
國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

PARSEC 與 SPLASH-2 之工作特性分析

Workload Characterization of PARSEC and SPLASH-2

林怡賢

I-Hsien Lin

指導教授：楊佳玲 博士

Advisor: Chia-Lin Yang, Ph.D.

 中華民國 99 年 7 月

July, 2010

摘要

在這篇論文中，我們首先試著去分析PARSEC與SPLASH-2這兩個常用的評

測基準程式(benchmark suite)之工作特性。每個工作量(workload)都會在各種不同

的模擬機器配置下進行實驗來研究他們多樣化的特性。此外，我們也試著啟動一

個軟體預取機制(software prefetching scheme)來評估對這些不同工作量所造成的

影響。根據這些實驗，我們發現到當執行這些工作量時，在互連網路上常常會有

大量對共享資料做讀取動作的傳輸。

針對平行程式中大量的共享資料讀取失誤，我們提出一個稱為Snooping

Fetch (SF)的方法。這個方法藉由系統中固有的快取一致性協定(cache coherence

protocol)以及監聽協定(snooping protocol)所廣播的資訊來試著減少這些共享資料

的讀取失誤。我們可以利用這個廣播的特性，在一筆資料真正要被使用之前先把

資料讀進快取記憶體中以隱藏讀取時的延遲。在我們的實驗中，這個方法針對減

少L1快取記憶體失誤量的部分可以得到平均8%的可能性，而在L1快取失誤率的

減少量約有平均0.5%的可能性，以及平均0.4%的效能加速可能性。

關鍵字：PARSEC、SPLASH-2、評測基準程式、工作特性分析、預取、隱藏資

料存取延遲

Abstract

In this thesis, we first characterize two popular benchmark suites, PAR-

SEC and SPLASH-2. Different configurations of the simulated machine are

set for each workload in the suites to study their diverse properties. Besides,

we also try to evaluate the influence of different workloads when enabling a

software prefetching scheme. Based on the experiments, we find that there

is plenty of shared read traffic on the interconnection in these workloads.

To reduce these shared read misses, a policy, called Snooping Fetch (SF),

is proposed for the shared data in parallelized applications, which takes ad-

vantage of the inherent cache coherence protocol and the broadcasting infor-

mation from the snooping protocol. The SF policy utilizes the broadcasting

property to fetch shared data before the data is actually needed. In our ex-

periments, the SF policy provides a reduction potential of 8% in average in

the amounts of L1 cache misses, a reduction potential of 0.5% in average in

the L1 cache miss rate, and a potential of 0.4% speedup in average.

Keywords — PARSEC, SPLASH-2, benchmark suite, workload char-

acterization, prefetch, data access latency hiding

i

Contents

Abstract i

1 Introduction 1

2 Workloads 4

2.1 PARSEC Suite . 4

2.2 SPLASH-2 Suite . 7

3 Simulation Setup 9

4 Workload Characterization 12

4.1 L1 Cache Size . 13

4.2 Cache Line Size . 14

4.3 Sharing Degree . 17

4.4 Traffic Breakdown . 21

5 Snooping Fetch 24

6 Evaluation of SF Policy 28

6.1 Traffic Breakdown Comparison 29

6.2 Number of Cores . 32

ii

6.2.1 L1 Cache Miss Rate 32

6.2.2 Performance . 34

6.3 L1 Cache Size . 35

6.3.1 L1 Cache Miss Rate 35

6.3.2 Performance . 37

7 Related Work 39

7.1 Workload Characterization . 39

7.2 Hiding Data Access Latency 40

8 Conclusions 43

Bibliography 45

iii

List of Figures

4.1 L1 Cache Miss Rate of PARSEC Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled;

p for prefetching enabled) in Different Cache Size 14

4.2 L1 Cache Miss Rate of SPLASH-2 Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled;

p for prefetching enabled) in Different Cache Size 15

4.3 L1 Cache Miss Rate of PARSEC Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled;

p for prefetching enabled) in Different Line Size 16

4.4 L1 Cache Miss Rate of SPLASH-2 Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled;

p for prefetching enabled) in Different Line Size 16

4.5 Sharing Degree of PARSEC Benchmark Suite with Different

Line Size . 18

4.6 Sharing Degree of SPLASH-2 Benchmark Suite with Different

Line Size . 18

4.7 Sharing Degree of PARSEC Benchmark Suite in a Constrained

Cache Capacity with Different Line Size 19

iv

4.8 Sharing Degree of SPLASH-2 Benchmark Suite in a Constrained

Cache Capacity with Different Line Size 19

4.9 Traffic Breakdown of PARSEC Benchmark Suite with Differ-

ent Number of Cores . 22

4.10 Traffic Breakdown of SPLASH-2 Benchmark Suite with Dif-

ferent Number of Cores . 22

5.1 An Example of Original Policy 26

5.2 An Example of SF Policy . 26

6.1 Traffic Breakdown between Baseline Policy and SF Policy in

Different Number of Cores (PART1) 31

6.2 Traffic Breakdown between Baseline Policy and SF Policy in

Different Number of Cores (PART2) 32

6.3 L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Number of Cores (PART1) 33

6.4 L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Number of Cores (PART2) 34

6.5 The Speedup of SF Policy with Different Core Number 35

6.6 L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Cache Size (PART1) 36

6.7 L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Cache Size (PART2) 37

6.8 The Speedup of SF Policy with Different Cache Size 38

v

List of Tables

3.1 Simulation Setup . 10

3.2 Input Set of PARSEC and SPLASH-2 suites 11

vi

Chapter 1

Introduction

When designing an efficient system or doing computer architecture re-

search, benchmark as a standard for quantitative evaluation is vital. Many

benchmark suites are released to provide different requirements of applica-

tions. For the resent years, more and more processors are put into one ma-

chine for the growth of computation power and the reduction of power con-

sumption. Applications that require additional processing power will need

to be parallelized. The behaviour of parallel programs is greatly different

from the earlier serial applications. Therefore, it is significant to have several

parallel applications as benchmarks when studying and designing such kind

of systems. PARSEC[2][3] and SPLASH-2[18] benchmark suites release lots

of parallel applications for the multiprocessor system. They are widely used

for the verification of new ideas and the tradeoffs in the system. SPLASH-2

suite focuses on High-Performance Computing for shared-address-space mul-

tiprocessors; PARSEC suite provides a wide range of applications for the

studies of Chip-Multiprocessors (CMPs). To better understand these two

1

suites, we try to characterize the workloads belong to them. In this work, we

concentrate on the L1 cache configurations for all the workloads. Besides,

we also want to observe the influence of prefetching. A software prefetching

policy is applied to compare the difference of cache miss rate. Moreover,

since these workloads are all multi-threaded programs, the interaction be-

tween different threads is a major issue. We evaluate the number of sharers

and the amount of messages which are placed on the interconnection to get a

detailed information of the workloads in the PARSEC and SPLASH-2 suites.

