, pp. 868-873, 2006.

[5] J. Lian, L. Chen, K. Naik, Y. Liu, and G.B. Agnew, “Gradient Boundary

Detection for Time Series Snapshot Construction in Sensor Networks,” IEEE

Transactions on Parallel and Distributed Systems, 2007.

[6] Y. Wang, X. Wang, B. Xie, D. Wang, and D.P. Agrawal, “Intrusion Detection in

Homogeneous and Heterogeneous Wireless Sensor Networks,” IEEE

Transactions on Mobile Computing, vol. 7, pp. 698-711, 2008.

[7] G. Li, J. He, and Y. Fu, “A Group-Based Intrusion Detection Scheme in Wireless

Sensor Networks,” The 3rd International Conference on Grid and Pervasive

Computing Workshop, pp. 286-291, 2008.

[8] G. Li, J. He, and Y. Fu, “A Distributed Intrusion Detection Scheme for Wireless

Sensor Networks,” 28th International Conference on Distributed Computing

Systems Workshops, pp. 309-314, 2008.

[9] Y. Wang, Y.K. Leow, and J. Yin, “Is Straight-line Path Always the Best for

 176

Intrusion Detection in Wireless Sensor Networks,” International Conference on

Parallel and Distributed Systems (ICPADS), pp. 564-571, 2009.

[10] H.T. Kung and D. Vlah, “Efficient Location Tracking Using Sensor Networks,”

IEEE Wireless Communications and Networking Conference, pp. 1954–1961,

2003.

[11] C.Y. Lin and Y.C. Tseng, “Structures for In-network Moving Object Tracking in

Wireless Sensor Networks,” IEEE First International Conference on Broadband

Networks,” pp. 718–727, 2004.

[12] C.Y. Lin, W.C. Peng, and Y.C. Tseng, “Efficient In-Network Moving Object

Tracking in Wireless Sensor Networks,” IEEE Transactions on Mobile

Computing, vol. 5, pp. 1044-1056, 2006.

[13] Y. Xu and W.C. Lee, “On Localized Prediction for Power Efficient Object

Tracking in Sensor Networks,” Proceedings of the 23rd International

Conference on Distributed Computing Systems Workshops, pp. 434–439, 2003.

[14] Y. Xu, J. Winter, and W.C. Lee, “Prediction-based Strategies for Energy Saving

in Object Tracking Sensor Networks,” IEEE International Conference on Mobile

Data Management, pp. 346–357, 2004.

[15] Y. Xu, J. Winter, and W.C. Lee, “Dual Prediction-based Reporting for Object

Tracking Sensor Networks,” The First Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Services, pp. 154–163, 2004.

[16] Y.F. Wong, W.K.G. Seah, L.H. Ngoh, and W. C. Wong, “Sensor Traffic Patterns

in Target Tracking Networks,” Wireless Communications and Networking

Conference, WCNC, pp. 4123-4126, 2007.

[17] Y.C. Wang and Y.C. Tseng, “Distributed Deployment Schemes for Mobile

Wireless Sensor Networks to Ensure Multi-level Coverage”, IEEE Transactions

on Parallel and Distributed Systems, vol. 19, no. 9, pp. 1280–1294, 2008.

 177

[18] K. Mechitov, S. Sundresh, G. Agha and Y. Kwon. “Cooperative Tracking with

Binary-Detection Sensor Networks,” University of Illinois at

Urbana-Champaign, Technical Report, UIUCDCS-R-2003-2379, 2003.

[19] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc

Network Research,” Wireless Communication and Mobile Computing, pp.

483-502, 2002.

[20] S. P. Manh Tran and T. A. Yang, “Evaluations of Target Tracking in Wireless

Sensor Networks,” Proceedings of the 37th SIGCSE Technical Symposium on

Computer Science Education, pp. 97-101, 2006.

[21] “The types of power consumption of MICAz 2.4GHz,”

http://www.xbow.com/Products/productdetails.aspx?sid=164.

[22] S. P. M. Tran and T. A. Yang, “OCO: Optimized Communication &

Organization for Target Tracking in Wireless Sensor Networks,” IEEE

International Conference on Sensor Networks, Ubiquitous, and Trustworthy

Computing, pp. 428-435, 2006.

