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摘要 

 

 

週期精確之軟體模擬器對於計算機結構設計相當重要。它允許設計者在早期

設計時可以嘗試不同的計算機結構。然而，週期精確軟體模擬器，其模擬速度相

當緩慢。而多核心處理器架構因較單核心系統有更多之 CPU 與其他系統元件，因

此模擬速度更加緩慢，使得改善多核心系統之模擬器的效能極為重要。 

 

在本論文中，我們探討取樣模擬的技術，並提出以此技術加速多核心系統模

擬之機制。透過辨認程式中重複出現的行為，考慮每個具代表性的特徵點，來加

速模擬的時間。對於偵測程式重複行為的問題，傳統上對單一執行緒程式，採用

程式碼簽章的方式。然而對於平行程式，程式的行為不再只受執行指令的影響，

執行緒間彼此的互動，也成為影響表現的重要因素。 

 

因此在傳統程式碼簽章的方法之外，我們還利用紀錄執行緒間資料共享的模

式，與共用資源爭搶的情況，來幫助偵測程式重複出現的行為特徵。藉由採計特

徵點的行為與程式完整執行結果比較，我們所設計之多核心模擬加速方法，能將

錯誤率控制在 2% 以下。 

 

關鍵字 － 多核心模擬(multi-code simulation)、程式行為注釋(application 

annotation)、特徵驅動取樣機制(profile-driven sampling)、取樣模擬(simulation 

sampling)、相位偵測(phase detection) 



Abstract

Cycle-accurate software-based simulation is critical for architecture design

since it allows an architect to explore various architectural design points

at the early stage of design cycles. However, simulation speed has always

been an issue for cycle-accurate simulation. With the popularity of multi-

core processors, improving multi-core simulation performance is critical to

allow fast advances in multi-core architecture researches. In this work, we

look into simulation sampling techniques to speed up multi-core architecture

simulation.

Techniques have been proposed that automatically group similar portions

of a programs’s execution into phases, where samples classified as the same

phase have homogeneous behavior. Conventionally, a program is looked over

code signatures to extract information about the phases and only the repre-

sentative intervals are executed to analyze architectural selections. However,

such methodologies are becoming inadequate in multi-core category. Because

application’s behavior is not dominated by the instructions only but also the

communication structures between threads.

Hence, in this work we propose to utilize the interaction between threads

for parallel program phase detection. Our results reveal that the inclusion

of such information can increase the accuracy of the phase detection signifi-
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cantly (The error rate of IPC is below 2%).

Keywords — multi-core simulation, application annotation, profile-

driven sampling, simulation sampling, phase detection
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Chapter 1

Introduction

Microarchitects and researchers generally need understanding the cycle ac-

curate behavior of a processor during the execution of an application. Re-

searchers typically obtain this information by means of employing detailed

simulators, which simulate complete flow of each instruction going through

the microprocessor pipeline, in order to capture the timing information of

individual cycles more accurately.

However, cycle level of detail brings about the cost of speed, and simu-

lating the complete execution of an industry standard benchmark can spend

weeks or months to finish. To make things worse, architecture researchers

find the set of features that provides the best trade-off between performance,

complexity, area, and power by simulating each benchmark over a variety of

architecture configurations. Hence, there is a need to develop a technique

which can reduce the number of machine-months to estimate the impact of

an architectural modification without coming at an unacceptable error rate

or excessive simulator complexity.

Previous works have shown that programs exhibit cyclic behavior pat-
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Figure 1.1: characterizing program behavior [28]

terns. So the behavior of a program is not random and based on such ob-

servation, the terminology phase is defined. An interval is a slice in time of

a program’s execution. A phase is a set of intervals within an application

execution which performs homogeneous behavior. The intervals are not nec-

essarily temporally contiguous. In other words, a phase can reoccur many

times throughout the execution.

One of the most common means of using phase information is to reduce

the architectural simulation time. At run-time, programs exhibit repetitive

behaviors that change over time. These behavior patterns provide an oppor-

tunity to reduce simulation time. For example in fig 1.1, by identifying each

of the repetitive behavior (Phase 1 to Phase 3), taking only a single sample of

each repeating behavior and weighting each sample according to the relative

size the phase represents from the complete execution (Phase 1: 2/5, Phase

2: 2/5 and Phase 3: 1/5), we can perform very fast and accurate sampling

(rather than running the application to completion, which takes considerable

simulation time). Such approaches reduce the overall simulation time by or-

der of magnitude. Simulating only these carefully chosen simulation points
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can save hours to days of simulation time with very low error rates.

