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中文摘要  

 近年來，由於能源過度使用所造成的能源危機及全球暖化問題，「節能」儼然

已成為ㄧ個值得我們思考如何建立一個永續發展世界的重要議題。大多的節能研

究著重於技術導向的解決方法，少數使用活動辨識技術來輔助節能系統，但他們

仍然忽略了使用者的感受，因此提供的節能服務無法滿足使用者需求。 

智慧家庭下的使用者活動辨識技術已逐漸成熟，其做法大多為在環境中佈建

各類感測器以收集環境資訊以及使用者與環境之互動資料，例如：室內溫度、室

內照度、使用者動靜及環境中感測器之觸發狀態，並建立活動辨識模型。現有的

行為辨識節能系統多半只考慮當下與該活動相關性密切的感測資料，未考慮到背

景已開啟之電器，這些被忽略的電器可能也與該活動相關且具大量能源消耗，而

在多人活動辨識的情況下，辨識率往往較單人活動辨識低，此外，他們往往忽視

環境中使用者的感受，可能導致節能效果不佳或更多不必要的能源消耗。 

 本研究的主要貢獻有以下三點：第一，將家電的能源消耗量納入推論考量，

找出執行某活動所觸發的確切能源消耗，並透過推論技術得知該活動與某些家電

耗電量的關係。第二，因為我們是過群體生活，為了能進行多人活動辨識，我們

根據區域性來進行資訊匯集(data aggregation)以有效簡化多人辨識時所需資料關連

(data association)的複雜度，如此亦能較準確推論該區域內的所有活動以及相對應

的耗電量。第三，不只是單純的行為辨識，我們根據廣受接受的標準化舒適度評

量指標來全面性地衡量環境中使用者的舒適程度，結合前述之能源相關行為辨識

結果，在兼顧舒適度以及節能效應前提下提供適當的節能服務。 

 

關鍵字: 普及家庭環境、行為辨識、節能、群體活動、動態貝氏網路、使用者

舒適度、情境感知 
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Abstract 

 In the recent years, energy saving has become an important issue due to 

energy crisis and global warming caused by overused energy consumption. Therefore, it 

is worthy of concern for us to think about how to create a sustainable world. Most of the 

prior works on energy saving focused more on technology-oriented solutions whereas 

few works exploit activity recognition to assist energy saving system. Even taking 

human activity into consideration, most of them ignore user feeling. For this reason, the 

energy saving services these systems provided often cannot meet user need. 

The techniques of activity recognition in a smart home have been more mature 

than ever. The researchers often deploy many kinds of sensors to collect environmental 

information and the interactions between users and their environment, e.g. indoor 

temperature, indoor illumination, users’ motion and states, to build activity recognition 

models. Now the present home energy saving systems based on activity recognition 

merely take those appliances switched on due to the onset of an activity, yet often 

ignoring those appliances which are turned on and indirectly or implicitly related to the 

activity (referred to as background appliances). The usage of these implicit appliances 

might be one of the main factors that cause the power consumption. Moreover, the 

accuracy of multi-user activity recognition is often lower than the one with single-user, 

which makes energy saving in multi-user environment more difficult. And the most 

important issue about energy saving is that most of prior works or systems seldom 

evaluate user comfort in a more quantifiable way to determine a more favorable energy 

saving policy. 

To sum up, there are three main contributions in this work: (1) We associate power 

consumption level with a context of interest so that we can provide users more thorough 
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feedbacks. More specifically, we will identify the power usage of those implicit 

appliances when a context is recognized. As a result, such a correlation between a 

context and its power consumption can be utilized to facilitate more spontaneous power 

saving. (2) In order to make multi-user activity recognition far less intractable, we 

reformulate this problem and take a group of users in the same area/zone as a whole to 

greatly reduce the complexity of data association inherent in a multi-user activity 

problem. (3) Using a composite and standard-based index to comprehensively evaluate 

real user comfort and to make appropriate energy saving policies without compromising 

both user comforts. 

  

 Keyword: Pervasive Home Environment, Activity Recognition, Energy 

Saving, Group Activity, Dynamic Bayesian Network (DBN), User Comfort, 

Context-Aware 
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Chapter 1   

Introduction 

1.1  Motivation 

In the recent years, environmental issues regarding energy saving have become a 

significant problem that cannot be ignored. The phenomena of rapidly changing 

climates and draining of energy resources are believed to be caused by the overly 

consumed energy, especially from the non-renewable energy resources, known as the 

current main sources of electricity. Therefore, it is worthy for all of us to share great 

concern with the energy saving issue to maintain a sustainable world. 

Although energy is consumed everywhere, the amount of power consumption in 

the households should not be underestimated because majority of people nowadays are 

living in the home most of the time, excluding the working hours. A variety of 

appliances (e.g. computer, dish drainer and air conditioner, etc.) are increasingly used in 

the household, and in the real life we often incline to abuse the electricity and forget to 

unplug or turn off the appliances when they are not being used, both of which can lead 

to unnecessary energy consumption. For this reason, having a good energy saving 
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strategy in the household is an imperative need. Furthermore, to provide more accurate 

and fine-grained energy saving strategies, we utilize the technology of wireless sensor 

networks (WSNs) to collect sensing data about environment and user-related 

information. Next, we can make use of the collected information to infer users’ 

on-going activities and to evaluate their feeling about the environment via a composite 

and quantifiable comfort index. With the context of the on-going activities and the 

comfort index, we can in turn make more desirable decisions to achieve the goal of 

energy saving in a real-life scenario. 

1.2  Challenges 

Several challenges need to be addressed to obtain the aforementioned energy 

saving. We roughly classify the challenges into two major categories including 

challenges in multi-user activity recognition and in evaluating user comfort for optimal 

energy control. 

1.2.1 Challenges of Multi-user Activity Recognition 

Compared with single-user activity recognition, multi-user activity recognition is 

more difficult and complicated due to the difficulty of correct data association. Such 

difficulty becomes even more formidable if we want to recognize what activity is 

performed by which user when the number of users increases. Moreover, another 

difficulty is that users in the same environment would interact with one another, which 

would cause concurrent activities. For the reasons mentioned, we have to cope with the 

problems of data association and interpersonal interactions to increase the accuracy of 
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multi-user activity recognition. 

Data association is to associate a sensor event, such as activity, with its 

corresponding user who triggers the event. Data association is often used to improve the 

performance of multi-user activity recognition [1]. There exists positive correlation 

between the accuracy of data association and that of activity recognition [2]. However, 

it is very laborious to annotate an event with its associated user ID if the annotation is 

done manually. 

Interactions among humans are inherent in everyday life. That is, users might perform 

activities together, such as chatting, shaking hands, or playing cards. These types of 

activities are triggered by more than one human; therefore, we have to make sure that 

who are involved. Moreover, if the distance of any two users interacting with each other 

gets closer, it becomes harder to distinguish each individual’s activity for multi-user 

activity recognition. Carrying wearable sensors is one method to solve the problem, but 

it often causes discomfort. Furthermore, human activity in a smart home is often related 

to the usage of a set of certain appliances in the energy saving system. With the 

challenges mentioned above, the services regarding energy saving will be unreliable if 

the accuracy of multi-user activity recognition is not high enough. 

1.2.2 Challenges of Making Optimal Energy Saving 

Decision  

 In a pervasive home, the goal of energy saving system is to help users reduce the 

unnecessary consumption of energy by providing appropriate services or controls to 

change the state of appliances. Due to the fact that home is a space for human living and 
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the preference of distinct residents about appliance settings may differ, unsuitable 

appliance control without considering the users’ comfort will cause interference to them. 

Most of traditional energy saving systems merely regards turning on or turning a 

set of appliances, i.e. binary control or coarse-grained control, as an energy saving 

service. However, this type of appliance control lacks of adjusting the appliances’ state 

according to the users’ real needs and the current parameters of the environment. 

Besides, some appliances cannot be turned off arbitrarily such as a refrigerator, a central 

HVAC or home servers. On the contrary, fine-grained control can flexibly adjust the 

levels or change the states of an appliance. For example, the energy saving system is 

able to adjust the temperature of an air conditioner from 28°C to 26°C in order to cool 

down the indoor temperature. Moreover, the information of human and environment, e.g. 

the physical activity level, temperature, humidity, and illumination, would change from 

time to time, leading to the difficulty of user comfort evaluation. 

With these concerns, we need to have an automatic mechanism to adjust the 

appliances if necessary, and have a quantifiable index to evaluate the user comfort 

through standard-based indexes. 

1.3  Related Work 

In the literature survey on energy saving, we can roughly classify the energy saving 

system into two main categories: (1) human intervention based on the feedbacks of 

energy consumption from the system, and (2) technology intervention using appliances 

control to do energy saving automatically. 

Energy saving systems of the first category does not provide any controls or 



  

5 

 

decisions, whereas the second category provides automatic appliances control. 

Furthermore, the second category can be further divided into two subcategories which 

are non-context-aware technology intervention and context-aware technology 

intervention. The former purely control the energy usage by the power consumption 

while the latter takes the user’s feeling (e.g. comfort or preference) into account. Most 

works with the context-aware technology intervention applied the technique of activity 

recognition to address the context-aware issue. 

In the next sections, we will discuss the prior works about activity recognition and 

energy saving decision making of energy saving systems respectively. 

1.3.1 Activity Recognition 

The technique of activity recognition has evolved for several years. Many kinds of 

sensing devices are used to collect information for inference, including wearable sensors, 

ambient sensors, and cameras. There exist varieties of approaches used for activity 

inference, such as machine learning and vision-based approach. The most common 

methods of these approaches are Bayesian network, decision tree, support vector 

machine (SVM), conditional random field (CRF), and hidden Markov model (HMM), 

etc. Logan et al. [3] used a large amount of sensors, including RFID, ambient sensors, 

cameras and microphones, and implemented with Naïve Bayes and C4.5 decision tree 

classifiers to infer user activities. Kim et al. [4] compared four activity recognition 

methods, which are HMM, CRF, skip-chain CRF, and emerging patterns (EP). For 

improving the accuracy rate, Ye et al. [5] utilized the temporal feature, which is inherent 

human activities, to produce more accurate results of recognition at low infrastructural 

cost.  



  

6 

 

However, it is inevitable that there are multiple humans living in the home. Hsu et 

al. [6] used non-obtrusive sensors and CRF to solve the problem of data association. To 

cope with the challenge of interaction among multiple users, a few prior works had 

proposed approaches using coupled hidden Markov model (CHMM) [7, 8], dynamic 

Bayesian networks (DBN) [9], and emerging patterns (EP) [10] respectively. 

There are many applications on activity recognition, such as systems for healthcare 

or energy saving. In this thesis we focus on the relationship between activities and the 

energy saving system. Based on the results of activity recognition, the system could get 

the information about what a user is doing, and the system is able to further calculate 

the physical activity level of the user. Integrated with the parameters of the environment, 

the system will provide corresponding services to the user. 

However, too many uncertain factors (e.g. human interactions, etc.) in a dynamic 

home environment lead to unsteady activity recognition of multiple users. Thus the 

energy services provided by system may become annoying. To solve the problem, we 

use group-based instead of individual-based activity recognition in multi-user 

environment. In other words, we care more about the activities occurred in an area of 

interest rather than the activity of each user. There exists some works that use cameras 

to recognize the group activity [11, 12], and the definition of their group activity is the 

activities performed by the humans moving in the same direction. 

