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中中中文文文摘摘摘要要要

集成光彈是一藉由偏振光學技術來測定光彈材料內應力分佈的方法，其

造影模型可由 Sharafutdinov提出的截斷橫向射線變換所描述。在這篇論文

中，我們利用此一模型將其重建問題置於 TV-L2 極小化的框架下，並結合

代數重建法和增廣拉格朗日法提出其對應的數值重建過程。

關關關鍵鍵鍵字字字：：：增增增廣廣廣拉拉拉格格格朗朗朗日日日法法法、、、光光光彈彈彈斷斷斷層層層掃掃掃描描描、、、偏偏偏振振振光光光、、、重重重建建建、、、截截截斷斷斷橫橫橫向向向

射射射線線線變變變換換換、、、總總總變變變差差差正正正規規規化化化
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Abstract

Integrated photoelsticity is a method for determining stress distribution in

photoelastic materials by polarized optical techniques. An important model

describes the imaging process is truncated transverse ray transform (TTRT)

proposed by Sharafutdinov. In this article, we use this model to fit the recon-

struction problem into a TV-L2 minimization scheme and propose a numeri-

cal reconstruction method combining algebraic reconstruction technique and

augmented Lagrangian method.

Keyworks: augmented Lagrangian method, photoelastic tomography,

polarized light, reconstruction, truncated transverse ray transform, TV

regularization
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Chapter 1

Introduction

In some situations, a ray of light split into two when passing through certain anisotropic

materials. This phenomonon is calledbirefringenceor double refraction. Materials pos-

sess this property can be found naturally, especially in crystals. Besides, many non-

crystalline transparant materials, e.g. glass, which are ordinarily optically isotropic, also

display such property under stress. This phenomenon is known asartificial double re-

fraction now and was first observed by Scottish physicist David Brewster in 1816. Such

materials are calledphotoelastic materials.

The reason why stress changes the optical property of photoelastic materials is be-

cause it induces a perturbation on dielectric permittivity. The relation between them is

described by the following formula given by Maxwell in 1852:

ε = ε0δ + C0(σ −
1

3
tr(σ)δ) + C tr(σ)δ. (1.0.1)

Here,ε is the dielectric permittivity tensor;σ is the stress tensor;δ is the Kroneker 3-by-3

identity tensor;C0 andC1 are positive constants.

Photoelasticity is a method for determining the dielectric permittivity (thereby the

stress distribution) of a photoelastic material via polarized optical techniques. Thein-

tegrated photoelasticity, proposed in [1], measures the changes of polarization of EM

waves passing through the object at various positions and angles. These changes can be

characterized by so-calledtruncated transverse ray transform(TTRT)[6], from which,

the trace-free part of the dielectric permittivity tensor is constructed. Although the trans-

verse ray transform is similar to the ray transform in X-ray CT, it involves reconstruction

of tensor fileds instead of scalar fields and remains much less explored.
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In this paper, we adopt the forementioned TTRT imaging model and formulate the

above reconstruction problem as a TV-L2 minimization problem. Both the gradient-

descent method and the augmented Lagrangian method are implemented for solving the

minimization problems and results are compared. This paper is organized as follows:

In Section 2, we introduce the principle of photoelasticity, and then, following [6], we

derive the TTRT model for integrated photoelasticity.

In Section 3, we review some existing reconstruction methods.

In Section 4, we introduce augmented Lagragian method, and apply it to the recon-

struction problem given by integrated photoelasticity. Our numerical method would be

also presented in this section.

In Section 5, we will show our numerical results.

Finally, we summarise and give comments.
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Chapter 2

Photoelasticity

2.1 Stress-Optic Law

Birefringence, or double refraction, is the phenomenon that a ray is decomposed into two

when it passes through certain materials, see Figure 2.1. Naturally, this optical anisotropy

can be found in most crystals. Besides crystals, many non-crystalline materials, which are

ordinarily optically isotropic, also display such property under stress. This adventitious

anisotropy is known for artificial double refraction and was first observed by Sir David

Brewster in 1816, and this kind of materials is called photoelastic materials.

In fact, in photoelastic materials, stress influences its optical property by changing

its dielectric permittivity. When anisotropy is taken into consideration, both stress and

permittivity are modeled by second order symmetric tensors, see Figure 2.2. In 1852,

Maxwell proposed astress-optic law, which gave a relation between these two tensor

fields:

ε = ε0δ + C0(σ −
1

3
tr(σ)δ) + C1 tr(σ)δ. (2.1.1)

Hereδ is the Kronecker delta, andε0δ represents the original isotropic permittivity;σ

andε are stress and the result permittivity, respectively;C1 andC2 are positive constants

depend only on materials.

Stress-optic law states that stress induces a perturbation on permittivity in a photoe-

lastic materials, and this “perturbation” is the linear combination of the trace part and

the trace-free part of the stress tensor. Photoelasticity is a method which uses polarized

optical techniques to reconstruct the permittivity, and thereby the stress distribution of a

3



photoelastic material.
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(a) Displacement of light rays with perpendicu-
lar polarzation through a birefringent material(from
Wikipedia)

(b) A calcite crystal laid upon a paper with all letters showing the double refrac-
tion(from Wikipedia)

Figure 2.1: Birefringence
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(a) stress tensor in a continuum(from Wikipedia)

Unpolarized

Polarized by an applied electric field

(b) In a dielectric medium, permittivity is the linear transform between the
external electric field and the induced polarization.(from Wikipedia)

Figure 2.2: Two kinds of tensor fields
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2.2 Polarization of Light waves

In a transverse wave, polarization is the property describing the orientation of its oscilla-

tion. For a light wave, it consists of electric field vectorE and magnetic field vectorH;

the former is chosen to define the state of polarization since physical interactions with the

wave involve the electric field in most optical media.

