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中文摘要 

 
近年來由於製成技術的進步，使支援多個工作同時進行之多核心架構

(Multi-core architecture)成為晶片設計主流。多核心架構因系統上有多個可獨立運

做之運算單元(Processing Elements, PE)，使其特別適用於有大量平行度之應用程

式。但每個可獨立運做之 PE 也會同時發出記憶體存取之需求，進而對記憶體系

統造成不小之壓力。因此在多核心架構晶片設計上，記憶體系統之設計對整體系

統效能有相當重要的影響。因此，在本論文中，我們針對兩種不同的多核心系統

晶片架構：(1) 以傳統二維方式連結處理器及動態存取記憶體(Dynamic Random 
Access Memory, DRAM) 多核心系統晶片 (Multi-Processor System-on-Chips 
(MPSoCs) with traditional 2D CPU-DRAM connection)，及(2)以三維堆疊 DRAM
之多核心系統晶片(MPSoCs with stacked DRAMs)，分別提出考量記憶體系統架

構之系統合成方法。 
 
在 MPSoCs with traditional 2D CPU-DRAM connection 架構方面，我們發現，

為達最佳系統效能，系統晶片上之運算單元與記憶體模組之資源分配應針對所執

行之應用程式，以避免記憶體系統成為系統效能之主要瓶頸。然而，傳統之多核

心單晶片系統設計流程中，運算單元與記憶體模組之資源分配通常都分開獨立進

行，因此無法考量到兩種資源之分配多寡對系統之影響。因此，在本論文中，我

們針對此一問題提出第一個運算單元與記憶體系統資源共同合成之多核心單晶

片系統設計流程(PE and Memory Co-Synthesis (PM-COSYN) for MPSoCs)。 
 
在以三維堆疊技術實現之單晶片多核心系統方面，由於三維堆疊技術可利用

穿矽通孔(Through-Silicon Vias, TSVs)所組成之垂直通道(Vertical Bus)，使 DRAM
可與運算處理器晶片以三維堆疊的方式整合在同一晶片系統上，此外，TSV 可

高密度地擺放在晶片上進而提供大量記憶體頻寬(Memory Bandwidth)。因此有大

量Memory Bandwidth需求的PE，可整合記憶體控制器(DRAM Memory Controller, 



DMC)於其上，使 PE 可透過近端整合之 DMC 與堆疊其上之 DRAM 溝通。由此

可見，MPSoCs with stacked DRAM 中 PE 與 DRAM 之溝通介面為由多個 DMC
所組成之分散式介面(Distributed DRAM Interface)。然而，DMC 所需之晶片資源

相當多，如果 PE 可不近端整合 DMC，其資源可以用來擴大 PE 之靜態存取記憶

體(Static Random Access Memory, SRAM)之容量。此外，TSV 雖可提供大量

Memory Bandwidth，但 TSV 的製成除需額外之金錢花費外，更對晶片良率(Chip 
Yields)有負面的影響。因此，我們在本論文中，我們針對 MPSoCs with stacked 
DRAMs，提出一套分散式記憶體系統介面合成方法(Distributed Memory Interface 
Synthesis)。此合成方法根據系統對記憶體系統進行存取的行為與需求，決定晶

片上之記憶體控制器個數，以及每個記憶體控制器之 Vertical Bus 寬度，讓系統

可維持在指定之效能需求下，使晶片上之 TSV 總數量最少化。 
 
關鍵字 – 運算單元，記憶體系統，多核心單晶片系統，合成，三維堆疊，分散

式記憶體系統介面 
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Abstract

Multi-core architecture is attractive to applications with significant parallelism

since multiple processing elements (PEs) are put on a single die to support par-

allel execution. However, multi-core architecture also stresses the memory system

with concurrent memory accesses from different PEs. With the number of cores

on a chip increases, the main memory bandwidth requirement also grows. There-

fore, it is important to have a memory-aware design when designing Multi-Processor

System-on-Chips (MPSoCs). In this thesis, we propose memory-aware MPSoC syn-

thesis methods for MPSoCs with two different architectures: (a) MPSoCs with

the traditional 2-Dimensional (2D) CPU-DRAM connection, and (b) MPSoCs with

3-Dimensional (3D) stacked DRAMs. For MPSoCs with the traditional 2D CPU-

DRAM connection, the main memory bandwidth is limited due to pin limitations.

To maximize system performance, it is important to simultaneously consider the PE

and on-chip memory architecture design with limited on-chip resource. That is, on

one hand, we want to allocate as many PEs as possible to fully utilize the available

task parallelism in the target applications, and on the other hand, we need to in-

corporate a significant amount of on-chip memory to alleviate memory bottleneck.

However, in a traditional MPSoC design flow, memory and computation components



are often considered independently. To tackle this problem, we develop the first PE

and memory co-synthesis framework for MPSoCs with 2D CPU-DRAM connections.

The goal of the algorithm is to simultaneously synthesize the allocation of PE and

on-chip memory modules so that system performance is maximized subject to the re-

source constraint. In MPSoCs with stacked DRAMs, the 3D die-stacking technology

utilizes Though-Silicon Vias (TSVs) to integrate processing cores and DRAMs on

the same chip. Moreover, the TSVs that can be placed densely provide high DRAM

bandwidth for the system. Therefore, to utilize the high DRAM bandwdith, each

PE can have a local DRAM memory controller (DMC) so that it can directly access

the DRAM module stacked on top of the PE. This forms a distributed memory

interface for CPU-DRAM connection in MPSoCs with stacked DRAMs. However,

a DMC occupies a significant share of transistor budget, which can be traded for

enlarging the capacity of high speed local SRAM. Moreover, TSVs need extra man-

ufacturing cost and have adverse impact on chip yields. Therefore, the distributed

memory interface, including the number of allocated DMCs and vertical bus width

of each DMC, should be designed carefully. To tackle this problem, in this thesis,

we propose the first algorithm to synthesize the DMC allocation and vertical bus

allocation for MPSoCs with stacked DRAMs. The goal of the proposed algorithm

is to find a proper distributed memory interface design for the given task set so

that the total number of TSVs in the system is minimized while the user-defined

performance constraint is met.

Keywords— Processing Elements, Memory Subsystem, Multi-Processor

System-on-Chip, Synthesis, 3-Dimensional Integration, Distributed Memory Inter-

face
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Chapter 1

Introduction

The relentless pace of technology leads to multi-core microprocessor designs with

extensive on-die integration of large number of cores. As predicted by the Moore’s

Law, the number of transistors that can be inexpensively placed on an integrated

circuit is doubling approximately every two years [49]. Figure 1.1 shows the number

of transistors integrated into Intel processors. We can see that multi-core architec-

tures have become mainstreams in the last few years. As the technology continues to

shrink, the number of cores on a chip will continue to grow. With this trend, Multi-

Processor System-on-Chips (MPSoCs) are becoming a popular solution to meet the

growing processing demands of embedded applications.

Multi-core architecture improves system performance by putting multiple

Processing Elements (PEs) on the system to exploit task parallelism. However,

concurrent memory accesses from different PEs also stress the memory subsystem.

Due to the performance scaling discrepancy between DRAMs and processing cores,

the DRAM system is becoming the performance bottleneck with technology scaling,

and this is known as the Memory Wall issue [45,68]. With multiple PEs competing

for the DRAM bandwidth, the memory wall issue is further worsened. In [55],

authors provide a thorough study on how the memory wall problem restricts future

multi-core architecture scaling. Figure 1.2 is one of the results of [55], and it shows

how the off-chip memory traffic varies as the number of chip-multiprocessor cores

increases. With the same chip area and considering the next technology generation,

we can see that, the off-chip memory traffic grows super-linearly as the number of

1



Figure 1.1: Intel processor evolving with Moore’s Law [1].

processor cores increases. Therefore, from the above discussion, we can see that one

critical issue in an MPSoC design is how to deal with the memory wall issue.

Currently, the most commonly seen architecture is MPSoCs with the tradi-

tional 2D CPU-DRAM connection. In this kind of architecture, the off-chip DRAM

bandwidth is limited by pin count of the chip. Therefore, one of the major de-

sign issue for MPSoCs with the traditional 2D CPU-DRAM connection is to how to

minimize the number of off-chip memory accesses to alleviate the DRAM bottleneck

problem.

Recently, the emerging 3D die-stacking technology is proposed as one of solu-

tion for solving the DRAM bandwidth issue [30,67]. 3D die-stacking uses Through-

Silicon Vias (TSVs) as the vertical interconnection to stack several active devices

on the same chip in the third dimension. 3D die-stacking has the properties of

heterogeneous integration and the TSVs can be densely placed on a chip. There-

fore, with 3D die-stacking, DRAMs can be stacked directly on top of PEs and large

DRAM bandwidth can be supported by the high-density vertical links. In MPSoCs

with stacked DRAMs, PEs with large DRAM bandwidth requirement can have their

own local DRAM memory controllers (DMCs) so that they can accesses the DRAM

2



Figure 1.2: Memory traffic as the number of chip-multiprocessor cores varies in the

next technology generation. [55].

stacked on top it directly through the local DRAM interface [42]. As we can see,

MPSoCs with stacked DRAMs has a distributed memory interface that allows more

than one DMC on the system, and one of the major design issue in such architecture

would be how to design the distributed memory interface, such as the number of

DMCs and the vertical bus width of each DMC, according to the behavior of the

target application set.

Therefore, in this thesis, we develop two memory-aware system synthesis al-

gorithms for MPSoCs with the traditional 2D CPU-DRAM connection and MPSoCs

with stacked DRAMs, respectively. The two algorithms are (1) PE and memory co-

synthesis (PM-COSYN) algorithm or MPSoCs with 2D CPU-DRAM connection,

and (2) Distributed memory interface synthesis for MPSoCs with stacked DRAMs.

More details are discussed as follows.

1.1 PE and Memory Co-Synthesis for MPSoCs with Tradi-

tional 2D CPU-DRAM connection

As mentioned earlier, for MPSoCs with traditional 2D CPU-DRAM connec-

tion, the off-chip memory bandwidth is limited by the pin count of the chip. One

way to mitigate the off-chip memory bandwidth problem would be minimizing the

number of off-chip memory accesses. To achieve this, we can incorporate a signifi-
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Figure 1.3: Key technologies of 3D stacking. [60]

cant amount of on-chip memory modules [55]. However, we also want to dedicate as

many die resources to PEs as possible to fully utilize the available task parallelism

in the target applications. As we can see, one critical design issue in MPSoCs with

2D CPU-DRAM connection is how to utilize the limited die resource to achieve a

balanced design between memory and computation subsystems.