1.3.2 Energy Saving Decision Making 

As previously mentioned, we classify the energy saving system into two categories: 

human intervention and technology intervention. 

For the first category, some works indicated that providing the information about 
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the overall usage and cost of energy consumption as feedbacks to users promotes energy 

saving [13-15] due to constant energy-consumption awareness. They used real-time 

displays or smart energy monitors to show the graphical, numerical, or textual 

information about total energy consumption to users. According the information, the 

users would take actions to change their habits of using electricity or other energy 

resources to save the energy and their money as well. 

The second category is divided into two subcategories: non-context-aware 

technology intervention and context-aware technology intervention. For the 

non-context-aware technology intervention, the researchers mainly used smart meters 

and control relays to achieve the goal of saving the excess power consumption. Most of 

works in this subcategory focus on reducing the standby power of home appliances 

which are not being used. Williams et al. [16] found that about 40% residential energy 

usage is apparently wasted in delivering “unused energy” services, which include 

overheating/overcooling to cause temperature variations or include heating/cooling a 

unoccupied space. They monitored the indoor temperature and power consumption, and 

utilized the thermostats to regulate the temperature. Hwang and Wu [17] proposed a 

predictive system-shutdown method for energy saving. They used event-driven control 

to decide when to initiate predefined sleep-mode operations for all associated appliances. 

Likewise, Heo et al. [18] implemented a similar control mechanism to do energy saving. 

Nevertheless, these approaches in the non-context-aware technology intervention 

pay little attention to human comfort, which should be an important factor in a smart 

environment. For the context-aware technology intervention, several energy saving 

systems used various kinds of sensors to sense or infer the information of the human 

and environment, and then made decisions to control the appliances in home. In order to 
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provide energy-aware services, the Adaptive House project [19] focuses more on the 

adaptive ability of the house to a user based on his/her occupancy patterns, preference, 

and schedules. The project developed an energy monitoring system named ACHE 

(adaptive control of home environments) based on reinforcement learning to estimate 

users’ comfort, then to control air heating, lighting, ventilation, and water heating 

[20-22] via the actuators in the environment. The European project AIM [23-25] uses 

wireless sensor networks (WSNs) to monitor and optimize the power consumption in 

the home network according to users’ previously observed behaviors. The behaviors are 

based on the monitoring data the sensors collected as the users’ daily profiles, which 

include user presence and the real-time environment such as temperature, and lightness. 

Another example is the work from Davidsson and Boman [26]. They proposed a system 

consisting of Multi-Agent System (MAS) to monitor the user’s location and utilize the 

user’s preference to provide appropriate lighting and temperature related services. 

But these works above did not consider the power consumption not caused by the 

activities, which may lead to waste a plenty of unnecessary energy. In addition, they just 

regarded user preference, which is learned by all collected data or routine schedule, as 

user comfort, without taking the real-time parameters (such as one’s current physical 

activity level, indoor temperature at the moment, etc.) into account. Therefore, we 

propose a context-aware energy saving system but also consider four important factors 

to provide more human-centric and optimal energy saving services. The four factors and 

the comparison of our work with the aforementioned three categories of energy saving 

system are illustrated in TABLE 1. 
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1.4  Objective 

With the above mentioned challenges, the objective of this thesis is to propose a 

context-aware home energy saving system to optimize energy saving policies while 

maintaining the acceptable (or least) level of user comfort. Therefore, the system 

processes the following features: 

 Inferring “energy tagged contexts”  

To identify the relationship of a context of interest and its actual power 

consumption level, we will try to “tag” a context of interest with its associated power 

consumption information, which all together is named an energy-tagged context (ETC). 

The context of interest can be a multi-user activity, which is often considered a very 

challenging or even intractable problem in a real-life setting. We will utilize 

TABLE 1  DIFFERENCE BETWEEN FORMER TREE CATEGORIES OF ENERGY SAVING 

SYSTEM AND OUR WORK 

 
Multi-user 

Support 

Comprehensive 

User Comfort  

Fine-grained 

Control 

Human 

Intervention 
∆   

Technology 

Intervention 
∆   

Context-aware 

Intervention 
∆ ∆  

Our Approach O O O 

∆: partial implementation 
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group-based or zone-based approach to make the problem far less intractable. With the 

information, we can, on one hand, provide context-aware information to users. 

Furthermore, we will also identify the implicit relation, which is often ignored in the 

previous work, to achieve more energy saving. 

 Adopting a comprehensive user comfort index (CCI) 

In a traditional energy saving system, making an energy saving decision often rely 

on preference-based or non-standard based comfort index, which may not truly reflect 

the real user comfort. Therefore, we propose a comprehensive user comfort index to 

address this challenge. 

 Optimizing energy saving decisions 

Given the aforementioned ETCs and CCIs, our system can determine an optimal 

energy saving policy by solving a constraint satisfaction problem (CSP). This way, we 

can achieve the goal of implementing a context-aware home energy saving system to 

optimize energy saving policies while maintaining the best level of user comfort. 

1.5  Thesis Organization 

This thesis consists of seven chapters, and the chapters are organized as follows.  

In Chapter 2, we introduce some background knowledge of the thesis, such as 

Dynamic Bayesian Network (DBN) which can be utilized to infer contexts, clustering 

which can be used to group individual activities, and wireless sensor network (WSN) 

which can non-obtrusively collect environment and human information. Both DBN and 

clustering are later used for inferring the Energy Tagged Contexts.  

In Chapter 3, we describe the problem definition and give an overview of the 



  

11 

 

system architecture and succinctly introduce each layer of the architecture.  

After the system overview, we will mainly focus on the last two layers, i.e. the 

inference and evaluation layer and the decision layer. In Chapter 5, the Energy-prone 

Context Inference Engine is described in detail and the context-aware energy saving 

will be introduced. The energy saving decision is made based on maintaining a balance 

between the energy-prone context discussed in Chapter 5 and the user comfort evaluated 

by the User Comfort Evaluation Engine which will be discussed in this chapter. In 

addition, we will use some standards to measure the human feeling about the 

environment such as Predicted Mean Vote (PMV) or Lux. 

In Chapter 6, we detail the experiment settings and the evaluations of the proposed 

energy saving system. The experimental results are also discussed and analyzed in this 

chapter. Finally, Chapter 7 summarizes the whole thesis and lists the future work. 
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Chapter 2  

Preliminaries 

2.1  Wireless Sensor Network (WSN) 

Wireless sensor network (WSN) is composed of several nodes which can send 

massages to each other through IEEE 802.15.4. In the WSN, the autonomous sensor is 

connected to a wireless node, and a wireless node can contain more than one sensor. 

According to the function, the common sensor types are temperature, humidity, light, 

motion, and pressure, etc. For the wireless node, it consists of a microprocessor, a radio 

transmitter/receiver with an antenna, a flash memory, and an electronic circuit for 

connecting with sensors and power source. With the microprocessor and the small 

memory, the wireless node has the property of low power consumption, small volume 

and long transmission distance with multi-hop technique. An instance for sensor node is 

Taroko, shown as Fig. 2-1, it comprises several parts: a MSP430 microprocessor 

(including an analog-to-digital converter, ADC), a radio IC (CC2420), an 8MB flash 

memory, a USB interface for connecting to power source or computers, some I/O ports 

and extension connectors, etc. 



  

13 

 

Due to the small size of sensor node, the WSN is often used to monitor the 

physical environment, for example, air pollution monitoring or residential safety/healthy 

monitoring. For the sake of recognizing the residents’ activity at home, many kinds of 

sensors are deployed with objects used daily or directly in the environment, such as 

current-flow sensors with the appliances or thermometers in the rooms. With these daily 

data collected by WSN, we can build the activity models of the residents for extending 

more applications in the pervasive home environments.  

 

(a) 

 

(b) 

Fig. 2-1 Taroko wireless sensor node, (a) the front and (b) the rear. 
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In the following, we list and introduce the sensors deployed in the experimental 

environment of this thesis. 

 Light sensor (as shown in Fig. 2-2(a)) 

The light sensor can be used to measure the luminous intensity in order to 

detect the change of brightness. Through detecting the illumination of the indoor 

and outdoor environment, the system can automatically decide whether to turn on 

the light indoor or not, and it can further arrange the light combination to optimize 

the energy utilization. Moreover, the system can turn on the light indoor while 

there is no human motion detected in the room, which would achieve the goal of 

energy saving.  

 Humidity and Temperature sensor (as shown in Fig. 2-2 (a)) 

The inappropriate indoor humidity or temperature do has impact on many 

aspects, including the freshness of food, the quality of air, and, the most important, 

the health and comfort of human. For the purpose of providing a suitable and 

comfortable environment for residents, the information the humidity and 

temperature sensors sensed indoor can help the system control the air conditioner 

and the fans in the cause of maintaining the constant or more comfortable 

temperature and humidity.  

 Current-flow sensor (as shown in Fig. 2-2 (b)) 

The current-flow sensors can be used to measure the amperage of the 

appliances; thus, the on-off state can be detected. Hence, the system can calculate 

the total power consumption by the recorded electricity usage. Similarly, with 

information of the on-off state, the appliances will be turned off or switched into 

energy saving mode if the appliances are no more used. 
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 Passive infrared, PIR (as shown in Fig. 2-2 (c)) 

The passive infrared is used as the motion sensor that can detect whether there 

are humans moving in a room. Therefore, the accuracy of activity recognition can 

be enhanced so that more accurate services will be provided for residents. 

 Accelerometer (as shown in Fig. 2-2 (d)) 

Attaching the accelerometers on those objects which we are interested in can 

help us know the trajectory of the corresponding object. In addition, users can 

attach accelerometers to their body parts so that system can further recognize users’ 

postures/gestures. 

 Microphone (as shown in Fig. 2-2 (e)) 

It is inevitable that there exists a variety of sound in everyday life. In addition 

to other ambient sensors, the sound the microphone collects can be analyzed for 

providing more features to increase the human activity recognition rate.  

 Camera (as shown in Fig. 2-2 (f)) 

The number of humans in the home is an important clue for multi-user 

activity recognition. The video recorded by camera can be used to judge how many 

people in the room by the vision-based technique and the people can be tracked 

until they are out of the vision of camera. 
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(a) 
(b) 

  

(c) (d) 

  

(e) (f) 

Fig. 2-2 The autonomous sensors. 

(a) light, humidity, and temperature sensor (b) current-flow sensor (c) passive infrared 

(PIR) (d) accelerometer (e) microphone and (f) camera 
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2.2  Dynamic Bayesian Network (DBN) 

 A Dynamic Bayesian Network (DBN) [27] extends form Bayesian network 

[28], and it is used to model the temporal uncertainty we are interested in. It is 

represented as sequences of variables where the sequences are often referenced by time. 

In addition, DBNs assume that there are some underlying hidden states of the world that 

generate the observations, and these hidden states evolve in time. Therefore, DBNs have 

the ability to analyze sequential data such as audio signals, sensor measurements, 

sequential images, etc. The corresponding applications are speech recognition, location 

prediction of robots, and objects tracking. In this thesis, we apply DBNs to model 

human behaviors with various sensors deployed in the home environment according to 

the assumption that human behaviors are ordinarily composed of sequences of actions. 

In the following subsections, we will introduce how to represent DBNs and how to 

learn the parameters. Finally, the inference method of the DBNs is shown. 

A DBN is a directed graphical model in which nodes represent variables, and the 

arcs represent the causal relations among nodes. An arc from node A to node B can be 

informally interpreted as “A causes B”, which hence disallow the directed cycles. For 

constructing a DBN, we should know the structure among all variables at first. 

