Rz FLIPpragryaiaed
L=

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

TR R R S R SR 2 BB AR A iR
Automatic Phase Detectionfar Parallel"Applications on Shared

Memory A’fi’*ch itectures

Hung Chung-Chih

hERE P gL
Advisor: Yang Chia-Lin, Ph.D.

PR RE99 & T

July, 2010

B 328 KRB 23w
nRXLEBEEELTE
FATRANEE L ZEEZ 8 IR

Automatic Phase Detection for Parallel Applications on
Shared Memory Architectures

AHXGEEEE (L3 RI7922129) AR EBRZEERTZ
2L rwmzELTEHMH 0 HNEBR 99 £ 7 A 27 BARTFTIFRE
BEERBEOREME » 4L

oREH /i?%7fifl/f7\
¢ T 4" Yol

T

4= éfi

= ;{J
BRI E £ AR HA I IR P R BT S
S s BRGNS et e VR RN S A

,&)EL3~ %TEI’ ’ §5\3§
SR o TR BRI AR P gy Rk

1:\

Pl HE LT E AR R AL BT A Gk b oamE S S s B g e

Bt FIAD I IR DD E > N2 EF LD P BTG KEF T R
BB \D,J;kgﬁlgﬁ,‘zﬁmg N = p;\)g@igl@pwiﬂl& 1%{;%
AN ey

ﬂ%%m‘i*&%’pﬁ¢§4¢*%ﬁ%wﬁﬁﬁﬁ TR HE S A

L
LT
.1".;-'.' T"' o r;l".';
=) W, e
&]#;%
S5 \E
= =
B & IR HE AR B h- S A
5 i

. , Al e
B g o 2 A - BALRS A A 40
=)

T,

—
1w

o) 2 e, i
o &b =& £
¥ e
b L] h—?’ B oG
i:l.‘t_:l‘_ o — .'-"1: ﬁ::l.:--

FHT

P

&

YRR GRS PBR R LR o v AR P A A

RPFETUERED o B R - R0 > 3O HmEMIRE > dRdE A

ok

FER - n S PO AL RERTIRE PG A BTG {52 (PUZHE jai s 7
PHRER L SR REFE P f R ERE AL £ R

AT P A PR R I R T F iR S Pk i
B2 WH] o BB FEIES HE A 511i57f? ;’ I,*’J* B2 A g eEk > K
E AR o $0 BRI AR :% gl «i’ Y *fﬁf AR o B
RABEFD N R miﬂ”“lﬁﬁi»ﬂ.ﬁ mﬁa‘fﬁﬁv Pirdg £
HEFEA R T B0 R Tmﬁéﬁq%
x .j.

r]u,; i# Juﬁi}\,ﬁ%ﬁ_q.m"/z—’ al~ , ﬂx]’ﬁ?‘ﬂ’* ‘ub_#{ﬁ?aﬁ&P,}l%}j“ﬁjﬁ:

R g TR e o K bRl ET R 17 e B
HeBLnE S BN R FH AR v NP L S P iR i S 0 R

BRI 2% T

M&ts — % %o ficgi(multi-code simulation) ~ #25% 7 5 ;1 §## (application
annotation) ~ # #cSg#> B~ 1 41 (profile-driven sampling) ~ B~ st (simulation

sampling) ~ #p = 1§ ;2] (phase detection)

Abstract

Cycle-accurate software-based simulation is critical for architecture design
since it allows an architect to explore various architectural design points
at the early stage of design cycles. However, simulation speed has always
been an issue for cycle-accurate simh_latioqi_ “With the popularity of multi-
core Processors, improving rﬁﬁlti-core simulatidﬁ:jjperformance is critical to

allow fast advances in m{ﬂti—corq,:&m;hhitec__tme researches. In this work, we
|) '] 1 -

| N F' | "j; | o .
look into simulation sampling tech ‘Fi-q@ to dpFed up multi-core architecture

simulation. | m Fl '

Techniques have been pr_ons% that g’iltorfl#ticallyi gfoup similar portions
of a programs’s execution-ri'n'tp Jphases, Wherels&r;lpleé classified as the same
phase have homogeneous behavior. E(-?onifenti.bnaily, a program is looked over
code signatures to extract information about the phases and only the repre-
sentative intervals are executed to analyze architectural selections. However,
such methodologies are becoming inadequate in multi-core category. Because
application’s behavior is not dominated by the instructions only but also the
communication structures between threads.

Hence, in this work we propose to utilize the interaction between threads

for parallel program phase detection. Our results reveal that the inclusion

of such information can increase the accuracy of the phase detection signifi-

cantly (The error rate of IPC is below 2%).
Keywords — multi-core simulation, application annotation, profile-

driven sampling, simulation sampling, phase detection

i

Contents

Abstract
1 Introduction
2 Related Works

3 Phase Identification' Methed.For Serial Programs

3.1 Profiling Program Behaviof':: LU 1 N N
| r?_"r-'*' ‘
3.2 Using k-means for Phas§3 flasitﬁcatmn
4 Phase Behavior AnalySIS %For Parallel| Programs

4.1 Data Level Parallehsm Programs

4.2 Task Level Parallelism Programs © .*.

5 Phase Identification Method For Parallel Programs
5.1 Thread Interaction On CMPs

5.2 Thread Interaction Aware Phase Detection

6 Experimental Setup
6.1 Benchmarks 0

6.2 Metrics for Evaluating Phase Classification

il

11

14
14
18

23
24
27

7 Experimental Results

7.1 Proposed Scheme

7.2 Comparison with Previous Work

7.2.1
7.2.2
7.2.3
7.2.4

Baseline

SBBV+CCV VS ICV+TCV
SBBV+CCV VS. ICV4+CCVo L.
SBBV+CCV VS. SBBV+TCV

7.3 Memory Contention Count Vector

8 Conclusion

Bibliography

v

36
36
38
38
39
41
42
43

45

46

List of Figures

1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
9.5

7.1

characterizing program behavior [28]

phase behavior of data level parallelism program : equake
phase behavior of data level parallelism program : wupwise
phase behavior of data level parallehsm program : swim
Loop-by-loop of. data e inc 5 P LI
phase behayior of task lgvgl Eira:}%glshm program + dedup
phase behavior*of task level Q@E\il’élﬁﬁn prograi : ferret

phase behavior-ef task level pghllel$1m prograim : x264
Traffic from cache in b)r

ies pet 1nst1tu|ct10n for 1 to 16 cores.