Based on the observation about the characterization of these workloads,

we find that there is around 22% to 32% shared read traffic over the total

amount of the interconnection traffic. It also implies that there are lots of

shared read misses. To reduce these shared read misses, we then propose

Snooping Fetch (SF), a policy attempts to utilize the coherence state and

the broadcasting information on the interconnection to fetch data in advance

without demanding extra bandwidth. In a snooping protocol, all the requests

and data are broadcast on the interconnection. When the processor snoops

the interconnection, the shared data is likely to be seen before the data is

actually needed. If we can fetch the data in advance, the following request

for this data will become a cache hit instead of a cache miss. Therefore,

the number of misses can be decreased. Besides, the activity of fetching the

shared data on the interconnection does not incur any extra transmissions, so

there is no bandwidth overhead. The inherent coherence protocol is employed

to identify the shared data. Moreover, we add a buffer for each processor to

gain more potential in the SF policy. These buffers store the data fetched

by our SF policy. To evaluate the potential of the SF policy, the buffers are

2

set as unlimited size to place the data on the interconnection. We first use a

experiment of traffic breakdown to verify that the SF policy surely reduces

the shared read misses. And we adjust different parameters to evaluate

the improvement potential of the SF policy. Our SF policy can achieve a

reduction potential about 8% in the amounts of cache misses over baseline

and a potential of 0.4% speedup over baseline.

This paper is organized as follows. The next Chapter 2 provides a rough

introduction to the workloads in PARSEC and SPLASH-2 benchmark suites.

Chapter 3 shows the configuration parameters used in the simulation. Chap-

ter 4 presents the experiment results of each workload with different system

settings and highlights the diverse characterization of these workloads. Chap-

ter 5 introduces the SF policy which relies on the snooping protocol and the

inherent coherence protocol to reduce shared read misses. Chapter 6 gives a

comparison between the original policy and the SF policy. It also presents

the improvement potential of our approach. An overview of related works

in the workload characterization and previous studies of hiding data access

latency are reported in Chapter 7. Finally, Chapter 8 gives conclusions.

3

Chapter 2

Workloads

2.1 PARSEC Suite

PARSEC is a benchmark suite for studies of Chip-Multiprocessors (CMPs).

It tries to assemble a program selection that is large and diverse enough to

be sufficiently representative for scientific studies. The suite includes not

only a number of important applications from the RMS suite but also sev-

eral leading-edge applications from Princeton University, Stanford University

and the open-source domain.

blackscholes is an Intel RMS workload. It calculates the prices for a

portfolio of options. The program is chosen to represent the field of analytic

partial differential equation (PDE)[4] solvers especially in computational fi-

nance and is limited by the amount of floating-point calculations a processor

can perform.

4

bodytrack is an Intel RMS workload. It tracks the pose of a marker-less

human body with multiple cameras. An annealed particle filter is employed

to track the pose using edges and the foreground silhouette as image features.

The program has four parallel kernels: edge detection, edge smoothing, par-

ticle weights calculation and particle resampling.

canneal is developed by Princeton University. It employs a simulated

annealing (SA) algorithm to minimize the routing cost of a chip design. This

optimization method tries to pseudo-randomly swap netlist elements. If the

swap would decrease the routing cost, it is automatically accepted. With a

certain probability that is decreasing over time, a swap that would increase

the routing cost is also accepted so that the design can escape from local

minima. The program has a demanding memory access behaviour and also

tracks the swaps globally which increases communication between threads.

ferret is developed by Princeton University. It is a search engine which

finds a set of images similar to a query image by analyzing their contents. The

program represents emerging next-generation desktop and Internet search

engines for non-text document data types. It is parallelized using the pipeline

model with six stages. The first and the last stage are for input and output.

The middle four stages are for query image segmentation, feature extraction,

indexing of candidate sets and ranking. Each stage has its own thread pool

and the basic work unit is a query image.

fluidanimate is an Intel RMS workload. It simulates the underlying

physics of fluid motion for real-time animation purposes and its output can

be visualized by detecting and rendering the surface of the fluid. Every

time step, the program executes five kernels: rebuild spatial index, compute

5

densities, compute forces, handle collisions with scene geometry and update

positions of particles.

steamcluster is developed by Princeton University. It finds a predeter-

mined number of medians so that each point is assigned to its nearest center

for a stream of input points. The program is a common operation where large

amounts of continuously produced data has to be organized under real-time

conditions and spends most of its time evaluating the gain of opening a new

center. This operation uses a parallelization scheme which employs static

partitioning of data points. It is memory bound for low-dimensional data

and becomes increasingly computationally intensive as the dimensionality

increases.

swaptions is an Intel RMS workload. It prices a portfolio of swaptions.

The program is included because of the significance of partial differential

equation (PDE)[4] and the wide use of Monte Carlo simulation. The portfolio

array is partitioned into a number of blocks equal to the number of threads

and the block is assigned to every thread. Each thread iterates through all

swaptions in the assigned work unit and computes the price.

vips was originally developed through several projects funded by Euro-

pean Union (EU) grants. The benchmark version is derived from a print on

demand service that is offered at the National Gallery of London. It is an

image processing system and includes fundamental image operations. The

program fuses all image operations to construct an image transformation

pipeline that can operate on subsets of an image and it can also automati-

cally replicate the image transformation pipeline to process multiple image

regions concurrently.