Otherwise, the probability of node A given node B will be calculated by exhausting all 

of the possible structures. A technique, which is called structure learning, can score each 

possible structure, and then choose the most possible one which has the highest score. 

Therefore, we can find a possible structure among variables after applying structure 

learning.  
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In general, each slice of a DBN can have any number of state variables Yt and 

evidence variables Xt. For simplicity, the variables and the corresponding links are 

assumed that they are exactly replicated from slice to slice. In Fig. 2-3, it is an example 

of a DBN which has single state variable and three evidence variables. The joint 

distribution with length T and with N random variables in each time slice can be 

formulated as the following equation: 

 
1:

1 1

( ) ( | ( ))
T N

i i

T t t

t i

P V P V Pa V
 

  (2-1) 

where i

tV  represents i-th random variable and a random variable is denoted as Vt = (Xt, 

Yt). ( )i

tPa V  are the parents of i

tV  in the graph. 

2.2.1 Inference 

The inference of the DBN is to compute the posterior P(Yt|X1:τ) based on the 

collection of observations: it is filtering if τ = t; it is smoothing if τ > t; it is prediction if 

τ < t. 

 Filtering 

Bayes Filter is the most general algorithm for estimating the belief state based 

on the observations which are collected so far, and it possesses two essential steps 
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Fig. 2-3 An example of DBN with single state variable and three evidence states 
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such as prediction and measurement update. The prediction step is done by 

calculating a belief over the state Yt based on the prior belief over state Yt-1. The 

equation of the prediction can be formulated as 

 
1

1 1 1: 1( | ) ( | )
t

t t t t t

y Y

P Y y Y y P Y y X


  



     (2-2) 

In the measurement update, the Bayes Filter algorithm multiplies the result 

computed at prediction step by the probability that the measurement Xt may have 

been observed. It does so for each hypothetical posterior state Yt and then 

normalize the value such that the resulting product is a probability. The equation of 

the measurement update is formulated as  

 
1

1 1 1: 1( | ) ( | ) ( | )
t

t t t t t t t t

y Y

P X Y y P Y y Y y P Y y X


  



      (2-3) 

where γ is a constant which is for normalization. By recursively performing the 

above two steps, P(Yt|X1:t) can be calculated at each time slice. 

 Smoothing 

Smoothing is the task to estimate the state of the past given the observation up 

to the current time, i.e., compute 
1:( | )t TP Y X  for all 1 t T  . 

 Prediction 

Prediction is the task to predict the future state, i.e., compute
1:( | )t h tP Y X

, 

where 0h   is how far we want to look-ahead. 

2.2.2 Learning 

In a supervised learning which means that model is trained with labeled training 

data, learning the parameters of DBN is regarded as finding the maximum likelihood 
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estimation (MLE) of the parameters of each conditional probability table. The 

parameters of DBN are denoted as θ which includes three types of parameters, such as 

initial probability P(Yt), observation probability P(Yt|Xt), and transition probability 

P(Yt|Yt-1). The optimization objective of MLE is to find parameters which maximize the 

likelihood based on the corresponding training data: 

 
* arg max ( | ) arg max log ( | )MLE P D P D

 

     (2-4) 

where D = {D
1
, …, D

K
} are the training data. 

An alternative optimization objective is maximum a posteriori (MAP) which 

further takes a prior distribution into consideration:  

 
* arg max log ( | ) log ( )MAP P D P



     (2-5) 

This can be useful when the size of the training data is out of proportion to the number 

of parameters because the prior acts like a normalizer which prevents over-fitting. 

However, it costs time and money to obtain many labeled training data because the 

task of labeling data requires the expert knowledge in some specific domain, and it also 

is error-prone. Therefore, the techniques of semi-supervised learning or unsupervised 

learning can be applied to train a DBN where the training data of semi-supervised 

learning are composed of labeled and unlabeled data, and the training data of 

unsupervised learning are only composed of unlabeled data. Learning in these two cases 

is much harder than supervised learning; however, expectation-maximization (EM) [29] 

algorithm is a technique which can deal with missing data or hidden/latent variables 

when learning the parameters of DBN. The basic idea behind EM algorithm is to apply 

Jensen’s inequality to get a lower bound on the log-likelihood of the training data, and 

then to iteratively maximize this lower bound: 
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where q is a function such that ( | ) 1k

h

q h D   and 0 ( | ) 1kq h D  , and H represents 

the latent variables. Maximizing the lower bound with respect to q gives: 

 ( | ) ( | , )k kq h D P h D   (2-7) 

This is called E (Expectation) step, which calculates the expectation with respect to the 

possible distribution of the latent data based on the current estimates of the desired 

parameters conditioned on the given observations; and this makes the bound tight. 

Maximizing the lower bound with respect to the parameters θ is equivalent to 

maximizing the expected complete-data log-likelihood: 

 
1

( | ) log ( , | )
K

k k

k h

q h D P h D 


  (2-8) 

This is called M (Maximization) step which generates a new set of estimates of the 

desired parameters by maximizing the objective function.  

The whole EM algorithm is an iterative method which recursively perform the 

E-step and M-step until convergence, and it is guaranteed to converge at the local 

maximum. Therefore, the different initial parameter θ is possible to result in different 

local maximum. 
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2.3  Home Appliance Categorization 

Home appliances are the machines powered by electricity or natural gas/propane. 

Generally, according to their function, home appliances can be classified into two 

categories: white goods and brown goods [30], and they are also called major appliances 

and small appliances respectively. White goods are usually large and can assist residents 

in accomplishing some house chores, such as cooking or doing the laundry. The typical 

examples for white goods are refrigerator, washing machine, air conditioner, and 

microwave oven. And the brown goods are portable or semi-portable, which can help 

perform some job or provide residents with entertainment, for instances, DVD player, 

electric blender, and food mixer. 

Recently, there is new definition of appliance categorization. They are classified 

into four categories: white goods, brown goods, beige goods, and green goods. Addition 

to white goods and brown goods, beige goods refers to the computer information 

products, and green goods refers to the appliance that can be recycled after using so that 

they will not do harm to the environment and humans. 

However, in the energy saving systems, the appliances should be categorized 

according to their power consumption since the issue we aware of is how to efficiently 

utilize the energy. There is so far no unified standards of home appliances categorization 

for energy saving. Accordance with the U.S. EPA Energy Star’s classification, the home 

appliances are categorized into seven types: heating, cooling, water heating, appliances, 

lighting, electronics, and others [31]. On the other hand, the Environmental Protection 

Administration of Taiwan [32] classifies them into six categories: HVAC (Heating, 

Ventilation, and Air Conditioning), lighting, kitchen appliances, hygiene-related 
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appliances, entertainment appliances, and others. In this thesis, based on U.S. EPA 

Energy Star and EPA of Taiwan, taking the function of appliances as a classified factor, 

we categorize the home appliances into four types: (1) HVAC, (2) lighting, (3) 

high-power appliances, and (4) entertainment appliances. 

For the energy consumption in Taiwan, about 30-40% is caused by HVAC, 20-30% 

is caused by lighting, and the remaining three categorizations account for 40-50% of 

total household energy consumption. 

In the following sections the four types of appliances will be introduced 

individually. 

2.3.1 HVAC 

 HVAC is the abbreviation for “Heating, Ventilation, and Air Conditioning”, refers 

to the technology that regulates the indoor temperature in order to provide a comfortable 

environment for residents. The HVAC system consists of electric air heater, water heater, 

dehumidifier, and air conditioner, etc. Moreover, it always accounts for the largest part 

of household energy consumption due to its high-power property and being turned on 

for a long period frequently. 

2.3.2 Lighting 

Although there are a variety of lighting source, in this section we mainly focus on 

the artificial lighting that is commonly provided by electric lighting systems, i.e. from a 

light bulb, a lamp, or the light emitting diode (LED). 

Illuminance is defined as the total luminous flux per unit area. The SI 
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(International System of Units) derived unit for illuminance is Lux (lx). It is undeniable 

that lighting is an essential part in our life, proper lighting can help human enhance task 

performance and stay healthy; further, it also has impact on human’s emotion. 

2.3.3 High-power Appliances 

Similar to HVAC, some appliances are also high-power appliances, for instance, 

hair dryer, microwave, and electric cooker, which often transform the electricity into 

heat. However, the main difference between HVAC and high-power appliances is that 

the latter would not be frequently turned on for a long duration. 

2.3.4 Low-power Appliances 

In order to the three types we have mentioned above, there are numerous home 

appliances that consume lower power, such as the appliances we use in everyday life 

(e.g. blender and fans), audiovisual appliances (e.g. TV, DVD player, and stereo), and 

the communication equipment (e.g. computer), etc. 

2.4  Predicted Mean Vote 

Predicted mean vote (abbreviated as PMV), proposed by Fanger, is one of the most 

common thermal comfort index for evaluating the thermal sensation of a large 

population of people exposed for a long period to constant conditions in an environment 

[33, 34]. PMV uses four environment parameters (air temperature, air velocity, mean 

radiant temperature, and air humidity) and two personal factors (clothing insulation and 

activity level) to predict the thermal comfort of humans. 
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According to the ASHRAE thermal sensation scale, the PMV index for thermal 

comfort predicts the average vote on a 7 point scale. More specifically, the scale from -3 

to +3 refers to cold, cool, neutral, warm, and hot, respectively, as shown in Fig. 2-4. 

And the ISO (International Standards Organization) Standard 7730 (ISO 1984) 

recommends that the PMV between -0.5 and +0.5 is better for human. 

The PMV equation is an empirical one for predicting the mean vote on an ordinal 

category rating scale of thermal comfort of a large population of people. The equation 

uses a steady-state heat balance for the human body and builds a link between the 

thermal comfort vote and the degree of stress or load on the body (e.g. sweating, 

vasoconstriction, vasodilation). The greater the load, the more the comfort vote deviates 

from zero. And it only applies to humans exposed for a long period to constant 

conditions at a constant metabolic rate.  

The PMV referred to more than 1300 subjects’ thermal sensation votes. The 

following is the equation: 

PMV = (0.303∙e-0.036M + 0.028){(M－W) － 3.05∙10
-3

∙[5733 － 6.99(M - W)－p
a
] 

－0.42∙[(M－W)－58.15]－1.7∙10
-5

∙M(5867－p
a
)－0.0014M(34－ta) 

－3.96∙10
-8 ∙ f

cl
 ∙ *(tcl + 273)4－(tγ̅ + 273)

4
+  - f

cl ∙ hc  ∙(tcl － ta)} 

(2-9) 

where 

 

 

 

Fig. 2-4 The PMV thermal scale 
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tcl = 35.7－0.028(M－W)－Icl {3.96 ∙ 10
-8 f

cl
 ∙ *(tcl + 273)4－(tγ̅ + 273)

4
+ 

+ f
cl

 hc (tcl - ta)} 
(2-10) 

hc = {
2.38(tcl－ta)

0.25
       , for 2.38(tcl－ta)

0.25
  ≥  12.1√vaγ

12.1√vaγ               , for 2.38(tcl－ta)
0.25

 < 12.1√vaγ

 
(2-11) 

f
cl

 = {
1.00 + 1.290Icl, for Icl ≤ 0.078m2 ∙ ℃/W

1.05 + 0.645Icl, for Icl > 0.078m2 ∙ ℃/W
 (2-12) 

where 

M  is the metabolic rate, in W/m2;

W  is the external work, in W/m2,  equal to zero for most activites;

Icl  is the thermal resistance of clothing, in m2 × C /W 3;

fcl   is the ratio of man's surface area while clothed, to man's surface area while nude;

ta  is the air temperature, in C;

tr  is the mean radiant temperature, in C;

var  is the relative air velocity (relative to he human body), in m / s;

pa  is the partial water vapour pressure, in Pa;

hc  is the convective heat transfer coefficient, in W /m2 × C;

tcl  is the surface temperature of clothing, in C;
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Chapter 3  

Overview of the Context-aware 

Energy Saving System 

3.1  Problem Definition 

In a home energy saving system, it is important to find out the sources causing 

unnecessary power consumption because human often unconsciously overuse energy, 

such as overcooling/overheating a room or not turning off lights while leaving a room. 

