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摘要 

 

本論文提出步階式數學形式之有限差分模態法來對光柵結構進行模擬並將其

與傅立葉模態法(亦稱嚴格耦合波分析法)進行比較。我們的數值結果證實，對於橫

電極化的所有情況以及橫磁極化在高導電性與無損金屬材料中，有限差分模態法

比起嚴格耦合波分析法會有更好的收斂性和準確性。 

對於有限差分模態法，我們考慮任意高階之邊界條件並將其與泰勒展開式結

合。在不使所取格點數增加的情況下，我們亦將廣義道格拉斯(Douglas)方法套入使

用來加速誤差收斂階數。使用前述技巧，可以對結構的每一層架構出稀疏矩陣並

計算出存在於該層之模態所對應的場值分佈以及傳播常數。另外，我們也使用穆

哈拉姆(Moharam)所提出之改良穿透矩陣方法來穩定多層光柵或甚至單層光柵層間

的矩陣運算。 

為了評估此種數值方法的可用性，我們將討論一些光柵的繞射特性，如入射

角變化、厚度變化、佔空比變化所造成的影響，以及準確性、收斂性等等。另外，

我們也使用結合週期性邊界和吸收邊界的二維有限差分法來與前述方法進行比

較。 

 

 

 

 

關鍵詞： 

傅立葉模態法、嚴格耦合波分析法、頻域有限差分法、任意階數邊界條件、廣義

道格拉斯方法、改良穿透矩陣方法、完美匹配層。 



Abstract

In this thesis, the finite-difference modal method (FDMM) with step-

index formulation for simulating grating structures is proposed and compared

with rigorous coupled-wave analysis (RCWA), also called Fourier modal method

(FMM). It is verified that FDMM has better convergence and accuracy than

RCWA for TE polarization in almost all cases and TM polarization for high

conductive and lossless metallic materials.

In the FDMM, the relation of interface conditions to arbitrary high or-

ders is considered and combines with Taylor series expansion. The general-

ized Douglas (GD) scheme is also adopted to enhance the convergence order

without considering more sampled points. With the techniques mentioned

above, the sparse matrix of eigenvalue problem could be constructed to solve

the fields and the propagation constants of modes inside each layer. In ad-

dition, the enhanced transmittance matrix approach proposed by Moharam

et al. for RCWA is used to make matrix manipulation stable for multi-layer

or even single layer gratings.

The diffraction properties of gratings, such as accuracy, convergence, de-

pendence of diffraction efficiencies on incident angle, thickness, duty cycle,

etc, will be discussed for numerical assessment of FDMM. Moreover, two-

dimensional finite-difference methods combined with periodic boundary con-

ditions and absorbing boundary conditions will be executed for comparison.



Keywords:

Fourier modal method, rigorous coupled-wave analysis, finite-difference

frequency-domain method, arbitrary-order interface conditions, gen-

eralized Douglas scheme, enhanced transmittance matrix approach,

perfectly matched layer.
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Chapter 1

Introduction

1.1 Overview

Diffraction of optical electromagnetic radiation by periodic structures is im-

portant for many engineering applications. Grating diffraction is central in

the fields of integrated optics, holography, optical data processing, spectral

analysis, etc. There are numerous numerical methods with variety of possible

assumptions to analyze diffraction properties of gratings, and most of them

are not only tools for solving mathematical equations but also imply some

physical insights of the problems. Thanks to advancement of computer tech-

nology, numerical methods and computer-aided design (CAD) become more

important and convenient for finding optimized parameters for high cost or

complicated experiments.
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1.2 Literature Survey

The Fourier modal method (FMM) which is a kind of differential methods [1]

and often referred to as rigorous coupled-wave analysis (RCWA) was first

formulated for planar gratings by Moharam and Gaylord [2] [3] [4], and then

extended to surface-relief gratings [7] [6] and crossed-grating structures. It

provides the exact solutions whose accuracy depends solely on the numbers

of terms retained in the space-harmonic expansions of the fields.

Before this method was proposed, the most common differential methods

were the coupled-wave approach [8] and the modal approach [9]. The coupled-

wave approach, which expanding the solution into plane-wave components,

had been known to offer a relatively simple formulation and superior physical

insight into wave-diffraction phenomena. In this approach, several assump-

tions were made in order to obtain solutions such as neglecting the second

order derivatives of the field amplitudes and retaining only one diffracted

wave. The modal approach, which through eigenmode expansion, was a rig-

orous exact analysis but complicated mathematically. However, Magnusson

and Gaylord [10] had shown that these two approaches are equivalent and

the coupled-wave approach could become rigorous by including all diffracted

waves in the formulation together with retaining the second derivatives of

the electromagnetic fields. Therefore, RCWA was created by considering the

coupled-wave approach without the assumptions as mentioned above.
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As matching the boundary conditions between every layers and finding

diffraction efficiencies, some instabilities would be introduced because taking

the inverse of some ill-condition matrices. Several methods such as R-matrix,

S-matrix, and other approaches which were compared systematically by Li

[11] have been proposed to produce stable implementation for this problem,

and the method proposed by Moharam et al. [12] in 1995 will be mentioned

in section 2.1.3.

Another problem of RCWA discovered by Li and Haggans [13] is poor

convergence as dealing with metallic gratings under TM incidence. The con-

vergence was dramatically improved by the reformulation by Lalanne and

Morris [14] and Granet and Guizal [15], and this improvement was explained

by Li [16] mathematically. He proved the origin of poor convergence comes

from the mistakes of using Fourier factorization and proposed the inverse rule

of factorization to uniformly satisfy the boundary conditions in the grating

region.

However, even using the modified factorization mentioned above, Popov et

al. [17] discovered a numerical instability problem in this differential theory as

applied to metallic gratings with very high conductivity under TM incidence.

They attributed these instabilities to the imperfect condition of matrices gen-

erated by Fourier coefficients of permittivity distribution to be inverted. This

statement was later questioned by Watanabe [18]. Some heuristical solutions

3



proposed by them were introducing artificial metal losses in order to damp

the instabilities or applying two-step truncation [17]. Such strategy obvi-

ously treats a neighboring but different electromagnetic problem. Lyndin et

al. [19] established the link between the instabilities and the spurious modes

corresponding to instable high order eigenvalues. They proposed a procedure

of identification and filtration of these spurious modes, but such tracking of

those artifactual modes are complicated. Furthermore, Guizal et al. [20] ap-

plied the reformulation of FMM with adaptive spatial resolution proposed

by Granet [21] to approach the problem of highly conductive gratings under

TM incidence and get even more stable solution.

Finite difference (FD) methods for solving partial difference are also used

in electromagnetism for solving Maxwell’s equations. This method is not

widely used in grating theory but often used to study the diffraction by

aperiodic objects of finite dimension because of their suitability for incor-

porating absorbing boundary conditions to limit the computational domain.

Generally, standard FD methods require a two-dimensional (2D) mesh for

the discretization of a one-dimensional (1D) grating. After adding periodic

boundary conditions, absorbing boundaries and sources, the fields of scatter-

ing problems could be solved and used to find diffraction efficiencies.

However, Lalanne and Hugonin [22] proposed a very simple method for

the analysis of 1D lamellar gratings. This method is solving eigenmodes in-

4



side the gratings region such as FMM (RCWA) but using finite-difference

approach. And it is similar to numerical techniques that are based on finite-

difference modal approaches and used in waveguide theories. They used a

first-order method with averaging permittivity and found that their method is

much inferior to the RCWA for dielectric gratings. In contrast, their method

compared favorably with the RCWA for metallic gratings operating in the

infrared regions of the spectrum, especially for TM polarization. They also

proposed three crucial methods to accelerate the convergence: (1) proper

interpolation for averaging permittivity, (2) mesh points on discontinuities

and (3) non-uniform sampling near the discontinuities. Their numerical re-

sults indicated that FD approach offers rather good performance for highly

conducting gratings and TM polarization.

1.3 Motivation

In the paper of Lalanne and Hugonin [22], they presented the finite-difference

modal method and declared good performance for metallic gratings and TM

polarization but worse convergence than RCWA for TE polarization. Inside

the grating layer, what they used is an interpolation scheme that locally

averages the permittivity, and they said the method of interpolation has

a drastic impact on the convergence performance. In addition, they only

considered first-order finite-difference and expected that faster convergence

5



rates can be achieved by using higher order method but the computational

efficiency will be reduced because of increasing non-zero value in the eigen

matrices.

Therefore, the finite-difference modal method (FDMM) with even higher

order formulation and considering boundary conditions instead of interpola-

tion is introduced and tested in this thesis. With the generalized Douglas

scheme [23] [24], the convergence order can be increased without adding the

mesh points, so the computational time and the computer memory does not

be increased. For comparison, the two-dimensional finite-difference both for

graded-index approximation and step-index approximation will be investi-

gated.

1.4 Chapter Outline

There are three chapters following this introduction.

In chapter 2, the Fourier modal method (FMM), or rigorous coupled wave

analysis (RCWA) is demonstrated first both for rectangular-groove gratings

and surface-relief gratings. Surface-relief gratings, which also called arbi-

trary profile gratings, can use many layers of rectangular-groove gratings

with different duty cycles to approximate. A stable approach will then be

mentioned to solve the unstable problems as using above approximation.

Next, the finite-difference modal method (FDMM) will be proposed by us-

6



ing step-index formulation with or without generalized Douglas scheme in-

side each grating layer and stable approach used in RCWA. Last, the two-

dimensional finite-difference (2DFD) with averaging permittivity and con-

sidering boundary condition will be applied to the same configuration which

solved by RCWA and FDMM above. In addition, two different methods of

perfectly matched layers and total fields/scattered fields (TF/SF) for adding

sources will be mentioned.

In chapter 3, numerical results are given to assess the formulations men-

tion in chapter 2. First, some papers’ results will be used to verify the

correctness of FDMM and RCWA, and the problems of RCWA will be seen

for lossless metallic or high conductive gratings under TM incidence. Second,

accuracy and convergence of propagation constants and diffraction efficien-

cies of these two numerical methods will be defined and discussed for every

kinds of materials, both of TE and TM polarization and both of rectangular-

groove gratings and arbitrary profile gratings. Finally, 2DFD will be used to

solve the same problem which suffers from serious instabilities with lossless

metallic gratings under TM incidence.

Chapter 4 concludes this thesis.
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Chapter 2

Formulation

The geometry of the problem we deal with is one dimensional periodic grating

depicted in Fig. 2.1, which is separated into reflection region, grating region

and transmission region. The normal to the interface between any adjacent

two regions is along z direction, and the grating is periodic along x direction

and infinite along y direction.

Figure 2.1: Grating with one-dimensional periodicity.
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2.1 Fourier Modal Method (or RCWA)

The main idea of RCWA is to express both permittivity and electromagnetic

fields by Fourier bases. In the grating region, the periodic relative permit-

tivity ε(x) is expandable in a Fourier series of the form

ε(x) =
∑
h

εhe
j 2π

Λ
hx, (2.1)

where Λ is grating period and εh is the hth Fourier coefficient of the relative

permittivity which can be found by

εh =
1

Λ

∫ xi+Λ

xi

ε(x)e−j
2π
Λ
hxdx, (2.2)

where xi is any initial position in the integration. Regarding the electro-

magnetic fields, it assumes that these could be expanded by Fourier bases

along the periodic direction x and form a set of modes along the propagation

direction z and are expressed as

ψm(x, z) ∼

(∑
i

Cmie
−jkxix

)
× e±jβmz, (2.3)

where m is the index of mode, βm is the propagation constant of mode m,

kxi = k0 sin(θincidence) + i2π
Λ

and Cmi is the contribution of mode m to the ith

Fourier order.

