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中中中文文文摘摘摘要要要

本論文提出一個可用於動態場景、視角、光源的混合式光跡追蹤成

像法，混合使用區域著色法(Local Shading)和光跡追蹤法。過去雖然有
許多相關的方法被提出，然而大多只呈現部分成像效果而已，而且硬

體要求也比較高。我們選擇使用區域著色法和光跡追蹤法各自的優點

並利用圖形處理器(GPU)和多核心處理器(CPU)以平行計算方式，期望

在目前一般的硬體規格下能計算出柔和陰影、反射、折射，以及間接

光照等效果，並且加速至互動速率下呈現。
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Abstract

This thesis presents a hybrid ray tracing renderer for fully dynamic scene,

camera, and light sources. Many Ray tracing algorithms have been proposed

to product most visual effects but these methods are still hard to render at

interactive rate on common hardwares. We combined raytracing with local

shading methods and used parallel computing on GPUs and CPUs to product

most visual effects like soft shadow, reflection, refraction, indirect lighting

effects at interactive rate on most common hardware today.
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Chapter 1

Introduction

There are still limitations of visual effects in virtual reality applications on modern hard-

wares. Rasterization-based rendering method is used in most virtual reality applications

because that the computational power was still not enough to solve the global illumina-

tion problem in real-time. However, the objects of the scene are animated in real-time

application so that we don’t need to compute global illumination accurately. Therefore,

we can approximate the global illumination to reduce computing cost and make the visual

quality believable.

Rasterization-based rendering method can produces high quality direct lighting ef-

fects such as per-pixel lighting, soft shadow and it is used in almost all the real-time

applications like video/PC games and training simulators. The performance is good on

modern graphics hardware but there are still limitations of many effects like global illu-

mination, indirect lighting, reflection, refraction which we can not approximate well with

a rasterization-based renderer.

The ray tracing method traces the path through pixels to virtual objects to render the

realistic images. It can simulate realistic lighting effects such as reflection and refraction

which are difficult to be simulated by other algorithms. It is the most popular renderer in

animations, movies that need not to offer interactive experience. The high computational

costs make this method hard to be used on real-time applications.

The multicore processors are more and more popular today but there still have just

few of core number on PC. The other rapidly increasing processing power is GPUs. The

1



programming on GPUs is quite different to single processing programming. The paral-

lel computer programs are more difficult to write because there are more potential bugs,

unique programming styles, the limitation of instructions. However, the parallel comput-

ing is a trend in discovering computering power and have become popular today. With

the parallel programming including CPUs and GPUs, the ray tracing algorithm can be

real-time or interactive rate.

We propose a rendering pipeline that can render most visual effects including direct

lighting, indirect lighting, soft shadow, reflection, refraction with high visual quality in

interactive frame rate. The final result was consisted of several visual effects, which we

can deal with effectively. Some visual effects like direct lighting, soft shadow, indirect

lighting are performed well on rasterization-based renderer. We will explain the rendering

pipeline and how we produce those effects in the third section. The other visual effects

like reflection and refraction are the natural output of the ray tracing renderer. We will

show our ray tracer in section four. The fifth section shows the results and comparsion.

The final section draws the conclusion and our future research.
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Chapter 2

Related Work

In this thesis, we put emphases on visual quality and performance at real-time or inter-

active frame rate on modern hardware. Global illumination is the final visual effect we

pursue but it is difficult to run in real time because of the heavy computation cost. There

are several algorithms have been proposed to approximate global illumination. The com-

parison between direct light only and global illumination is shown as Figure 2.1.

Raytracing . There is an important raytracing research came from Turner Whitted[19]

in 1980 as Figure 2.2. When a ray hits a nearest surface, it will generate two new rays that

are reflection ray and refraction ray and continue to hit the objects in the scene. At the

intersection point, the ray tracer computes the shading that come from local illumination,

reflection illumination and refraction illumination. If testing in shadow is required, it will

also generate shadow rays, the point to each light sources, to check any opaque object is

found. The process continues recursively until reach the maximun trace depth. In nature,

the lighting of the surfaces comes from not only the exact path but also the enviroment

illumination. Physically based raytracing[11] has been introduced to render photorealistic

images. By increasing sampling rays of each pixel to hundreds even thousands, raytracing

can render a very high quality of visual realism. Of course, computing cost also increased

hundreds even thousands time.