For the improvement of energy saving in a non-occupied room, we usually use a motion 

detection device, e.g. a passive infrared (PIR), to detect existence of the user to 

automatically turn off the power. However, the problem of avoiding 

overcooling/overheating a room poses more challenges to be addressed. For example, 

users may adjust the indoor temperature to very low or very high degree (e.g. 15°C or 

35°C). Besides, although the most related appliances triggered by the undergoing 

activity can be selected out by the inference technique of activity recognition, we hardly 

figure out those appliances that are not triggered by the activity but still under operation, 
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which could bring out a certain amount of power consumption. In addition, 

multiple-user contexts and their associated energy consumption information is the major 

challenge we need to take care of. 

After finding out the causes of the unnecessary power consumption, it is also 

important that how to make right energy saving decision the users will accept. In other 

words, we have to take the issue of human comfort into consideration and there could 

be more than one activity performed by a group of people in the home. 

For the purpose of solving the problem described above, in this thesis we design an 

energy saving system and deploy sets of sensor module in the home to collect the daily 

living data for monitoring the usage of appliances and the environment status and 

inferring the activities of human to make an optimized energy saving decision. In the 

next section, we will illustrate the overview of our energy saving system and describe 

briefly each part of the system. 

3.2  System Overview 

As illustrated in Fig. 3-1, the energy saving system consists of four layers that are 

“Device Management Layer”, “Feature/Context Exchange Layer”, “Inference and 

Evaluation Layer”, and “Energy Saving Decision Layer”. Every components in the four 

layers (e.g. a sensor in the Device Management Layer or an energy saving model in the 

Inference and Evaluation Layer) can interconnect with one another via a 

publish-and-subscribe manner through an integration platform [35]. That is to say, this 

platform is in charge of message exchange among all interconnected components. With 

the integration platform, it is easy to add new components into the energy saving system 
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as long as conforming to the publish-and-subscribe manner. 

In the following, each layer of the energy saving system will be introduced in 

detail. 

3.2.1 Device Management Layer 

In order to sense the information of environment and control the appliances, we 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-1 The architecture of the energy saving system 
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deploy many sensors and control relays in every rooms of the home. For the purpose of 

managing the sensors and control relays orderly, we design the space agent (SA) as a 

device manager to pass the sensing data to the Feature/context Exchange Layer and 

receive the energy saving decision from the Energy Saving Decision Layer to control 

the appliances. As shown in Fig. 3-2, the sensors {S1, S2, S3…Sn} in the room1 send the 

sensing data representing the status of human or environment to the space agent, and 

then the space agent passes the data to the Feature/context Exchange Layer for later 

inferring. After the energy saving decision made by Energy Saving Decision Layer, the 

decision will be delivered back to the space agent that sends control commands to 

control the relays to regulate or turn on/off the appliances in the room. 

The advantage of the structure in the Device Management Layer is that it increases 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-2 An example of space agent in Device Management Layer 
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the convenience of adding/removing sensors and control relays to/from the space since 

the space agent keeps all the information of the devices. 

3.2.2 Feature/context Exchange Layer 

In the previous layer, the sensing data collected is the type of raw data; that is, the 

original data in the numerical format. In order to quantize the numerical data for 

acquiring the higher-level information, such as features and contexts, the data should be 

preprocessed at the gateway (i.e. the base station in Fig. 3-3) before being publishing to 

the Feature/context Exchange Layer. And the features/contexts in this layer could be 

subscribed for inference later. The common method of quantization is to divide the 

range of value into two or more parts by the predefined thresholds. For example, we 

define the feature that the level of temperature is high if the value of temperature 

exceeds 30ºC; therefore, we can get the information called “high temperature” while the 

value is 37 ºC. 

In the energy saving system, we use several kinds of sensors for sensing the state 

and information of environment or humans, including temperature/humidity/light sensor, 

accelerometer, microphone, and current-flow sensor, etc. After data preprocessing, all 

the sensing data is transferred from raw data to features/contexts that are more 

comprehensible for representing the state, information or contexts. For the purpose of 

easily publishing and subscribing, different types of features/contexts are putted into 

different topic of queues. As shown in Fig. 3-3, there are several queues for saving the 

features/contexts published from the Device Management Layer. 

3.2.3 Inference and Evaluation Layer 



  

32 

 

As the name implies, the Inference and Evaluation Layer contain two main 

components: Energy Prone Context Inference Engine (EPCIE) and User Comfort 

Evaluation Engine (UCEE), which will be introduced in Chapter 4 and Chapter 5 

respectively. These engines subscribe the features or contexts in the Feature/Context 

Exchange Layer to infer the higher-level context, as shown in Fig. 3-4. Specifically 

mentioned, the EPCIE uses the features representing the state of human  or the 

environment, the power consumption and the current on/off state of appliances to infer 

the contexts tagged information of power consumption, called energy tagged context 

that will be discussed in Section 4.2. On the other hand, the UCEE uses state of human 

(e.g. the physical activity level) and the real-time parameters of the environment (e.g. 

the temperature, illumination and humidity) to evaluate the user comfort that can reflect 

how the conditions in the environment influence on user.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-3 Different topics of features/contexts in the Feature/context Exchange Layer 
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3.2.4 Energy Saving Decision Layer 

In this Energy Saving Decision Layer, the Energy Saving Decision Support Engine 

is charge of making the suitable decision of appliances control based on a certain degree 

of user comfort, as shown in Fig. 3-5. In order to achieve the goal of context-aware 

energy saving, the decision support engine takes the energy tagged context and user 

comfort as inputs at the same time. With the user comfort evaluated by standards, the 

system first tunes the appliances (the most part are HVAC and lighting) to adjust the 

indoor temperature, humidity and illumination to satisfy the user. And then it utilizes the 

information the energy tagged context provides to find out the major appliances that 

cause unnecessary power consumption so as to turn off or tune the appliances. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-4 The Inference and Evaluation Layer 
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Fig. 3-5 The Energy Saving Decision Layer takes the energy tagged context and user comfort 

as input to make the energy saving decisions 
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Chapter 4  

Energy Prone Context  

Inference Engine 

Human activity is one of the main factors bringing about energy consumption, and 

it is also a critical factor for the improvement of energy saving since an energy saving 

system can proactively reduce energy waste by constantly paying attention to what 

activities are currently undertaken. In this chapter, we will elaborate how Energy Prone 

Context Inference Engine (EPCIE), one core component in the Inference and Evaluation 

Layer, infers the relationship between a context (especially users’ current activities) and 

its power consumption. Furthermore, we also discuss how EPCIE infers a group-based 

context such as a social activity like watching TV together in the living. 

4.1  Problem Definition 

In this chapter, there are n individual activities {A
1
,  A

2
,  …,  A

N
} which can be 

detected by their corresponding activity inference engines given m observations 
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{O
1
,  O

2
,  …,  O

M
} in the environment, where O

M
 is an observation from a sensor. 

And we use a vector {Oset1,  Oset2,  …,  OsetT} to represent an observation sequence (i.e. 

features) which is composed of all sensor observations from the beginning to time t and 

Oset stands for the set of observations from O
1
 to O

𝑀
. However, it is inevitable that 

there are multiple humans undertaking different activities in the same space. Almost 

prior works of multi-user activity recognition need to associate an observation to the 

user who generates the observation via an interaction with the environment, which leads 

to the difficulty in multi-user activity recognition. Such a problem becomes even more 

intractable when it comes to an environment involving more than three persons. Rather 

than knowing each individual’ s power consumption, it is more important to figure out 

which appliances leading to the unnecessary power consumption when an activity is 

performed, we therefore ignore the data association between user IDs and their activities 

to makes multi-user activity recognition far less intractable. 

For each activity we use EPCIE to infer an Energy Tagged Context (abbreviated as 

ETC and more details in Section 4.2) that comprises a context of interest (i.e. the 

activity being undertaken) and its associated energy consumption in a more readable 

format. The set ETC ({ETC
1
, ETC

2
, …, ETC

N
}) is used for representing the energy 

tagged context of the n activities (i.e. *A1
,  A

2
,  …,  A

𝑁+), and each element in ETC is a 

vector that consists of many attributes, represented as *Att1,  Att
2
,  …,  Att

I+. In order to 

obtain the Energy Tagged Context of multi-user activities, we exploit the method of 

clustering to aggregate the activities with similar attributes (e.g. activities with similar 

physical activity levels or similar in the combination of power consumption) into a 

group activity. 

The following sections are arranged as following: first, we define the Energy Prone 



  

37 

 

Context, including Energy Tagged Context, in Section 4.2, and the inference of 

individual activity and group activity will be discussed in the Section 4.3 and Section 

4.4 respectively.  

4.2  Definition of Energy Prone Context 

An Energy Prone Context (EPC) is a context that is apt to leading to energy 

consumption, such as watching TV and studying at night. Humans usually perform 

activities associated with indoor appliances, which will cause energy consumption. For 

the purpose of expressing the energy information, we use Energy Tagged Contexts 

(ETCs) to represent the concept of EPC. And the Energy Tagged Context consists of 

likelihood of the occurrence of a context along with its states of power usage of 

appliances. 

In the following, we introduce the appliance power usage signature and explain 

two types of power consumption. Finally, we use a graph to visualize the Energy Tagged 

Context of the Energy Prone Context. 

4.2.1 Appliance Power Usage Signature 

 Every appliance powered by electricity will cause power consumption. The power 

consumption is decided by the power level and state of appliances, and can be measured 

by power meters. For example, we can measure that a fan with rated power of 0.035kW 

and its “low power consumption” state may cause 0.027kW of power consumption. 

Moreover, we can define the power consumption level to classify and quantize the 

power consumption of an appliance, an example of which is illustrated in TABLE 2. 
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Therefore, we propose power usage signature of an appliance and it includes two 

parameters, the power state and the power consumption level. 

4.2.2  Explicit/Implicit Power Consumption 

We divide the power usage signature into two categories: explicit power 

consumption and implicit one. The explicit power consumption refers to the power 

consumption of appliances that is directly triggered by or closely related to an activity, 

whereas the implicit power consumption is the power consumption caused by the 

appliances that are indirectly triggered by an activity and its operating period is longer 

than time period of the activity been performed. The detailed processes for inferring the 

two types of power consumption will be discussed in Section 4.3.1 and Section 4.3.3. In 

a few words, the explicit power consumption is generated as long as its corresponding 

activity occurred. The concepts of explicit and implicit power consumption are 

illustrated in Fig. 4-1. 