To tackle this problem, in this thesis, we propose the first PE and memory

co-synthesis (PM-COSYN) framework. The target architecture discussed in PM-

COSYN is a tile-based Network-on-Chip (NoC) with the traditional 2D CPU-DRAM

connection. Each tile in the NoC can contain either a PE or an on-chip memory

module. The goal of PM-COSYN is to simultaneously allocate PEs and on-chip

memory modules for MPSoCs so that system performance is maximized and the

area constraint is met. Since the allocation problem are known to be NP-complete

for distributed systems [21], we propose a greedy-based heuristic to solve the PE

and memory allocation for 2D MPSoCs. Starting with an initial setting where the

number of PEs is equal to the degree of task parallelism, and memory modules

are allocated to the remaining tiles, PM-COSYN adopts a greedy-based iterative

method to refine the system configuration. During the refinement process, PEs are

gradually replaced with on-chip memory modules to see if it results in better system

performance. Details of the PM-COSYN framework are described in Chapter 3.

4



1.2 Memory System Synthesis for MPSoCs with 3D Inte-

gration

To mitigate interconnect-related problems in deep submicron, the emerging

3D integration technology has been proposed. Figure 1.3 shows a chip with 3D inte-

gration technology. Several active devices are connected to each other by the vertical

interconnects implemented by Through-Silicon Vias (TSVs) or Through-Vias. 3D

die-stacking has the properties of (1) heterogeneous integration that allows chips

with different technologies, such as DRAM and processing cores, to be integrated

at different layers of the same chip, (2) short vertical link that shortens the average

interconnect length and improves system performance [37], and (3) high density

TSVs that support large DRAM bandwidth, e.g. over three hundreds 1K-bit CPU-

DRAM buses on a 1cm2 chip [39]. Due to these properties, 3D die-stacking enables

a memory processor interconnect that is both very high bandwidth and low la-

tency [30]. Recently, inspired by 3D die-stacking, the architecture of MPSoCs with

stacked DRAMs and distributed memory interface as shown in Figure 1.4 has been

discussed [39, 42, 44]. Processing cores are placed on the logic layer, and cores are

connected through Network-on-Chip with 2D mesh topology. Each tile is composed

of a PE, a DMC, a local scratch-pad memory (SPM) module, and a router for con-

necting the NoC. One or more DRAM memory layers are stacked on top of the

logic layer. Each PE can directly access the DRAM module stacked on-top of it

through its local DMC and the vertical bus implemented by TSVs. PEs can address

DRAM modules on top of other PEs by transporting the request and data through

the horizontal NoC.

However, a DMC also takes a lot of transistor budget since it utilizes several

queues to store the read/write data. When a PE does not have large bandwidth

requirement, the transistor budget of DMC can be used to enlarge the capacity of

local SPM so that more data can be stored in the short latency SPM. But at the same

time, each DMC can only have a limited data bus width due to the area constraint so

more DMCs are needed when the system needs higher DRAM bandwidth. Moreover,

although more TSVs provides higher DRAM bandwidth, more manufacturing cost

is also needed [66] and chip yields may be degraded [47]. Therefore, a major issue in

5
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Figure 1.4: Baseline architecture of 3D MPSoC with stacked DRAM.

MPSoCs with stacked DRAM is how to find a distributed memory interface design,

e.g. the number of allocated DMCs and the vertical bus width of each DMC, that

meets requirements of the target application set. To tackle this problem, in this

thesis, we propose the first distributed memory interface synthesis algorithm for

MPSoCs with stacked DRAM modules. The goal of the proposed algorithm is to

find a distributed memory interface design that minimizes the TSV cost while the

user-defined performance constraint is met. Due to the large solution space, we

proposed a Simulated-Annealing (SA) [34] based synthesis algorithm. Details of

the proposed 3D memory system synthesis algorithm 3D MPSoCs are described in

Chapter 4.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. The discussion of the related

work is presented in Chapter 2. Chapter 3 shows the PE and memory co-synthesis

algorithm for MPSoCs with traditional 2D CPU-DRAM connection. Chapter 4

presents the distributed memory interface synthesis algorithm for MPSoCs with

stacked DRAMs. Conclusions and future works are given in Chapter 5.
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Chapter 2

Related Works

In this chapter, we present previous works that are related to the proposed PM-

COSYN framework. The previous works are of two directions: (a) PE and memory

system design in traditional 2D MPSoCs, and (b) System design for 3D ICs.

2.1 PE and Memory System Design for Traditional 2D MP-

SoCs

Several works have been proposed to perform system-level designs for application-

specific MPSoCs [11] [16] [31]. In [16], Dick et al. proposed a multi-objective genetic

algorithm for synthesizing hardware and software architecture of an embedded sys-

tem. Hong et al. [11] proposed an SA-based synthesis algorithm that decides PE

allocation, task assignment, tile mapping and task scheduling of an NoC with regu-

lar mesh. However, in [11] and [16], only PE allocation is considered. Kim et al. [31]

described real chip implementation issues of NoCs and proposed a memory-centric

NoC chip design for homogeneous MPSoCs.

Several previous works are proposed to simultaneously optimize memory and

communication system of MPSoCs. In [52], a algorithm for memory and communi-

cation resource allocation is proposed for bus-based MPSoCs. Similar to [52], Kim

et al. [33] propose a simulation-based methodology to explore the on-chip bus ar-

chitectures and memory allocation for MPSoC system. The simulation efficiency of

each configuration is optimized by using a static performance estimation to prune

7



the design space drastically in the first step, and then using a trace-driven simula-

tion to evaluate each configuration. Issenin et al. [29] proposed to allocate memory

resource and synthesize communication architecture in a mesh-based NOC by a data

reuse analysis approach. In [52] and [29], PE allocation is predefined, and only

memory and communication resource is synthesized.

Another kind of work is to simultaneously synthesize the software architec-

ture and data allocation for the given MPSoC platform. Target at homogeneous

chip-multiprocessor, where each tile has a shared of scratch-pad memory (SPM),

Chen et al. [10] proposed an compiler approach to decide task allocation and data

allocation for the applications running on the platform. Given an application model

written in SystemC TLM 2.0, Lukasiewyca et al. [43] proposed an approach to fully

automatic synthesize resource allocation, task binding, data mapping, and transac-

tion routing for MPSoC platforms.

Several works are proposed to manage the memory system of MPSoCs. Since

software controlled scratchpad memories (SPMs) have highly predictable memory

access behavior, they have been proposed as an alternative to large L2 caches [5],

especially for embedded systems that usually have the real-time requirement. There-

fore, several works have been proposed to decide which contents should be assigned

to the on-chip SPM. Targeting at SoCs with both on-chip SPM and cache mem-

ory, Panda et al. [51] proposed a method to decide which data should be mapped

to the SPM, and which data should be mapped to the off-chip memory, so that

system performance is optimized. The proposed method carefully partitions the

scalar and array variables, and takes the lifetimes of different variables into consid-

eration. Udayakumaran et al. [63] propose a dynamic allocation methodology for

global and stack data, and program code to scratch-pad memory. The proposed

method accounts for changing program requirements at runtime, and yields 100%

predictable memory access times, which is very critical to hard real-time systems.

In [48], Monchiero et al. proposed an on-chip hardware memory management unit

to perform data allocation/deallocation on the physically distributed and logically

shared on-chip memory space of an MPSoC.

Our PM-COSYN differs from these prior works in that it focuses on simul-

8



taneously allocating PE and on-chip memory for NoC with the area constraint, and

the previous works consider the allocation of the two kinds of resource independently

or focus on further optimization of the given platform.

2.2 System Design for 3D ICs

Due to the development of the Through-Silicon Via (TSV) technology, the

3D stacking technology has been one of the most promising method to continue the

scaling of Moore’s law. In recently years, abundant research works are proposed to

discuss different aspects of 3D technologies. Therefore, in this section, we catego-

rize previous works related to 3D IC research into (1) Architecture design with 3D

technologies, (2) Cost modeling of 3D technologies, and (3) Thermal issues of 3D

ICs.

2.2.1 Architecture Design with 3D Technologies

In the architecture design of 3D ICs, we can divide into two broad cate-

gories, pure chip stacking and true 3D design. In the first category, different chips

are purely stacked vertically to reduce inter-module communication latency by short

latency TSVs, and most of the recent works falls in this category. Kgil et al. [30]

proposed PicoServer, a CMP architecture that employs 3D technology to bond one

die containing several simple slow processing cores to multiple DRAM dies suffi-

cient for a primary memory. Since TSVs enables the wide and low-latency DRAM

buses and provide sufficient memory bandwidth, in [30], they propose to remove

the large shared L2 cache, and replace by more additional simple processing cores

to allow more threads executing in parallel. In [38], Lui et al. showed that stacking

DRAM on processor cores achieves lower memory access latency and system energy

consumption, when comparing to traditional 2D systems that has DRAM as an

off-chip memory. They also showed that, the performance and energy advantage of

3D stacking comes from the short, vertical, and non-pin limited on-chip connections

implemented by TSVs. Target at the DRAM on processor architecture, several

works are further proposed to discuss how to design the memory system. Since
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stacking DRAM on processor allows more frequent processor to DRAM accesses,

and chip temperature may increase due to die-stacking, Ghosh et al. [22] revisits

the refresh interval of stacked DRAM. They propose a novel refresh technique to

eliminate all the unnecessary DRAM refresh overheads in a 3D IC. In [67], proposed

to re-architect the memory hierarchy, including the L2 cache and DRAM interface,

so that it can take full advantage of the massive bandwidth of 3D die-stacking. They

proposed a technique called SMART-3D, which is a new 3D-stacked memory archi-

tecture with a vertical L2 fetch/write-back network using a large array of TSVs.

The basic idea of SMART-3D is to leverage the TSV bandwidth to hide latency

behind very large data transfers. Loi et al. [42] target at many-core platform with

stacked DRAM and propose a distributed memory controller architecture. More-

over, they proposed a memory controller design for exploiting the highly efficient

vertical bus implemented by TSVs. Marongiu et al. [44] proposed a programming

framework with compiler support that help application designers to fully exploit

the potential of vertically stacked memory. The proposed framework targets at an

explicitly managed 3D-stacked memory hierarchy, which requires placement of data

across multiple vertical memory stacks to be carefully optimized. Different from

the above works that stack DRAM with processor cores, Sun et al. [59] proposed

to integrate Magnetic Random Access Memory (MRAM) atop conventional CMPs.

