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Abstract

Solving multivariate systems of polynomial equations is an important problem both as
a subroutine in algebraic cryptanalysis and in its own right. Currently, the most efficient
solvers are the Grobner-basis solvers, which include the XL algorithm, as well as Faugere’s
F, and F;5 algorithms.

The F, algorithm is an advanced algorithm for computing Grobner basis. However, the
algorithm has exponential space complexity. This poses a serious challenge when we want
to use it to solve instances of sizes of practical interest. For example, if we are going to
solve a multivariate polynomial System 0f40 equaﬁons in 40 variables, then most of today’s
computers will run out of memory béfore the execution-of the algorithm finishes. Further-

more, the original F, algorithm does hot provide thuch flexibility in terms of controlling
memory usage. | L=
[ | 1
In this thesis, we set oufto'address this:shortcoming by starting with the following

questions about F;’s memory consumption,

11

1. Can F4, or any variant of it, be executed underjany memory limitation?

2. If not, at least how much memory is necessary for F, to be successfully executed?

3. Can we make the modified F,4 algorithm run faster when given more memory?

Throughout the process of answering these questions, we observe the memory usage in
each part of the F, algorithm, based on which we propose modifications to the algorithm.
Our modified F, algorithm uses less memory than the original algorithm. More importantly,
our modified F, algorithm runs faster than the original algorithm using the same amount

of memory. Our modified F, algorithm controls its memory consumption by dividing the



work into chucks of smaller working sets and executing them one at a time. This in effect
trades time for memory because it involves more computation, some of which might even
be carried out repeatedly. We will show that such a trade-off makes sense in terms of

time-memory product and is extremely flexible by showing the following.

1. Our modification on average yields smaller time-memory products than the original

F,4 algorithm.

2. Our modified F,4 algorithm allows the Grobner basis be computed using an arbitrary
amount of memory as long as iti§ above the minimum amount of memory required

x
=

to solve the instance.

3. The more memory ourmodified Fy algorithm uses; the faster it runs.
We have implemented a prototype of thesproposed modified Fy algorithm and conducted
an extensive set of experiments with iit‘ The ‘expetiment results demonstrate that the pro-

posed modification does achiev'e"the thr‘ee goals listed above over a broad set of parameters

and problem sizes. As an example showcasesit is-possible to solve certain instances using

only 10% of the memory in less than twice as much time than the original F, algorithm.

Keywords: Cryptography, algebraic cryptanalysis, system solver, Grobner basis, Faugere’s

F, algorithm, time-memory trade-off
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Chapter 1

Introduction

Algebraic attack is a new cryptanalysis techniqueineryptography. Lex X be the plaintext
block need to be encrypted. “We Can regard the bit operations-in the encryption process as
algebraic operations. For example, the Xdﬁ%ﬁeration can bewregarded as the addition op-
eration in GF2, whereas the ' AND opelira?tion Jan be regarded as'the multiplication operation
in GF2. As a result, the encryption flin;:tion can be tewritten as a multivariate polynomial
system (f1, fo, ..., f») and the ciphertext would be'(f; (X), f2(X), ..., fu(X)). Through the
transformation from encryption function into multivariate polynomial system, the question
of breaking a cryptosystem is equivalent to solving the corresponding multivariate polyno-
mial system.

To solve a multivariate system, currently there are many existing system solvers. How-
ever, most of these algorithms have exponential space and time complexities. Solving a
large system becomes impractical due to the requirement of large amounts of hardware

resource. Not only the computation ability but also the memory requirement would be the

bottleneck of these solvers. It is the memory limitation that motivates this research.



In the rest of this chapter, Section [1.1| will show the readers the research motivation
of this thesis in detail. Next, Section [I.2] will describe the challenges we might meet in
this kind of research, modifying existing algorithms to lower hardware usage. Section[I.3|
will show the contributions and their implications of this thesis to the system solvers. Last,
Section [I.4] will detail the organization of the rest of this thesis in order for the readers to

understand this thesis more easily.

1.1 Motivation

To solve a multivariate cryptosystem, we can reduce the question to solving a multivariate
polynomial system by using.the idea of algebraic attack. That is, what we need now is

a system solver. There are many existing, Systenrsolvers, for example, XL algorithm and

—

| - 5 -
| | u?‘
| A

The F, algorithm is a new and efﬁéiei_‘nt concept on computing Groebner basis. However,

Faugere’s F, algorithm.
after doing some research on F4; we!ﬁnd that the aigorithm has some problems. The F,
algorithm itself does not concern about the hardware resource; that is, the F4 algorithm not
only uses a lot of memory but also does not have any mechanism to run with smaller amount
of memory. This makes F, fail to work when resource is scarce. What makes things even
worse is the exponential space complexity of F,, which means the hardware requirement
grows very fast. If we are going to solve a multivariate polynomial system with larger n,
the number of variables, for example, n = 40, most of today’s computers will simply run
out of memory. This is a serious flaw of the F, algorithm to be used in practice.

Most of time, we can trade memory for computing speed. However, when there we run

out of memory, maybe we can spend a little more time to save a lot of memory. Thus, we



start to think of some questions about the memory consumption of the F4 algorithm, such

as follows.
1. Can F4, or any variant of it, be executed under any memory limitation?
2. If not, at least how much memory is necessary for F, to be successfully executed?
3. Can we make the modified F, algorithm run faster when given more memory?

These questions motivate the research work described in this thesis. Based on the struc-
ture of the F, algorithm, we tried to modify it and make it run with smaller amounts of
memory. We also tried to make it run with'memory as little as possible but at the same time
run as fast as possible under the same'memory usage. 'What we want to do in this thesis
is to show the readers a néew and better,scheme'of the Ez-algorithm in which we can

trade off time for memory. Thus, when thesmemory is not enough, our implementation

can still work well with reasonably to‘le;rable. 7?e,{fﬁciency loss.

|

1.2 Challenges

Here we try to provide a high-level overview of the challenges we face without going into
too much detail, which will be available in Section [2.4] The F, algorithm indeed has a
subroutine called SelectPair, which provides a little flexibility on memory consumption.
We can select fewer pairs to check to reduce the memory usage. However, it is not a good
way to do this. First, due to the the design of the F, algorithm, even if the user chooses
a few pairs in SelectPair, it produces a large matrix in the Reduction step and uses a lot
of memory, defeating the benefits brought by selecting fewer pairs. Second, the SelectPair

subroutine should be designed to choose the “proper” pairs to make the algorithm run faster.
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If we select too few pairs here, the running time will be much longer. That is, we can do
only a little with the original F4 design. We have to modify the algorithm to achieve our
goals.