TABLE 2  THE TABLE OF POWER CONSUMPTION LEVEL 

Level Power consumption (kW) 

Level 0 X = 0 kW 

Level 1 0.001 kW < X ≤ 0.015 kW 

Level 2 0.015 < X ≤ 0.1 kW 

Level 3 0.1 < X ≤ 0.3 kW 

Level 4 0.3 < X ≤ 1kW 

Level 5 1kW < X 
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4.2.3 Energy Tagged Context Graph 

In this thesis, the Energy Tagged Context is represented as a feature vector that 

consists of two main parts: the context itself and the information of appliance power 

usage signature. The context contains the activity name, the number of humans in the 

room where the activity performed, and the corresponding physical activity level. The 

appliance power usage signature represents the level of power consumption of the 

appliance, the confidence of the correlation between the appliance and the activity, as 

well as the type and the area of power consumption of the appliance (i.e. 

explicit/implicit and global/local power consumption). For the sake of visualizing the 

relationship between the context and the energy tagged information, we use a graph to 

 

(a) 

 

(b) 

Fig. 4-1 The concepts of two kinds of power consumption. 

(a) explicit power consumption and (b) implicit power consumption 
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illustrate the concept, as shown in Fig. 4-2. In the graph, the node in the middle is the 

context we are interested in (e.g. the activity with the number of humans and the 

physical activity level or PAL). And the edges are the appliance power usage signature 

of different appliances correlated to the context. The length of the edge stands for the 

power consumption level of the appliance, and the width stands for the confidence of 

the correlation. The correlation of power consumption can be categorized into explicit 

or implicit power consumption, and they are represented by solid line and dotted line 

respectively. Moreover, power consumption can be further classified into local or global 

types according to the region the power consumption occurred with respect to the 

context. If an appliance is not in the current region and does have impact on every 

region, we call it a global appliance, such as the A/C or the water heater in Fig. 4-2. The 

solid point and hollow point are used for representing the local and global power 

consumption, as shown in Fig. 4-2. 

4.3  Energy Prone Context Inference Model 

 

 

 

 

 

 

Fig. 4-2 The Energy Tagged Context 
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Distinguished from the traditional activity inference model, the energy prone 

context inference model additionally takes the power-related information of appliances 

into account, letting the energy saving system identify the main causes of energy waste, 

especially the implicit power consumption. In this regard, we can later control energy 

saving more accurately. 

The flowchart of the learning phase of Energy Prone Context Inference Engine is 

shown in Fig. 4-3, which contains two main steps: DBN activity recognition model 

construction and power consumption relations identification, including explicit power 

consumption identification and implicit power consumption identification. The results 

of the two procedures, i.e. the DBN activity models and explicit/implicit power 

consumption, will be combined to build energy tagged contexts. In the following, we 

will delve into the process of generating energy tagged contexts. 

After generating the energy tagged context (ETC) of each activity, we use a group 

activity aggregator to cluster activities into groups each of which we call it a group 

activity. This will be introduced in Section 4.4. 

 

Fig. 4-3 The flow chart of the training phase of Energy Prone Context Inference Engine 
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4.3.1 Activity Recognition 

Before identifying the correlation between power consumption of appliances and 

activities, we need to infer what the individual activity is performed at present in the 

first place. As the parameters defined in Section 4.1, the observations 

{O
1
,  O

2
,  …,  O

M
}  will be preprocessed and compared with a threshold into 

context-level features, which can be represented as a vector F = {𝑓1, 𝑓2, …, 𝑓M}. In 

this thesis, we use Dynamic Bayesian Network (DBN), a supervised learning approach, 

to build the inference models for activity recognition and an example of an activity 

recognition model is shown in Fig. 4-4. In a DBN, an arrow between two nodes 

represents a causal relationship. The previous activity ( AT-1 ) will influence the current 

activity ( AT  )which will in turn trigger or generate the features F𝑇. Given the previous 

activity and all observations from the sensors (or their corresponding features), we can 

infer the probability of the current activity. And we judge whether the activity does 

occur by the probability inferred by the activity recognition model. 

4.3.2 Explicit Power Consumption Inference 

As mentioned in Section 4.2.2, the explicit power consumption is closely 

correlated to the occurrence of its corresponding activity. That is, while the activity is 

performed, the correlated appliances will be turned on to the operating mode, which 

causes the explicit power consumption. In our Bayesian activity recognition model, the 

process of feature selection that can choose the most important features; therefore, we 

exploit the advantage of feature selection to find out the key appliances that cause 

explicit power consumption. 
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We use mutual information to measure the mutual dependence between a candidate 

feature (i.e. the correlated appliance) and its corresponding activity. Mutual information 

is calculated for each activity-feature pair of the training data for the purpose of 

choosing better ones from the set of sensor features to enhance the activity recognition 

model to be more discriminative. If we define all the activities and features as 

A = {A1
,  A

2
,  …,  A

N
}  and F = {𝑓1,  𝑓2,  …,  𝑓M} , the mutual information is 

calculated by the following equation: 

I(Ai ; 𝐹j) = H(Ai) － H( Ai | Fj ) 
(4-1) 

H(Ai) = －∑ P(Ai = a) log(P(Ai = a))  

a∈Ai

 
(4-2) 

H(Ai|Fj) =        ∑ P(Fj =  f) H(A i | Fj = f )

f∈Fj

 
 

 
= －  ∑ P(Fj = f) ∑ P(Ai = a | Fj = f ) log (P(Ai = a | Fj = f ))

a∈Aif∈Fj

 
 

 = － ∑ P(Ai = a, Fj = f ) log (P(Ai = a | Fj = f ))

f∈Fj,a∈Ai

 
(4-3) 

After estimating the mutual information between each activity-feature pair, we 

 

Fig. 4-4 The DBN of an activity recognition model 
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choose those features with higher value to construct the activity model. In other words, 

the selected features (or appliances) are more related to their corresponding activities, 

which cause the explicit power consumption. And the other features with lower mutual 

information are treated as noises which may influence the accuracy of the activity 

recognition. 

In conclusion, each activity model will acquire its corresponding explicit feature 

set that causes the explicit power consumption. The explicit feature set can be 

represented as F
ex={Fex1, Fex2, …, FexJ}, where the index set {ex1, ex2, …, exJ} stands 

for the index of features causing explicit power consumption. The confidence of the 

explicit feature is assigned with the value calculated by mutual information. For the 

instance in Fig. 4-2, the explicit feature set of the activity “watch TV” is {current_TV, 

current_light}, implying that the appliances are the TV and the lighting. 

4.3.3 Implicit Power Consumption Inference 

In contrast to explicit power consumption, the appliances causing implicit power 

consumption are not triggered by the ongoing activity directly. They may be turned on 

all day long so that the process of feature selection will not regard the appliances as 

correlated features to the activity. However, these appliances actually consume power 

during the period the activity occurs, which may be major cause of energy waste, for 

example, the air conditioner or the water heater in Fig. 4-2. 

In order to solve the problem of figuring out the appliances causing implicit power 

consumption, we again apply mutual information to select the implicit feature set (Fim
). 

In the training stage, if we want to find the implicit feature set of a target activity A, we 

first extract the data labeled activity A for correlation analysis because the implicit 
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features can be detected during the training period. For the purpose of excluding the 

explicit feature set (Fex), we subtract the explicit feature set (Fex) from the total feature 

set (F) to obtain the remaining feature set (F’). With the remaining features, we estimate 

the mutual information between each activity-feature pair in the extracted data. 

Likewise, as with finding the explicit feature set in Section 4.3.2, we choose those 

features with higher value as the implicit feature set (Fim
), and the confidence of the 

implicit feature is assigned with the value calculated by mutual information. In Fig. 4-2, 

the implicit feature set is {current_A/C, current_WaterHeater}, implying that the 

appliances are the air conditioner (A/C) and the water heater. 

4.4  Group Activity Recognition 

In an energy saving system for a multi-user house or environment, it is less 

informative to associate the individual activity with its corresponding user information 

(e.g. user ID) or energy saving since we often need to know the major causes of energy 

waste or overall energy consumption. Besides, families or friends usually gather 

together to accomplish something, that is the reason why the energy saving decision 

should not be made without considering the feeling of the whole group. Therefore, we 

infer group activities based on the individual activities mentioned in Section 4.3.1 for 

figuring out the source of energy waste and evaluating the group user comfort in an 

area. 

4.4.1 Definition of Group Activity 

There have been different definitions about a group activity, most of the prior 
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works define a group activity that the activities performed by the humans moving in the 

same direction or the activities many people intend to do [11, 12] (e.g. marching). In 

this thesis, we define group activity as following: 

 One or more than one people doing the same thing in the same area 

 More than one people doing different things in the same area 

Doing different activities generates different level of thermal energy (or activity 

level) and the humans may turn on/off or tune up/down different combination of 

appliances to change the power consumption. For example, doing the activity “watching 

TV” may generate lower level of thermal energy (about 1~2 calories per minute) and 

the TV and the light will be turned on; whereas doing the activity “cleaning” may 

generate higher level of thermal energy (about 5~8 calories per minute) and the vacuum 

cleaner and the light will be turned on. Unfortunately, since real environment is 

complicated and often changes dynamically, there exists uncertainty that the same 

activity does not always cause the same level of thermal energy and the human may not 

turn on/off the same set of appliances. If we use the attributes (i.e. the level of thermal 

energy and the power consumption) for activity inference, it might bring about error 

recognition rate. 

In order to address this issue, we assume that similar activities cause similar 

thermal energy on a human and require similar power consumption from appliances; 

thus, we can cluster the activities into a group with the similar attributes, and give each 

of the group activity a physical meaning as a representative label of this group. Later, if 

some activities with the similar attributes occur at the same time, the energy saving 

system can make decision on the appliance control according to the attributes of the 

group activities instead of on individual activities, which can improve the efficiency of 
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energy saving. 

We use Energy Tagged Context (ETC) to represent the related power consumption 

of a context we are interested in. In this work, the ETC has four attributes. The context 

in the node consists of activity and the physical activity level. And the power 

consumption can be divided into local and global power consumption according to the 

service scope that an appliance could provide in. In the next section, we will discuss 

which attributes will be chosen for group activity clustering. 

4.4.2 Group Activity Clustering 

 The goal of the energy saving system is to reduce the unnecessary energy waste 

given the system needing to meet a certain level of user comfort. Therefore, we choose 

some attributes that can represent the user comfort, and then use them as the basis for 

clustering group activity, which are the physical activity level and the power 

consumption (including local and global power consumption) in the thesis. After group 

activity clustering, we can control the appliances according to the two types of power 

consumption and the physical activity level to do energy saving without violating the 

least level of user comfort. 

We use the method of “k-means” clustering to cluster n individual activities into k 

group activities for each room in the home. In each room, we define that there are n 

individual activities, i.e. n ETCs (ETC
1
, ETC

2
, …, ETC

𝑁
), to be clustered, and r 

attributes for clustering (including the power consumption of local/global appliances 

and the physical activity level). 

Given the k initial mean points for each cluster, the k-means decides which cluster 

every sample (in the thesis, the ETC is a sample point in form of a feature vector) 
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should belong to by minimizing the within-cluster sum of squares, shown as below: 

  
arg min

G

∑ ∑ ‖ETC
N－μi‖

2

ETC
N∈Gi

k

i=1

 
(4-4) 

where G = {G1
,G

2
,…,G

K
} is the set of group activity that contains k group activities, 

and {μ1, μ2, …, μK} is the set of mean points of k group activities. In the equation, 

‖ETC
N－μi‖

2
 is used to calculate the square distance between an ETC and the mean 

point, where the ETC
𝑁

 to be clustered is an r-dimensional vector which contains the 

power consumption of x local appliances and y global appliances 

( {app
local

1,…, app
local

𝑥, app
global

1,…, app
global

𝑦}, and x + y = r ), and the physical 

activity level (PAL
𝑁

). After this process, all the ETCs are clustered into k clusters, and 

the mean of each cluster will be recalculated until there is no apparent difference 

between the old mean and the new one. 

