Fi B FePFaFyil sy
L

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

PARSEC ¥# SPEASH-2' 204 ¥4 4 & 47
Workload Characterizationifof RARSEC and SPLASH-2

e

I-Hsien Lin

a‘% oy i 4L
Advisor: Chia-Lin Yang, Ph.D.

¢ g F99E 7

July, 2010

&

Eizhwe? o NP g ALEF 3 A $9PARSECYE SPLASH-2:i: 5 B F * o+
7] 2 % 423 (benchmark suite)z- 1 fefrf o & i3 1 v & (workload)#® ¢ & & &7 ¢
SRR E TREFR R R B P SR e gt b P R -
B 4 48 7 P~ 4% 4| (software prefetching scheme) k=5 izt % fp 1 T 971 = e
PR PR LEREH APFRINFTAFEL L FEF AI3GREFF €7
SRS Sit BN LT
ST AN Bk 3 R EAE AP - BA S Snooping
Fetch (SF)en= 2 o sz B > /2 ,‘f‘g ok P E G e B~ 3% |4 1 7 (cache coherence

protocol) 2 2 ¥ .4 %_(Snooping protocel)< 3 3% 2N PN R o

dok
R
-

G B A R AP E AL E ifi};%%ﬁv#@‘nb‘_’ e 1?1‘ B EARY 2w i

:FK#J_E };B,\” rﬁ’#"l |15§_$F§E\H§m@ :»\,Fem-'agg;,d R el fﬂ*z“]’/ﬁ\‘
fi,—-w
CLLE-B e R R A SRR A zl.h'j-ri OB F RS ;e LLEB X T e

/E\. o :E;]”ﬁ :Li’lo 50A)1_’]’7'\'-'_1 ;b]"} ’]l,{ 5. li’lo4%m;{sb ‘4\:@? ;E A]‘i)

M43 : PARSEC -~ SPLASH- 2 s 2P| B&}ﬁz'\ CATERE S AT S B FERT
7}“‘ ¥ B"@“@

Abstract

In this thesis, we first characterize two.popular benchmark suites, PAR-
SEC and SPLASH-2. Different c’o,rifigura?.’pai:ons of the simulated machine are
set for each workload in theﬁrsuites to study the'ir??diverse properties. Besides,
we also try to evaluate:%he nfluenee of glriﬁ‘e}rent W&fiﬁloads when enabling a
software prefetching scheme. Ba;@é experiments, we find that there
is plenty of shared read traffic J) thqr[:{-lterqo:nnectiog in these workloads.

To reduce these share(-i'_reaJI isséqsi_'a po:liglcy, c&ll@d Snooping Fetch (SF),
is proposed for the Sharéa da?a in para,llelized'-:fc_ippiications, which takes ad-
vantage of the inherent cache rcohé"r-enc’e pr(;tocol and the broadcasting infor-
mation from the snooping protocol. The SF policy utilizes the broadcasting
property to fetch shared data before the data is actually needed. In our ex-
periments, the SF policy provides a reduction potential of 8% in average in
the amounts of L1 cache misses, a reduction potential of 0.5% in average in
the L1 cache miss rate, and a potential of 0.4% speedup in average.

Keywords — PARSEC, SPLASH-2, benchmark suite, workload char-

acterization, prefetch, data access latency hiding

Contents

Abstract
1 Introduction 13’-‘;9 ']‘;i g g %
i 1
& X Do N
2 Workloads | - o
o @ 2 |
2.1 PARSEC%;_mte B — SO o A Tl fgi
2.2 SPLASHRIStitdh. . || === |). . & . ‘B
<5 2
3 Simulation Sefup oo
%2 ® F
4 Workload Characteriz 16_%3. 65":
A . - - L] :;al;’ ;
4.1 L1 Cache Size‘%_ '?'5-5'1
4.2 Cache Line Size
4.3 Sharing Degree
4.4 Traffic Breakdown

5 Snooping Fetch

6 Evaluation of SF Policy

6.1 Traffic Breakdown Comparison

6.2 Number of Cores

i

12
13
14
17
21

24

6.2.1 L1 Cache Miss Rate
6.2.2 Performance
6.3 L1 Cache Size
6.3.1 L1 Cache Miss Rate

6.3.2 Performance

7 Related Work
7.1 Workload Characterization

7.2 Hiding Data Access Latency

8 Conclusions

Bibliography

il

39
39
40

43

45

List of Figures

4.1

4.2

4.3

4.4

4.5

4.6

4.7

L1 Cache Miss Rate of PARSEC Benchmark Suite with the
Switching of Prefetching Seheme (np for prefetching disabled;
p for prefetching enabled) in Difﬁ%rent Cache Size
L1 Cache Miss Rate of SPLASH-2 Béhghmark Suite with the
Switching of Prefetchmg‘Scheme (np for prefetchmg disabled;
p for prefetching enable@) ;Ei_)lﬂekqnt Cache Size
L1 Cache Miss Rate df PARPEC lB'enchmark Suite with the
Switching of PrefetchlL Scheme (ﬁp for prefetchmg disabled;
p for prefetchlng enabied) in leferent Llne Size
L1 Cache Miss Rate of SPLASH—2 Benchmark Suite with the
Switching of Prefetching Scheme (np for prefetching disabled;
p for prefetching enabled) in Different Line Size
Sharing Degree of PARSEC Benchmark Suite with Different
Line Size
Sharing Degree of SPLASH-2 Benchmark Suite with Different
Line Size
Sharing Degree of PARSEC Benchmark Suite in a Constrained

Cache Capacity with Different Line Size

v

4.8

4.9

4.10

5.1
5.2

6.1

6.2

6.3

6.4

6.5
6.6

6.7

6.8

Sharing Degree of SPLASH-2 Benchmark Suite in a Constrained
Cache Capacity with Different Line Size
Traffic Breakdown of PARSEC Benchmark Suite with Differ-
ent Number of Cores
Traffic Breakdown of SPLASH-2 Benchmark Suite with Dif-

ferent Number of Cores

An Example of Original Policy
An Example of SF Policy

Traffic Breakdown between Basehne Pohcy and SF Policy in
Different Nuiber"dt Gailfs (PAR'YR~ " S8 . -
Traffic Breakdown between Baseline Pohcy and SF Policy in
Different Number of CO{GS EA;ETIQ?
L1 Cache Miss Rate Cb parpfon between Baseline Policy and
SF Policy in leferentl umber of @(,lores PARTl)
L1 Cache Miss Rate Comparlson between Basehne Policy and
SF Policy in Different Nwmber of Cores (PART2)
The Speedup of SF Policy with Different Core Number
L1 Cache Miss Rate Comparison between Baseline Policy and
SF Policy in Different Cache Size (PART1)
L1 Cache Miss Rate Comparison between Baseline Policy and
SF Policy in Different Cache Size (PART2)
The Speedup of SF Policy with Different Cache Size

19

22

22

26
26

31

32

33

34
35

36

List of Tables

3.1 Simulation Setup
3.2 Input Set of PARSEC and-SP

ASH-2 suites

vi

Chapter 1

Introduction

When designing an :efﬁcientrsys;tem or~doing Cbmputer architecture re-

search, benchmark as a standard?éﬁ.'qdéﬁntil;ative evaluation is vital. Many
benchmark suites are released t prql'lcg dlfferent requirements of applica-
tions. For the resent years, molrj and }ﬁore ﬁ)rocessors are put into one ma-
chine for the growth of computagclon power and the reduction of power con-
sumption. Applications that requlre addltlonal processing power will need
to be parallelized. The behaviour of parallel programs is greatly different
from the earlier serial applications. Therefore, it is significant to have several
parallel applications as benchmarks when studying and designing such kind
of systems. PARSEC|2][3] and SPLASH-2[18] benchmark suites release lots
of parallel applications for the multiprocessor system. They are widely used
for the verification of new ideas and the tradeoffs in the system. SPLASH-2
suite focuses on High-Performance Computing for shared-address-space mul-

tiprocessors; PARSEC suite provides a wide range of applications for the

studies of Chip-Multiprocessors (CMPs). To better understand these two

suites, we try to characterize the workloads belong to them. In this work, we
concentrate on the L1 cache configurations for all the workloads. Besides,
we also want to observe the influence of prefetching. A software prefetching
policy is applied to compare the difference of cache miss rate. Moreover,
since these workloads are all multi-threaded programs, the interaction be-
tween different threads is a major issue. We evaluate the number of sharers
and the amount of messages which are placed on the interconnection to get a
detailed information of the workloads in the PARSEC and SPLASH-2 suites.