In this thesis, what we are going to do is to design a new scheme based on F, to control
the memory usage exactly without hurting performance. The new scheme should provide a
time-memory trade-off mechanism that the users may select their parameters based on how
much memory they have and how much time they would like to spend.

Now that we want to make F4 run with much less memory than it used to use, we need
to modify it to use the memory in the most efficient'way to achieve our goals. Though it is
very hard to save memory withouthurting perfofrn‘lance at the same time, the following are
what we have tried to achieve:

e Minimizing memory dsage | s

| | p
This is one of the most importénk goal of o@r work. However, to achieve this goal,
we need to discard and re'c()mplite some auxil’iairry‘ infermation when needed. We also
need to reduce the sizes of matriceS appearing in F,, which is the main source of
memory usage in the execution of the algorithm. We also need to reduce the size of

the basis that serves a bookkeeping purpose and would become the Groebner Basis

at the end.

e Flexible in terms of memory usage
The total memory size will be set as a parameter so that the memory used will not
exceed this size. In the original F, algorithm, it is hard to control the memory usage;
in fact, the total amount of used memory is not kept track of at all. Our modified

scheme will achieve this goal by precisely controlling the memory used. Thus our



implementation may run under a variety of memory usages based on an input param-

eter.

e Maximizing the efficiency of pair checking
The F,4 algorithm is based on Buchberger algorithm. Checking many pairs at the same
time is the most significant and important advantage of F,. If SelectPair subroutine
chooses proper pairs, then the efficiency will increase significantly. This is one of the
design that makes F4 much faster than Buchberger algorithm. However, when there
is memory limitation, choosing more pairs will result in more memory consumption.
As a result, we can onlyscheck much less pairs. ‘However, we want to minimize
the difference between pairs seléction in the medified scheme and in the original F,

scheme to keep the efﬁciency of'madified/Scheme as high as possible.

| —
—

el
7= o

To fulfill our goals above, we nqecj;l to"}?ib-dify the By algorithm a lot, especially the

Reduction step. More detail of the quliﬁed'src—:heme will be described in Section [3.1]

1.3 Contributions

What we do in this thesis is to provide a modified scheme based on the F; algorithm.
Neither the modified scheme nor the original scheme may run under an arbitrary memory
limitation. Indeed, there is minimum memory requirement for each instance to store the
absolutely necessary information for the computation. Nevertheless, the new scheme may
run on platforms having less memory as long as it is greater than this minimum memory
requirement. Moreover, the memory consumption in the new scheme is much less than

the original F, algorithm. For example, for some instances we only use 1/10 memory.



This number may become smaller when n becomes larger. The original F4 algorithm may
not work with this amount of memory, even if we cut the number of pair selection to one.
Under the same memory usage, the modified F4 algorithm is faster than the original one
even if this pair selection strategy works.

When the memory budget is tight, a lot of unnecessary information will not be stored,
and a lot of computation needs to be redone. These naturally make our modified scheme run
slower than the original scheme. However, the modified scheme has a better time-memory
product, which means that we can save a lot of memory at the price of having only a little
bit longer running time. Users now may make better trade-off between time and memory
using our scheme. For example,peoplesmay sz;\;e 10 times memory at the expense of 2
times running time.

We repeatedly emphasize the importanee of-memory in this thesis. It is not only be-
| |

cause memory is usually the more e)q‘,p‘ensi.\-m'r‘resource but also because we can use other
computing platforms that have much stronger computational-capabilities but relatively little
memory like the FPGA. Moreover, ¢tir modified schéme'may allow an implementation on

modern parallel computers, where 1t is relatively easy to scale computational capacity but

not memory capacity.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter [2] we go through the necessary
background information and introduce some existing algorithms for computing Groebner
Basis. In Chapter |3, we show how we modify Faugere’s F, algorithm to allow a trade-off

between time and memory. We demonstrate how the modified scheme performs under a



variety of inputs and compare the performance with that of the original F, algorithm in

Chapter 4] Last, we conclude this thesis and point out some future work in Chapter 5]




Chapter 2

Background

Using the idea of algebraic attack, we usually camrepresent a cryptosystem with a set
of polynomials. Let the X ='<w, xo4"..,%,,> be the plaintext block, and the multivariate

| — ]

polynomial system representing the encryption function be F =<fi, fs, ..., f,>, then the

cyphertext would be F(X )= < fl(X" )? fQ(}%), ooy fin (X)>.To attack a cryptosystem is
equivalent to solve F'(X) to get X, 01L‘ ény e X Indeed; if we get the value of some z;,
then we can substitute z; with'its-value"and get a smailer multivariate polynomial system.
Thus, we can solve the systems recursively and get X.

The Faugere’s algorithm we are going to work on in this thesis is one of the famous
algorithms in solving a multivariate polynomials system. Basically, the Faugere’s algorithm
is an algorithm calculating Groebner Basis of an Ideal. In the multivariate polynomial
system F', consider the ideal / spanned by the polynomials F' and its Groebner Basis G of
I. Due to the property of Groebner Basis, there is usually a univariate polynomial in G,

which is easier to solve than multivariate polynomial equations. Thus, we can solve F'(X)

and get each z; by calculating its Groebner Basis repeatedly.