6

x264 is a H.264/AVC (Advanced Video Coding) video encoder. Motion

compensation scheme is used to detect and eliminate data redundancy. It is

employed to exploit temporal redundancy between successive frames. Motion

compensation is usually the most expensive operation that has to be executed

to encode a frame.

2.2 SPLASH-2 Suite

The SPLASH-2 suite is released to facilitate the study of shared-address-

space multiprocessors. It is expanded and modified to include several new

programs as well as improved versions of the original Stanford ParalleL

Applications for SHared memory (SPLASH)[15] programs. The resulting

SPLASH-2 suite contains programs that represent a wider range of compu-

tations in the scientific, engineering and graphics domains.

barnes simulates the interaction of a system of bodies in three dimensions

over a number of time-steps, using the Barnes-Hut N-body method. In this

program, most of the time is spent in partial traversals of the octree to

compute the forces on individual bodies. The communication patterns are

dependent on the particle distribution and are quite unstructured.

fmm simulates the interaction of a system of bodies in two dimensions

over a number of time-steps, using a N-body method called the adaptive

Fast Multipole Method. The major data structures are body and tree cells,

with multiple particles per leaf cell. In this program, the tree is not traversed

once per body, but only in a single upward and downward pass that computes

interactions among cells and propagates their effects down to the bodies. The

7

communication patterns are also quite unstructured.

lu factors a dense matrix into the product of a lower triangular and

an upper triangular matrix. To reduce communication, block ownership is

assigned using a 2-D scatter decomposition, with blocks being updated by

the processors that own them. The block size should be large enough to keep

the cache miss rate low, and small enough to maintain good load balance.

Elements within a block are allocated contiguously to improve spatial locality

and blocks are allocated locally to processors that own them.

ocean studies large-scale ocean movements based on eddy and boundary

currents. It partitions the grids into square-like subgrids rather than groups

of columns to improve the communication to computation ratio. Grid com-

putations in the same horizontal section are independent of one another and

those in the same vertical section follow a thread of dependence.

radix is a parallel sorting algorithm. The program is iterative, performing

one iteration for the keys. In each iteration, a processor passes over its

assigned keys and generates a local histogram. The local histograms are

then accumulated into a global histogram. Finally, each processor uses the

global histogram to permute its keys into a new array for the next iteration.

This permutation step requires all-to-all communication.

water evaluates forces and potentials that occur over time in a system

of water molecules. It imposes a uniform 3-D grid of cells on the problem

domain. Processors which own a cell need only look at neighboring cells to

find molecules that might be within the cutoff radius of molecules in the box

it owns. The movement of molecules into and out of cells causes cell lists to

be updated and therefore resulting in communication.

8

Chapter 3

Simulation Setup

We have evaluated PARSEC and SPLASH-2 benchmark suites with Simics[12],

a full-system execution-driven simulator, for 8 processors with SPARC sys-

tems running Solaris 10. The Simics simulator extends with the GEMS[13]

toolset that provides a detailed memory hierarchy model and a detailed pro-

cessor model. We attach a cache hierarchy of a private L1 cache for each

processor and a large shared L2 cache. The cache model applies a MOSI

coherence protocol to maintain the consistency of the data. Since bus in-

terconnection is still widely used in recent multiprocessor systems. We also

implement a bus interconnection in GEMS for our workload characteriza-

tion. The traffic on the bus between L1 and L2 caches what we called L1-L2

bus is observed in the following experiments to extract the properties of dif-

ferent workloads. The configuration parameters are summarized in Table

3.1. These settings are applied in all of the experiments only except that we

mention in the article specifically.

We use the simlarge input set for PARSEC, and a recommended input

9

Table 3.1: Simulation Setup

Processor Number 8

Block Size 64 bytes

L1 Cache 64 KB, 4-way, 2 cycle access time

L2 Cache 4 MB, 4-way, 25 cycle access time

Coherence Protocol MOSI protocol

Network Type Bus

set size for SPLASH-2. A detailed configuration is showed in Table 3.2. For

both benchmark suites, we warm all the caches during the initial 100 million

instructions, and then perform a detailed simulation for the next 200 million

instructions.

In the following sections, there are two abbreviations used in the illus-

trating figures.

(1) “p” and “np”: “p” represents that the prefetch instructions decoding in

GEMS is enabled; “np” represents that the prefetch instructions decod-

ing in GEMS is disabled

(2) “BASE” and “SF”: “BASE” represents that the result is under the orig-

inal policy; “SF” represents that the result is under our SF policy

10

Table 3.2: Input Set of PARSEC and SPLASH-2 suites

Benchmark Input Set

blackscholes 65,536 options

bodytrack 4 cameras, 4 frames, 4,000 particles, 5 annealing layers

canneal 15,000 swaps per temperature step, 400,000 netlist elements

ferret 256 image queries, database with 34,973 images, find top 10 images

fluidanimate 300,000 particles, 5 frames

streamcluster 16,384 input points, 128 point dimensions

swaptions 64 swaptions, 20,000 simulations

vips 2,662 5,500 pixels

x264 640 360 pixels, 128 frames

barnes 16,384 particles

fmm 16,384 particles

lu 512 512 matrix, 16 16 blocks

ocean 258 258 grid

radix 1M integers, radix 1024

water 512 molecules

11

Chapter 4

Workload Characterization

We try to explore the characterization for both PARSEC and SPLASH-2

suites in this chapter. We will examine different factors for each workload

in the following experiments, including L1 cache miss rate, sharing degree of

data and traffic breakdown of the L1-L2 bus. In these experiments, different

parameters are also applied, like L1 cache size, cache line size and number of

cores.