Based on the observation about:the characterization of these workloads,
we find that there is around 22%to 32%; shared read traffic over the total
amount of the 1nterconnect10n traffic. It also, 1mphes that there are lots of
shared read misses. To reduce, 't'hege Shared read ' misses, we then propose
Snooping Fetch (SK), a policy a{ct y‘s tb utilize the eoherence state and
the broadcasting information 01}1 he 111tercophect10n to.fetch data in advance
without demanding extra bandl;v idth. Irn a quopmg protocol all the requests
and data are broadcast en the 1r{1terconnect|10na_ When the pProcessor snoops
the interconnection, the shared déta 1s lik;zly to be seen before the data is
actually needed. If we can fetch the data in advance, the following request
for this data will become a cache hit instead of a cache miss. Therefore,
the number of misses can be decreased. Besides, the activity of fetching the
shared data on the interconnection does not incur any extra transmissions, so
there is no bandwidth overhead. The inherent coherence protocol is employed
to identify the shared data. Moreover, we add a buffer for each processor to
gain more potential in the SF policy. These buffers store the data fetched

by our SF policy. To evaluate the potential of the SF policy, the buffers are

set as unlimited size to place the data on the interconnection. We first use a
experiment of traffic breakdown to verify that the SF policy surely reduces
the shared read misses. And we adjust different parameters to evaluate
the improvement potential of the SF policy. Our SF policy can achieve a
reduction potential about 8% in the amounts of cache misses over baseline
and a potential of 0.4% speedup over baseline.

This paper is organized as follows. The next Chapter 2 provides a rough
introduction to the workloads in PARSEC and SPLASH-2 benchmark suites.
Chapter 3 shows the configuration parameters used in the simulation. Chap-
ter 4 presents the experiment resuliﬁs of eié:ch Workload with different system
settings and highlights the dlverse Characterlzatlen of these workloads. Chap-
ter 5 introduces the SF pohcy Wﬁ"@h reh@S 011 the snogpmg protocol and the
inherent coherence protoc¢ol to ;" du@ﬁa‘r&q read misses. Chapter 6 gives a
comparison between the orlgmlal polm anﬁi!the SE pohcy It also presents
the improvement potentlal of our abqp?oac \ An oyerview of related works

in the workload characterlzatlon and prev1ous studles of hiding data access

latency are reported in Chapter 7 Fmally, Chapter 8 gives conclusions.

Chapter 2

Workloads

2.1 PARSEC Suité = ||
& f "1;;', ‘

|

r |

PARSEC isa benchméfk sgflté for studie;; <)if_ghip¥Mu1tiprocessors (CMPs).

It tries to assemble a progréﬁl selection that is‘ large and diverse enough to

be sufficiently representative for scientific studies. The suite includes not

only a number of important applications from the RMS suite but also sev-

eral leading-edge applications from Princeton University, Stanford University
and the open-source domain.

blackscholes is an Intel RMS workload. It calculates the prices for a

portfolio of options. The program is chosen to represent the field of analytic

partial differential equation (PDE)[4] solvers especially in computational fi-

nance and is limited by the amount of floating-point calculations a processor

can perform.

bodytrack is an Intel RMS workload. It tracks the pose of a marker-less
human body with multiple cameras. An annealed particle filter is employed
to track the pose using edges and the foreground silhouette as image features.
The program has four parallel kernels: edge detection, edge smoothing, par-
ticle weights calculation and particle resampling.

canneal is developed by Princeton University. It employs a simulated
annealing (SA) algorithm to minimize the routing cost of a chip design. This
optimization method tries to pseudo-randomly swap netlist elements. If the
swap would decrease the routing cost, it is.automatically accepted. With a
certain probability that is decreaSifig ove'-r:time a swap that would increase
the routing cost is also accepted so that the de81gn can escape from local
minima. The prograni- has a demanding; memory access behaviour and also
tracks the swaps globally: which mc@s dommumcatlon between threads.

ferret is developed by PI‘H]]C ton r!]Jnlve}ré.lty 1[4 1.2 search engine which
finds a set of images smnlar to q:ueryql;-age b1y analyzmg their contents. The
program represents emerglng next generatlon desktop and Internet search
engines for non-text document data types. Tt is parallelized using the pipeline
model with six stages. The first and the last stage are for input and output.
The middle four stages are for query image segmentation, feature extraction,
indexing of candidate sets and ranking. Each stage has its own thread pool
and the basic work unit is a query image.

fluidanimate is an Intel RMS workload. It simulates the underlying
physics of fluid motion for real-time animation purposes and its output can

be visualized by detecting and rendering the surface of the fluid. Every

time step, the program executes five kernels: rebuild spatial index, compute

densities, compute forces, handle collisions with scene geometry and update
positions of particles.

steamcluster is developed by Princeton University. It finds a predeter-
mined number of medians so that each point is assigned to its nearest center
for a stream of input points. The program is a common operation where large
amounts of continuously produced data has to be organized under real-time
conditions and spends most of its time evaluating the gain of opening a new
center. This operation uses a parallelization scheme which employs static
partitioning of data points. It_isgmemory bound for low-dimensional data
and becomes increasingly compUtétionaHiy intensive as the dimensionality
increases. V '-

swaptions is an Intel RMS, Workload "It prlces a. portfoho of swaptions.

~L

The program is ineluded becalise -of =

’i_(i élgmﬁcance of partial differential
equation (PDE)[4] and the Bidd se oi’!Mont]e Carlo simulation. The portfolio
array is partitioned mto a nurer r of 1-bl-ock§ ?qual to the number of threads
and the block is a881gned to" evell"y thread. Eaeh thread iterates through all
swaptions in the assigned work {init and computes the price.

vips was originally developed through several projects funded by Euro-
pean Union (EU) grants. The benchmark version is derived from a print on
demand service that is offered at the National Gallery of London. It is an
image processing system and includes fundamental image operations. The
program fuses all image operations to construct an image transformation
pipeline that can operate on subsets of an image and it can also automati-

cally replicate the image transformation pipeline to process multiple image

regions concurrently.

x264 is a H.264/AVC (Advanced Video Coding) video encoder. Motion
compensation scheme is used to detect and eliminate data redundancy. It is
employed to exploit temporal redundancy between successive frames. Motion
compensation is usually the most expensive operation that has to be executed

to encode a frame.