[23] P. K. Sahoo, K.-Y. Hsieh, and J.-P. Sheu, “Boundary Node Selection and Target

Detection in Wireless Sensor Network,” IFIP International Conference on

Wireless and Optical Communications Networks, pp. 1-5, 2007.

[24] P.L. Chiu and F.Y.S. Lin, “Sensor Deployment Algorithms for Target

Positioning Services,” Doctoral Thesis, Graduate Institute of Information

Management of National Taiwan University, 2007.

[25] S. Bhatti and J. Xu, “Survey of Target Tracking Protocols Using Wireless Sensor

Network,” Fifth International Conference on Wireless and Mobile

Communications, pp. 110–115, 2009.

[26] F.Y.S. Lin, H.H. Yen, and S.P. Lin, “A Novel Energy-Efficient MAC Aware

Data Aggregation Routing in Wireless Sensor Networks,” Sensors, pp.

1295-2147, March, 2009.

 178

[27] F.Y.S. Lin, H.H. Yen, and S.P. Lin, “Delay QoS and MAC Aware

Energy-Efficient Data-Aggregation Routing in Wireless Sensor Networks,”

Sensors, vol. 9, pp. 7711-7732, October, 2009.

[28] Y.F. Wen, F.Y.S. Lin, and W.C. Kuo, “A Tree-based Energy-efficient Algorithm

for Data-Centric Wireless Sensor Networks,” 21st International Conference on

Advanced Networking and Applications, pp. 202–209, 2007.

[29] C.T. Lee and F.Y.S. Lin, “An Energy-Efficient Lagrangean Relaxation-based

Object Tracking Algorithm in Wireless Sensor Networks,” 20th International

Conference on Information Management (ICIM), 2009.

[30] C.T. Lee, F.Y.S. Lin, and Y.F. Wen, “An Efficient Object Tracking Algorithm in

Wireless Sensor Networks,” 9th Joint Conference on Information Sciences (JCIS)

(9th International Conference on. Computer Science and Informatics), 2006.

[31] B.H. Liu, W.C. Ke, C.H. Tsai, and M.J. Tsai, “Constructing a Message-Pruning

Tree with Minimum Cost for Tracking Moving Objects in Wireless Sensor

Networks Is NP-Complete and an Enhanced Data Aggregation Structure,” IEEE

Transactions on Computers, vol. 57, pp. 849-863, 2008.

[32] M.L. Fisher, “The Lagrangean Relaxation Method for Solving Integer

Programming Problem,” Management Science, vol. 27, pp. 1-18, 1981.

[33] M.L. Fisher, “An Applications Oriented Guide to Lagrangian Relaxation,”

Interfaces, vol. 15, pp. 10-21, 1985.

[34] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, “Network Flows: Theory, Algorithm,

and Applications,” chapter 16, Prentice Hall, 1993.

[35] S. Meguerdichian and M. Potkonjak, “Low Power 0/1 Coverage and Scheduling

Techniques in Sensor Networks,” UCLA Technical Reports 030001, January

2003.

[36] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor Relocation in Mobile

 179

Sensor Networks,” IEEE INFOCOM, vol. 4, pp. 2302-2312, March 2005.

[37] Y. Yoo and D.P. Agrawal, “Mobile Sensor Relocation to Prolong the Lifetime of

Wireless Sensor Networks,” Vehicular Technology Conference, 2008. VTC

Spring 2008. IEEE, pp. 193-197, 2008.

[38] R. Perry, A. Vaddiraju, K. Buckley, “Multitarget List Viterbi Tracking

Algorithm,” Department of Electrical and Computer Engineering, Villanova

University.

[39] Y.F. Wong, et al., “Sensor Traffic Patterns in Target Tracking Networks,”

Wireless Communications and Networking Conference, WCNC, pp. 4123-4126

2007.

[40] Y. Zhu and A. Shareef, “Comparisons of Three Kalman Filter Tracking

Algorithms in Sensor Network,” Proceedings of the 2006 International

Workshop on Networking, Architecture, and Storages, pp. 61-62, 2006.

[41] P. Zeng, et al., “Bounding the Lifetime of Target Tracking Sensor Networks,”

IEEE International Conference on ICC, pp. 3444-3449, 2006.