 Eventually, the ETCs with similar power consumption and physical activity level 

will be clustered into the same group activity, which can provide information of energy 

and user comfort for later energy saving decision making. 
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Chapter 5  

Context-aware Energy Saving 

In a home environment, it is an important issue that we should take the human 

feeling into consideration while doing energy saving. In this chapter, we introduce two 

measurements to evaluate the user comfort based on standards. Combined with the two 

user comfort indexes, we formulate an energy-saving into a constraint satisfaction 

problems (CSP) to make better or even optimal energy saving decisions to achieve the 

goal of context-aware energy saving. 

5.1  Human-centric Consideration 

In our daily living, many environmental parameters do have influence on the 

feeling of a human body, such as temperature, humidity, light, and wind velocity. 

Inappropriate environmental conditions may affect the physical or mental states of 

humans, such as living quality, the working performance and overall productivity, or 

even emotion. Thus, we cannot ignore human’s feeling while doing energy saving. 

In this thesis, we mainly focus on human sensation of thermal and illumination, 
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since both factors cause more obvious effects on human comfort. And these two comfort 

indexes will be used for controlling indoor light and temperature respectively to achieve 

the goal of more desirable energy saving. 

5.1.1 Thermal Comfort Index 

The thermal comfort is used to evaluate the human’s reaction about the 

temperature variation in the sensed environment. The range of temperature, 22~26°C, is 

considered to be the most comfortable thermal range for human's living or working 

environments, and the metabolic rate of human body will change with respect to the 

temperature and physical activity level. Therefore, human may feel uncomfortable while 

there is no thermal balance between environment and human body. 

The thermal comfort is affected by heat conduction, convection, radiation, and 

evaporative heat loss. Here, we use the most common thermal comfort index called 

PMV (which has been introduced in Section 2.4) to evaluate the thermal sensation of 

the users in the home. It is reckoned when the activity (metabolic rate) and the clothing 

(thermal resistance) are estimated, and the following environmental parameters are 

measured including air temperature, mean radiant temperature, relative air velocity and 

partial water vapor pressure (ISO 7726). 

For the purpose of simplifying the equation (2-9), we make some assumptions on 

the parameters, as shown below: 

 M = 58, which is the metabolic rate (W/m
2
) 

 W = 0, which is the external work (W/ m
2
). The external work is the part of 

the metabolic rate that is used up in the activity being performed, rather than 

contributing to the heat balance of the individual concerned. It is usually taken 
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as zero, and should always be less than the metabolic rate. The default value is 

0.0. 

 Icl = 0.7 (spring), 0.5 (summer), 1.0 (fall), and 1.5 (winter); each of which is 

the thermal resistance of clothing (m
2
·°C/W

3
) in a specific season. 

 ta = tγ̅, which are the air temperature and the mean radiant temperature (°C) 

 vaγ = 0.5, which is the relative air velocity (relative to the human body) (m/s) 

 hc = 30, which is the convective heat transfer coefficient (W/ m
2
·°C) 

 tcl = 30, which is the surface temperature of clothing (°C) 

 Other parameters are sensed by the sensors 

Different activity leads to different metabolic rate (M), which is shown in TABLE 

3. With the thermal comfort index and PMV, the user’s thermal sensation can be 

evaluated and then be quantized into seven scales, as shown in TABLE 4. 

TABLE 3  THE METABOLIC RATE OF THE 17 ACTIVITIES 

Activity Metabolic Rate Activity Metabolic Rate 

ComeBack 58 Cooking 170 

GoOut 58 PlayingKinect 165 

Sleeping 46 Chatting 58 

WatchingTV 58 Studying 70 

TakingBath 170 ListeningMusic 58 

UsingPC 70 UsingRestroom 100 

Laundering 93 BrushingTooth 100 

ReadingBook 70 WashingDishes 145 

Cleaning 145   

 



  

52 

 

5.1.2 Illumination Comfort Index 

Light is also an indispensable element in our lives. Without the light, nothing will 

be visible and the environment will become lifeless since there is no light (or sunlight) 

for photosynthesis to maintain a balanced ecological environment. For an individual 

human, enough light resource can help improve working productivity and stabilize 

emotion. 

The Chinese National Standards (CNS) defines a discrete illumination rank by 

giving each rank a specific lux of illumination, which is illustrated in the upper row in 

Fig. 5-1. Next, we further use the illumination rank to define the lux level. Each lux 

level is an interval of lux, which is shown in the lower row in Fig. 5-1. 

Actually, it requires different intensity of light for different activity. For example, 

we need more illumination when reading newspapers, but may need less illumination 

TABLE 4  THE 7-PIONT OF THERMAL SENSATION SCALE 

PMV -3 -2 1 0 1 2 3 

Thermal 

Sensation 
Cold Cool 

Slightly 

Cool 
Neutral 

Slightly 

Warm 
Warm Hot 

 

 

Fig. 5-1 The discrete illumination rank of CNS (upper) and our lux level (lower)  
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while watching movies on a TV in the living room. The appropriate illumination for 

different activities is illustrated in TABLE 5. Similar to the thermal comfort index, in 

order to evaluate the satisfaction of illumination, we normalize the difference of lux 

level between the ideal level and real level into seven scales, i.e. it is from -3 to +3. We 

can formulate it as follows:  

 
real lux level－ideal lux level

normalization factor
 (5-1) 

where the normalization factor could determine the level of energy saving, and we 

choose six as the normalization factor based on some pilot experiments. The concept of 

illumination comfort index is shown in TABLE 6. 

5.1.3 User Comfort Indexes in Energy Saving 

TABLE 5  THE APPROPRIATE LUX LEVEL OF THE 17 ACTIVITIES 

Activity Lux Level Activity Lux Level 

ComeBack 30~75 Cooking 200~500 

GoOut 30~75 PlayingKinect 150~300 

Sleeping 1~2 Chatting 150~300 

WatchingTV 150~300 Studying 500~1000 

TakingBath 200~500 ListeningMusic 150~300 

UsingPC 300~750 UsingRestroom 200~500 

Laundering 150~300 BrushingTooth 200~500 

ReadingBook 500~1000 WashingDishes 200~500 

Cleaning 300~500   
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The thermal comfort index and the illumination comfort index are evaluated via 

User Comfort Evaluation Engine (UCEE) mentioned in Section 3.2.3. The engine takes 

the physical activity level and the environmental parameters, such as indoor temperature, 

illumination and humidity, as inputs to calculate the two comfort indexes. As shown in 

Fig. 5-2, there are two sub engines in UCEE: Thermal Comfort Evaluation sub Engine 

and Illumination Comfort Evaluation sub Engine. The Thermal Comfort Evaluation sub 

Engine uses the intensity (i.e. the physical activity level) of the corresponding activity 

and the value of indoor temperature and humidity to calculate a thermal comfort index 

 

Fig. 5-2 The flowchart of User Comfort Evaluation Engine 

TABLE 6  THE 7-PIONT OF THERMAL SENSATION SCALE 

Illumination 

Level 
-3 -2 -1 0 1 2 3 

Illumination 

Sensation 
Dark Gloomy 

Slightly 

Gloomy 
Neutral 

Slightly 

Blight 
Blight Glared 
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called PMV, which ranges from -3 to +3. With the value of PMV, the system would be 

aware of the thermal sensation of a resident any time. For instance, users may feel cold 

when PMV is close to -3 and may feel hot when PMV is close to +3. Hence, the system 

can adjust the indoor temperature to be a more appropriate degree in accordance with 

the calculated PMV. Similarly, the Illumination Comfort Evaluation sub Engine uses the 

current illumination and the most appropriate lux level to calculate the degree of user 

comfort. As mentioned in Section 5.1.2, we normalize the illumination comfort into 

seven scales (i.e. from -3 to +3). When the light is too glared (the illumination index is 

+3) or too dark (the illumination index is -3), the system can decrease or increase the 

intensity of light in order to provide a more desirable environment for users. Therefore, 

with the two comfort indexes, the energy-saving system will achieve the goal of more 

satisfactory context-awareness. 

5.2  A Pilot Evaluation of Context-Aware Energy 

Saving Realization based on the Thermal 

Comfort Index 

In this section, we design a simple experiment regarding energy saving using the 

PMV index, and this experiment mainly focuses on the temperature adjustment of the 

air conditioner independently. 

5.2.1 Experiment Setting 

In this experiment, we simulate the user’s activities in the home with some 
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assumption on the environmental parameters to evaluate the PMV index, and exploit the 

user comfort to adjust the temperature of air conditioner for three scenarios. The 

assumption on the environmental are: 

 The initial temperature: 30°C 

 The energy consumption: additional 6% energy consumption on average while 

tuning up 1°C of the air conditioner 

 The energy consumption: 100 virtual units at 30°C  

 The A/C simulator: tune down 1°C per minute while adjusting the temperature 

of A/C 

 The fixed experimental routine: come back → cleaning → watch TV (The 

metabolic rate of each activity is shown in TABLE 7.) 

The aforementioned three scenarios are: 

(1) Continuously adjust the temperature of air conditioner to fit the user comfort 

based on the PMV index 

(2) The temperature is set at 28°C 

(3) The temperature is set at 25°C 

With the assumptions and the three scenarios, the system will calculate the integral 

absolute value of PMV every 10 seconds by the equation: 

 
∫ |PMV| ∙dt 

(5-2) 

TABLE 7  THE METABOLIC RATE OF 3 ACTIVITIES 

Activity Come back Cleaning  Watch TV 

Metabolic Rate 58 W/m
2
 145  W/m

2
 58  W/m

2
 

 



  

57 

 

the users will feel more comfort while the integral absolute value is more closer to 0. 

The experimental results of temperature adjustment are shown in the next section. 

5.2.2 Preliminary Experimental Results 

The preliminary experimental results about the three scenarios are shown in Fig. 

5-3 and TABLE 8.  

In Fig. 5-3, the red line stands for the real temperature, the blue line stands for the 

ideal temperature, and the black line is the PMV curve. In scenario 1, it shows that the 

real indoor temperature is adjusted in order to maintain the PMV near as much as value 

0 as possible (i.e. putting higher priority on user thermal comfort). In scenario 2 and 

scenario 3, the system tries to keep the real indoor temperature as near 28°C and 25°C 

respectively as possible, and the PMVs of the two scenarios increase when the user is 

cleaning. In these two scenarios, the system posed a lower priority on user thermal 

comfort and adjusts the indoor temperature to let the value of PMVs closer to 0, which 

would cost less energy consumption than scenario 1, as shown in TABLE 8. 

Within the testing period (30 minutes in total), the total energy consumption of the 

air conditioner in Fig. 5-3 and the integral absolute value of the PMVs of the three 

scenarios are illustrated in TABLE 8. Since the system tries to maintain the PMV at 

value 0 in the scenario 1 (i.e. putting more priority on user thermal comfort), the air 

conditioner is adjusted continuously by the system. This causes the highest total energy 

consumption on the air conditioner and the lowest integral absolute value of PMVs 

among the three scenarios. In contrast, in the scenario 2 and scenario 3, where the 

indoor temperature is set to a specific degree, the integral absolute values of PMV are 

higher than that in scenario 1 due to the lower priority on user thermal comfort. 
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However, some energy consumption caused by a user changing his/her on-going 

activities can be saved since the system needs not adjust the temperature of the air 

conditioner frequently, which originally would leads to more energy consumption. 