2.2 SPLASH-2 Suite

The SPLASH-2 suite is released to faqlilitate the study of shared-address-
space multiprocessorss It 15 expanded anci modi'ﬁed to include several new
programs as well as 1mproved versions of the orlgmal Stanford ParalleL,
Applications for SHared memorpf @LASH)[E] programs. The resulting
SPLASH-2 suite contains prog# S t}tat rep:resent a Wldel" range of compu-
tations in the scientific, engme*&rL ng and graﬁhlcs domalns

barnes simulates the 1nteract10n ofa sysjnem of bodles in three dimensions
over a number of time-steps, usmg “the Barnes-Hut N-body method. In this
program, most of the time is spent in partial traversals of the octree to
compute the forces on individual bodies. The communication patterns are
dependent on the particle distribution and are quite unstructured.

fmm simulates the interaction of a system of bodies in two dimensions
over a number of time-steps, using a N-body method called the adaptive
Fast Multipole Method. The major data structures are body and tree cells,
with multiple particles per leaf cell. In this program, the tree is not traversed
once per body, but only in a single upward and downward pass that computes

interactions among cells and propagates their effects down to the bodies. The

communication patterns are also quite unstructured.

lu factors a dense matrix into the product of a lower triangular and
an upper triangular matrix. To reduce communication, block ownership is
assigned using a 2-D scatter decomposition, with blocks being updated by
the processors that own them. The block size should be large enough to keep
the cache miss rate low, and small enough to maintain good load balance.
Elements within a block are allocated contiguously to improve spatial locality
and blocks are allocated locally to processors that own them.

ocean studies large-scale ocean-movements based on eddy and boundary
currents. It partitions the grids into squa'cfe—like subgrids rather than groups
of columns to improye the communleatlon to computatlon ratio. Grid com-
putations in the same horlzontal SéthOIl are mdependent of one another and

those in the same wvertical sectlerp f a Jshread of dependence.

.-l‘l‘"

radix is a parallel sorting alé rlth]l{l The Program is iterative, performing
one iteration for the keys Irl ieachq ;;:erat ﬂn &/ PLogessor passes over its
assigned keys and generates ! local hlstogram The local histograms are
then accumulated into a global hlstogram. Finally, each processor uses the
global histogram to permute its keys into a new array for the next iteration.
This permutation step requires all-to-all communication.

water evaluates forces and potentials that occur over time in a system
of water molecules. It imposes a uniform 3-D grid of cells on the problem
domain. Processors which own a cell need only look at neighboring cells to
find molecules that might be within the cutoff radius of molecules in the box

it owns. The movement of molecules into and out of cells causes cell lists to

be updated and therefore resulting in communication.

Chapter 3

Simulation Setup

We have evaluated PARSEC and SPLASH-2 benbhmark suites with Simics[12],
a full-system execution-driven si?ﬂﬁﬁoi;%’_fbg 8 processors with SPARC sys-
tems running Solaris 10. The $ir i(;s:.-!'.;‘i:;'ul'iator éxtends with the GEMS[13]
toolset that provides a det{@iled}: | emo-r}_f hie;r%rchy model and a detailed pro-
cessor model. We attacﬂ -a'calclr‘ie hierarch§ -of:'a private L1 cache for each
processor and a large shared L2 cachte. The cache model applies a MOSI
coherence protocol to maintain the consistency of the data. Since bus in-
terconnection is still widely used in recent multiprocessor systems. We also
implement a bus interconnection in GEMS for our workload characteriza-
tion. The traffic on the bus between L1 and L2 caches what we called L1-L2
bus is observed in the following experiments to extract the properties of dif-
ferent workloads. The configuration parameters are summarized in Table
3.1. These settings are applied in all of the experiments only except that we

mention in the article specifically.

We use the simlarge input set for PARSEC, and a recommended input

Table 3.1: Simulation Setup

Processor Number 8
Block Size 64 bytes
L1 Cache 64 KB, 4-way, 2 cycle access time
L2 Cache 4 MB, 4-way, 25 cycle access time
Coherence Protocol MOSI protocol
Network Type Bus

set size for SPLASH-2. A detalle(i Qﬁg%ggyatlon is showed in Table 3.2. For

both benchmark suites, W¢ %rm‘iaﬂ the %‘Qhes '%i‘m.}ng the initial 100 million
W
ation 'ff); the next 200 million

f““{'._

mstructions.

J [e NN
& =

In the followiné’{secti ns, t » bbre 1at101$'§§!_; used in the illus-
‘ = . - L] :5.
trating figures. 8 e r:;
2y - i _;é,n'

(1) “p” and “np”:) P e té];{ﬁ‘nstructlons decoding in

¢ . "i
ing in GEMS is disabled i_i;ﬁ.:iqji-a._j;'eﬁl:':l.

(2) “BASE” and “SF”: “BASE” represents that the result is under the orig-

inal policy; “SF” represents that the result is under our SF policy

10

Table 3.2: Input Set of PARSEC and SPLASH-2 suites

Benchmark

Input Set
blackscholes 65,536 options
bodytrack 4 cameras, 4 frames, 4,000 particles, 5 annealing layers
canneal

15,000 sf‘w:aﬁéﬂg&%” S5

o Ire step, 400,000 netlist elements
ferret 256 1me&g%uer1 =

fluidanimate

3‘525" frames
streamcluster 7 oints, 12’8J pqttnt dimensions
swaptions ions, 20,000 sxmulatlons
vips ; 662 ?_p:'bls
L WEN e B
x264 L i 0 36 1xé»ls* f28 frames
O L
eV 4R
barnes LN __,._{_ 14:6 384;@%10163
fmm i s -E-‘j'f 1"1& 384 particles
lu 512 512 matrix, 16 16 blocks
ocean 258 258 grid
radix 1M integers, radix 1024
water

512 molecules

11

Chapter 4

Workload Characterization

We try to explore thie characterization-fer both PARSEC and SPLASH-2

suites in this chapter. We will Q)&éﬁi{e j'!different factors for each workload

‘ |- |
in the following experiments; inicluding .1 ¢acheimiss rate, sharing degree of

J

data and traffic breakdowq of t{hﬁls LiT2 bu.s.‘: In these experiments, different
parameters are also appliéciz 'likhe Tidscache Siéé,—.cache line size and number of
cores. | . 7

In the first two sections, the L1 cache miss rate is observed to explore
the property of each workload. Moreover, we also analyze the effect of the
software prefetching policy done by the compiler. Software prefetching ex-
ecutes prefetch instructions inserted by compiler to move data close to the
processor in advance. In our experiments, the prefetch instructions are added
by gce compiler. The software prefetching policy in gce is mainly for loop
prefetching. We switch on or off the software prefetching scheme by enabling

or disabling the prefetch instruction decoding in the simulator.

Besides, the sharing behaviours in the multi-threaded programs and the

12

amount of traffic on the L1-L2 bus are evaluated. In a multiprocessor system,
the sharing behaviours cause a number of coherence activities. We calculate
the ratio of shared lines in L2 cache for each workload and distinguish the
shared lines based on how many different processors have this data in its L1
cache. The number of processors is called sharing degree. A higher sharing
degree implies that the program is likely to incur more transmissions to main-
tain the cache consistency. Since the memory accesses and extra coherence
requests may cause a bus contention and lead to a worse performance. We
observe the bus traffic between Ll and L2 caches as well as categorize the

traffic according to the type of the LCaChe'-,iequests placed on the L1-L2 bus.

4.1 L1 Cache'Size \ [

| m |l ,

We illustrate the L1 caghe Hh S ra‘glg:%vit}lil :ﬁllifferenjc Eache size in Figure 4.1
and Figure 4.2. It’s obv:i:;)ﬁ_s; t;}ia‘t we have gm‘lo_yver 'éache miss rate with the
increasing of L1 cache size. 11; is édsy to uﬁderstand that if there is a bigger
cache, we can store more data in the cache and the probability of finding
the requested data in the cache becomes higher. From the comparison of
these two figures, we can also find that PARSEC suite has a higher L1 cache
demand in our setting than SPLASH-2 suite.