In [18], Dong et al. further discussed the circuit design issues for MRAM, and pro-

posed a MRAM cache model. Based on the model, they compared MRAM against

SRAM and DRAM in terms of area, performance and energy. In [4], Awasthi et

al. consider 3D organizations of a single-threaded clustered micro-architecture to

understand how floorplanning impacts performance and temperature. They looked

into three different stacking methods, cache-on-cluster, cluster-on-cluster and stag-

gered. They found that, the delays between cache and ALUs are the most critical to

performance, and showed that a word-interleaved cache with a staggered 3D place-

ment achieves the best balance between temperature and performance. In [7], Black

et al. studied the performance advantages and thermal challenges of two forms of

die stacking: stacking a large DRAM or SRAM cache on a microprocessor and di-

viding a traditional micro-architecture between two die in a stack. Another issue in

stacking processor cores with different memory modules is the design of interconnec-
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tion network. Li et al. [37] proposed a router architecture and topology design that

makes use of a network architecture embedded into the L2 cache memory. They also

showed that, a 3D L2 memory architecture generates much better results than the

conventional 2D designs under different number of layers and vertical connections.

In [56] and [50], a design tool for synthesizing application-specific interconnection

network for 3D NoCs is proposed. The tool determines the best NoC topology for

the target application, finds paths for the communication flows, assigns routers to

the 3D layers, and place them in each layer. The optimization goal is to optimize

performance subject to the given TSV link constraints.

Another category of 3D chip design is true 3D design. In true 3D designs,

major components of a system are re-designed to allow logic gates or modules of an

individual components to be interconnected through TSVs. The idea of this design

is to fully explore the low latency of TSVs. Vaidyanathan et al. [64] implemented

a few components of a microprocessor, such as adder and tag drive, using custom

design to show the potential performance and power benefits achievable through 3D

integration under thermal constraints. They also introduced a standard cell based

3D design flow which leverages the commercial 2D design tools. Loh [39] explored

more aggressive 3D DRAM organizations that make better use of the additional die-

to-die bandwidth provided by 3D stacking. They also identified that the significant

increase in memory system performance makes the L2 miss handling architecture

(MHA) a new bottleneck. Tsai et al. [62] explored the architectural design of cache

memories using 3D circuits. Moreover, they proposed a delay and energy model

called 3DCacti to explore different 3D design options of partitioning a cache. Black

et al. [8] demonstrated that a complex device as an iA32 microprocessor can be

repartitioned or split between two die in order to simultaneously improve perfor-

mance and power. The 3D structure of iA32 is examined and applied to a real x86

deeply pipelined high performance microprocessor.

2.2.2 Cost modeling of 3D technologies

Since 3D is an emerging technology, the tradeoffs of using the technology for

implementation should be fully studied so that system designers can find a best de-
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sign. In [57], a modeling technique for a priori cost and performance estimations for

mixed-signal system implementations is proposed. In [46], a yield and cost modeling

for 3D chip stack technologies is proposed. However, in this modeling, the impact

of TSVs is not discussed. Weerasekera et al. [66] discussed realistic metrics for per-

formance and cost trade-offs both at implementation phase and conceptual level for

verification in the 3D integration technology. Kim et al. [32] studied the impact of

TSV on various aspects of 3D layouts, including the silicon area of TSV, wire length

and TSV count. Dong et al. [19] proposed a system-level cost analysis tool to help

designers to determine if the 3D integration method is a cost effective technology for

a particular IC design. In [65], a complete set of self-consistent equations including

self and coupling terms for resistance, capacitance and inductance of various TSV

structures is proposed.

2.2.3 Thermal issues of 3D ICs

Since stacking multiple chips on the third dimension is bad for heat flow and

cause serious thermal issues, several works are proposed to deal with the thermal

problem of 3D ICs. One kind of method is to use proper placement [24, 25] or

floorplanning [12] of chip modules to minimize the maximum temperature of the

chip. Goplen et al. [24] proposed a thermal placement method that uses an iterative

force-directed approach in which thermal forces direct cells away from areas of high

temperature. In [25], the same authors proposed analytical and partitioning-based

techniques to explore the tradeoff between wire-length, inter-layer via counts, and

thermal effects. Cong et al. [12] proposed a new 3D floorplan representation so

that the solution space can be efficiently explored, and an efficient thermal-driven

3D floorplanning algorithm with an integrated compact resistive network thermal

model. Another kind of method is to use task scheduling techniques to avoid modules

on adjacent area are not active at the same time [58,70]. Sun et al. [58] proposed a 3D

MPSoC thermal optimization algorithm that conducts task assignment, scheduling,

and voltage scaling. Detailed thermal analysis is used to guide a hotspot mitigation

algorithm that incrementally reduces the peak MPSoC temperature by appropriately

adjusting task execution times and voltage levels. Zhou et al. [70] proposed an OS-
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level scheduling algorithm that performs thermal-aware task scheduling on a 3D

chip. The proposed algorithm leverages the inherent thermal variations within and

across different tasks, and schedules them to keep the chip temperature low.
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Chapter 3

PE and Memory Co-Synthesis for 2D MPSoCs

In this chapter, we present the proposed PE and Memory Co-Synthesis (PM-COSYN)

algorithm for MSPoCs with the traditional 2D CPU-DRAM connection. We first

present the motivation and the introduction on the baseline architecture discussed

here. Next, we present the proposed PM-COSYN algorithm, and some preliminary

experimental results.

3.1 Introduction

In this thesis, we propose the first PE and Memory Co-Synthesis (PM-

COSYN) framework for MPSoCs with the traditional 2D CPU-DRAM connection.

For such an MPSoC with limited die area, one critical design issue is how to utilize

the available resources to achieve a balanced design between memory and computa-

tion systems. That is , on one hand, we want to dedicate as many die resources to

PEs as possible to fully utilize the available task parallelism in the target applica-

tions, and on the other hand, we need to incorporate a significant amount of on-chip

memory to alleviate memory bottleneck. Therefore, the goal of PM-COSYN is to

simultaneously synthesize PE and on-chip memory allocation to optimize system

performance for MPSoCs with the area constraint.

The target architecture discussed in PM-COSYN is a tile-based Network-

on-Chip (NoC) as shown in Figure 3.1 [35]. A tile can contain either a PE or

a memory module. Each resource connects to its local switch through its routing
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Figure 3.1: Architectural overview of a 2D NoC.

network interface (rni). A switch routes and buffers messages between resources. As

shown in Figure 3.1, each switch is connected to one resource and four neighboring

switches, and each resource is connected to one switch. With this architecture, the

communication among tiles is achieved by sending packets to one another over the

network instead of routing wires.

Target at the NoC architecture shown in Figure 3.1, PM-COSYN simulta-

neously decides the PE and on-chip memory allocation for the given NoC template

such that the execution time of the target task set is minimized. Starting with an

initial setting where the number of PEs is equal to the degree of task parallelism,

and memory modules are allocated to the remaining tiles, PM-COSYN adopts a

greedy-based iterative method to refine the system configuration. During the refine-

ment process, PEs are gradually replaced with memory modules to see if it results

in better system performance.

We evaluate PM-COSYN on a set of synthetic task sets with the same control

and data flow graph but different data access ratios. The experimental results

show that with the same level of task parallelism, different memory access ratio

does result in different optimal system configuration. For the tested task sets, the

required memory modules vary from 1 to 7 in a 3 × 3 NoC. The experimental

results show that PM-COSYN successfully identifies the correct numbers of PE and
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memory module for optimal system performance. We also test PM-COSYM on

a set of real-world workloads. We construct a workload mix including consumer

and telecommunication applications from EEMBC [20] that are typical to a mobile

device. We find that this set of workloads presents both significant amount of

task-level parallelism and memory accesses. For a 3 × 3 NoC, the optimal system

configuration is 7 PEs and 2 memory modules. This configuration improves system

performance by 13.94% compared to 9-PE configuration. We also compare PM-

COSYN to a Simulated-Annealing (SA) method. Experimental results show that

PM-COSYN generates a better solution in shorter CPU time compared to the SA

method. This demonstrates the proposed PM-COSYN framework is effective in

solving the PE-memory co-synthesis problem for a NoC-based MPSoC. The details

of PM-COSYN are presented in the following subsections.

3.2 System Model and Problem Formulation

In this section, we present the models used to describe the target application

set and NoC architecture. We also present the formal problem definition of PM-

COSYN.

3.2.1 System Model

Our system consists of an application model and an NoC architecture model.

Details of the two models are described as follows.

Application Model

We represent the target application set by a Data Flow Graph (DFG). The

DFG considered in this thesis is a directed acyclic graph in which a node is a

task, and the directed edges represent transfers of data blocks. A data block is the

collection of scalars or arrays which is similar to the definition used in [52]. We use

G =< V,E > to denote a DFG, where V represents the set of tasks and E represents

the set of directed edges. Each vertex vi ∈ V has the following properties:
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• c(vi) denotes the number of cycles that vi used to complete on the reference

PE.

• p(vi) denotes the priority of vi. We adopt List Scheduling [3] as our baseline

scheduler to schedule tasks allocated on the same PE. In List Scheduling,

tasks are scheduled according to their precedence relations and priorities. We

assume the priorities are given by system designers in advance.

Each ei ∈ E represents a data block transfer. Each ei is associated with d(ei), which

denotes the ID of the data block that is transferred by ei. For each application set,

there is a data block library D = {d1, ..., dk} to store all the data blocks touched in

the application set, and di indicates the i-th data block in the library. Each di is

associated with size(di), which indicates the size of data block di (in bits).

NoC Model

The NoC architecture under consideration is composed of m×n regular tiles

interconnected by a 2D mesh network. We model such an NoC-based system with

m×n tiles as an Architecture Graph N =< T,L >, which is a directed graph, where

T = {t1, ......, tm×n} is the set of tiles and L is the set of links between tiles. Each

link li,j ∈ L represents a link connection between ti and tj and is associated with

w(li,j) which stands for the link width of li,j. Each tile can contain either a PE or

a memory module. In our algorithm, we assume that all PEs allocated on the NoC

are general-purpose processor with the same micro-architecture, and each PE has a

local buffer to store the most recently accessed data. Therefore, allocating tasks with

shared data on the same PE would help the reduction of on-chip communication

traffic. Each on-chip memory module has the capacity that a tile can accommodate

with.