From the pilot experiment of context-aware energy saving, we find that there exists 

a trade-off between fulfilling the maximum user comfort and achieving maximum effect 

of energy saving. That is, fulfilling the maximum user comfort often leads to more 

energy consumption, whereas achieving maximum effect of energy saving may cause 

more user discomfort. Thus, we formulate this issue into a constraint satisfaction 

problem into energy saving decision making where the system will try to maintain a 

certain level of user comfort the user can accept, which will be introduced in the next 

section. 

 

(a) 
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(b) 

 

(c) 

Fig. 5-3 The preliminary experimental results about the three scenarios. The 

horizontal axis and vertical axis are represented as time and the value (°C / PMV) 

(a) Based on the PMV index (b) 28°C and (c) 25°C 
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5.3  Optimization for Context-aware Energy 

Saving 

In the energy saving system developed in this thesis, energy saving is done under 

the constraint that the system should maintain at least a certain level of user comfort. 

Therefore, the system adjusts the appliances that do have influences on user comfort (i.e. 

evaluated by the PMV and the illumination level) and reduces energy waste by turning 

off those standby or unused appliances based on the user comfort indices (CIs) and the 

energy tagged contexts (ETCs) inferred by the Energy Prone Context Inference Engine. 

We can formulate the energy saving decision as shown below: 

 
TPCmin | 

ETCs+CIs
= arg min

si∈S, di∈D
∑(𝐿(𝑠𝑖) + 𝑑𝑖)

N

i=1

| 
ETCs+CIs

, |CIs| ≤ T 
(5-3) 

where D = *d1, d2, …, dN+ is the adjustment of each appliance,  S = *s1, s2,…, sN+ is 

the status of each appliance, L is the function to evaluate the power consumption level, 

TABLE 8  THE EXPERIMENT RESULTS OF THE FIRST STAGE EVALUATION OF ENERGY 

SAVING REALIZATION BASED ON THERMAL COMFORT INDEX (PMV) 

Scenario Based on PMV 
The temperature 

is set at 28°C   

The temperature 

is set at 25°C 

Total energy 

consumption of 

the A/C 

(with virtual unit) 

23668.67 

 virtual units 

20078.56 

 virtual units 

22933.24 

 virtual units 

The integrated 

absolute value of 

PMV 

1382.39 1885.39 1621.60 
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TPC is the total power consumption, and T is the threshold of comfort indices so that 

we can maintain as much comfort for users while doing energy saving. 

For the comfort-related appliance control, we can divide it into two parts: 

temperature adjustment and light control. With the sensors deployed in the home, the 

User Comfort Evaluation Engine can exploit the sensor data to evaluate the thermal 

comfort index (PMV) and the illumination comfort index (illumination level) as 

mentioned in Section 5.1.3. For the thermal comfort adjustment, the engine calculates 

the PMV using the temperature, humidity, and physical activity level (metabolic rate). 

Next, under a certain level of thermal comfort (T in equation (5-2)), the system uses the 

equation (5-2) to find a best combination of appliance (e.g. the fan or the air conditioner) 

adjustments that cost the minimum power consumption. Similarly, the lighting 

adjustment with the minimum power consumption can be calculated by exploring the 

appropriate illumination level based on the activity information. 
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Chapter 6  

System Evaluation 

In Section 5.2, we have shown some preliminary experiment results of doing 

energy saving while considering the user comfort at the same time. In this chapter, we 

simulate a home environment on a PC program and it generates all sensor data which 

contains uncertainty to make it close to a real life scenario. Next, we can train the 

activity models and test accuracy of inferring the group activities and the effectiveness 

of our proposed context-aware energy saving. 

6.1  The Simulated Home 

For the sake of generating sensor data close what could occur in a real home 

environment, we design a program of a simulated home where the layout is similar to a 

general home and there are four people living in it, as shown in Fig. 6-1. In the figure, 

the simulated home consists of 6 rooms: a hallway, a living room, a kitchen, a bedroom, 

a bathroom and a balcony. There are several virtual appliances and sensors (such as TV 

and current-flow sensors) populated in each room. In order to show the information of 
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sensors clearly, the sensors are classified into four sensor modules for detecting the 

human activities and the changes in the environment, including ambient sensor module, 

motion detection module, power monitoring module, and mobile activity-monitoring 

module. In the following, we introduce the components and the functions of these 

sensor modules in detail: 

 Ambient sensor module 

An ambient sensor module is composed of a temperature sensor, a 

humidity sensor, a light sensor, and a microphone, all of which are used to 

collect the ambient sensing data representing the conditions of the 

environment, i.e. the temperature, the humidity, the illumination, and the 

 

Fig. 6-1 The layout of the simulated home 
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sound.  

 Motion detection module 

In this module, a PIR (passive infrared) and a camera sensor are used for 

detecting the human motion, tracking the humans, and counting the number of 

humans in the home. 

 Power monitoring module 

A power monitoring module consists of a current-flow sensor and a 

power meter. It is equipped with an appliance to monitor the current-flow, 

power states and the power consumption of the appliance. 

 Mobile activity-monitoring module 

The metabolic rate of a human body varies with the intensity of an 

activity, and the intensity can be detected by the mobile activity-monitoring 

module. The module is made of accelerometers or other commercial devices 

(e.g. fitbit) that can detect the physical activity level of a person. 

Furthermore, the living styles of the four people are set based on an average adult 

in Taiwan. For instance, the common living style is that waking up at 8:00 in the 

morning and going to bed about 22:00-23:30 at night, and three meals are taken at 8:30, 

12:30 and 18:00 respectively. There are 17 activities simulated in the experiment, and 

the noise of the sensors is also taken into account, which will be discussed in the next 

section. 

6.2  The Activities in the Simulated Home 

For the purpose of achieving a more realistic scenario, we simulate 17 daily living 



  

65 

 

activities whose patterns are commonly occurred in a real-life setting, as illustrated in 

TABLE 9. Moreover, in order to make these simulated activities more realistic, we add 

some device-level noises generated by a Gaussian distribution to these 17 activities 

since there are non-predictable noises in a dynamic home environment, such as sensor 

failure or unexpected triggers from the residents. 

However, in order to simplify the complexity of the simulated home environment, 

the living style and the 17 activities are created based on the assumptions and 

experiment settings as follows: 

 The activities are simulated based on a pre-defined simulated scenario of a 

twenty-some person (i.e. pure program simulation), as shown in TABLE 10. 

  TABLE 9  THE LIST OF ACTIVITIES WITH THE METABOLIC EQUIVALENT OF TASK IN EACH ROOM 

Location Activity 

Metabolic 

Equivalent 

of Task 

(MET) 

Location Activity 

Metabolic 

Equivalent 

of Task 

(MET) 

Hallway 

GoOut 3~4 

Bedroom 

Studying 1.5~2 

ComeBack 2~2.5 Sleeping 0.9~1.2 

Living 

Room 

WachingTV 1~1.5 ListeningMusic 1~1.2 

PlayingKinect 8~12 UsingPC 1.5~2 

Chatting 1.2~2 

Bathroom 

TakingBath 3.5~5 

ReadingBook 1.5~2 UsingRestroom 2~2.8 

Cleaning 4~5.5 BrushingTooh 1.5~2 

Kitchen 

Cooking 3.5~5.5 Balcony Laundering 2~2.5 

WashingDishes 2~2.5    
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 All devices (e.g. sensors) share the same device-level uncertainty parameters, 

and we use Gaussian noise in this thesis. 

 The probability of a device failing to generate readings is at most 10%. 

 Only Infra-red and camera sensors apply the device-level uncertainties since 

both of them are the most error-prone ones in our pilot study. 

For each physical activity level, we use metabolic equivalent of task (MET) [36] to 

evaluate the intensity of each activity. MET is the ratio of the work metabolic rate to the 

resting metabolic rate, which can be defined as below: 

 
1 MET = 1 

kcal

kg∙hour
 

(6-1) 

(which is roughly equivalent to the energy cost of sitting quietly). And the metabolic 

TABLE 10  THE SCENARIO OF ONE DAY IN THE SIMULATED HOME 

Duration Activity Duration Activity 

07:00-08:00 Sleeping 14:00-17:00 Listening Music 

08:10-08:25 Using Restroom 14:20-15:00 Using PC 

08:15-08:30 Brushing Tooth 15:00-16:00 Studying 

08:35-09:00 Cooking 15:30-17:00 Using PC 

09:00-10:00 Watching TV 17:05-18:10 Cooking 

09:10-09:30 Chatting 18:00-18:20 Washing Dishes 

09:25-09:55 Reading Book 18:30-19:20 Chatting 

09:50-10:40 Playing Kinect 19:00-21:50 Playing Kinect 

10:35-11:00 Cleaning 21:55-22:20 Taking Bath 

11:00-11:02 Go Out 22:20-23:00 Laundering 

11:38-11:40 Come Back 23:00-23:10 Using Restroom 

11:45-13:30 Cooking 23:10-23:20 Brushing Tooth 

13:00-13:30 Washing Dishes 23:20-24:00 Sleeping 

13:35-14:30 Studying   
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rate (mentioned in Section 5.1.1) of a relaxed seated person is one MET, thus we can 

represent it as below: 

 
1 MET = 58 

W

M2
 

(6-2) 

Furthermore, the intensity of an activity represented by MET can be divided into three 

level, i.e. light (MET < 3), moderate (3 ≤ MET ≤ 6) and vigorous (MET > 6), and some 

examples are listed in TABLE 11. In the table, the published MET values for specific 

activities are experimentally and statistically derived from the average of a sample set of 

humans. With the value of MET, the calories the users consumed at different activity 

intensity can be calculated via the following equation: 

 

The calories consumed (kcal) 

= MET ∙Body Weight (kg)∙time (hours) 
(6-3) 

And the activity intensity, that is, the physical activity levels (abbreviated as PAL) 

of the 17 simulated activities are listed on the right side of their corresponding activities 

in TABLE 9. 

6.3  The Flowchart of System Evaluation 

In the experiment of this thesis, there are three main steps (as shown in Fig. 6-2): 

(1) ETC and group activity models construction (EPCIE):  

Generate sensor data and preprocess them into features which are able to 

represent the higher-level meaning of the environment, such as the feature “TV_On” 

standing for that the TV is turned on. And the features are taken as the training data 

to construct the activity models and their ETC models. 

Furthermore, we aggregate the ETC models into group activity models with 
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some key attributes (e.g. the physical activity level or the intensity of activity, and 

the combination of power consumption of appliances) since an appliance in the 

house are often shared among more than one resident. After the aggregation, the 

activities in each group activity model have similar attributes (i.e. physical activity 

level and combination of power consumption of appliances) and the group-activity 

models will be used later for inferring group activities. 

(2) ETCs and group activities inference and user comfort indexes evaluation 

(via EPCIE and UCEE): 

This step can be divided into two sub-parts: (1) the testing phase of EPCIE to 

infer the ETCs and group activities and (2) the evaluation of user comfort indexes 

by User Comfort Evaluation Engine (UCEE). 