We then compare the difference with switching the prefetching scheme
on or off. The figures show that enabling the prefetching scheme brings
advantage to cache miss rate in most cases. Although several benchmarks

in SPLASH-2, including barnes, fmm, 1lu and water, don’t get much bene-

fits from the prefetching scheme because of their lower cache miss rate. In

13

M 32KB M 64KB m128KB

8%

7%

6% i

Miss Rate

2%

1%

0% -
npoop npoop np o p np o p npop npp npoop npop npop npop

blackscholes bodytrack canneal ferret fluidanimate streamcluster swaptions vips X264 AVG

- U
%
G‘-}Een@mark Suite with the

Figure 4.1: L1 Cac

ing enabled) in Dlﬁgrent ache
I"“'\. . I.}F
".T}
bodytrack and water; 3 i s rate in smaller cache
y @ TR ?
size when turning ork;bh@} i é:f&éﬁh., 1s aggressively com-
. Sn

'\.I -"hl
peting the limited resou%@ ,@Eﬁlem(s e sug%{ls%%' , 50 prefetching data may

i.:-

easily cause a cache pollutlo ﬁ’@b@ﬁ%@grﬁhihage the performance.

4.2 Cache Line Size

Figure 4.3 and Figure 4.4 show the L1 cache miss rate with different line
size in this section. As we can see from these two figures, the cache miss
rate benefits from a larger line size. The augmentation of the line size can

exploit the spatial locality in the applications. Applying a larger cache line

14

W 32KB m64KB m 128KB

8%

7%

6%

5%

4%

Miss Rate

3%

. |]

1% i

0% -
npp npp npp npp npp npp npp

barnes fmm lu ocean radix water AVG

Switching of Prefetchm Sc 1ng d bled; p for prefetch-
ing enabled) in Dlﬂgrehlfﬁ

"I-J N
seems like we 1mpR§inent tching policy. Therefore,

we have less cache mlzsrr 9
p

o
harr qt;]:ler workloads because

streamcluster gain maa\cﬁl mo

et e
- r s

these two workloads haveu-"aq stre&ﬁ’nn-g b%i&avli)._}gi? and hence provide more

"}J"J,F‘“jx'_? b ;
spatial locality.
We can find that switching on the prefetching scheme still has advantage
in each line size setting. With the increasing of the line size, improvements
from the prefetching scheme diminish. Since a larger line size can exploit
more spatial locality, the prefetching scheme relatively gets less opportunities
to issue prefetch requests. Most of the SPLASH-2 workloads still have few
improvements from the prefetching scheme due to their lower cache miss rate.

Only the workloads with higher cache miss rate, like ocean and radix, have

a clearer effect in the experiment.

15

8%

7%

6%

5%

4%

Miss Rate

3%

2%

1%

0% -

H32B m64B m128B

npoop

Miss Rate

npop
blackscholes bodytrack

8%

7%

6%

5%

4%

3%

2%

1%

0% -

npop

canneal

np o p

ferret

np

p npp npoop np P npop npop

fluidanimate streamcluster swaptions vips X264 AVG

F3e

ark Suite with the
@}s%led; p for prefetch-

LI

e

m32B m64B m128B
|
a
np P np P npp np P np p np P np p
barnes fmm lu ocean radix water AVG

Figure 4.4: L1 Cache Miss Rate of SPLASH-2 Benchmark Suite with the

Switching of Prefetching Scheme (np for prefetching disabled; p for prefetch-

ing enabled) in Different Line Size

16

4.3 Sharing Degree

The sharing degree can be considered more particularly in two aspects.
One is to examine how many processors have ever accessed this shared data
along the total execution, and the other is to check how many processors have
this shared data in their local caches sometime during the execution with a
constrained cache capacity. The former aspect shows the characterization of
a program, and it has nothing to do with the hardware structure. The latter
one gives that there are how many caches to eohere at the same time in a
program under a specific cache orgz;nizat.i'(;n.

We first evaluate thertotal sharers of a progra&n along the whole execution
time. And we also adJust the Caehg__ln;le ilie to observe the effects on the
sharing degree. In Figure 4.5 a,li’l F‘fg—ﬁ?‘é' 7.6 the sharing degree of PARSEC
and SPLASH-2 suites jS demorrjrateg sAs o'pr expéctation, we can see that
the sharing degree grows as hrlegsme 1ncreases n these two figures. Since a
cache block holds a larger data it provides:a hlgher possibility to be accessed
by more processors.

However, we get a different result of sharing degree if we calculate the
number of processors which have the shared data in their local cache at the
same time with a constrained L2 cache capacity. The sharing degree with a
constrained cache capacity is presented in Figure 4.7 and Figure 4.8. We can
find that the sharing degree of these workloads doesn’t always grow while we
have a larger line size. This is due to the eviction of the shared data in a
limited cache size.

We then focus on the different properties of these workloads by observing

17

M 2sharers M3sharers MW4sharers M5sharers M6sharers M 7sharers m8sharers

10% -

5%

65%
60%
55% . .
50% . .
45% I .
o 40% . l
£
= 35%
3 il
@ 30%
2 il
wv 25% I .
20% I .
15% - I .

0% -
32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

blackscholes bodytrack canneal ferret fluidanimate ~ streamcluster ~ swaptions vips x264

V67

Degree

with Different Line

Size

M 2sharers M3 sharers mW4sharers M5sharers M6sharers M 7sharers m8sharers

65%
60%

55%

50%

45%

40%

35%
30%

Shared Lines

25% |

20% |

15%

10% -

5% -

0% -

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

barnes fmm lu ocean radix water

Figure 4.6: Sharing Degree of SPLASH-2 Benchmark Suite with Different

Line Size

18

65%
60%
55%
50%
45%
40%
35%
30%

Shared Lines

25%
20%

15% -
10% -
5%
0%

Figure 4.7: Sharingﬁ%

M 2sharers M3sharers MW4sharers M5sharers M6sharers m7sharers m8sharers

blackscholes

Shared Lines

65%
60%
55%
50%
45%
40%
35%
30%

25% |
20%
15%
10%
5% -
0% -

32 64 128 32 64 128 32 64 128 32 64 128

32 64 128 32 64 128 32 64 128 32 64 128

=

bodytrack canneal ferret fluidanimate streamcluster ~ swaptions vips X264

&

M 2sharers M3 sharers m4sharers M5sharers M6sharers M 7sharers m8sharers

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

barnes fmm lu ocean radix water

Figure 4.8: Sharing Degree of SPLASH-2 Benchmark Suite in a Constrained

Cache Capacity with Different Line Size

19

their sharing behaviours. canneal and 1u show only trivial amount of shar-
ing. canneal has a hunger for cache capacity because of its large working
set. So the sharing is limited due to its frequent data exchange in the cache.
Since the data stays in the cache for a very short time, there are only a few
chances to have sharing behaviours between processors. 1lu divides a dense
matrix into an array of small blocks and exploits temporal locality. Blocks
are updated by the processors that own them to reduce the communication.
Therefore, each processor executes its working set independently and incurs
little sharing. Except those two workloads:we mentioned above, other work-
loads present lots of sharitig behaviours. tI;}he shraring in most benchmarks is
around 20% to 50%. bodytfack streamclustté’r;- X264, and ocean present a
large amount of sharing. 'x264 shows the .most 51gn1ﬁcant amounts of sharing
due to its motion compensation $Ch? Réferenee frames are shared for the
encoding of other frames. How&a Ty Ii'pst of the shared data are only shared
by no more than 4 proc__e.gsorJI, E blacrk-schpﬁres also presents a number of
sharing, but almost all the shared data are only accessed by two processors.
The data is shared between the bé-rent thféad and its child thread. ferret
breaks an image into several non-overlapping segments and performs a im-
age similarity search in its database. Besides, the database is scanned by all
threads to find entries similar to the query image and the size of the database
is practically unbounded. So the cache line is unlikely to be accessed more
than once and it is easy to be replaced. Therefore, there is a small amount
of sharing in this workload. Moreover, most of the sharing in this workload

is also between two processors.