After using above approximation to rewrite Maxwell’s equations, an eigen-

value problem is constructed and used to find every eigenmodes inside the
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grating layer. Then we match boundary condition of tangential field compo-

nents at each interface between two adjacent layers and calculate the diffrac-

tion efficiencies finally. More details of RCWA will be shown in the following

subsections.

2.1.1 Planar Diffraction of Rectangular-Groove Grat-
ings

For simplicity, only TM polarization (Hy,Ex,Ez), which means the magnetic

field is perpendicular to the plane of incidence (which means x-z plane here),

is going to be demonstrated, and the mathematical derivation of TE polar-

ization is similar to that of TM. The structure of a rectangular-groove grating

is depicted in Fig. 2.2. Assume the incidence wave is a plane wave given by

Figure 2.2: Rectangular-groove grating.

H inc
y = e−jk0

√
εr,inc(sin θx+cos θz), (2.4)
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where k0 is the wave vector in free space, and θ is the incident angle. However,

it also could be any other kinds of waves. And the solutions form of reflection

and transmission are given by

HR
y =

∑
i

Rie
−j(kxix−kRziz) (2.5)

and

HT
y =

∑
i

Tie
−j[kxix+kTzi(z−t)], (2.6)

where kRzi =
√
k2

0εr,inc − k2
xi, k

T
zi =

√
k2

0εr,tra − k2
xi and t is the thickness of

grating. The electric fields in these regions can be obtained from Maxwell’s

equation E = 1
jωε0εr

∇×H.

In the grating region, we would like to solve modes propagated along

direction z. Being analogous to (2.3), the fields may be expressed as

HG
y =

∑
i

Uyi(z)e−jkxix, (2.7)

where Uyi(z) means the contribution of every modes to the ith space harmonic

fields. After substituting it into Maxwell’s equations, we will get

EG
x = α

∑
i

Syi(z)e−jkxix, (2.8)

where α is normalization constant which will be decided later. For TM

polarization, Maxwell’s equations E = 1
jωε0εr

∇×H and H = −1
jωµ0
∇×E will

be simplified to be

EG
z =

1

jωε0εr(x)

∂HG
y

∂x
(2.9)
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EG
x =

1

jωε0εr(x)

(
−
∂HG

y

∂z

)
(2.10)

−jωµ0H
G
y =

∂EG
x

∂z
− ∂EG

z

∂x
. (2.11)

First considering (2.10). If we define

1

εr(x)
=
∑
h

ahe
j 2π

Λ
hx (2.12)

and substitute (2.12), (2.7) and (2.8) into (2.10). we will obtain

α · Sxi =
−1

jωε0

∑
p

aip
∂Uyi
∂z

, (2.13)

where aip ≡ ap−i is Fourier coefficient of ε−1
r (x). Next, combining (2.11) with

(2.9) and substituting (2.12), (2.7) and (2.8) into this combination, then we

obtain

α · ∂Sxi
∂z

=
−jkxi
jωε0

∑
p

aip(−jkxi)Uyp − iωµ0

∑
i

Uyi. (2.14)

Now we can see that if α ≡ 1
jωε0

, the (2.13) and (2.14) will become simpler.

Finally, combining the (2.13) with (2.14) and eliminating Sxi, we obtain

∑
p

aip
∂2Uyp
∂z2

= kxi
∑
p

aipkxpUyp − k2
0Ui, (2.15)

or, in matrix form,

AU′′ = KxAKxU− k2
0U, (2.16)

where A ≡ [aip] and Kx ≡ diag[kxi]. Therefore, now we know the eigenvalue

problem used to be solved is

U′′ = A−1(KxAKxU− k2
0I)U. (2.17)

12



However, from the empirical advice of Lalanne and Morris [14] (by quasi-

static limit description), G. Granet and B. Guizal [15] in 1996 and the math-

ematical foundation given by Li [16] that the matrix A in the parenthesis

of (2.17) is better to be replaced by E−1, where E ≡ [εip], for improving

convergence. This replacement will improve the convergence. Namely, we

solve

U′′ = A−1(KxE−1KxU− k2
0I)U ≡ −MU (2.18)

finally instead of (2.17). If the field assumption is like (2.3), i.e., Uyi(z) ∼∑
mCmie

±jβmz, we could know that

U′′ =

[∑
i

∂2Uyi(z)

∂z2

]
= −β2U, (2.19)

and be sure that the eigenvalue problem is MU = β2U, where β2 is a

diagonal matrix containing eigenvalues.

After solving the eigenvalue problem above, the space harmonics of tan-

gential electric and magnetic fields are given by

Uyi =
∑
m

wim{g+
me
−jβmz + g−me

+jβm(z−tg)}

Syi = −
∑
p

∑
m

aipwpm(−jβm){g+
me
−jβmz − g−me+jβm(z−tg)}, (2.20)

where wim and βm are the elements of the eigenvector matrix W and the

square root of the eigenvalues of the matrix M. The quantities g+
m and g−m

are unknown constants to be determined by matching boundary conditions.

Physically, g+
m and g−m mean the contribution of each mode. The columns of
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[wim] means which mode, and the ith row of column m represents the ratio

of tth space harmonic in this mode.

To solve reflection coefficient Ri, transmission coefficient Ti, g
+
m and g−m,

the boundary conditions of tangential fields are used. For TM polarization,

the component Ex, which means 1
εr

∂Hy
∂z

, and Hy are continuous at disconti-

nuities. At the input boundary (z = 0)

δi0 +Ri =
∑
m

wim{g+
m + e−jβmtgg−m} (2.21)

and

−jk0
√
εr,inc cos θδi0

εr,inc
+
jkRzi
εr,inc

Ri =
∑
p

∑
m

aipwpm(−jβm){g+
m − e−jβmtgg−m},

(2.22)

or in matrix form,[
δi0

−jk0 cos θ√
εr,inc

δi0

]
+

[
I

−ZR

]
R =

[
W WX

AWZ −AWZX

][
g+
m

g−m

]
, (2.23)

where ZR ≡ diag[−jkRzi/εr,inc], Z ≡ diag[−jβm] and X ≡ diag[exp(−jβmtg)].

At z = tg, ∑
m

wim{e−jβmtgg+
m + g−m} = Ti (2.24)

and ∑
p

∑
m

aipwpm(−jβm){e−jβmtgg+
m − g−m} =

−jkTzi
εr,tra

Ti, (2.25)

or in matrix form,[
WX W

AWZX −AWZ

][
g+
m

g−m

]
=

[
I

ZT

]
T, (2.26)
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where ZT ≡ diag[−jkTzi/εr,tra].

The coefficients Ri and Ti could be found by using (2.23) and (2.26). The

diffraction efficiencies could be calculated by the definition of the ratio of

Poynting’s vectors along propagation direction z. For TM polarization here,

the Poynting’s vector in the propagation direction z is

Pz =
1

2
Re
[
ExH

∗
y

]
=

1

2
Re

[
j

ωε0εr
(
∂Hy

∂z
)H∗y

]
, (2.27)

and the diffraction efficiencies are defined as

DEri =
PR
z

P inc
z

= |Ri|2Re
[
kRzi
kz0

]
DEti =

P T
z

P inc
z

= |Ti|2Re
[
εr,inc
εr,tra

kTzi
kz0

]
. (2.28)

For lossless gratings, the sum of the reflected and transmitted diffraction

efficiencies given by (2.28) must be unity, which means conservation of energy.

In addition, if it needs to plot the field diagrams, solve coefficients g+
m and

g−m after finding Ri and Ti. In the next subsection, we will generalize the

structure to arbitrary shape.

2.1.2 Multi-layer Approximation for Arbitrary Shape
Gratings

For gratings with arbitrary profiles, we divide the grating into a large number

of sufficiently thin layers and approximate each layer by a rectangular-groove

grating, which was use first proposed by Peng et al. and applied to RCWA

by Moharam and Gaylord [6], as in Fig. 2.3.
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Figure 2.3: Example of multi-layer approximation.

The electromagnetic fields in each grating layer are determined by RCWA

for rectangular-groove gratings (or by other approaches, such as the modal

approach and the finite difference approach). Then boundary conditions of

the tangential fields are applied in sequence at every interfaces to get reflected

and transmitted diffracted field amplitudes and diffraction efficiencies. Here

we still use TM polarization to illustrate the formulation.

After solving the eigenvalue problems in each grating layer, the space

harmonics of tangential fields of every layers are given by

Ul,yi =
∑
m

wlim{g+
l,me

−jβlm(z−zl−1) + g−l,me
+jβlm(z−zl)}

Sl,yi = −
∑
p

∑
m

alipw
l
pm(−jβlm){g+

l,me
−jβlm(z−zl−1) − g−l,me

+jβlm(z−zl)}, (2.29)

where the index l means which grating layer. Then we match boundary con-
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dition at every interfaces and express these in matrix form. At the interface

between the input region and the first grating layer, i.e. at z = 0 in Fig. 2.3,[
δi0

−jk0 cos θ√
εr,inc

δi0

]
+

[
I

−ZR

]
R =

[
W1 W1X1

A1W1Z1 −A1W1Z1X1

][
g+

1,m

g−1,m

]
,

(2.30)

where the suffixes of W, A, Z and X mean which grating layer and the

definitions of these matrices are same as in preceding subsection, at the

interface between (l − 1)th and lth layer (z = zl−1)[
Wl-1Xl-1 Wl-1

Al-1Wl-1Zl-1Xl-1 −Al-1Wl-1Zl-1

][
g+
l−1,m

g−l−1,m

]
=[

Wl WlXl

AlWlZl −AlWlZlXl

][
g+
l,m

g−l,m

]
, (2.31)

and at the interface between the last grating layer and the output region[
WLXL WL

ALWLZLXL −ALWLZL

][
g+
L,m

g−L,m

]
=

[
I

ZT

]
T. (2.32)

Finally, (2.30)-(2.32) are rewritten as[
δi0

−jk0 cos θ√
εr,inc

δi0

]
+

[
I

−ZR

]
R =

L∏
l=1

[
Wl WlXl

AlWlZl −AlWlZlXl

]

×

[
WlXl Wl

AlWlZlXl −AlWlZl

]−1 [
I

ZT

]
T. (2.33)

However, this approximation used in successive field matching may intro-

duce numerical instability which is due to the presence of evanescent fields.

And these evanescent waves, which possess large imaginary part of β, will
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make the matrix X to be ill-conditioned as doing matrix inverse. In the next

subsection we will introduce stable approaches to eliminate the numerical

instability.