In the first two sections, the L1 cache miss rate is observed to explore

the property of each workload. Moreover, we also analyze the effect of the

software prefetching policy done by the compiler. Software prefetching ex-

ecutes prefetch instructions inserted by compiler to move data close to the

processor in advance. In our experiments, the prefetch instructions are added

by gcc compiler. The software prefetching policy in gcc is mainly for loop

prefetching. We switch on or off the software prefetching scheme by enabling

or disabling the prefetch instruction decoding in the simulator.

Besides, the sharing behaviours in the multi-threaded programs and the

12

amount of traffic on the L1-L2 bus are evaluated. In a multiprocessor system,

the sharing behaviours cause a number of coherence activities. We calculate

the ratio of shared lines in L2 cache for each workload and distinguish the

shared lines based on how many different processors have this data in its L1

cache. The number of processors is called sharing degree. A higher sharing

degree implies that the program is likely to incur more transmissions to main-

tain the cache consistency. Since the memory accesses and extra coherence

requests may cause a bus contention and lead to a worse performance. We

observe the bus traffic between L1 and L2 caches as well as categorize the

traffic according to the type of the cache requests placed on the L1-L2 bus.

4.1 L1 Cache Size

We illustrate the L1 cache miss rate with different cache size in Figure 4.1

and Figure 4.2. It’s obvious that we have a lower cache miss rate with the

increasing of L1 cache size. It is easy to understand that if there is a bigger

cache, we can store more data in the cache and the probability of finding

the requested data in the cache becomes higher. From the comparison of

these two figures, we can also find that PARSEC suite has a higher L1 cache

demand in our setting than SPLASH-2 suite.

We then compare the difference with switching the prefetching scheme

on or off. The figures show that enabling the prefetching scheme brings

advantage to cache miss rate in most cases. Although several benchmarks

in SPLASH-2, including barnes, fmm, lu and water, don’t get much bene-

fits from the prefetching scheme because of their lower cache miss rate. In

13

Figure 4.1: L1 Cache Miss Rate of PARSEC Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled; p for prefetch-

ing enabled) in Different Cache Size

bodytrack and water, there is even a higher cache miss rate in smaller cache

size when turning on the prefetching scheme. The data is aggressively com-

peting the limited resource as the cache size is small, so prefetching data may

easily cause a cache pollution problem and damage the performance.

4.2 Cache Line Size

Figure 4.3 and Figure 4.4 show the L1 cache miss rate with different line

size in this section. As we can see from these two figures, the cache miss

rate benefits from a larger line size. The augmentation of the line size can

exploit the spatial locality in the applications. Applying a larger cache line

14

Figure 4.2: L1 Cache Miss Rate of SPLASH-2 Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled; p for prefetch-

ing enabled) in Different Cache Size

seems like we implement a hardware next-line prefetching policy. Therefore,

we have less cache miss rate as the line size increases. fluidanimate and

streamcluster gain much more improvements than other workloads because

these two workloads have a streaming behaviour and hence provide more

spatial locality.

We can find that switching on the prefetching scheme still has advantage

in each line size setting. With the increasing of the line size, improvements

from the prefetching scheme diminish. Since a larger line size can exploit

more spatial locality, the prefetching scheme relatively gets less opportunities

to issue prefetch requests. Most of the SPLASH-2 workloads still have few

improvements from the prefetching scheme due to their lower cache miss rate.

Only the workloads with higher cache miss rate, like ocean and radix, have

a clearer effect in the experiment.

15

Figure 4.3: L1 Cache Miss Rate of PARSEC Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled; p for prefetch-

ing enabled) in Different Line Size

Figure 4.4: L1 Cache Miss Rate of SPLASH-2 Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled; p for prefetch-

ing enabled) in Different Line Size

16

4.3 Sharing Degree

The sharing degree can be considered more particularly in two aspects.

One is to examine how many processors have ever accessed this shared data

along the total execution, and the other is to check how many processors have

this shared data in their local caches sometime during the execution with a

constrained cache capacity. The former aspect shows the characterization of

a program, and it has nothing to do with the hardware structure. The latter

one gives that there are how many caches to cohere at the same time in a

program under a specific cache organization.

We first evaluate the total sharers of a program along the whole execution

time. And we also adjust the cache line size to observe the effects on the

sharing degree. In Figure 4.5 and Figure 4.6, the sharing degree of PARSEC

and SPLASH-2 suites is demonstrated. As our expectation, we can see that

the sharing degree grows as line size increases in these two figures. Since a

cache block holds a larger data, it provides a higher possibility to be accessed

by more processors.

However, we get a different result of sharing degree if we calculate the

number of processors which have the shared data in their local cache at the

same time with a constrained L2 cache capacity. The sharing degree with a

constrained cache capacity is presented in Figure 4.7 and Figure 4.8. We can

find that the sharing degree of these workloads doesn’t always grow while we

have a larger line size. This is due to the eviction of the shared data in a

limited cache size.

We then focus on the different properties of these workloads by observing

17

Figure 4.5: Sharing Degree of PARSEC Benchmark Suite with Different Line

Size

Figure 4.6: Sharing Degree of SPLASH-2 Benchmark Suite with Different

Line Size

18

Figure 4.7: Sharing Degree of PARSEC Benchmark Suite in a Constrained

Cache Capacity with Different Line Size

Figure 4.8: Sharing Degree of SPLASH-2 Benchmark Suite in a Constrained

Cache Capacity with Different Line Size

19

their sharing behaviours. canneal and lu show only trivial amount of shar-

ing. canneal has a hunger for cache capacity because of its large working

set. So the sharing is limited due to its frequent data exchange in the cache.

Since the data stays in the cache for a very short time, there are only a few

chances to have sharing behaviours between processors. lu divides a dense

matrix into an array of small blocks and exploits temporal locality. Blocks

are updated by the processors that own them to reduce the communication.

Therefore, each processor executes its working set independently and incurs

little sharing. Except those two workloads we mentioned above, other work-

loads present lots of sharing behaviours. The sharing in most benchmarks is

around 20% to 50%. bodytrack, streamcluster, x264, and ocean present a

large amount of sharing. x264 shows the most significant amounts of sharing

due to its motion compensation scheme. Reference frames are shared for the

encoding of other frames. However, most of the shared data are only shared

by no more than 4 processors. blackscholes also presents a number of

sharing, but almost all the shared data are only accessed by two processors.