The polarization of light waves is specified by the electric field vectorE(x, t) at posi-

tion x = (x, y, z) and timet. The time variation ofE of a monochromatic wave is exactly

sinusoidal, that is, it oscillate at a definite frequency. If we assume the light is propagat-

ing in thez direction, the electric field vector will lie on thex-y plane, furthermore, thex

component and they component ofE can oscillate independently at a definite frequency.

This is completely analogous to the classical motion of a two dimensional harmonic os-

cillator whose general motion is an ellipse. Correspondingly, if we fix a positionx, in

general, the trace of the end of the electric field vector forms an ellipse ast evolves. We

will derive this general polarization and show some special cases of it.

In the complex-function representation, the electric field vector of a monochromatic

plane wave propagating in thez direction is given by

E(z, t) = Aei(ωt−kz), (2.2.1)

whereA is a complex vector which lies in thex-y plane. It is the real part ofE has

physical meaning

Ẽ = Re E , (2.2.2)

which is called thelight vector. Now suppose

A = x̂Axe
iδx + ŷAye

iδy , (2.2.3)

whereAx andAy are positive numbers,̂x andŷ are unit vectors, then the coordinate form

of Ẽ = (Ẽx, Ẽy) can be written as














Ẽx = Ax cos(ωt− kz + δx)

Ẽy = Ax cos(ωt− kz + δy).

(2.2.4)
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The curve described by the end point ofẼ as time evolves can be obtained by eliminating

ωt− kz between the equations in (2.2.4), we have

(

Ẽx
Ax

)2

+

(

Ẽy
Ay

)2

− 2
cos δ

AxAy

ẼxẼy = sin2 δ (2.2.5)

where

δ = δy − δx. (2.2.6)

All the phase angles are defined in the range−π < δ ≤ π.

Whenδ = 0 or π, (2.2.5) is a line segment; it is calledlinear polarization. When

δ = ±π/2 andAx = Ay, (2.2.5) is a circle; it is calledcircular polarization. In other

cases, (2.2.5) is an ellipse; it is calledelliptical polarization. In general, all these cases

can be viewed as elliptical polarization, see Figure 2.3 and 2.4.

By using a rotation, we are able to diagonalize (2.2.5)

(

Ẽx′

a

)2

+

(

Ẽy′
b

)2

= 1 (2.2.7)

wherex′ andy′ are new set of axes along the principal axes of the ellipse,a andb are

the principal axes of the ellipse. We denote the angle fromx to x′ by φ. This gives a

complete description of elliptical polarzation: its size is described by
√
a2 + b2; its shape

is described byb/a; its orientation is described by angleφ; its sense of revolution of̃E is

described by the sign ofsin δ: the electric vector will revolve in a colckwise direction if

sin δ > 0 and in counterclockwise direction ifsin δ < 0.

When a polarized ray passes through a transparant speciman, its optical property will

reflect on the change of polarization. On this fundation, we can extract informations of

premittivity in a photoelastic material by polarized rays, see Figure 2.5. An implementa-

tion is calledintegrated photoelasticityand will be introduced in the following section.
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(a) linear (b) circular (c) elliptical

Figure 2.3: Different types of polarizations (section by a plane)

(a) linear (b) circular (c) elliptical

Figure 2.4: Different types of polarization
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x0
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x∗

y∗

α0

α∗

σ1

σ1

σ2

σ2

Figure 2.5: Illustration of the change of polarization
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2.3 Integrated Photoelasticity

Consider a photoelastic material in three dimensions. We can apply transverse EM wave

(light ray) to it to measure the change of its polarization from various angles and positions

to extract the information of its permittivity. This method is calledintegrated photoelas-

ticity. Although it is similar to X-ray CT, it involves reconstruction of tensor fields instead

of scaler fields and much geometry knowledge is needed.

We begin with the dimensionless Maxwell’s equations














































∇×H− 1

c

∂

∂t
D = 0

∇× E + 1

c

∂

∂t
B = 0

∇ · D = 0

∇ · B = 0.

(2.3.1)

In the equaitons above,H is the magnetic field,E is the electric field,D is the electric

displacement field andB is the magnetic induction. They satisfy the constitutive relation














D = εE ,

B = µH,
(2.3.2)

whereε is the permittivity tensor andµ is the magnetic permeability tensor.

Let us consider high frequency monochromatic EM wave of the form:














































E(x, t) = E(x)e−iωt

D(x, t) = D(x)e−iωt

H(x, t) = H(x)e−iωt

B(x, t) = B(x)e−iωt.

(2.3.3)

whereω ≫ 1 is the frequency. In addition, we assume

ε = ε0δ +
1

k0
f. (2.3.4)

whereε0 is a constant,k0 = ω/c ≫ 1 is the wave number andf is a second order sym-

metric tensor. This assumption, which is calledquasi-isotropic, assumes that the photoe-

lastic material is approximately isotropic and homogeneous, and the stress-induced part
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of permittivity is relatively small. On the other hand, sincemost photoelastic materials

are non-magnetic, we assume

µ = δ. (2.3.5)

Introducing (2.3.3)(2.3.4)(2.3.5) into (2.3.1), we get














∇×H + ik0(ε0δ +
1

k0
f)E = 0

∇× E − ik0H = 0.

(2.3.6)

For a quasi-isotropic material, it is natural to consider the WKB approximation. The

ansatz is






















E(x) = eik0τ(x)
∑

m≥0

E(m)(x)

(ik0)m

H(x) = eik0τ(x)
∑

m≥0

H(m)(x)

(ik0)m
,

(2.3.7)

whereτ(x) is a phase function. By introducing (2.3.7), we can decompose (2.3.6) into an

infinite system of equations by equating the coefficients of the same powers of the wave

numberk0 on both sides.