2.1.3 Stable Approach for Multi-layer Approximation

There are several approaches which have been proposed to produce stable

implementation. For example, Moharam and Gaylord [6] obtained numeri-

cally stable RCWA calculation for TE polarization and dielectric gratings to

a grating depth of as many as four wavelengths, by sequential Gaussian elim-

ination scheme. Pai and Awada [25] use layer transmission matrices and in-

terface reflection and transmission matrices to derive the solution for RCWA

in terms of a multiple-reflection series which is stable for TE polarization and

dielectric gratings to a grating depth of as many as four wavelengths. Li [26]

used the R-matrix propagation algorithm to propagate the field through the

layers in the modal approach to obtain stable results for deep dielectric and

metallic one-dimensional gratings in the conical mount.

Here we use the method which is proposed by Moharam, Pommet, and

Grann [12] in 1995 and called enhanced transmittance matrix approach. See

(2.33) again and notice the inverse matrix at left. There are some X terms

in this big inverse matrix. Because the elements of X are e±jβmz, as some

βm values have large imaginary part, these exponential terms will produce

very large or very small elements in this big inverse matrix. And the inver-
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sion of this almost singular matrix will produce erroneous results because of

truncation errors. Therefore, we would like to remove X terms from the big

inverse matrix.

Consider the last factor (l = L) in (2.33), which is[
WL WLXL

ALWLZL −AlWlZlXl

][
WLXL WL

ALWLZLXL −AlWLZL

]−1 [
fT

gT

]
T

=

[
WL WLXL

ALWLZL −AlWlZlXl

]

×

[
XL 0

0 I

]−1 [
WL WL

ALWLZL −AlWLZL

]−1 [
fT

gT

]
T,(2.34)

where fT = I and gT = ZT. The matrix to be inverted has been rewritten as

the product of two matrices. The matrix on the right side in the product is

well conditioned, however, the left side matrix is ill-conditioned. By defining[
WL WL

ALWLZL −AlWLZL

]−1 [
fL

gL

]
≡

[
uL

vL

]
, (2.35)

(2.34) could be reduced to[
WL WLXL

ALWLZL −AlWlZlXl

][
X−1

L 0

0 I

][
uL

vL

]
T

=

[
WL WLXL

ALWLZL −AlWlZlXl

][
X−1

L uL

vL

]
T, (2.36)

and by changing variable T = u−1
L XLTL, the (2.36) will become[

WL WLXL

ALWLZL −AlWlZlXl

][
I

vLu−1
L XL

]
TL ≡

[
fL

gL

]
TL. (2.37)
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Repeat this process for all layers, we obtain[
δi0

−jk0 cos θ√
εr,inc

δi0

]
+

[
I

−ZR

]
R =

[
f1

g1

]
T1, (2.38)

where T = u−1
L XLu−1

L−1XL−1 . . .u
−1
2 X2u

−1
1 X1T1. In this formulation, the

instability could be avoided successfully because it never inverts the matri-

ces X. The singular-value decomposition technique could be considered in

inverting the matrix u to avoid numerical difficulties because of round-off

errors when a large number of layers and a large number of harmonics are

used.

In addition, if it needs to plot the field diagram, we have to find coefficients

g+
l,m and g−l,m in every layers by finding R, T and Tl of each layer first and

then substituting back. After using the skill above, the coefficients in each

layer will be[
g+
L,m

g−L,m

]
=

[
I

vLu−1
L XL

]
TL,

[
g+
L−1,m

g−L−1,m

]
=

[
I

vL−1u
−1
L−1XL−1

]
TL−1, · · ·

(2.39)

, where TL = u−1
L−1XL−1 · · ·u−1

1 X1T1, TL−1 = u−1
L−2XL−2 · · ·u−1

1 X1T1 and

so on.
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2.2 Finite-Difference Modal Method

In the finite difference modal method, we transfer the continuous functions

and their differentiations into discrete points values. The assumption of fields

is to express the distribution of spatial fields in grating period direction x and,

just like RCWA method, form a set of modes in the propagation direction z

which is

ψm(x, z) ∼ ψm(x)× e±jβmz, (2.40)

where m is the index of mode, βm is the propagation constant of mode m.

The equation to be solved is Helmholtz equation, ∇2ψ + k2
0εrψ = 0 (as-

suming non-magnetic material). If the structure is infinite and uniform in

y-axis and periodic in x-axis, and the direction of fields is in y-axis (i.e. TE

or TM polarization), the equation becomes

∂2ψy(x, z)

∂x2
+
∂2ψy(x, z)

∂z2
+ k2

0εr(x)ψy(x, z) = 0. (2.41)

Next, substituting (2.40) into (2.41), we obtain

∂2ψy(x)

∂x2
+ k2

0εr(x)ψy(x) = β2ψy(x). (2.42)

After discretizing (2.42), constructing sparse matrix, and solving eigenvalue

problem inside each layer, eigenmodes with x distribution inside each layer

are found. Then boundary conditions are matched to solve the diffraction

efficiencies and plot the field diagrams. In the next subsection, more details

about the finite difference inside each layer are offered.
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2.2.1 Eigenvalue Problems inside Each Layer

The basic idea of finite difference is to express the differentiation of a field

point by itself and it’s adjacent points, as in Fig. 2.4. Being different from

Figure 2.4: One-dimensional discretization.

RCWA, the convergence of FD method could be improved by considering

more adjacent points, i.e. extending to higher orders of Taylor series expan-

sion. If we use (2N +1) points to approximate the differentiation of one field

point, ψi, we have to know the relation between the field at those points and

ψi and its derivatives up to (2N)th order as

ψi−N
...

ψi
...

ψi+N


=


u−N,0 u−N,1 . . . u−N,2N

...
...

. . .
...

uN,0 uN,1 . . . uN,2N




ψi
...

ψ
(j)
i
...

ψ2N
i


+O(h2N+1). (2.43)

And then inverting the matrix to find ψ′′i with truncation errorO(h2N+1/h2) =

O(h2N−1). As the grids are uniformly positioned, the truncation error will be-

come O(h2N). Here we use central difference scheme, but it is not necessary.

We can use forward-difference or backward-difference as well.
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Figure 2.5: Sketch of a discontinuity between sampled points.

However, there are some discontinuities in each grating layer. Unlike

RCWA, which use Fourier expansion to illustrate the change of permittiv-

ity, here we match boundary conditions at these discontinuities to arbitrary

higher order. As in Fig. 2.5, if we want to express the (i + 1)th points in

terms of each order of the ith point, we expand each order of (i + 1)th field

ψi+1 by each order of ψR, i.e.

Ψi+1 ≡



ψi+1

ψ′i+1

ψ′′i+1

ψ
(3)
i+1
...

ψ
(2N)
i+1


=



1 q q2

2!
q3

3!
· · · q2N

(2N)!

0 1 q q2

2!
· · · q2N−1

(2N−1)!

0 0 1 q · · · q2N−2

(2N−2)!

0 0 0 1 · · · q2N−3

(2N−3)!
...

...
...

...
. . .

...

0 0 0 0 · · · 1





ψR

ψ′R

ψ′′R

ψ
(3)
R
...

ψ
(2N)
R


≡Mi+1:RΨR,

(2.44)
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and each order of ψL by each order of (i)th field ψi,

ΨL ≡



ψL

ψ′L

ψ′′L

ψ
(3)
L
...

ψ
(2N)
L


=



1 p p2

2!
p3

3!
· · · p2N

(2N)!

0 1 p p2

2!
· · · p2N−1

(2N−1)!

0 0 1 p · · · p2N−2

(2N−2)!

0 0 0 1 · · · p2N−3

(2N−3)!
...

...
...

...
. . .

...

0 0 0 0 · · · 1





ψi

ψ′i

ψ′′i

ψ
(3)
i
...

ψ
(2N)
i


≡ML:iΨi.

(2.45)

And the main problem is how to connect ΨL and ΨR, i.e., because

Ψi+1 = Mi+1:RMR:LML:iΨi, (2.46)

we need to find the matrix MR:L. Next, we will derive the arbitrary higher

order boundary condition for (2.42).

A. Arbitrary Higher Order Boundary Condition [23] [24]

Generally, considering the discontinuous parameters of materials are not

only permittivity ε but also permeability µ. The zeroth-order boundary

condition is continuing of tangential fields

ψR = ψL, (2.47)

where ψ = Ey for TE and Hy for TM, and subscript R and L mean points

infinitesimally close to the interface on the left and right, respectively. Next,

for the first-order boundary condition, we use Maxwell’s equations H =

−1
jωµ0µr

∇× E and Hz,R = Hz,L for TE; E = 1
jωε0εr

∇×H and Ez,R = Ez,L for
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TM to derive

ψ′R = aψ′L, (2.48)

where a = µR
µL

for TE and a = εR
εL

for TM. The second-order boundary

condition is derived from Helmholtz equation, i.e. ψ′′R + ω2µRεRψR = β2ψR

and ψ′′L + ω2µLεLψL = β2ψL. By using (2.47), we could obtain

ψ′′R = ψ′′L + bψL, (2.49)

where b = ω2(µLεL − µRεR). For the third-order boundary condition, the

Helmoholtz equation is differentiated on each side to get ψ3
R + ω2µRεRψ

′
R =

β2ψ′R and ψ3
L + ω2µLεLψ

′
L = β2ψ′L. After substituting (2.48) into above two

equations, we obtain

ψ
(3)
R = a(ψ

(3)
L + bψ′L). (2.50)

We proceed to find the 4th order boundary relation. In the derivation here,

we could regard the term (∂2
x + ω2µε) as an operator, which is equivalent to

the term β2, i.e.,

(∂2
x + ω2µRεR)(∂2

x + ω2µRεR)ψR = β2β2ψR and

(∂2
x + ω2µLεL)(∂2

x + ω2µLεL)ψL = β2β2ψL.

Combining the above equations with (2.47) and (2.49), we get the relation

ψ
(4)
R = ψ

(4)
L + 2bψ′′L + b2ψL. (2.51)
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After repeating the above processes, we will generalize the continuity

relation which could be expressed in matrix form as

MR:L =



1 0 0 0 · · · 0

0 a 0 0 · · · 0

b 0 1 0 · · · 0

0 ab 0 a · · · 0
...

...
...

...
. . .

...

0 CN−1
0 abN−1 0 CN−1

1 abN−2 · · · 0

CN
0 b

N 0 CN
1 b

N−1 0 · · · CN
N


, (2.52)

and make ΨR = MR:LΨL. Finally, substitute it into (2.46) and then know

how to express ψi+1 by each order of ψi. Put this expression back into (2.43)

and, after finding all the elements of (2.43), invert it to obtain the expression

of ψ′′i .

B. Periodic Boundary Condition

It had been proved by Bloch in 1928 that, for a periodic potential system,

the eigenstate can be expressed as the product of a plane wave envelope

function and a periodic function which has the same periodicity, i.e.

ψk(r) = e−jk·r × uk(r), (2.53)

where k is reciprocal periodic vector and uk(r) satisfies uk(r) = uk(r + Λ)

where Λ is the grating vector. When the structure is periodic, we should

not ignore the points just outside the calculating region. Instead, we add the

phase term on them, and put them in the sparse matrix.
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Figure 2.6: Periodic boundaries.

As the Fig. 2.6, after doing finite difference, we obtain the expression of

ψ′′1 , which is

ψ′′1 = · · ·+ c0ψ0 + c1ψ1 + c2ψ2 + · · · . (2.54)

Although ψ0 is out of the calculating, it is a replicated point of ψp with a

displacement of Λ, where p is the number of total calculated points. There-

fore, we could express ψ0 = e−jk(−Λ) × ψp, ψ−1 = e−jk(−Λ) × ψp−1 and so on.