The phase detection technique for serial programs is already a mature

area. Phase information has been extracted by utilizing code signatures (e.g.

basic block vector ). Results show that the detection of phases through such

technique is accurate. However, the microprocessor industry went through

a paradigm shift in the recent years from a single core, complex design that

pushed the power envelope and clock rates to multi-core designs with simpler

cores. Many manufactures, including Intel, IBM, Sun and AMD, have pro-

duced microprocessors which incorporate multiple processing cores. The in-

creasing number of cores has resulted in the communication pattern between

cores playing an important role in determining the overall performance of the

processor. The behavior of program is no longer dominant by the instructions

only.

Hence, we propose to make use of information about interactions between

threads to detect the execution phases. We introduce CCV (Communication

Count Vector) which is a one-dimensional array recording the communica-

tion messages issued by corresponding core. In addition, we propose MCV

(Memory Contention Count Vector) which is also a one-dimensional array

recording the last level cache misses issued by corresponding core. Then,

we combine CCV and MCV with the code signature based structure, BBV

(Basic Block Vector) to detect parallel program phases. The experimental

results show that on average the IPC error rate is below 2% and the stan-

dard deviation for IPC is reduced by 46.46% compared to program complete

execution.

The rest of this thesis is organized as follows: Chapter 2 reviews the
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related works on phase classification and analysis. Chapter 3 describes

the phase identification method for serial programs. Chapter 4 shows the

phase behavior analysis for parallel programs. Chapter 5 presents the pro-

posed phase identification for parallel programs, including Sampled Basic

Block Vector(SBBV) technique, Communication Count Vector(CCV), Mem-

ory Contention Count Vector (MCV) and combination of the above all tech-

niques. Chapter 6 presents the experimental setup. Chapter 7 shows the

experimental results on the accuracy of IPC metric and standard deviation

reduction could be derived by the proposed methodology. Finally, Chapter

8 states the conclusion about this work.
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Chapter 2

Related Works

Several researchers have examined phase behavior in programs. In this sec-

tion we will give a brief description of studies related to phase identification

and phase-based optimization.

Sherwood et al. [26] presented that applications show cyclic phase-based

behavior over many architecture properties, such as cache behavior, branch

prediction, value prediction, address prediction, IPC and RUU occupancy,

etc. Repeating patterns were found in many programs, and the essential

architecture metrics show similar behavior over time.

There are works utilizing hardware counters for phase detection. Isci et

al. [16, 17, 18] used hardware performance counters to exploit phase behavior

in programs. And they have shown the ability to dynamically identify the

power phase behavior using power vectors. Deusterwald [13] et al. used

hardware counters and other phase detection scheme to analyze program’s

phases.

The phase information can be used for dynamic reconfiguration. Bal-

asubramonian et al. [7] proposed using hardware counters to collect miss
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rates, CPI and branch frequency information for every hundred thousand in-

structions. They dynamically evaluated the program’s stability by utilizing

the miss rate and the total number of branches executed for each interval.

They used such technique to guide dynamic cache reconfiguration to save

energy without sacrificing performance. Dhodapkar and Smith [12, 10, 11]

utilized a relationship between phases and instruction working sets, and they

found that phase changes at the same time as the working set changes. This

directed them to propose dynamic reconfiguration of instruction cache, data

cache and branch predictor in response to phase changes indicated by working

set changes in order to save energy [10, 11].

Some works focus on how to appropriately define the granularity and sim-

ilarity to perform phase analysis. Hind et al. [21] provided a framework to

present the impact of granularity and similarity on phase analysis. And they

showed how to perform phase analysis appropriately. Lau et al. [20] exam-

ined the influence of varying interval length in phase detection. Vandeputte

and Eeckhout [30] provided phase complexity surfaces to characterize a pro-

gram phase behavior across various time scales. Cho and Li [9] proposed an

approach to quantitatively analyze the changing of phase dynamics across

different time scales. And they presented a framework classifying phases

which exhibit homogeneity in their scaling behavior.

The most common means of using phase information is to reduce the

architectural simulation time. In [27, 28], Sherwood et al. proposed that

programs have repeatable phase-based behavior, and such behavior can be

automatically identified by only examining code execution. They used tech-

niques from machine learning that are capable of finding and exploiting the

6



large scale behavior of program. They found that intervals of execution clas-

sified as the same phase had similar results over all architecture metrics.