Similar to [28], we also assume a static XY routing scheme [23] as our un-

derlying routing protocol. The static XY routing scheme first routes packets along

the X -axis. Once it reaches the column where the destination tile lies in, the packet

is then routed along the Y -axis. Note that the proposed algorithm can be applied

on NoCs with any kinds of routing algorithm.
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3.2.2 Problem Formulation

The goal of PM-COSYN is to simultaneously synthesize PE and on-chip

memory allocation for application-specific NoCs with the area constraint. Since

NoCs are usually composed of regular tiles, in this thesis, the area constraint is

specified by the tile number of the target NoC platform. As we can see, the assign-

ment of tasks and data blocks should be adjusted when the allocation of PE and

on-chip memory changes. Therefore, for a given DFG G =< V,E >, a data block

library D = {d1, d2, ...dk}, and an NoC architecture template N =< T,L >, we can

define the problem as follows.

Given G =< V,E >, D = {d1, ..., dk} and N =< T,L >

Find P , M and D′, and the function φ and ω,

such that Tsys is minimized

Subject to |P | + |M | = |T |

In the problem formulation, P denotes the set of allocated PEs and M de-

notes the set of on-chip memories. D′ denotes the set of data blocks assigned to

on-chip memory modules, where D′ ⊆ D. Tsys denotes the system execution time.

After the allocation of PE and on-chip memory is decided, we have to consider how

to assign tasks and data blocks to these selected modules. We use the function

φ : V → P and ω : D′ → M to represent the assignment of tasks and data blocks,

respectively.

3.3 PM-COSYN for MPSoCs with 2D CPU-DRAM Con-

nection

In this section, we describe the details of the proposed PE-Memory Co-

Synthesis (PM-COSYN) algorithm. PM-COSYN is a greedy-based iterative algo-

rithm, and the overview of PM-COSYN is shown in Figure 3.2. To exploit task-level

parallelism of the target task set, the initial solution has the number of PEs equal
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Figure 3.2: PM-COSYN overview.

to the degree of task parallelism and the memory modules allocated to the remain-

ing tiles. In the initial solution, task assignment, data block assignment and tile

mapping can be decided by any existing synthesis algorithms, such as [16], [11]

and [51]. Starting with the initial solution, PM-COSYN adopts a greedy-based

iterative method to refine the system configuration. During the iterative process,

which is shown as the PE&Memory Allocation step in Figure 3.2, PEs are gradually

replaced with memory modules to see if it results in better system performance.

This contains two main steps. The first step is Victim PE Selection which decides

the PE to be replaced, and the assignment of tasks that are original assigned to the

replaced PE. After Victim PE Selection, the second step, Data Block Assignment,

is invoked to decide which data blocks should be assigned to the newly allocated
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on-chip memory. This iterative process stops when system critical path does not

have accesses to data blocks assigned to the off-chip memory or there is only one PE

left on the system. Since in the initial solution, the number of memory module is

decided by the degree of task parallelism, it is possible to have more memory mod-

ules than required after the PE&Memory Allocation step. Therefore, PM-COSYN

performs Memory Reduction Process to reduce the number of memory modules if

possible. Next, we will describe the details of the proposed PM-COSYN framework.

3.3.1 PE&Memory Allocation

As described earlier, PE&Memory Allocation is an iterative process, where

a PE is replaced with an on-chip memory during each iteration. To improve system

performance, the data blocks which are the most critical to the system performance

are assigned to a on-chip memory at each iteration. For this reason, as shown in

Figure 3.2, an iteration is not started as long as the system critical path has no

accesses to data blocks which are assigned to on-chip memories. An iteration is not

started if there is only one PE left on the system, either. During each iteration,

PE&Memory Allocation performs two major steps, Victim PE Selection and Data

Block Assignment. Victim PE Selection first decides which PE should be replaced

by an on-chip memory. Data Block Assignment is then performed to decide which

data blocks should be assigned to the newly allocated on-chip memory. Details of

Victim PE Selection and Data Block Assignment are described as follows.

3.3.1.1 Victim PE Selection

When selecting a victim PE, many factors need to be taken into account

to achieve the best system performance, such as dependency among tasks and the

task/data allocation. Due to the complex interplay among these factors, the Victim

PE Selection step adopts an exhaustive search method. Each PE Pi ∈ P in the

system is selected as the victim candidate, and its performance impact is evaluated.

To reassign the tasks in Pi to other PEs, the Victim PE Selection step examines

each task in the decreasing order of the task priority. For each task, all the possible
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Victim PE Selection:

Input: G =< V,E >, D = {d1, ..., dk},
N =< T,L > and selected PE P = {P1, ...Pl}

Output: Victim PE Pvic and new assignment of tasks

which are originally assigned to Pvic

1 for each PE Pi ∈ P

2 for each task vj assigned to Pi

3 for each PE Pk ∈ P − Pi

4 Insert vj to Pk

5 Evaluate execution time T(vj ,Pk) of system

with vj assigned to Pk

6 Find the smallest T(vj ,Pk) for all Pk ∈ P − Pi

7 if only one PE Pk has the smallest exe. time

8 Pt(vj) = Pk

9 else

10 Choose PE Pk with the most shared data with vj

11 Pt(vj) = Pk

12 Evaluate execution time T (V ic(Pi)) of the system

13 taking Pi as the victim PE

14 Find the smallest T (V ic(Pi)) among all Pi ∈ P

15 if only one Pi has the smallest T (V ic(Pi))

16 Pvic = Pi

17 else

18 Randomly choose PE Pi with the smallest T (V ic(Pi))

19 Pvic = Pi

20 Assign all vj on Pvic to Pt(vj)

21 P = P − Pvic

Figure 3.3: Pseudo code of Victim PE Selection.
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assignments are evaluated. So as shown in Figure 3.3 which lists the pseudo code

of the Victim PE Selection step, there are for loops (line 1, 2 and 3) to perform the

exhaustive search. The solution that causes less performance degradation is selected

as the output of the Victim PE Selection.

Victim PE Selection is the most time consuming step of PM-COSYN. When

moving a task vj to PE Pk, Victim PE Selection first inserts vj into Pk (line 4 in

Figure 3.3), and then system execution time of moving vj to Pk is evaluated (line 5).

To insert vj into Pk, a simple insertion sort is performed according to the priorities

of the tasks on Pk, and the time complexity is O(|V | log |V |). To evaluate system

execution time, we have to traverse all the nodes and edges on the DFG, and the

time complexity is O(|V |+|E|). Task insertion and system evaluation are performed

at most |V ||P |2 times. So, the computational complexity of Victim PE Selection is

O(|V |2|P |2 + |V |P ||E| + |V |2|P |2 log |V |).

3.3.1.2 Data Block Assignment

To maximize system performance, the Data Block Assignment step decides

which data blocks should be assigned to the new on-chip memory module so that the

total execution time is minimized. To achieve this, the Data Block Assignment step

first identifies the critical path of the task set. Next, we find the data block dcritical

that is assigned to the off-chip memory and contributes the most data accesses

(num access×size(dcritical)) to the critical path. dcritical is then assigned to the new

on-chip memory module, and the critical path of the task set is updated accordingly.

The process is repeated until the new on-chip memory module is fully utilized or all

data blocks are assigned to the on-chip memory modules. However, it is possible

that data blocks on the critical path are all assigned to on-chip memory modules and

there is space left on the new on-chip memory module. In such a case, to utilize the

on-chip memory space to reduce off-chip traffic, data blocks that are assigned to the

off-chip memory and contribute the most data accesses to the system are assigned

to the new on-chip memory module. The pseudo code of Data Block Assignment is

shown in Figure 3.4.
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Data Block Assignment:

Input: G =< V,E >, D = {d1, ..., dk}
and N =< T,L >

Output: Set of data blocks assigned to the

new on-chip memory

1 size left = Memory size

2 Identify critical path of the task set in current configuration

3 while size left > 0

and ∃di ∈ D that is assigned to off-chip memory

and size(di) <= size left

4 Identify dcritical

5 Assign dcritical to the new on-chip memory

6 Update the critical path

7 size left = size left − size(dcritical)

Figure 3.4: Pseudo code of Data Block Assignment.
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3.3.2 Memory Reduction Process

Since in the initial solution, the number of memory module is decided by the

degree of task parallelism and PM-COSYN replaces a PE by an on-chip memory at

each iteration, it is possible to have more memory module than required after the

PE&Memory Allocation step. To reduce area cost, Memory Reduction Process is

adopted to reduce the number of on-chip memory if possible. The process removes

an on-chip memory at a time, and evaluates the performance of systems with reduced

number of on-chip memory. We use T (RM(i)) to denote system execution time of

i removed on-chip memories. Given a performance degradation threshold value th,

system with the largest number of removed on-chip memory and have performance

degradation smaller than th (e.g. (T (RM(i))/T (RM(0)) − 1 < th) is chosen as

the final result. To maximize the performance of systems with reduced number of

on-chip memories, whenever an on-chip memory is removed, all data blocks assigned

to on-chip memories are first moved to off-chip memory, and data block assignment

for each of the remaining on-chip memory is decided by the Data Block Assignment

process described in Section 3.3.1.2.

3.4 Experimental Results

In this section, we evaluate the effectiveness of PM-COSYN and discuss its

experimental results. The experimental setup is described in Section 3.4.1. Anal-

ysis of PM-COSYN is performed in Section 3.4.2. We also compare the proposed

PM-COSYN algorithm with a Simulated-Annealing optimizer, and the results are

presented in Section 3.4.3.

3.4.1 Experimental Setup

To analyze the proposed algorithm, we apply PM-COSYN to two sets of

benchmarks, synthetic task sets and real-world applications. The synthetic task

sets are generated by the graph generator TGFF [17], which is a parameterizable

graph generator. We generate random DFGs and random data block libraries for
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Table 3.1: Task set properties.

Task Set ID Parallelism trans bit/task cycle Memory Initial

Degree Footprint PE/MEM

(in bits)

Synthetic Task t0 10 10.468801 276800 9/0

Sets t1 10 1.20632 279100 9/0

t2 10 0.094262 276800 9/0

t3 10 0.051115 276800 9/0

Real-World Consumer+Telecom 13 0.95139 9018000 9/0

Applications Mpeg2 Enc+Mpeg2 Dec 2 0.03444 5455900 9/0

every task set. Each of the task sets varies in its data access to task execution ratio.