20

4.4 Traffic Breakdown

In this section, we try to explore the traffic of the bus interconnection
between the private L1 caches and the shared L2 cache. The amount of
traffic is evaluated and decomposed into four categories by the type of cache

misses to observe the ratio of different kind of misses.

(1) Private Write: a write request for a cache line which has no sharer

(2) Shared Write: a write request, for a.cacheline which has one or more
(=
sharers :

(3) Private Read: a read request‘fqr a cache line Wthh has no sharer

F E o

L ‘-cqche line which has one or more

(4) Shared Read: a read.request

| ¢
\
I .

The sharer we mentlon here applies the sharing definition with a con-

4
r

= %\\

sharers l

strained cache capacity. The reason Is that it provides a actual coherence
behaviour during the execution. Figure 4.9 and Figure 4.10 show the traffic
breakdown of the L1-L2 bus with different number of cores. In canneal and
lu, the ratio of sharing traffic is extremely low. This is because these two
workloads have a small amount of sharing as showed in Figure 4.7 and Fig-
ure 4.8. The other workloads provide plenty of sharing traffic, especially in
streamcluster. From these two figures, we can find that there is about 22%
to 32% shared read traffic in average. It also means that there is around 22%

to 32% shared read misses are issued to the L1-L2 bus. We try to figure out

21

W Private Write M Shared Write m Private Read M Shared Read

umopyjeaig diyjesr

4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

4 8 16

AVG

X264

vips

fluidanimate streamcluster swaptions

ferret

canneal

blackscholes bodytrack

N
)
—
Q
o
(-
o
—~
<8}
e
g
=
Z.

W Private Write m Shared Write ~ m Private Read M Shared Read

umomjeasg duyjelL

4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

4 8 16

AVG

fmm lu ocean radix water

banes

2 Benchmark Suite with Differ-

Figure 4.10: Traffic Breakdown of SPLASH-

ent Number of Cores

22

a way to reduce the large amounts of shared read misses and thus improve

the workload performance.

23

Chapter 5

Snooping Fetch

In Section 4.3 and Seétion 4. e observe that there are plenty of shared
read misses in both PARSEC and ELASH 2 suites. However, all the re-
quests will be placed on the'bus and bqoe:dcast to all processors in a snooping
protocol. Each processor snoop;lhe request on the bus to see if the requested
data is in its own cache. If S@; tlhere might be some cache state transitions to
maintain cache coherence accordlng td'its 1nherent coherence protocol. Oth-
erwise, the processor ignores this request. There might be some potential to
better utilize these information. The shared data is likely to be seen on the
bus before the processor actually requests this data. There is no extra band-
width overhead when fetching data on the bus in addition. To reduce the
amounts of shared read misses, we propose a policy, called Snooping Fetch
(SF'), which utilizes the broadcasting information in the snooping protocol.

We try to identify the shared data in our SF policy. The inherent coher-

ence state is used for indication. In MOSI coherence protocol used in our

experiments, “I” state means this cache line is invalid. To enter this state,

24

this cache line should be either read or write by its local processor and then
there is one other processor wants to modify this data. Write miss will be
sent by that processor and the shared lines in others’ caches will be invali-
dated. So the “I” state can imply that this data is once shared between at
least two processors. There is another benefit when using “I” state indica-
tion. Fetching data into an invalidated cache line won’t need any eviction
and hence no useful data will be dropped. Therefore, no cache pollution issue
will be incurred. We use a simple example to explain our idea.

For instance, One-Producer-Multiple=Consumer Sharing would benefit
from the SF policy as Figare 5.1 and Figlif@ 5.2 present. In the first place, all
these 4 processors have onershared data. Wheﬁ”é-}le producer tries to modify
the data(Figure 5.1(D" and Flgure 9. 2@) t-he shar:ééi' data is invalidated in
all the consumers for both orlgm,al %SF' policies(Figure 5.1@) and Figure
5.2@). While the consumers tr} 0 reﬂi the rﬁodlﬁed datain sequence, a read
miss will be issued for each colLlumerZI;“lgu!lr? 51@@@) and therefore lots
of read misses will be ineurredyin the origitial policy. Corresponding to each
read miss, one consumer fetches the data irf-uo its local cache at a time(Figure
51@®®). In SF policy, the modified data will be placed on the bus when
the first consumer requests this data(Figure 5.2@)). After snooping the bus,
all the other consumers will find that their local L1 cache has the same tag
as the data on the bus and this cache line is in “I” state. So they will fetch
the modified data into its own cache from the bus in advance(Figure 5.2®).
Like Figure 5.2 shows, the number of read misses will be reduced because the

following read requests from the consumers will hit in its local cache(Figure

5.200)).

25

Proc. 1 Proc. 2 Proc. 3 Proc. 4
(producer) (consumer) (consumer) (consumer) o
)) read read read
write miss miss miss miss
%v.T%tch %v.T%tch T%v.T%tch
BUS

l

[Memory]

Figure 5.1 [AngExample ofiOriginal Policy

Proc. 2 Proc. 3
(consumer) (consumer)

Proc. 4
(consumer)
(@) 1read 1 read
write miss miss hit
. .
T inv.T@etch T inv.T@etch
BUS

{
[Memory]

Figure 5.2: An Example of SF Policy

Proc. 1
(producer)

%ad
hit

1242,

26

Although fetching the invalidated data can hide the data access latency
without incurring any overhead. The potential of SF policy is extremely
limited because of the small portion of the invalidated cache lines in L1
caches. To settle this problem, we add a buffer, called Snooping Fetch Buffer
(SFB), besides the L1 cache for each processor. The SFB is acted as a cache,
but it only stores the data fetched by the SF policy. Since a larger space is
available to place these fetched data, we now focus on not just the invalidated
data but all kinds of data on the bus. This is because that the invalidated
data only occupies a small fraction of the shared data. The invalidated data
is still fetched into the Ll cache as the pi;imary idea and all the other data
on the bus is fetched mto the SFB. When these data are requested by the

processor, there is a Ll ‘eache hi"f or a SFB, hit 1nstead of a L1 cache miss.
l " |

Furthermore, we should not fetéH allsthe d,a'ta on the bus; the type of request

should also be taken into consild ratif[l} If] z{ write request is placed on the
bus, it means that this data IS! ng :ch)- -be Wﬁdlﬁed so fetching this data is
meaningless. Therefore, SF pohcy should functlon only when the request on
the bus is a read request. ;

To reduce the shared read misses, our SF policy tries to fetch the shared
data in advance as soon as the data is placed on the bus. In SF policy, adding
a SFB for each L1 cache incurs a storage overhead. But the bandwidth issue

is eliminated since we don’t issue any additional requests and there is no

extra data transmission.