Illumination from many lights. Global Illumination can be approximated by lit from

many point lights. There is several work that have good improvement to accelerate the

render speed. Lightcuts proposed by Walter et al. [18] is a scalable algorithm for handling

3



(a) (b)

Figure 2.1: (a) Direct light only. (b) Pure Monte Carlo raytracing, 512 samples per ray,

image size 1024x1024, rendered with 15Min19Sec.

Figure 2.2: Whitted-style raytracing.
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many lights by a hierarchical light tree. Matrix Row-Column Sampling for the Many-

Light Problem by Hašan et al. [5] samples and clusters the lights on GPUs and accelerates

the rendering speed to seconds per frame.

Instant radiosity by Keller [8] is limited to indirect illumination. The method cre-

ates a group of particles and shoots them from light sources into the scene. Every in-

section point creates a virual point light(VPL) and then uses the VPLs as light sources

to illuminate the scene. There is extended work of Instant radiosity. Bidirectional In-

stant Radiosity [14] creates the VPLs starting at the camera instead of starting at the light

sources. Metropolis Instant Radiosity by Segovia et al.[15] combines Instant Radiosity

with Metropolis sampler [17]. Incremental Instant Radiosity by Laine et al. [9] reuses

VPLs and maintains the distribution. Virtual Spherical Lights [4] integrates over a non-

zero solid angle of VPLs.

Precomputed Radiance Transfer (PRT) has been shown to real-time rendering for

some effects of global illumination like soft shadow, diffuse and glossy interreflections

[16] [10]. For most PRT algorithms, the incident irradiance must be precomputed, a large

amount of data must be stored, the scene must be static and several minutes to hours are

required for precomputation.

Photon map is a global illumination algorithm developed by Henrik Wann Jensen[7]

and was first implemented on the GPUs by Purcell et al.[13] change the data structure

to a uniform grid and search a sample point in the grid by kNN algorithm. Some visual

effects like caustics, diffuse interreflection, subsurface scattering can be simulated by this

algorithm. In order to realistically simulate between lights and different objects, there

must have huge numbers of photons to render high quality images.

5
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Chapter 3

Rendering

There are two popular computer graphics APIs: Direct3D and OpenGL. Direct3D was

designed by Microsoft Corporation on Microsoft’s family of operating systems, including

the Xbox family of video game console. OpenGL is an open standard API and is avail-

able on most modern operating systems like Windows, Mac OS X and Linux. It is also

available on mobile devices such as iPhone, Android and Symbian OS in the OpenGL ES

form. We use OpenGL as our main graphics API, expected that our implementation can

work fine on most platform.

Figure 3.1 shows the rendering pipeline of this work. First, we build bounding volume

for each object and if the object contains more then hundred triangles then we also build a

kd-tree for the object. Next, we render shadow maps for each light source and we use per-

pixel lighting for direct lighting and store material attributes on screen space. We then

use raytracing for the multi-bounce materials. We create global photons from the light

sources and approximate the indirect lighting effect. Finally we compose the final image

from the images: direct lighting map, reflection and refraction map, indirect lighting map.

3.1 Direct lighting

Most typical graphic acceleration hardware uses rasterization algorithms today. Rasterization-

based rendering was performed well in direct lighting effects. We used Blinn-Phong shad-

ing model, developed by Jim Blinn[1], as our direct lighting model. We implemented per-

pixel lighting algorithms by using fragment shaders and computing illumination at each

7



Figure 3.1: Our rendering pipeline.

pixel to produce realistic images. We compared the rasterization method with raytracing

method and realized that the visual quality was exactly the same and rasterization method

was much faster then raytracing method.