To understand what we are doing in this thesis, we should have an image of the back-
ground knowledge. Thus, we will show the reader basic knowledge and existing system
solvers in this chapter. First, Section [2.1]is going to give the definitions, theorems and
other relevant knowledge of Groebner Basis. The next three sections are going to show
the readers three different algorithms calculating Groebner Basis. Specifically, Section[2.2]
shows the Buchberger algorithm, which is given by Buchberger in 1976. Section[2.3|shows
the XL algorithm, given by A. Shamir, J. Patarin, N. Courtois, and A. Klimov in 2000 and
Section [2.4] shows the Faugere’s algorithm (F4), which is given by Faugere in 1999. The
last algorithm (F,) is what we want to work on in this thesis. We will give more detail on

it.

2.1 Groebner Basis B
L N
First we define some symbols. Let X L {P5=,, Iz W R 3 GF,-[X] be a multivariate

polynomial ring, and { f1, fa, , 15 }! besthé sévof polynomials in 1. Ideal ] C R =<fi,

f2s ..., f>1s an ideal finitely generated by { f1, fo, ..ss fin -

2.1.1 Order

It is easy to give an order between monomials in a univariate polynomial ring, for example,
2" > 2% > 1. However, the problem is how to determine the order in a multivariate
polynomial ring, for example, zy > z or xy < z for zy, z € GF;[x, y, 2].

To give an order in a multivariate polynomial ring, we need to define an order among

x1 to x, first. Without loss of generality, we define 1 > x5 > ... > x,. After having the

order among variables, now we can construct the order among monomials.



An order is a relation satisfying:

r>ytheny < x

r>yandy > zthenz > 2

x > ythen c*x > c*y,c # 0

We now can define order among monomials in R. There are several orders in a mul-
tivariate polynomial ring. We shows some commonorders here. Note that we denote the

head term of a polynomial f as HI(f).

e Lexical order (Iex)
This order is what we,usually do iwit‘l‘rl_f'quds in dictionary. For a monomial m;, ma,
| s | |
if the degree of =1 1nm1 18 more thal’l‘}l?flg, then my > 1. If the degree of = in m,

|l 1
equal to ms, then we compare th‘_: degree of %4, andso on.

For example, 712 > 2123° > To325% > 252030 > 192234

e Graded Lexical order (grlex)
This order is a little different with lexical order. First we compare the total degree of
my and my. If deg(my) > deg(ms), my > mo. If deg(m,) = deg(m-) then we check
the order of m, and ms using lexical order.

For example, 173" > 29313% > 292035 > 25223 > 2,2

e Graded Reverse Lexical order (grvlex)
Like graded lexical order, we compare the total degree of m, and ms. If deg(m,) >

deg(ms), my > my. If deg(m,) = deg(m-) then we check the degree of x,, in m; and

10



mso. The higher the degree of z,, is, the less it is. If the degree of x,, in m; equal to

ms, then we compare the degree of x,,_1, and so on.

3 2

For example, Ty I‘35 > $22I36 > 1’13737 > I22I34 > T

Notice that we do not care about the coefficient of monomials, that is, two terms are the
same if they have the same monomials, no matter what the coefficients are. For example,
3212 have the same order with z2.

After defining order in monomial, then we can easily tell the order among polynomials.
Let f; and f; be two polynomials in . First we make the monomials in f; and f, in
order and compare the head term of these twoxrpolynomials. If HT(f,) > HT(f>), then
fi > fo. If HT(f1) equal to HT( f3), then we check thé next monomials. For example,
29323 + 1 > 29%25% + 23° + 4 x22:v3;67 \- 25 —|—1 in gradéd reverse lex order.

|
Il m®
Il 5

. |

A

2.1.2 Groebner Basis

Definition 1  Groebner Basi§ v ‘
Let G be a basis of I = <f1, forsun fin>, then Giis a Groebner Basis if and only if

Vfel, 3g€ G, suchthat HT(g) | HT(f)

For example, <8, 6> = <2>in Z. {8,6} is not a Groebner basis, while {2} is. Another
example in GF, [z, y], < +y, x +y> and <z +y,y* + 1> represent the same ideal, however
{z* + y,z + y} is not a Groebner basis while {z + y, y* + y} is.

In Figure every circle represents a HT(f), f € R. The arrow from circle HT(f;)
to circle HT(f;) represents HT(f;) | HT(f;). Let HT'(f;) <ur HT(f;) iff HT(f;) | HT(f)).

Figure [2.1] shows the partial order <y defined on the set of head terms in ideal /. We

11



HT(g)|~ HT(/)

HT(gx[~ —
H /
T(;

p.

riginal Basis

HT(g) |
\ e
f HT(f,) —

g,E€ Groebner Basis

Figure 2.1: Slmple s}&etph of Groebner Basis
. £ {

minimal polynomials g; wﬁh-HT( og.e:. ;"7..
i e 18
Next, to calculate GrBebner Basis, Iculate SPolynomlals first.
"'.'.MI L] 3
Definition 2 SPolynomza.l b IS

Let f;, fj € 1, ¢; = lcm(HT_(f“f’}. 'é f},— c;fj is the SPolynomial

of (fi, [;), denoted as SPoly( f;;’ ]:Z,j "The de;gree of ;Poly( fz, ‘fj ) is the degree of lem( f;, f;),
o1 v

denoted as deg(SPoly(f;, f;)). i f FEElE)-

Definition 3  Pair
Let f;, f;, ci, c; be the same defintion in the Deﬁnition@ then we said that <lem(f;, f;), ¢,
fi» ¢j, fj> is a pair which gives the information of SPoly( f;, f;). Let p be a pair of (f;, f;),

the contents of p is denoted in order as p.lcm, p. fymult, p.f;, p. fmult, p.f;.

Definition 4  pre-SPolynomial
Let f;, f;, ci, c; be the same defintion in the Definition[2} c; f;, c; f; are the pre-SPolynomials

of (fi, f;), denoted as pre-SPoly;( f;, f;) and pre-SPoly;( f;, f;) respectively.

12



By definition of SPolynomial, SPoly(f;, f;) eliminates the head term of pre-SPoly; and
pre-SPoly;, which is divisible by head term of f; and f; respectively. Thus, we will find
out new head terms that may not be divided by the head terms in G.