H(m) ×∇τ +∇×H(m−1) + ε0E
(m) + ifE(m−1) = 0

E(m) ×∇τ +∇× E(m−1) −H(m) = 0

(2.3.8)

for m = 0, 1, . . . . Here we defineE(−1) = H(−1) = 0 for convinience.

Let’s start fromm = 0 to findH(0) andE(0),














H(0) ×∇τ + ε0E
(0) = 0

E(0) ×∇τ −H(0) = 0.

(2.3.9)

Solving these two equations gives

〈

E(0),∇τ
〉

∇τ +
(

ε0 − |∇τ |2
)

E(0) = 0. (2.3.10)

By taking the inner product of (2.3.10) with∇τ , we obtain

〈

E(0),∇τ
〉

= 0, (2.3.11)
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sinceε0 6= 0. With this result, (2.3.10) now takes the form

(

ε0 − |∇τ |2
)

E(0) = 0. (2.3.12)

Thus, the phase functionτ must satisfy the eikonal equation:

|∇τ |2 = n0
2 := ε0 (2.3.13)

wheren0 is the refractive index.

To solve the eikonal equations, we use geometric optics approximation by assuming

the solution is a plane wave

τ(x) = n0x · ξ, (2.3.14)

whereξ ∈ S
2 is the propagating direction of the wave and the straight lines in the direction

ξ are called rays. With this, (2.3.9) becomes














H(0) × ξ + n0E
(0) = 0

n0E
(0) × ξ −H(0) = 0.

(2.3.15)

Therefore, order zero WKB approximation leads to thatξ,E(0) andH(0) are perpendicular

to each other.

Next, consider the casem = 1 in (2.3.8). Using (2.3.14), we get














n0H
(1) × ξ +∇×H(0) + ε0E

(1) + ifE(0) = 0

n0E
(1) × ξ +∇× E(0) −H(1) = 0.

(2.3.16)

Using (2.3.15), we arrive

(

n0
2E(1) · ξ + n0∇ · E(0)

)

ξ − n0
∂E(0)

∂ξ
+ ifE(0) = 0. (2.3.17)

Here,∂E/∂ξ denotes the direction derivativeξ · ∇E. We may decompose this vector

equation into the ray directionξ and its perpendicularξ⊥. First, we notice that

∂E

∂ξ
∈ ξ⊥. (2.3.18)
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This is due to the fact that〈ξ, E〉 = 0 along the ray. Letπξ := δ − ξξT , the projection

in R
3 onto ξ⊥. For any 2-tensorf , the projectionπξ(fE

(0)) for E(0) ∈ ξ⊥ can be re-

expressed asPξ(f)E
(0), wherePξ(f) := πξfπξ. With these, the projection of the above

vector equation ontoξ⊥ reads

∂E(0)

∂ξ
=

i

n0

Pξf E(0), (2.3.19)

and the corresponding approximate solution is

E(x, t) ≈ ei(k0n0x·ξ−ωt)E(0)(x). (2.3.20)

Here, we only keepE(0) in the WKB approximation (2.3.7) sincek0 ≫ 0. From now on,

we simply denoteE(0) byE.

Remark2.1. LetA = |E|2 = E∗E, then

∂A

∂ξ
=

∂E∗

∂ξ
E + E∗∂E

∂ξ

=
−i
n0

E∗(Pξf)
∗E +

i

n0

E∗Pξf E

= 0 (2.3.21)

sincePξf is symmetric.

This means when the wave is propagating in the media, its amplitude does not change;

the property quasi-isotropy casue only a retardation on the phase of the wave.

2.4 Transverse Ray Transform

Let us consider a photoelastic object inR3. When a high frequency monochromatic light,

e.g. laser, passes through it, the change of polarization is governed by (2.3.19). This ODE

gives us a forward imaging model for such a photoelastic object. We shall integrate this

ODE below. To do so, letγ : [0, l] → R
3 be a ray in the directionξ passing the object

and be parametrized byτ ∈ [0, l]. Let us abbreviate the fieldE(γ(τ)) byE(τ). The ODE

above forE along the ray can be rewritten as

dE

dτ
=

i

n0

PξfE. (2.4.1)

14



We first assumeE(l) is just some linear transform ofE(0)

E(l) = UE(0) (2.4.2)

where the linear transformationU is depend onf onγ. Follow [2],U(γ) can be expanded

via Peano-Baker series

U = I +

∫ l

0

A(τ1) dτ1 +

∫ l

0

A(τ1)

∫ τ1

0

A(τ2) dτ2dτ1 + . . .

= I +
∞
∑

n=1

In (2.4.3)

where

A(τ) = (i/n0)Pξf(τ). (2.4.4)

We simplify this by using onlyI + I1 to approximateU ,1 i.e.

U ≈ I +
i

n0

∫ l

0

Pξf(τ) dτ . (2.4.5)

The forward model becomes

E(l) =

(

I +
i

n0

∫ l

0

Pξf(τ) dτ

)

E(0). (2.4.6)

The consequence above shows that if we detect the object by a ray alongγ, then the

change of polarization is
∫

γ

Pξf(τ) dτ , (2.4.7)

which is a useful information to reconstructf .

Similar to the approach in radiative CT, we introduce the following ray transform.

First, any ray inR3 in the directionξ can be identified as a point(ξ,x) in the tangent

plane ofS2 at ξ.