Blinn-Phong is the default shading model on each vertex in OpenGL or Direct3D ren-

dering pipeline, interpolated by Gouraud shading [3] for pixel value between vertices. We

can not use Blinn-Phong shading model in fixed pipeline rendering, but we can compute

the Blinn-Phong equation on each pixel using fragment shaders. The illumination of each

point Ip is

Ip = kaia +
∑

m∈lights
(kd(Lm ·N)id + ks(N ·H)αis)

,where ka, kd, ks denotes the ambient reflection constant, the diffuse reflection constant,

the specular reflection constant respectively, ia is ambient lighting, id is diffuse lighting,

is is specular lighting, L as the vector from the point to the each light source, N as the

surface normal vector at the point, α is a shininess constant of the material, H as the

half-angle vector between the view vector, L, and light source vector, V .

H =
L+ V

|L+ V |

The sample code of Blinn-Phong shading model can be written as Table 3.1.

3.2 Soft shadow

Effect such as hard edge shadow was simple to implement using raytracing algorithms, but

there was still time consuming problem with soft shadow. So there are popular shadowing

8



vec3 BlinnPhongShadingModel()

vec3 H=normalize(L+V);

vec3 Ip=Ka*Ia+

Kd*max(dot(Lm,N),0)*Id+

Ks*pow(max(dot(H,N),0),shininess)*Is;

return Ip;

Table 3.1: Sample code of Blinn-Phong shading model.

algorithms were developed to exploit modern graphic hardware.

Shadow map[20] is the most common shadowing algorithm and can be implemented

on current graphics hardwares and their computing cost is low even the scene is com-

plexity. Unfortunately, shadow map algorithm has aliasing problem if not filtered well.

We implemented variance shadow map, by Donnelly et al.[2], for more efficiently soft

shadow. First, we render the scene to a fp16 framebuffer object from the view of light

source and the normalized depth and squared depth were stored in the framebuffer. Then,

filter the shadow map using a 7x7 gaussian blur. The result of filtering shadow map will

discover the moments M1 and M2 over the filter region:

M1 = E(x) =
∫ ∞
−∞

xp(x)dx

M2 = E(x2) =
∫ ∞
−∞

x2p(x)dx

The mean µ and variance σ2:

µ = E(x) =M1

σ2 = E(x2)− E(x)2 =M2 −M2
1

By Chebychev’s inequality:

P (x ≥ t) ≤ pmax(t) ≡
σ2

σ2 + (t− µ)2

Next, render the scene from the view of camera and read the shadow map to get the

moments M1 and M2. If the depth < µ, then the point is not shadowed, else compute the

variance σ2 and µ:

µ = pd2 + (1− p)d1

9



Figure 3.2: Illuminate the scene using virtual point lights (VPLs).

σ2 = (p− p2)(d2 − d1)2

Where d1 is the depth at occluder, d2 is the depth at casting shadow planar, p is the

percentage of the filter that is not occluded. Finally, scale the light intensity by pmax:

pmax(d2) =
σ2

σ2 + (µ− d2)2

3.3 Indirect Lighting

Instant Radiosity by Keller [8] is used to calculate the indirect illumination of the scene

by shooting particles from the light sources and use those particles as point light sources

to illuminate the scene show as Figure 3.2. Those particles were called virtual point lights

(VPLs). The benefits of this method are there don’t need any preprocessing and it is fitted

for modern hardwares. There are two different issues. If we need a high quality indirect

illumination, we can increase the number of VPLs and illuminating from each VPL with

a high quality shadow map. Otherwise if the rendering speed is required, we can adjust

the numbers of VPLs and ignore the shadow caused from each VPL.

The same idea was used in our implementation. First we create uniform sampling rays

from the light sources, tracing each ray to intersect the scene by ray tracer and create a

photon, each photon contains position, direction, color, and the power of light. Next, the

data of all photons were stored to a texture buffer, which is updated every frame. Final,

10



we calculate the illumination for each photon and accumulate them on fragment shader

as Table 3.2.

//world_pos, the position of the pixel in world space

vec4 IndirectIllumination(PHOTON photons[], vec3 world_pos)

vec4 illumination=0;

for each(PHOTON photon in photons)

if(IsInFront(photon.direction,world_pos))

illumination+=CalcuateIllumination(photon,world_pos);

return illumination;

Table 3.2: Pseudocode of accumulate the photon illumination.