SimPoint [28] was developed to automatically pick a small set of intervals of

execution in the program for detailed simulation. They also extended their

work [19, 29] to perform hardware phase classification and prediction. Patil

et al. [23] has inspected guiding simulation at Intel by utilizing simulation

points which are picked by SimPoint. Davies et al. [6] exploited sampled

information extracted by the Intel’s VTune Performane Analyzer, in order

to construct a representation of program execution within a given interval.

Such information is collected at runtime on native hardware. Annavaram et

al. [4] employed the VTune approach to examine phase behavior for database

applications.

This idea is also extended for parallel programs. Perelman et al. [25] used

the sampled information extracted by VTune to collect Extended Instruction

Pointer Vectors. They produced Sampled Basic Block Vectors to examine

applying phase analysis algorithms and how to adapt them to parallel ap-

plications running on shared memory processors. But they didn’t take the

communication pattern between threads into consideration. Zhang et al [31]

proposed to utilize communication behavior to determine the phases of a

parallel application running on Network-On-Chip architecture. Hence, they

presented TCV (Taffic Count Vector) which is established by recording the

number of packets going through each router. However, because we think

there is still room for improvement, we propose Communication Count Vec-

tor (CCV) and Memory Contention Count Vector (MCV) (There are more

details in chapter 5) in order to capture the interaction between threads more

7



accurately. We will regard their methodology as baseline to compare with

our work.
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Chapter 3

Phase Identification Method

For Serial Programs

The phase detection technique for serial programs is already a mature area.

Phase information has been extracted by utilizing code signatures (e.q. basic

block vector) and the results show such technique is accurate. In this sec-

tion, we will briefly describe the methodology utilized in [28] to detect serial

program phases.

The following are definitions helping us to ground our discussion in a

consistent vocabulary.

1. Interval

A contiguous portion of execution (a slice in time) of a program. Pro-

gram execution is divided into contiguous non-overlapping intervals.

All intervals are measured based on instruction count (total number of

executed instructions).

2. Phase
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A set of intervals within a program execution which perform homo-

geneous characteristics. A phase can consist of intervals that are not

necessarily temporally adjacent, so a phase can reoccur many times

throughout execution.

3. Frequency Vector

Each interval is represented by a frequency vector, which stands for

the program behavior during that time slice. The Basic Block Vector

(BBV) is the most commonly used structure. There would be more

details about BBV in section 3.1.

4. Similarity Metric

The Euclidean distance between the two frequency vectors is regarded

as the similarity between two corresponding intervals. The Euclidean

distance can be calculated by considering each frequency vector to be

a single point in D-dimensional space (D stands for the number of

elements in each frequency vector), and calculating the straight-line

distance between the two points. The formula for computing the Eu-

clidean distance of two vectors a, b in D-dimensional space is given by:

EuclideanDistance(a, b) =

√

√

√

√

D
∑

i=1

(ai − bi)
2 (3.1)

5. Phase Classification

Intervals are classified into phases according to similarity metric. In-

tervals with similar behavior are grouped into the same phase.
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3.1 Profiling Program Behavior

Each interval is represented by a frequency vector. Basic Block Vector

(BBV)[27] is the most commonly used frequency vector. A basic block is

a single-entry, single-exit section of code with no internal control flow. Basic

Block Vector (BBV) is an one-dimensional array where each element rep-

resents the number of time a basic block is entered during the execution

interval. At the beginning of each interval, Basic Block Vector (BBV) con-

tains all zeros. And as the program executes, the number of times each basic

block has been entered is recorded for current interval. The intuition behind

this is that the behavior of the program at a given time is directly related

to the code executed during that interval. In [28], they used the basic block

vectors as signatures for each interval of execution: each vector gives the

information about what portions of code are executed, and how frequently

those portions of code are executed. By comparing the BBVs of two intervals,

we can evaluate the similarity of the two intervals.

3.2 Using k-means for Phase Classification

The basic block vectors provide a compact and representative summary of

the programs behavior for intervals of execution. Because there are so many

intervals of execution that are similar to one another, one efficient represen-

tation is to group the intervals together with similar behavior. This problem

is analogous to clustering problem.

Clustering splits points into clusters, so that the points classified as the

same cluster are similar with each other (by some metric, usually distance),
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and points from different cluster are different from one another. In [28], they

used the efficient and notable algorithm, k-means [22] to fast and accurately

divide the program behavior into phases. The k in k-means stands for the

number of clusters the algorithm will search for. The following steps brief

the phase clustering algorithm at a high level.

1. Divide the program’s execution into contiguous intervals, and profile

the program by recording a frequency vector for each interval. Each

frequency vector is normalized so that the sum of all the element equals

1.