We use the average number of bits transferred per task cycle (trans bit/task cycle)

as the measurement metric to quantify the data access to task execution ratio of

a task set. In addition to synthetic task sets, we also evaluate PM-COSYN on

two real-world application mixes: Mpeg2 Enc+Mpeg2 Dec and Consumer +Tele-

com. Mpeg2 Enc+Mpeg2 Dec is the mix of Mpeg2 encoder and Mpeg2 decoder [2].

Consumer+Telecom is the mix of consumer and telecom benchmark suites obtained

from Embedded System Synthesis Benchmark Suites (E3S) [15]. E3S is a collec-

tion of task graphs which are built from the Embedded Microprocessor Benchmark

Consortium (EEMBC) benchmark suites [20]. Since existing mobile devices usually

supports multimedia and telecommunication applications, we select the mix of con-

sumer and telecom task sets for evaluation. The detailed properties of the task sets

evaluated in this thesis are listed in Table 3.1.

As mentioned in Section 3.3, the number of PE and on-chip memory allocated

for the initial solution is decided by the parallelism degree of the target task set.

The numbers of PE and on-chip memory allocated for the initial solutions of all task

sets are also listed in Table 3.1. In our experiments, the initial NoC configuration,

including task assignment, data block assignment and tile mapping, is decided by

a Simulated-Annealing (SA) engine, which synthesize the NoC configuration such

that system performance is maximized. The communication cost among tiles is also

considered when generating the initial solution. For the Memory Reduction Process

described in Section 3.3.2, we set the performance degradation threshold to 1%.
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Table 3.2: Detail configuration of target NoC platform.

Parameter Values

NoC dimension 3 × 3

Tile size 1mm2

Router latency 5-cycle

Link width 32-bit

Off-chip memory access latency 64-cycle

On-chip memory module size 32KB

PE buffer size 16KB

The detailed configurations of NoC template we used for experiments are

listed in Table 3.2. We use 3 × 3 NoC for synthetic task sets and real-world appli-

cation mixes. The capacity of an on-chip memory module is set to 32KB, which is

estimated by CACTI5.3 [9] assuming 65nm process and 1mm2 tile size. As described

in Section 3.2, we assume each tile is either a PE or a memory module, and all PEs

are general purpose processors with the same micro-architecture.

To evaluate the system performance of the configuration selected in each PM-

COSYN iteration, we perform a simple simulator for the target system. According

to the selected configuration and given task priorities, we can schedule the execution

of tasks. Once the tasks are scheduled, we can know the schedule of data accesses.

Since the position of PEs and on-chip memory modules and the assignment of task

and data blocks are known in each configuration, we can know the routing path of

a data access is composed by which links in the on-chip network. According to the

data access schedule and the links traversed by each data access, we can model the

contention of the on-chip network. Therefore, the simulator that we adopt here to

estimate the task set execution time is a timing-approximate system simulator that

models memory contention and on-chip network contention.

3.4.2 Analysis of PM-COSYN

In this section, we analyze the synthesis results of PM-COSYN. Figure 3.5

shows the number of on-chip memory modules allocated for task sets with various

trans bit/task cycle. In this set of experiments, all the task sets have the same DFG

26



0
1
2
3
4
5
6
7
8

t0 t1 t2 t3

N
um

. O
n-

C
hi

p 
M

em
or

y

0

2

4

6

8

10

12

tra
ns

_b
it/

ta
sk

_c
yc

le

Num. of On-Chip Memory trans_bit/task_cycle

Figure 3.5: Number of on-chip memory allocated for highly parallel task sets with

various trans bit/task cycle.

but different data accesses to task execution ratio. The DFG of the task sets used

in Figure 3.5 has 51 tasks and maximum parallelism degree of 10, where all chip

resources are allocated to PEs when generating the initial solution. From Figure 3.5,

we can observe that task sets with large trans bit/task cycle also need more on-chip

memory modules, while task sets with small trans bit/task cycle only need a few

on-chip memories. For example, 7 on-chip memory modules are allocated for task

set t0, which has the highest trans bit/task cycle among all tasks. For task set

t3, which has the smallest trans bit/task cycle among the four task sets, only one

on-chip memory module is allocated. This shows that task sets with higher data

accesses to task execution ratio need more on-chip memories to maximize system

performance.

To show the correctness of the solution synthesized by PM-COSYN, we eval-

uate system performance of NoCs with various number of on-chip memory modules1.

Figure 3.6 shows the results. In this set of experiments, the execution time is nor-

1We set 9 NoCs with 0 to 8 on-chip memory modules, while the rest of the resources are allocated to PE. Task

assignment, data block assignment and tile mapping of PEs and on-chip memory modules are decided by an SA

engine for optimizing system performance.

27



task set to

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8
Number of On-Chip Memory

(a)

N
or

m
al

iz
ed

 S
ys

te
m

Ex
ec

ut
io

n 
Ti

m
e

task set t3

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

0 1 2 3 4 5 6 7 8
Number of On-Chip Memory

(b)

N
or

m
al

iz
ed

 S
ys

te
m

Ex
ec

ut
io

n 
Ti

m
e

Figure 3.6: Normalized system execution time of systems with various number of

on-chip memories: (a) task set t0, and (b) task set t3.
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malized to the system without any on-chip memory module. Figure 3.6(a) shows

the results of task set t0. We can observe that the system with 7 on-chip memory

modules achieves the best performance among all configurations, and the result is

correspondent to that of PM-COSYN. With 7 on-chip memory modules, the sys-

tem performance is improved by 79.14% compared to the 9-PE configuration. For

task set t3, as shown in Figure 3.6(b), the system with 1 on-chip memory module

achieves the best performance among all the configurations. This result also agrees

with the result of PM-COSYN. Compared to the 9-PE configuration, the system

with 1 on-chip memory module improves system performance by 5.8%. Because

t3 has low trans bit/task cycle, increasing the number of memory module results

in performance degradation. For the system with 8 on-chip memory modules, the

total execution time is 3.1 times of the 9-PE configuration.

For real-world applications, PM-COSYN allocates 2 on-chip memory modules

for Consumer+Telecom, and 1 on-chip memory module for Mpeg2 Enc+Mpeg2 Dec.

As the synthetic task sets, we evaluate system performance of the real-world appli-

cations in systems with various number of on-chip memory modules, too. The

experimental results are shown in Figure 3.7, and the execution time is normalized

to the system without any on-chip memory module. Figure 3.7(a) shows the result

of Consumer+Telecom. We can observe that the system with 2 on-chip memory

modules achieves the best system performance for Consumer+Telecom, which is

correspondent to the result of PM-COSYN. The system with 2 on-chip memory

modules improves system performance by 13.94% compared to the 9-PE configu-

ration. From Figure 3.7(b), we can see that, the system with 1 on-chip memory

module achieves the best performance for Mpeg2 Enc+Mpeg2 Dec. This result is

also correspondent to the result of PM-COSYN. Compared to the 9-PE configura-

tion, the system with 1 on-chip memory module improves system performance by

29.34%. Because Mpeg2 Enc+Mpeg2 Dec has low data accesses to task execution

ratio, increasing the number of on-chip memory modules degrades the system per-

formance. With 8 on-chip memories, the total execution time is 3.25 times of the

9-PE configuration.
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Figure 3.7: Normalized execution time of systems with various number of on-chip

memories: (a) Consumer+Telecom, and (b) Mpeg2 Enc+Mpeg2 Dec.

Table 3.3: Comparison of PM-COSYN and PM-SA.

Task Sets PM-COSYN PM-SA

Execution Time CPU Time Execution Time CPU Time

(cycle) (sec) (cycle) (sec)

t0 187237 2.96 192266 741.39

t1 591159 3.05 635475 23754.88

t2 4907203 2.85 4987639 4448.06

t3 8181791 2.87 8676673 6993.70

Consumer+Telecom 78536620 1.17 88664777 20568.68

Mpeg2 Enc+Mpeg2 Dec 156275324 156.02 160162415 176868.15
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3.4.3 Comparison with Simulated-Annealing Optimizer

To evaluate PM-COSYN, we also perform a Simulated-Annealing (SA) op-

timizer called PM-SA2 that solves the same PE-memory co-synthesis problem. In

this set of experiments, we compare PM-COSYN and PM-SA in terms of solution

quality and CPU time as shown in Table 3.3. The solution quality is indicated

by the execution time of the task set (in cycles). From Table 3.3, we can observe

that PM-COSYN achieves solution quality slightly better than PM-SA with much

shorter CPU time. For example, with task set t2, PM-COSYN uses only 0.07% of

PM-SA CPU time, and the solution quality is 1.62% better than PM-SA. We also

perform another set of experiments that see what is the solution quality achieved

by PM-SA when it has the CPU time same as PM-COSYN. Table 3.4 shows the

results. We can see that, with the CPU time same as the PM-COSYN, PM-SA

synthesize solutions with qualities that is up to 32.14% worse than PM-COSYN.

Note that with task set t2 and t3, the solution quality of PM-SA is only slightly

worse than PM-COSYN. As mentioned in Figure 3.5, t2 and t3 are the task sets

with low trans bit/task cycle, which means t2 and t3 are computation-intensive and

need more PEs than on-chip memories. As shown in Figure 3.5, t2 and t3 need only

2 and 1 on-chip memories, respectively. Therefore, starting with the initial solution

that has all PEs and no on-chip memories, PM-SA is easier to achieve good solution

quality in a short time when synthesizing solutions for computation-intensive task

sets.

Table 3.4: Comparison of PM-COSYN and PM-SA.

Task Sets Normalized Task Set Improvement over PM-SA

Execution Time

t0 72.66% 17.34%

t1 67.86% 32.14%

t2 98.39% 1.61%

t3 90.91% 9.09%

2PM-SA was optimized by carefully selecting parameters such as number of moves per temperature, cooling

schedule, etc.
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3.4.4 Scalability Issue

As analyzed in Section 3.3, the program execution time of PM-COSYN grows

with with number of tasks. To see how the program execution scales with task set

size, we test PM-COSYN on 4×4 NoC (with 16 tiles in total) with task sets having

101, 149, 201 and 249 tasks. The results are shown in Figure 3.8. We can see the

program execution time grows rapidly with task set size. With 101 tasks, only 93

seconds are used to solve the problem. With 249 tasks, 1725 seconds (about 29

minutes) are used to solve the case. However, the current scale of the MPSoCs

should not be over 249 tasks, and solving the problem in no more than half an hour

is still an acceptable result.
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Figure 3.8: How PM-COSYN program execution time scales with task set set size.
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Chapter 4

Distributed Memory Interface Synthesis for

MPSoCs with Stacked DRAM

In this chapter, we present the distributed memory interface synthesis framework for

MSPoCs with stacked DRAMs. We first present the introduction and motivation of

the synthesis problem. Then, we give an overview of the 3D integration technology.