[42] O. Dousse, et al., “Delay of Intrusion Detection in Wireless Sensor Networks,”

The Proceedings of the Seventh ACM International Symposium on Mobile Ad

Hoc Networking and Computing, Florence, Italy, 2006.

[43] Y. Li and Y.H. Liu, “Energy Saving Target Tracking Using Mobile Sensor

Networks,” IEEE International Conference on Robotics and Automation, pp.

3653-3658, 2007.

[44] C.Y. Lin, Y.C. Tseng, and T.H. Lai, “Message-Efficient In-Network Location

Management in a Multi-sink Wireless Sensor Network,” Proceedings of the

IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing, pp. 496-505, 2006.

[45] F.Y.S. Lin and Y.F. Wen, “Multi-sink Data Aggregation Routing and Scheduling

 180

with Dynamic Radii in WSNs,” IEEE Communications Letters, vol. 10, pp.

692-694, 2006.

[46] Y. Yang and M. Cardei, “Movement-assisted Sensor Redeployment Scheme for

Network Lifetime Increase,” The Proceedings of the 10th ACM Symposium on

Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Chania,

Crete Island, Greece, 2007.

[47] W. Liang and Y. Liu, “Online Data Gathering for Maximizing Network Lifetime

in Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 6, pp. 2-11,

2007.

[48] C. Schurgers, et al., “Optimizing Sensor Networks in The

Energy-latency-density Design Space,” IEEE Transactions on Mobile

Computing, vol. 1, pp. 70-80, 2002.

[49] E. L. Lloyd and G. Xue, “Relay Node Placement in Wireless Sensor Networks,”

IEEE Transactions on Computers, vol. 56, pp. 134-138, 2007.

[50] A.S. Chhetri, et al., “Sensor Resource Allocation for Tracking Using Outer

Approximation,” IEEE Signal Processing Letters, vol. 14, pp. 213-216, 2007.

[51] J. Li and X. Liu, “Survivability for Wireless Sensor Network Model, Evaluation

and Experiment,” Fifth International Joint Conference on INC, IMS and IDC, pp.

1513-1516, 2009.

[52] H. Yang and B. Sikdar, “A Protocol for Tracking Mobile Targets Using Sensor

Networks,” Proceedings of IEEE Workshop on Sensor Network Protocols and

Application, pp. 71-81, 2003.

[53] H. Perros, “Computer Simulation Techniques: The Definitive Introduction,”

chapter 1, 2009.

[54] F.S. Hillier and G.J. Lieberman, “Introduction to Operations Research,” fifth

edition, chapter 23, McGraw-Hill, 1990.

 181

[55] S. Megerian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava, “Worst and

Best-Case Coverage in Sensor Networks,” IEEE Transactions on Mobile

Computing, pp. 84-92, 2005.

[56] “The specification of RPS-326,”

http://migatron.com/products/rps-326/rps-326.pdf.

[57] M. Lu, J. Wu, M. Cardei, and M. Li, “Energy-efficient Connected Coverage of

Discrete Targets in Wireless Sensor Networks,” Proceedings of 3rd International

Conference Networking and Mobile Computing, ICCNMC, LNCS, vol. 3619.

Springer, Heidelberg, pp. 43-52, 2005.

[58] A. Dhawan, C.T. Vu, A. Zelikovsky, Y. Li, and S. K. Prasad, “Maximum

Lifetime of Sensor Networks with Adjustable Sensing Range,” Proceedings of

the Seventh ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel Distributed Computing, 2006.

[59] C.T. Lee and F.Y.S. Lin, “Boundary Monitoring Algorithms for Wireless Sensor

Networks of Grouping Capabilities,” IEEE International Conference on Wireless

Communications, Networking and Information Security (WCNIS), Vol. 2, pp.

461-467, 2010.

[60] F.Y.S. Lin, C.T. Lee, and Y.Y. Hsu, “An Energy-Efficient Algorithm for Object

Tracking in Wireless Sensor Networks,” IEEE International Conference on

Wireless Communications, Networking and Information Security (WCNIS), Vol.

2, pp. 424-430, 2010.

[61] C.T. Lee, F.Y.S. Lin, and Y.S. Wang, “Maximizing the Lifetime of Layered

Defense in Wireless Sensor Networks,” IEEE Asia Pacific Wireless

Communications Symposium (APWCS), 2010.