2. Apply the k-means clustering algorithm on all of the collected-vectors

for a set of k-values.

3. In order to select a well-formed clustering that also has a small num-

ber of clusters from these different clusterings, in [28], they used the

Bayesian Information Criterion (BIC) [24] to compare and evalu-

ate the different clusters formed for different value of k. The Bayesian

Information Criterion (BIC) is regarded as a measure of ”goodness

of fit” of a clustering to a dataset. They selected the clustering with the

smallest value of k, such that its BIC score is above some percentage

of the range of scores that have ever seen. The final clustering result

stands for the way the intervals are classified into phases.

4. The final step is to decide simulation points for the chosen clustering.

For each phase, an interval that is the closet to the centriod (center of

each cluster) is selected. Each simulation point also has a associated

weight, which are related to the fraction of executed instructions in the

12



program its phase stands for.

5. Eventually, a weighted-average architecture metrics of concern (IPC,

miss rate, etc) is found out. From the weights and the detailed simula-

tion results of each simulation points, we can get the weighted-average

architecture metrics. This information give us an accurate representa-

tion of the entire execution for specific application.
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Chapter 4

Phase Behavior Analysis For

Parallel Programs

In this section, we will analysis the phase characterization of data level par-

allelism program and task level parallelism programs, in order to realize the

phase behavior of various kind of applications.

4.1 Data Level Parallelism Programs

Figure 4.1, 4.2 and 4.3 graphically show the phase behavior for the SPEC

OMP benchmark equake, wupwise and swim when using 4 threads with

respect to execution time. The x-axis shows the execution time. The y-

axis which shows each thread’s IPC (Instruction Per Cycle) is partitioned

into four sections, one per thread. SPEC OMP is composed of data level

parallelism applications. The majority of code sections were transformed

into parallel form by searching for loops with fully independent iterations.

So all the threads execute the identical tasks at the same time and there is

14



Figure 4.1: phase behavior of data level parallelism program : equake
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Figure 4.2: phase behavior of data level parallelism program : wupwise
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Figure 4.3: phase behavior of data level parallelism program : swim

Figure 4.4: Loop-by-loop of data sharing [5]
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little communication between threads.

Figure 4.4 [5] shows measurements related to the level of data sharing in

the parallelized loops in SPEC OMP programs. Such information indicates

the interaction between threads in wupwise, equake and swim is very low.

When several processors share the same data and one of the processor up-

dates the data, the processor will ask all other processors to invalidate their

data in order to prevent using the stale data. Such act is called invalida-

tion transaction. Because Invalidation can cause cache missed, the updated

data can be obtained from another processor which has the most up-to-date

copy. Such act of copying a cache line from one processor’s cache to an-

other processor’s cache is called a copyback transaction. Hence the number

of Invalidations and Copybacks in figure 4.4 stand for the degree of data

sharing between threads, and this figure reveals the interaction between these

programs is little. Consequently, all threads are in the same phases at the

same time for the majority of the execution. And the behavior of this kind

of applications is highly dependent on the section of code be executed.

4.2 Task Level Parallelism Programs

Figure 4.5, 4.6 and 4.7 graphically show the phase behavior for the Parsec

benchmark dedup, ferret and x264 when using 4 threads with respect to

execution time. These applications are task level parallelism program. Ev-

ery thread executed different sections of code, and there is large amount of

shared data passed from thread to thread. Figure 4.8 [8] analyzes how the

task-level programs use its data. The chart shows what data is accessed and

how intensely it used. PARSEC workloads use a significant amount of com-

18



Figure 4.5: phase behavior of task level parallelsim program : dedup
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Figure 4.6: phase behavior of task level parallelsim program : ferret

20



Figure 4.7: phase behavior of task level parallelsim program : x264

Figure 4.8: Traffic from cache in bytes per instruction for 1 to 16 cores. Data

assumes a shared 4-way associative cache with 64 byte lines. [8]
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munication, and in many cases the traffic between threads can be so high. For

this reason, the phase characterization of this kind of applications is much

more complex. The phase behavior is not only affected by the section of code

be executed, but also influenced by the active interaction between threads.

In the following section, we will describe how to utilize the communication

structures between threads to capture parallel program’s phase behavior.
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Chapter 5

Phase Identification Method

For Parallel Programs

From the intuition of that the program’s behavior at a given time has a

strong correlation to the section of code be executed, phases can be detected

by utilizing information about basic blocks. The Basic Block Vector (BBV)

is the most commonly used structure. Such phase detection technique is

successful for serial programs.