TABLE 11  THE THREE LEVEL OF PHYSICAL ACTIVITY INTENSITY 

Physical Activities with Different Activity-Intensity Levels MET 

Light Intensity Activities < 3 

Sleeping 0.9 

Watching TV 1.0 

Writing, Desk Work, Typing 1.8 

Walking (1.7 ~ 4 km/hr.) 2.3 ~ 2.9 

Moderate Intensity Activities 3 to 6 

Bicycling 3.0 ~ 5.5 

Walking (4.8 ~ 5.5 km/hr.) 3.3 ~ 3.6 

Calisthenics, Home Exercises 3.5 

Vigorous Intensity Activities > 6 

Jogging 7.0 

Calisthenics (e.g. pushups and sit-ups), Running Jogging 8.0 

Rope Jumping 10.0 
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EPCIE takes the features (preprocessed from the sensor data) as inputs to 

infer the current activities and find the corresponding ETCs from the constructed 

database of the ETC models. The group activities the inferred activities belong to 

are inferred based on the ETCs. 

Simultaneously, the sensor data including temperature, humidity, 

illumination, power-related information, and the physical activity level of humans, 

are used to evaluate the user’s thermal and illumination comfort indexes by 

UCEE. 

(3) Energy saving decision making (Energy Saving Support Decision Engine, 

ESSDE): 

Exploit the results in the second step (i.e. the ETC of group activities and the 

user comfort indexes) and formulate into a constraint satisfaction problem (CSP) to 

make the more appreciate energy saving decisions for appliances adjustment given 

a certain degree of user comfort should be met (e.g. -0.5 < PMV < +0.5 and -0.9 < 

illumination comfort < 1). 

6.4  Experimental Result 

In this thesis, the experiment results are divided into two parts: (1) the accuracy of 

group activity inference and (2) the degree of energy saving of the context-aware 

system. 

After the group activity inference, each group activity has their corresponding 

activities, and there are different group activities in each room. Therefore, we use two 

types of performance evaluation in the experiment of the simulated home. That is, one is 
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the accuracy for each group activity, and another for each room (i.e. zone-based 

granularity). We give an example here for illustrating the idea of our performance 

evaluation. As shown in Fig. 6-3 (a), there are three activities (A, B and E) in the group 

activity. The ground truth is that activity A, B and E occurred, and the inferred result is 

that merely activity A and B occurred. Thus, the recall is 67% and the precision is 100% 

in this example, where the equations evaluating recall and precision are shown as 

below: 

 
recall = 

True Positive

True Positive + False Negative
 (6-4) 

 

 

Fig. 6-2 Three steps of the experiment 
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precision = 

True Positive

True Positive + False Positive
 (6-5) 

 

And the performance evaluation of group activities in each room is shown in Fig. 

6-3 (b). There are three group activities GA1, GA2 and GA3, and the individual activities 

of each group activities are shown in the figure. In GA1, activity B (or activity A) is 

similar to activity E due to their similarity in the combination of power consumption of 

appliances; therefore, even though one of them cannot be recognized as “true,” its 

corresponding group activity can still be successfully recognized. In the simple example 

of Fig. 6-3 (b), the ground truth is that activity A, B, C, E, F occurred, and the inferred 

result is that activity A, B, C, F occurred. With the concept of group activity, the inferred 

result of activity E, which is assumed not inferred as “true” but actually occurred, is 

 

(a) 

 

(b) 

Fig. 6-3 The recall and precision  

(a) within a group activity and (b) in each room 
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corrected by the group activity GA1 where activity A or B occurred. As the result, both 

the recall and precision are 100%. 

The recall and precision of each group activity in each room is shown in TABLE 

12, and the recall and precision in each room (in zone-based granularity) is shown in 

TABLE 13. 

In order to avoid the cases where recall or precision dominates the performance of 

inference, we use F-measure, which is a harmonic combination of precision and recall, 

to acquire the mean of precision and recall. The equation of F-measure is shown as 

below: 

 
F  =  (1+β

2
) ∙ 

precision ∙ recall

β
2
 ∙ (precision + recall)

 
(6-6) 

where we assume β
2
 = 1, thus the equation can be rewritten as below: 

 
F  =  2 ∙ 

precision ∙ recall

precision + recall
 

(6-7) 

and the results of F-measure of the two levels of experiment verification are shown in 

TABLE 14 and TABLE 15 respectively. From the results, we can find that applying 

group activity does increase the accuracy of multi-activity recognition while doing 

energy saving. 
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TABLE 12  THE RECALL AND PRECISION OF EACH GROUP ACTIVITY IN EACH ROOM 

Location 
Group 

Activity 
Recall Precision Location 

Group 

Activity 
Recall Precision 

Hallway 
Go Out 92% 94% 

Bedroom 

Studying 96% 97% 

Come Back 95% 95% Sleeping, 

Listening Music 
95% 94% 

Living 

Room 

Playing Kinect 95% 97% 

Watching TV 94% 96% Using PC 96% 98% 

Chatting 

Reading Book 

Cleaning 

71% 75% Bathroom 

Taking Bath 93% 95% 

Using Restroom 94% 97% 

Brushing Tooth 85% 90% 

Kitchen 
Cooking 94% 95% Balcony Laundering 96% 99% 

Washing Dishes 95% 95%     

 

TABLE 13  THE RECALL AND PRECISION IN EACH ROOM 

Location 
Group 

Activity 
Recall Precision Location 

Group 

Activity 
Recall Precision 

Hallway 
Go Out 

99% 99% 

Bedroom 

Studying 

99% 98% 
Come Back Sleeping 

Listening Music 

Living 

Room 

Playing Kinect 

97% 97% 

Watching TV Using PC 

Chatting 

Reading Book 

Cleaning 

Bathroom 

Taking Bath 

99% 99% Using Restroom 

Brushing Tooth 

Kitchen 
Cooking 

99% 99% 
Balcony Laundering 99% 99% 

Washing Dishes     
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Another experiment result is the degree of energy saving using the context-aware 

energy-saving system. In the pre-defined scenario illustrated in TABLE 10, we have the 

control group (as the baseline and without the energy-saving system) and the 

TABLE 15  THE F-MEASURE IN EACH ROOM 

Location 
Group 

Activity 
F-Measure Location 

Group 

Activity 
F-Measure 

Hallway 
Go Out 

99% 

Bedroom 

Studying 

98% 
Come Back Sleeping 

Listening Music 

Living 

Room 

Playing Kinect 

97% 

Watching TV Using PC 

Chatting 

Reading Book 

Cleaning 

Bathroom 

Taking Bath 

99% Using Restroom 

Brushing Tooth 

Kitchen 
Cooking 

99% 
Balcony Laundering 99% 

Washing Dishes    

 

TABLE 14  THE F-MEASURE OF EACH GROUP ACTIVITY IN EACH ROOM 

Location 
Group 

Activity 
F-Measure Location 

Group 

Activity 
F-Measure 

Hallway 
Go Out 93% 

Bedroom 

Studying 96% 

Come Back 95% Sleeping, 

Listening Music 
94% 

Living 

Room 

Playing Kinect 96% 

Watching TV 95% Using PC 97% 

Chatting 

Reading Book 

Cleaning 

73% Bathroom 

Taking Bath 94% 

Using Restroom 95% 

Brushing Tooth 87% 

Kitchen 
Cooking 94% Balcony Laundering 97% 

Washing Dishes 95%    
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experimental group (with the energy-saving system) to evaluate the degree of energy 

saving. For quantitative comparison, the power consumption for each state of an 

appliances is predefined in TABLE 16. By applying the equation of energy-saving 

decision mentioned in Section 5.3, we can save about 25% energy consumption on 

average without compromising user comfort, as shown in TABLE 17. From the 

experiment results, we can find that except for the appliances that have real impact on 

user comfort, the redundant energy consumption caused by those un-used or un-related 

appliances can be reduced via the assistance of context-awareness. This will save extra 

energy by more than 25%, but it is also important that we also keep user comfort in 

mind. That is, with our proposed energy saving system, both energy saving and user 

comfort are taken into account and the degree of energy saving is promising. 

 

 

TABLE 16  THE POWER CONSUMPTION OF APPLIANCES 

App. Name 
Power Consumption (W) 

App. Name 
Power Consumption (W) 

off stby on off stby on 

TV 0 3 60 Speaker 0 1 20 

Vacuum 0 5 1000 Exhaust Fan 0 2 100 

Kinect 0 2 165 Fridge 0 200 1000 

A/C 0 700 3000 Rice Cooker 0 100 1605 

Fan 0 2 35 Microwave 0 10 1285 

Fan Heater 0 5 480 Dish Washer 0 10 1200 

Lamp 0 2 20 
Wash 

Machine  
0 5 500 

PC 0 2 100 Water Heater 0 1000 4000 

Monitor 0 2 35 Light 0 0 60 

    stby: standby power consumption 
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TABLE 17  THE DEGREE OF ENERGY SAVING WITH THE SYSTEM 

Situation Energy Consumption 

The control group 

(the baseline) 
100% 

The experimental group 

(with the context-aware 

energy saving system) 

75% 
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Chapter 7  

Conclusion 

7.1  Summary 

In the thesis, we propose a context-aware energy saving system that takes both the 

power consumption, including explicit and implicit power consumption, of appliances 

and user comfort into consideration to make optimal energy-saving decisions. There are 

three characteristics in the system: 

 Be more aware of the relation between activities and power consumption 

We take the explicit/implicit power consumption of activities into consideration, 

which help us figure out the actual power usage of the appliances that is the most related 

with the activities and is the most easily ignored. More energy consumption will be 

saved via turning off or adjusting the power usage level of each appliance. 

 The quantifiable indexes for more fine-grained user comfort evaluation 

A quantifiable index is available for evaluating more fine-grained and specific user 

comfort through the perception of the temperature and the illumination. Therefore, the 

energy-saving system can provide fine-grained appliances control to promote more 
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degree of comfort (i.e. -0.5 ≤ comfort index ≤ +0.5 for average people). 

 The human-centric energy saving decisions without sacrificing user comfort 

With more information of power consumption and of the user comfort needed to be 

maintained, the suitable decisions for users can be made. In our system, about 25% 

energy consumption on average can be saved. 

7.2  Future Work 

We propose a prototype of a promising context-aware energy saving system in the 

thesis. However, there are some points that can be improved: 

 A model for learning user comfort 

The user comfort indexes in this thesis are used for evaluating user comfort based 

on the feeling of a large population of people. The indexes can be utilized in the 

multi-user environment regarding everyone has similar sensation of the temperature and 

illumination. However, the system should be more adaptive and flexible to learn the 

comfort model of a specific user, and it can be used for comfort evaluation when there is 

the specific user in the space. 

 An optimal energy saving decision making engine available for more 

situations 

In this work, we have given an orientation of energy saving decision making 

engine for the simple scenario (i.e. there is conflict between energy saving and user 

comfort). Nevertheless, there are many possible situations in the dynamic environment. 

Therefore, we want to design a more powerful decision engine for more situations. 

 A scenario with more realistic living styles or activities 
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The experiment results shown in Chapter 6 are very promising for the reason that 

there are at most 2-3 activities in a room, leading to the less complicated scenario. Thus, 

in the future work, we will design more activities and more complex real-life scenario 

for the system evaluation. 

 An evaluation in a real home environment 

We do the simulated home for the experiment; however, the problem of 

context-aware energy saving system is more difficult and there are more uncertainties in 

a real environment. In the future, we will deploy the four sensor modules into a 

simulated smart home in real life to verify our approach and make some improvement if 

necessary. 
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