The data is shared between the parent thread and its child thread. ferret

breaks an image into several non-overlapping segments and performs a im-

age similarity search in its database. Besides, the database is scanned by all

threads to find entries similar to the query image and the size of the database

is practically unbounded. So the cache line is unlikely to be accessed more

than once and it is easy to be replaced. Therefore, there is a small amount

of sharing in this workload. Moreover, most of the sharing in this workload

is also between two processors.

20

4.4 Traffic Breakdown

In this section, we try to explore the traffic of the bus interconnection

between the private L1 caches and the shared L2 cache. The amount of

traffic is evaluated and decomposed into four categories by the type of cache

misses to observe the ratio of different kind of misses.

(1) Private Write: a write request for a cache line which has no sharer

(2) Shared Write: a write request for a cache line which has one or more

sharers

(3) Private Read: a read request for a cache line which has no sharer

(4) Shared Read: a read request for a cache line which has one or more

sharers

The sharer we mention here applies the sharing definition with a con-

strained cache capacity. The reason is that it provides a actual coherence

behaviour during the execution. Figure 4.9 and Figure 4.10 show the traffic

breakdown of the L1-L2 bus with different number of cores. In canneal and

lu, the ratio of sharing traffic is extremely low. This is because these two

workloads have a small amount of sharing as showed in Figure 4.7 and Fig-

ure 4.8. The other workloads provide plenty of sharing traffic, especially in

streamcluster. From these two figures, we can find that there is about 22%

to 32% shared read traffic in average. It also means that there is around 22%

to 32% shared read misses are issued to the L1-L2 bus. We try to figure out

21

Figure 4.9: Traffic Breakdown of PARSEC Benchmark Suite with Different

Number of Cores

Figure 4.10: Traffic Breakdown of SPLASH-2 Benchmark Suite with Differ-

ent Number of Cores

22

a way to reduce the large amounts of shared read misses and thus improve

the workload performance.

23

Chapter 5

Snooping Fetch

In Section 4.3 and Section 4.4, we observe that there are plenty of shared

read misses in both PARSEC and SPLASH-2 suites. However, all the re-

quests will be placed on the bus and broadcast to all processors in a snooping

protocol. Each processor snoops the request on the bus to see if the requested

data is in its own cache. If so, there might be some cache state transitions to

maintain cache coherence according to its inherent coherence protocol. Oth-

erwise, the processor ignores this request. There might be some potential to

better utilize these information. The shared data is likely to be seen on the

bus before the processor actually requests this data. There is no extra band-

width overhead when fetching data on the bus in addition. To reduce the

amounts of shared read misses, we propose a policy, called Snooping Fetch

(SF), which utilizes the broadcasting information in the snooping protocol.

We try to identify the shared data in our SF policy. The inherent coher-

ence state is used for indication. In MOSI coherence protocol used in our

experiments, “I” state means this cache line is invalid. To enter this state,

24

this cache line should be either read or write by its local processor and then

there is one other processor wants to modify this data. Write miss will be

sent by that processor and the shared lines in others’ caches will be invali-

dated. So the “I” state can imply that this data is once shared between at

least two processors. There is another benefit when using “I” state indica-

tion. Fetching data into an invalidated cache line won’t need any eviction

and hence no useful data will be dropped. Therefore, no cache pollution issue

will be incurred. We use a simple example to explain our idea.

For instance, One-Producer-Multiple-Consumer Sharing would benefit

from the SF policy as Figure 5.1 and Figure 5.2 present. In the first place, all

these 4 processors have one shared data. When the producer tries to modify

the data(Figure 5.1 1⃝ and Figure 5.2 1⃝), the shared data is invalidated in

all the consumers for both original and SF policies(Figure 5.1 2⃝ and Figure

5.2 2⃝). While the consumers try to read the modified data in sequence, a read

miss will be issued for each consumer(Figure 5.1 3⃝ 5⃝ 7⃝) and therefore lots

of read misses will be incurred in the original policy. Corresponding to each

read miss, one consumer fetches the data into its local cache at a time(Figure

5.1 4⃝ 6⃝ 8⃝). In SF policy, the modified data will be placed on the bus when

the first consumer requests this data(Figure 5.2 3⃝). After snooping the bus,

all the other consumers will find that their local L1 cache has the same tag

as the data on the bus and this cache line is in “I” state. So they will fetch

the modified data into its own cache from the bus in advance(Figure 5.2 4⃝).

Like Figure 5.2 shows, the number of read misses will be reduced because the

following read requests from the consumers will hit in its local cache(Figure

5.2 5⃝ 6⃝).

25

Figure 5.1: An Example of Original Policy

Figure 5.2: An Example of SF Policy

26

Although fetching the invalidated data can hide the data access latency

without incurring any overhead. The potential of SF policy is extremely

limited because of the small portion of the invalidated cache lines in L1

caches. To settle this problem, we add a buffer, called Snooping Fetch Buffer

(SFB), besides the L1 cache for each processor. The SFB is acted as a cache,

but it only stores the data fetched by the SF policy. Since a larger space is

available to place these fetched data, we now focus on not just the invalidated

data but all kinds of data on the bus. This is because that the invalidated

data only occupies a small fraction of the shared data. The invalidated data

is still fetched into the L1 cache as the primary idea, and all the other data

on the bus is fetched into the SFB. When these data are requested by the

processor, there is a L1 cache hit or a SFB hit instead of a L1 cache miss.

Furthermore, we should not fetch all the data on the bus, the type of request

should also be taken into consideration. If a write request is placed on the

bus, it means that this data is gong to be modified, so fetching this data is

meaningless. Therefore, SF policy should function only when the request on

the bus is a read request.

To reduce the shared read misses, our SF policy tries to fetch the shared

data in advance as soon as the data is placed on the bus. In SF policy, adding

a SFB for each L1 cache incurs a storage overhead. But the bandwidth issue

is eliminated since we don’t issue any additional requests and there is no

extra data transmission.