However, when the number of cores scales up, generating the basic block

vector becomes complicated. Recording which basic block is entered for each

instruction is not only time-consuming, and would produce too much data

to be maintained.

In [30], Lau et al. proposed that mapping the EIPs back to the static

code constructs to create Sampled Code Vectors for each interval where each

dimension was the number of times each static loop, procedure, or basic block

was sampled. In this work, we construct BBV in a sample manner to de-

tect program phases. At regular intervals, Perfmon2 interrupts execution to
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Figure 5.1: timing alignment for parallel programs

record the interrupted instruction address. We produce the mapping by us-

ing Pin to instrument binaries and map the interrupted instruction addresses

down to basic blocks. After that, we utilize this information to create Sam-

pled Basic Block Vectors (SBBV). Then, we use the Sampled Basic Block

Vectors (SBBV) to find the phase behavior in parallel programs.

However, only exploiting the information about Basic Blocks are becom-

ing insufficient. In the multi-core era, the application execution is no longer

dominated by the instructions only, but instead the interaction between

threads in parallel application is becoming as important as the instruction

behavior.

5.1 Thread Interaction On CMPs

There are three major issues should be concerned in parallel applications:

1. Timing Alignment
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Figure 5.2: data sharing pattern for parallel programs

In order to identify the repeat pattern of parallel programs, we need

to know which parts of each thread are executed at the same time, be-

cause the behavior of parallel programs is influenced by each individual

thread’s execution. For example in figure 5.1, since the phase behavior

of the two situations is different, we must identify the difference be-

tween situation 1 and situation 2 to understand which parts of each

thread are executed simultaneously on the system.

2. Data Sharing Pattern

To guarantee the correctness, accelerate the execution, and communi-

cate between threads, there are shared data read or written by more

than one thread in multi-threaded application. The data sharing pat-

tern could have dominant influence on program’s behavior. As we can

see in figure 5.2, threads in the two situation execute the same ba-

sic blocks. But because threads in situation 2 touch the same data set,

there must be much more traffic between threads than situation 1. And

the phase behavior of these two situation would be distinct from each

other. Therefore, capturing the data sharing pattern between threads
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Figure 5.3: resource contention for parallel programs

plays an important role in parallel program phases detection.

3. Resource Contention

Through code signature, sampling points in single-threaded programs

can be easily picked independently from detailed simulation. But for

multi-threaded applications, if there are multiple threads running at the

same time, threads share the hardware resources. And these threads

may affect each other due to comptition for shared resource. For ex-

ample in figure 5.3, insufficient cache size would cause threads compete

for shared resource in architecture 2. And such contention would affect

not only the performance of the machine but individual thread execu-

tion. Contrary, threads in architecture 1 would not affect each other,

since there is sufficient cache size. Therefore, be aware of the shared

resource contention between threads is also important for parallel pro-

gram phases detection.
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Figure 5.4: Communication Count Vector (CCV)

5.2 Thread Interaction Aware Phase Detec-

tion

In this section, we will describe the techniques proposed to deal with the

above three issues.

1. Global Instruction Count

To obtain the information about which parts of each thread are exe-

cuted together, the interval we use is based on global instruction count

(total number of instructions executed by all of the cores). This infor-

mation help us reconstruct the execution across all threads.

2. Communication Count Vector

To capture the data sharing pattern between threads, in this work

we introduce Communication Count Vector (CCV), which is also a

one-dimensional array. Each element in Communication Count Vector

(CCV) records the number of coherence messages issued by the cor-

responding core during each interval. Such messages are responses to
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Figure 5.5: Memory Contention Count Vector

other core’s snooping for shared data, when corresponding core holds

this data. For example in figure 5.4, thread 1 requires shared data A,

and thread 3 has the most up-to-data of such data. Since thread 3

respond hit for data A, CCV would record this event in the third en-

try. Identical CCVs of two intervals would imply identical data sharing

patterns of two intervals.

3. Memory Contention Count Vector

In order to be aware of the situation of hardware resource contention.

In this work we introduce Memory Contention Count Vector (MCV),

which is also an one-dimensional array. Each element in Memory Con-

tention Count Vector (MCV) is related to the number of last level cache

misses in each interval. Because the working set of parallel program

is easily larger than size of last level cache and such event is highly

influential for program performance, we focus on last level cache miss.