Next, we define the target 3D MPSoC architecture, and the present the formal

problem formulation of the synthesis algorithm. The proposed Simulated-Annealing

based algorithm is then presented. Experimental results and analysis are discussed

after.

4.1 Introduction and Motivation

To mitigate interconnect-related problems in deep submicron, the emerg-

ing 3D integration technology has been proposed. 3D integration technology uses

the low-latency and high bandwidth Through Silicon Via (TSV) to stack multi-

ple active device layers together in the third dimension [69]. 3D technology has

the property of heterogeneous integration [14], which allows devices with different

process technologies, such as high-speed COMS with high-density DRAM, to be in-

tegrated on the same chip. Therefore, with the emerging 3D integration technology,

it is natural to stack DRAM directly on top of a processor to attack the memory

wall issue [30,39,42,67,69]. Compared to a traditional 2D CPU-DRAM connection

design that accesses DRAM through off-chip bus, 3D-stacked DRAM shortens the
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access latency. In 3D-stacked DRAM, TSVs are used as the vertical buses to con-

nect PEs and the stacked DRAM. Due to the high density of TSVs, large DRAM

bandwidth can be provided, e.g. over three hundreds 1K-bit CPU-DRAM buses on

a 1cm2 chip [39]. To effectively utilize the large DRAM bandwidth, each PE with

high DRAM bandwidth demand can have a local DRAM memory controller (DMC),

so that the PE can directly access the DRAM stacked on top of it [42, 44]. With

this idea, we can see that a MPSoCs with stacked DRAM can have a distributed

memory interface where several PEs have their own local DMCs [42].

The baseline architecture of MPSoCs with stacked DRAMs discussed here

is shown in Figure 4.1. As shown in Figure 4.1(a), the logic layer is partitioned

into regular tiles and different tiles are connected through Network-on-Chip with

2D mesh topology. Each tile has a PE, DMC, a local scratch-pad memory (SPM)

module, and a router for connecting the 2D-mesh NoC. One or more DRAM memory

layers are stacked on top of the logic layer. Each PE can directly access the DRAM

module stacked on-top of it through its local DMC and the vertical bus implemented

by TSVs. PEs can address DRAM modules on top of other PEs by transporting the

request and data through the horizontal NoC [42]. Figure 4.1(b) shows the detailed

view of a DMC. Each DMC has at least three kinds of queues: read, write and

command queues. The read queue and write queue take the most transistor budget

of a DMC. For a modern DMC design, a read queue or write queue has at least eight

slots, and each slot needs about 256-bit capacity. Therefore, the read/write queues

occupies transistor budget about 4K-bit SRAM capacity. In addition to multiple

queues, a portion of area is occupied by the TSV array for the vertical data bus

and control lines to the DRAM module stacked on top of the DMC. As mentioned

in [42], with 64-bit data bus and 25-bit control lines, the TSV array occupies about

4 ∼ 5% of DMC area. DRAMs stacked on top of the MPSoC are equally partitioned

among allocated DMCs. Figure 4.2 shows five different DRAM partitions among

five different numbers of DMC allocation. As shown in the figure, the tile position

of the DMC for each configuration is fixed. The tile position of each DMC is the

one that achieves the shortest data access latency to the DRAM partition that the

DMC controls.
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Figure 4.1: Baseline architecture of MPSoCs with stacked DRAMs: (a) Architec-

tural overview of MPSoCs with stacked DRAM, and (b) Detailed architecture of a

DRAM controller.

From the discussion of baseline architecture, we can see that, the number of

DMCs affects (1) size of on-chip SPM: the transistor budget of the DMC of a tile

can be utilized to enlarge the local SPM (as shown in Figure 4.3), (2) DRAM size:

since the total DRAM size is fixed and equally partitioned among DMCs, a DMC

controls larger DRAM capacity when less number of DMCs are allocated, and (3)

Number of TSVs: since the TSVs take area cost, a DMC can have a limited number

of data bus width. To have more total DRAM bandwidth, more DMCs should be

allocated. Moreover, in addition to area cost, TSVs also have adverse impact on

chip design. The manufacturing of TSV needs the steps of drilling, material filling
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Figure 4.2: 5 different DRAM partitions for different numbers of DMC allocation

in a 16-tile MPSoC with stacked DRAM.

and wafer-bonding process [6]. The drilling and wafer-bonding processes expose

the chip in high pressure and high temperature environment, which is bad for chip

yield [47]. As shown in Figure 4.4, the chip yield degrades as the number of TSVs

in a unit chip area increases. Moreover, the material filling process needs to fill the

TSV holes with copper or tungsten, which needs extra cost. According to [66], the

average cost of making a TSV in wafer-level package is about $ 0.01 USD. As we

can see, although more TSVs provide higher DRAM bandwidth, it also needs higher

manufacturing cost and may degrade chip yield. From the above discussion, we can

see that the number of DMCs allocated in the system, and the allocation of vertical

bus width of each DMC, should be determined carefully so that a design that is

balacned between performance and chip manufacturing cost can be achieved.

Therefore, in this thesis, we propose the first distributed memory interface

synthesis algorithm for MPSoCs with stacked DRAMs. The proposed algorithm syn-

thesize the configuration of the distributed memory interface, including the number

of allocated DMC and the data bus width of each DMC, according to the require-

ment of the target application. The goal of the proposed algorithm is to find a
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Figure 4.3: Illustration of trading the transistor budget of a DMC to enlarge the

local SPM.

Figure 4.4: TSV connection yield calculated by equation of poisson distribution [47].
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distributed memory interface design that meets the performance constraint while

the TSV cost is minimized. To tackle this synthesis problem, we proposed an SA-

based algorithm. In the following subsections, we first provides a brief overview of

3D integration technology in Section 4.2. The system specifications and formal prob-

lem formulation are presented in Section 4.3. The proposed algorithm is described

in Section 4.4. The experimental results are discussed in Section 4.5.

4.2 Overview of 3D Integration

There are many candidate technologies for 3D die stacking, but wafer-to-

wafer bonding appears to be the mostly discussed technology [7, 8, 26, 39, 54]. As

many recent academic studies for 3D stacking technology [30,39,41], we also assume

this type of technology in the thesis. In wafer-to-wafer bonding, each layer is first

fabricated independently as the usual 2D fabrication process. Each wafer is next

thinned to only 10 to 100μm in thickness [7,39]. This process is called as wafer thin-

ning. Then, the TSVs are etched through the bulk silicon, and thermocompression

is adopted to bond each layer together [40]. Currently, there are two commonly used

bonding methods, face− to− face bonding and face− to− back bonding. Face-to-

face bonding provides higher via density by processing and depositing 3D vias on

top of metal layers as the traditional metal etching technologies [8,53]. However, it

allows only two active layers in a 3D stack. With face-to-back bonding [13,62], any

number of dies can be stacked, but TSVs must be etched through the back side of a

die and less via density is possible due to the less resolution of the etching process

compared to face-to-face bonding. In this thesis, we assume a face-to-back bonding

technology.

Compared to traditional two-dimensional (2D) designs, 3D integrations pro-

vides the following advantages for computer architecture design [14]:

1. Short global interconnects: According to [69], the vertical distance between

two layers is usually in the range of 10μm to 100μm. Since the average wire

length is reduced, compared to 2D architecture, 3D architecture has better

system performance and lower interconnected power consumption.
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2. Heterogeneous integration: 3D integration allows chips with different tech-

nologies to be combined together. For example, in [30], DRAM is combined

with processors, and Magnetic Random Access Memory (MRAM) and proces-

sor are combined on the same chip in [59].

3. High memory bandwidth: Due to high TSV density, 3D stacking enables

a memory processor interconnect with very high bandwidth. For example,

over three hundreds 1024-bit vertical buses can be implemented within 1cm2

area [39].

However, compared to the size of a logic cell, the size of TSV is relatively

large. For example, the average cell area is 2μm2 in 45nm technology, and a TSV

occupies up to 10μm2 area [32]. Moreover, the defects are easily formed during

TSV formation. For example, void may be formed in TSV during the fabrication of

TSV, and TSVs of different layers may be misaligned during the bonding process

and leads to fail in TSV [27, 36, 61]. Therefore, the allocation of TSVs should be

determined carefully.

4.3 System Specifications and Problem Formulation

In this section, we present the models used to describe the target 3D MP-

SoC architecture and the formal problem definition of distributed memory interface

synthesis problem of MPSoCs with stacked DRAMs.

4.3.1 System Model

Our system consists of an application model and MPSoC architecture model.

The application model used for the framework is the same as the one described in

Section 3.2.1. As in PM-COSYN, we also assume the priority of tasks are known as

a priori. Here, we detail the architectural model and the assumptions of the target

MPSoC with stacked DRAM.

The system model specifies the (1) logic layer architecture, (2) the total

capacity of the stacked DRAMs, (3) DMC configurations, (4) maximum data bus
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width of each DMC, and (5) SPM size and the SPM capacity that a DMC can

be traded for. The logic layer is a 2D mesh NoC, therefore, we utilize the same

Architecture Graph N =< T,L > used in PM-COSYN (described in Section 3.2.1) to

describe the logic layer of the target MPSoCs with stacked DRAMs. We use variable

Size(DRAM) to denote total capacity of the stacked DRAMs. About the DMC

configuration, as mentioned in Section 4.1, the DRAM capacity is equally partitioned

among the allocated DMCs, therefore, only a set of fixed DMC allocations can be

selected as shown in Figure 4.2. We use DMC = {dmc1, dmc2, ...dmcx} to indicate

the set of DMC allocations that can be selected. One and only one of dmci ∈ DMC

can be selected. Each dmcx ∈ DMC is a binary array of m×n elements. If the i-th

element equals to 1, it indicates a DMC is allocated in the i-th tile when dmcx is

selected. The number of 1s in dmcx indicates the number of DMCs allocated with

the configuration selected. E.g., if we have 4 tiles in the 3D MPSoC platform and

the DMC on the second tile position is allocated when only one DMC is allocated,

the corresponding dmc1 = {0, 1, 0, 0}. As discussed in Section 4.1, due to the area

constraint, a DMC can only have a limited vertical bus width. For each DMC, we

assume the vertical data bus width can be most Bmax bits. We use Size(SPM) to

denote the baseline capacity of each tile’s SPM, and Size(DMC) to denote the SPM

capacity that a DMC module can be traded for. The parameters used to describe

the system model are listed in Table 4.1.