Data assumes a Shared 45 Way assoc1at1ve cache with 64 byte

timing alignment for parallel programs
data sharing pattern for parallel programs
resource contention for parallel programs
Communication Count Vector (CCV)

Memory Contention Count Vector

Error Rate of SBBV, CCV, SBBV+CCV

15
16
17
17
19
20
21

7.2

7.3
7.4
7.5
7.6
7.7

Phase-Based Standard Deviation of SBBV, CCV, SBBV+CCV

37
Error Rate of SBBV+CCV, ICV+TCV 40
Phase-based Standard Deviation of SBBV4+CCV, ICV+TCV 40
Error Rate of SBBV+CCV, ICV+CCV 41
Error Rate of SBBV+CCV, SBBV+TCV 42
Error Rate of SBBV+CCV, SBBV+CCV+MCV 43

vi

List of Tables

6.1 Profiled Machine Configurations . .

6.2 Evaluation Machine Configurations

vii

Chapter 1

Introduction

Microarchitects and researchers generally.meed understanding the cycle ac-
r r =

curate behavior of a processor duging the executibn of an application. Re-

searchers typically obtainthis information.-by meansr_qu employing detailed

) ']

o~ Fa ‘ . . .
simulators, which simulate/ compl ’te'_@x{pf Feﬂach instruction going through

ép’ﬂ;re the timing information of
| &

the microprocessor pipeline, in <i>r er ‘gf c
1R

individual cycles more accm."_atel;{r, TS ; ‘FI

However, cycle level o'f?(i-e_tafjll Lrings abodt:tbe cdét of speed, and simu-
lating the complete execution of anfi:ndustry"'standard benchmark can spend
weeks or months to finish. To make things worse, architecture researchers
find the set of features that provides the best trade-off between performance,
complexity, area, and power by simulating each benchmark over a variety of
architecture configurations. Hence, there is a need to develop a technique
which can reduce the number of machine-months to estimate the impact of
an architectural modification without coming at an unacceptable error rate

or excessive simulator complexity.

Previous works have shown that programs exhibit cyclic behavior pat-

Phase 2 Phase 2

100% — detailed simulation functiopal simulation
: SO%—WWWW
= :
5 60% — Phase 1 ; p Phase 1 Phase 3
5 i g H ! a : L) y - : .
*-' 2 09, _Jdetailed simulation ifunctional simulation ! detailed simulation
L] . : \
L 20% — : : :
0% T v I
0B 208 Instruction Executed 408
—Average IPC === L1 data cache miss rate

Figure 1.1: characterizing program behavior [28]

terns. So the behavior of a program is not random and based on such ob-
servation, the terminology phase isydefined.s An interval is a slice in time of
a program’s execution. A phase 1§ a set o,f 1ntervals within an application
execution which performs homogeneous behavior The intervals are not nec-

essarily temporally cont-rgﬁous. Mher words, a phase can reoccur many

| Fal
. N el =Ty
times throughout the execution. L ?;,
One of the most common means ofm{smgl hase 1nformatlon is to reduce

the architectural 51mulat1on;:t1m IAt run- tlT ! proggarhs exhibit repetitive
behaviors that change ove; tlme These behegviol‘%;.:batferns provide an oppor-
tunity to reduce simulation tim'e. For eiarribie in fig 1.1, by identifying each
of the repetitive behavior (Phase 1 to Phase 3), taking only a single sample of
each repeating behavior and weighting each sample according to the relative
size the phase represents from the complete execution (Phase 1: 2/5, Phase
2: 2/5 and Phase 3: 1/5), we can perform very fast and accurate sampling
(rather than running the application to completion, which takes considerable

simulation time). Such approaches reduce the overall simulation time by or-

der of magnitude. Simulating only these carefully chosen simulation points

can save hours to days of simulation time with very low error rates.

The phase detection technique for serial programs is already a mature
area. Phase information has been extracted by utilizing code signatures (e.g.
basic block vector). Results show that the detection of phases through such
technique is accurate. However, the microprocessor industry went through
a paradigm shift in the recent years from a single core, complex design that
pushed the power envelope and clock rates to multi-core designs with simpler
cores. Many manufactures, including Intel, IBM, Sun and AMD, have pro-
duced microprocessors which incorporate multiple processing cores. The in-
creasing number of cores has resulted-in the.communication pattern between
cores playing an important role in d@ﬁermin;ii}g the everall performance of the
processor. The behavior of pfagram 1s no longer dé}ninant by the instructions

only. —
|~ \ ,ll ~ |

Hence, we propose to make use of iafornation about inferactions between

@e irlltﬁkoduce CCV (Communication

ensional aILrlay recording the communica-

threads to detect the execution p'h ses.

Count Vector) which'is a one-di
tion messages issued by C-orfl;esppnding core. IIn--:gtddi'tion, we propose MCV
(Memory Contention Count Véctof)- which 5.l one-dimensional array
recording the last level cache misses issued by corresponding core. Then,
we combine CCV and MCV with the code signature based structure, BBV
(Basic Block Vector) to detect parallel program phases. The experimental
results show that on average the IPC error rate is below 2% and the stan-
dard deviation for IPC is reduced by 46.46% compared to program complete
execution.

The rest of this thesis is organized as follows: Chapter 2 reviews the

related works on phase classification and analysis. Chapter 3 describes
the phase identification method for serial programs. Chapter 4 shows the
phase behavior analysis for parallel programs. Chapter 5 presents the pro-
posed phase identification for parallel programs, including Sampled Basic
Block Vector(SBBV) technique, Communication Count Vector(CCV), Mem-
ory Contention Count Vector (MCV) and combination of the above all tech-
niques. Chapter 6 presents the experimental setup. Chapter 7 shows the
experimental results on the accuracy of IPC metric and standard deviation
reduction could be derived by the proposed methodology. Finally, Chapter

8 states the conclusion about__);:}.,:_;:11&-_;r mﬁ&ﬂﬁ@l@ 7

A
ol

Y] R
-

=

an

L
g

[~
o

S

¥
__,'___,J‘?

: ‘.
Le
o,
_
o,
t}
- .’il‘.'q"'

Chapter 2

Related Works

Several researchers have examinediphase béhavior in programs. In this sec-
r r =

tion we will give a brief'description of studies relafed to phase identification

and phase-based optimizé:tion ~

Sherwood et al. [26] presented thmpphpatlons show eyclic phase-based
behavior over many arch1tecture| ropeﬁiﬂ; 'such as cache behavior, branch
prediction, value predlctlon adcir SS pred1ct1® IPC and RUU occupancy,
etc. Repeating patterns Were fo nd-in manSr programs and the essential
architecture metrics show snnllar beliavior over tite.

There are works utilizing hardware counters for phase detection. Isci et
al. [16, 17, 18] used hardware performance counters to exploit phase behavior
in programs. And they have shown the ability to dynamically identify the
power phase behavior using power vectors. Deusterwald [13] et al. used
hardware counters and other phase detection scheme to analyze program’s
phases.

The phase information can be used for dynamic reconfiguration. Bal-

asubramonian et al. [7] proposed using hardware counters to collect miss

rates, CPI and branch frequency information for every hundred thousand in-
structions. They dynamically evaluated the program’s stability by utilizing
the miss rate and the total number of branches executed for each interval.
They used such technique to guide dynamic cache reconfiguration to save
energy without sacrificing performance. Dhodapkar and Smith [12, 10, 11]
utilized a relationship between phases and instruction working sets, and they
found that phase changes at the same time as the working set changes. This
directed them to propose dynamic reconfiguration of instruction cache, data
cache and branch predictor in response to phase changes indicated by working
set changes in order to save energy, [10; L]

Some works focus on how to app‘répriateiy define the granularity and sim-
ilarity to perform phase anal&sis. Hind et al. [21] provided a framework to
present the impact of gra;iularity and, similarity on pﬁése analysis. And they

[ko L =X

al=p sl
showed how to perform phase an ysl’s;’:_apﬁrd)grlately. Lauet al. [20] exam-

ined the influence of varying intér ral leﬂaﬁg:ch 1ln: phase dgtection. Vandeputte
and Eeckhout [30] provideq, pha | Lcomi)i—érxitﬁ %urfaces to characterize a pro-
gram phase behavior acroég -\(aITiQUS time scalesl.--:,‘_@ho' 'and Li [9] proposed an
approach to quantitatively anallyzeﬁ";che Chaﬁging of phase dynamics across
different time scales. And they presented a framework classifying phases
which exhibit homogeneity in their scaling behavior.

