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Abstract

In this thesis, the finite-difference modal method (FDMM) with step-
index formulation for simulating grating structures is proposed and compared
with rigorous coupled-wave analysis (RCWA ), also called Fourier modal method
(FMM). It is verified that FDMM has better convergence and accuracy than
RCWA for TE polarization in almost all cases and TM polarization for high
conductive and lossless metallic materials.

In the FDMM, the relation of interface conditions to arbitrary high or-
ders is considered and combines with Taylor series expansion. The general-
ized Douglas (GD) scheme is also adopted to enhance the convergence order
without considering more sampled points. With the techniques mentioned
above, the sparse matrix of eigenvalue problem could be constructed to solve
the fields and the propagation constants of modes inside each layer. In ad-
dition, the enhanced transmittance matrix approach proposed by Moharam
et al. for RCWA is used to make matrix manipulation stable for multi-layer
or even single layer gratings.

The diffraction properties of gratings, such as accuracy, convergence, de-
pendence of diffraction efficiencies on incident angle, thickness, duty cycle,
etc, will be discussed for numerical assessment of FDMM. Moreover, two-
dimensional finite-difference methods combined with periodic boundary con-

ditions and absorbing boundary conditions will be executed for comparison.
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Chapter 1

Introduction

1.1 Overview

Diffraction of optical electromagnetic radiation by periodic structures is im-
portant for many engineering applications. Grating diffraction is central in
the fields of integrated optics, holography, optical data processing, spectral
analysis, etc. There are numerous numerical methods with variety of possible
assumptions to analyze diffraction properties of gratings, and most of them
are not only tools for solving mathematical equations but also imply some
physical insights of the problems. Thanks to advancement of computer tech-
nology, numerical methods and computer-aided design (CAD) become more
important and convenient for finding optimized parameters for high cost or

complicated experiments.



1.2 Literature Survey

The Fourier modal method (FMM) which is a kind of differential methods [1]
and often referred to as rigorous coupled-wave analysis (RCWA) was first
formulated for planar gratings by Moharam and Gaylord [2] [3] [4], and then
extended to surface-relief gratings [7] [6] and crossed-grating structures. It
provides the exact solutions whose accuracy depends solely on the numbers
of terms retained in the space-harmonic expansions of the fields.

Before this method was proposed, the most common differential methods
were the coupled-wave approach [8] and the modal approach [9]. The coupled-
wave approach, which expanding the solution into plane-wave components,
had been known to offer a relatively simple formulation and superior physical
insight into wave-diffraction phenomena. In this approach, several assump-
tions were made in order to obtain solutions such as neglecting the second
order derivatives of the field amplitudes and retaining only one diffracted
wave. The modal approach, which through eigenmode expansion, was a rig-
orous exact analysis but complicated mathematically. However, Magnusson
and Gaylord [10] had shown that these two approaches are equivalent and
the coupled-wave approach could become rigorous by including all diffracted
waves in the formulation together with retaining the second derivatives of
the electromagnetic fields. Therefore, RCWA was created by considering the

coupled-wave approach without the assumptions as mentioned above.



As matching the boundary conditions between every layers and finding
diffraction efficiencies, some instabilities would be introduced because taking
the inverse of some ill-condition matrices. Several methods such as R-matrix,
S-matrix, and other approaches which were compared systematically by Li
[11] have been proposed to produce stable implementation for this problem,
and the method proposed by Moharam et al. [12] in 1995 will be mentioned
in section 2.1.3.

Another problem of RCWA discovered by Li and Haggans [13] is poor
convergence as dealing with metallic gratings under TM incidence. The con-
vergence was dramatically improved by the reformulation by Lalanne and
Morris [14] and Granet and Guizal [15], and this improvement was explained
by Li [16] mathematically. He proved the origin of poor convergence comes
from the mistakes of using Fourier factorization and proposed the inverse rule
of factorization to uniformly satisty the boundary conditions in the grating
region.

However, even using the modified factorization mentioned above, Popov et
al. [17] discovered a numerical instability problem in this differential theory as
applied to metallic gratings with very high conductivity under TM incidence.
They attributed these instabilities to the imperfect condition of matrices gen-
erated by Fourier coefficients of permittivity distribution to be inverted. This

statement was later questioned by Watanabe [18]. Some heuristical solutions



proposed by them were introducing artificial metal losses in order to damp
the instabilities or applying two-step truncation [17]. Such strategy obvi-
ously treats a neighboring but different electromagnetic problem. Lyndin et
al. [19] established the link between the instabilities and the spurious modes
corresponding to instable high order eigenvalues. They proposed a procedure
of identification and filtration of these spurious modes, but such tracking of
those artifactual modes are complicated. Furthermore, Guizal et al. [20] ap-
plied the reformulation of FMM with adaptive spatial resolution proposed
by Granet [21] to approach the problem of highly conductive gratings under
TM incidence and get even more stable solution.

Finite difference (FD) methods for solving partial difference are also used
in electromagnetism for solving Maxwell’s equations. This method is not
widely used in grating theory but often used to study the diffraction by
aperiodic objects of finite dimension because of their suitability for incor-
porating absorbing boundary conditions to limit the computational domain.
Generally, standard FD methods require a two-dimensional (2D) mesh for
the discretization of a one-dimensional (1D) grating. After adding periodic
boundary conditions, absorbing boundaries and sources, the fields of scatter-
ing problems could be solved and used to find diffraction efficiencies.

However, Lalanne and Hugonin [22] proposed a very simple method for

the analysis of 1D lamellar gratings. This method is solving eigenmodes in-



side the gratings region such as FMM (RCWA) but using finite-difference
approach. And it is similar to numerical techniques that are based on finite-
difference modal approaches and used in waveguide theories. They used a
first-order method with averaging permittivity and found that their method is
much inferior to the RCWA for dielectric gratings. In contrast, their method
compared favorably with the RCWA for metallic gratings operating in the
infrared regions of the spectrum, especially for TM polarization. They also
proposed three crucial methods to accelerate the convergence: (1) proper
interpolation for averaging permittivity, (2) mesh points on discontinuities
and (3) non-uniform sampling near the discontinuities. Their numerical re-
sults indicated that FD approach offers rather good performance for highly

conducting gratings and TM polarization.

1.3 Motivation

In the paper of Lalanne and Hugonin [22], they presented the finite-difference
modal method and declared good performance for metallic gratings and TM
polarization but worse convergence than RCWA for TE polarization. Inside
the grating layer, what they used is an interpolation scheme that locally
averages the permittivity, and they said the method of interpolation has
a drastic impact on the convergence performance. In addition, they only

considered first-order finite-difference and expected that faster convergence



rates can be achieved by using higher order method but the computational
efficiency will be reduced because of increasing non-zero value in the eigen
matrices.

Therefore, the finite-difference modal method (FDMM) with even higher
order formulation and considering boundary conditions instead of interpola-
tion is introduced and tested in this thesis. With the generalized Douglas
scheme [23] [24], the convergence order can be increased without adding the
mesh points, so the computational time and the computer memory does not
be increased. For comparison, the two-dimensional finite-difference both for
graded-index approximation and step-index approximation will be investi-

gated.

1.4 Chapter Outline

There are three chapters following this introduction.

In chapter 2, the Fourier modal method (FMM), or rigorous coupled wave
analysis (RCWA) is demonstrated first both for rectangular-groove gratings
and surface-relief gratings. Surface-relief gratings, which also called arbi-
trary profile gratings, can use many layers of rectangular-groove gratings
with different duty cycles to approximate. A stable approach will then be
mentioned to solve the unstable problems as using above approximation.

Next, the finite-difference modal method (FDMM) will be proposed by us-



ing step-index formulation with or without generalized Douglas scheme in-
side each grating layer and stable approach used in RCWA. Last, the two-
dimensional finite-difference (2DFD) with averaging permittivity and con-
sidering boundary condition will be applied to the same configuration which
solved by RCWA and FDMM above. In addition, two different methods of
perfectly matched layers and total fields/scattered fields (TF/SF) for adding
sources will be mentioned.

In chapter 3, numerical results are given to assess the formulations men-
tion in chapter 2. First, some papers’ results will be used to verify the
correctness of FDMM and RCWA, and the problems of RCWA will be seen
for lossless metallic or high conductive gratings under TM incidence. Second,
accuracy and convergence of propagation constants and diffraction efficien-
cies of these two numerical methods will be defined and discussed for every
kinds of materials, both of TE and TM polarization and both of rectangular-
groove gratings and arbitrary profile gratings. Finally, 2DFD will be used to
solve the same problem which suffers from serious instabilities with lossless
metallic gratings under TM incidence.

Chapter 4 concludes this thesis.



Chapter 2

Formulation

The geometry of the problem we deal with is one dimensional periodic grating
depicted in Fig. 2.1, which is separated into reflection region, grating region
and transmission region. The normal to the interface between any adjacent
two regions is along z direction, and the grating is periodic along x direction

and infinite along y direction.

‘ Reflection region

‘ Transmission region

Figure 2.1: Grating with one-dimensional periodicity.



2.1 Fourier Modal Method (or RCWA)

The main idea of RCWA is to express both permittivity and electromagnetic
fields by Fourier bases. In the grating region, the periodic relative permit-
tivity e(x) is expandable in a Fourier series of the form

€(z) = Zehejzfﬁ’“’, (2.1)

h

where A is grating period and ¢, is the hth Fourier coefficient of the relative

permittivity which can be found by

1 zi+A e
€n = K/ e(m)e_ﬂfhzdx, (2.2)

where z; is any initial position in the integration. Regarding the electro-
magnetic fields, it assumes that these could be expanded by Fourier bases
along the periodic direction x and form a set of modes along the propagation

direction z and are expressed as

U (T, 2) ~ (Z C’mie_jk“x) x etibmz (2.3)

where m is the index of mode, [, is the propagation constant of mode m,
kzi = ko sin(incidence) + ZZXTF and C,,,; is the contribution of mode m to the ith
Fourier order.

After using above approximation to rewrite Maxwell’s equations, an eigen-

value problem is constructed and used to find every eigenmodes inside the



grating layer. Then we match boundary condition of tangential field compo-
nents at each interface between two adjacent layers and calculate the diffrac-
tion efficiencies finally. More details of RCWA will be shown in the following

subsections.