11
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Chapter 4

Raytracing

The Whitted-style raytracing was used for our raytracing renderer and the shadow rays

were ignored because we render soft shadow using shadow map algorithm. Raytracer

was used on dynamic scene so fast reconstruction of the acceleration trees were needed.

The real time kd-tree construction algorithm was presented by Kun Zhou et al. [21]. The

computing cost for fully animated scene is still too high. In order to reduce the computing

cost of reconstructing acceleration tree, we try to mix bounding volume hierarchies with

kd-trees as Figure 4.1. If the triangles of the objects were greater then hundreds the system

will build kd-tree for the object else the system will simply build the bounding volume

for the object. While the object is moving, we update the transformation matrix and the

bounding volume and the reconstruction of kd-tree is not required.

In order to downscale the computing cost of the raytracer, we use a trivial method in

our framework that we first use fragment shader to render an image of the scene that each

Figure 4.1: Acceleration structures. Mix bounding volume hierarchies with KD-tree.

13



color channel contain material factors, include reflection factor and refraction factor. Next

we group pixels and put in a thread pool, use the material map on screen space as a look

up table, then trace each ray tracing that contain reflection factor or refraction factor. The

framework works on parallel architectures with multi cores processors.

4.1 Bounding Volume Hierarchies

Bounding volume hierarchies(BVH) is a tree structure to accelerate the intersection of

ray and objects. We use the axis-aligned bounding box(AABB) for our bounding volume.

There is a bounding volume for each object, and the volume is contained in the bounding

volume of parent’s node. A leaf node of bounding volume may consists of triangles or a

kd-tree node. The computing cost of a ray-AABB intersection is cheaper then a group of

ray-triangle intersection and a kd-tree node intersection. So we use bounding volume test

first to reject most geometric objects that will not intersect the ray.

BOUNDBOX BuildBoundVolume(vertices[])

BOUNDBOX box;

for(i=0;i<vertices.size();i++)

Union(box,vertices[i]);

return box;

Table 4.1: Pseudocode of constructing the bounding volume of a object.

BOUNDBOX Transform(BOUNDBOX boundbox,mat4 matrix)

BOUNDBOX box;

for(i=0;i<8;i++)

vec3 corner=Transform(boundbox.corner[i],matrix);

Union(box,corner);

return box;

Table 4.2: Pseudocode of transforming a bounding box.

We construct the BVH using bottom-up methods. First we create bounding volume for

each object, Table 4.1 shows the pseudocode. If there are overlap between the bounding

14



bool IntersectBVH(Ray ray, NODE node)

if(Is_Intersected(ray,node.boundbox))

if(node.isLeaf)

return IntersectTriangles(ray,node.triangles);

else if(node.isKDTree)

return IntersectKDTree(ray,node.kdtree);

else

bool isIntersected=false;

for each(NODE child_node in node)

isIntersected|=IntersectBVH(ray,child_node);

return isIntersected;

else

return false;

Table 4.3: Pseudocode of intersecting a ray with BVH.

volumes, these nodes are considered that they have the same parent node. Because our

objects in the scene are movable, updateing bounding volume tree must be a lightweight

processing. When the object moved, we don’t need to rebuild the bounding volume of the

object. We use the transformation matrix of the object to transform the bounding volume

show as Table 4.2. The traversal of BVH on CPUs is trivial, when a ray intersects with

bounding volume of the root, if there is no intersection then the ray was removed else all

child nodes of the root need to do intersection test. A leaf node of the tree may contains

a group of triangles or a kd-tree structure. We continue to do intersection test of all the

child node recursively until the nearest intersection point is found show as Table 4.3.

4.2 KD-Tree

KD-tree is a binary space partitioning structure and the space is partitioned by axis-

aligned planes. A property of kd-tree is that the nearer child node will be tested first,

so the nearest intersection point is guaranteed. We use kd-tree for triange intensive ob-

jects and the root of the kd-tree is the bounding box of the object. Assume that all the

object are rigid bodies then we can try to construct an optimized kd-tree and do not need

15



to reconstruct every frame even if the object is moving. The pseudocode of constructing

a kd-tree of a object show as Table 4.4.