The most common means of using phase information is to reduce the
architectural simulation time. In [27, 28], Sherwood et al. proposed that
programs have repeatable phase-based behavior, and such behavior can be

automatically identified by only examining code execution. They used tech-

niques from machine learning that are capable of finding and exploiting the

large scale behavior of program. They found that intervals of execution clas-
sified as the same phase had similar results over all architecture metrics.
SimPoint [28] was developed to automatically pick a small set of intervals of
execution in the program for detailed simulation. They also extended their
work [19, 29] to perform hardware phase classification and prediction. Patil
et al. [23] has inspected guiding simulation at Intel by utilizing simulation
points which are picked by SimPoint. Davies et al. [6] exploited sampled
information extracted by the Intel’s VTune Performane Analyzer, in order
to construct a representation of program execution within a given interval.
Such information is collected at runtime en native hardware. Annavaram et
al. [4] employed the VTuneapproachto exa,f:pine phase behavior for database
applications. r

This idea is also extetided/for parallel programs. Pé;elman et al. [25] used
the sampled information extractéd gyﬂﬂn;al tp collect Extended Instruction

Pointer Vectors. They produceci ‘ a,mh'l;é(d B@Fic Block Vectors to examine
applying phase analysis alﬂggrit | S ariqdr—'ilow: ﬁl,lo adap.t them to parallel ap-
plications running on sha;e(-i Jnernory processcl)rs_.“ Bﬁt they didn’t take the
communication pattern betweeﬁ threads int(s- consideration. Zhang et al [31]
proposed to utilize communication behavior to determine the phases of a
parallel application running on Network-On-Chip architecture. Hence, they
presented TCV (Taffic Count Vector) which is established by recording the
number of packets going through each router. However, because we think
there is still room for improvement, we propose Communication Count Vec-

tor (CCV) and Memory Contention Count Vector (MCV) (There are more

details in chapter 5) in order to capture the interaction between threads more

accurately. We will regard their methodology as baseline to compare with

our work.

Chapter 3

Phase Identification Method

For Serial Programs

The phase detection technigte for serial pregrams'is,alteady a mature area.
Phase information has been extracfcédjfbﬁf itilizing code signatures (e.q. basic
|

| e | o |
block vector) and the results shq)\T sugh; technique is accurate. In this sec-

tion, we will briefly describe the |

m‘ethdci&ogy utilized in [28] to detect serial
1 1

program phases.
The following are definitions heiping us’to ground our discussion in a

consistent vocabulary.

1. Interval

A contiguous portion of execution (a slice in time) of a program. Pro-
gram execution is divided into contiguous non-overlapping intervals.
All intervals are measured based on instruction count (total number of

executed instructions).

2. Phase

A set of intervals within a program execution which perform homo-
geneous characteristics. A phase can consist of intervals that are not
necessarily temporally adjacent, so a phase can reoccur many times

throughout execution.

. Frequency Vector

Each interval is represented by a frequency vector, which stands for
the program behavior during that time slice. The Basic Block Vector
(BBV) is the most commonly used structure. There would be more

details about BBV in section 3.1.

#

. Similarity Metric ke A

The Euclidean distancebetween the two f;eduency vectors is regarded
as the similarity between tWo c‘orres?ondmg mtervals. The Euclidean
distance can be calculated b c%ulde llirﬂg each frequency vector to be

a single point in-D-dimensi nalmpacel kD stands for the number of
elements in each frequenc lvector ard caleulatmg the straight-line

distance between the two pomts The formula for computing the Eu-

clidean distance of two vectors - b in D-dlmensmnal space is given by:

D
EuclideanDistance(a, b) > (a; (3.1)

=1

. Phase Classification

Intervals are classified into phases according to similarity metric. In-

tervals with similar behavior are grouped into the same phase.

10

3.1 Profiling Program Behavior

Each interval is represented by a frequency vector. Basic Block Vector
(BBV)[27] is the most commonly used frequency vector. A basic block is
a single-entry, single-exit section of code with no internal control flow. Basic
Block Vector (BBV) is an one-dimensional array where each element rep-
resents the number of time a basic block is entered during the execution
interval. At the beginning of each interval, Basic Block Vector (BBV) con-
tains all zeros. And as the program executes, the number of times each basic
block has been entered is recorded for current interval. The intuition behind
this is that the behavior of the program at a‘given time is directly related
to the code executed during that ihterval: T [28];«they. used the basic block
vectors as signatures for.eachiimterval of ef<ecutibn:, reach vector gives the

information about what portions Q£_ié;9gq lare ‘\executedr,v and how frequently
those portions of code are executjdi‘ Byf’g:'gLfﬁpa%ing the BBVs of two intervals,

we can evaluate the similarity oth e txg‘&;-intérﬁvals.
(']

Ilf
i | ‘51”

3.2 Using k-means for Phase Classification

The basic block vectors provide a compact and representative summary of
the programs behavior for intervals of execution. Because there are so many
intervals of execution that are similar to one another, one efficient represen-
tation is to group the intervals together with similar behavior. This problem
is analogous to clustering problem.

Clustering splits points into clusters, so that the points classified as the

same cluster are similar with each other (by some metric, usually distance),

11

and points from different cluster are different from one another. In [28], they
used the efficient and notable algorithm, k-means [22] to fast and accurately
divide the program behavior into phases. The k in k-means stands for the
number of clusters the algorithm will search for. The following steps brief

the phase clustering algorithm at a high level.

1. Divide the program’s execution into contiguous intervals, and profile
the program by recording a frequency vector for each interval. Each
frequency vector is normalized so that the sum of all the element equals

1.

2. Apply the k-means clustering algorithm on all of the collected-vectors
s =

for a set of k-values.

3. In order to select a -Well-forﬁl—ei&,l clusl”éégi’pg thatVatsothas a small num-
ber of clusters from these dﬁé@édﬁferings, in [28], they used the
Bayesian Information Cri ema{lﬁ(Bl[éF) [24] tocompare and evalu-
ate the different CIUS_JQ’_:QIS fo rfled for.-diff(%ljpnt vé;lile of k. The Bayesian
Information Criterz'on“{:B[¢)1s regardea* as.a measure of ”goodness
of fit” of a clustering to a dataéet. They selected the clustering with the
smallest value of k, such that its BIC score is above some percentage
of the range of scores that have ever seen. The final clustering result

stands for the way the intervals are classified into phases.

4. The final step is to decide simulation points for the chosen clustering.
For each phase, an interval that is the closet to the centriod (center of
each cluster) is selected. Each simulation point also has a associated

weight, which are related to the fraction of executed instructions in the

12

program its phase stands for.

. Eventually, a weighted-average architecture metrics of concern (IPC,
miss rate, etc) is found out. From the weights and the detailed simula-
tion results of each simulation points, we can get the weighted-average
architecture metrics. This information give us an accurate representa-

tion of the entire execution for specific application.

13

Chapter 4

Phase Behavior Analysis For

Parallel Programs.