Finally, the expression of ψ′′1 is

ψ′′1 = · · ·+ c0e
−jk(−Λ) × ψp + c1ψ1 + c2ψ2 + · · · (2.55)

instead of

ψ′′1 = · · ·+ 0 + c1ψ1 + c2ψ2 + · · · . (2.56)

And these terms will appear on the corner of sparse matrix for 1D finite

difference.

C. Generalized Douglas Finite-Difference Scheme

There is a clever way to enhance the convergence of truncation error

by two order. The main idea of this method is considering two additional
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derivatives. More specifically, for (2N + 1) points approximation, we expand

each points to (2N + 2)th order instead of (2N)th order. Then using first

(2N)th order terms to find 2nd order differential expression (i.e. operator

D2
x) and define this expression as ψ′′i,pseudo. Next, operate this expression on

the ψi to get actual ψ′′i , which includes even higher order terms. Finally,

approximate ψ′′i,pseudo to be ψ′′i . The formulation can be expressed as

D2
xψi = ψ′′i,pseudo + g1ψ

2N+1
i + g2ψ

2N+2
i +O(h2N+3)

≈ ψ′′i + g1ψ
2N+1
i + g2ψ

2N+2
i +O(h2N+3)

= (1 + g1D
2N−1
x + g2D

2N
x )ψ′′i +O(h2N+3)

⇒ ψ′′i =
D2
x

1 + g1D2N−1
x + g2D2N

x

ψi, (2.57)

with O(h2N+3)/h2 = O(h2N+1) and O(h2N+2) for central difference and uni-

form grid cutting. After substituting this refined operator back into (2.42),

we obtain

∂2ψy(x)

∂x2
+ k2

0εr(x)

(
1 + g1

∂2N−1

∂x2N−1
+ g2

∂2N

∂x2N

)
ψy(x)

= β2

(
1 + g1

∂2N−1

∂x2N−1
+ g2

∂2N

∂x2N

)
ψy(x). (2.58)

2.2.2 Evaluation of Diffraction Efficiencies

Being the same as RCWA, we solve the eigenvalues problem after construct-

ing the sparse matrices in every layers and get the eigenvalues and eigenvec-

tor matrices W. The difference between eigenvector matrices W of these
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two method is, for RCWA, columns of [wim] means which modes and rows

of [wim] means which orders; for finite difference, columns of [wpm] means

which modes and rows of [wpm] means which positions.

After solving the eigenvalues problem of each layer, we obtain the mode

field expression in reflection region

ψRy =
∑
m

wRpm(a+
me
−jβRmz +R−me

jβRmz), (2.59)

where a+
m = 〈wRpm|ψinc〉 (projection of incident field on each mode), in lth

grating layer

ψGl,y =
∑
m

wlpm(g+
l,me

−jβlm(z−zl−1) + g−me
jβlm(z−zl)), (2.60)

and in transmission region

ψTy =
∑
m

wTpm(T+
me
−jβTm(z−tg)), (2.61)

where tg for multi-layer approximation means the total height of grating.

Again, ψy = Ey for TE and ψy = Hy for TM.

Next, using Maxwell’s equations to find field Hx for TE or field Ex for TM,

then matching boundary condition for each interface between two adjacent

layers, we obtain the final matrix[
WR

ARWRZR

]
a+ +

[
WR

−ARWRZR

]
R =

L∏
l=1

[
Wl WlXl

AlWlZl −AlWlZlXl

]

×

[
WlXl Wl

AlWlZlXl −AlWlZl

]−1 [
WT

ATWTZT

]
T, (2.62)
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where Wl = [wlpm], Al = diag[1/εr,l] for TM; I for TE,Zl = diag[−jβlm] and

Xl = diag[e−jβ
l
m(zl−zl−1)].

The enhanced transmittance matrix approach mentioned in subsection

2.1.4 to make the numerical calculation stable could be used as finding R

and T. Finally, we could use definition (2.27) to find diffraction efficiencies

and plot field diagrams.

30



2.3 Two-Dimensional Finite-Difference Method

For TM polarization, using the method of 1D FD with multi-layer may suf-

fer some instabilities without proper discretization. Both for comparing and

revising, we try another method, which calculates arbitrary gratings by two-

dimensional finite difference (2DFD), to simulate the same diffraction prob-

lems.

The calculating geometry is shown as Fig. 2.7. We use periodic boundary

condition on edges of periodic direction, and perfect matched layer besides

the edges of propagation direction.

Figure 2.7: Configuration of two-dimensional finite difference.

2.3.1 Discretizing Maxwell’s Equation

Consider TM polarization again. Maxwell’s equations will become

jωε0εr(x)Ez =
∂Hy

∂x
, (2.63)
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jωε0εr(x)Ex = −∂Hy

∂z
, (2.64)

and

jωµ0Hy =
∂Ez
∂x
− ∂Ex

∂z
. (2.65)

Figure 2.8: Two-dimensional discretization.

A. Averaging permittivity

According to Fig. 2.8, above equations can be discretized into

jωε0εr(i+ 1
2
,j)Ez(i+ 1

2
,j) =

Hy(i+1,j) −Hy(i,j)

∆x
, (2.66)

jωε0εr(i− 1
2
,j)Ez(i− 1

2
,j) =

Hy(i,j) −Hy(i−1,j)

∆x
, (2.67)

jωε0εr(i,j+ 1
2

)Ex(i,j+ 1
2

) = −
Hy(i,j+1) −Hy(i,j)

∆z
, (2.68)

jωε0εr(i,j− 1
2

)Ex(i,j− 1
2

) = −
Hy(i,j) −Hy(i,j−1)

∆z
, (2.69)
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and

jωµ0Hy(i,j) =
Ez(i+ 1

2
,j) − Ez(i− 1

2
,j)

∆x
−
Ex(i,j+ 1

2
) − Ex(i,j− 1

2
)

∆z
. (2.70)

After substituting (2.66), (2.67), (2.68) and (2.69) into (2.71), we obtain

1

∆x2

[
Hy(i+1,j)

εr(i+ 1
2
,j)

−

(
1

εr(i+ 1
2
,j)

+
1

εr(i− 1
2
,j)

)
Hy(i,j) +

Hy(i−1,j)

εr(i− 1
2
,j)

]

+
1

∆z2

[
Hy(i,j+1)

εr(i,j+ 1
2

)

−

(
1

εr(i,j+ 1
2

)

+
1

εr(i,j− 1
2

)

)
Hy(i,j) +

Hy(i,j−1)

εr(i,j− 1
2

)

]
+ω2µ0ε0Hy(i,j) = 0.(2.71)

where εr(i,j) are calculated by averaging the permittivities in the region of

xi− 1
2
≤ x ≤ xi+ 1

2
and zi− 1

2
≤ z ≤ zi+ 1

2
. For simplicity and generality, I put

many points in this region, classify the regions they belong to, and calculate

the arithmetic mean of them. As in Fig. 2.9, the value of permittivity ε at

position (i, j) will become

ε(i,j) =
ε1N1 + ε2N2

N1 +N2

, (2.72)

or sometimes

ε(i,j) = (
N1/ε1 +N2/ε2

N1 +N2

)−1, (2.73)

where εk (k = 1, 2) means the permittivity at one side of the discontinuity

and Nk is the amount of points with this permittivity value.

B. Considering boundary condition [27]

Although permittivity approximated by averaging is applicable to struc-

tures with small permittivity difference, it has difficulty in accurately model-
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Figure 2.9: Method of averaging permittivity.

ing field behaviors near abrupt interfaces. Moreover, recent advancement of

nanoprocess make step-index structures practical for next-generation optical

design, indicating that a modified modeling formulation dedicated to step-

permittivity problem is required. This modification will be demonstrated by

taking account of the boundary condition, i.e. the continuity of tangential

fields E and H and normal fields D and B (in no source region).

Consider the region without sources depicted as Fig. 2.7. If there is no

discontinuity inside the mesh of point (i, j), from (2.71), we obtain

Hy(i+1,j) − 2Hy(i,j) +Hy(i−1,j)

∆x2

+
Hy(i,j+1) − 2Hy(i,j) +Hy(i,j−1)

∆y2
+ ω2µ0ε0ε(i,j)Hy(i,j) = 0. (2.74)

However, if discontinuities exist, we put the mesh points on the interfaces or
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Figure 2.10: Continuity of fields on interfaces.

corners and match boundary condition, as Fig. 2.10. Here the most compli-

cated configuration for rectangular structures, which includes four different

kinds of medium, will be used to discuss.

Consider the interface between ε1 and ε2. In the homogeneous parts of

these two medium, the Helmholtz equation are

∂2Hy

∂x2
+
∂2Hy

∂z2
+ ω2µ0ε0ε1Hy = 0 and

∂2Hy

∂x2
+
∂2Hy

∂z2
+ ω2µ0ε0ε2Hy = 0,

(2.75)

which can be discretized into

∂Hy

∂x

∣∣∣∣
1

−
Hy(i,j) −Hy(i−1,j)

∆x

∆x/2
+

∂Hy

∂z

∣∣∣∣
1

−
Hy(i,j) −Hy(i,j−1)

∆z

∆z/2

+ω2µ0ε0ε1Hy(i,j) = 0 (2.76)
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and

∂Hy

∂x

∣∣∣∣
2

−
Hy(i,j) −Hy(i−1,j)

∆x

∆x/2
+

Hy(i,j+1) −Hy(i,j)

∆z
− ∂Hy

∂z

∣∣∣∣
2

∆z/2

+ω2µ0ε0ε2Hy(i,j) = 0. (2.77)

Next, because the continuity of tangential E fields (means Ex here) and

normal D (means Dz here), we know that

1

ε1

∂Hy

∂z

∣∣∣∣
1

=
1

ε2

∂Hy

∂z

∣∣∣∣
2

and
∂Hy

∂x

∣∣∣∣
1

=
∂Hy

∂x

∣∣∣∣
2

. (2.78)

Substitute (2.78) into (2.76) and (2.77) and we could obtain

2

∆x

∂Hy

∂x

∣∣∣∣
1

−
2Hy(i,j) − 2Hy(i−1,j)

∆x2
+ ω2µ0ε0

2ε1ε2
ε1 + ε2

Hy(i,j)

+

2ε1
ε1 + ε2

Hy(i,j+1) − 2Hy(i,j) +
2ε2

ε1 + ε2
Hy(i,j−1)

∆z2
= 0. (2.79)

After doing the similar processes for the last three interfaces between ε2 and

ε3, ε3 and ε4, and ε4 and ε1, we get

− 2

∆z

∂Hy

∂z

∣∣∣∣
2

+
2Hy(i,j+1) − 2Hy(i,j)

∆z2
+ ω2µ0ε0

2ε2ε3
ε2 + ε3

Hy(i,j)

+

2ε2
ε2 + ε3

Hy(i+1,j) − 2Hy(i,j) +
2ε3

ε2 + ε3
Hy(i−1,j)

∆x2
= 0, (2.80)

− 2

∆x

∂Hy

∂x

∣∣∣∣
3

+
2Hy(i+1,j) − 2Hy(i,j)

∆x2
+ ω2µ0ε0

2ε3ε4
ε3 + ε4

Hy(i,j)

+

2ε4
ε3 + ε4

Hy(i,j+1) − 2Hy(i,j) +
2ε3

ε3 + ε4
Hy(i,j−1)

∆z2
= 0, (2.81)
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and

2

∆z

∂Hy

∂z

∣∣∣∣
4

−
2Hy(i,j) − 2Hy(i,j−1)

∆z2
+ ω2µ0ε0

2ε4ε1
ε4 + ε1

Hy(i,j)

+

2ε1
ε4 + ε1

Hy(i+1,j) − 2Hy(i,j) +
2ε4

ε4 + ε1
Hy(i−1,j)

∆x2
= 0. (2.82)

Equations (2.79)-(2.82) are the results derived from ∇×H = jωD.