For example, let I = <z?y + 1, zy? + 1>, SPoly(z?y + 1, zy*> + 1) = —x + y, it is a new
head term not divided by x?y and zy? .

The next question is, how we determine whether a basis G is Groebner Basis or not.

Buchberger then gave a theorem as followed :

Theorem 1  Buchberger Theorem
Let G be a basis of I, then G is d Groebiier Basis-of I if andionly if ¥ f;, fi €el, SPoly(fi, f;)
can be reduced to zero by G. |
This theorem states that if jall the Squliomials of G can be reduced to zero by G,
then G is Groebner Basis, and 'vice \%e‘ sa.t@n; direction of the proof is straightforward.
If there exists a SPoly(fi, f;), denote? as spoly, thht cannot.,be reduced to zero by G, that
is, spoly is reduced to p by Gy.p & O,- then'Vg € CMJ,"jHT(g) Y HT(p). This conflicts with
the definition of Groebner Basis. In other-hand; ‘if (' satisfied the statement, then every
arithmetic combination of g; in G will have a head term that is a multiple of g; (Standard
Representation). Thus, it is a Groebner Basis. The detail of proof can be found in [1}, 1993].
Now we have a systematic method to examine whether a basis GG is a Groebner Basis
or not. Buchberger also stated some special cases for SPoly(f;, f;) that do not need to be

checked.

Criteria 1  Buchberger First Criteria

Let f;, f; € I, if ged(fi, f;) = 1, then SPoly(f;, f;) can be reduced to zero by { f;, f; }.
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Criteria2  Buchberger Second Criteria

Let f;, f;, fx € 1, andlem(f;, f;)| lem(f;, fr), lem(fi, fi)| lem(f;, fi), then if both SPoly( f;, f;)

and SPoly( f;, fi) can be reduced to zero by G, so is SPoly( f;, fx).

The Buchberger First Criteria stated that if we have f;, f; with ged(f;, f;) = 1, then we
do not need to check SPoly(f;, f;), since it must be reduced to zero by { f;, f;} C G, thus
must be reduced by ;. The Buchberger Second Criteria stated that if we have f;, f;, fx
satisfying the condition specified, then we only need to check SPoly(f;, f;) and SPoly(f;,
f#). since if both the two SPolynomial can be reduced to zero by G, then SPoly(f;, fx) can
be reduced to zero by G, too. The detail-of proof also can'be found in [1}, 1993].

The following three section showsithree differentalgorithms finding out Groebner Basis
of <F">, where F is a set of polynomials that we'want to Solve.

For convenience, when we said about agﬁbﬂity of polynomials in this thesis, it means

15
the divisibility of their head terms. For eF(amIIié, when we said. f | ¢, itmeans HT'(f) | HT (g).

|
11

2.2 Buchberger Algorithm

Buchberger algorithm is based on Buchberger Theorem || stated by Bruno Buchberger in
1976. 1t is the first algorithm to compute a Groebner Basis of an Ideal systematically.
Buchberger Theorem really told us how to examine whether a Basis is a Groebner Basis or

not. According to the theorem, what the algorithm does is very simple:

1. Set the input /' to be a Groebner Basis G
2. Check if G satisfies the condition stated in Buchberger Theorem

3. If G does not satisfy, modify the elements in G and go to step 1

14



‘We now introduce more detail as follows.

Algorithm 2.1 Pseudocode of Buchberger Algorithm

Input: F
REM Initialization
2 F' <— ReducedRowEchelon (F)
3 G,P +— UpdateGP (G, P, F)
REM Main program - check pairs and let GG satisfied the condition
5 while P # {} do
6 spoly, P +— SelectPair (P)
7 r+— MultivariateDivision{spoly, &)

8 if r # 0 then

9 G, P <— UpdateGP (G, P{{r})
10 end ‘ H:F’-
| -'E ‘
11 end
Output: G :

We can see in Algorithm [2.1] the whole flow of Buchberger algorithm. The input of
the algorithm is F', the polynomial system we would like to solve, while the output of the
algorithm is G, the Groebner Basis of F', which spans the same ideal and contains at least
one univariate polynomial.

The algorithm takes the input F' and set it as G first (line 3). At the same time, it
also maintains a pool of Pairs P to store those pairs that haven’t been checked. After the
initialization, it starts to examine if G is really a Groener Basis by checking all the pairs

generated by (G. The pool P stores all these pairs; those which have been examined are
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Algorithm 2.2 Pseudocode of SelectPair function in Buchberger Algorithm

Input: P
1 pair +— SelectStrategy (P)
2 P +— P\{pair}
3 spoly «— pair.imult*pair. f; — pair.jmult*pair. f;

Output: spoly, P

removed from P.

In the while loop (line 5), we pick and check pairs from P one by one. First, SelectPair
function picks a pair from P with a select stratégy, as Algorithm shows. The select
strategy is left open, so the user cansSelect pairs‘imsany way she likes, as long as all the
pairs are selected and checked 'eventuallysNevertheless, it is suggested that the user select
the pair with the least degree of pair.lcm. j%,5¢lectPair function, we get a SPolynomial
spoly. We check if it can be reduceéi ito ze;() by G at line7: The MulltivariateDivision
function reduces spoly by G and gets Lfr ‘.either equaf to.zero-or each monomial mn in r with
g; 1 mn, g; € G. By the Buchberger Theorem, if thefe 18 one SPolynomial that cannot be
reduced to zero by G, then G is not a Groebner Basis. Thus, if » ## 0, then it means we
need to modify G to make it satisfy the condition of Buchberger Theorem. The simplest
and valid way to do this is to add 7 into G (line 9). This operation would not change the
ideal spanned by G since 7 is a linear combination of g; € G. By doing this, spoly is
reduced to zero by G since its remainder r is in G now. By keeping checking the pairs and
adding new remainders if needed, finally we will arrive at the Groebner Basis.