NODE BuildKDTree(GEOMETRY geometry,int depth)

if(geometry.triangle.size()<=MIN_TRIANGLES

|| depth>=MAX_TREEDEPTH)

return CreateLeafNode(geometry);

EDGE bestEdge=FindBestEdge(geometry.edges);

NODE node=CreateTreeNode();

GEOMETRY left_geometry=SplitGeometry(geometry,bestEdge,LEFT);

GEOMETRY right_geometry=SplitGeometry(geometry,bestEdge,RIGHT);

node.left=BuildKDTree(left_geometry,depth+1);

node.right=BuildKDTree(right_geometry,depth+1);

return node;

EDGE FindBestEdge(EDGE edges[])

Sort(edges);

EDGE bestEdge=NULL;

float bestCost=0;

for each(EDGE edge in edges)

cost=CostFunction(edge);

if(cost<bestCost)

bestCost=cost;

bestEdge=edge;

return bestEdge;

Table 4.4: Pseudocode of constructing a kd-tree.

For the best split, the cost equation was bring up by Stefan Popov et al. [12]. We are

looking for v that minimizes C(v) with

C(v) = KT + Cl(v) + Cr(v)

Cl(v) = KInl(v)
2(s1 + s2)(v − vmin) + 2s1s2

SA(N)

Cr(v) = KInr(v)
2(s1 + s2)(vmax − v) + 2s1s2

SA(N)

Where v denote the position of a split location for the current node N , bounded by vmin

and vmax. s1 and s2 be the extent of node N in the other two axis. nl(v) and nr(v) denote

16



the number of objects to the left and right side of v. KT is the constant of traversal cost,

KI is the constant of intersection cost.

Due to the limitation of GPUs programming, recursive function is not allow for GPUs

implementation, we use short-stack method by Horn et al. [6] for the traversal of a kd-tree

on both CPUs and GPUs version. The pseudocode of travering kd-tree show as Table 4.5.

4.3 Shading

When a ray hits on the surface, the shading of the intersection point will be processed. If

the material of the surface is reflective and/or refractive and not reach the maximum of

tracing depth, it will split into two rays, reflection ray and refraction ray, and trace those

rays recursively. The shading color will be combined from local shading color, reflective

color and refractive color. Here, we ignore the intersection test from the shadow ray,

because we use soft shadow map algorithm instead of raytrace shadow.

To compute the lighting of intersection point, we need the normal vector of the inter-

section point. We use Barycentric coordinate system (1827) by August Ferdinand Möbius

to interpolate the normal vector from the tree normal vectors of the vertices. Lets define

three vertices r1, r2 and r3 of a triangle T . A point r located inside the triangle will be

considered as a weighted sum of those three vertices:

r = γ1r1 + γ2r2 + γ3r3

Where γ1, γ2 and γ3 are the weights for the vertices, and the sum of the weights is con-

stant:

γ1 + γ2 + γ3 = 1

Next, we pick two axis that the distance of the vertices on the other axis must not zero.

The vertex p(x, y) in the triangle (x1, y1), (x2, y2) and (x3, y3), the values of each weights:

T = (x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)

γ1 =
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

det(T )

γ2 =
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

det(T )

17



γ3 = 1− γ1 − γ2

After found the normal vector of the intersection point, we compute the illumination by

Lambertian reflection model.

4.4 GPU Implementation

General purpose computing on graphics processing units(GPGPU) programming have

become popular today because of the high computing power. But the architecture of

modern GPUs is designed for rasterization-based rendering, so there are some tricks when

we would like to dig the computing power of GPUs. Besides the parallel raytracing on

multi-core CPUs, we have also implemented the raytracing by the following APIs.

Direct3D is a part of Microsoft’s DirectX API and is used to render 3D graphics.