Definition 2.1. Thetransverse ray transform (TRT) J : S(R3;S2
R

3)→ S(TS2;S2
R

3)

is defined by

Jf(ξ,x) :=

∫ ∞

−∞

Pξf(x+ tξ) dt. (2.4.8)

The imaging process of integrated photoelasticity can be regarded as collecting the

TRT data off to reconstructf .
1Actually, we needn0 ≫ 1 here.
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2.5 The Polarization Ellipse

To get TRT off , we must first determineU from detectingE(0) andE(l). In following

two sections, we will examine its feasibility in practice.

Let {e1, e2, e3} be an orthonormal basis ofR3. Let us consider the ray direction

ξ = e3. We can decomposeE into

E(τ) = E1(τ)e1 + E2(τ)e2 (2.5.1)

and (2.3.19) becomes,














dE1

dτ
=

i

n0

(f11E1 + f12E2)

dE2

dτ
=

i

n0

(f21E1 + f22E2)

(2.5.2)

wherefjk is the representation off w.r.t. the orthonormal basis{e1, e2, e3}.

E andE are both complex. It is the real vector

η(τ, t) = Re E = Re
[

E(τ)ei(k0n0τ−ωt)
]

(2.5.3)

that has a physical meaning. One can check that, for fixτ = τ0, the vectors

η(τ0, t) = Re
[

(E1(τ0)e1 + E2(τ0)e2)e
i(k0n0τ0−ωt)

]

, t ∈ R (2.5.4)

form an ellipse on the plane perpandicular toe3 = ξ. It is called the polarization ellipse,

see Figure 2.6. Letu1, u2 be the direction axes of the polarization ellipse, and letλ be the

angle betweenu1 ande1. Then we have














u1 = e1 cosλ+ e2 sinλ

u2 = −e1 sinλ+ e2 cosλ.

(2.5.5)

Let a, b be the semiaxes of the ellipse w.r.t.u1 andu2, respectively, then

η(τ0, t) = a cos(φ0 − ωt)u1 ± b sin(φ0 − ωt)u2 = Re
[

(au1 ∓ ibu2)e
i(φ0−ωt)

]

, (2.5.6)

where the choice of sign in this equality depends on the motion (2.5.4) is clockwise or

counterclockwise. Inserting (2.5.5) into the equation above, we get

η(τ0, t) = Re
[

((a cosλ± ib sinλ)e1 + (a sinλ∓ ib cosλ)e2)e
i(φ0−ωt)

]

(2.5.7)
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Comparing (2.5.4) and (2.5.7), we then have














E1(τ0) = (a cosλ± ib sinλ)ei(φ0−k0n0τ0)

E2(τ0) = (a sinλ∓ ib cosλ)ei(φ0−k0n0τ0)

(2.5.8)

From remark 2.1, we can assume that

|E1(τ)|2 + |E2(τ)|2 = ‖E(0)‖2 = 1. (2.5.9)

From (2.5.6), this is equivalent to

a2 + b2 = 1. (2.5.10)

If we let ν be the angle shown in Figure 2.6, we have

a = cos ν, b = sin ν. (2.5.11)
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κ

ν
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Figure 2.6: Polarization Ellipse
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2.6 Truncated Transverse Ray Transform

We have just shown the polarization ellipse is determined by three angles, i.e.λ, ν and

(φ0 − k0n0τ0), andE is determined by (2.5.8) and (2.5.11) accordingly. If we rewrite

(2.4.2) in coordinate form w.r.t.{e1, e2, e3}






E1(l)

E2(l)






=







U11 U12

U21 U22













E1(0)

E2(0)






, (2.6.1)

we will find that the number of unknowns is three (sinceU is symmetric), and the infor-

mation given by the polarization ellipse is sufficient to determineU . However, in practice,

onlyλ andν can be got easily; it is difficult to detect the phase information(φ0−k0n0τ0).

This is actually an underdetermined problem, and for that, we need to make some com-

promise.

Consider a vector field̃E alongγ defined by

Ẽ(τ) = E(τ) · exp
[

− i

2n0

∫ τ

0

(f11 + f22)

]

, (2.6.2)

for the polarization ellipse, the correspondingλ̃ andν̃ are equal toλ andν, respectively.

Ẽ satisfies a similar ODE as (2.5.2)


















dẼ1

dτ
=

i

n0

[

1

2
(f11 − f22)Ẽ1 + f12Ẽ2

]

dẼ2

dτ
=

i

n0

[

f21Ẽ1 +
1

2
(f22 − f11)Ẽ2

]

,

(2.6.3)

or equivalently,

dẼ

dτ
=

i

n0

Qξf (2.6.4)

where the operatorQξ is defined by

Qξf = Pξf −
1

2
tr(Pξf)πξ. (2.6.5)

Apply Peano-Baker series again, we have

Ẽ(l) = V Ẽ(0) (2.6.6)
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where

V ≈ I +
i

n0

∫ l

0

Qξf(τ) dτ . (2.6.7)

Here we made another definition

Definition 2.2. Thetruncated transverse ray transform (TTRT) K : S(R3;S2
R

3) →

S(TS2;S2
R

3) is defined by

Kf(ξ,x) :=

∫ ∞

−∞

Qξf(x+ tξ) dt. (2.6.8)

Because of the missing information in integrated photoelasticity, the imaging data

we get is actually TTRT off instead of TRT off . This compromise, however, has a

drawback: the kernel of TTRT is not empty, it consists of all tensor field of the form

a(x)δ. As the result, we can recover only the trace-free part off , i.e. f − tr(f)δ/3.
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Chapter 3

Reconstruction Methods

According the model we derived in the previous chapter, let us reformulate the recon-

struction problem of integrated photoelasticity:

Problem 3.1(Invert TTRT).