The UpdateGP function appears in line 3 and line 9 is indeed taking a new set F’,

adding its elements into Basis (G, and putting the new pairs generated into P, as shown
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Algorithm 2.3 Pseudocode of UpdateGP function
Input: G, P, F’

ot

forall the f € F' do
2 P <— PU{getPair (f ¢;) | gi € G}
3 P +— BuchbergerCriteria (P)

4 G<+— GU{f\{gi| 9 € G, flgi}

5 end

Output: G, P

22 xy y? 1

32?2 22y + > 443
F= — TM="| 32 1 3

202 4 day % + 1 N
4 1 1

| — R

—
-~
o

Figure 2.2: Transformation b#\}veeﬁ matrix and polynomials

1

in Algorithm [2.3] It also discards usehcés pairs frofn;P in-the function BuchbergerCriteria
based on Buchberger Criteria[l}and Buchberger Crite;i‘a@ It also removes useless ¢g; € G
if there is another g; € G such that g;|g;. Notice that the pair of SPoly(g;, g;) is in P now
according to the design of UpdateGP. Consider a new remainder r to be added into G; then
9i, gj, 7 satisfy the condition of Buchberger Criteria [2, which means that we just have to
check SPoly(g;, g;) and SPoly(g;, ), and then SPoly(g;, ) would also satisfy. Indeed, that
means G always keeps the leftmost Head Term of every line shown in Figure [2.1]

What the RedcuedRowEchelon function in line 2 does is that it transforms the poly-
nomials /' into a matrix M, computes the reduced row echelon form of M, transforms

it to polynomials again, and puts them into F'. The transformation between matrix and
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polynomials is as figure shows.

The Buchberger algorithm will terminate deterministically since the basis must be
finitely generated based on Hilbert’s basis theorem and the fact that we keep finding smaller
polynomials in the ideal spanned by F'. However, it is too slow to be practical in solving
a larger system. If there are m polynomials in F', then we have to check almost W
pairs, and more as new remainders are added into GG. Doing this checking one by one is not
very efficient. There are a lot of duplicated work that may be done together to save time.

That’s how F, improved the Buchberger algorithm, which we will show later in Section[2.4]

More detail of the Buchberger algorithm can be found in [2, 1976].

2.3 XL Algorithm

| p—
i

Algorithm 2.4  Pseudocode of XL Alg(;ffthm |
Input: F | | 2 )

REM Initialization

2 D +— ChooseD (m,n,d)
REM Main program — extend the polynomials in F' to deg D and do Reduced Gaussian

Elimination

4 M <— Monomials withdeg < D — d

s F'«— {m*f|meM, feF}

6 G +— ReducedRowEchelon (F")

Output: G

XL algorithm was given by A. Shamir, J. Patarin, N. Courtois, and A. Klimov in 2000.
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However, the idea had been proposed earlier but did not considered to be practical due to
the large memory requirement. It is constructed in a straightforward manner that is easy
to understand. Consider that when we do the calculation of the SPoly(f;, f;), we extend
both f; and f; first and then subtract them. When we do the division of g| f, we also extend
g to the head term of f and subtract them. The subtraction of polynomials is indeed the
subtraction of rows in a matrix after transformation. Thus, what we want to do is to put
enough polynomials into the matrix, then perform reduced Gaussian Elimination once and
we will get a Groebner Basis of F'.

The set of needed polynomials.ean be computed in practice, e.g., simply taking all those
polynomials appear during execution of Buchbegger algorithm. Let the set of polynomials
be denoted as Poly. Since Polyin Buchberger algorithm’is finite, the maximum degree

D in Poly exists. Let d be the degre¢ ¢f F=and-H'|be the polynomials set extended from

=

[’ containing all the polynomialstin L<;F > vpth dégree from d to D. Then Poly C F’
obviously. The idea of XL is t_hat wl}en we' gxtend I’ to a-Jarge enough degree D, which
might not be equal to the maximum dégree appears iri”Buchberger algorithm, then we will
get all of the information needed to calculate the Groebner Basis.

We can see in Algorithm@that how the XL works. First, we need to initialize the de-
gree D. We choose D based on parameters m, n, d, where m is the number of polynomials
in F', n is the number of variables, and d is the degree of F'. See [3l 2004] for a good way
of choosing degree D. Then what XL does is simple — extending F to F”’ (line 5), and
getting Groebner Basis GG from the reduced row echelon form of F” (line 6).

XL algorithm is designed to work in Lex order first. However, now there are many
different algorithms based on XL algorithm, for example, FXL and XL2. More detail

about XL algorithm can be found in [4} 2000].
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2.4 Faugere’s algorithm (Fy4)

F, algorithm was given by Faugere in 1999. It was based on the idea of Buchberger algo-
rithm with some improvement. The improvement makes it amazingly fast. The changes

are summarized as follows.
e Check instead of a pair but a set of pairs at one time
e Do the reduction of SPolynomial in matrix form

We can see that how F, works in Algorithm{2:5]. The initialization of F, is the same as
Buchberger algorithm. Both Buchberger: algorithﬁl and F4 use the same ReduceRowEche-
lon and UpdateGP function. Howeyer, the Select Pair step is a little different. Unlike Buch-
berger, SelectPairs here selecté a set of pajllz_rs}ok chéck and re‘iﬁrn a set of pre-SPolynomials
of those pairs stored in Poly, as shovsi/ni in \;%Ebrithm The SelectStrategy is left open,

| | m

so the user can select pairs any ‘way s_ile likes. It is recommended that those pairs with

|
1

lcm of the least degree be selected first, The imprév_cment here is that the F, algorithm
increases the throughput of the pairs checkifig. The reason to select a set of pairs is not
only to increase the throughput, but also to eliminate some duplicated work. For example,
if there is a monomial m in both f;, f; that can be divided by g, in Buchberger algorithm, g
must to extend to m twice to do the reduction, whereas in F, algorithm, the extension only
needs to be done once since we check f;, f; together.

The Reduction step here is a little bit complicated. What from line 9 to line 15 in
Algorithm do is to make sure that every monomial m € Poly, if there exists a g in G
such that g|m, then g will be extended to m and contained in Poly. Monomials(Poly) is

the set of monomials in Poly, and Headterms(Poly) is the set of head terms of Poly. The
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reason to do this step is to ensure that for any r € R (line 17), r cannot be reduced by G
anymore. We can then reduce the Poly to Poly’ by Gaussian Elimination after discarding
those p in Poly’ that can be divided by G, after which we get the new remainders R and

finish the Reduction step. The UpdateGP step is the same as in Buchberger algorithm.