As figure 5.5 shows, when thread 1 and thread 3 encounter last level

cache miss, MCV would record such events in the first and third entry.
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Then, we combine the SBBV, CCV and MCV into one vector and detect

phases by using this hybrid profiling information.
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Chapter 6

Experimental Setup

In this work, on the profiled machine we first use Perfmon2 [2] to profile

the target application’s behavior, and then use SimPoint [14] to pick up a

set of simulation points based on the collected information. After that, we

calculate the phase-based architectural metrics on the evaluation machine by

only taking the set of simulation points into account. Finally, we validate

our methodology by comparing the phase-based architectural metrics with

architectural metrics from complete execution. There are more details in

section 6.2.

Perfmon2 [2] is able to non-intrusively analyze any application being ex-

ecuted on real hardware with little overhead. It collects information, such

as IPC and interrupted instruction address, which are then used to per-

form code clustering, phase analysis, and validation. The underlying Perf-

mon2 driver could monitor a large amount of performance/code execution

attributes stored in the embedded event counters of the Perfmon2-available

processors during a program is running on native hardware. Our phase anal-

ysis framework processes the Perfmon2 output file which is collected from
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program’s execution. We implement python program processing such output

file to get the necessary data , including hardware event counters related to

our utilized techniques (SBBV, CCV and MCV) and performance data which

allows us to later validate our work.

SimPoint [14] is utilized to automatically identify program behavior. We

classify the execution intervals into a number of phases by using k-means

algorithm of SimPoint. SimPoint clusters over a range of values to decide the

number of phases and uses Bayesian Information Criterion (BIC) to measure

the goodness of each clustering.

6.1 Benchmarks

We examine the applications with SPEC OMP [3] and Parsec[1] benchmark in

this work. The former is composed by data-level parallelism applications and

the latter is composed by task-level parallelism applications. The following

are the applications we experimented :

1. OMP2001

SPEC OMPM2001 consists of a set of OpenMP-based application pro-

grams, which represent the type of software used in scientific technical

computing. Following is the OMP2001’s applications we report in this

work :

(a) WUPWISE

(Wuppertal Wilson Fermion Solver) is a program in the field of lat-

tice gauge theory. Lattice gauge theory is a discretization of quan-

tum chromodynamics. Quark propagators are computed within

31



a chromodynamic background field. The inhomogeneous lattice-

Dirac equation is solved. Its Fortran source code is 2200 lines

long.

(b) Equake

EQUAKE is an earthquake modelling program. It simulates the

propagation of elastic seismic waves in large, heterogeneous val-

leys in order to recover the time history of the ground motion

everywhere in the valley due to a specific seismic event. It uses a

finite element method on an unstructured mesh [15]. Its C source

code is 1500 lines long.

(c) SWIM

SWIM is a weather prediction model, which solves the shallow wa-

ter equations using a finite difference method. Its Fortran source

code is 400 lines long.

As mentioned in 4.1, the behavior of data-level parallelism applications

is highly dependent on the section of code be executed.

2. Parsec

Parsec provides a wide variety of applications. In the recent years,

the large advancement in silicon technology has let many processing

cores integrated on a single die, each with access to sizeable shared

caches, drastically reducing the latency of inter-core communication.

This important change has been taken into account during the design

of the algorithms used in Parsec.

(a) dedup
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Dedup is a kernel which uses a next-generation data compression

method called deduplication. It combines local and global com-

pression to achieve very high compression ratios. This workload

was included in the PARSEC benchmark suite because dedupli-

cation is becoming a standard method for backup storage systems

and bandwidth optimized network appliances.

(b) ferret

This application is based on the Ferret toolkit which is used for

content-based similarity search. It represents emerging next-generation

search engines for non-text document data types and is paral-

lelized using the pipeline model.

(c) x264

X264 is a lossy video encoder based on the ITU-T H.264 standard.

H.264 improves over previous video encoding standards with many

new features that allow it to achieve a higher output quality at the

expense of a significantly increased compression time. Nextgener-

ation Blue-ray video players already use H.264 video compression,

but many other application areas are equally supported by the

H.264 standard.

As mentioned in section 4.2, interaction between threads plays an im-

portant role in task-level parallelism applications.
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6.2 Metrics for Evaluating Phase Classifica-

tion

The metrics we examined is IPC (Instructions Per Cycle) which is the key

metrics to help us understand the performance of multi-threaded applica-

tions. And we estimate the effectiveness of our phase clustering by inspecting

the phase-based standard deviation of IPC, which stands for the similarity

of examined metrics within each phase.