4.3.2 Problem Formulation

The goal of the memory system synthesis algorithm is to determine the DMC

allocation, and the vertical bus width each allocated DMC for the target application.

Since different DMC allocation will affect the data access behavior, e.g. DRAM or

SPM data accesses and local or remote accesses, task allocation and data block allo-

cation should be synthesized accordingly so that the performance can be optimized.

The goal of the proposed algorithm is to minimize the total number of allocated

TSVs so that user-defined performance constraint is met. The formal problem for-

mulation of the 3D MPSoC memory system synthesis problem is defined as the

follows.
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Table 4.1: Variables used to describe the system model.

Task Graph

G G =< V, E > the data flow graph of target application

V the set of tasks in G

E the set of data transfers among the tasks

D the set of data blocks accessed in G

3D MPSoC Platform

X/Y the X and Y dimension of the logic layer NoC

LW the link width of the NoC

PE the set of PEs

DMC DMC = {dmc1, dmc2, ...} the set of DMC allocations can be selected

dmci a binary array of X × Y components that indicate

the allocation of each DMC in each tile

Bmax the maximum vertical bus width that can be selected for each allocated DMC

Size(DRAM) total DRAM size

Size(SPM) the baseline SPM capacity of each tile

Size(DMC) the extra SPM capacity that a DMC can be traded for

Given. Dataflow graph represented by a DFG G =< V,E >, a data block li-

brary D = {d1, d2, ...dk}, and MPSoC platform defined by architectural graph N =<

T,L >, DRAM size Size(DRAM), DMC allocations DMC = {dmc1, dmc2, ...dmcx},
the baseline local SPM size Size(SPM), the extra SPM size that a DMC can be

traded for (Size(DMC)), the maximum data bus width that a DMC can accom-

modate (Vmax) and the performance constraint Tconstraint.

Objective. Find a DMC configuration dmci ∈ DMC, a vertical bus config-

uration B′ = {b0, b1, ...bX×Y }, the task assignment function φ and the data block as-

signment function ω such that task set execution time Texe is no more than Tconstraint,

and the number of TSVs allocated in the system (NTSV ) is minimized.

The four steps of DMC Allocation, Vertical Bus Allocation, Task Assignment

and Data Assignment for determining dmci, V ′, φ and ω are defined as follows.

• DMC Allocation: Determine the DMC configuration for the target applica-

tion. Only one of the DMC configuration dmci ∈ DMC can be selected.
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• Vertical Bus Allocation: Determine the vertical bus width for accessing the

stacked DRAM module for the allocated DMCs. B′ is an array with X × Y

elements. Each bi ∈ B′ represents the vertical bus width of the DMC allocated

in the ith tile. If no DMC is allocated in the ith tile, bi is zero. Since modern

computer systems are byte addressing, we assume that vertical bus width bi

should be power of two and is no smaller than eight and no larger than Bmax

(8 ≤ bi ≤ Bmax).

• Task Assignment: Assign each task node vi ∈ V to one of the PE in tile

ti ∈ T . A task vi can be assigned to only one PE, and we use the function

φ : V → T to represent the task assignment process.

• Data Assignment: Assign each data block di ∈ D to one of the memory

module. A data block can be assigned to either a DRAM module controlled

by an allocated DMC, or a SPM module distributed in the tile ti ∈ T . We

use the function ω : D → DMC ′ ∪SPM , where DMC ′ is the set of allocated

DMC, and SPM is the set of SPM. Note that each memory module has limited

capacity, therefore, the total size of data blocks assigned to a memory module

should be no more than its capacity. That is,

⎧⎪⎪⎨
⎪⎪⎩

∑
∀diassignedtoSPMj

≤ Size(SPM) ifDMCisallocatedintj

∑
∀diassignedtoSPMj

≤ Size(SPM) + Size(DMC) othersize

(4.1)⎧⎪⎪⎨
⎪⎪⎩

∑
∀diassignedtoDRAMj

≤ Size(DRAM)/|DMC ′| ifDMCisallocatedintj

∑
∀diassignedtoDRAMj

≤ 0 otherwise,

(4.2)

where SPMj denotes the SPM module on tile tj, and DRAMj is the DRAM

controlled by the DMC allocated on tile tj.

The total number of TSVs including the data bus of each DMC and the

control lines used in each DMC. The control lines of each DMC include address bits

and control bits, which are fixed for each of the allocated DMC. Assume the number
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of control lines of each DMC is Ncontrol, NTSV can be modeled as

NTSV = |DMC ′| × Ncontrol +
∑

1≤i≤X×Y

bi (4.3)

4.4 Memory System Synthesis Algorithm for MPSoCs with

Stacked DRAM

The design space for the memory system synthesis algorithm is huge, and

all of the steps in the co-design flow, DMC allocation, Vertical Bus Allocation,

Task Assignment and Data Block Assignment actually interplay with one another.

Therefore, in this work, we propose a Simulated-Annealing (SA) based memory

system synthesis algorithm for MPSoCs with stacked DRAMs. SA is a widely-used

non-deterministic algorithm for solving combinatorial optimization problems [34].

Each iteration of SA is composed of three steps. Perturbation results in a new

solution through a set of operations. After each perturbation, a feasibility test is

required to verify if the solution violates its constraints or not. The quality of the

solution is evaluated with a pre-defined cost function. The whole process is repeated

until the SA termination condition is met.

The flow of the SA-based algorithm is shown in Figure 4.5. Four steps in

the memory system synthesis flow (DMC Allocation, Vertical Bus Allocation, Task

Assignment and Data Block Assignment) are treated as perturbation operations.

In the SA algorithm, after a perturbation, we schedule the task set according to

current system configuration and get the system execution time Texe. The solution

is evaluated by the cost function so that we can decide to reject or accept the

solution. Once a solution is accepted after the cost evaluation and the solution is

not converged, we re-construct the system configuration accordingly. We also call

the SA algorithm shown in Figure 4.5 as the Baseline SA in this thesis. Some

important ingredients of the baseline SA algorithm are defined as follows.

1. solution space: The solution space is the combination of DMC allocation,

Vertical Bus allocation, Task Assignment and Data Block Assignment. If we

define solution space as S, then S = |DMC| × |V B| × |TA| × |DA|, where
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Figure 4.5: Flow of the SA-based memory system synthesis algorithm.

• |DMC|: the number of DMC allocations that can be selected.

• |V B|: the number of vertical bus width that can be selected for each

allocated DMC.

• |TA|: the number of task assignment configurations. Assume we have

|V | tasks and |T | tiles in the target platform, then, there are |T ||V | kinds

of task assignments.

• |DA|: the number of data assignment configurations. Assume we have

D data blocks and |T | + |DMC| memory modules (|T | SPM modules

and |DMC| DRAM modules), then, there are (|T | + |DMC|)|DA| kinds

of data assignments.

2. neighborhood structure: the neighborhood structure of each perturbation

step are described as follows:
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• DMC Allocation: The perturbation of DMC allocation is to randomly

select a DMC configuration dmci ∈ DMC. Since different DMC con-

figuration may cause different number of available DRAM modules and

the capacity of local SPM, data assignment are re-defined by the data

assignment perturbation described later once a data block is assigned to

a memory module that no longer exists or do not have enough capacity

for it.

• Vertical Bus Allocation: The perturbation of vertical bus allocation

is to randomly select a legal data bus width for an allocated DMC that

is selected randomly.

• Task Assignment: The perturbation of task assignment is to randomly

select a task, and re-assign it to a randomly selected tile.

• Data Assignment: The perturbation of data assignment is to randomly

pick a data block, and randomly assign it to an SPM or DRAM module,

which has enough capacity for storing the data block.

3. cost function: The objective function contains two parts, TSV cost (CTSV )

and miss performance constraint penalty (Cpenalty).

·CTSV + ·Cpenalty, (4.4)

where CTSV is estimated by Eq.(4.3). Cpenalty is described as following:

⎧⎪⎪⎨
⎪⎪⎩

Cpenalty = 0 ifTexe ≤ Tconstraint

Cpenalty = Texe − Tconstraint + ε ifTexe > Tconstraint,

(4.5)

where Tconstraint is the timing constraint of the application, Texe is the current

completion time of the application, and ε is a constant. Recall that our opti-

mization goal is to minimize the total TSV cost while meeting the user defined

performance constraint. In the first case, when the current solution satisfies

the specified timing constraints, we concentrate on TSV cost minimization by

setting Cpenalty to zero. In the second case, since the completion time Texe vio-

lates the timing constraint Tconstraint, both TSV cost and timing factors should
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be considered in searching for the solutions. The Cpenalty is given more weight

as the difference between the timing constraint and the current completion

time gets larger. Note that we include ε in Cpenalty to distinguish a feasible

solution from an in-feasible solution. The ε is an experimental parameter.

Since the perturbation of DMC configuration changes the underlying hard-

ware architecture, it implies that it might require a significant change in task as-

signment and data assignment as well. For example, if the newly selected DMC

configuration has more DMCs allocated in the system, it is very likely the tasks

are centralized on certain tiles and cannot explore the advantage of having more

DMCs. Therefore, the new solution will be probably rejected by the SA due to its

high cost. However, trivially rejecting this new DMC configuration may foreclose

possibly attracting DMC configurations. In the example mentioned above, if we

re-assign the tasks according to the new hardware configuration, we might be able

to find a feasible solution. Therefore, as shown in Figure 4.6, we optimize for the

newly selected DMC allocation by performing a low-temperature SA before deciding

to accept or reject the new DMC allocation. The low-temperature SA contains task

assignment, data block assignment and vertical bus allocation perturbations only.

We call this SA engine as the Low-Temperature SA method.

4.5 Experimental Results

In this section, we evaluate the proposed distributed memory interface syn-

thesis algorithm. The experimental setup is described in Section 4.5.1. Analysis of

the proposed algorithm is performed in Section 4.5.2.