[62] C. Mascolo and M. Musolesi, “SCAR: Contextaware Adaptive Routing in Delay

Tolerant Mobile Sensor Networks,” Proceedings of the International Conference

on Wireless Communications and Mobile Computing (IWCMC), 2006.

 182

[63] B. Amutha and M. Ponnavaikko, “Energy Efficient Hidden Markov Model Based

Target Tracking Mechanism in Wireless Sensor Networks,” Journal of Computer

Science, vol. 5, no. 12, pp.1085-1093, 2009.

[64] J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized Minimum-energy

Broadcasting in Ad-hoc Networks,” IEEE Infocom, pp. 2210-2217, 2003.

[65] R. L. Keeney and H. Raiffa, “Decisions with Multiple Objectives: Preference and

Value Tradeoffs,” Wiley, 1976.

[66] M. Vemula, M. F. Bugallo, and P. M. Djuric, “Target Tracking in a Two-tiered

Hierarchical Sensor Network,” Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing, vol. 4, pp. 969–972, 2006.

[67] J.B.D. Cabrera, C. Gutierrez, and R.K. Mehra, “Infrastructures and Algorithms

for Distributed Anomaly-based Intrusion Detection in Mobile Ad-hoc

Networks,” IEEE Conference on Military Communications (MILCOM), pp.

1831-1837, 2005.

[68] W. Chen, J. C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target

Tracking in Wireless Sensor Networks,” International Conference on Network

Protocols, pp. 284-294, 2003.

[69] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava.

“Coverage Problems in Wireless Ad-hoc Sensor Networks,” INFOCOM, pp.

1380-1387, 2001.

[70] A. Savvides, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Location

Discovery in Ad-hoc Wireless Sensor Networks,” unpublished, UCLA EE and

CS Departments.

[71] D. P. Bertsekas, “Dynamic Programming and Optimal Control,” chapter 6,

Athena Scientific, 2010.

 183

[72] A. Wang, S-H. Cho, C.G. Sodini, and A.P. Chandrakasan, “Energy-efficient

Modulation and MAC for Asymmetric Microsensor Systems,” Proceedings of

ISLPED, pp 106-111, 2001.

[73] V. Tsiatsis, S. Zimbeck, and M. Srivastava, “Architectural Strategies for Energy

Efficient Packet Forwarding in Wireless Sensor Networks,” Proceedings of

ISLPED, pp. 92-95, 2001.

[74] I. Demirkol, C. Ersoy, F. Alagoz, “MAC Protocols for Wireless Sensor Networks:

A Survey,” IEEE Communication Magazine, vol. 44, no. 4, pp. 115–121, 2006.

[75] J. N. Al-Karaki and A. E. Kamal. “Routing Techniques in Wireless Sensor Net

works: a Survey,” IEEE Transactions on Wireless Communications, vol. 11, no.

6, pp. 6-28, 2004.

[76] J. Cheng, M. Xie, R. Chen, and F. Roberts, “A Mobile Sensor Network for the

Surveillance of Nuclear Materials in Metropolitan Areas,” DIMACS Technical

Report, Rutgers University, 2009.

[77] R. C. Chen, C. F. Hsieh, Y. F. Huang, “An Isolation Intrusion Detection System

for Hierarchical Wireless Sensor Networks,” Journal of Networks, vol 5, no 3,

2010.

[78] Y. C. Wang and Y. C. Tseng, “Intentional mobility in wireless sensor networks,”

chapter 1, Wireless Networks: Research, Technology, and Applications, 2009.

 184

 185

Appendix A: List of Notations

A.1 Notations of Chapter 3

The notations used to model the boundary monitoring for fixed sensors problem

are listed as follows.
Given Parameters

Notation Description
S The set of all sensor nodes.

A
Index set of the service check points in the monitoring region
boundary.

Cs The initial energy level of each sensor node s.

Es
The energy consumption for aware sensor node s to sense data in each
round.

R The upper bound number of rounds.

bsa
The indicator function which is 1 if the check point a is in the sensing
range of the sensor node s, and 0 otherwise.

Decision Variables
Notation Description

srπ 1 if sensor s is awake in the round r, and 0 otherwise.

yar
1 if check point a at least is covered by one awake sensor in the round
r, and 0 otherwise.

zr
1 if full coverage boundary check points in the round r, and 0
otherwise.