GivenL ⊂ TS2 andg ∈ S(L;S2
R

3), find a trace-free tensor fieldf ∈ S(R3;S2
R

3) such

that

Kf |L = g. (3.0.1)

The reason why we consider a subsetL of TS2 is because

dim(TS2) = 4 > 3 = dim(R3). (3.0.2)

Therefore, the reconstruction may need only partial data of TTRT. On the other hand,

the trace-free condition is due to the degeneracy ofK. In the following discussion, we

assumef is trace-free unless otherwise stated.

3.1 Aben’s method

In [1], the author derived a reconstruction method based on physical assumption that there

is no external forces apply on the detecting object, and it is in equilibrium.

Suppose the detecting object is put inR
3 and consider a thin sliceABC, where these

three point are on the boundary of the object, and set the coordinate according to Figure

3.1. Let rays pass through the slice along the directiony′ on the upper and lower surfaces,
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whose coordinates arezu and zl, respectively. We then get the data














K1
l (s) = C

∫

x′=s,z=zl
(σx′x′ − σzz) dy

′

K2
l (s) = C

∫

x′=s,z=zl
σx′z dy

′

(3.1.1)















K1
u(s) = C

∫

x′=s,z=zu
(σx′x′ − σzz) dy

′

K2
u(s) = C

∫

x′=s,z=zu
σx′z dy

′,

(3.1.2)

whereσ represents the stress; this uses stress-optic law stated in (2.1.1). Use the physical

assumption mentioned in the beginning, when∆z is close to zero, we have

∆z

∫ C

A

σx′x′ dy′ = Tu − Tl (3.1.3)

whereTu andTl are the shear forces on the upper and lower surfaces of the slice, respec-

tively, which can be formulated by















Tu =
1

C

∫ B

d

K2
u(s) ds

Tl =
1

C

∫ B

d

K2
l (s) ds

(3.1.4)

Combine these results and let∆z → 0, we reach the result

∫ C

A

σzz dy
′ =

1

C

d

dz

∫ B

d

K2 dx
′ −K1. (3.1.5)

Rotate the coordinate(x′, y′), we obtain Radon transform ofσzz.

To summerize, Aben’s method let us determine the Radon transform of each compo-

nent off fromKf . We then use Radon inversion techniques to reconstructf .
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Figure 3.1: Aben’s Method
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3.2 Sharafutdinov’s Methods

In [6], the author propose another reconstruction method by Fourier transform.

First, we rewriteQξf to its coordinate form

(Qξf)ij = fij −
1

|ξ|2
(fipξpξj + fjpξpξi) +

1

2 |ξ|4
fpqξpξqξiξj +

1

|ξ|2
fpqξpξqδij. (3.2.1)

Here is an example: supposeξ = e3 then

(Qξf)ij = fij − (fi3δj3 + fj3δi3) +
1

2
f33δi3δj3 +

1

2
f33δij

=













1
2
(f11 − f22) f12 0

f21
1
2
(f22 − f11) 0

0 0 0













We make a definition

Definition 3.1. The back projection operator

µ : C∞(R3 × R
3
0;S

2
R

3)→ C∞(R3;S2
R

3) (3.2.2)

is defined by

µφ(x) =
1

4π

∫

S2

φ(x, ξ) dω(ξ), (3.2.3)

The compositionµK : S(R3;S2
R

3)→ C∞(R3;S2
R

3) can be written as

µKf = B1f + B2f + B3f + B4f, (3.2.4)

where


















































B1f =
1

2π
f ∗ |x|−2 ,

(B2f)ij = − 1

2π
(fik ∗

xjxk

|x|4
+ fjk ∗

xixk

|x|4
),

(B3f)ij =
1

4π
fkl ∗

xixjxkxl

|x|6
,

(B4f)ij =
1

4π
fkl ∗

xkxl

|x|4
δij.

(3.2.5)

If we denoteh = (2/π)µKf and apply the Fourier transform on it, we have

f̂ij −
1

2
(f̂ikǫjk + f̂jkǫik) +

3

16
f̂klǫ

2
ijkl +

1

4
f̂klǫklδij = |y| ĥij (3.2.6)

whereei = yi/ |y| andǫij = δij − eiej. Here is a lemma

24



Lemma 3.1. If the right-hand side of (3.2.6) meets the conditionjĥ = 0, then the system

of equations has a unique solution satisfying the conditionjf̂ = 0, and the solution can

be expressed as

f̂ij = 2 |y|
[

4ĥij − 3
(

ĥikekej + ĥjkekei

)

+ ĥklekeleiej +
5

3
ĥklekelδij

]

. (3.2.7)

The result can be also written in invarient form

f̂(y) = 2 |y|
(

4− 6

|y|2
iyjy +

1

|y|4
i2yj

2
y +

5

3

1

|y|2
ij2y

)

ĥ(y). (3.2.8)

Apply the Fourier inversion we reach the result

f =
4

π
(−∆)1/2

(

4− 6∆−1dδ +∆−2d2δ2 +
5

3
i∆−1δ2

)

µKf. (3.2.9)

For the detail of this reconstruction method, please refer to section 6 in [6].

This formula, which involves a 3 dimensional back projection, needs full information

of TTRT to reconstruct the tensor fieldf , therefore, may not be good for practical usage.

3.3 Lioheart and Sharafutdinov’s Method

In [4], the authors proposed a reconstruction method similar to previous one, but use

partial data of TTRT only.

The subsetL mentioned in the beginning of this chapter is chosen as follows:














Lη = {(ξ, x) ∈ TS2 | 〈ξ, η〉 = 0} for η ∈ S
2

L =
⋃N

j=1 Lηj .