4.5.1 Experimental Setup

To analyze the proposed algorithm, we the algorithm on a set of synthetic

benchmarks. The synthetic task sets are generated by the graph generator TGFF [17],

which is a parameterizable graph generator. We generate random DFGs and ran-

dom data block libraries for every task set. Each of the task sets varies in the
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Figure 4.6: Flow of the Low-Temperature SA algorithm.

average number of data accessed in each data transfer. In our experiments, we use

a synthetic task graph with 4 different average data transfer per edge, which are

16K-bit, 32K-bit, 64K-bit and 128K-bit. In addition to synthetic task sets, we also

evaluate the proposed algorithm on a set of real-world application mixes: Consumer

+Telecom. As mentioned in Section 3.4.1, Consumer+Telecom is the mix of con-

sumer and telecom benchmark suites obtained from Embedded System Synthesis

Benchmark Suites (E3S) [15]. E3S is a collection of task graphs which are built

from the Embedded Microprocessor Benchmark Consortium (EEMBC) benchmark

suites [20]. Since existing mobile devices usually supports multimedia and telecom-

munication applications, we select the mix of consumer and telecom task sets for

evaluation.

The detailed configurations of the 3D MPSoC template we used for exper-

iments are listed in Table 4.2. We use 4 × 4 NoC as the logic layer configuration,

and set the on-chip DRAM size to 16Mb, which is large enough to store all the

data accessed by the task sets evaluated here. As mentioned in Section 4.3, due to
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Table 4.2: Detail configuration of the target 3D MPSoC platform.

Parameter Values

NoC dimension 4 × 4

DMC configurations 1, 2, 4, 8, 16 DMCs

Vertical bus width max 128-bit for each DMC

(8, 16, 32, 64, 128 bits)

Router latency 5-cycle

Link width 64-bit

On-chip DRAM size (Size(DRAM)) 16Mb

Size of SPM of each PE (Size(SPM)) 16Kb

Extra SPM size from de-allocating DMC (Size(DMC)) 4Kb

On-chip SPM access latency 1-cycle

On-chip DRAM access latency 12-cycle

the read/write queues, a DMC occupies a significant portion of transistor budget.

If the DMC in a tile is not allocated, this resource can be adopted to increase the

capacity of local SPM. Assume a DMC with 2 queues, each queue with 4 slots, and

each slot has 512-bit storage, the area occupied by DMC can be traded for extra

4K-bit SPM capacity (Size(DMC) = 4Kb). According to [42], 64-bit of data bus

width and its corresponding control takes about 4 5% of DMC resource. Assume we

allow the DMC to have around 10% of area for TSVs, we set the maximum vertical

data bus width (Bmax) of each DMC to 128-bit. Note that, each allocated DMC

has fixed 16 vertical control lines, where 11 of them are for address and 5 of them

are for DRAM controls, such as RAS and CAS lines [42]. Therefore, we can have

maximum of 2304 TSVs in our system. More address lines are required if larger

memory addresses space is available.

In our experiments, we set the performance constraint Tconstraint of each task

set to

Tconstraint = Tbaseline × (1 + Degradation),

where Tbaseline is the task set execution time on the platform with all tiles equipped

with a DMC and the vertical data bus is set to max, and Degradation is the

percentage of performance degradation we can tolerate. Note that, the performance

constraint can be set to other user-specified criteria.
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To evaluate the task set execution of each configuration selected at an SA

iteration, we perform a simple simulator for the target system as the one we described

in Section 3.4.1. Since each DMC may have different vertical bus width and different

data access latency in MPSoCs with stacked DRAM, we model how data access

latency changes with vertical bus width. Assume a data block di with size Size(di),

DRAM access latency of DL and vertical bus width of bk, retrieving di from stacked

DRAM would need 	di/bk
×DL cycles. Same as the simulator used in PM-COSYN,

memory contention and on-chip network contention are also modeled here.

4.5.2 Analysis of Experimental Results

In this section, we analyze the synthesis results of the proposed distributed

memory interface synthesis algorithm. Figure 4.7(a) shows the number of allocated

DMCs and TSVs and Figure 4.7(b) shows the number of TSV reduction compared to

the baseline architecture for the synthetic task sets. In this set of experiments, all the

task sets have the same task graph (50 tasks and parallelism degree of 16). Different

task sets have different average data transfer per edge (ranging from 16K-bit to

128K-bit), and the performance constraint is set to no performance degradation

compared to the baseline architecture. From Figure 4.7(a), we can observe that,

task sets with higher average data access per edge also have higher DMC and TSV

demands. For example, the task set with 16K-bit average data access per edge needs

only eight DMCs and total of 1152 TSVs to achieve the task set execution time that

the same as the baseline architecture. As shown in Figure 4.7, when comparing to

the baseline architecture, 2.78% to 50% of TSVs can be reduced while the task set

execution time stays the same. Figure 4.8 shows how number of allocated DMCs and

TSVs and TSV reduction change with different criteria of performance constraint.

In this set of experiments, the performance constraints are set to 0%, 3% and 9% of

performance degradation compared to the baseline architecture. From Figure 4.8,

we can observe that more TSV reduction can be achieved when more performance

degradation is allowed. With 3% performance degradation, 8.33% to 50% of TSV

reductions are achieved. With 6% performance degradation, the 16K-bit test set

needs only 4 DMCs. Moreover, up to 12% to 75% of TSVs can be reduced.
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Figure 4.7: Synthesis results for task sets with different average data transfer per

edge and performance constraint is set to no performance degradation compared

the baseline: (a) Number of allocated DMCs and TSVs, and (b) TSV reduction

compared to the baseline architecture.
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Figure 4.9: Distributed memory interface synthesis results of Consumer+Telecom

with performance constraint set to 3% degradation compared to the baseline.

For real-world applications, we test the proposed algorithm on Cosumer+Telecom,

which has 42 tasks including applications such as JPEG, auto-correlation, FFT, etc.

For Consumer+Telecom, when the performance constraint is set to 3% degradation

compared to the baseline architecture, the proposed algorithm synthesized a solu-

tion with 16 DMCs and with 27.5% of TSV reductions compared to the baseline.

Figure 4.9 shows the results of Consumer+Telecom. Although 16 DMCs are allo-

cated for Consumer+Telecom, we can see that the vertical data bus width of each

DMC varies from 8-bit to 128-bit. The results show that TSV can be saved even

with all DMCs are allocated since not every DMC need to support the maximum

DRAM bandwidth.

Figure 4.10 shows the comparison of the proposed SA method with and with-

out the Low-Temperature SA. We perform this set of experiments on the synthetic

task sets, and the performance constraint is set to 3% degradation compared to the

baseline. We can observe that, the SA engine without the Low-Temperature SA

cannot find a distributed memory interface with reduced TSV cost while the per-

formance constraint is met in all cases. On the other hand, the SA engine with the

Low-Temperature SA successfully minimizes TSV cost for all task sets. Table 4.3

shows the average CPU time used to synthesize a solution by SA with and without

the Low-Temperature SA. With the average data transfer per edge of 32K-bit case,

we can see that the SA with Low-Temperature SA uses only 2.28% more CPU time

than the SA without Low-Temperature SA, but achieves up to 21.53% more TSV
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Figure 4.10: Comparison of SA engine with and without Low-Temperature SA.

Table 4.3: CPU time for synthesizing a solution by SA with and without the Low-

Temperature SA.

Task Sets w/ Low-Temperature SA w/o Low-Temperature SA

CPU Time(sec) CPU Time(sec)

16K case 647.919847 384.510294

32K case 223.459636 218.373817

64K case 234.826483 221.427568

128K case 239.346014 180.649925

reduction. This shows the Low-Temperature SA can effectively synthesizes a good

solution quality in a short time.
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Chapter 5

Concluding Remarks and Future Work

In this chapter, we give the concluding remarks and future work. We have prelim-

inary results of PE and memory con-synthesis framework for traditional 2D NoCs

(Chapter 3), and have formulated the PE and memory co-synthesis problem for

NoCs with 3D integration (Chapter 4). In the future, we will enhance PM-COSYN

for traditional 2D NoCs and complete the co-synthesis framework for 3D MPSoCs.

5.1 PE and Memory Co-Synthesis for Traditional 2D NoCs

In this thesis, we proposed PM-COSYN, the first synthesis algorithm that

simultaneously synthesize PE and on-chip memory for application-specific NoCs

with the area constraint. The proposed PM-COSYN is a greedy-based iterative

algorithm. Starting from an initial solution with all PEs and no on-chip memory,

during each iteration, PM-COSYN replaces a PE by a memory and allocates the

most critical data blocks to the on-chip memory to improve system performance.

The experimental results show that PM-COSYN successfully identifies the correct

numbers of PE and memory module that achieves the best system performance. By

using a Simulated-Annealing (SA) optimizer as reference, we have shown that PM-

COSYN can generate high quality solutions with significantly less computational

time for both synthetic task sets and real-world applications. When comparing

to the SA optimizer, in our test cases, PM-COSYN uses at most 0.3987% of SA

program execution time to synthesize a solution with comparable solution quality.
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We plan to extend this research in several directions. First, we plan to

utilize PM-COSYN to help characterize how application behaviors affect PE and

on-chip memory resource allocation. The characterization can help designers to

decide proper MPSoC design at early design stage. Second, since energy consump-

tion is an important issue in MPSoC design, we plan to extend PM-COSYN to

consider the energy consumption of the system. We plan to analyze how MPSoC

design changes when considering different optimization criteria, e.g. performance

vs. energy consumption.

5.2 Memory System Design for MPSoCs with Stacked DRAM

In this thesis, we proposed the first distributed memory interface synthesis

algorithm for MPSoCs with stacked DRAM. The proposed algorithm decides the

number of DMCs and the vertical bus width of each allocated DMC. The goal

of the proposed algorithm is to minimize system TSV cost while the user-defined

performance constraint is met. Compared to the baseline architecture that has every

PE with a DMC and each DMC with maximum vertical bus width that it can have,

the experimental results show that proposed synthesis algorithm achieves up to 50%

TSV cost reduction while the performance degradation compared to the baseline is

no more than 3%.

In the future, we will extend the proposed algorithm to consider the thermal

issue of MPSoCs with stacked DRAM. One major problem of 3D integration is

the chip stacking architecture is not good for thermal dissipation. To minimize

chip temperature, we can decide how to decide the resource allocation to achieve a

balanced design between performance and temperature, e.g. more high-temperature

PEs to exploit task parallelism or more low-temperature on-chip memory modules

to minimize average data access latency. We can also decide proper task and data

assignment so that hot spot in the system can be avoided. Therefore, in the future,

we plan to combine the proposed PM-COSYN and distributed memory interface

synthesis algorithm to manage the thermal issue of MPSoCs with stacked DRAMs

through proper resource allocation and data assignment.
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