In this section, we will aﬁalysis the-phase characterization of data level par-

allelism program and task level paréltéﬁsirnwprograms, in order to realize the

| -

phase behavior of various kind, of Tppﬁﬁations.
W

|

4.1 Data Level Parallelisth Programs

Figure 4.1, 4.2 and 4.3 graphically show the phase behavior for the SPEC
OMP benchmark equake, wupwise and swim when using 4 threads with
respect to execution time. The x-axis shows the execution time. The y-
axis which shows each thread’s IPC (Instruction Per Cycle) is partitioned
into four sections, one per thread. SPEC OMP is composed of data level
parallelism applications. The majority of code sections were transformed
into parallel form by searching for loops with fully independent iterations.

So all the threads execute the identical tasks at the same time and there is

14

IPC

MA@ ENAD

80358 80468 88450 80508

xR

OO0 RRRE

L)

LAoORENADON

.

@B@P |l
ML RENL

R

SO0 RRRERE

ameENLMON

80250

86368

80350 80460 80458 80500
Time (nanosecond)
e

Figure 4.1: phase behavior of data level parallelism program : equake

15

° seeow apsno sE.00

o seeom arsne sge0n

seaon

rEe08

rEe0

nEso8

E-09

BEeon

thresd

threed 2

IPC

. NL‘FL’T ™ "LJ'"LW

a 1r-08 arsoa sE00

o sgeoe agne se.00

sEeon

L

PE-08

rEou

Time (nanosecond)

wrso9

aE.on

a

or-08

e

[thrmed 3

thrasda

Figure 4.2: phase behavior of data level parallelism program : wupwise

16

IPC

thresd 3

Time (nanosecond)

Figure 4.3: phase behavior of data level parallelism program : swim

\ 'ﬁ |
Benchmarks | Loop Name 2Proc. 4 Proc. Seq. 2 Proc. 4 Proc.
equake Smvp -#0 0.00 0.00 0.00 0.00 0.00 0.00
Main-#3 0.00 0.00 0.00 0.00 0.00 0.00
swim Calc3-do#300 0.00 0.00 0.00 0.00 0.00 0.00
Calc2-do#200 0.00 0.00 0.00 0.00 0.00 0.00
Calcl-do#100 0.00 0.00 0.00 0.00 0.00 0.00
Swim-do#400 0.00 0.00 0.00 0.00 0.00 0.00
wupwise Muldoe-do#l 0.00 0.00 0.00 0.00 0.00 0.00
Mudeo-do#l 0.00 0.00 0.00 0.00 0.00 0.00
Zaxpy-do#| 0.00 0.00 0.00 0.00 0.00 0.00
Zdotc-do#| 0.00 0.00 0.00 0.00 0.00 0.00
Zcopy-do#l 0.00 0.00 0.00 0.00 0.00 0.00

Figure 4.4: Loop-by-loop of data sharing [5]

17

little communication between threads.

Figure 4.4 [5] shows measurements related to the level of data sharing in
the parallelized loops in SPEC OMP programs. Such information indicates
the interaction between threads in wupwise, equake and swim is very low.
When several processors share the same data and one of the processor up-
dates the data, the processor will ask all other processors to invalidate their
data in order to prevent using the stale data. Such act is called invalida-
tion transaction. Because Invalidation can cause cache missed, the updated
data can be obtained from another processor which has the most up-to-date
copy. Such act of copying a cache linesfrom one processor’s cache to an-
other processor’s cache is called a co‘pybaclg"_transaction. Hence the number
of Invalidations and Copybdckzs in figure 4.4 s‘.’céhd for the degree of data
sharing between threads:. and this, ﬁgure reveals the mtemctlon between these

programs is little. Consequently; ¢ ll Efreadé are in the same phases at the

same time for the majority of th|e execit!tlon And the behav1or of this kind

of applications is highly dependqtn on the seéf:trlon of. code be executed.
I L

4.2 Task Level Paraﬂelisrﬁ Programs

Figure 4.5, 4.6 and 4.7 graphically show the phase behavior for the Parsec
benchmark dedup, ferret and 2264 when using 4 threads with respect to
execution time. These applications are task level parallelism program. Ev-
ery thread executed different sections of code, and there is large amount of
shared data passed from thread to thread. Figure 4.8 [8] analyzes how the
task-level programs use its data. The chart shows what data is accessed and

how intensely it used. PARSEC workloads use a significant amount of com-

18

IPC

2.4 T T T T T T T T
2.2 fthread_8" — -

2 ‘ 5
1.8 i
1.6 4
1.4 |
1.2 ¢ '

1 C L 1 1 1 1 1 1 I]
8.8

2008 208508 2160 2158 2268 2258 2360 23568 2480
2.4 T T T T T T T
B2 F “thread 1" —— 1
1.8
1.6 | |
saf \ w

.1 L
0.8 L 1 i L 1 L 1 L

2088 2058 2188 2158 2200 2258 2380 2358 2480
2.2 T T T T T T T T

2t __ T PR
1.8
1.6
1.4
1.2

1t
8.8 L i L i 1 i i L

2880 2858 2168 2158 2288 2258 2388 2358 2488
2.2 . . ' ' ' — — :

2 F hnead_ 3" ———
1.8 J
1.6 ‘ il
1.4 I
1.2 f

1 1 L L I I 1 1 L

2888 2858 2188 2158 2288 2258 2300 2358 2488

Time (nanosecond)

R i

Figure 4.5: phase behavior of task level parallelsim program : dedup

19

IPC

2 L L i A1 1 1 L
22000 23088 24000 25000 266808 27000 28000 29008 30808
: T T L L T T “th 4 ; 3
1:3 kit i
i
“20000 23008 24000 25080 26800 27068 28000 29008 3000
i'g ", 5 !y
- l I
13
1.; - P I
8.9 |
B '
“20000 23008 24000 25080 26600 27000 28000 29008 3000
13 a3
113
: T
1.
a6 ' L L 2 L L N L il
22000 23008 24008 25080 26808 27080 28000 29008 3000

Time (hanosecond)

Figure 4.6: phase behavior of task level parallelsim program : ferret

20

2'% “thread_8" —F
i Mm]
£ *{MMWWMMWJ{«W«W mww(mwwmm
a.8
a.6 =
:’% W “thread_1"
155 W ‘m
£ fi M}r pwmwwmfvaWWwwm *"’”ﬂ
g e 558 552
a
2'3 = “thread
1 i “”A«
iy Wwwwmwwqmw WMWWW WWW
2 540 552
1,5 thr d_3" ——
i MWWWJWWMMMNNW%MMW W‘”VW‘-
a.8 r
08 ea 536 538 544 546 548 550 552
Tlme (nanosecond)
W, 153 |
%) I|' \ e
Figure 4.7: phase bgha‘ior 0 lqraﬁm Jprogram : x264
. i -
~— 4_
é 3 ::;f %f- __ True Shared
..E'n_,J E‘?ﬁ Writes
] B shared writes
u"':E I B shaved recds
= D Private Writes
. Private Reads

1 2 4 816 1 2 4 8 16 1
dedup ferret

Figure 4.8: Traffic from cache in bytes per instruction for 1 to 16 cores. Data

assumes a shared 4-way associative cache with 64 byte lines. [§]

21

munication, and in many cases the traffic between threads can be so high. For
this reason, the phase characterization of this kind of applications is much
more complex. The phase behavior is not only affected by the section of code
be executed, but also influenced by the active interaction between threads.
In the following section, we will describe how to utilize the communication

structures between threads to capture parallel program’s phase behavior.