(3.3.1)

Briefly speaking, by choosingN directions{ηj}Nj=1, we collect TTRT data only by rays

perpendicular to one of these directions.

The idea of this reconstruction method is as follows: Consider the datag|Lη
for a

given unit vectorη. For a planeP perpendicular toη, the restriction of the vector field

η × f(x)η can be considered as a 2D vector field onP . On the other hand, we consider

the slice tensor off is a second order tensor field onP . We then apply a slice-by-slice

reconstruction to these vector and tensor fields on each plane. The reconstruction proce-

dure is similar to classical reconstruction method of inverting 2D Radon transform. The
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result under the Fourier space can be written as














Φη(y)f̂(y) = λη(y)

Ψη(y)f̂(y) = µη(y),

(3.3.2)

whereλη andµη can be obtain from TTRT data, and this indicate that the recontruction

problem is merely to solve algebraic equations in Fourier space.

3.3.1 Logitudinal Ray Transform (LRT)

We introduce another kind of ray transform here,

Definition 3.2 (Logitudinal Ray Transform (LRT)).

Thelogitudinal ray transform (LRT)

I : S(R3;Sn
C

3)→ S(TS2) (3.3.3)

is defined by

If(ξ,x) =

∫ ∞

−∞

〈f(x+ tξ), ξn〉 dt. (3.3.4)

LRT is a transformation which applies on any order of tensor field. It is noteworthy that

whenn = 0, LRT is just the ordinary ray transform defined onR3. In this section, we use

only casesn = 1 andn = 2.

LRT can be also defined on a tensor field on a plane inR
3.

Definition 3.3 (LRT on a Plane).

For anη ∈ S
2, let η⊥ = {ξ ∈ R

3 | 〈ξ, η〉 = 0}, Snη⊥ be the complex ordern tensor field

on η⊥, andS1
η = {ξ ∈ η⊥ | |ξ| = 1} be the unit sphere inξ⊥. Givens ∈ R, let sη + η⊥

be a plane pass throughsη and perpendicular toη. The LRT on the planesη + η⊥

Iη,s : S(sη + η⊥;Snη⊥)→ S(TS1
η) (3.3.5)

is defined by

Iη,sf(ξ, x) :=

∫ ∞

−∞

〈f(sη + x+ tξn), ξ〉 dt. (3.3.6)
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The relation between these two definition is as follows:

Iη,s(ι
∗
η,sf)(ξ, x) = If(ξ, sη + x) (3.3.7)

whereιη,s : S(sη + η⊥;Snη⊥) ⊂ S(R3;Sn
C

3) is the embedding of a tensor field andι∗η,s

is its conjugate. The relation of LRT and TTRT can be described by the following lemma:

Lemma 3.2. Letf ∈ S(R3;S2
C

3) be a trace free tensor field. Equations














Iη,s((η × fη)|sη+η⊥) = K1
η,sf,

Iη,s(ι
∗
η,sf − 2tr(ι∗η,sf)δ) = 2K2

η,sf

(3.3.8)

hold for everys ∈ R and η ∈ S
2, where the functionsKi

η,sf ∈ S(TS1
η) (i = 1, 2) are

defined by














(K1
η,sf)(ξ, x) = 〈(Kf)(ξ, sη + x)η, ξ × η〉 ,

(K2
η,sf)(ξ, x) = 〈(Kf)(ξ, sη + x)η, η〉 .

(3.3.9)

Since for each ray, the TTRT contains two independent components, the conversion

from TTRT to LRT is without any loss of information in 3.3.8. Next, we need to find

the inversion formula for LRT in order the reconstructf . For any details of this lemma,

please refer to [4].

3.3.2 Inversion Formula of LRT

We make a definition first.

Definition 3.4 (Tengential Component).

For a vector fieldg ∈ C∞(R2;C2), we define itstengential componentτg ∈ C∞(R2) by

(τg)(y) =
〈

g(y), y⊥
〉

, (3.3.10)

where the vectory ⊥ is obtained by rotatingy byπ/2.

For a tensor fieldg ∈ C∞(R2;S2
C

2), we define its tengential componentτg ∈ C∞(R2)

by

(τg)(y) = |y|2 tr(g)− 〈g(y)y, y〉 . (3.3.11)
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And we have the following inversion formula for LRT

Lemma 3.3(Inverseion Formula of LRT).

For a vector fieldf ∈ S(R2;C2), the tangential component of its Fourier transformF [f ]

can be recovered from its LRT by the formula

τF [f ] = i

2
|y| F

[

B

(

∂(If)

∂p

)]

. (3.3.12)

For a tensor fieldf ∈ S(R2;S2
C

2), the tangential component of its Fourier transform

F [f ] can be recovered from its LRT by the formula

τF [f ] = 1

2
|y|3F [B(If)]. (3.3.13)

HereB : S(TS1) → C∞(R2) is the two dimensional back projection operator, and the

Fourier transform is defined componentwisely.

For details of LRT, please refer to chapter 2 of [6].

3.3.3 Algebraic Equations in Fourier Space

Combining Lemma 3.2 and 3.3, (3.3.2) can be written explicitly:

Lemma 3.4.Let f̂ be the 3D Fourier transform of a trace free tensor fieldf ∈ S(R3;S2
C

3).

For a unit vectorη ∈ S
2, equations















〈

f̂(y)η, πηy
〉

= λη(y)

|πηy|2
〈

f̂(y)η, η
〉

−
〈

f̂(y)πηy, πηy
〉

= µη(y)

(3.3.14)

hold onR3 with RHS defined by














λη(y) =
i

2
|πηy| Fx→y

[(

Bη

∂(K1
ηf)

∂p

)

(x)

]

,

µη(y) = |πηy|3Fx→y

[

(BηK
2
ηf)(x)

]

.