Refer to the Direct3D9 rendering pipeline, as Figure 4.2, only vertex shaders and pixel

shaders that can be programmed using shader language. We consider that each pixel as

a viewing ray, so the pixel shaders can be used for raytrace computing. There is another

problem that we can not use the data of the geometries, so we need to pack the triangle

data into textures. The value of color channels we use in pixel shaders is normalized, we

need to rescale the coordinates on texture and restore on pixel shaders. A triangle consists

of three positions and three normal vectors, so eighteen value of floating point are needed

for a triangle data. We use a four channel texel, A32R32G32B32F texture format, to store

triangle list and five texels are used for an element of a triangle data. Shader model 3.0

is used for our shader codes, there are up to 224 of 4D constant float registers, we put

light source parameters, camera parameters and the data of all objects including material

attribution, bounding volumes, transformation matrix in the constant registers and were

updated every frame.

OpenCL (Open Computing Language) is a framework for writing parallel computing

programs use of CPUs, GPUs, and other processors and it also gives application access

to the GPUs for general purpose computing. Its architecture is similar to NVidia’s CUDA

and Microsoft’s DirectCompute, provide parallel computing using task-based and data-

based parallelism. The good new is that we don’t need to pack the data and rescale it
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Figure 4.2: Direct3D rendering pipeline.

into a normalized texture. But the request of memory alignment is exacting. We realloc

memory of primitives, light sources, triangles, kd-tree nodes, bounding volume nodes,

index of triangle list, and store them into four components of vector data type. Finally,

we compile the kernel and deal each pixel with a global thread.

OpenGL is a industry standard for high performance graphics APIs, and is managed

by Khronos Group today. The rendering pipeline is similar to Direct3D (Figure 4.2)

and also is for rasterization-based rendering. It is programmable for coloring each pixel

call fragment shaders, just an alternative name of pixel shaders in Direct3D. There is an

important API, Texture Buffer, for our works on OpenGL version 3.1. That means we can

use raw data sources as a 1D texture in our fragment shaders, we don’t need to rescale

the data of triangles and normalize them that we can accurately access the data in the

program. The code of creating texture buffer shows as Table 4.6.
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bool IntersectKDTree(RAY ray,KDTREE tree)

ray=Transform(ray,tree.matrix);

tHit=ray.tmax; tMin=tMax=ray.tmin;

bool push;

NODESTACK stack[MAX_STACKSIZE];

NODE root=tree.root;

while(tMax<ray.tmax)

NODE node;

if(IsEmpty(stack))

node=root;

tMin=tMax; tMax=ray.tmax;

push=true;

else

stack.pop(node,tMin,tMax);

push=false;

while(node.isLeaf==false)

int a=node.axis;

tSplit=(node.split-ray.point[a])/ray.direction[a];

(first, second)=order(ray.direction[a],

node.left, node.right);

if(tSplit>=tMax || tSplit<0)

node=first;

else if(tSplit<=tMin)

node=second;

else

stack.push(second, tSplit, tMax);

node=first;

tMax=tSplit;

push=false;

if(push)

root=node;

tHit=IntersectTriangle(ray,node.triangles);

if(tHit<tMax)

return true;

return false;

Table 4.5: Pseudocode of travering a kd-tree.
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glGenBuffers(1,&mBufferGL);

glBindBuffer(GL_TEXTURE_BUFFER,mBufferGL);

glBufferData(GL_TEXTURE_BUFFER,size,mem,GL_STREAM_DRAW);

glBindBuffer(GL_TEXTURE_BUFFER,0);

glGenTextures(1,&mTextureGL);

glBindTexture(GL_TEXTURE_BUFFER,mTextureGL);

glTexBuffer(GL_TEXTURE_BUFFER,mInternalFormatGL,mBufferGL);

glBindTexture(GL_TEXTURE_BUFFER,0);

Table 4.6: The demo code of creating texture buffer in OpenGL.
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Chapter 5

Experiments and Results

5.1 Environment

We have implemented the rendering pipeline in a program and tested on a desktop PC

with Intel CPU Q6600 2.4GHz, 8GB ram, ATI Radeon HD 4850 GPU at 625MHz with

512MB video memory at 993MHz. The resolution of images were 1024*1024. The

OpenGL version is 3.2. The second hardware was a laptop with Intel Core i5-450M, 4GB

ram, ATI Mobility Radeon HD 5650.