27

Chapter 6

Evaluation of SF Policy

We use SFBs with unlimited size to examine the potential of the pro-

posed SF policy. Besides, based on the previous workload characterization

in Chapter 4, we classify the workloads in PARSEC and SPLASH-2 suites

into different categories.

(1) Small amount of sharing (SS): Those workloads present a small amount

of sharing, including canneal, lu

(2) Large amount of sharing (LS): Those workloads present a large amount

of sharing, including bodytrack, streamcluster, x264, ocean

(3) Sharing between two sharers (TS): The shared data in those workloads is

almost only accessed by two processors, including blackscholes, ferret

(4) Low L1 cache miss rate (LM): Those workloads have a quite low L1 cache

miss rate, including barnes, fmm, water

28

(5) Other workloads (Other): Those workloads do not have the above-mentioned

properties, including fluidanimate, swaptions, vips, radix

There is a clearer demonstration in the following experiments by applying

these classifications.

6.1 Traffic Breakdown Comparison

To check the validity of our approach, we compare the traffic breakdown

between the original policy and the proposed SF policy. The experiment is

like what we present in Section 4.4 except that we take away the portion

of write traffic. The reason is that all write instructions will issue a write

miss to invalidate all the copies except the requested data is already in its

local cache and also the cache line is in a modified state. Since our SF policy

only functions when meeting a read request and all the fetched data will

be in a shared state, we won’t get any advantage from those write misses.

Therefore, the write traffic won’t be affected by SF policy and we only focus

on the effects in the read traffic.

Figure 6.1 and Figure 6.2 show the traffic breakdown under two policies

with different number of cores. And the amount of traffic in SF policy is

normalized to its corresponding traffic in the baseline policy. In the SF

policy, shared read traffic is what we expect to be reduced. This is because

whenever someone issues a read request to a shared data, other sharers can

fetch the data on the bus in advance. Therefore, the subsequent shared read

misses will be decreased and the shared read traffic will also be diminished.

29

We can see that shared read traffic does decrease in almost all the workloads,

and the reduction of the traffic almost all comes from the loss of the shared

read traffic. However, there is also a reduction in private read traffic. In our

conjecture, private read traffic should not get any benefits from our SF policy.

In fact, the reduction of private read traffic can be regarded as a special case

of the reduction of shared read traffic. For instance, if one shared data is

going to be requested by two different processors. However, there is a pretty

long interval between these two requests. The shared data may be evicted

from the L1 cache in the processor which issues the former request as the

latter request is issued, so the latter request would be treated as a private

read request instead of a shared read request. In our SF policy, the latter

request will become a hit in the SFB. Therefore, we diminish the amount

of private read traffic. Besides, due to the unlimited size of SFBs, we can

tolerate a much longer interval between requests. So more private read traffic

can possibly be decreased in the experiment.

As we talked in Section 4.3, canneal and lu in the SS class have a trivial

amount of sharing. These two workloads have only a few opportunities to

take advantage of the SF policy. The reduction of the traffic mainly relies

on the loss of private read traffic. We can also observe that blackscholes

and ferret in the TS class have much less reduction than other workloads.

As the example we present in Figure 5.2, once a shared data is modified by

one processor, the next sharer who tries to access this data should issue a

read request to get the modified data. In the meantime, other sharers can

fetch the data on the bus in advance and start to acquire the benefits from

the SF policy. Therefore, it needs at least three sharers to take advantage

30

Figure 6.1: Traffic Breakdown between Baseline Policy and SF Policy in

Different Number of Cores (PART1)

of the SF policy. However, most of the shared data are accessed between

two sharers in the TS class. As a result, the workloads in the TS class can

only gain few benefits in our approach. These benefits are derived from two

situations. One is the trivial amount of the sharing behaviours with more

than two sharers, and the other is the first time both the sharers try to load

the shared data. The latter case is because that while one sharer fetches

the data for the first time, the other sharer can also issue a fetch by the SF

policy since it saw a read request for the shared data. The LS class presents

a great improvement in the SF policy due to their large amounts of sharing

behaviours. We can achieve a cache misses reduction of 8% in average and

up to 20% in streamcluster.

31

Figure 6.2: Traffic Breakdown between Baseline Policy and SF Policy in

Different Number of Cores (PART2)

6.2 Number of Cores

In this experiment, we adjust the number of cores in the simulated ma-

chine and evaluate the effects of different workloads between the baseline

policy and our SF policy in L1 cache miss rate and performance(i.e. CPI).

6.2.1 L1 Cache Miss Rate

In Figure 6.3 and Figure 6.4, we can find that almost all the workloads

get a lower cache miss rate with a higher number of cores. Most programs

exploit the data-level parallelism to implement the parallelization. Therefore,

the size of working set for each thread gets smaller when more threads are

32

Figure 6.3: L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Number of Cores (PART1)

divided in a higher number of cores. Since the L1 cache size for each processor

remains the same, the cache miss rate decreases with the increasing of the

number of cores.

When applying the SF policy, the improvements in the LS class are no-

ticeable among all of the workloads. radix also shows a great amount of

improvements in the SF policy. Although the amount of sharing in radix

is less than the workloads in the LS class, its ratio of shared read traffic

accounts for a large proportion of total sharing behaviours. We can see that

it achieves about 1% reduction in L1 cache miss rate. Refer to the workloads

in the LM class, the impact on their exceedingly low cache miss rate is slight

even though they present lots of traffic reduction in Figure 6.2. Generally,

the L1 cache miss rate presents a reduction of 0.4% in average.

33

Figure 6.4: L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Number of Cores (PART2)

6.2.2 Performance

In our expectation, the SF policy should gain more benefits from the

higher sharing degree in a larger number of cores. However, we can observe

that there is no identical trend with the increasing number of cores in Figure

6.5. The reason is that the cache miss rate is also decreased with the increas-

ing number of cores as Figure 6.3 and Figure 6.4 present. The lower cache

miss rate diminishes the demands for the data which we fetched in advance

from the SF policy. As we discussed in Section 6.2.1, the LS class and radix

present more improvements in performance(i.e. CPI) because of their larger

amounts of shared read traffic. Due to the property of only two sharers, the

TS class shows practically no improvements from the SF policy. We achieve

a speedup up to about 1% and around 0.4% in average over baseline.