Finally, Faraday’s law, i.e. ∇×E = −jωB, will be considered and taken

surface integration on both side, which means∫
S

∇× E · ds = −jω
∫
S

B · ds. (2.83)

By taking Stoke’s theorem into account, we obtain∮
L

E · dl = −jω
∫
S

B · ds. (2.84)

While the area of integration approaches zero,
∮

E ·dl→ 0 and we would get(
1

ε1
+

1

ε2

)
∂Hy

∂x

∣∣∣∣
1

+

(
1

ε2
+

1

ε3

)
∂Hy

∂z

∣∣∣∣
2

−
(

1

ε3
+

1

ε4

)
∂Hy

∂x

∣∣∣∣
3

−
(

1

ε4
+

1

ε1

)
∂Hy

∂z

∣∣∣∣
4

= 0.

(2.85)

After substituting (2.79)-(2.82) into (2.85), the Helmholtz equation will be-

come

ε3 + ε4
2ε3ε4

Hy(i+1,j) −
(
ε3 + ε4
2ε3ε4

+
ε1 + ε2
2ε1ε2

)
Hy(i,j) +

ε1 + ε2
2ε1ε2

Hy(i−1,j)

∆x2

+

ε2 + ε3
2ε2ε3

Hy(i,j+1) −
(
ε2 + ε3
2ε2ε3

+
ε1 + ε4
2ε1ε4

)
Hy(i,j) +

ε1 + ε4
2ε1ε4

Hy(i,j−1)

∆z2

+ω2µ0ε0Hy(i,j) = 0. (2.86)
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2.3.2 Mesh Truncation

Sometimes it needs to solve infinite structures such as free space, periodic

structure, etc, in the electromagnetic problems. In principle, as discretizing

the infinite structure, it needs to use infinite mesh points, but it is impossible

in reality because of finite capacity of memory. Therefore, some methods have

been proposed to use finite mesh points but not deviate from the original

configuration of the problem. These techniques are called methods of mesh

truncation.

A. Periodic Boundary Condition

To calculate problems of periodic structure, it only needs to consider one

period of the structure and use periodic boundary condition. The concept of

this part has been mentioned in subsection 2.2.1.

B. Perfectly Matched Layer (PML): Graded Edition [27]

For finite-difference time-domain method (FDTD), while calculating an

infinite or semi-infinite space, basically we could use a very large region with

PEC or PMC to approach it although it will consume a lot of memory. For

finite-difference frequency-domain method (FDFD), what we find are the

steady state solutions, the electromagnetic waves are inevitable to reach the

PEC or PMC and reflect. Therefore, it will fail totally in FDFD calculation.

There are two main kinds of methods applied to simulate infinite spaces.

One is differential-based absorbing boundary (DABC), like Mur ABC, Hig-
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don ABC, Liao ABC etc. However, the reduction of reflected waves is not

optimal as these methods are used. The other one is material based ab-

sorbing boundary condition (MABC), which adding some loss terms in the

material parameter such as permittivity and permeability. Some examples

of this method are PML, UPML (Uniaxial PML), etc. Here, PML is used

in our simulation. PML, which is proposed by Bérenger [28] in 1994 and

applied on finite-difference time-domain method, is one of the most popular

method to absorb the outgoing electromagnetic waves.

Figure 2.11: A real region surrounded by PML to approximate the infinite
region.

Consider the most general case which the PML surround the real region,

as in Fig. 2.11. For TM polarization (Hy,Ex,Ez), time harmonic oscillation

ejωt and loss terms σ∗ for permeability and σ for permittivity, the Maxwell’s

39



equations will become

jωµ0Hyx + σ∗xHyx =
∂Ez
∂x

, (2.87)

jωµ0Hyz + σ∗zHyz = −∂Ex
∂z

, (2.88)

jωε0εrEx + σzEx = −∂Hy

∂z
, (2.89)

and

jωε0εrEz + σxEz =
∂Hy

∂x
, (2.90)

where Hy = Hyx + Hyz. Equations (2.87) and (2.90) mean the electromag-

netic waves which propagate along x-direction; (2.88) and (2.89) mean the

electromagnetic waves which propagate along z-direction. Equations (2.87)

and (2.88) could be combined to be

Hy =
1

jωµ0 + σ∗x

∂Ez
∂x
− 1

jωµ0 + σ∗z

∂Ex
∂z

. (2.91)

Then discretizing (2.91), (2.89) and (2.90) to obtain

Hy(i,j) =
1

jωµ0 + σ∗x(i,j)

Ez(i+ 1
2
,j) − Ez(i− 1

2
,j)

∆x
− 1

jωµ0 + σ∗z(i,j)

Ex(i,j+ 1
2

) − Ex(i,j− 1
2

)

∆z
,

(2.92)

(jωε0εr(i+ 1
2
,j) + σx(i+ 1

2
,j))Ez(i+ 1

2
,j) =

Hy(i+1,j) −Hy(i,j)

∆x
, (2.93)

(jωε0εr(i− 1
2
,j) + σx(i− 1

2
,j))Ez(i− 1

2
,j) =

Hy(i,j) −Hy(i−1,j)

∆x
, (2.94)

(jωε0εr(i,j+ 1
2

) + σz(i,j+ 1
2

))Ex(i,j+ 1
2

) = −
Hy(i,j+1) −Hy(i,j)

∆z
, (2.95)

and

(jωε0εr(i,j− 1
2

) + σz(i,j− 1
2

))Ex(i,j− 1
2

) = −
Hy(i,j) −Hy(i,j−1)

∆z
. (2.96)
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Let µαc = 1 + σ∗α
jωµ0

and εαc = εr + σα
jωε0

, where α = x or z. Next, Substitute

(2.93)-(2.96) into (2.92) and get

1

∆x2µxc(i,j)

[
Hy(i+1,j)

εxc(i+1/2,j)

−
(

1

εxc(i+1/2,j)

+
1

εxc(i−1/2,j)

)
Hy(i,j) +

Hy(i−1,j)

εxc(i−1/2,j)

]
+

1

∆z2µxc(i,j)

[
Hy(i,j+1)

εzc(i,j+1/2)

−
(

1

εzc(i,j+1/2)

+
1

εzc(i,j−1/2)

)
Hy(i,j) +

Hy(i,j−1)

εzc(i,j−1/2)

]
+ω2µ0ε0Hy(i,j) = 0. (2.97)

To avoid the reflection at the interface between actual region and PML, we

have to match impedances on both sides, i.e.

Zactual =

√
µ0

ε0εr
=

√
µ0(1 + σ∗/jωµ0)

ε0(εr + σ/jωε0)
= ZPML, (2.98)

which means

σ∗

µ0

=
σ

ε0εr
. (2.99)

Consider the configuration as in Fig. 2.7. In this case, PMLs are only

added at upper and lower boundaries, i.e. they are only used to absorb the

outgoing waves propagating in z-direction. Therefore, σx terms do not exist

(µxc = 1 and εxc = 1), and (2.97) will be simpler.

To determine the coefficient σz, PMLs are cut into L layers, and σz grows

larger as being farther from the actual region. Assume the form of σz is

σz(z) ≡ σmax

( z

L ·∆z

)M
, (2.100)

where z is the distance from a point in PML to the interface between actual

region and PML, and M is the power of the function σz. To find σmax, use
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µc = 1 + σ∗

jωµ0
, εc = εr + σ

jωε0
and impedance matching relation, i.e. (2.99), to

consider

e−jkzz = e−jω
√
µ0µcε0εc cos θz = e

−jω√µ0ε0εr cos θ
(

1+
σ(z)
jωε0εr

)
z

= e−jω
√
µ0ε0εr cos θz × e−

√
µ0
ε0εr

cos θσ(z)z
, (2.101)

where θ is the angle between the incident wave and the normal of the inter-

face, and the term at left of the last part is the loss term. Therefore, the

reflection R we give at the interface after propagating a round trip of PML

will be

R = e
−2 cos θ

√
µ0
ε0εr

∫ L·∆z
0 σ(z)dz

. (2.102)

After substituting (2.100) into (2.102) and integrating it, we obtain

σmax = −(M + 1) lnR

2L∆z cos θ

√
ε0εr
µ0

, (2.103)

which combines with (2.100) and is applied to (2.97) for defining εc and µc.

C. Perfectly Matched Layer : Multi-Stretched-Coordinate

Here we introduce another point of view about PML. We let the loss term

be a constant in each layer and match boundary at each interface, as Fig.

2.12. To derive the boundary condition for arbitrary higher order, assume

that the PML only acts on the wave propagating along z direction. Consider a

wave propagating toward PML but whose direction is not necessarily normal

to PML, i.e.

ψy(x, z) = C(x)e−jkzz, (2.104)
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where C(x) is the part depending on x.

Figure 2.12: Configuration of multi-stretched-coordinate in PML.

In PML, loss terms will be put into permeability µ and permittivity ε as

(2.87)-(2.90). By taking the impendence matching into account (like what

we did in (2.101)), i.e.

ψy = C(x)e−jkzz = C(x)e
−jkz

(
1+

σ(z)
jωε0εr

)
z

= C(x)e−jkzsz, (2.105)

where s ≡ 1 + σ(z)
jωε0εr

= 1 + σ(z)∗

jωµ0
. From the continuity of the tangential fields,

we have

ψyR = ψyL (2.106)

for 0th order. After differentiating (2.106) by z, we obtain

∂ψyR
∂z

= −jkzsRψyR and
∂ψyL
∂z

= −jkzsLψyL, (2.107)

and combine (2.107) with (2.106) to get

1

sR

∂ψyR
∂z

=
1

sL

∂ψyL
∂z

. (2.108)
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After repetition of differentiation, we will know the continuity of arbitrary

high order is

1

snR

∂nψyR
∂zn

=
1

snL

∂nψyL
∂zn

. (2.109)

Therefore, we could use higher-order finite-difference formulation along z

direction in PML to obtain better absorption.

2.3.3 Incident Wave Source Conditions

After discretizing the fields inside the calculated region and considering peri-

odic boundary conditions and perfect matched layer, it needs to generate the

sources to interact with the structure of interest. In finite-difference time-

domain (FDTD) method, there are many methods to be used. For examples,

hard-source E and H fields, which are set up simply by assigning a desired

time function to specific components of E or H in the space lattice. Another

method is J and M current sources, which can deposit charge and generate

charge-associated fields.

Here the total-field/scattered-field (TF/SF) formulation [29] will be used

to realize a plane-wave source. It assumes that the physical total electric and

magnetic fields Etotal and Htotal can be decomposed as

Etotal = Einc + Escat Htotal = Hinc + Hscat, (2.110)

where Einc and Hinc are the incident fields, assumed to be known at all

points of the space lattice. Escat and Hscat are the scattered fields, which
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are initially unknown.