2.1.1 Planar Diffraction of Rectangular-Groove Grat-
ings

For simplicity, only TM polarization (H,,E,,E,), which means the magnetic

field is perpendicular to the plane of incidence (which means x-z plane here),

is going to be demonstrated, and the mathematical derivation of TE polar-

ization is similar to that of TM. The structure of a rectangular-groove grating

is depicted in Fig. 2.2. Assume the incidence wave is a plane wave given by

A e ‘Reﬂection region ‘
Er, inc X
Ex) e |%m  Eee Grating region
fA Sr tra
A
z | ’Transmission region

Figure 2.2: Rectangular-groove grating.

H;nc _ e_JkO\/m(sm Ox+cos 92’)7 (24)
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where k is the wave vector in free space, and @ is the incident angle. However,
it also could be any other kinds of waves. And the solutions form of reflection

and transmission are given by

=) Ry ihmakin) (2.5)

and

ZTW haiz+hZ (=0] (2.6)

where kIt = \/k3€,ine — k2 kL, = \/ki€r1va — k2; and t is the thickness of

grating. The electric fields in these regions can be obtained from Maxwell’s

equation E = V x H.

Jweoer

In the grating region, we would like to solve modes propagated along

direction z. Being analogous to (2.3), the fields may be expressed as

S, Z A (2.7)

where U,,;(z) means the contribution of every modes to the ith space harmonic

fields. After substituting it into Maxwell’s equations, we will get

E¢ =a)  Sy(z)et, (2.8)

where « is normalization constant which will be decided later. For TM

_1 V x E will

polarization, Maxwell’s equations E =

be simplified to be

1 O0H¢
ES = . 2.
o jwege(x) Ox (2.9)

11



¢__ 1 (_oH
B = Jweoer () 0z (2.10)

. OES  OEY
—jwpgHS = T o (2.11)

]_ - 27
= aed it (2.12)

h
and substitute (2.12), (2.7) and (2.8) into (2.10). we will obtain

-1 oUy;
e ol e L4 2.1
oSy ot gp Wip 5 (2.13)

where a;, = a,_; is Fourier coefficient of €, '(z). Next, combining (2.11) with
(2.9) and substituting (2.12), (2.7) and (2.8) into this combination, then we

obtain

o == Z a&k, ), & i Z Uy (2.14)
P i

Jweg

Now we can see that if & = = the (2.13) and (2.14) will become simpler.

Jweo’

Finally, combining the (2.13) with (2.14) and eliminating S,;, we obtain

*U,
Z aipﬁ = k‘m Z aipk:pryp - k’SUZ, (215)
p

p

or, in matrix form,

AU” = K, AK,U - kU, (2.16)

where A = [a;,] and Ky = diag|k,;|. Therefore, now we know the eigenvalue

problem used to be solved is

U’ = A Y (K,AK, U — E21)U. (2.17)

12



However, from the empirical advice of Lalanne and Morris [14] (by quasi-
static limit description), G. Granet and B. Guizal [15] in 1996 and the math-
ematical foundation given by Li [16] that the matrix A in the parenthesis
of (2.17) is better to be replaced by E~', where E = [¢;,], for improving
convergence. This replacement will improve the convergence. Namely, we
solve

U’ = A Y(K,E 'K, U - KJ1)U = ~-MU (2.18)

finally instead of (2.17). If the field assumption is like (2.3), i.e., Uy(z) ~

>, Cmie7Pm# we could know that

U’ — |: aZin<Z)

022

—3*U, (2.19)

and be sure that the eigenvalue problem is MU = 32U, where 32 is a
diagonal matrix containing eigenvalues.
After solving the eigenvalue problem above, the space harmonics of tan-

gential electric and magnetic fields are given by

Uy =Y win{ghe 7" + g e om0}

Sy ==Y apwpm(—jBu){ghe 7P — g et} - (2.20)
P m

where w;,, and (3,, are the elements of the eigenvector matrix W and the
square root of the eigenvalues of the matrix M. The quantities g and g,
are unknown constants to be determined by matching boundary conditions.

Physically, g7 and g;, mean the contribution of each mode. The columns of

13



[wimm] means which mode, and the ith row of column m represents the ratio
of tth space harmonic in this mode.

To solve reflection coefficient R;, transmission coefficient T;, g and g,
the boundary conditions of tangential fields are used. For TM polarization,

. OH . . .
the component F,, which means } 5., and H, are continuous at disconti-
.

nuities. At the input boundary (z = 0)

51’0 + Rz = Z wzm{g;; + G_jﬁmtgg%} (221)

and

_jkO\/ €r,inc COS 0510 ]kP; : —j —
FE R =Y Y riwpm(—iBn g — e P gn),
D m

€rinc €rinc

(2.22)
or in matrix form,

dio I \W% WX gt
jhocost s | T R = ", (2:23)

where Zg = diag[—jkL /e, incl, Z = diag|—jBn] and X = diaglexp(—jBmt,))-

At z =1t,,
> winfe gt + gu} = 1T, (2.24)
and
; —iBmtg o+ - —jkﬁ-
2D ity (—iBn){e g — g} = — T (2.25)
p m ritra
or in matrix form,
WX \)\% + I
m | T, (2.26)
AWZX —AWZ 9 Zy

14



where Zy = diag|—jkL /€ 1ra).

The coefficients R; and T; could be found by using (2.23) and (2.26). The
diffraction efficiencies could be calculated by the definition of the ratio of
Poynting’s vectors along propagation direction z. For TM polarization here,

the Poynting’s vector in the propagation direction z is

1 1 j OH,
P.=-Re[E,H| = =R —)H; |, 2.21
2 e [B.Hy] 2t [weoer 82) y] (2.27)
and the diffraction efficiencies are defined as
P kR
DEr; ==~ =|R;|’Re |2
i e IR {ko}
PT T,inc kT
DET = 2= |Ti|2Re {e—ﬁ} X (2.28)
P;nc Er,tra 20

For lossless gratings, the sum of the reflected and transmitted diffraction
efficiencies given by (2.28) must be unity, which means conservation of energy.
In addition, if it needs to plot the field diagrams, solve coefficients g} and
g, after finding R; and 7;. In the next subsection, we will generalize the
structure to arbitrary shape.

2.1.2 Multi-layer Approximation for Arbitrary Shape

Gratings

For gratings with arbitrary profiles, we divide the grating into a large number
of sufficiently thin layers and approximate each layer by a rectangular-groove
grating, which was use first proposed by Peng et al. and applied to RCWA

by Moharam and Gaylord [6], as in Fig. 2.3.

15



Figure 2.3: Example of multi-layer approximation.

The electromagnetic fields in each grating layer are determined by RCWA
for rectangular-groove gratings (or by other approaches, such as the modal
approach and the finite difference approach). Then boundary conditions of
the tangential fields are applied in sequence at every interfaces to get reflected
and transmitted diffracted field amplitudes and diffraction efficiencies. Here
we still use TM polarization to illustrate the formulation.

After solving the eigenvalue problems in each grating layer, the space

harmonics of tangential fields of every layers are given by

I Bl (omzy L
Ul,yi = szm{gl_t_me Jﬁm(z 2] 1) + gl7m6+'7ﬂm(z zl)}
m

: —jfBh, (z—2— — B, (z—2
Sty == D D Aty {gile ™) — g et (2.20)
p m

where the index [ means which grating layer. Then we match boundary con-
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dition at every interfaces and express these in matrix form. At the interface

between the input region and the first grating layer, i.e. at z = 0 in Fig. 2.3,

0; I W/ WX, N
. + R = a
_]kOC0896i0 _ZR AJVVJZI —A1W1Z1X1 gim

(2.30)

where the suffixes of W, A, Z and X mean which grating layer and the
definitions of these matrices are same as in preceding subsection, at the

interface between (I — 1)th and Ith layer (z = 2;_1)
Wi X Wiy Jim _
AL WiiZ Xy =AW Zy, 9i—1.m

W, WX, gl—!—m (2.31)
AWZ, —AWZX, | | g7 |

and at the interface between the last grating layer and the output region
W, X, W, Qz,m R
AW, 72, X, —AWiZ, 9L.m Zy

Finally, (2.30)-(2.32) are rewritten as

dio N I R L W, WiX;
7jk0c0305i0 —7Zr i AW Z, —AW,Z, X,

—1
" WX, W, 1
AW ZX, —AW,/Z, Zr

However, this approximation used in successive field matching may intro-

T. (2.32)

T. (2.33)

duce numerical instability which is due to the presence of evanescent fields.

And these evanescent waves, which possess large imaginary part of 3, will

17



make the matrix X to be ill-conditioned as doing matrix inverse. In the next
subsection we will introduce stable approaches to eliminate the numerical

instability.
2.1.3 Stable Approach for Multi-layer Approximation

There are several approaches which have been proposed to produce stable
implementation. For example, Moharam and Gaylord [6] obtained numeri-
cally stable RCWA calculation for TE polarization and dielectric gratings to
a grating depth of as many as four wavelengths, by sequential Gaussian elim-
ination scheme. Pai and Awada [25] use layer transmission matrices and in-
terface reflection and transmission matrices to derive the solution for RCWA
in terms of a multiple-reflection series which is stable for TE polarization and
dielectric gratings to a grating depth of as many as four wavelengths. Li [26]
used the R-matrix propagation algorithm to propagate the field through the
layers in the modal approach to obtain stable results for deep dielectric and
metallic one-dimensional gratings in the conical mount.

Here we use the method which is proposed by Moharam, Pommet, and
Grann [12] in 1995 and called enhanced transmittance matrix approach. See
(2.33) again and notice the inverse matrix at left. There are some X terms
in this big inverse matrix. Because the elements of X are e*7#% as some
B values have large imaginary part, these exponential terms will produce

very large or very small elements in this big inverse matrix. And the inver-

18



sion of this almost singular matrix will produce erroneous results because of
truncation errors. Therefore, we would like to remove X terms from the big
inverse matrix.