34

Figure 6.5: The Speedup of SF Policy with Different Core Number

6.3 L1 Cache Size

In this experiment, we adjust the L1 cache size in the simulated machine

and evaluate the effects of different workloads between the baseline policy

and our SF policy in L1 cache miss rate and performance(i.e. CPI).

6.3.1 L1 Cache Miss Rate

In Figure 6.6 and Figure 6.7, we can observe that as the L1 cache size

increases, the potential of SF policy slightly lessens in almost all the work-

loads. Although we may meet more invalidated cache lines in a larger cache,

the ratio of this condition to the total amounts of memory requests is still

negligible. Since a smaller cache implies more cache misses, there are more

35

Figure 6.6: L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Cache Size (PART1)

opportunities to gain benefits from our policy.

Because the TS class gives a extremely lower sharing degree than other

workloads, our approach is unable to extract much benefits from this kind of

property. streamcluster, x264 and ocean in the LS class all present more

than 0.8% reduction in cache miss rate from the SF policy due to their great

sharing degree and the aggressive competition for cache resources. radix

also presents up to about 1% cache miss rate reduction because of its great

amounts of shared read misses as we mentioned in Section 6.2.1. According

to Figure 4.8, we can find that the LM class shows a high sharing degree.

However, owing to their low cache miss rate, the miss rate reduction isn’t

impressed in the experiment result even though they still decrease lots of

miss requests. In a smaller cache size, we can achieve a reduction of 0.5% in

average in L1 cache miss rate.

36

Figure 6.7: L1 Cache Miss Rate Comparison between Baseline Policy and

SF Policy in Different Cache Size (PART2)

6.3.2 Performance

Figure 6.8 presents that the performance(i.e. CPI) just corresponds to

the cache miss rate reduction showed in Figure 6.6 and Figure 6.7. As the

same reason for cache miss rate reduction we discussed in Section 6.3.1, the

performance(i.e. CPI) in a larger cache also exhibits a less improvement from

our approach. The LS class and radix still perform a larger improvement

than all the other workloads because they have lots of shared read misses.

The workloads in the TS class have a similar performance(i.e. CPI) to the

baseline policy. Since there is almost no sharing between more than three

sharers in the TS class, it barely gets benefits from the SF policy. We can

get an average of 0.4% speedup and up to about 1% speedup over baseline.

37

Figure 6.8: The Speedup of SF Policy with Different Cache Size

38

Chapter 7

Related Work

7.1 Workload Characterization

PARSEC and SPLASH-2 benchmark suites are widely used in many dif-

ferent researches for the multiprocessor systems. They both provide parallel

programs for the evaluation of architectural ideas and tradeoffs. Bienia et

al.[2] provide an overview of the PARSEC suite. PARSEC suite assembles a

parallel program selection that is large and diverse enough to be sufficiently

representative for scientific studies. This paper illustrates the behaviour of

each workload and analyzes the parallelization, working sets, locality and

traffic. A second version of PARSEC has been released in PARSEC 2.0[3].

SPLASH-2 is also a suite composed of multi-threaded applications. Woo

et al.[18] expand and modify the original SPLASH programs to provide a

broader coverage of applications and a better interaction with modern sys-

39

tems. They quantitatively characterize the SPLASH-2 programs in terms

of fundamental properties like PARSEC[2]. This paper also provides some

specific guidelines for pruning the space. Bienia et al.[1] analyze the PAR-

SEC and SPLASH-2 suites for instruction mix, communication and memory

behaviour on CMPs. It shows that SPLASH-2 and PARSEC are composed

of programs with fundamentally different properties. Each divergence in the

experiment comes from a distinct reason. In our work, we also try to charac-

terize the benchmark suites with different parameters and observe the diverse

behaviours of these workloads. Different from the above-mentioned papers,

we try to evaluate the effect on the workloads when applying a software

prefetching policy.

7.2 Hiding Data Access Latency

To hide the data access latency, predicting the following requests which

are going to happen in the foreseeable future is one way to achieve. The

prediction has been studied for a long time. Many researches are trying to

propose a efficient way to make a effective prediction and incur less overhead

in the meantime.

Sharing patterns are widely used as a hint to predict the subsequent be-

haviours. Mukherjee et al.[14] and Lai et al.[9] bring an idea inspired by a

two-level branch predictor. They monitor the coherence activities and store

these activities in a buffer. The buffer is a two-level buffer in each directory.

The first level buffer, called Memory History Table (MHT), is indexed by

the data block address and each entry contains the most recently incoming

40

coherence activity and a pointer to the next level buffer. The second level

buffer, called Pattern History Table (PHT), stores all observed sequences of

coherence messages. Following the history information, the prediction can be

made. Kaxiras et al.[8] use the instruction as an index instead of using the

block address. Since code is much smaller than datasets, using instruction-

based predictor can get a great deal of entry reduction and therefore needs

fewer hardware resources. The instruction-based prediction examines the be-

haviours of load and store instructions in relation to coherence events and

also keeps track of the history information in a buffer to make predictions.

However, these papers we mentioned above only predict the next data access

when meeting the current request. Wenisch et al.[17] explore that groups of

shared addresses tend to be accessed together with the same order, and also

recently accessed address streams are likely to recur. Based on their obser-

vation, this paper proposes a scheme to eliminate coherent read misses by

streaming data to a processor. They use the miss history from recent sharers

and move data to a subsequent sharer in advance of data requests. Somo-

gyi et al.[16] exploit not only the temporal streaming but also the spatial

streaming. This paper records and replays the temporal sequence of region

accesses as well as uses spatial relationships within each region to dynami-

cally reconstruct a predicted total miss order. All these papers keep track

of a history information and issue prefetch requests based on the prediction.