Figure 2.13: Total-field and scattered-field regions connected by a plane wave
source.

Assume the electromagnetic wave propagates along +z direction. The

calculated region is separated into two parts, one is region A, which only

includes scattered-field components; the other one is region B, which contain

both scattered-field and incident-field, i.e. total fields, as shown in Fig. 2.13.

After discretization, we could obtain the approximated wave equation like

the form of (2.71). For simplicity, as dealing with field ψy(i,j) at mesh point

x = xi and z = zj, express this form by

C1ψy(i,j−1) + C2ψy(i−1,j) + C3ψy(i,j) + C4ψy(i+1,j) + C5ψy(i,j+1) = 0, (2.111)

where C1 to C5 mean the coefficient of each mesh points after discretizing. If
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all of these points are in region A, it only needs to consider scattered fields,

(2.111) can be written as

C1ψ
scat
y(i,j−1) + C2ψ

scat
y(i−1,j) + C3ψ

scat
y(i,j) + C4ψ

scat
y(i+1,j) + C5ψ

scat
y(i,j+1) = 0. (2.112)

Similarly, if all of these points are in region B, only total fields are considered,

(2.111) can be written as

C1ψ
total
y(i,j−1) + C2ψ

total
y(i−1,j) + C3ψ

total
y(i,j) + C4ψ

total
y(i+1,j) + C5ψ

total
y(i,j+1) = 0. (2.113)

Now, consider the configuration of Fig. 2.13, analyze the field ψy(i,j), and

obtain

C1ψ
scat
y(i,j−1) + C2ψ

scat
y(i−1,j) + C3ψ

scat
y(i,j) + C4ψ

scat
y(i+1,j) + C5ψ

total
y(i,j+1) = 0. (2.114)

Note that (2.114) is not consistent and correct, since it adds the unlike term

ψtotaly(i,j+1) on the last part. For consistency, we must change this term by

subtracting the assumed-known incident wave ψincy(i,j+1), which means

C1ψ
scat
y(i,j−1) +C2ψ

scat
y(i−1,j) +C3ψ

scat
y(i,j) +C4ψ

scat
y(i+1,j) +C5(ψtotaly(i,j+1)−ψincy(i,j+1)) = 0,

(2.115)

where ψincy(i,j+1) = exp(−jkxxi)exp(−jkz(b)) for the assumption of plane wave

incidence. Then we move the term ψincy(i,j+1) to right side and obtain

C1ψ
scat
y(i,j−1) + C2ψ

scat
y(i−1,j) + C3ψ

scat
y(i,j) + C4ψ

scat
y(i+1,j) + C5ψ

total
y(i,j+1) = C5ψ

inc
y(i,j+1).

(2.116)
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The similar way could be used for every points adjacent to the source

line. And we could construct the sparse matrix M for every field points with

a vector describing source terms S, which means MΨ = S. Finally, the field

distribution could be found.

2.3.4 Calculating Diffraction Efficiencies

After finding the distribution of the field, i.e. the value of field at each points,

we could use the definition (2.27) and (2.28) to find diffraction efficiency, and

all we have to calculate first is Ri and Ti.

To find these terms, first we need to know a row of field distribution (in

reflection region) without grating structure, and define this distribution as

incidence. Next, put the grating structure into calculation, take the same

row of field distribution and subtract the field distribution found in first step.

Then we will obtain reflection field ψR(x) distributing in x direction and at

a position of z. Also, we take a row of field in transmittance region to be

transmittance field ψT (x). Finally, use Fourier expansion

ψR(x) =
∑
i

Rie
−jkxixejk

R
zizR ≡

∑
i

R∗i e
−jkxix, (2.117)

where zR is the fixed z coordinate we take and R∗i = Rie
jkRzizR , to find Fourier

coefficients

R∗i =
1

Λ

∫ Λ

0

ψR(x)e−jkxixdx ≈ 1

Λ

∑
p

e−jkxixpψR(xp)∆x, (2.118)
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and obtain Ri = R∗i e
−jkRzizR . Using definition (2.27) to find the incident,

reflective and transmitted power along direction z, then the diffraction effi-

ciency of each order will be found.
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Chapter 3

Numerical Results and
Discussions

3.1 Numerical Verification of FDMM

Here the method of finite difference modal method (FDMM) with interface

conditions and multi-layer approximation will be tested and verified by com-

paring the results with some papers. It will be applied to simulate variation

of diffraction efficiencies with changes of incident angle and thickness of grat-

ing layer and verify that the usability of FDMM. For completeness, the lines

with colors of light blue, pink, dark blue and green lines or shapes of cir-

cle, cross, diamond and triangle are calculated from three-, five-, seven-,

and nine-point formulation of FDMM and their generalized Douglas (GD)

scheme. Also, results of RCWA will be considered.
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3.1.1 Incident Angle Variation

First, we compare our results with the Fig.8 in the paper of Sheng et al. [30].

Consider the geometry depicted in Fig. 2.2 with the following parameters:

f = 0.34, Λ = 1000nm, λ = 647.1nm, tg = 60nm, εr,inc = εr,g2 = 1,

εr,tra = εr,g1 = −17.42− 0.58i.

In Fig. 3.1 which is the result of the paper, the calculated method they

used could be categorized into modal method. And Fig. 3.2 presents the re-

sults of RCWA and FDMM. It could be seen that these methods are agreed

with each other and experimental results. The dips of zeroth-order reflectiv-

ity in Fig. 3.1 and Fig. 3.1 correspond to the excitation of surface plasmon

at the matching condition

k0c = ω(k0 sin θ ± n2π

Λ
), (3.1)

where c is the light speed, θ is the incident angle and ω(k) is the surface-

plasmon dispersion relation. The reflectivity minima at θ = 14◦, 25◦ and 60◦

correspond to n = −1, 1 and 2 respectively. At these dips, surface plasma

are induced and cause very large fields at interface. And these fields will

increase the loss in the lossy metal. This phenomenon could be seen by the

fields diagram of Fig. 3.3 and Fig. 3.4. In Fig. 3.3, the surface plasma are

not excited. However, in Fig. 3.4, the surface plasma appear as function of

sine and cosine and cause larger field intensity around grating layer than Fig.

3.3. In each figure, the results on the left side mean using RCWA to solve,
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and on the left side mean using RCWA.

Figure 3.1: Fig.8 in the paper of Sheng et al. [30]. The zeroth-order reflection
with respect to the incident angle.

Figure 3.2: Incident angle dependence of the zeroth-order reflection for lossy
metal with TM polarization (compared with Fig. 3.1).
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Figure 3.3: Field diagram of Fig. 3.2 at incident angle θ = 0◦ (Left: RCWA,
Right: FDMM).

Figure 3.4: Field diagram of Fig. 3.2 at incident angle θ = 15◦ (Left: RCWA,
Right: FDMM).

Next, consider triangular profile dielectric grating with TE incidence.

Here we compare our results with Pai and Awada [25], who introduced matri-

ces for layer transmission and interface reflection and transmission to derive

solution for RCWA in terms of a multiple-reflection series, as Fig. 3.5.
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Figure 3.5: Fig.9 in the paper of Pai and Awada [25]. Transmittance with
respect to the incident angle.

Figure 3.6: Incident angle dependence of the zeroth- and first-order trans-
mittance for the dielectric triangular grating under TE incidence (comparing
with Fig. 3.5).

And we use enhanced transmittance matrix approach proposed by Mo-

haram et al. in both RCWA and FDMM, as Fig. 3.6. The parameter used
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are λ = 1000nm, εr,g1 = εr,tra = 3 and cutting into 6 layers, and the structure

is like the left figure in Fig. 3.5. The results are agreeable to each other.

3.1.2 Thickness Variation

Comparing results of our methods with Fig.6 of paper of Sheng et al. [30]. In

Fig. 3.7 and 3.8, the normally incident light is assumed to be λ = 700nm, and

the gratings have the parameters Λ = 1050, f = 0.5, εr,Ag = −23.4− 0.387i

and εr,Al = −42.6− 17.02i.

It could be seen that Ag gratings acts as a nearly perfect conducting grat-

ings with quite little absorption and Al gratings show significant absorption

with increase depth. This statement could be understood more clearly by

plotting absorption as a function of depth, as Fig. 3.9 and Fig. 3.10. In

addition, there are some instabilities which could be found in Fig. 3.10 as

using RCWA to simulate the grating with Ag material, and such problem

of RCWA for highly conductive materials has been discovered by Popov et

al. and discussed during these years. This phenomenon will be seen more

obviously in the case of next subsection.
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Figure 3.7: Fig.6 of paper of Sheng et al. [30]. The first-order reflection of
Al and Ag gratings with respect to the thickness.

Figure 3.8: Thickness dependence of first-order reflection for Al and Ag
gratings under TM incidence (compared with Fig. 3.7).
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Figure 3.9: Fig.6 of paper of Sheng et al. [30]. The absorption of Al and Ag
gratings with respect to the thickness.

Figure 3.10: Thickness dependence of absorption of Al and Ag gratings under
TM incidence (compared with Fig. 3.9).
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3.1.3 Duty Cycle Variation: Removing the Instability

The RCWA is known to suffer from numerical instabilities when applied to

low-loss metallic gratings under TM incidence. There were many methods

proposed to deal with it, as the mention in chapter 1. Here we compare

FDMM with RCWA without using mode-filtering mentioned in the paper

of Lyndin et al. [19]. The values of the parameters are the same as Fig. 1

of [19]. The binary grating period Λ and depth tg are 500nm, the wavelength

λ is 632.8nm, and the incident angle θ is 30◦. The result of Lyndin’s paper

is shown in Fig. 3.11 , and the results of FDMM are shown in Fig. 3.12. We

could see that by using appropriate method of cutting grip points, FDMM

would be more stable then RCWA under certain condition.

Figure 3.11: Fig.1 of paper of Lyndin et al. [19]. The minus-first-order re-
flection with respect to groove width.
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Figure 3.12: Groove width dependence of minus-first-order reflection (com-
paring with Fig. 3.11).

3.2 Analysis of Accuracy and Convergence

After comparing FDMM and RCWA with some paper’s results and verifying

the usability of FDMM proposed in this thesis, the accuracy and convergence

properties of the eigenvalues and diffraction efficiencies of FDMM are going

to be tested more detailedly for every kinds of materials and polarizations

of planar waves in the following two sections. The reason of separating

discussions into accuracy and convergence is that analytical solutions, which

could be solved by modal methods, do not be used as the standard values.

The β values, which means the square of eigenvalues, are the propagation
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constants of eigenmodes. The convergence of β is described by using the

relative error defined as

Relative error of β ≡ βerror =

∣∣∣∣βN − βfinalk0

∣∣∣∣ , (3.2)

where βN is calculated from the eigenproblem with N grids for FDMM or

N retained orders for RCWA, and βfinal is the value with the maximum

N in that calculation. Besides, the error of diffraction efficiencies (DE) is

described by

Relative error of DE = |DEN −DEfinal| , (3.3)

where the suffixes of DE have the same meaning as mentioned above.