Consider the last factor (I= L) in (2.33), which is

—1
W, W X; W X W, fr T
AW, Z, —-AWZX, AW, Z:. X, —AW,Z, gr
[ ow, WX,
AW Z; —AW,Z,X,;
] -1
X; 0 W W f
x | °F 1 k T T,(2.34)
& AW, Z, —-AW,Z; gr

where fr = I and gt = Zr. The matrix to be inverted has been rewritten as
the product of two matrices. The matrix on the right side in the product is

well conditioned, however, the left side matrix is ill-conditioned. By defining

=l
\%\% A%% f;
L L L ur ’ (2.35)
AW, Z, -AW,Z, gL A2

(2.34) could be reduced to

W, W, X, X' o uy,
ALWLZL _AZWZZZXZ 0 1 \2¢

T

W WX X!
— L LAL r UL (2.36)
AW Z;, —AW/ZX, \47
and by changing variable T = u;'X T}, the (2.36) will become
\%% W, X 1 f
- Lo B T,=| " |T.  (2.37)
AW;Z, -AW/ZX, viu; Xp gL
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Repeat this process for all layers, we obtain

0; I f;
—jko cos 6 R =
—==0; —Zg 81

VE€ryinc i0
where T = uZIXLuZilXL_l o u;leuIIXlTl. In this formulation, the

+ T,, (2.38)

instability could be avoided successfully because it never inverts the matri-
ces X. The singular-value decomposition technique could be considered in
inverting the matrix u to avoid numerical difficulties because of round-off
errors when a large number of layers and a large number of harmonics are
used.

In addition, if it needs to plot the field diagram, we have to find coefficients
g;’rm and g, ,, in every layers by finding R, T and T of each layer first and
then substituting back. After using the skill above, the coefficients in each

layer will be

g—L’—,m g—L’——l,m = I
gz,m gz_l’m VL*luZE]_XL*].

-1 -1 -1 -1
, where Ty, =u, ;X 1---u; X4Tq, Tpq =u;,,X; 2---u; X;T; and

TL7

B I
VLLIZIXL

SO O1l.
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2.2 Finite-Difference Modal Method

In the finite difference modal method, we transfer the continuous functions
and their differentiations into discrete points values. The assumption of fields
is to express the distribution of spatial fields in grating period direction x and,
just like RCWA method, form a set of modes in the propagation direction z
which is

U (x, 2) ~ Ym(x) X etibmz (2.40)

where m is the index of mode, /3, is the propagation constant of mode m.
The equation to be solved is Helmholtz equation, V2t + kZe, 1) = 0 (as-

suming non-magnetic material). If the structure is infinite and uniform in

y-axis and periodic in x-axis, and the direction of fields is in y-axis (i.e. TE

or TM polarization), the equation becomes

0y (, 2) " 0, (z, 2)
Ox? 022

+ ke  (x),(z, 2) = 0. (2.41)

Next, substituting (2.40) into (2.41), we obtain

% + k‘ger(ﬂ?)wy(iﬁ) = 52%(96) (2.42)

After discretizing (2.42), constructing sparse matrix, and solving eigenvalue
problem inside each layer, eigenmodes with x distribution inside each layer
are found. Then boundary conditions are matched to solve the diffraction
efficiencies and plot the field diagrams. In the next subsection, more details

about the finite difference inside each layer are offered.
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2.2.1 Eigenvalue Problems inside Each Layer

The basic idea of finite difference is to express the differentiation of a field

point by itself and it’s adjacent points, as in Fig. 2.4. Being different from

l'I"i-N llJi-Nil l'I',i-3 lbi-z q"i-l q)i l'I',i+1 lI"i+2 ¢T+3 q"i+N-1 q)i+N

| J
|

expressing the ith point by itself and adjacent points

Figure 2.4: One-dimensional discretization.

RCWA | the convergence of FD method could be improved by considering
more adjacent points, i.e. extending to higher orders of Taylor series expan-
sion. If we use (2N + 1) points to approximate the differentiation of one field
point, ¥;, we have to know the relation between the field at those points and

¥; and its derivatives up to (2/V)th order as

Yi-N (05
: U-nyo U-N1 --- U_N2N :
v | = SV b9 | 4+ ORI, (2.43)
: UN,0 uni1 ... UN2N :
| Yisn | | ]

And then inverting the matrix to find ¢/ with truncation error O(h?¥*+1/h?) =
O(h?N=1). As the grids are uniformly positioned, the truncation error will be-
come O(h?N). Here we use central difference scheme, but it is not necessary.

We can use forward-difference or backward-difference as well.
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Figure 2.5: Sketch of a discontinuity between sampled points.

However, there are some discontinuities in each grating layer. Unlike
RCWA, which use Fourier expansion to illustrate the change of permittiv-
ity, here we match boundary conditions at these discontinuities to arbitrary
higher order. As in Fig. 2.5, if we want to express the (i + 1)th points in
terms of each order of the ith point, we expand each order of (i 4+ 1)th field

;11 by each order of 9g, i.e.

¥
w
N
=z
1
1
1

Vi1 1 ¢ % % (ZN)! VR
2 2N -1
i1 01 ¢ % BN R
" 00 1 q - o ;g
U= l(;r)l = (2?}[\}—_23). (3) = M, 1.r¥r,
Uiy 00 0 1 BN R
(2N) (2N)
i Ui ] 00 0 0 - L || ¥%r "

(2.44)
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and each order of ¥;, by each order of (i)th field 9,

2 3 2N T B .
b 1 p 2 v "
2 2N—1
(e 01 p 5 (gN—l)! i
" 00 1 » p2N:2 Qﬂ;/
lI’L = (é) - (i]Q\]f\f—QS)' (3) = MLZlI’Z
I 00 0 1 BN (7
0] oo 0 0 1] e
(2.45)
And the main problem is how to connect W; and Wy, i.e., because
Vi1 =M 1.)Mp M, ¥y, (2.46)

we need to find the matrix Mp... Next, we will derive the arbitrary higher

order boundary condition for (2.42).

A. Arbitrary Higher Order Boundary Condition [23] [24]
Generally, considering the discontinuous parameters of materials are not

only permittivity e but also permeability . The zeroth-order boundary

condition is continuing of tangential fields

Vr = Y1, (2.47)

where ¢ = E, for TE and H,, for TM, and subscript R and L mean points
infinitesimally close to the interface on the left and right, respectively. Next,

for the first-order boundary condition, we use Maxwell’'s equations H =

L VxEand H,g=H,[ for TE; E=-—2-V xHand E, g = E,; for

Jwptofir Jweoer
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TM to derive

Ur = aify, (2.48)

where a = Z—’; for TE and a = E—’Z‘ for TM. The second-order boundary
condition is derived from Helmholtz equation, i.e. ¥} + w?ureptbr = B*Ur

and ¥} + w?ureryr = *)r. By using (2.47), we could obtain
R =YL+ b, (2.49)

where b = w?(urer — prer). For the third-order boundary condition, the
Helmoholtz equation is differentiated on each side to get ¢% + w?urerly =
B2 and Y3 + wiupep = %) . After substituting (2.48) into above two

equations, we obtain
i = a(f +by). (2.50)

We proceed to find the 4th order boundary relation. In the derivation here,
we could regard the term (92 + w?u€) as an operator, which is equivalent to

the term /32, i.e.,
(02 + w?prer) (02 + W’ prer)Yr = 2 f*r and

(02 + WPurer) (02 + wnper ) = B2 6%r.

Combining the above equations with (2.47) and (2.49), we get the relation

W =0 + 20 + by (2.51)
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After repeating the above processes, we will generalize the continuity

relation which could be expressed in matrix form as

[ 1 0 0 0 0 |
0 0 0 0
b 1 0 0
Mg, = 0 ab 0 a 0 |, (2.52)
0 CN ltapN—! 0 CN=tabN=2 ... 0
Al 0 U 0 o ON ]

and make Wp = Mgz, W;. Finally, substitute it into (2.46) and then know
how to express 1;,1 by each order of ;. Put this expression back into (2.43)
and, after finding all the elements of (2.43), invert it to obtain the expression
of .
B. Periodic Boundary Condition

It had been proved by Bloch in 1928 that, for a periodic potential system,
the eigenstate can be expressed as the product of a plane wave envelope

function and a periodic function which has the same periodicity, i.e.
Ui (r) = €757 x (), (2.53)

where k is reciprocal periodic vector and wuy(r) satisfies uy(r) = ux(r + A)
where A is the grating vector. When the structure is periodic, we should
not ignore the points just outside the calculating region. Instead, we add the

phase term on them, and put them in the sparse matrix.
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Figure 2.6: Periodic boundaries.

As the Fig. 2.6, after doing finite difference, we obtain the expression of

1, which is
[ = Fctot+ath+ byt (2.54)
Although 1, is out of the calculating, it is a replicated point of ¢, with a
displacement of A, where p is the number of total calculated points. There-
fore, we could express ¢y = e IFA) x oh, h ;| = e KN x 4h, | and so on.

Finally, the expression of ¢ is
P =+ e TN Xy ity + epthy + - (2.55)

instead of

Y=+ 0+ b+ cothg+ - (2.56)

And these terms will appear on the corner of sparse matrix for 1D finite
difference.
C. Generalized Douglas Finite-Difference Scheme

There is a clever way to enhance the convergence of truncation error

by two order. The main idea of this method is considering two additional
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derivatives. More specifically, for (2N 4 1) points approximation, we expand
each points to (2N + 2)th order instead of (2N)th order. Then using first

(2N)th order terms to find 2nd order differential expression (i.e. operator

"

i pseudor NEXT, Operate this expression on

D?) and define this expression as

the v; to get actual ¢/, which includes even higher order terms. Finally,

"

1 3
i pseudo 00 De Y. The formulation can be expressed as

approximate

D§¢Z - wz/'ipseudo pr gl'(/)z?N+1 e 921/)1'2N+2 + O(h2N+3>
~ ]+ g+ g2V O (RPN
— (1 e nggN—l + gQDgN)w;l h O(h2N+3)
D2

with O(R*N3) /h? = O(R*N*1) and O(h*N*2) for central difference and uni-
form grid cutting. After substituting this refined operator back into (2.42),

we obtain
32@/1 T 82N71 02N
#g) + kger(x) (1 + ng + 926.17W) 1%,(1’)

82N—1 aQN

Iy <1 + g 52N + 928x2N> Py(x).  (2.58)

2.2.2 Evaluation of Diffraction Efficiencies

Being the same as RCWA, we solve the eigenvalues problem after construct-
ing the sparse matrices in every layers and get the eigenvalues and eigenvec-

tor matrices W. The difference between eigenvector matrices W of these
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two method is, for RCWA, columns of |w;,,| means which modes and rows
of [w;y,] means which orders; for finite difference, columns of [w,,,] means
which modes and rows of [w,,,] means which positions.