Proof 1 Reduction Step of F

HT(r) € monomials of Poly

= By the designed of Reduction step, g* HT( y € Poly
— m = HT(g" z77;7) € Poly

—m¢ R (—+)

F, is really a fast algorithm and an improvement over, the Buchberger algorithm. How-
ever we can see from the design of H, tha@_-_i’t dées not attempt to control memory usage.
| =St |

| | === |
This makes it impractical with larger|n. Werare goinggto address this shortcoming in the

next chapter. The F, algorithm-is rec?n’imendéd to run in Grvlex order. More detail about

F, algorithm can be looked up in [‘5,“'1999].
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Algorithm 2.5 Pseudocode of F, Algorithm

Input: F
REM Initialization
2 F' <— ReducedRowEchelon (F')
3 G,P +— UpdateGP (G, P, F)

REM Main program - check pairs and let GG satisfied the condition

wn

while P # {} do

REM step : Select Pair

7 Poly, P +— SelectPaJ.,!;;é (P yk

- 1=
REM step : Reduction ,\:\ }f’
9 M +— Monomlaf‘s '-E"'bl
'\,_l
&
10 Done +— Headt‘;grrgs (Poly)

=l
1 while 3 m € M\Rgng?_

12 Done +— Doné U {Qﬁ;} 0
13 Poly <— Poly U { _%i* Af
14 M <— Monomials Po"{y}? J"j'?“1

15 end

16 Poly +— ReducedRowEchelon (Poly)
17 | R« {p|pé€ Poly',HT (p) ¢ HT (Poly) }

REM step : UpdateGP

19 G, P <— UpdateGP (G, P, R)
20 end

Output: G
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Input: P
1 Pair <— SelectS
2 P +— P\Pair
3 Poly «— {pair.fimu ‘

Output: Poly, P
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Chapter 3

Modified Algorithm

In the last chapter we have introduced the F, algorithm. It is a fast algorithm to compute
Groebner Basis. However, Fj algorithm iS'not designed to have any mechanisms to control
memory consumption. Due. to the exporllelfj_ljg}ff?iélz,space complexity of F4, when the multi-
variate polynomial system is,large, f(l‘)ri exarili,ple, n = 40, most computers will suffer the
problem that there is not enough 'merI;ny to suppott the execution of the algorithm.

In Section 2.4, we see that the-SelectPair function ;:an provide some flexibility in Fy. If
we select a smaller number of pairs in SelectPair, then the memory needed in one iteration
would be less. However, this is not a good strategy in reducing memory consumption since
the design of Reduction step in F,4 algorithm may produce a large matrix. Moreover, if we
select too few pairs here, the running time of the program would be much longer, making
the algorithm impractical.

What we want to achieve here in this thesis is to design a new scheme based on the

structure of F, algorithm that controls less memory than F, without unnecessarily sacrific-

ing performance. We would like to run on the platform with minimum memory require-
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ment (the memory needed to store G and P) using the modified scheme. Moreover, under
the memory limitation less than the maximum memory requirement of F,, the modified
scheme should work better than the original F4 algorithm. In summary, we would like a
new scheme that provides a better time-memory trade-off for the user.

In Section [3.1} we will show readers the three main parts we have modified based on

the F, algorithm to achieve our goals:
1. Modification of SelectPair function in Subsection [3.1.1]
2. Modification of Reduction stepin Subsectiqn B.1.2
3. Adding new ReduceG funefion in Subsect;o.n 3.13

Section [3.2]is going to show/ the uers the correctness ‘'of each modification of F, algo-

rithm. Readers will see that even we md)dify?dﬁie‘structures of Fy, the modified algorithm

Il 'm |
still computes the correct Groebner b?s‘s as-Hydoes!

|

: ; 1
3.1 New scheme based onF4

To show our modifications to the F, algorithm, we first show the entire algorithm of new
scheme in Algorithm and then introduce each part subsequently. As Algorithm
shows, we modify the SelectPair and Reduction parts of the original F, algorithm and add
one more function ReduceG in the UpdateGP step.

In the new scheme, we provide a new parameter s:ze, which controls how much mem-
ory can be used. Since the number of pairs selected will affect the matrix size, we should

make some changes of the select pair strategy, as shown in Algorithm [3.2] to control the
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number of pairs selected in one loop iteration by taking a parameter mat_size based on
which the function can select pairs that fit the size.

We also need to modify the Reduction step. According to the design of F, shown in
Algorithm [2.5] we see that the matrix size would become larger and larger as we check the
divisibility of each monomial m by adding extra polynomials into Poly. This introduces
two problems. First, the matrix size will become much larger than the size before checking
monomials, and second, it is hard to limit the matrix size due to the uncertainty. We try to
overcome these problems by splitting the work into several parts and working with smaller
matrices. More detail will be introduced in Subsection3.1.2]

We not only need to consider the matsix size,\rb.ut also‘the size of GG as well as the size of
P. Indeed, the least amount of memory required is the memory to store GG and P, which is

the essential piece of information that nééq_'s_;_’tof be stored. Though it is hard to do anything

- 1_’-_‘,

with size of P, we can always reduce the sy(ze of ;G by reducing the non-heading terms.
That is, we can make the length Qf g i}n"‘G slic;;ier Wi_thout reducing its head terms. We can
reduce the size of G in many Ways; an(i here'we are ééing to introduce a simple algorithm
in Subsection |

We are going to introduce the detail of these modifications in the following subsections.

3.1.1 Select Pair step

Select Pair is an open strategy in the F, algorithm. This is the most direct factor to decide
how large the matrix size is. Since there is memory limitation in our algorithm, we cannot
use the same select pair strategy in Fy.