22

Chapter 5

Phase Identification Method

For Parallel Programs

From the intuition of that the program’s~behavior' at. a given time has a

strong correlation to the section of éédﬁbe‘pxe‘cuted, phases can be detected

| T;’--"

by utilizing information about baji: blqcks ‘The Basic Block Vector (BBV)

is the most commonly usedstru ure. :-'Such‘phase detection technique is

successful for serial programs,:::

However, when the number of cores Scales up; generating the basic block
vector becomes complicated. Recording which basic block is entered for each
instruction is not only time-consuming, and would produce too much data
to be maintained.

In [30], Lau et al. proposed that mapping the EIPs back to the static
code constructs to create Sampled Code Vectors for each interval where each
dimension was the number of times each static loop, procedure, or basic block
was sampled. In this work, we construct BBV in a sample manner to de-

tect program phases. At regular intervals, Perfmon2 interrupts execution to

23

Situation 1

Intervall | Interval2 Interval 3 Interval 4
Thread | Phase | Phase 2 Phase | Phase 2
Thread2 Phase A Phase B Phase A Phase B
Situation 2
Intervall | Interval2 Interval 3 Interval 4
Thread | Phase | Phase | Phase 2 Phase 2
Thread 2 Phase A Phase B Phase A Phase B

Figure 5.1: timing aligrrlrp‘en‘lc', fp} parallel programs
| F

. - Tl
record the interrupted ins'tju%j;ion addres
Ay s

ing Pin to instrument bh@_ries‘l map the i

i
s-“We produce the mapping by us-

%
p

ted mstruction addresses

'

down to basic blocks. ALPt-’gp' that
pled Basic Block Vé:?:tOfS
Vectors (SBBV) to find-th

behavior in
1

formation Fm
er.%*, applica
a6 L

However, only exploit
L W L W L
ing insufficient. In the multi-cere tion execution is no longer

-)

dominated by the instructions '.@nl"l_jbujt_ jpst.e’é'd the interaction between

threads in parallel application is becoming as important as the instruction

behavior.

5.1 Thread Interaction On CMPs

There are three major issues should be concerned in parallel applications:
1. Timing Alignment

24

Situation 1 Situation 2
Thread | Thread2 Thread | 7 Thread2

2 Less traffic 2 2 More traffic 2
4 4 4 | 4
| | | |

Data Set A Data Set A Data Set A

Threads touch different data sets Threads touch the same data set

Figure 5.2: data sharing pattern for parallel programs

In order to identify the repeat pattern of parallel programs, we need
to know which parts of each th}"_ead are executed at the same time, be-
cause the behavior of paﬂprallel‘;pfbgrair‘ﬁézis i_r;ﬂ_uenced by each individual
thread’s execution For lexample in ﬁgure 51 since the phase behavior
of the two s1tuat10ns 18 dlffg; ﬁt W,e .m}lst 1dent1fy the difference be-
tween situation 1*and 51tu 10n.-§'l?a- Ttlderstand which parts of each

thread are executed-simult eou& on k e systemi:
2. Data Sharing Paﬂf’efql I h

To guarantee the Correctness,""alccéleréﬁ'e the execution, and communi-
cate between threads, there are shared data read or written by more
than one thread in multi-threaded application. The data sharing pat-
tern could have dominant influence on program’s behavior. As we can
see in figure 5.2, threads in the two situation execute the same ba-
sic blocks. But because threads in situation 2 touch the same data set,
there must be much more traffic between threads than situation 1. And

the phase behavior of these two situation would be distinct from each

other. Therefore, capturing the data sharing pattern between threads

25

Architecture 1 Architecture 2
=== Thread1 = Thread 2 === Thread 1 = Thread2

0 200 400 600 0 200 400 600
CPU cycles CPU cycles
Sufficient cache size Insufficient cache size causing

Resource Contention

Figure 5.3: resource contention for parallel programs

plays an important role in paral el lpr(}gram phases detection.

il
) B 1 b lr '1.‘75 f""’
3. Resource Contentlon T S b
,-*'F'a - H_%"’- i ,

Through code s@,‘na.j;ur

ﬁ'

can be easily picked indepe ‘ detaﬂed sunula,tlon But for
= ‘

multi-threaded appli

same time, thl%'éﬁg’ sh ‘ , i c:e{s; »Knd these threads

may affect ea,ch ﬁbhqr"ﬁ le It
ample in figure 5. 3 msufﬁi'fleﬂis'ag:ache rﬁ}%e \;l?mld"lcause threads compete
for shared resource in archlﬁeq#urp 4 And shch contention would affect
not only the performance of the machine but individual thread execu-
tion. Contrary, threads in architecture 1 would not affect each other,
since there is sufficient cache size. Therefore, be aware of the shared
resource contention between threads is also important for parallel pro-

gram phases detection.

26

thread| thread2 thread3 thread4
A

Require data A Snoop response

eev][o [o [1 [o |

Figure 5.4: Communication Count Vector (CCV)
5.2 Thread Interaction Aware Phase Detec-

tion

e
In this section, we will describe'the techniqueés proposed to deal with the

above three issues.

1. Global Instruction COUTI - H
To obtain the informationia out which ;parts_of each thread are exe-
| g
cuted together, the ihte_rval we-use is ba'séd;‘_on global instruction count
(total number of instructions rerxecutedr"by all of the cores). This infor-

mation help us reconstruct the execution across all threads.

2. Communication Count Vector

To capture the data sharing pattern between threads, in this work
we introduce Communication Count Vector (CCV), which is also a
one-dimensional array. Each element in Communication Count Vector
(CCV) records the number of coherence messages issued by the cor-

responding core during each interval. Such messages are responses to

27

thread| thread? thread3 thread4

LLC miss !! LLC miss !!

$ ¥

MCV | 1/2 0 1/2 0

Figure 5.5: Memory Contention Count Vector

other core’s snooping for shared data, when corresponding core holds

this data. For example in ﬁgure 5 4 {hf'éagi 1 requires shared data A,

In order to be aware of, ﬂae st a':i;dwaﬁre resource contention.

In this work we mtroduee Memory Cont‘entlon Count Vector (MCV),
which is also an one—dlmensmnal array. Fach element in Memory Con-
tention Count Vector (MCV) is related to the number of last level cache
misses in each interval. Because the working set of parallel program
is easily larger than size of last level cache and such event is highly
influential for program performance, we focus on last level cache miss.
As figure 5.5 shows, when thread 1 and thread 3 encounter last level

cache miss, MCV would record such events in the first and third entry.

28

Then, we combine the SBBV, CCV and MCV into one vector and detect

phases by using this hybrid profiling information.

29

Chapter 6

Experimental Setup

In this work, on the profiled machihe we first use-Perfmon2 [2] to profile
the target application’s'behayiosgand thenfuse-SimPoint [14] to pick up a
set of simulation points hased on the collgctgd inform@tion. After that, we
calculate the phase-based architec‘ﬁur"f;ﬂ'méﬁrips on the evaluation machine by
only taking the set of s1mulat10fll om&s 1nto kaccount Finally, we validate

our methodology by comparlng Lt e phase bas‘ed archltectural metrics with
architectural metrics from compléte executlén There are more details in
section 6.2.