After solving the eigenvalues problem of each layer, we obtain the mode

field expression in reflection region
Uy = Y wp(ane I 4 Ry, (2.59)

where a,f, = (W}, [Yine) (projection of incident field on each mode), in Ith

grating layer

1/ny = Z wém(gl_t_me_jﬂin(Z—zlq) s g;zejm"(z_zl)), (260)

and in transmission region
= ngm(T;;e—jﬁ%(z—tg)), (2.61)

where ¢, for multi-layer approximation means the total height of grating.
Again, ¢, = E, for TE and ¢, = H, for TM.

Next, using Maxwell’s equations to find field H, for TE or field E, for TM,
then matching boundary condition for each interface between two adjacent

layers, we obtain the final matrix

W W L W W, X
R at 4 R R:H ! 1A
ARWRZR _ARWRZR =1 AlWlZl _AlWlZle
—1
W, X W W
x o : T T, (2.62)
AW ZX, —AW/Z, ArWpZor
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where W, = [wé)m], A, = diag[1/¢,,) for TM; I for TE,Z, = diag[—3j03.,] and
X, = diag[e~3Pm(z—=a-1)],

The enhanced transmittance matrix approach mentioned in subsection
2.1.4 to make the numerical calculation stable could be used as finding R
and T. Finally, we could use definition (2.27) to find diffraction efficiencies

and plot field diagrams.
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2.3 Two-Dimensional Finite-Difference Method

For TM polarization, using the method of 1D FD with multi-layer may suf-
fer some instabilities without proper discretization. Both for comparing and
revising, we try another method, which calculates arbitrary gratings by two-
dimensional finite difference (2DFD), to simulate the same diffraction prob-
lems.

The calculating geometry is shown as Fig. 2.7. We use periodic boundary
condition on edges of periodic direction, and perfect matched layer besides

the edges of propagation direction.

PML
________ Sourceline (TF/sF)______| X
g 3
: :
& 5
g g
s 5
3 Some structures 3
2 Q9
< <
PML
Zy

Figure 2.7: Configuration of two-dimensional finite difference.

2.3.1 Discretizing Maxwell’s Equation

Consider TM polarization again. Maxwell’s equations will become

~ omH,

5 (2.63)

Jjweoer () E,
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oM,

Jweoer(2) By = =55, (2.64)
2z
and
o0FE, 0L,
wpoHy, = —— — . 2.65
JCHoHy ox 0z ( )
tHy 1)
1 ’Ex(i\j-lx'Z)
. Hy, . N
Hy'(i-lJ)l H}'(i+1J) X
| | SR
Exii12 4y Ex{i J+1/2)
$H 1)
Iy

Figure 2.8: Two-dimensional discretization.

A. Averaging permittivity

According to Fig. 2.8, above equations can be discretized into

Hygiv1,5) — Hyii )

Jweobpirt yEaivl gy = o : (2.66)
jweoey ity Baimt g = Hyi ) _Afy(i—l,j)’ (2.67)
JeotrsgeyEaiyety = _Hy(i,j+1)A; Hy(i,j)7 (2.68)
Jweoly(ij-1) Eagij—1) = M _Afy(i’j_l)a (2.69)



and

E L1 — E L1 . E . 1
. z(i+3.7) z( ) a( 2
JwpoHyGi j) = : Ar - Ao : (2.70)

After substituting (2.66), (2.67), (2.68) and (2.69) into (2.71), we obtain

1 Hy(i+1,j) 1 1 H Hy(i—lyj)
Az? | € e + € (i) T €
r(i+3.9) r(i+30) 1) r(i=g:9)
1| Hyag+) 1 1 Hygij-1)
+A22 €.0: i1 B E--1+€--1 Hy(i’j)+6~-1
r(i,j+3) r(i,j+35) 7(ij—5) OVES

+W2M060Hy(i,j) = 0(271)

where €,(; ;) are calculated by averaging the permittivities in the region of

T 1 <z <y 1 and z;_ 1 < 25 1. For simplicity and generality, I put

many points in this region, classify the regions they belong to, and calculate

the arithmetic mean of them. As in Fig. 2.9, the value of permittivity e at

position (7, j) will become

€1 N1 + €2 Ny
WP UL Ly 2.72
or sometimes
N1/€1 —+ NQ/EQ _
i) =(—N N ) g (2.73)

where €, (kK = 1,2) means the permittivity at one side of the discontinuity
and N} is the amount of points with this permittivity value.
B. Considering boundary condition [27]

Although permittivity approximated by averaging is applicable to struc-

tures with small permittivity difference, it has difficulty in accurately model-
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Figure 2.9: Method of averaging permittivity.

ing field behaviors near abrupt interfaces. Moreover, recent advancement of
nanoprocess make step-index structures practical for next-generation optical
design, indicating that a modified modeling formulation dedicated to step-
permittivity problem is required. This modification will be demonstrated by
taking account of the boundary condition, i.e. the continuity of tangential
fields E and H and normal fields D and B (in no source region).

Consider the region without sources depicted as Fig. 2.7. If there is no

discontinuity inside the mesh of point (i, ), from (2.71), we obtain

Hyit15) — 2HyG,5) + Hyi—1,)
Ax?
+Hy<z’,j+1> — 2Hyi5) + Hygij-1)
Ay?

+ CUQ/LOE()G(%'J)Hy(i’j) = 0. (274)

However, if discontinuities exist, we put the mesh points on the interfaces or
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Figure 2.10: Continuity of fields on interfaces.

corners and match boundary condition, as Fig. 2.10. Here the most compli-
cated configuration for rectangular structures, which includes four different
kinds of medium, will be used to discuss.

Consider the interface between €¢; and €;. In the homogeneous parts of

these two medium, the Helmholtz equation are

0°H, 0°H,

N 5)2Hy o 82Hy
0x? 022

0x? 022

+ (.UQILL()E[)ElHy =0 and + w2uo€0€2Hy = 0,

(2.75)

which can be discretized into

oH, _ Hyiig) — Hyi-1.5) 9H, _ Hyiig) — HyGig-1)
oz |, Az 0z |, Az

Ax/2 * Az/2

+W2,U/0€061Hy(i7j) =0 (276)
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and

OHy|  Hyuj — Hyirj)  Hyajr) — Hyay  OH,
oz |, Ax Az 0z |,

Ax/2 * Az/2

+w2u06062Hy(i,j) = 0. (2.77)

Next, because the continuity of tangential E fields (means E, here) and

normal D (means D, here), we know that

1 0H 1 0H, O0H, OH
- === and —2| = 2| . (2.78)
€1 0z |, € 0z |, o) - oz |,
Substitute (2.78) into (2.76) and (2.77) and we could obtain
2 0H, 2Hy (i) — 2Hy(i-1,5) 2 26162
= — 7 ’ HE.
Az Oz |, | A &L Aopo €1 + € i)
261 262
et o vttt T2Hy6n) + o By
=0. (2.79
+ 2 (2.79)

After doing the similar processes for the last three interfaces between e; and

€3, €3 and €4, and ¢4 and ¢, we get

2 0Hy| | 2Hyagey —2Hyay o 2663
__2 : : H.o.
Az 0z |, Az? WHoco €2+ €3 y(&.)
262 263
o vt = 2HyGg) + —— Hyio)
+2-=3 A = =0, (2.80)
2 8Hy 2Hy(i+1 j) 2}]'14(Z 7) 9 26364
__Z ) ) H,i
Axr Ox |4 Ax? +WiHoco €3+ €4 y(i-9)
2€4 2e3
ot o vty = 2HyGig) + o=~ Hyj
Late e R =0, (2.81)
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and

2 OH, 2Hy (i) — 2HyGij-1) 2 26461
il _ , ; H,i
Az 0z |, Az2 W oo €4+ €1 y(0,9)
2€ 2€
o +1€1Hy(i+1,j) — 2H (i) + o +461 Hyi-1,)
=0. (2.82
+ N (2.82)

Equations (2.79)-(2.82) are the results derived from V x H = jwD.
Finally, Faraday’s law, i.e. V x E = —jwB, will be considered and taken

surface integration on both side, which means

/VxE~ds:—jw/B-ds. (2.83)
s s

By taking Stoke’s theorem into account, we obtain

]{E-dlz —jw/B-ds. (2.84)
L S

While the area of integration approaches zero, § E-dl — 0 and we would get
1 1\ 04, 1 1Y\ 04, 1 1\ 04, 1 1Y\ 04,
—+— )| H ) = =g —| | —+— |
€1 €) Or | €2 €) 0z |, \e& €&/) Or|; \a /) Oz

(2.85)
After substituting (2.79)-(2.82) into (2.85), the Helmholtz equation will be-

come
€3 1+ €4 €3+ €4 €1 1+ €9 €1 + €2
Hyis1 ) — + Hyis + ———=Hyi1.;
Qeses y(i+1,5) (26364 2€1€2> y(ig) T 2616 y(i—1,5)
Ax?
€2 + €3 €2 + €3 €1+ €4 €1 + €4
Hyi ity — + Hyij) + ———Hy ;-
2exes y(4,5+1) (26263 26164) y(4,7) 26164 y(i,5—1)

e

Az?

+w2,u060Hy(i,j) =0. (2.86)
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2.3.2 Mesh Truncation

Sometimes it needs to solve infinite structures such as free space, periodic
structure, etc, in the electromagnetic problems. In principle, as discretizing
the infinite structure, it needs to use infinite mesh points, but it is impossible
in reality because of finite capacity of memory. Therefore, some methods have
been proposed to use finite mesh points but not deviate from the original
configuration of the problem. These techniques are called methods of mesh
truncation.