Let size be the total memory usable to the program, G_size be the memory used to
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store (G, and P_size be the memory used to store P. Then the remained memory can be
used for the step Reduction step is mat_size = size — G_size — P_size. We have to
decide how to use the remaining free memory wisely.

After the analysis of the design of F;, we decide to fill up the memory with pre-
SPolynomials. That is, we select as many pairs as we can to maximize the throughput
to be as close to F,4 as possible. The reason to do this is that the throughput is important
to efficiency. We can eliminate more duplicated operations if we check more similar pairs
together. Another reason is that other polynomials added to Poly is prepared for the reduc-
tion of SPolynomials. However it-might not be used since its corresponding monomial m
might not be a head term of any re€mainders. It irs‘not an‘absolutely necessary information
during this stage, so we may:not want to pre-fetch this‘infermation under the condition of

limited memory. “.: .
| A=

The new pair selection stratégy in ;line. .%of Algorithm [3.2]is simple. First, we pick
the pairs one by one from P Wi,th tl}e'leasf :c-legre;e for their least common multiples, as
one would do in the original Ey. HéWever, when thé‘corresponding matrix of Poly ex-
ceeds mat_size, we break the loop and return Poly. After this step, we have the pre-
SPolynomials in Poly consisting of those selected pairs. Indeed, Poly here is a subset of
the Poly in the Fy.

In most cases when the memory is limited, the number of selected pairs is much smaller
than the recommended number. Though this limits the reduction throughput, it would still
save more duplicated calculations than if we selected more pairs. Since each loop of the
algorithm will produce new basis elements, and the new basis will have some pairs removed
which we do not need to check any more according to the Buchberger Criteria. Thus, the

running time is not slowed as much as it would given the reduced number of pairs selected.
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Notice that we fill up the remaining memory here not with other polynomials that might
be added into Poly during the divisibility check of monomials, as shown in line 9 to line
15 in Algorithm [2.5] This means that we need to modify the Reduction step to achieve the
functionality of what has been omitted here, which will be shown in Algorithm [3.1.2] We
select the most pairs that can be selected under the same memory limitation, and this is one

of the important factors to determine how fast our modified algorithm can run.

3.1.2 Reduction Step

The Reduction Step from line 10 to line: 15 in‘ Algorithm [3.1] is the main modification.
Remember that, in the Select Pair step; We fill upsthe.matrix with all pre-SPolynomials.
However, we still need to check the mon-headingterms, or-in other words, the heading
terms after reduction of pre- SPolynomlals ~agp_ord1ng to the Buchberger Theorem.

What we are going to do_here lookF mu&h like Buchberger ‘Algorithm. Instead of re-
ducing the SPolynomials in batch as F4 does, we check the divisibility of new polynomials
after each matrix elimination.” The-reason is that we could save the memory to store the
pre-computed information which might not be useful in the reduction. Besides, this design
is more helpful to controlling the matrix size. If we want to control the matrix size, we have
to make the maximum matrix size be predictable. Our target is clear: we only care about
the head terms instead of all the monomials in Poly. This makes the number of polynomi-
als that can be added into Poly at most the number of polynomials in Poly since there are
at most # Poly head terms that need to be reduced.

First, we reduce Poly with Gaussian Elimination at line 11. After this reduction, we

will get Poly’, the remaining polynomials of Poly. Then we select those p in Poly’ such

28



that the head terms of which do not appear in Poly and denote them as Poly”, as in line 12.
These polynomials are new polynomials produced by Poly, not the ones we add into Poly
before. Then we need to reduce Poly” by G again to ensure that the remaining polynomials
finally output cannot be divided by G any more. We check every p in Poly” in line 13. If
p can be divided by some ¢ in GG, then we need to reduce this p again. Thus we put both
p and extended g into Poly. This operation means that we are going to divide p by g. For
those p that cannot be divided by GG any more, we are going to output it as new remainders
that will need to be added into GG to make G satisfy the condition of Buchberger Theorem.
Before finishing the Reduction step, we store these'p in R, as shown in line 14. The loop
will break when Poly is empty, which.means that we have checked all the polynomials
produced during the reduction, of'SPolynomials, and there are no more polynomials that
can be divided by G in this turn. Notige tl#qg_t;the number of polynomials in Poly will be
always even. i; \ T:.‘ﬁ

We can see that every matri)_( appe?r’ing iﬁ :c;,ach loop iteration here is indeed a submatrix
of the large matrix in the Reduction‘ sfep in the origihal FE,. The new scheme splits the
whole matrix into several smaller, limited matrices. Though we save some memory here,
there is an overhead of going between polynomials and matrices. Of course there are also
duplicated operations in polynomial multiplication and matrix reduction since the smaller
matrices overlap one another. All these factors might make the efficiency of Reduction step
of the modified scheme worse than F,.

On the other hand, we can save some operations. In each loop iteration of checking
Poly”, we use the new remainders R, as shown in line 13, which is going to be added into

G immediately. If there is a divisibility relationship between members in R, the modified

scheme will do the reduction in the same loop iteration of Reduction step. In the orginal
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F, algorithm, this divisibility of new remainders cannot be discovered, and the new pairs
would be produced again in the next iteration, resulting some unnecessary computation and
memory usage.

After doing the Reduction step, we will finally reduce all the Spolynomials of selected
pairs by G and reach at R, the set of new remainders. We are going to add R into G and

update G and P likes F, does in the UpdateGP step.

3.1.3 Reduction of G

The size of G is a new problem that we.need to §olve. In.F,, since the matrix in reduction
is large, doing Gaussian Elimination not only reduees-the head terms of SPolynomials by
G but also eliminates many-nen<heading.monomials. The larger the matrix is, the more
monomials can be eliminated. Thus, p in G'-];shorter in length.

In our modified scheme, though S}Tanmﬁg the same ideal-with G, the length of p in
G is longer than it is in the original F4 algorithm. *There aré two reasons for it. First, we
select limited pairs, thus the monemials-¢ontained:in these SPolynomials are limited, so the
monomials that can be eliminated are also limited. Furthermore, in the modified scheme,
we only care about the head terms, so only the monomials appearing as head terms are
eliminated. All these make G larger.