27

Chapter 6

Evaluation of SF Policy

We use SFBs with iinlitnited=size to examiie the potential of the pro-

posed SF policy. Besides, based| onf_ﬂle previous workload characterization

i

in Chapter 4, we classify the qukl!(-)éﬁ:s in| PARSEC and SPLASH-2 suites

into different categories. ..

(1) Small amount of sharing (SS): Thosesworkloads present a small amount

of sharing, including canneal; 1u

(2) Large amount of sharing (LS): Those workloads present a large amount

of sharing, including bodytrack, streamcluster, x264, ocean

(3) Sharing between two sharers (TS): The shared data in those workloads is

almost only accessed by two processors, including blackscholes, ferret

(4) Low L1 cache miss rate (LM): Those workloads have a quite low L1 cache

miss rate, including barnes, fmm, water

28

(5) Other workloads (Other): Those workloads do not have the above-mentioned

properties, including fluidanimate, swaptions, vips, radix

There is a clearer demonstration in the following experiments by applying

these classifications.

6.1 Traffic Breakdown Comparison

To check the validity of our'approach, we compare the traffic breakdown
between the original pelicy,.and the proplb;sed SE policy. The experiment is
like what we present in Segtion 4.4 except that we.take away the portion

of write traffic. The reason is that .,?.H erte 1nstructlons will issue a write
miss to invalidate all the copies pexee-ﬁ‘ -t:he requested data is already in its
local cache and also the-cache line is iqla mbdlﬁed state. Since our SF policy
only functions when meetmg a read reque'§t§ and‘all the fetched data will
be in a shared state, we won't get any advantage from those write misses.
Therefore, the write traffic won’t be affected by SF policy and we only focus
on the effects in the read traffic.

Figure 6.1 and Figure 6.2 show the traffic breakdown under two policies
with different number of cores. And the amount of traffic in SF policy is
normalized to its corresponding traffic in the baseline policy. In the SF
policy, shared read traffic is what we expect to be reduced. This is because
whenever someone issues a read request to a shared data, other sharers can

fetch the data on the bus in advance. Therefore, the subsequent shared read

misses will be decreased and the shared read traffic will also be diminished.

29

We can see that shared read traffic does decrease in almost all the workloads,
and the reduction of the traffic almost all comes from the loss of the shared
read traffic. However, there is also a reduction in private read traffic. In our
conjecture, private read traffic should not get any benefits from our SF policy.
In fact, the reduction of private read traffic can be regarded as a special case
of the reduction of shared read traffic. For instance, if one shared data is
going to be requested by two different processors. However, there is a pretty
long interval between these two requests. The shared data may be evicted
from the L1 cache in the processer which issues the former request as the
latter request is issued, 80 the latter reqi,;est Would be treated as a private
read request instead of a shared read request. In our SF policy, the latter
request will become a* hlt n thé—SFB Therefore we' diminish the amount
of private read traffic. Besides, ydu@_lﬁhe unlimited, size of SFBs, we can
tolerate a much longer interval i) tweel‘hrequrests S0 more private read traffic

o T

can possibly be decreased 1n t}] iexperlmen)f :|

As we talked in Sectlon 4.3y canneal and Iwin the SS class have a trivial
amount of sharing. These two We-rkldads have only a few opportunities to
take advantage of the SF policy. The reduction of the traffic mainly relies
on the loss of private read traffic. We can also observe that blackscholes
and ferret in the TS class have much less reduction than other workloads.
As the example we present in Figure 5.2, once a shared data is modified by
one processor, the next sharer who tries to access this data should issue a
read request to get the modified data. In the meantime, other sharers can

fetch the data on the bus in advance and start to acquire the benefits from

the SF policy. Therefore, it needs at least three sharers to take advantage

30

W Private Read M Shared Read

SS LS TS
0.9

0.8

0.7

0.6

0.5

0.4

Traffic Breakdown

0.3

0.2

0.1

4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816
BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF
canneal lu bodytrack streamcluster X264 ocean blackscholes ferret AVG

E 15,

Figure 6.1: Traffic "cy and SF Policy in

Different Number cgﬁbﬁéé !

of the SF policy. %0\!{76

two sharers in the%‘y" as

only gain few benefi Ité%lr approach
situations. One is the %ﬁmﬁmn
than two sharers, and the ot%@ﬁ@ he fix

5;

g’ accessed between
s§1 the TS class can
Th ,er%ﬁt are derived from two
ﬁ%e @fﬁ behav1ours with more
..5_, lﬁh@'both the sharers try to load
the shared data. The latter case is because that while one sharer fetches
the data for the first time, the other sharer can also issue a fetch by the SF
policy since it saw a read request for the shared data. The LS class presents
a great improvement in the SF policy due to their large amounts of sharing
behaviours. We can achieve a cache misses reduction of 8% in average and

up to 20% in streamcluster.

31

i Private Read M Shared Read

LM Other

0.9

08

0.7

0.6

0.5

0.4

Traffic Breakdown

03

0.2

0.1

4816 4816 4816 4816 4816 4 816 4816 4816 4816 4816 4816 4816 4816 43816 4816 4816
BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF
barnes fmm water fluidanimate swaptions Vips radix AVG

o

{';l-

In this experlment %pe aﬁ;ﬁi
chine and evaluate the eﬁeﬁ’@g}%

policy and our SF policy in L1 cache miss rate and performance(i.e. CPI).

st .t mn ,er‘-’ﬁ‘!I Cogé“s in the simulated ma-
Lgf@'m(oads between the baseline

6.2.1 L1 Cache Miss Rate

In Figure 6.3 and Figure 6.4, we can find that almost all the workloads
get a lower cache miss rate with a higher number of cores. Most programs
exploit the data-level parallelism to implement the parallelization. Therefore,

the size of working set for each thread gets smaller when more threads are

32

M4core M8core M16core

8%

SS LS TS
7%

6%

5% -

i |
i |)

2%

Miss Rate

1%

0% -
BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF

canneal lu bodytrack streamcluster x264 ocean blackscholes ferret AVG

- "-'!'{-%_
\%’Ewééj_an Baseline Policy and

v
Figure 6.3: L1 Cache Miss
SF Policy in Diﬁeré@%.ﬂﬁ

F"'(

=HLSl

divided in a highe

remains the same @qe?ea i i_ﬁﬁ' @ increasing of the

number of cores. \i'?;

rﬂumb of cores:. Llc he‘smg. for each processor

Ex%nvg‘%b _{‘nﬁk 111 the LS class are no-

When applying the ‘E'E ,pﬁ:i(:}ﬁzbl e im
ticeable among all of the Wo%ﬂ'@;iﬁﬁﬁgﬁlﬂ Eﬁ}éo shows a great amount of
improvements in the SF policy. Although the amount of sharing in radix
is less than the workloads in the LS class, its ratio of shared read traffic
accounts for a large proportion of total sharing behaviours. We can see that
it achieves about 1% reduction in L1 cache miss rate. Refer to the workloads
in the LM class, the impact on their exceedingly low cache miss rate is slight

even though they present lots of traffic reduction in Figure 6.2. Generally,

the L1 cache miss rate presents a reduction of 0.4% in average.

33

M4 core m8core M 16 core

8%

LM Other
7%

6%

5%

2%

Miss Rate

3%

2%

1%
o]miim

BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF

barnes fmm water fluidanimate swaptions vips radix AVG
- s = -]
yE = B G
.a'- " - e

6 e
¥ o3 -ﬁr
tweéﬁ-Basehne Policy and

Figure 6.4: L1 Cachlg 'MISS
SE Policy in Dlﬂ"er%lt "ﬁ-ﬁ ber

"h.1
6.2.2 Perfor:man

ﬁ?’