These properties cause extra bandwidth issues. However, there is no band-

width overhead in the SF policy since our approach incurs no additional

transmissions.

Since coherence protocol is a necessary to maintain the consistency of

41

the data between processors, it incurs some extra coherence traffic. So to

hide the data access latency, another way is to mask or even reduce those

traffic. Huh et al.[7] have an observation that false sharing[6] and silent

store[10][11] take a great fraction of the coherence misses. Those misses can

be ignored because the cache has a correct data but the wrong coherence

state. Therefore, they break the communication of a shared value into two

constituent parts: One is the acquisition and use of the value, and the other is

the communication of the coherence permissions that indicate the correctness

of the value and thus the execution. The first part applies a speculative cache

lookup and computation, and the second half uses the original coherence

protocol to provide a mean for detecting a mis-speculation and recovering

correctly from it. Cheng et al.[5] focus on improving the performance of

applications that exhibit a producer-consumer sharing. They propose a novel

directory delegation mechanism whereby the home node of a particular cache

line of data can be delegated to another node. During the period in which

the directory ownership is delegated, the home node forwards requests for

the cache line to the delegated home node. Other nodes that learn of the

delegation can send requests directly to the delegated node, bypassing the

original directory as long as the delegation persists. Moreover, the mechanism

is extended to enable the producer to speculatively forward newly written

data to the nodes which are believed that the nodes are likely to consume it in

the near future. Comparing to these two policies, the SF policy doesn’t have

to change the inherent coherence protocol. The only difference is to fetch the

data during the regular snooping and the fetched data is in a shared state.

42

Chapter 8

Conclusions

In this thesis, we characterize the workloads in PARSEC and SPLASH-2

suites with different configurations. Lager cache size and larger line size both

favor the cache miss rate. We also give a comparison of switching on or off

the software prefetching scheme. Most applications benefit from the effect of

prefetching. But the cache pollution issue should be taken care when a small

cache size is applied. The sharing behaviours are remarkable in the multi-

threaded programs. We observe that there is about 22% to 32% shared read

traffic on the bus interconnection in both PARSEC and SPLASH-2 suites.

It also implies that there are plenty of shared read misses.

Since there are a large amount of shared read misses in both PARSEC

and SPLASH-2 suites, a Snooping Fetch (SF) policy is proposed to reduce

these misses by making use of the shared data which is transmitted between

processors in a snooping protocol. The SF policy is to fetch the data on the

bus in advance once a read request is issued and the data is placed on the

bus. Our approach achieves a reduction potential of 8% in average and up

43

to 20% in traffic on the bus between the L1 and L2 caches over baseline,

a reduction potential of 0.5% and up to 1.2% in L1 cache miss rate over

baseline, and a potential of about 0.4% speedup in average and up to 1%

speedup over baseline.

44

Bibliography

[1] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative com-

parison of two multithreaded benchmark suites on chip-multiprocessors.

In Proceedings of the 2008 International Symposium on Workload Char-

acterization, September 2008.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark

suite: characterization and architectural implications. In PACT ’08:

Proceedings of the 17th international conference on Parallel architectures

and compilation techniques, pages 72–81, New York, NY, USA, 2008.

ACM.

[3] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-

multiprocessors. In Proceedings of the 5th Annual Workshop on Model-

ing, Benchmarking and Simulation, June 2009.

[4] F. Black and M. S. Scholes. The pricing of options and corporate liabil-

ities. Journal of Political Economy, 81(3):637–54, May-June 1973.

[5] L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coherence proto-

col optimized for producer-consumer sharing. In HPCA ’07: Proceedings

of the 2007 IEEE 13th International Symposium on High Performance

45

Computer Architecture, pages 328–339, Washington, DC, USA, 2007.

IEEE Computer Society.

[6] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Sten-

ström. The detection and elimination of useless misses in multiproces-

sors. SIGARCH Comput. Archit. News, 21(2):88–97, 1993.

[7] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence decoupling:

making use of incoherence. SIGARCH Comput. Archit. News, 32(5):97–

106, 2004.

[8] S. Kaxiras and J. R. Goodman. Improving cc-numa performance us-

ing instruction-based prediction. In HPCA ’99: Proceedings of the 5th

International Symposium on High Performance Computer Architecture,

page 161, Washington, DC, USA, 1999. IEEE Computer Society.

[9] A.-C. Lai and B. Falsafi. Memory sharing predictor: the key to a specu-

lative coherent dsm. SIGARCH Comput. Archit. News, 27(2):172–183,

1999.

[10] K. M. Lepak and M. H. Lipasti. Silent stores for free. In MICRO 33:

Proceedings of the 33rd annual ACM/IEEE international symposium on

Microarchitecture, pages 22–31, New York, NY, USA, 2000. ACM.

[11] K. M. Lepak and M. H. Lipasti. Temporally silent stores. SIGARCH

Comput. Archit. News, 30(5):30–41, 2002.

[12] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full

system simulation platform. Computer, 35(2):50–58, 2002.

46

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-

facet’s general execution-driven multiprocessor simulator (gems) toolset.

SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[14] S. S. Mukherjee and M. D. Hill. Using prediction to accelerate coherence

protocols. SIGARCH Comput. Archit. News, 26(3):179–190, 1998.

[15] J. P. Singh, W. Weber, and A. Gupta. Splash: Stanford parallel ap-

plications for shared-memory. Technical report, Stanford, CA, USA,

1991.

[16] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-temporal

memory streaming. SIGARCH Comput. Archit. News, 37(3):69–80,

2009.

[17] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and

B. Falsafi. Temporal streaming of shared memory. In ISCA ’05: Proceed-

ings of the 32nd annual international symposium on Computer Archi-

tecture, pages 222–233, Washington, DC, USA, 2005. IEEE Computer

Society.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2

programs: characterization and methodological considerations. In ISCA

’95: Proceedings of the 22nd annual international symposium on Com-

puter architecture, pages 24–36, New York, NY, USA, 1995. ACM.

47

	MyCover
	Merge1
	abstract_chinese
	PARSEC and SPLASH-2 Characterization