A. Periodic Boundary Condition

To calculate problems of periodic structure, it only needs to consider one
period of the structure and use periodic boundary condition. The concept of
this part has been mentioned in subsection 2.2.1.

B. Perfectly Matched Layer (PML): Graded Edition [27]

For finite-difference time-domain method (FDTD), while calculating an
infinite or semi-infinite space, basically we could use a very large region with
PEC or PMC to approach it although it will consume a lot of memory. For
finite-difference frequency-domain method (FDFD), what we find are the
steady state solutions, the electromagnetic waves are inevitable to reach the
PEC or PMC and reflect. Therefore, it will fail totally in FDFD calculation.

There are two main kinds of methods applied to simulate infinite spaces.

One is differential-based absorbing boundary (DABC), like Mur ABC, Hig-
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don ABC, Liao ABC etc. However, the reduction of reflected waves is not
optimal as these methods are used. The other one is material based ab-
sorbing boundary condition (MABC), which adding some loss terms in the
material parameter such as permittivity and permeability. Some examples
of this method are PML, UPML (Uniaxial PML), etc. Here, PML is used
in our simulation. PML, which is proposed by Bérenger [28] in 1994 and
applied on finite-difference time-domain method, is one of the most popular

method to absorb the outgoing electromagnetic waves.

PML

o

real region

TAd

TAd

PML

Figure 2.11: A real region surrounded by PML to approximate the infinite
region.

Consider the most general case which the PML surround the real region,
as in Fig. 2.11. For TM polarization (H,,E,,E,), time harmonic oscillation

e?“! and loss terms o* for permeability and o for permittivity, the Maxwell’s
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equations will become

JwpoHy, + 0y Hyy = %, (2.87)
jomoHy. +02Hy. = 2 (2.88)
jw%@Ez+aJ%=:—%g? (2.89)

and
jweoe, E. + 0, E, = %, (2.90)

where H, = H,, + H,.. Equations (2.87) and (2.90) mean the electromag-
netic waves which propagate along x-direction; (2.88) and (2.89) mean the

electromagnetic waves which propagate along z-direction. Equations (2.87)

and (2.88) could be combined to be

B> 1 OFE, 1 OFE, (2.91)
V7 jwmg+ ot 0z jwpo + o 0z '
Then discretizing (2.91), (2.89) and (2.90) to obtain
g 1 s 1 Eaugijrty = -1
y(i,5) Jewno + Ui(i,j) N Jwht + U:(i,j) Az
(2.92)
. Hy(ivrj) — HyGiy)
(Jweo€piv1 ) T Oapird ) st gy = v ]Ax y(id) (2.93)
. Hy(ig) — Hyi-1,5)
(waQET,(i_%J-) + O-x(l—%,]))Ez(z—%,]) = Ax ) (294)
. Hy(ij+1) — Hy(i)
(JWEOEW,%%) +0z(z,j+%))Ez(i,j+§) = —— Az =, (2.95)
and
. Hygij) — Hyj-)
(]WGOGT(Z‘J‘_%) + 0.1 )Em(i,j_%) — Y e y(i—1) (2.96)
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Let ptoe =1+ % and €, = €, + where @ = x or z. Next, Substitute

Jwpo
(2.93)-(2.96) into (2.92) and get

1 Hyiv15) L ooy it
Exe( y(3,7)

AI2ﬂxc(i,j) €xc(i+1/2,5) i+1/2,5) €xc(i—1/2,5) €xc(i—1/2,5)

1 Hyjry 11 oo i
€2( y(i,5)

AZ?,ch(i,j) €2c(i,j+1/2) i,5+1/2) €2c(i,j—1/2) €z2c(i,j—1/2)
+w2ﬂ0€0Hy(i7j) =0. (297)

]we ?

To avoid the reflection at the interface between actual region and PML, we

have to match impedances on both sides, i.e.

[ M po(1 + 0% /jwpio)
Zoctua —05/ , 2.98
Tl €0Er \/ (e, +0/jwep) ML ( )

o o

i (2.99)

Mo €o€r

which means

Consider the configuration as in Fig. 2.7. In this case, PMLs are only
added at upper and lower boundaries, i.e. they are only used to absorb the
outgoing waves propagating in z-direction. Therefore, o, terms do not exist
(tze = 1 and €, = 1), and (2.97) will be simpler.

To determine the coefficient 0., PMLs are cut into L layers, and o, grows

larger as being farther from the actual region. Assume the form of o, is

0.(2) = Opmas (ﬁ)M , (2.100)

where z is the distance from a point in PML to the interface between actual

region and PML, and M is the power of the function o,. To find 0,,4., use
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pre =1+ 52, €c = & + 55 and impedance matching relation, i.e. (2.99), to

consider

efjkzz _ efjww/,uo,uceoeccosaz _ e—jw\/M050€rC059(1+j5€(gi7,)Z

_ e_jw\/mcos&z % e_\/eggr cos 0o (2)2 (2101)

Y

where 0 is the angle between the incident wave and the normal of the inter-
face, and the term at left of the last part is the loss term. Therefore, the

reflection R we give at the interface after propagating a round trip of PML

will be

“2cosf, [ HO [LAZ 04,
Y BT e (2.102)

After substituting (2.100) into (2.102) and integrating it, we obtain

(M +1)InR [ee,
maxr — R 2.1
7 2LAzcosf Lo (2.103)

which combines with (2.100) and is applied to (2.97) for defining €. and ..
C. Perfectly Matched Layer : Multi-Stretched-Coordinate

Here we introduce another point of view about PML. We let the loss term
be a constant in each layer and match boundary at each interface, as Fig.
2.12. To derive the boundary condition for arbitrary higher order, assume
that the PML only acts on the wave propagating along z direction. Consider a
wave propagating toward PML but whose direction is not necessarily normal
to PML, i.e.

by(x,2) = C(x)e %2, (2.104)
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where C'(z) is the part depending on x.

PML layers real region

Figure 2.12: Configuration of multi-stretched-coordinate in PML.

In PML, loss terms will be put into permeability @ and permittivity € as
(2.87)-(2.90). By taking the impendence matching into account (like what

we did in (2.101)), i.c.

P, = C(z)e %= = C’(m)eﬁkz(lﬂgégir)z = C(z)eh=* (2.105)

where s = 14+ -2EL = 14+ 2 From the continuity of the tangential fields,

Jweoer Jwpo

we have

Yyr = PyL (2.106)
for Oth order. After differentiating (2.106) by z, we obtain

| o |
= —ihosntyn e T = sy, (2.107)

877Z}yR
0z

and combine (2.107) with (2.106) to get

i awyR _ i 81/JyL

. 2.1
sp 0z s 0z (2.108)
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After repetition of differentiation, we will know the continuity of arbitrary

high order is
i andij o i and)yL

s dzn st Oam

(2.109)

Therefore, we could use higher-order finite-difference formulation along z

direction in PML to obtain better absorption.
2.3.3 Incident Wave Source Conditions

After discretizing the fields inside the calculated region and considering peri-
odic boundary conditions and perfect matched layer, it needs to generate the
sources to interact with the structure of interest. In finite-difference time-
domain (FDTD) method, there are many methods to be used. For examples,
hard-source E and H fields, which are set up simply by assigning a desired
time function to specific components of E or H in the space lattice. Another
method is J and M current sources, which can deposit charge and generate
charge-associated fields.

Here the total-field /scattered-field (TF /SF) formulation [29] will be used
to realize a plane-wave source. It assumes that the physical total electric and

magnetic fields Eiota1 and Hiotar can be decomposed as

Etotal == Einc + Escat Htotal = Hinc + Hscata (2110)

where E;,. and Hj,. are the incident fields, assumed to be known at all

points of the space lattice. Egcat and Hgeat are the scattered fields, which
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are initially unknown.

(i-1,j-1) (i,j-1) (i+l,j-1)

- P_ML — > [ - . L[] ——
F- Source Time (TFISFI - X ‘ Region A: scacttered fields
s __h_‘__OI.II'CB ine _"____:_'_

------- ; G-Li) (L) (i+1,§)
H P . . ®  sas s
| a |
structures ey e e itk
b
. . . -
(i-1,j+1) (i, j+1) (i+1,j+1)
Region B: total fields
PML
7 wre we L] L] L] o oane
2 (i-1,§42)  (i,j+2) (i+1,j+2)

Figure 2.13: Total-field and scattered-field regions connected by a plane wave
source.

Assume the electromagnetic wave propagates along +z direction. The
calculated region is separated into two parts, one is region A, which only
includes scattered-field components; the other one is region B, which contain
both scattered-field and incident-field, i.e. total fields, as shown in Fig. 2.13.
After discretization, we could obtain the approximated wave equation like
the form of (2.71). For simplicity, as dealing with field 1),(; ;) at mesh point

x = x; and z = z;, express this form by

Ciy(ij—1) + Cotbyi—1,j) + Cs¥y(i ) + Catby(iv,j) + Csyij+1) = 0, (2.111)

where C] to Cs mean the coefficient of each mesh points after discretizing. If
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all of these points are in region A, it only needs to consider scattered fields,

(2.111) can be written as
Chabyfii_1y + Catba(ity iy 4 Catytthyy + Catpatity jy 4+ Cstlyti ) = 0. (2.112)

Similarly, if all of these points are in region B, only total fields are considered,

(2.111) can be written as

Crutat sy + Cattah  + Cligh 4 Co,  + Coutaty = 0. (2113)

Now, consider the configuration of Fig. 2.13, analyze the field 1, ;), and

obtain

Crgest ) + Cotbite®y ) + CatSeshs £ Gl 4 Copletel | — 0. (2.114)

Note that (2.114) is not consistent and correct, since it adds the unlike term

total

i) O the last part. For consistency, we must change this term by

inc

subtracting the assumed-known incident wave G g+1) which means

sca scat scat scat total inc
Cryii gy T Cotyitag) + Catyliy) + Cadyfin ) + Cs(Vyfifon — Yyiisen) =0,
(2.115)
where ;’(ijH) = exp(—jk.x;)exp(—jk.(b)) for the assumption of plane wave

incidence. Then we move the term @D;”C to right side and obtain

(i,5+1)

Ot ay + Ol + CoUitsy + Oubifta + Cotiiny = Oty

(2.116)

46



The similar way could be used for every points adjacent to the source
line. And we could construct the sparse matrix M for every field points with
a vector describing source terms S, which means MW = S. Finally, the field

distribution could be found.