The notations used to model the boundary monitoring for mobile sensors problem

are listed as follows.
Given Parameters

Notation Description
S The set of all sensor nodes.

A
Index set of the service check points in the monitoring region
boundary.

dsa
Euclidean distance for sensor node s moves to cover uncovered service
check point a, ,s S a A∈ ∈ .

e(dsa)
Energy consumption for sensor node s moves to cover uncovered
service check point a.

Es The energy level of each sensor node s, s S∈ .

 186

Em The energy consumption for sensors node to sense data in each round.
Indicator Parameters

Notation Description

ρsa
The indicator function which is 1 if the check point a is in the
coverage of the non-moved sensor node s and 0 otherwise.

σsa
The indicator function which is 1 if the check point a is in the
coverage of the moved sensor node s and 0 otherwise.

Decision Variables
Notation Description

ιs 1 if sensor node s does not move, and 0 otherwise. s S∈ .

ξsa
1 if sensor node s moving to cover uncovered check point a, and 0
otherwise. a A∈ .

srπ 1 if sensor s is awake in the round r; otherwise is equal to 0.

yar
1 if check point a at least is covered by one awake sensor in the round
r, and 0 otherwise.

zr 1 if full coverage check points in the round r, and 0 otherwise.

A.2 Notations of Chapter 4

The notations used to model the layered defense problem are listed as follows.
Given Parameters

Notation Description
S The set of all sensor nodes.
Aj Index set of the service check points of layer j in the layered defense.
Cs The initial energy level of sensor node s.
Em The energy consumption for sensor nodes to sense data.
bsaj The indicator function which is 1 if the check point a is in the radius of

the sensor node s on layer j, and 0 otherwise.
R The upper bound number of rounds.
J The total number of layers.
dj The defense rate of layer j.
Q The total defense rate.
mj The distance of early warning of layer j.
P The detectability of system.

Decision Variables
Notation Description

srπ 1 if sensor s is awake in the round r, and 0 otherwise.
yarj 1 if check point a at least is covered by one awake sensor on layer j in

the round r, and 0 otherwise.
zr 1 if satisfy total defense rate in the round r, and 0 otherwise.

 187

The notations used to model the non-layered defense problem are listed as

follows.

Controlled parameters

Notation Description
Mr The total evaluation frequency for all intruder categories in round r.
η False positive rate.
τ False negative rate.

Given Parameters
Notation Description

K The total intruder categories.

Tkr
Total evaluation frequency of each intruder type in round r (where
k∈K, r∈R).

F All possible defense strategies.

kI
uv

The strategies of an intruder, comprising his motion and intrusive
angle.

(,)kjr kG F I
uv v

1 if intruder j of the kth intruder category has alarm raised under F
uv

defense strategies and kI
uv

 intruder strategies in round r with no false

positive, and 0 otherwise (where k∈K).

(,)kjr kH F I
uv v

1 if the intruder j of the kth intruder category has not alarm raised

under F
uv

 defense strategies and kI
uv

 intruder strategies in round r

with false negative, and 0 otherwise (where k∈K).
S The set of all sensor nodes.
Cs The initial energy level of sensor node s.
Em The energy consumption for sensor nodes to sense data.
R The upper bound number of rounds.
D The defense rate.
L The distance of early warning.
W The early warning rate.

C
Core field: 2 2 2

c cx y h+ ≤ , (xc, yc) is coordinate of core and h is radius

of core.
N The set of candidate location (x, y) if intruder be detected.

Decision Variables
Notation Description

srπ 1 if sensor s is awake in the round r; and 0 otherwise.

 188

zr
1 if satisfy total defense rate and early warning rate in the round r, and
0 otherwise.

F
v

 The strategies of defender that sensor s is awake in the round r.

(,)

kjr

x yu

1 if the intruder j of the kth intruder category that Euclidean distance
between location (x,y) and core greater than or equal to L in round r,
and 0 otherwise.

A.3 Notations of Chapter 5

The notations used to model the tree-based object tracking problem are listed as

follows.

Given Parameters

Notation Description
S The set of all sensor nodes.
Γ The set of all communication nodes, including sink node.

o Artificial node outside the sensor field.