In the figures of following two sections, βerror of fundamental mode and

DEerror with respect to number N will be used to compare convergence by

using double-log diagrams and semi-log diagrams, and βerror of fundamental

mode and DEerror with respect to number N will be used to compare accu-

racy. As in section 3.1, the three-, five-, seven-, and nine-point formulation

of FDMM and their GD scheme are all taken into account. The light blue,

pink, dark blue and green lines represent three-, five-, seven-, and nine-point

formulation, respectively.
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3.3 FDMM for TE polarization

3.3.1 Rectangular-Groove Gratings

A. Dielectric

A dielectric rectangular-groove grating is considered here, and its param-

eters are: εr,inc = εr,g2 = 1, εr,g1 = εr,tra = 32, f = 0.45, Λ = 1000nm,

λ = 1000nm, tg = 1000nm and θinc = 15◦. The grid’s number is taken from

20 to 380 by uniform discretization. The accuracy and convergence prop-

erties of β and the zeroth-order reflection are shown in Fig. 3.13 and Fig.

3.14.

β value of five-point FDMM without GD and even higher order FDMM

are more accurate than RCWA after 30 sampled points and converge faster

than RCWA. In addition, the limitation of accuracy of nine-point FDMM

appears around 70 grid’s number, and it is explained by round-off error which

is due to finite digits of the floating points numbers in computers. The

diffraction efficiency of three-point FDMM with GD becomes closer to the

final solution than RCWA after 70 sampled points. The five-point with GD

and more higher order FDMM could get even better convergence, but these

methods will be on the same degree of accuracy after 50 sampled points.

B. Lossless metal

A lossless metallic grating is tested by using the same parameters as the

case in Fig. 3.13 and Fig. 3.14 except that changing εg1 and εtra into (−10i)2.
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The accuracy and convergence properties of β and the zeroth-order reflection

are shown in Fig. 3.15 and Fig. 3.16. In these two figures, it could be found

that β value of three-point FDMM with GD and even higher order FDMM

are more accurate than RCWA after 40 sampled points, and the diffraction

efficiency of three-point FDMM with GD becomes closer to the final solution

than RCWA after 40 sampled points. Being different from the case of Fig.

3.13 and Fig. 3.14, convergence lines of DEerror for even higher order would

separate more obviously, and nine-point FDMM without GD and even higher

order one could get the best convergence.

C. Lossy metal

The lossy metallic grating is simulated by changing the parameter εg1

and εtra above to (3.18− 4.41i)2. Results of this case are shown in Fig. 3.17

and Fig. 3.18. Although accuracy of β of five-point FDMM without GD

and three-point FDMM with GD is worse than RCWA in this range of grid’s

number, accuracy of DEerror of them is still better than RCWA. There is no

obvious relation between convergence of βerror and that of DEerror.

Generally speaking, for TE polarization and uniform discretization, three-

point FDMM and even higher order FDMM could be more correct than

RCWA under an equal N . By the way, being different from RCWA, whose

matrices of eigenproblems is full matrices, the sparse matrices are solved in

the eigenproblems for FDMM, and this might reduce the computation time.
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D. Lossy metal with high conductivity

Here we consider lossy metals with very high conductivity. Lalanne and

Hugonin [22] set the specific parameters to study the robustness of numer-

ical methods. Under such condition, the convergence of RCWA is getting

quite worse for both TE and TM polarization. Here the same parameters

are taken into account for TE polarization by FDMM, and proper nonuni-

form discretization with increasing resolution around discontinuities will be

adopted. The parameters used are: εinc = εg2 = 1, εg1 = εtra = (1 − 40i)2,

f = 0.57, Λ = 1236.1nm, λ = 1000nm, tg = 0.4Λ and θinc = arcsin(λ/2/Λ).

The grid’s number is taken from 20 to 550. The results are shown in Fig.

3.19 and Fig. 3.20. In this case, even three-point FDMM without GD is

better than RCWA.

Now it could be manifested that FDMM with considering boundary con-

dition and arbitrary high order approximation would be better than RCWA

in convergence and accuracy under the TE incidence with planar gratings.

In the next subsection, arbitrary structure of gratings with multi-layer ap-

proximation will be tested.
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Figure 3.13: Accuracy and convergence of β of fundamental mode. A dielec-
tric grating with εr,g1 = 32 under TE incidence.

Figure 3.14: Convergence of the zeroth-order reflection. A dielectric grating
with εr,g1 = 32 under TE incidence.
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Figure 3.15: Accuracy and convergence of β of fundamental mode. A lossless
metallic grating with εr,g1 = (−10i)2 under TE incidence.

Figure 3.16: Convergence of the zeroth-order reflection. A lossless metallic
grating with εr,g1 = (−10i)2 under TE incidence.
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Figure 3.17: Accuracy and convergence of β of fundamental mode. A lossy
grating with εr,g1 = (3.18− 4.41i)2 under TE incidence.

Figure 3.18: Convergence of the zeroth-order reflection. A lossy grating with
εr,g1 = (3.18− 4.41i)2 under TE incidence.
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Figure 3.19: Accuracy and convergence of β of fundamental mode. A high
conductive grating metallic with εr,g1 = (1 − 40i)2 under TE incidence and
nonuniform discretization.

Figure 3.20: Convergence of the zeroth-order reflection. A high conductive
metallic grating with εr,g1 = (1− 40i)2 under TE incidence and nonuniform
discretization.
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3.3.2 Arbitrary Profiles Gratings

Here the gratings with triangular profile is used to comparing accuracy and

convergence of FDMM with RCWA. The parameters and profile are illus-

trated in Fig. 3.21. In the following figures, the parameters of grating’s

profile are: tg = 1000nm, Λ = 1000nm, θtilt = arctan(2tg/Λ), number of

layers=15 and εr,inc = εr,g2 = 1. And the results of dielectric, lossy metallic

and lossless metallic gratings under both TE and TM polarization are going

to be shown.

Figure 3.21: Configuration of triangular gratings.

A. Dielectric

For a dielectric grating with εr,g1 = εr,tra = 32 under TE polarization,

results of accuracy and convergence are shown in Fig. 3.23. It is found that

three-point formulation with GD and even higher order methods converge as

fast as RCWA at first, and will be closer to the final value than RCWA at
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large grid’s number, but the advantages of FDMM here are not obvious in

this case. However, if the revised discretization method making the distances

between discontinuities and their adjacent grid points on both sides of them

equal is used as in Fig. 3.22, the results would become more stable, and the

Figure 3.22: Revised discretization for multi-layer approximation.

effect of higher order methods becomes obvious, as in Fig. 3.24. This proper

discretization is more important for TM polarization.

B. Lossless metal

A lossless metal grating with εr,g1 = εr,tra = (−10i)2 and proper dis-

cretization as in Fig. 3.22 is considered, and its results are shown in Fig.

3.25. It is found that five-point FDMM is on the same degree of accuracy of

RCWA, and the convergence of three-points and even higher order formula-
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tions are better than RCWA.

C. Lossy metal

A lossy metallic grating with εr,g1 = εr,tra = (3.18 − 4.41i)2 and proper

discretization is tested, and its results are shown in Fig. 3.26. The three-

point FDMM with GD and even higher order methods are superior to RCWA

obviously.
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Figure 3.23: Convergence of the zeroth-order reflection. A dielectric trian-
gular grating with εg1 = 32 under TE incidence.

Figure 3.24: Convergence of the zeroth-order reflection with proper dis-
cretization. A dielectric triangular grating with εg1 = 32 under TE incidence.

70



Figure 3.25: Convergence of the zeroth-order reflection with proper dis-
cretization. A lossless metal triangular grating with εg1 = (−10i)2 under
TE incidence.

Figure 3.26: Convergence of the zeroth-order reflection with proper dis-
cretization. A lossy triangular grating with εg1 = (3.18 − 4.41i)2 under
TE incidence.
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3.4 FDMM for TM polarization

3.4.1 Rectangular-Groove Gratings

In this subsection accuracy and convergence are investigated again with the

same parameters as those in preceding section except for TM polarization.

Note that here the method of discretization in each layer is distributing grid

points according to the ratio of width of each region inside that layer. This

process could avoid too large difference of distances from sample points to

discontinuities between points on each side of discontinuities and will be

discussed in the last part of this subsection.

A. Dielectric

Consider a dielectric grating with εg1 = εtra = (3)2, and the results are

shown in Fig. 3.27 and Fig. 3.28. It could be found that although the

propagation constants β of five-point FDMM without GD and methods with

even higher order converge faster than RCWA, the convergence of diffraction

efficiencies of FDMM are slower than RCWA, and the results of every FDMM

are on the same degree of accuracy except for three-point FDMM.

B. Lossless metal

A lossless grating with εg1 = εtra = (−10i)2 is tested, and the results is

shown in Fig. 3.29 and Fig. 3.30. In this case, RCWA’s results are quite

unstable and do not converge to a satisfying degree of accuracy. However,

such kind of situation will not happen in FDMM. Therefore, although not
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all convergence lines of β of FDMM converge faster than that of RCWA, the

convergence of diffraction efficiencies of FDMM is superior to RCWA even

for three-point FDMM without GD.

C. Lossy metal I

A lossy metallic grating with εg1 = εtra = (3.18 − 4.41i)2 is considered.

Like dielectric gratings with TM polarization, the diffraction efficiencies of

FDMM converge slower than RCWA. The results are shown in Fig. 3.31 and

Fig. 3.32.

D. Lossy metal II

If the parameter εg1 of lossy gratings is replaced by highly conductive

one, FDMM will become superior to RCWA. To verify this statement, con-

sider a lossy metallic grating with εg1 = εtra = (0.22 − 6.71i)2 which is the

permittivity of gold at λ = 1000nm, and the results are shown in Fig. 3.33

and Fig. 3.34.

E. Lossy metal with high conductivity

Finally, we test FDMM in an even higher conductive grating with εg1 =

εtra = (1−40i)2. The results are shown in Fig. 3.35 and Fig. 3.36. Although

the results of FDMM will be more correct than RCWA until exceeding 200

grid’s number, FDMM can still be seen as a better choice than RCWA be-

cause the result of RCWA converges quite slowly in this case. Note that the

FDMM inside each layer can not be taken non-uniform discretization under
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TM polarization.

Figure 3.27: Accuracy and convergence of β of fundamental mode. A dielec-
tric grating with εr,g1 = 32 under TM incidence. Grids are distributed by
ratio of width.

Figure 3.28: Convergence of the zeroth-order reflection. A dielectric grating
with εr,g1 = 32 under TM incidence. Grids are distributed by ratio of width.
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Figure 3.29: Accuracy and convergence of β of fundamental mode. A loss-
less metallic grating with εr,g1 = (−10i)2 under TM incidence. Grids are
distributed by ratio of width.

Figure 3.30: Convergence of the zeroth-order reflection. A lossless metallic
grating with εr,g1 = (−10i)2 under TM incidence. Grids are distributed by
ratio of width.
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Figure 3.31: Accuracy and convergence of β of fundamental mode. A lossy
grating with εr,g1 = (3.18−4.41i)2 under TM incidence. Grids are distributed
by ratio of width.

Figure 3.32: Convergence of the zeroth-order reflection. A lossy grating with
εr,g1 = (3.18− 4.41i)2 under TM incidence. Grids are distributed by ratio of
width.
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Figure 3.33: Accuracy and convergence of β of fundamental mode. A lossy
grating with εg1 = (0.22−6.71i)2 under TM incidence. Grids are distributed
by ratio of width.