2.3.4 Calculating Diffraction Efficiencies

After finding the distribution of the field, i.e. the value of field at each points,
we could use the definition (2.27) and (2.28) to find diffraction efficiency, and
all we have to calculate first is R; and 7;.

To find these terms, first we need to know a row of field distribution (in
reflection region) without grating structure, and define this distribution as
incidence. Next, put the grating structure into calculation, take the same
row of field distribution and subtract the field distribution found in first step.
Then we will obtain reflection field ¥z (z) distributing in x direction and at
a position of z. Also, we take a row of field in transmittance region to be

transmittance field ¢r(z). Finally, use Fourier expansion

Yr(x) = Z Rie kit eiiizn = Z R;ehait (2.117)
where 2y is the fixed z coordinate we take and R} = R;e’ kfizR, to find Fourier
coefficients

* I —jkzix 1 —Jkei®
R =+ 0 Un(w)e e Tdn ~ > eIk p(a,) A, (2.118)
P
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and obtain R; = Rre 7*i*r_ Using definition (2.27) to find the incident,
reflective and transmitted power along direction z, then the diffraction effi-

ciency of each order will be found.
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Chapter 3

Numerical Results and
Discussions

3.1 Numerical Verification of FDMM

Here the method of finite difference modal method (FDMM) with interface
conditions and multi-layer approximation will be tested and verified by com-
paring the results with some papers. It will be applied to simulate variation
of diffraction efficiencies with changes of incident angle and thickness of grat-
ing layer and verify that the usability of FDMM. For completeness, the lines
with colors of light blue, pink, dark blue and green lines or shapes of cir-
cle, cross, diamond and triangle are calculated from three-, five-, seven-,
and nine-point formulation of FDMM and their generalized Douglas (GD)

scheme. Also, results of RCWA will be considered.
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3.1.1 Incident Angle Variation

First, we compare our results with the Fig.8 in the paper of Sheng et al. [30].
Consider the geometry depicted in Fig. 2.2 with the following parameters:
f =034, A = 1000nm, X = 647.1nm, t, = 60nm, € inc = €rg2 = 1,
Ertra = Ergl = —17.42 — 0.581.

In Fig. 3.1 which is the result of the paper, the calculated method they
used could be categorized into modal method. And Fig. 3.2 presents the re-
sults of RCWA and FDMM. It could be seen that these methods are agreed
with each other and experimental results. The dips of zeroth-order reflectiv-
ity in Fig. 3.1 and Fig. 3.1 correspond to the excitation of surface plasmon
at the matching condition

2
koc = w(ko Sineztn%), (3.1)

where ¢ is the light speed, 6 is the incident angle and w(k) is the surface-
plasmon dispersion relation. The reflectivity minima at = 14°, 25° and 60°
correspond to n = —1,1 and 2 respectively. At these dips, surface plasma
are induced and cause very large fields at interface. And these fields will
increase the loss in the lossy metal. This phenomenon could be seen by the
fields diagram of Fig. 3.3 and Fig. 3.4. In Fig. 3.3, the surface plasma are
not excited. However, in Fig. 3.4, the surface plasma appear as function of
sine and cosine and cause larger field intensity around grating layer than Fig.

3.3. In each figure, the results on the left side mean using RCWA to solve,
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and on the left side mean using RCWA.

H polarization

1.0 _

0.8

0.6

Reflectivity

0.4

------ Total reflectivity
Calculated Oth order reflectivity

021 P *  Measured Oth order reflectivity
~
0 1 1 i i ] i —
10 20 30 40 50 60 70

6 ; (DEGREES)

Figure 3.1: Fig.8 in the paper of Sheng et al. [30]. The zeroth-order reflection
with respect to the incident angle.
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Figure 3.2: Incident angle dependence of the zeroth-order reflection for lossy
metal with TM polarization (compared with Fig. 3.1).
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field diagram, RCWA, 0 degree
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Figure 3.3: Field diagram of Fig. 3.2 at incident angle § = 0° (Left: RCWA,

Right: FDMM).
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Figure 3.4: Field diagram of Fig. 3.2 at incident angle § = 15° (Left: RCWA,

Right: FDMM).

Next, consider triangular profile dielectric grating with TE incidence.

Here we compare our results with Pai and Awada [25], who introduced matri-

ces for layer transmission and interface reflection and transmission to derive

solution for RCWA in terms of a multiple-reflection series, as Fig. 3.5.
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Figure 3.5: Fig.9 in the paper of Pai and Awada [25]. Transmittance with
respect to the incident angle.
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Figure 3.6: Incident angle dependence of the zeroth- and first-order trans-
mittance for the dielectric triangular grating under TE incidence (comparing
with Fig. 3.5).

And we use enhanced transmittance matrix approach proposed by Mo-

haram et al. in both RCWA and FDMM, as Fig. 3.6. The parameter used
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are A = 1000nm, €, 41 = €, = 3 and cutting into 6 layers, and the structure

is like the left figure in Fig. 3.5. The results are agreeable to each other.
3.1.2 Thickness Variation

Comparing results of our methods with Fig.6 of paper of Sheng et al. [30]. In
Fig. 3.7 and 3.8, the normally incident light is assumed to be A = 700nm, and
the gratings have the parameters A = 1050, f = 0.5, g, 4 = —23.4 — 0.387:
and €, 4y = —42.6 — 17.021.

It could be seen that Ag gratings acts as a nearly perfect conducting grat-
ings with quite little absorption and Al gratings show significant absorption
with increase depth. This statement could be understood more clearly by
plotting absorption as a function of depth, as Fig. 3.9 and Fig. 3.10. In
addition, there are some instabilities which could be found in Fig. 3.10 as
using RCWA to simulate the grating with Ag material, and such problem
of RCWA for highly conductive materials has been discovered by Popov et
al. and discussed during these years. This phenomenon will be seen more

obviously in the case of next subsection.
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Figure 3.7: Fig.6 of paper of Sheng et al. [30]. The first-order reflection of
Al and Ag gratings with respect to the thickness.
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Figure 3.8: Thickness dependence of first-order reflection for Al and Ag
gratings under TM incidence (compared with Fig. 3.7).
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Figure 3.9: Fig.6 of paper of Sheng et al. [30]. The absorption of Al and Ag
gratings with respect to the thickness.
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Figure 3.10: Thickness dependence of absorption of Al and Ag gratings under
TM incidence (compared with Fig. 3.9).
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3.1.3 Duty Cycle Variation: Removing the Instability

The RCWA is known to suffer from numerical instabilities when applied to
low-loss metallic gratings under TM incidence. There were many methods
proposed to deal with it, as the mention in chapter 1. Here we compare
FDMM with RCWA without using mode-filtering mentioned in the paper
of Lyndin et al. [19]. The values of the parameters are the same as Fig. 1
of [19]. The binary grating period A and depth ¢, are 500nm, the wavelength
A is 632.8nm, and the incident angle 6 is 30°. The result of Lyndin’s paper
is shown in Fig. 3.11 , and the results of FDMM are shown in Fig. 3.12. We
could see that by using appropriate method of cutting grip points, FDMM
would be more stable then RCWA under certain condition.

10-

0.8

06 —

0.4 <

Minus first order

02

1

T 1
100 200 200 400
Groove width, nm

Figure 3.11: Fig.1 of paper of Lyndin et al. [19]. The minus-first-order re-
flection with respect to groove width.

o7



Duty Cycle Variation

1 T T T T T B
0ol TM, lossless metals ‘
Bk IncAng=30 degree, wavelen= 632.8 nm, ;!
0.8l grating period= depth= 500 nm, N=140 y
eps =-10i,eps =1, 4
gl 2 ’ 4
0.7H p=q, ratio-distributing P _ I
// -‘-,
0.6 ! :. -
[ §
o ]
' 05 & FD 3pts n
' r 4 1 FD 3pts with GD
0.4 //// ) —*—FD 5pts 7
i y 4 ] —* ~FD 5pts with GD
V4 [ o 1
H P ' =+ —FD 7pts with GD
0.2 ;'_ //“// ] FD 9pts b
o1 -.‘-if ////’ & FD 9pts with GD B
o r;”\‘""/’fﬂ/ | | | | I:: | | |
50 100 150 200 250 300 350 400 450

groove width (nm)

Figure 3.12: Groove width dependence of minus-first-order reflection (com-
paring with Fig. 3.11).

3.2 Analysis of Accuracy and Convergence

After comparing FDMM and RCWA with some paper’s results and verifying
the usability of FDMM proposed in this thesis, the accuracy and convergence
properties of the eigenvalues and diffraction efficiencies of FDMM are going
to be tested more detailedly for every kinds of materials and polarizations
of planar waves in the following two sections. The reason of separating
discussions into accuracy and convergence is that analytical solutions, which
could be solved by modal methods, do not be used as the standard values.

The 3 values, which means the square of eigenvalues, are the propagation
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constants of eigenmodes. The convergence of ( is described by using the

relative error defined as

BN — Bfinal

. (3.2)

Relative error of 3 = Bepror = ‘

where [y is calculated from the eigenproblem with N grids for FDMM or
N retained orders for RCWA, and Bfjnq is the value with the maximum
N in that calculation. Besides, the error of diffraction efficiencies (DE) is
described by

Relative error of DE = |DEyx — DEfinal , (3.3)

where the suffixes of DE have the same meaning as mentioned above.