Perfmon2 [2] is able to non-intrusively analyze any application being ex-
ecuted on real hardware with little overhead. It collects information, such
as [PC and interrupted instruction address, which are then used to per-
form code clustering, phase analysis, and validation. The underlying Pertf-
mon2 driver could monitor a large amount of performance/code execution
attributes stored in the embedded event counters of the Perfmon2-available

processors during a program is running on native hardware. Our phase anal-

ysis framework processes the Perfmon2 output file which is collected from

30

program’s execution. We implement python program processing such output
file to get the necessary data , including hardware event counters related to
our utilized techniques (SBBV, CCV and MCV) and performance data which
allows us to later validate our work.

SimPoint [14] is utilized to automatically identify program behavior. We
classify the execution intervals into a number of phases by using k-means
algorithm of SimPoint. SimPoint clusters over a range of values to decide the
number of phases and uses Bayesian Information Criterion (BIC) to measure

the goodness of each clustering.

6.1 Benchmarks . e

We examine the applicatiéus with SPEC OMP [3] and‘P@rsec[l] benchmark in

this work. The former is composéd-fy;_-i-at;;é,;iﬁx;el parallelism applications and

the latter is composed by task—k?v‘ 1 bériéiiizli'sm applications. The following
I

L 11
are the applications we experimein ed a5 I

I ‘T
1. OMP2001),
SPEC OMPM2001 consists of a set-of OpenMP-based application pro-
grams, which represent the type of software used in scientific technical

computing. Following is the OMP2001’s applications we report in this

work :

(a) WUPWISE

(Wuppertal Wilson Fermion Solver) is a program in the field of lat-
tice gauge theory. Lattice gauge theory is a discretization of quan-

tum chromodynamics. Quark propagators are computed within

31

a chromodynamic background field. The inhomogeneous lattice-
Dirac equation is solved. Its Fortran source code is 2200 lines

long.
Equake

EQUAKE is an earthquake modelling program. It simulates the
propagation of elastic seismic waves in large, heterogeneous val-
leys in order to recover the time history of the ground motion
everywhere in the valley due to a specific seismic event. It uses a
finite element method on an unstructured mesh [15]. Its C source

code is 1500 lines long:
SWIM w * -t

SWIM is a weather predlctlon model Wthh solves the shallow wa-

g—

ter equatlons usmg a ﬁn,ﬂ;e' d1fférenice method Its Fortran source
- "'"}. l

- |

code is 400 lines long.|

| x"i[l_ l :

As mentioned in 4.1, the be} vior of da‘%aﬂ leyel parallehsm applications

is highly dependent on the section of eode be executed.

. Parsec

Parsec provides a wide variety of applications. In the recent years,

the large advancement in silicon technology has let many processing

cores integrated on a single die, each with access to sizeable shared

caches, drastically reducing the latency of inter-core communication.

This important change has been taken into account during the design

of the algorithms used in Parsec.

(a)

dedup

32

Dedup is a kernel which uses a next-generation data compression
method called deduplication. It combines local and global com-
pression to achieve very high compression ratios. This workload
was included in the PARSEC benchmark suite because dedupli-
cation is becoming a standard method for backup storage systems

and bandwidth optimized network appliances.

(b) ferret

This application is based on the Ferret toolkit which is used for
content-based similarity search. It represents emerging next-generation
search engines for nen-text document data types and is paral-

=i

lelized using the pipeline model:

(c) x264

X264 is a lossy VldeO enqodgx_b:aseﬁ ’on the ITU T H.264 standard.
H.264 improves over p C 10%-_— ﬁed) ncoding standards with many
new features that allo r]\/ t tO'aTEhlerja hlgher output quality at the
expense of a s1gn1ﬁca gy 1ncreasecﬁ ompress1on time. Nextgener-
ation Blue-ray VldeO players ah"ea,dy use-H.264 video compression,
but many other application areas are equally supported by the

H.264 standard.

As mentioned in section 4.2, interaction between threads plays an im-

portant role in task-level parallelism applications.

33

6.2 Metrics for Evaluating Phase Classifica-
tion

The metrics we examined is IPC (Instructions Per Cycle) which is the key
metrics to help us understand the performance of multi-threaded applica-
tions. And we estimate the effectiveness of our phase clustering by inspecting
the phase-based standard deviation of IPC, which stands for the similarity
of examined metrics within each phase.

After the program’s intervals are classified into phases on the profiled
machine, we weight each simulation point-according to the relative size the
phase represents from the ¢complete éxecutirbn. Then.on the evaluation ma-
chine, we get the phase—based IPC by combining“’eéch simulation point’s IPC
with corresponding We1ght In ad’dltlon e get the phase based standard
deviation by combining each phas s §Endaﬂd deviation with corresponding
weight. The phase-based IPC an«h tancﬁrd dyeiliation are compared with the
IPC and standard deviatigr;_ co+ uted rfr.om’bhe entire program execution.
Better phase classiﬁcation”wi_ll Vlresult in IOWGII" i)er—phase standard deviation
since the intervals within the samr‘é: phase V‘éxhibit homogeneous behavior.
For example, the phase-based standard deviation will be zero when all the
intervals classified as the same phase perform exactly the same IPC.

Table 6.1 describes the specification of the machine profiled to get a set

of simulation points for each target application. And Table 6.2 describes the

specification of the machine, on which we evaluate our methodology.

34

Processor Number

i7 920

Clock Speed

2.66 GHz

L2 cache 256KB(private per core)

L3 cache 8MB(shared by all cores)
Intel QPI Speed 4.8 GT/S
Instruction Set SSE 4.2

Table 6.1: ProfilediMachine Configurations

Processor Number

Xeon-kE5320

Clock Speed

1.86 GHz

L2 cache 4MB(shared by two cores)
L3 cache none
FSB Speed 1066 MHz
Instruction Set 64-bit

Table 6.2: Evaluation Machine Configurations

35

Chapter 7

Experimental Results

7.1 Proposed Scheme

We first compare the performance- of the three frequency vectors (SBBV,
CCV and SBBV+CCV) 1ntr0duced mthls\ Work in order to identify the
effects of these techniques. Flguﬁﬁl 7 .1 fhows the average IPC error rate of
three approaches when compareﬁ@ o full apphcatlon executlon (i.e., running
the applications to completlon) in figure 7. 1 ﬁrst one is the error rate of
phases detected by Sampled Basie “Bloek pr‘oﬁhng, we denote it as SBBV
in the figure; second one is the error rate of phases detected by the vectors
which record the number of coherence messages, we denote it as CCV'; the
last one is the error rate of phases detected by the combined vector which
includes both of the above two kinds of profiling information and is denoted
as SBBV + CCV. Figure 7.2 shows the phase-based standard deviation of
the three approaches (SBBV,CCV and SBBV+CCV) compared with stan-

dard deviation of the program’s entire execution denoted as RawData. A

small value in standard deviation means that the phase analysis succeeds in

36

wupwise

equake

dedup

%264

ferret

7.00%
5.00%
5.00%
4.00%
=SBV
mCoy
3.00%
= SBBVHCCY
2.00%
1.00%
0.00%
wupwise equske s dedup %264 ferrat
mssev
mCCy
= 5BBV+CCY
H Rzw Dats

Figure 7.2: Phase-Based Standard Deviation of SBBV, CCV, SBBV4+CCV

37

breaking varying program behavior into homogeneous phases.