Figure 3.34: Convergence of the zeroth-order reflection. A lossy grating with
εg1 = (0.22 − 6.71i)2 under TM incidence. Grids are distributed by ratio of
width.
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Figure 3.35: Accuracy and convergence of β of fundamental mode. A highly
conductive grating with εg1 = (1 − 40i)2 under TM incidence. Grids are
distributed by ratio of width.

Figure 3.36: Convergence of the zeroth-order reflection. A highly conductive
grating with εg1 = (1− 40i)2 under TM incidence. Grids are distributed by
ratio of width.
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At the beginning of this subsection, we noted a proper way for TM po-

larization to dicretize. It is found that the ratio of distance between dis-

continuities and their adjacent grid points affect the convergence properties,

especially for the convergence of diffraction efficiencies. This problem may be

due to ignoring some boundary conditions while constructing the sparse ma-

trix and solving eigen-problem in each layer. And this omission will cause the

contradiction of continuity of fields as matching boundary condition between

every layers.

Figure 3.37: Continuity of Ex fields for TM polarization.

As in Fig. 3.37, while matching boundary of tangential field Ex for TM

polarization, the fields 1
ε

∂Hy
∂z

are continuous at the interface between the upper

and the lower layer. But, inside the lower layer of Fig. 3.37, the field 1
εL

∂Hy
∂z

on the left side and 1
εR

∂Hy
∂z

on the right side are not continuous at the vertical
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interface. Therefore, it causes the contradiction of continuity of fields 1
ε

∂Hy
∂z

at the vertical interface in the lower layer of Fig. 3.37. In addition, while

constructing the sparse matrix for TM polarization in FDMM, the boundary

condition of the fields 1
ε

∂Hy
∂z

or the boundary condition of fields Ex is not

considered, and what we considered are only tangential fields Hy and Ez.

This effect of contradiction does not happen in TE polarization because the

fields ∂Ey
∂z

(which means Bx) used in matching boundary condition between

every layers are always continuous at the vertical interface of Fig. 3.37.

As using nonuniform discretization to increasing the spatial resolution

near the interfaces for TM polarization, or distributing grid points without

considering the ratio of width of each different region inside one layer, such

kind of contradiction may impact the stability and the convergence more

drastically. Hence, this is my speculation on the failure of FDMM under TM

polarization for nonuniform discretization and the dependance on the ratio

of distances between the interface and its adjacent grid points. In addition,

the similar problem of continuity at corners has been discussed by Chiou et

al. [31].

However, this problem does not happen in FMM (or RCWA) as well, even

for TM polarization. It could be explained by using 1
εr

∂Hy
∂z

combined with

(2.7) and (2.20) to get

1

εr

∂HG
yi

∂z
=
∑
p

∑
m

aipwpm(−jβm){g+
m − e−jβmtg−m}e−jkxix (3.4)
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for a specific order. The boundary conditions of fields at the interfaces are

matched by use of the same Fourier order terms in FMM (or RCWA). And it

could be found in (3.4) that this field of the specific order is continuous at the

vertical interface of Fig. 3.37 naturally because the x-dependance of the fields

is a continuous function e−jkxix. Therefore, this is my speculation on why

RCWA does not have such contradictory problem. Although RCWA does

not suffer from the problem of contradiction of field’s continuity as matching

boundary condition between every adjacent layers, it has difficulty in effec-

tively describing structures with abrupt and large change in permittivity by

Fourier bases because such bases are continuous functions.

In a word, the difficulty of FMM (or RCWA) is inside one layer to de-

scribe the abrupt change material by continuous functions, and the problem

of FDMM is contradiction of continuity of fields as matching boundary con-

dition around corners.
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3.4.2 Arbitrary Profiles Gratings

A. Dielectric

From preceding subsection, it has been known that one needs to use

proper discretization to avoid the instabilities for TM polarization. How-

ever, as the gratings cut into many layer for approximating arbitrary shape

of gratings, such proper discretization for every interfaces would be achieved

more difficultly. But if the proper discretization is not considered, the serious

problem of instability will occur, as in Fig. 3.38, which shows transmittance

for TM case with respect to the grid’s number for uniform grids. The pa-

rameters of the grating’s structure are: tg = 1000nm, Λ = 1000nm, θtilt =

arctan(2tg/Λ), number of layers=15 εr,tra = εr,g1 = 32 and εr,inc = εr,g2 = 1.

The results of FDMM in Fig. 3.38 are inferior to that of RCWA and suffer

from obvious instabilities. And these instabilities could be avoided by plac-

ing grid points as in Fig. 3.22. After using such proper discretization, the

results will become quite stable, as in Fig. 3.39.

Although convergence of FDMM is a little worse than that of RCWA in

Fig. 3.39, the results of FDMM is correct and stable. Therefore, it could be

expected that results of FDMM become better than RCWA as simulating

structures that RCWA will suffer from instabilities or slower convergence.

B. Lossless metal

A lossless metal grating with εr,g1 = εr,tra = (−10i)2 is considered, and its
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results are shown in Fig. 3.40. In this case, results of RCWA are very unstable

and incorrect. However, the results of FDMM with proper discretization

could avoid such instability and failure. Notice that three-point FDMM

without GD is superior to other higher order FDMM unexpectedly.

C. Lossy metal

Finally, a lossy metal grating with εr,g1 = εr,tra = (3.18 − 4.41i)2 is

tested. Fig. 3.41 shows that the results of FDMM converge faster than that

of RCWA even for three-point formulation without GD. Note that this is

different from the result of FDMM for rectangular-groove grating with the

same εr,g1 and εr,tra, which shows that all of the formulations of FDMM are

inferior to RCWA.
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Figure 3.38: Convergence of the zeroth-order transmittance. A dielectric
triangular grating with εg1 = 32 under TM incidence.

Figure 3.39: Convergence of the zeroth-order transmittance with proper dis-
cretization. A dielectric triangular grating with εg1 = 32 under TM incidence.
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Figure 3.40: Convergence of the zeroth-order reflection with proper dis-
cretization. A lossless metal triangular grating with εg1 = (−10i)2 under
TM incidence.

Figure 3.41: Convergence of the zeroth-order reflection with proper dis-
cretization. A lossy triangular grating with εg1 = (3.18 − 4.41i)2 under
TM incidence.
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3.5 Numerical Verification of 2DFD

Another method to solve the problem of RCWA for highly conductive and

lossless metallic gratings under TM polarization is using two-dimensional

finite difference (2DFD) to solve scattering problems directly. By comparing

the duty cycle variation of graded-index 2DFD with RCWA and FDMM,

it could be found that the graded-index approximation is appropriate for

small index difference. Fig. 3.42 shows the duty cycle dependence of the

minus-first order reflection, and the its parameters are: εr,inc = εr,g2 = 1,

εr,g1 = εr,tra = 32, f from 0.98 to 0.08, Λ = 500nm, λ = 632.8nm, tg = 500nm

and θinc = 30◦. There is a little deviation from the results of RCWA and

FDMM because the index difference between 3 and 1 is not really small.

Figure 3.42: Duty cycle variation of the minus-first-order reflection. A di-
electric grating with εg1 = 32 under TM incidence. 2DFD with averaging
permittivity is used.
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However, for large index difference and nearly abrupt interfaces, the

graded-index approximation has difficulty in accurately modeling the field

behaviors. As in Fig. 3.43, which has the same parameters as in Fig. 3.12, it

is found that the line of graded-index 2DFD deviates from the appropriated

results but does not suffer large instability like RCWA.

Figure 3.43: Duty cycle variation of the minus-first-order reflection. A loss-
less metallic grating with εg1 = (−10i)2 under TM incidence. 2DFD with
averaging permittivity is used.

For the structure with abrupt interfaces or large index difference, it is

better to consider the interface conditions in 2DFD, and this method is

demonstrated in section 2.3. Using step-index 2DFD method to approach

the same problem as Fig. 3.43, the results are shown in Fig. 3.44. It is found

that the result of step-index 2DFD matches the results of FDMM well and

does not suffer any instabilities.
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Figure 3.44: Duty cycle variation of the minus-first-order reflection. A loss-
less metallic grating with εg1 = (−10i)2 under TM incidence. 2DFD with
considering boundary condition is used.

The fields diagrams obtained from four methods which have been pre-

sented in the thesis are shown in Fig. 3.45-Fig. 3.48. Fig. 3.45 and Fig.

3.46 have the same parameters as Fig. 3.44 with 302nm groove width. And

Fig. 3.47 and Fig. 3.48 are the results for 250nm groove width. In Fig.

3.45 and Fig. 3.47, it is found that the fields calculated by RCWA do not

vanish totally inside the lossless metallic gratings. This phenomenon may be

explained by the spurious modes mentioned by Lyndin et al. [19] that the

spurious mode resonance causes the field enhancement in the grating region.
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Figure 3.45: Field diagram of Fig. 3.12 at groove width= 302nm (Left:
RCWA, Right: FDMM)

Figure 3.46: Field diagram of Fig. 3.12 at groove width= 302nm (Left:
Graded-index 2DFD, Right: Step-index 2DFD)
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Figure 3.47: Field diagram of Fig. 3.12 at groove width= 250nm (Left:
RCWA, Right: FDMM)

Figure 3.48: Field diagram of Fig. 3.12 at groove width= 250nm (Left:
Graded-index 2DFD, Right: Step-index 2DFD)
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Chapter 4

Conclusion

The arbitrary-order finite-difference modal method (FDMM) with step-index

formulation for the analysis of gratings with one-dimensional periodicity has

been presented. The correctness of FDMM is testified by comparing with

some papers, and the accuracy and convergence of this method were com-

pared with the Fourier modal method (FMM), also named rigorous coupled-

wave analysis (RCWA). It is found that the accuracy of three-point FDMM

with generalized Douglas scheme and even higher order methods are better

than FMM for TE polarization in almost all cases. In addition, using nonuni-

form discretization with increased resolution near the discontinuities could

accelerate the convergence. For TM polarization, the accuracy of FDMM

could be superior to FMM for high conductive and lossless metallic grat-

ings, and even for usual lossy metallic gratings as simulating gratings with

arbitrary profiles by multi-layer approximation.

However, numerical results of rectangular-groove gratings indicates that
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a proper discretization for FDMM is important under TM incidence. This

problem may be attributed to the corners existing in calculated configura-

tion and could be explained by disregard of some boundary conditions of the

fields normal to the vertical interfaces as constructing the sparse matrix of

each layer which causes contradiction of continuity of the fields tangential

to horizontal interfaces as matching boundary conditions between every lay-

ers. Therefore, for arbitrary profile gratings under TM incidence, a proper

discretization might be achieved by making the distances between disconti-

nuities and their adjacent grid points on both sides of them equal, and the

results will avoid instabilities and converge to the correct answer smoothly.

Moreover, this technique could also be used for TE polarization to make

results more stable.

Besides using FDMM to solve the serious problem of FMM as simu-

lating lossless metallic gratings for TM polarization, the two-dimensional

finite-difference methods of both graded-index and step-index formulation

are presented and shown that the results are correct and stable, especially

for step-index formulation.
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