In our expectatio e in ﬁiore benefits from the
b m%tll {&F ol ___lde% X

higher sharing degree in a Ia}r.gﬁr l'jumBer of %Q]ES However, we can observe
ACHTY i j-.
that there is no identical trend with the increasing number of cores in Figure
6.5. The reason is that the cache miss rate is also decreased with the increas-
ing number of cores as Figure 6.3 and Figure 6.4 present. The lower cache
miss rate diminishes the demands for the data which we fetched in advance
from the SF policy. As we discussed in Section 6.2.1, the LS class and radix
present more improvements in performance(i.e. CPI) because of their larger
amounts of shared read traffic. Due to the property of only two sharers, the

TS class shows practically no improvements from the SF policy. We achieve

a speedup up to about 1% and around 0.4% in average over baseline.

34

W4 core m8core 16 core
100.0% Ss Ls s M Other

99.5%

99.0%

98.5% -

98.0%

97.5%

Normalized CPI

97.0%

96.5%

96.0% -

95.5%

95.0%

<

: Htx; o
In this experiment dju ‘1:;1' he simulated machine
and evaluate the effects of lifferent ads. b emil the baseline policy
—— Tt ".:lT-EI a7 Wi v
and our SF policy in L1 cache niiss rate a rmance(i.e. CPI).

FeEgel™
6.3.1 L1 Cache Miss Rate

In Figure 6.6 and Figure 6.7, we can observe that as the L1 cache size
increases, the potential of SF policy slightly lessens in almost all the work-
loads. Although we may meet more invalidated cache lines in a larger cache,
the ratio of this condition to the total amounts of memory requests is still

negligible. Since a smaller cache implies more cache misses, there are more

35

M 32KB M 64KB m128KB

8%
SS LS TS

7%

6% i

-« 1
4% - I I
3% - I 1

2%

Miss Rate

1%

0% -
BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF

canneal lu bodytrack streamcluster X264 ocean blackscholes ferret AVG

"'53;?
\(’cwaﬁ_ar Baseline Policy and

Figure 6.6: L1 Cachg_é.‘:'ﬁ}[iss
SF Policy in Differgﬁth .@-ac
N

o]

)
opportunities to gain be »
Because the Tg':izlalps ;:mjg degree than other
workloads, our appro,échﬁur cl‘;):@eﬂhﬁts from this kind of

property. streamclust ‘% I _‘ES class all present more
than 0.8% reduction in cache {ﬁﬁ%ﬁ@m’ibe‘-SF policy due to their great
sharing degree and the aggressive competition for cache resources. radix
also presents up to about 1% cache miss rate reduction because of its great
amounts of shared read misses as we mentioned in Section 6.2.1. According
to Figure 4.8, we can find that the LM class shows a high sharing degree.
However, owing to their low cache miss rate, the miss rate reduction isn’t
impressed in the experiment result even though they still decrease lots of
miss requests. In a smaller cache size, we can achieve a reduction of 0.5% in

average in L1 cache miss rate.

36

m32KB m64KB m 128KB

8%

LM Other

7%

6%

5%
4%
3%
2%

BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF BASE SF

Miss Rate

barnes fmm water fluidanimate swaptions vips radix
- s = -]
JBF = g o>
.a:h.r J i - 1"'@;_% "fﬂ
/

Figure 6.7: L1 Cachéf"l\/[iss

L3 p f’rjﬂ ""-«
. . . oy o,
SFE Policy in lefer%'ft "@féx =
L
i
G, J‘._lj:'
"a:;i? 'ﬁ"!u-l

I e@%}. g‘f"'f) just corresponds to
: ;'Q%"G and Figure 6.7. As the

Figure 6.8 presents";tg,ha@'r@e

LT

rc:,dl
the cache miss rate reducﬁbh @

owed "
S ’
same reason for cache miss rate reduction we discussed in Section 6.3.1, the

performance(i.e. CPI) in a larger cache also exhibits a less improvement from
our approach. The LS class and radix still perform a larger improvement
than all the other workloads because they have lots of shared read misses.
The workloads in the T'S class have a similar performance(i.e. CPI) to the
baseline policy. Since there is almost no sharing between more than three
sharers in the TS class, it barely gets benefits from the SF policy. We can

get an average of 0.4% speedup and up to about 1% speedup over baseline.

37

Normalized CPI

m32KB W64KB m128KB
100.0% s Ls s LM Other

99.5%

99.0%

98.5%

98.0%

97.5%

97.0%

96.5% -

96.0% -

95.5%

95.0%

&

s
("b\

Figure 6.8: The Speedup of SF Policy with Different Cache Size

38

Chapter 7

Related Work

7.1 Workload Charé;&é;ﬁzation
! |
TR
PARSEC and SPLAS-H:-2 b;enchmark su'it:esaare Widely used in many dif-
ferent researches for the multiprocessor systems. They both provide parallel
programs for the evaluation of architectural ideas and tradeoffs. Bienia et
al.[2] provide an overview of the PARSEC suite. PARSEC suite assembles a
parallel program selection that is large and diverse enough to be sufficiently
representative for scientific studies. This paper illustrates the behaviour of
each workload and analyzes the parallelization, working sets, locality and
traffic. A second version of PARSEC has been released in PARSEC 2.0[3].
SPLASH-2 is also a suite composed of multi-threaded applications. Woo
et al.[18] expand and modify the original SPLASH programs to provide a

broader coverage of applications and a better interaction with modern sys-

39

tems. They quantitatively characterize the SPLASH-2 programs in terms
of fundamental properties like PARSEC[2]. This paper also provides some
specific guidelines for pruning the space. Bienia et al.[1] analyze the PAR-
SEC and SPLASH-2 suites for instruction mix, communication and memory
behaviour on CMPs. It shows that SPLASH-2 and PARSEC are composed
of programs with fundamentally different properties. Each divergence in the
experiment comes from a distinct reason. In our work, we also try to charac-
terize the benchmark suites with different parameters and observe the diverse
behaviours of these workloads. Different from the above-mentioned papers,
we try to evaluate the effect on the Wo'_r'kloads when applying a software

prefetching policy.

7.2 Hiding Pata llzxc%s Hatehcy
' n ||

To hide the data access_lajceﬁcy, predictirig;:the following requests which
are going to happen in the f;)resééable futtire s ‘one way to achieve. The
prediction has been studied for a long time. Many researches are trying to
propose a efficient way to make a effective prediction and incur less overhead
in the meantime.

Sharing patterns are widely used as a hint to predict the subsequent be-
haviours. Mukherjee et al.[14] and Lai et al.[9] bring an idea inspired by a
two-level branch predictor. They monitor the coherence activities and store
these activities in a buffer. The buffer is a two-level buffer in each directory.

The first level buffer, called Memory History Table (MHT), is indexed by

the data block address and each entry contains the most recently incoming

40

coherence activity and a pointer to the next level buffer. The second level
buffer, called Pattern History Table (PHT), stores all observed sequences of
coherence messages. Following the history information, the prediction can be
made. Kaxiras et al.[8] use the instruction as an index instead of using the
block address. Since code is much smaller than datasets, using instruction-
based predictor can get a great deal of entry reduction and therefore needs
fewer hardware resources. The instruction-based prediction examines the be-
haviours of load and store instructions in relation to coherence events and
also keeps track of the history information.in a buffer to make predictions.
However, these papers we mentionea abo"e/e only predict the next data access
when meeting the current request Wenisch ét; al [17] explore that groups of
shared addresses tend to he acceS_"ed toget'her Wlth the same order, and also
recently accessed address streamﬁ 5&_ llf to recur. Based on their obser-
vation, this paper proposes a slc eme!‘[_to eliutnnate coherent read misses by
streaming data to a processor. !T ey u;e the rrnss hlstory from recent sharers
and move data to a subsequent Sharer in adva,,nce of data requests. Somo-
gyi et al.[16] exploit not only the ternporal streaming but also the spatial
streaming. This paper records and replays the temporal sequence of region
accesses as well as uses spatial relationships within each region to dynami-
cally reconstruct a predicted total miss order. All these papers keep track
of a history information and issue prefetch requests based on the prediction.
These properties cause extra bandwidth issues. However, there is no band-
width overhead in the SF policy since our approach incurs no additional
transmissions.