After the program’s intervals are classified into phases on the profiled

machine, we weight each simulation point according to the relative size the

phase represents from the complete execution. Then on the evaluation ma-

chine, we get the phase-based IPC by combining each simulation point’s IPC

with corresponding weight. In addition, we get the phase-based standard

deviation by combining each phase’s standard deviation with corresponding

weight. The phase-based IPC and standard deviation are compared with the

IPC and standard deviation computed from the entire program execution.

Better phase classification will result in lower per-phase standard deviation

since the intervals within the same phase exhibit homogeneous behavior.

For example, the phase-based standard deviation will be zero when all the

intervals classified as the same phase perform exactly the same IPC.

Table 6.1 describes the specification of the machine profiled to get a set

of simulation points for each target application. And Table 6.2 describes the

specification of the machine, on which we evaluate our methodology.
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Processor Number i7 920

Clock Speed 2.66 GHz

L2 cache 256KB(private per core)

L3 cache 8MB(shared by all cores)

Intel QPI Speed 4.8 GT/S

Instruction Set SSE 4.2

Table 6.1: Profiled Machine Configurations

Processor Number Xeon E5320

Clock Speed 1.86 GHz

L2 cache 4MB(shared by two cores)

L3 cache none

FSB Speed 1066 MHz

Instruction Set 64-bit

Table 6.2: Evaluation Machine Configurations
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Chapter 7

Experimental Results

7.1 Proposed Scheme

We first compare the performance of the three frequency vectors (SBBV,

CCV and SBBV+CCV) introduced in this work, in order to identify the

effects of these techniques. Figure 7.1 shows the average IPC error rate of

three approaches when compared to full application execution (i.e., running

the applications to completion). In figure 7.1, first one is the error rate of

phases detected by Sampled Basic Block profiling, we denote it as SBBV

in the figure; second one is the error rate of phases detected by the vectors

which record the number of coherence messages, we denote it as CCV ; the

last one is the error rate of phases detected by the combined vector which

includes both of the above two kinds of profiling information and is denoted

as SBBV + CCV . Figure 7.2 shows the phase-based standard deviation of

the three approaches (SBBV,CCV and SBBV+CCV) compared with stan-

dard deviation of the program’s entire execution denoted as RawData. A

small value in standard deviation means that the phase analysis succeeds in
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Figure 7.1: Error Rate of SBBV, CCV, SBBV+CCV

Figure 7.2: Phase-Based Standard Deviation of SBBV, CCV, SBBV+CCV
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breaking varying program behavior into homogeneous phases.

SBBV technique shows good performance (1.38% error rate) in data-level

parallelism applications. This is mainly because the interaction between

threads in wupwise, equake and swim is very low. Hence, the behavior of

data-level parallelism applications is highly dependent on the section of code

be executed.

CCV technique itself can’t capture phase behavior. The IPC error rate

of CCV is high. However, SBBV with CCV is important for task level paral-

lelism applications. SBBV+CCV technique achieves 47.43% more reduction

in error rate compared to SBBV technique in task level parallelism applica-

tions. This is mainly because PARSEC workloads use a significant amount

of communication. Hence, interaction between threads plays an important

role in task-level parallelism applications. Contrary, since the communication

between threads is little in data level parallel applications, the executed code

takes a dominant position on these kind of applications’ behavior. There are

limited chances for SBBV+CCV technique to improve from SBBV technique.

For x264, SBBV already shows good performance. This is because half of

the spawned threads exhibit little communication. Hence, utilizing SBBV

can capture most of the phase behavior.

7.2 Comparison with Previous Work

7.2.1 Baseline

In [31], Yu Zhang et al. claims that in the many-cores era application execu-

tion is not dominant by the instruction only. But instead the communication
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structure of the application is as important as the instruction behavior. So

Yu Zhang et al. proposed techniques to detect parallel program’s phases.

They first collect information about the number of packets generated by

each core during each interval to construct a frequency vector called Traf-

fic Count Vector (TCV) on Network-On-Chip architecture. And they also

utilized a common technique called Instruction Count Vector (ICV), which

counts the number of instructions executed by each core during each interval.

Besides, they combined the two vectors into a single vector to proposed a

hybrid scheme.

We regard [31] as baseline to compare its performance with ours. For

implementation of TCV, we use the number of off-core requests in place of

number of routing packets, which is an architecture-dependent metric only

available on NOC (Network On Chip) architecture. Because both the number

of routing packets in [31] and the number of off-core requests on our exper-

imental platform represent for the traffic from private cache to shared last

level cache, it is the closet way to implement TCV on our target platform.