In the figures of following two sections, (3.,.., of fundamental mode and
DE.,,,.. with respect to number N will be used to compare convergence by
using double-log diagrams and semi-log diagrams, and f,,.. of fundamental
mode and DFE,,.,, with respect to number N will be used to compare accu-
racy. As in section 3.1, the three-, five-, seven-, and nine-point formulation
of FDMM and their GD scheme are all taken into account. The light blue,
pink, dark blue and green lines represent three-, five-, seven-, and nine-point

formulation, respectively.
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3.3 FDMM for TE polarization

3.3.1 Rectangular-Groove Gratings

A. Dielectric

A dielectric rectangular-groove grating is considered here, and its param-
eters are: €,ine = €rg2 = 1, Erg1 = Ertra = 32, f = 0.45, A = 1000nm,
A = 1000nm, t, = 1000nm and 0;,. = 15°. The grid’s number is taken from
20 to 380 by uniform discretization. The accuracy and convergence prop-
erties of B and the zeroth-order reflection are shown in Fig. 3.13 and Fig.
3.14.

[ value of five-point FDMM without GD and even higher order FDMM
are more accurate than RCWA after 30 sampled points and converge faster
than RCWA. In addition, the limitation of accuracy of nine-point FDMM
appears around 70 grid’s number, and it is explained by round-off error which
is due to finite digits of the floating points numbers in computers. The
diffraction efficiency of three-point FDMM with GD becomes closer to the
final solution than RCWA after 70 sampled points. The five-point with GD
and more higher order FDMM could get even better convergence, but these
methods will be on the same degree of accuracy after 50 sampled points.
B. Lossless metal

A lossless metallic grating is tested by using the same parameters as the

case in Fig. 3.13 and Fig. 3.14 except that changing £, and &, into (—104)?.
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The accuracy and convergence properties of 3 and the zeroth-order reflection
are shown in Fig. 3.15 and Fig. 3.16. In these two figures, it could be found
that g value of three-point FDMM with GD and even higher order FDMM
are more accurate than RCWA after 40 sampled points, and the diffraction
efficiency of three-point FDMM with GD becomes closer to the final solution
than RCWA after 40 sampled points. Being different from the case of Fig.
3.13 and Fig. 3.14, convergence lines of DE.,,,,,. for even higher order would
separate more obviously, and nine-point FDMM without GD and even higher
order one could get the best convergence.
C. Lossy metal

The lossy metallic grating is simulated by changing the parameter €4
and &,, above to (3.18 — 4.417)?. Results of this case are shown in Fig. 3.17
and Fig. 3.18. Although accuracy of § of five-point FDMM without GD
and three-point FDMM with GD is worse than RCWA in this range of grid’s
number, accuracy of DFE,,,., of them is still better than RCWA. There is no
obvious relation between convergence of (3., and that of DE,,.,,.

Generally speaking, for TE polarization and uniform discretization, three-
point FDMM and even higher order FDMM could be more correct than
RCWA under an equal N. By the way, being different from RCWA, whose
matrices of eigenproblems is full matrices, the sparse matrices are solved in

the eigenproblems for FDMM, and this might reduce the computation time.
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D. Lossy metal with high conductivity

Here we consider lossy metals with very high conductivity. Lalanne and
Hugonin [22] set the specific parameters to study the robustness of numer-
ical methods. Under such condition, the convergence of RCWA is getting
quite worse for both TE and TM polarization. Here the same parameters
are taken into account for TE polarization by FDMM, and proper nonuni-
form discretization with increasing resolution around discontinuities will be
adopted. The parameters used are: €;,. = €g0 = 1, €51 = €50 = (1 — 400)?,
f =057, A =1236.1nm, XA = 1000nm, t, = 0.4A and 6;,. = arcsin(\/2/A).
The grid’s number is taken from 20 to 550. The results are shown in Fig.
3.19 and Fig. 3.20. In this case, even three-point FDMM without GD is
better than RCWA.

Now it could be manifested that FDMM with considering boundary con-
dition and arbitrary high order approximation would be better than RCWA
in convergence and accuracy under the TE incidence with planar gratings.
In the next subsection, arbitrary structure of gratings with multi-layer ap-

proximation will be tested.
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3.3.2 Arbitrary Profiles Gratings

Here the gratings with triangular profile is used to comparing accuracy and
convergence of FDMM with RCWA. The parameters and profile are illus-
trated in Fig. 3.21. In the following figures, the parameters of grating’s
profile are: ¢, = 1000nm, A = 1000nm, 60 = arctan(2t,/A), number of
layers=15 and &, jnc = €42 = 1. And the results of dielectric, lossy metallic
and lossless metallic gratings under both TE and TM polarization are going

to be shown.

grating layer

Figure 3.21: Configuration of triangular gratings.

A. Dielectric

For a dielectric grating with €, 41 = &, 44 = 3% under TE polarization,
results of accuracy and convergence are shown in Fig. 3.23. It is found that
three-point formulation with GD and even higher order methods converge as

fast as RCWA at first, and will be closer to the final value than RCWA at
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large grid’s number, but the advantages of FDMM here are not obvious in
this case. However, if the revised discretization method making the distances
between discontinuities and their adjacent grid points on both sides of them
equal is used as in Fig. 3.22, the results would become more stable, and the

W W g

Ax, =W, /N, DX =W /N,

real structure

i .
Vi S

‘é L S u R = = - -
2Ax, discretization 2A0x

Figure 3.22: Revised discretization for multi-layer approximation.

effect of higher order methods becomes obvious, as in Fig. 3.24. This proper
discretization is more important for TM polarization.
B. Lossless metal

A lossless metal grating with ¢, ,1 = &4 = (—10i)* and proper dis-
cretization as in Fig. 3.22 is considered, and its results are shown in Fig.
3.25. It is found that five-point FDMM is on the same degree of accuracy of

RCWA, and the convergence of three-points and even higher order formula-
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tions are better than RCWA.
C. Lossy metal

A lossy metallic grating with &, 51 = €400 = (3.18 — 4.41¢)? and proper
discretization is tested, and its results are shown in Fig. 3.26. The three-
point FDMM with GD and even higher order methods are superior to RCWA

obviously.
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3.4 FDMM for TM polarization

3.4.1 Rectangular-Groove Gratings

In this subsection accuracy and convergence are investigated again with the
same parameters as those in preceding section except for TM polarization.
Note that here the method of discretization in each layer is distributing grid
points according to the ratio of width of each region inside that layer. This
process could avoid too large difference of distances from sample points to
discontinuities between points on each side of discontinuities and will be
discussed in the last part of this subsection.
A. Dielectric

Consider a dielectric grating with €51 = €4 = (3)?, and the results are
shown in Fig. 3.27 and Fig. 3.28. It could be found that although the
propagation constants (8 of five-point FDMM without GD and methods with
even higher order converge faster than RCWA, the convergence of diffraction
efficiencies of FDMM are slower than RCWA, and the results of every FDMM
are on the same degree of accuracy except for three-point FDMM.
B. Lossless metal

A lossless grating with e, = &4, = (—10i)? is tested, and the results is
shown in Fig. 3.29 and Fig. 3.30. In this case, RCWA’s results are quite
unstable and do not converge to a satisfying degree of accuracy. However,

such kind of situation will not happen in FDMM. Therefore, although not
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all convergence lines of 3 of FDMM converge faster than that of RCWA, the
convergence of diffraction efficiencies of FDMM is superior to RCWA even
for three-point FDMM without GD.
C. Lossy metal 1

A lossy metallic grating with 51 = &4, = (3.18 — 4.414)? is considered.
Like dielectric gratings with TM polarization, the diffraction efficiencies of
FDMM converge slower than RCWA. The results are shown in Fig. 3.31 and
Fig. 3.32.
D. Lossy metal 11

If the parameter g4 of lossy gratings is replaced by highly conductive
one, FDMM will become superior to RCWA. To verify this statement, con-
sider a lossy metallic grating with e, = €4 = (0.22 — 6.714)? which is the
permittivity of gold at A = 1000nm, and the results are shown in Fig. 3.33
and Fig. 3.34.
E. Lossy metal with high conductivity

Finally, we test FDMM in an even higher conductive grating with €4, =
€tra = (1—40i)2. The results are shown in Fig. 3.35 and Fig. 3.36. Although
the results of FDMM will be more correct than RCWA until exceeding 200
grid’s number, FDMM can still be seen as a better choice than RCWA be-
cause the result of RCWA converges quite slowly in this case. Note that the

FDMM inside each layer can not be taken non-uniform discretization under
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Figure 3.34: Convergence of the zeroth-order reflection. A lossy grating with
eq = (022 — 6.717)? under TM incidence. Grids are distributed by ratio of

width.
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Figure 3.36: Convergence of the zeroth-order reflection. A highly conductive
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At the beginning of this subsection, we noted a proper way for TM po-
larization to dicretize. It is found that the ratio of distance between dis-
continuities and their adjacent grid points affect the convergence properties,
especially for the convergence of diffraction efficiencies. This problem may be
due to ignoring some boundary conditions while constructing the sparse ma-
trix and solving eigen-problem in each layer. And this omission will cause the
contradiction of continuity of fields as matching boundary condition between

every layers.

TM polarization (H, ,E, ,E, )

------ x x x x ses ses

1o, l(?HJ.

Es g 0z "™ g Oz

1 OH, | 0H, X
£, Oz gp Oz
L R
------ x x x x sss sms
Z

Figure 3.37: Continuity of E, fields for TM polarization.

As in Fig. 3.37, while matching boundary of tangential field E, for TM

polarization, the fields %% are continuous at the interface between the upper

and the lower layer. But, inside the lower layer of Fig. 3.37, the field i%

on the left side and é 8811 Y on the right side are not continuous at the vertical
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1 0Hy

interface. Therefore, it causes the contradiction of continuity of fields =

at the vertical interface in the lower layer of Fig. 3.37. In addition, while
constructing the sparse matrix for TM polarization in FDMM, the boundary

condition of the fields %88}2 Y or the boundary condition of fields E, is not

considered, and what we considered are only tangential fields H, and E,.
This effect of contradiction does not happen in TE polarization because the
fields aa% (which means B,) used in matching boundary condition between
every layers are always continuous at the vertical interface of Fig. 3.37.