Since coherence protocol is a necessary to maintain the consistency of

41

the data between processors, it incurs some extra coherence traffic. So to
hide the data access latency, another way is to mask or even reduce those
traffic. Huh et al.[7] have an observation that false sharing[6] and silent
store[10][11] take a great fraction of the coherence misses. Those misses can
be ignored because the cache has a correct data but the wrong coherence
state. Therefore, they break the communication of a shared value into two
constituent parts: One is the acquisition and use of the value, and the other is
the communication of the coherence permissions that indicate the correctness
of the value and thus the execution: The fizst. part applies a speculative cache
lookup and computation; and the':secon'd half uses the original coherence
protocol to provide a mean | fof detecting a mls—speculatlon and recovering
correctly from it. Cheng et a], fS']’ focus on 1mprov1ng the performance of
applications that exhibit a produpe ?ﬁﬂﬂlqr sharing. They propose a novel
directory delegation mechamsrd heras[ly the hotie node of a particular cache
line of data can be delegated t!oianotqﬁer n(!m! Durlng the period in which
the directory ownership is delegated the home node forwards requests for
the cache line to the delegated home node..Qther nodes that learn of the
delegation can send requests directly to the delegated node, bypassing the
original directory as long as the delegation persists. Moreover, the mechanism
is extended to enable the producer to speculatively forward newly written
data to the nodes which are believed that the nodes are likely to consume it in
the near future. Comparing to these two policies, the SF policy doesn’t have
to change the inherent coherence protocol. The only difference is to fetch the

data during the regular snooping and the fetched data is in a shared state.

42

Chapter 8

Conclusions

In this thesis, we chrai‘ra,cterizeﬁ:he Workioads in PARSEC and SPLASH-2
suites with different conﬁguratlons 5531‘ daghe size and larger line size both
favor the cache miss rate; We hlro grlre a comparlson of switching on or off

the software prefetching schem% Most applicatlons beneﬁt from the effect of

prefetching. But the caglie pollutlon issue should be taken care when a small
cache size is applied. The sharmg’ behaviOurs are remarkable in the multi-
threaded programs. We observe that there is about 22% to 32% shared read
traffic on the bus interconnection in both PARSEC and SPLASH-2 suites.
It also implies that there are plenty of shared read misses.

Since there are a large amount of shared read misses in both PARSEC
and SPLASH-2 suites, a Snooping Fetch (SF) policy is proposed to reduce
these misses by making use of the shared data which is transmitted between
processors in a snooping protocol. The SF policy is to fetch the data on the
bus in advance once a read request is issued and the data is placed on the

bus. Our approach achieves a reduction potential of 8% in average and up

43

to 20% in traffic on the bus between the L1 and L2 caches over baseline,
a reduction potential of 0.5% and up to 1.2% in L1 cache miss rate over
baseline, and a potential of about 0.4% speedup in average and up to 1%

speedup over baseline.

44

Bibliography

1]

C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative com-
parison of two multithreaded,benchmark suites on chip-multiprocessors.
In Proceedings of the 2008 [ntematwnal Symposzum on Workload Char-

acterization, September 2008.

C. Bienia, S. Kumar J. P Sm.gh, Iaﬂd‘ K. Li r:fhe parsec benchmark
suite: characteriZation andtardjﬁ'éctqral implications. In PACT °08:
Proceedings of the 4 7th int TLatzarlml co'n{er’ence on Parallel architectures
and compilation; teehmquds,& pages 72—5{1, NeW York, NY, USA, 2008.
ACM. %

C. Bienia and K. Li. Parsec 2.0:" A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Model-

ing, Benchmarking and Sitmulation, June 2009.

F. Black and M. S. Scholes. The pricing of options and corporate liabil-
ities. Journal of Political Economy, 81(3):637-54, May-June 1973.

L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coherence proto-
col optimized for producer-consumer sharing. In HPCA ’07: Proceedings

of the 2007 IEEFE 13th International Symposium on High Performance

45

[10]

[11]

[12]

Computer Architecture, pages 328-339, Washington, DC, USA, 2007.

IEEE Computer Society.

M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Sten-
strom. The detection and elimination of useless misses in multiproces-

sors. SIGARCH Comput. Archit. News, 21(2):88-97, 1993.

J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence decoupling:
making use of incoherence. SIGARCH Comput. Archit. News, 32(5):97—
106, 2004.

S. Kaxiras and J. R. ,qudmdh. Imiproving ee-numa performance us-
ing instruction-based prediction. In HPGy '99... ‘Proceedings of the 5th

—

International Sympogium dn ﬁi'gh]f’éffbrmance- Computer Architecture,
Far=

page 161, Washington, DC,jUSE&ﬂﬁ%.HEEE Computer Society.
; |

A.-C. Lai and B. Falsafi. 1\'1 mor—SfF'Sharimg predictor: the key to a specu-
!
lative coherent dsm. S[QAECH Comp'u!ﬁ.,_:félrchit. News, 27(2):172-183,

1999.

K. M. Lepak and M. H. Lipasti. Silent stores for free. In MICRO 33:
Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, pages 22-31, New York, NY, USA, 2000. ACM.

K. M. Lepak and M. H. Lipasti. Temporally silent stores. SIGARCH
Comput. Archit. News, 30(5):30-41, 2002.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full

system simulation platform. Computer, 35(2):50-58, 2002.

46

[13]

[14]

[15]

[16]

[17]

[18]

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-

facet’s general execution-driven multiprocessor simulator (gems) toolset.

SIGARCH Comput. Archit. News, 33(4):92-99, 2005.

S. S. Mukherjee and M. D. Hill. Using prediction to accelerate coherence
protocols. SIGARCH Comput. Archit. News, 26(3):179-190, 1998.

J. P. Singh, W. Weber, and A. Gupta. Splash: Stanford parallel ap-
plications for shared-memory..,Technical report, Stanford, CA, USA,
1991.

]
I:

S. Somogyi, T. F. ' Weniseh, A. Ailamaki, and B. Falsafi. Spatio-temporal
memory streaming. | SI GAE_CH Cfomput Avetit. News, 37(3):69-80,

=3
< | |

| il'[i._ i

T. F. Wenisch; S. Somogﬂi, N. Hrérdavdrllas, J. Kim, A. Ailamaki, and

=y

2009.

B. Falsafi. Temporai':st-realrlmjng of shared mgnlofy. In ISCA °05: Proceed-
ings of the 32nd annualﬁnte’rhationa?’ symposium on Computer Archi-
tecture, pages 222-233, Washington, DC, USA, 2005. IEEE Computer

Society.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: characterization and methodological considerations. In ISCA

'95: Proceedings of the 22nd annual international symposium on Com-

puter architecture, pages 24-36, New York, NY, USA, 1995. ACM.

47

	MyCover
	Merge1
	abstract_chinese
	PARSEC and SPLASH-2 Characterization