SBBYV technique shows good performance (1.38% error rate) in data-level
parallelism applications. This is mainly because the interaction between
threads in wupwise, equake and swim is very low. Hence, the behavior of
data-level parallelism applications is highly dependent on the section of code
be executed.

CCV technique itself can’t capture phase behavior. The IPC error rate
of CCV is high. However, SBBV with CCV is important for task level paral-
lelism applications. SBBV+CCV technique achieves 47.43% more reduction
in error rate compared to SBBV techmique in task level parallelism applica-
tions. This is mainly because PARSEC wqikloads use a significant amount
of communication. Hence, iteraction between"tlireads plays an important
role in task-level parallehsm apphcatlons Cdntrary, sitite the communication
between threads is little in data le el Iﬁaheﬂ applications, the executed code
takes a dominant position on the}s kmqt 0} apﬂhcatlons behavior. There are
limited chances for SBBV+CCV ‘t chmque to| ’umprove from SBBV technique.
For x264, SBBV already shows good perforrilance This is because half of

the spawned threads exhibit little Commumcatlon. Hence, utilizing SBBV

can capture most of the phase behavior.

7.2 Comparison with Previous Work

7.2.1 Baseline

In [31], Yu Zhang et al. claims that in the many-cores era application execu-

tion is not dominant by the instruction only. But instead the communication

38

structure of the application is as important as the instruction behavior. So
Yu Zhang et al. proposed techniques to detect parallel program’s phases.
They first collect information about the number of packets generated by
each core during each interval to construct a frequency vector called Traf-
fic Count Vector (TCV) on Network-On-Chip architecture. And they also
utilized a common technique called Instruction Count Vector (ICV), which
counts the number of instructions executed by each core during each interval.
Besides, they combined the two vectors into a single vector to proposed a
hybrid scheme.

We regard [31] as baseline to compare.its performance with ours. For
implementation of TCV, we use the“ﬁnumbé; of off=core requests in place of
number of routing packets, whieli'is an architeé’tﬁre—dependent metric only
available on NOC (Network On Chrp) archl,técture Because both the number
of routing packets in [31] and the i ulﬁern i;ﬁ (}ff—core requests on our exper-

imental platform represent’ for ti‘i traﬁc from'l prlvate cache to shared last

level cache, it is the closet HY tL £ mplement TCV on our target platform.
I |
| ;

F

7.2.2 SBBV+CCV VS. ICV+TCV

In this section, we present the comparison between our proposed scheme
(SBBV+CCV) with the hybrid technique used in [31]. Figure 7.3 shows
the IPC error rate of ICV+TCV and SBBV+CCV techniques. Figure 7.4
shows the standard deviation of ICV4+TCV and SBBV+CCV techniques.
Our combination (SBBV+CCV) scheme provides better performace than
the ICV4+TCV technique. On average, the IPC error rate can be reduce

by 62.60% and phase-based standard deviation can achieve 31.65% more

39

14.00%

12.00%:

10.00% +

8.00%

W CVHTCY
6.00%

W SBBV+CCY

4.00%

200% .
0.00% T T

wupwise equake swim dedup X254 ferret

Figure 7.3: Error-Ra SBB: OV, ICV+TCV

W ICW+TCV

W SBBV+CCV

015 & Raw Dats

wupwise eguake swinn dedup w264 ferret

Figure 7.4: Phase-based Standard Deviation of SBBV+CCV, ICV+TCV

40

8.00%

7.00%

6.00%

4.00% -

3.00%

2.00%

1.00%

W CV+CCV
I m5BBV+CCY

wipwise equake swim dedup x264 ferret

0.00%

Figure 7.5: Error Rate of SBBV+CCV, ICV+CCV

reduction. For further analysis, We WLE rfglace the SBBV by ICV technique

or replace CCV by TCV tqae}[&mqueirm og-hybﬁg‘,-scheme The next two

I o

& .
sections would present hGW dﬁ‘t vecto

ect thé-.‘phase detection.
"u,:.

\.-“ Ll;ffr-.
7.2.3 SBBV—IJ\CC VS

technique. The majo%h crel . e ‘ @pi;n‘giaches is way to uti-
lize the correlation beti;v 1 r » = : og}ra‘m behavior. In [31],
Yu Zhang et al. formed the "EGy collecj"cm‘g 'l‘ph(g:.number of instructions
executed within each interval. This is a much simpler and more straight-
forward than traditional BBV technique which becomes complicated as the
number of core scales up. However, we think there is still room for improve-
ment. In order to obtain the more detailed information about code signature
without too much overhead, we construct the BBV in a sample manner. As
Figure 7.5, we could see that the IPC error rate of SBBV+CCV technique is
58.02% lower than ICV+CCV technique on average. This is because SBBV

41

3.00%

2.50%

2.00%

1.50%

B SBBVHTCY
W SBBV+CCY

1.00% -

0.50%

000% -

%264 ferret

Figure 7.6: Error Rate of SBBV+CCV, SBBV+TCV

technique contains more precise information about what section of code has

been executed than ICV techn*qﬂé"lpotfb('{ S &fﬁﬁ@ﬁ\/ already captures lots of

if"

the phase information. Hénc

compared with ICV—H:}CM is
q?’r-.

7.2.4 SBBV+;§:€ VS - ':

In this section, we de-mgp st cléssx;ﬁcatlons with the

ey
aid of different frequen@;a\gect,e S.whi 't@d to».ﬁbhteractlons between
"":w e

threads. TCV (Traffic Counﬁ‘yycter,)l' is estéﬁilsh_%dl‘\by recording the number
{15

of packets going through each rou{‘e’i] H‘Agd CCV technique contains the
information about data sharing. Figure 7.6 shows the IPC error rate of
SBBV+CCV and SBBV+TCV techniques. As we can see, the SBBV+CCV
technique has much more reduction in IPC error rate than the SBBV+TCV
technique for dedup and ferret which exhibit active communications between
threads. This result indicates that CCV technique captures the pattern of

interaction between threads more successfully than TCV.

42

3.00%

2.50%
2.00%
1.50% W SBBV+CCY
W SBBV+CCVHMCY
1.00%
0.50% -
wupwise cquake swim dedup x264 ferret

Figure 7.7: Error Rate of SBBV+CCV, SBBV+CCV+MCV

Application | wupwise eqauke swim dedup | x264 | ferret
Working Set | Up to 1.6GB | Up to 1. 6GB Up to 1.6GB | 256MB | 8MB | 64MB
o g e Al

Table 7 1.I Workang Set Gf Apphgatlons
s 5 i o
7.3 1\/Iemory~~ Co '

?.".u_l"-

L .
In this section, we show theq effect
; L]

tlgn "Table 7.1 shows

el |

is aware of the situation
the working set of a]l-.tﬁ(; ‘applicationis i '7 sh'aws the IPC error

application’s working set 1s-='IargeI~1?Harh th%?slzeioﬁ lgst level cache (8MB)
there would be some performani:e ga{n "for SBBV+CCV+MCV technique
compared to SBBV4+CCV technique. Because when application’s working
set is larger than the size of last level cache, threads would compete for the
shared resource and the behavior of program would be affected. Hence, we
utilize MCV to capture this kind of phase behavior. For example, all the
applications except x264 have working set larger than last level cache, so

using MCV can capture the situation of shared resource contention between

threads. Contrary, because the working set of x264 does not exceed the size

43

of last level cache, the phase detection can not benefit from the information

about MCV.