As using nonuniform discretization to increasing the spatial resolution
near the interfaces for TM polarization, or distributing grid points without
considering the ratio of width of each different region inside one layer, such
kind of contradiction may impact the stability and the convergence more
drastically. Hence, this is my speculation on the failure of FDMM under TM
polarization for nonuniform discretization and the dependance on the ratio
of distances between the interface and its adjacent grid points. In addition,
the similar problem of continuity at corners has been discussed by Chiou et
al. [31].

However, this problem does not happen in FMM (or RCWA) as well, even

oH, . .
eia—zy combined with

for TM polarization. It could be explained by using
(2.7) and (2.20) to get
1 OHG | o
SEE =SS (Bl - g e P (34)
p m
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for a specific order. The boundary conditions of fields at the interfaces are
matched by use of the same Fourier order terms in FMM (or RCWA). And it
could be found in (3.4) that this field of the specific order is continuous at the
vertical interface of Fig. 3.37 naturally because the x-dependance of the fields

21T

is a continuous function e~7*+i# Therefore, this is my speculation on why
RCWA does not have such contradictory problem. Although RCWA does
not suffer from the problem of contradiction of field’s continuity as matching
boundary condition between every adjacent layers, it has difficulty in effec-
tively describing structures with abrupt and large change in permittivity by
Fourier bases because such bases are continuous functions.

In a word, the difficulty of FMM (or RCWA) is inside one layer to de-
scribe the abrupt change material by continuous functions, and the problem

of FDMM is contradiction of continuity of fields as matching boundary con-

dition around corners.
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3.4.2 Arbitrary Profiles Gratings

A. Dielectric

From preceding subsection, it has been known that one needs to use
proper discretization to avoid the instabilities for TM polarization. How-
ever, as the gratings cut into many layer for approximating arbitrary shape
of gratings, such proper discretization for every interfaces would be achieved
more difficultly. But if the proper discretization is not considered, the serious
problem of instability will occur, as in Fig. 3.38, which shows transmittance
for TM case with respect to the grid’s number for uniform grids. The pa-
rameters of the grating’s structure are: t, = 1000nm, A = 1000nm, O, =
arctan(2t,/A), number of layers=15 €, 4,0 = €,51 = 3% and &, ipc = €192 = 1.
The results of FDMM in Fig. 3.38 are inferior to that of RCWA and suffer
from obvious instabilities. And these instabilities could be avoided by plac-
ing grid points as in Fig. 3.22. After using such proper discretization, the
results will become quite stable, as in Fig. 3.39.

Although convergence of FDMM is a little worse than that of RCWA in
Fig. 3.39, the results of FDMM is correct and stable. Therefore, it could be
expected that results of FDMM become better than RCWA as simulating
structures that RCWA will suffer from instabilities or slower convergence.
B. Lossless metal

A lossless metal grating with €, 1 = €470 = (—10@')2 is considered, and its
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results are shown in Fig. 3.40. In this case, results of RCWA are very unstable
and incorrect. However, the results of FDMM with proper discretization
could avoid such instability and failure. Notice that three-point FDMM
without GD is superior to other higher order FDMM unexpectedly.
C. Lossy metal

Finally, a lossy metal grating with &, = &4 = (3.18 — 4.414)? is
tested. Fig. 3.41 shows that the results of FDMM converge faster than that
of RCWA even for three-point formulation without GD. Note that this is
different from the result of FDMM for rectangular-groove grating with the
same €, 41 and &, 4q, which shows that all of the formulations of FDMM are

inferior to RCWA.

83



accuracy convergence (semi-log)
z T T

| | TN AN

FD Spts

FD 3pts with GD
—*—FD Spts
— —FD Spts with GD
—+—FD 7pts
— & —FD 7pts with GD
FD Spts
FD 9pts with GD
ROWA

error

0.235

I &
() 100 150 200 250 300 350 400 450 500 5SSO ()

A A\ " ]

TM, diglectric TS

incident angle=15, wavelen=1000 nm,
{ wg=1000 nm, tg=1000 nm,
gratlr?g tilted angle:atar‘l(z), nim:=ng2=1, ngll=nn_a=3

400 500 600

0.225 il |

o215 Il f !
i I

Figure 3.38: Convergence of the zeroth-order transmittance. A dielectric
triangular grating with ,; = 3* under TM incidence.
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Figure 3.39: Convergence of the zeroth-order transmittance with proper dis-
cretization. A dielectric triangular grating with £,; = 3% under TM incidence.
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TM incidence.
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3.5 Numerical Verification of 2DFD

Another method to solve the problem of RCWA for highly conductive and
lossless metallic gratings under TM polarization is using two-dimensional
finite difference (2DFD) to solve scattering problems directly. By comparing
the duty cycle variation of graded-index 2DFD with RCWA and FDMM,
it could be found that the graded-index approximation is appropriate for
small index difference. Fig. 3.42 shows the duty cycle dependence of the
minus-first order reflection, and the its parameters are: €, = €r420 = 1,
Ergl = Ertra = 32, f from 0.98 $0 0.08, A = 500nm, A = 632.8nm, t, = 500nm
and 0;,. = 30°. There is a little deviation from the results of RCWA and

FDMM because the index difference between 3 and 1 is not really small.

Duty Cycle Variation
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FDMM 3pts TM, wavelen = 632.8 nm, incident angle = 30 degree
FDMM 3pts with GD wg=500nm,tg=500nm,nr=ng2=1,ngl=nt=3,
——FDMM Spts
0.2 | =% —FDMM Spts with GD RCWA: 61 total retained orders |
+— FDMM 7pts FDMM: 61 grids points
RCWA 2DFD with averaging permittivity,
Nx = 160, Ngy = 160, Na=25 wi;!.‘ PML: M=3.5, R=1e-6
2DFD, 1A, graded-PRL A
0.15- f('
kA 4
o h
0.1 i
JJ)“\‘ /A
o \mf
¥ W
0.05 - ’{', —
7 .
o el
W o
P g =
oplumpue®™ | ™ ) L L ! all | | |
50 100 150 200 250 300 350 400 450

groove width (nm)

Figure 3.42: Duty cycle variation of the minus-first-order reflection. A di-
electric grating with ;1 = 3% under TM incidence. 2DFD with averaging
permittivity is used.
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However, for large index difference and nearly abrupt interfaces, the
graded-index approximation has difficulty in accurately modeling the field
behaviors. As in Fig. 3.43, which has the same parameters as in Fig. 3.12, it
is found that the line of graded-index 2DFD deviates from the appropriated

results but does not suffer large instability like RCWA.
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Figure 3.43: Duty cycle variation of the minus-first-order reflection. A loss-
less metallic grating with e,; = (—10i)?> under TM incidence. 2DFD with
averaging permittivity is used.

For the structure with abrupt interfaces or large index difference, it is
better to consider the interface conditions in 2DFD, and this method is
demonstrated in section 2.3. Using step-index 2DFD method to approach
the same problem as Fig. 3.43, the results are shown in Fig. 3.44. It is found

that the result of step-index 2DFD matches the results of FDMM well and

does not suffer any instabilities.
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Figure 3.44: Duty cycle variation of the minus-first-order reflection. A loss-
less metallic grating with £,; = (—104)? under TM incidence. 2DFD with
considering boundary condition is used.

The fields diagrams obtained from four methods which have been pre-
sented in the thesis are shown in Fig. 3.45-Fig. 3.48. Fig. 3.45 and Fig.
3.46 have the same parameters as Fig. 3.44 with 302nm groove width. And
Fig. 3.47 and Fig. 3.48 are the results for 250nm groove width. In Fig.
3.45 and Fig. 3.47, it is found that the fields calculated by RCWA do not
vanish totally inside the lossless metallic gratings. This phenomenon may be
explained by the spurious modes mentioned by Lyndin et al. [19] that the

spurious mode resonance causes the field enhancement in the grating region.
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Figure 3.45: Field diagram of Fig. 3.12 at groove width= 302nm (Left:
RCWA, Right: FDMM)
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Figure 3.46: Field diagram of Fig. 3.12 at groove width= 302nm (Left:
Graded-index 2DFD, Right: Step-index 2DFD)
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Figure 3.47: Field diagram of Fig. 3.12 at groove width= 250nm (Left:
RCWA, Right: FDMM)

Field Diagram, Graded-index 2DFD Field Diagram, Step-index 2DFD

1500 2000

1000 1500

500 1 1oo0

0 - . . : 500
100 200 300 400 100 200 300 400

Figure 3.48: Field diagram of Fig. 3.12 at groove width= 250nm (Left:
Graded-index 2DFD, Right: Step-index 2DFD)
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Chapter 4

Conclusion

The arbitrary-order finite-difference modal method (FDMM) with step-index
formulation for the analysis of gratings with one-dimensional periodicity has
been presented. The correctness of FDMM is testified by comparing with
some papers, and the accuracy and convergence of this method were com-
pared with the Fourier modal method (FMM), also named rigorous coupled-
wave analysis (RCWA). It is found that the accuracy of three-point FDMM
with generalized Douglas scheme and even higher order methods are better
than FMM for TE polarization in almost all cases. In addition, using nonuni-
form discretization with increased resolution near the discontinuities could
accelerate the convergence. For TM polarization, the accuracy of FDMM
could be superior to FMM for high conductive and lossless metallic grat-
ings, and even for usual lossy metallic gratings as simulating gratings with
arbitrary profiles by multi-layer approximation.

However, numerical results of rectangular-groove gratings indicates that
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a proper discretization for FDMM is important under TM incidence. This
problem may be attributed to the corners existing in calculated configura-
tion and could be explained by disregard of some boundary conditions of the
fields normal to the vertical interfaces as constructing the sparse matrix of
each layer which causes contradiction of continuity of the fields tangential
to horizontal interfaces as matching boundary conditions between every lay-
ers. Therefore, for arbitrary profile gratings under TM incidence, a proper
discretization might be achieved by making the distances between disconti-
nuities and their adjacent grid points on both sides of them equal, and the
results will avoid instabilities and converge to the correct answer smoothly.
Moreover, this technique could also be used for TE polarization to make
results more stable.

Besides using FDMM to solve the serious problem of FMM as simu-
lating lossless metallic gratings for TM polarization, the two-dimensional
finite-difference methods of both graded-index and step-index formulation
are presented and shown that the results are correct and stable, especially

for step-index formulation.
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