Θ
The set of the object moving frequency from x to y, , { }x y S o∀ ∈ U ,
x y≠ .

Λ The set of all links, (,)i j ∈ Λ , i≠j.
Ω The set of transmission costs (,)i jω associated with link (,)i j .

Φs
The set of all candidate paths φ between a pair of nodes, s and sink,

s S∀ ∈ .

Indicate Parameter
Notation Description

(,)i jϕδ The value of indicator function is 1 if link (,)i j is on path φ, and 0

otherwise.
Decision Variables

Notation Description

xsφ
1 if the sensor node s uses the path φ to reach the sink node, and 0
otherwise.

(,)
s
i jζ

1 if the sensor node s uses the link (,)i j to reach the sink node, and 0
otherwise.

(,)
xy
i jυ 1 if (,) 0x

i jζ = I (,) 1y
i jζ = (reporting object’s location uses the link (i,j)

when object moves from sensor x to sensor y), and 0 otherwise, x y≠ .

 189

Appendix B: Publications

Journal papers:

1. Y.F. Wen, F.Y.S. Lin, Y.C. Tzeng, and C.T. Lee, “Backhaul Assignment and

Routing Algorithms with End-to-End QoS Constraints for Wireless Mesh

Networks,” Wireless Personal Communications, Vol. 53, No. 2, pp. 211-233,

April, 2010. (SCI/EI)

Book chapter:

1. C.T. Lee and F.Y.S. Lin, “An Efficient Circuit-Switched Broadcasting in Star

Graph,” Lecture Notes in Computer Science (LNCS), No. 6082, pp.141-145,

2010. (EI/DBLP)

Conference papers:

1. C.T. Lee and F.Y.S. Lin, “Boundary Monitoring Algorithms for Wireless Sensor

Networks of Grouping Capabilities,” IEEE International Conference on Wireless

Communications, Networking and Information Security (WCNIS), Vol. 2, pp.

461-467, 2010. (EI/ISTP)

2. F.Y.S. Lin, C.T. Lee, and Y.Y. Hsu, “An Energy-Efficient Algorithm for Object

Tracking in Wireless Sensor Networks,” IEEE International Conference on

Wireless Communications, Networking and Information Security (WCNIS), Vol.

2, pp. 424-430, 2010. (EI/ISTP)

3. F.Y.S. Lin, C.T. Lee, and L.Y. Lin, “An Efficient Time Slot Allocation Algorithm

in Wireless Networks,” IEEE International Conference on Wireless

Communications, Networking and Information Security (WCNIS), Vol. 2, pp.

322-328, 2010. (EI/ISTP)

 190

4. C.T. Lee, F.Y.S. Lin, and Y.S. Wang, “Maximizing the Lifetime of Layered

Defense in Wireless Sensor Networks,” IEEE Asia Pacific Wireless

Communications Symposium (APWCS), 2010. (EI)

5. C.T. Lee and F.Y.S. Lin, “An Efficient Circuit-Switched Broadcasting in Star

Graph,” The 10th International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP), 2010. (EI/DBLP)

6. C.T. Lee and F.Y.S. Lin, “An Energy-Efficient Lagrangean Relaxation-based

Object Tracking Algorithm in Wireless Sensor Networks,” The 20th

International Conference on Information Management (ICIM), pp. 282-291,

2009.

7. F.Y.S. Lin, L.Y. Lin, and C.T. Lee, “A Near-optimal Time Slot Allocation

Algorithm for Wireless Networks that Support Multiple Classes of Traffic,” The

19th International Conference on Information Management (ICIM), 2008.

8. C.T. Lee, F.Y.S. Lin, and Y.F. Wen, “An Efficient Object Tracking Algorithm in

Wireless Sensor Networks,” The 9th Joint Conference on Information Sciences

(JCIS) (The 9th International Conference on Computer Science and Informatics),

pp. 619-625, 2006. (EI/DBLP)

9. C.F. Lin, F.Y.S. Lin, and C.T. Lee, “A Near-optimal Slot Assignment Algorithm

for RFID Reader Networks,” The 9th Joint Conference on Information Sciences

(JCIS) (The 9th International Conference on Computer Science and Informatics),

pp. 856-859, 2006. (EI/DBLP)