There are several scenes we used for experiments show as Figure 5.1. The camera,

light sources, objects of the scenes are fully dynamic.

• Rolling box 22 triangles. A rolling box has different color of each side in a normal

room with a moving spot light on it. For emphasizing the effect of indirect lighting.

• Rolling box donut 598 triangles. A rolling reflectional donut within a rolling refrac-

tional box.

• 2 Spheres 1066 triangles. A moving sphere with a static sphere with different re-

flection factor.

• Rolling box Venus 31420 triangles. A rolling box with a reflectional venus.

• Rolling box Sponza 66466 triangles. A triangle intensive scene. A rolling reflec-

tional box in Sponza.
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(a) (b) (c)

(d) (e)

Figure 5.1: The test scenes. (a) Rolling box. (b) Rolling box donut. (c) 2 spheres. (d)

Rolling box Venus. (e) Rolling box Sponza.

Triangles 641 1583 3153 6293 12571 18847 25125 31403

Desktop (FPS) 7 6.3 6 5.5 5 4.8 4.7 4.7

Laptop (FPS) 4.2 3.8 3.5 3.4 3.3 3.3 3.3 3.2

Table 5.1: Comparison with the complexity of triangles and performance on PCs.

5.2 Results

We have rendered a sequence of animation images of each scene, the camera, light

sources, objects are all movable. There are also comparison between indirect lighting

and direct lighting only as Figure 5.2(a)(b), 5.3(a)(b), 5.4(a)(b), 5.5(a)(b) and 5.6(a)(b).

We also setup a scene with a multi-resolution geometric,Venus , as Figure 5.7 to test the

relation between the complexity of triangles and performance as Table 5.1.
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(a) Final image (b) Direct lighting only

(c) A sequence of animation

Figure 5.2: Rolling box, the frame rate is about 20 fps.

(a) Final image (b) Direct lighting only

(c) A sequence of animation

Figure 5.3: Rolling box donut, the frame rate is about 7 fps.
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(a) Final image (b) Direct lighting only

(c) A sequence of animation

Figure 5.4: 2 spheres, the frame rate is about 10 fps.

(a) Final image (b) Direct lighting only

(c) A sequence of animation

Figure 5.5: Rolling box Venus, the frame rate is about 5 fps.
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(a) Final image (b) Direct lighting only

(c) A sequence of animation

Figure 5.6: Rolling box Sponza, the frame rate is about 4 fps.

Figure 5.7: Multi-resolution geometric,Venus, for comparing with the complexity of tri-

angles and performance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have implemented a rendering pipeline to render most effects of global

illumination with fully dynamic scenes, camera, and light sources without precomputation

in interactive frame rate. The visual quality is satisfied for an interactive application. Our

rendering pipeline was designed for parallel computing thus every processor including all

cores of CPUs, GPUs was fully used. Our framework can work sufficiently on the great

majority of the mainstream hardware, that we have tested on a mainstream desktop PC

and a mainstream laptop PC.

We suffered many difficulties on our implementation. One of the major difficulty is

debugging on GPU programming. There are already many tools for shader programming

on both Direct3D and OpenGL, because they have developed for a long time. But OpenCL

is a new standard, there are few samples and tools to help. There is a situation we usually

meet. There is not error when we compiled the kernel code, but when we execute our

program, the program crashed and we got no message. We also can’t trace the kernel code

step by step. The other difficulty is that we can’t exactly control the compiler and how

our shader code to be compiled when our shader code become larger and more complex.

Sometimes we have confidence in our high level shader code would work correctly, but

in fact the result is obviously not we want. We almost get it to work by try and run.
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6.2 Future Work

Our raytracer can deal with moving objects of rigid body but not soft body. The limitation

comes from the acceleration tree, that we don’t rebuild kd-tree every frame. We will try to

solve this issue by using another efficient acceleration tree. There is an important visual

effect missing to our rendering pipeline, caustic. It is time consuming to represent this

effect. Next step, we may try to use thousands of photons to trace transparent objects on

the raytracer and render those photons efficiently. There are still rooms to improve the

performance, many properties can be adjusted. We will work on our framework to make

the performance satisfied.
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