44

Chapter 8

Conclusion

In this thesis, we first identify thg imporjc!‘é}nt issues for parallel programs
phase detection. These issues inelide timing alighment, data sharing pat-
terns and resource contention. ~)

Then, we propose a methodo ogy“'whlch ‘takes above three issues into
consideration to detect parallel ap hcaﬁ@n pflases We utilize global instruc-
tion count for timing ahgnmenq CCV(Com%numcatlon Count Vector) to
collect the information about mtelJactlons bet’kxfeen thr'eads and MCV (Mem-
ory Contention Count Vector) to be aware of thesituation of share resource
contention between threads. In addition, we combine CCV and MCV with
Sampled Basic Block (SBBV) into a single vector to develop a combination
scheme.

We evaluate that the parallel phase analysis can be utilized to guide par-
allel program simulation by only considering the carefully chosen simulation
points. The experimental results show that the IPC error rate is below 2%

and we achieve 62.60% more reduction in IPC error rate compared with the

technique used in [31].

45

Bibliography

1]
2]
3]

[4]

http://parsec.cs.princeton.edu//.
http://perfmon2.sourceforge.net/.

http:/ /www.spec.org/omp/.

-)
M. Annavaram, R. Rakviez M. Polito, J. < Bouguet R. A. Hankins,
and B. Davies. The fuzzy correlatlon b'etween codéeand performance pre-

dictability. In MICGRQ 37: P oc@%gﬁ of the 37ths annual IEEE/ACM

International Symposium OYL zcrﬂwohztegture pages 93-104, Washing-

ton, DC, USA, 2004. IEEE Fmputer S(p(ﬁlety

V. Aslot. Performance Charactenzatlon of the specomp benchmarks.

M. P. B. Davies, J.Y. Bouguet and M. Annavaram. ipart: An automated

phase detection and recognition tool. Technical report, 2003.

R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures. In MICRO 33:
Proceedings of the 33rd annual ACM/IEEE international symposium
on Microarchitecture, pages 245-257, New York, NY, USA, 2000. ACM.

46

8]

[12]

[13]

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: characterization and architectural implications. In PACT '08:
Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, pages 72-81, New York, NY, USA, 2008.
ACM.

C.-B. Cho and T. Li. Complexity-based program phase analysis and
classification. In PACT °06: Proceedings of the 15th international con-
ference on Parallel architectures and compilation techniques, pages 105—

113, New York, NY, USA, 2006. ACM.

A. Dhodapkar and J. E: Smith: ¥Dynamic microarchitecture adaptation
= £

via codesigned virtual machines. 2002" :

A. S. Dhodapkar atid "y B. Smith. Mdﬁ&ging milti-configuration hard-
1 =~ |

% .'.?T! i

; %ﬂ ISCA 02: Proceedings of the

e

i

ware via dynamic working set!an

29th annual international s postL on :-Computgr architecture, pages

e |
233-244, Washington,:DC, USA, 2002. IﬁFE Computer Society.
o | >
A. S. Dhodapkar and"J. E: 'Smilth. Compariﬂg program phase detection
techniques. In MICRO 36: Proceédings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 217, Washington,

DC, USA, 2003. IEEE Computer Society.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. In PACT °03: Proceed-
ings of the 12th International Conference on Parallel Architectures and
Compilation Techniques, page 220, Washington, DC, USA, 2003. IEEE

Computer Society.

47

[14]

[15]

[16]

[17]

[18]

[19]

[20]

e. a. Hamerly, G. Simpoint 3.0: Faster and more flexible program phase

analysis. 2005.

O.G. L. F. K. D. R. O. J. R. S. Hesheng Bao, Jacobo Bielak and J. Xu.
Large-scale simulation of elastic wave propagation in heterogeneous me-

dia on parallel computers.

C. Isci and M. Martonosi. Identifying program power phase behavior

using power vectors. In In Workshop on Workload Characterization,

2003.

C. Isci and M. Martonosi. Runtlme power -monitoring in high-end pro-

=i

cessors: Methodology and emplrlcal data 2003

C. Isci and M. Marton051 Phase characxerlzatlon for power: Evaluating

control-flow-based and eventﬂ oﬁumier.—baFéd techmques 2006.

11 Bl
S.S.J. Lau and B. Calder. Ti nsfcﬂgl phzﬁe Class1ﬁcat10n and prediction.
In In 11th]nternatwnal S’ T{Lposwm 0} %Hzgh Performcmce Computer

Architecture, pages 278 289: IREE Computer Soc1ety, 2005.

e. a. Lau, J. Motivation for variable length intervals and hierarchical
phase behavior. In In IEEFE International Symposium on Performance

Analysis of Systems and Software, 2005.

V. R. M. Hind and P. Sweeney. Phase shift detection: A problem clas-
sification. 2003.

J. MacQueen. Some methods for classification and analysis of multivari-

ate observations. pages 281 — 297, 1967.

48

23]

[24]

[25]

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large intel®itanium@®programs
with dynamic instrumentation. In MICRO 37: Proceedings of the
37th annual IEEE/ACM International Symposium on Microarchitecture,
pages 81-92, Washington, DC, USA, 2004. IEEE Computer Society.

J. M. Pelleg and A. Moore. X-means: Extending k-means with efficient

estimation of the number of clusters. pages 727 — 734, 2000.

e. a. Perelman, E. Detecting phases in parallel applications on shared
memory architectures. In In International Parallel and Distributed Pro-
cessing Symposium, pages 25-29; 20062

| =

T. Sherwood and/B. Qalder. Time varying 1E)'r'ei'hzw’i_olr of programs. Tech-

nical 1"ep01“t7 1999. o o :‘Iﬂ—'rs“,"’ I_,= .‘,_“

' ?7 [Ij_i,jr;l ‘

T. Sherwood, E. Perelman, eﬂ[n B;T-?laéf|' Basic b(lqck distribution anal-
ysis to find periodic bghavi T and-‘s‘ﬁhulaf%ion in(nfs in applications. In
PACT 701: Proceedm&; of 1l 2001 Inteli’;Lq:t_ioﬁaZ Conference on Paral-
lel Architectures and Co%niﬁlatz’o’n Techhiqué-s; pages 3-14, Washington,

DC, USA, 2001. IEEE Computer Society.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X: Proceed-
ings of the 10th international conference on Architectural support for

programming languages and operating systems, pages 45-57, New York,

NY, USA, 2002. ACM.

49

[29] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In ISCA °03: Proceedings of the 30th annual international symposium

on Computer architecture, pages 336-349, New York, NY, USA, 2003.
ACM.

[30] F. Vandeputte and L. Eeckhout. Phase complexity surfaces: Character-

izing time-varying program behavior. 2008.

[31] G. M. J. K. Yu Zhang, Berkin Ozisikyilmaz and A. Choudhary. Analyz-
ing the impact of on-chip network traffic on program phases for cmps.

In Performance Analysis of Syst nd Software, 2009. ISPASS 2009.

IEEFE International S s’z}z “fon, page %‘%}_226, 20009.

| b Y
& .
)

J‘?_ .
2

,ril—
=
2

b
im, LE:-*. u?} o
.‘l'!:;" :'_'\. i 4 L] - . id{ r
“Clopopeiend”

50

	封面
	口試委員審定書
	致謝
	中文摘要
	thesis.pdf