(3.3.15)

whereKj
η (j = 1, 2) is define in (3.3.9).

By choosing a directionη and collect the TTRT data onLη, we than have two linear

equations of̂fij(y) for eachy ∈ R
3. In a symmetric trace free tensor, there are five known,

therefore, it seems that we need only three directions to reconstructf .
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In [4], the authors prove that choosing






























η1 = e1,

η2 = e2,

η3 = e3

(3.3.16)

is sufficient for solvingf̂ , but unstable, since the linear system degenerate atyi = 0 for

anyi = 1, 2, 3. We can still use the continuity of̂f to determined its value in these point.

By choosing six direction:














η1 = (e2 + e3)/
√
2, η2 = (e3 + e1)/

√
2, η3 = (e1 + e2)/

√
2,

η4 = (e2 − e3)/
√
2, η5 = (e3 − e1)/

√
2, η6 = (e1 − e2)/

√
2,

(3.3.17)

we can get a stable reconstruction off̂ , with the stability estimate






















∣

∣

∣f̂(y)
∣

∣

∣ ≤ C

(

|y|−1
6
∑

i=1

|λi(y)|+ |y|−2
3
∑

i=1

|µi(y)− µi+3(y)|
)

∣

∣

∣
f̂(y)

∣

∣

∣

2

≤ C ′′

(

|y|−2
6
∑

i=1

|λi(y)|2 + |y|−4
3
∑

i=1

|µi(y)− µi+3(y)|2
) (3.3.18)

This method has adventages over the previous two. First, it did not need the assump-

tion that the object is in equilibrium and can use to determine its residual stress. And

second, it uses only partial data of TTRT.

In this paper, however, we do not follow any of these reconstruction method. We’ll

use the algebraic reconstruction techniques and applied TV regularization via augmented

Lagrangian method and see whether an acceptable result can be obtained.
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Chapter 4

Augmented Lagragian Method

Reduce this problem to its fundamentals, the reconstruaction problem is just solving a

linear system,Kf = g, where we consider the partial TTRT datag is as in (3.3.1). This

problem is equivalent to an L2 minimization problem:

min{‖Kf − g‖2}. (4.0.1)

If K is non-degenerate, the minimizer is just the solution ofKf = g. Here we want to

add TV regularization into this minimization scheme and find the minimizer by iterative

method. There are two consideration for us to do so: first, for practical applications,

noise is inevitable, therefore,g may not be in the range ofK; second, for ordinary ray

transform, it has high frequency sigular vectors corresponding to small singular values. It

may be the same for TTRT, and if it is true, gradient descent method in L2 minimization

scheme may have a slow convergence rate for the high frequency parts; TV regularization

would improve this situation.

In this chapter, We propose a numerical reconstruction in TV-L2 scheme using alge-

braic reconstruction method and augmented lagragian method.

4.1 Augmented Lagrangian Method

Consider the constraint problem

min f(x) subject to c(x) = 0. (4.1.1)

The ordinary penalty method use the following unconstraint iterative approach

xk = min{Ψk(x) = f(x) + µk |c(x)|2} (4.1.2)
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To find the minimizer in the equation above, we can use gradientdescent method. We use

largerµk after each iteration to ensure the final result will satisfy the constraint.

The augmented Lagrangian method use the following unconstraint iterative approach

instead

xk = min{Lk(x) = f(x) + µk |c(x)|2 − λc(x)}. (4.1.3)

After each iteration, in addition to updatingµk, the variableλ is also updated by

λ← λ− µkc(xk) (4.1.4)

In ordinary penalty approach, whenµk becomes larger and larger, its convergence rate

would becomes slower and slower. For augmented Lagrangian method, the additional

linear term can helpxk converges to a solution satisfies given constraint without letting

µk go to infinity. It improves the rate of convergence.

4.2 Alternating Direction Method

To solve the reconstruction problem in interated photoealsticity, We applyAlternating

Direction Method (ADM)in [10] which is based on augmented Lagrangian method.

We denote the TV functional of the tensor field byΦ(f), where the TV norm of a

tensor field is defined by adding TV norm for each components of the tensor field. A

basic TV-L2 minimization scheme, which is also known as ROF model, is

min
f
{αΦ(f) + 1

2
‖Kf − g‖22}. (4.2.1)

However, sinceΦ is non-differetiable, use gradient descent method directly may have a

slow convergence rate. Hence, we introduce some auxiliary variablew to be the gradient

of tensorf , then the minimization problem can be rewrite as a constraint minization

problem

min
f,w
{α ‖w‖1 +

1

2
‖Kf − g‖22} subject to ∇f = w. (4.2.2)

The augmented Lagrangian function of (4.2.2) is

L(f, w) = α(‖w‖1 − 〈λ,w −∇f〉+
β

2
‖w −∇f‖22) +

1

2
‖Kf − g‖22 . (4.2.3)
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In discretized scheme, suppose the voxel is indexed byn = 1, 2, . . . , N , the formula

above becomes

L(f, w) = α

(

∑

i,j,n

∥

∥wn
i,j

∥

∥−
∑

i,j,n

λn
i,j · (w −∇f)ni,j +

β

2
‖w −∇f‖22

)

+
1

2
‖Kf − g‖22 .

(4.2.4)

wherewn
i,j is a 3-d vector for eachi, j = 1, 2, 3, n = 1, . . . , N and∇ is the discretized

gradient.

Our goal is to find the minimizer ofL, and this can be done by minimizing it w.r.t.f

andw alternatingly.