7.2.2 SBBV+CCV VS. ICV+TCV

In this section, we present the comparison between our proposed scheme

(SBBV+CCV) with the hybrid technique used in [31]. Figure 7.3 shows

the IPC error rate of ICV+TCV and SBBV+CCV techniques. Figure 7.4

shows the standard deviation of ICV+TCV and SBBV+CCV techniques.

Our combination (SBBV+CCV) scheme provides better performace than

the ICV+TCV technique. On average, the IPC error rate can be reduce

by 62.60% and phase-based standard deviation can achieve 31.65% more
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Figure 7.3: Error Rate of SBBV+CCV, ICV+TCV

Figure 7.4: Phase-based Standard Deviation of SBBV+CCV, ICV+TCV
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Figure 7.5: Error Rate of SBBV+CCV, ICV+CCV

reduction. For further analysis, we will replace the SBBV by ICV technique

or replace CCV by TCV technique in our hybrid scheme. The next two

sections would present how do these vectors affect the phase detection.

7.2.3 SBBV+CCV VS. ICV+CCV

We compare the accuracy achieved by ICV+CCV technique and BBV+CCV

technique. The major difference between these two approaches is way to uti-

lize the correlation between code signature and program behavior. In [31],

Yu Zhang et al. formed the ICV by collecting the number of instructions

executed within each interval. This is a much simpler and more straight-

forward than traditional BBV technique which becomes complicated as the

number of core scales up. However, we think there is still room for improve-

ment. In order to obtain the more detailed information about code signature

without too much overhead, we construct the BBV in a sample manner. As

Figure 7.5, we could see that the IPC error rate of SBBV+CCV technique is

58.02% lower than ICV+CCV technique on average. This is because SBBV
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Figure 7.6: Error Rate of SBBV+CCV, SBBV+TCV

technique contains more precise information about what section of code has

been executed than ICV technique. For dedup, CCV already captures lots of

the phase information. Hence, the IPC error rate reduction of SBBV+CCV

compared with ICV+CCV is not as much as other applications.

7.2.4 SBBV+CCV VS. SBBV+TCV

In this section, we demonstrate the results of phase classifications with the

aid of different frequency vectors which are related to interactions between

threads. TCV (Traffic Count Vector) is established by recording the number

of packets going through each router. And CCV technique contains the

information about data sharing. Figure 7.6 shows the IPC error rate of

SBBV+CCV and SBBV+TCV techniques. As we can see, the SBBV+CCV

technique has much more reduction in IPC error rate than the SBBV+TCV

technique for dedup and ferret which exhibit active communications between

threads. This result indicates that CCV technique captures the pattern of

interaction between threads more successfully than TCV.
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Figure 7.7: Error Rate of SBBV+CCV, SBBV+CCV+MCV

Application wupwise eqauke swim dedup x264 ferret

Working Set Up to 1.6GB Up to 1.6GB Up to 1.6GB 256MB 8MB 64MB

Table 7.1: Working Set of Applications

7.3 Memory Contention Count Vector

In this section, we show the effectiveness with the information of MCV which

is aware of the situation of shared resource contention. Table 7.1 shows

the working set of all the applications and figure 7.7 shows the IPC error

rate of SBBV+CCV and SBBV+CCV+MCV techniques. As we can see, if

application’s working set is larger than the size of last level cache (8MB),

there would be some performance gain for SBBV+CCV+MCV technique

compared to SBBV+CCV technique. Because when application’s working

set is larger than the size of last level cache, threads would compete for the

shared resource and the behavior of program would be affected. Hence, we

utilize MCV to capture this kind of phase behavior. For example, all the

applications except x264 have working set larger than last level cache, so

using MCV can capture the situation of shared resource contention between

threads. Contrary, because the working set of x264 does not exceed the size
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of last level cache, the phase detection can not benefit from the information

about MCV.
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Chapter 8

Conclusion

In this thesis, we first identify the important issues for parallel programs

phase detection. These issues include timing alignment, data sharing pat-

terns and resource contention.

Then, we propose a methodology which takes above three issues into

consideration to detect parallel application phases. We utilize global instruc-

tion count for timing alignment, CCV (Communication Count Vector) to

collect the information about interactions between threads and MCV (Mem-

ory Contention Count Vector) to be aware of the situation of share resource

contention between threads. In addition, we combine CCV and MCV with

Sampled Basic Block (SBBV) into a single vector to develop a combination

scheme.

We evaluate that the parallel phase analysis can be utilized to guide par-

allel program simulation by only considering the carefully chosen simulation

points. The experimental results show that the IPC error rate is below 2%

and we achieve 62.60% more reduction in IPC error rate compared with the

technique used in [31].
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