We minimizeL w.r.t. f by gradient descent method, i.e.

fk+1 = fk −∆t
(

−α(∇ · λk) + αβ∇ · (wk+1 −∇fk) +K∗(Kfk − g)
)

(4.2.5)

On the other hand, minimization ofL w.r.t. w can be done by the following formula

(wk+1)ni,j = s((∇fk + λ/β)ni,j, 1/β). (4.2.6)

wheres(ξ, 1/β), known as the 3-dimensional soft-thresholding, is defined as

s(ξ, 1/β) = max{‖ξ‖ − 1/β, 0} ξ

‖ξ‖ . (4.2.7)

We summarize this method to the following algorithm

Algorithm4.1 (ADM).

Require: f 0, λ0, M , ∆t

f = f 0, λ = λ0

for k = 0→M − 1 do

wn
ij ← s((∇f + λ/β)nij, 1/β)

f ← f −∆t(−α(∇ · λ) + αβ∇ · (w −∇f) +K∗(Kf − g))

λ← λ− β(w −∇f)

end for

Here we just set a large number of iterations and record its result. We test this algo-

rithm on the partial TTRT data of 3, 6, and 9 directions.
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Chapter 5

Numerical Results

5.1 Numerical Settings

The test subject we choose is a 50-by-50-by-50 tensor phantom, which is tracefree and

piecewise constant, see the figure 5.1.

In our numerical experiments, we’ll make two comparisons: one is between between

ADM in TV-L2 scheme and gradient descent method in L2 scheme. This comparison

shows whether TV regularization has any adventages.

Another is among three different sets of TTRT data. These three sets of TTRT data are

different in η’s they choose in (3.3.1): one is with threeη’s as in (3.3.16); one is with

six η’s as in (3.3.17); the last is with nineη’s by combining the previous two. In [4], the

authors have already shown it is sufficient to reconstructf by (3.3.16), and the reconstruc-

tion is stable with (3.3.17). We want to know whether and how more TTRT data would

improve the reconstruction.

For each slice, the TTRT data is collected by 75 rays for each angle and 90 angles

uniformly distributed in[0, π].

5.2 Results

First, we will show the result reconstructed by gradient descent method in L2 scheme with

differet number ofη’s.

The result of 3η’s is shown in Figure 5.2.

The result of 6η’s is shown in Figure 5.3.

The result of 9η’s is shown in Figure 5.4.
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Next, we will show the result reconstructed by ADM in TV-L2 scheme with differet

number ofη’s. For regularization parameters, we chooseα = 0.1, β = 1000.

The result of 3η’s is shown in Figure 5.5.

The result of 6η’s is shown in Figure 5.6.

The result of 9η’s is shown in Figure 5.7.

At the end, we will compare the decreasing of relative errors of these methods, which

are measured in l2 sense.

For grandient descent method, comparison among 3, 6, 9η’s is shown in Figure 5.8.

For ADM, comparison among 3, 6, 9η’s is shown in Figure 5.9.

Comparison between gradient descent method and ADM with differentη′s is shown in

Figure 5.10 and 5.11 and 5.12.
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(a) Volumetric Slice Plot
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(b) Slice Plot atz = 27

Figure 5.1: Testing Tensor Phantom
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Figure 5.2: Reconstruction by gradient descent method with 3η’s.
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Figure 5.3: Reconstruction by gradient descent method with 6η’s.
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Figure 5.4: Reconstruction by gradient descent method with 9η’s.
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Figure 5.5: Reconstruction by ADM with 3η’s.
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Figure 5.6: Reconstruction by ADM with 6η’s.
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Figure 5.7: Reconstruction by ADM with 9η’s.
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Figure 5.8: Comparison among different number ofη’s for gradient descent method.
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Figure 5.9: Comparison among different number ofη’s for ADM.
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Figure 5.10: Comparison between gradient descent method for 3η’s.
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Figure 5.11: Comparison between gradient descent method for 6η’s.
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Figure 5.12: Comparison between gradient descent method for 9η’s.
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5.3 Summary

From these results, it shows both more TTRT data and TV regularization improve the

reconstruction result. More TTRT data help the iteration converges more rapidly. On the

other hand, in the results reconstructed by gradient descent method, there are artifacts of

high frequency fringes, and TV regularization reduces this effect.

47



Chapter 6

Conclusion and Future Works

Conclusion. In this paper, we adopt the truncated tranverse ray transform model to

reconstrunct the trace-free part of the dielectric tensor of a photoelastic material. The

least-squre model for fidelity functional and TV-regularization are introduced for recon-

struction. The augmented Lagrangian method is adopted for solving the corresponding

minimization problem. The complete data is a trancated transverse ray transform onTS2,

which is overdetermined. A smaller data set is a subsetL of TS2, whereL =
⋃N

j Lηj , and

Lη = {(ξ, x) ∈ TS2 | (ξ, η) = 0}. Our numerical tests demonstrates the following things.

First, the augmented Lagrangian method converges faster than the gradient method. Sec-

ond, within the same method, the converge speed is faster for largerN . It is suggested

efficiency gains significantly we should chooseN = 6 or N = 9. Third, the least-square

fit of the TTRT model with TV regularization give good image quanlity for piecewise

smooth dileectric tensor.

Discussion and Future works.

1. It is interesting to understand the variation of singular values of the resulting mea-

suring matrix with different numbers and choices ofηj. The goal is to find proper

ηj ’s for a stable reconstruction.

2. It is not known how the proposed method behaves as the collected data is noisy.

3. When the data is far from complete, can the compressed sensing technique be use-

ful?
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All these questions remain further study.
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