The procedure reducing non-heading terms in GG do not affect the correctness of algo-
rithm since it does not change the solution space of </™> nor the head terms in G. It is
recommended for efficiency purposes.

The size of GG is an important factor for memory consumption. First, since we have less

memory than in the original F, algorithm, we can not afford to waste a lot of memory on
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G. Besides, the larger G is, the less free memory the matrix reduction can use. Moreover,
under the same matrix size, the longer g in G is, the more columns we have when trans-
forming into matrix form. Thus, the number of row is decreased, which means that less
SPolynomials can be put into the matrix and the less pairs can be checked in one iteration.
Due to these reasons, we have to reduce the size of G to a tolerable size.

How to reduce G is an open strategy here. We can reduce the non-heading monomial
of G at any stage by any algorithm in the new scheme since it does not change anything but
the size of G.

Here we show an example of ReduceG function. We will do this step after UpdateGP
function in line 18 of Algorithm We-do tl{e‘ reduction of G here so that every time

G changes, we reduce it immediately. The sample algorithm of ReduceG is shown in

Algorithm[3.3] s
| |

Let us see the sample code in A‘ylgiorittl;ﬁh{ @ We reduce g in G one by one. Let
max_length be the maximum 1_ength of’ gin G If the“length of gis less than %max_length,
then we ignore g and go to the next éﬁe. Otherwisé, ‘we reduce g by G, as shown in line
2. Of course, g cannot be divided by G anymeore according to the algorithm, so the only
thing we can do now is to reduce non-heading term of g here. The next thing to do is to
check each monomial in g to see if any other g; in GG can reduce monomial m in g and add
the extension of g; into Poly, as shown in line 4 to line 6. After the monomial check, we
get a set of polynomials Poly. Notice that g is the largest polynomial in Poly. After the
Gaussian Elimination in line 7, the corresponding polynomial ¢’ of g will have the same
head term. By replacing g by ¢’, we finish the reduction of g.

The reason that we ignore those p that have length less than %max_length is for effi-

ciency. If we reduce every g in G, then it would take too much time. Besides, what we want
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is to reduce the size of (G, and reducing monomials in g does not ensure reduced length of g.
Take reducing g = 2%+ 2% with 22+ 2+ 1 as an example. After the reduction, g = 23—z —1,
but length of ¢ is longer than before. Thus, we give the parameter %max_length that g will
have more probability having monomials that can be divided by GG as well as are shorter af-
ter reduction. The parameter should be modified depending on the size of G. If G is larger
and denser with its monomials (considering the density of matrix of ), we should set the
parameter lower; for example, 1/3. And if necessary, we can do the ReduceG function
more than one time. From the experiment result, we recommend that this size of GG use no

more than half of the total memory:

3.2 Proof of Correctness

| — ]

e

We have shown a new medified schem‘e éf tff%ﬁ{algorithm that provides a good mechanism
of trading off between time and space;. iHerew"\;ve prove the correctness of the new scheme.
To prove the correctness of the .m'odiﬁ.ed algorithm,v we-only need to prove that it satisfy the
Buchberger Theorem. Since the original F, algorithm satisfy the Buchberger Theorem, and
our scheme is based on it, equivalently, we shall prove that the new scheme will produce
the same result as the F, algorithm.

The following subsections will show readers the correctness of the different steps of the

modified scheme.

3.2.1 Select Pair step

SelectPair function only decides how many pairs will be selected in this iteration. Never-

theless, every pair will be checked sooner or later before output of the Groebner basis G.
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Every strategy of SelectPair function, as long as each pair would be selected eventually,
does not affect the correctness of the algorithm. It only affects the efficiency.

Our modification of Select Pair strategy looks like the one in F, but with one more
parameter mat_size. Those pairs not checked due to the limitation of memory would be

check in a later iteration.

3.2.2 Reduction step

The step Reduction of Spolynomials is the main modification in the new scheme, which
really changes the structure of Ey. In the origiqal F4algorithm, this step will calculating
a set of new remainders R that is notireducible by, G-any more. We will show that the
new scheme also generates {he. new set of remainders R in;ideal of <G> that are exactly
those remainders with respect to G corres@;ing to the SPolynomials of selected pair, as
‘ == |
F, does. ‘& | 'Tf
1 :

. |

The proof works as follows. . | |

Proof 2 Reduction Step of the modified scheme
Let g;,g; € G and p = Spoly(g;, gj). By definition of SelectPair function, we will have
pre-SPoly;(g:, g;) and pre-SPoly;(g;, g;) in Poly at line 8 of Algorithm[3.1] After doing

Gaussian Elimination of Poly at line 11 in the first iteration, we get p.

1. Let p’ € R be the new polynomial produced with respect to p after Reduction step to
output. Suppose p' is divisible by G.
= p’ € Poly, by definition of modified scheme in line 13.
— p' ¢ R, since Poly and R are disjoint.

= 9’ is not output, since only R would be output. (—<)
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2. Let p' € R be the new polynomial produced with respect to p after reduction not to
output. Suppose p' # 0 is not divisible by G.
— p' ¢ Poly, since p’ is not divisible by G.
—> p/ € R, since Poly and R are disjoint.

— p’ is output, since R would be output. (—<)

Thus, p’ with respect to SPolynomial p is output if and only if p' # 0 is not reducible by

Notice that, # Poly will become less and less since Poly" are those polynomials having
their head-terms not appearing in.Foly. Beésides, after every reduction, p in Poly becomes
smaller and smaller. Eventually, theloop of checking’oly will stop since Poly will be
empty, or there will be a p that/is always d;niisible by G after each reduction. But the last

| - -'—é’-
condition can not happen since Giis finite, é.-l'}d

I
|

head 'terms§ of p are getting smaller.
Thus we have proved the correct:néss of Reduction step by ensuring that it is doing

exactly the work done in Fj.

3.2.3 UpdateGP step

We use the same UpdateGP function as the original F4 algorithm, so there should not be
any problem. Now let us look at the ReduceG function. This operation does not change
the ideal <G>. And of course, it does not change the head terms for all g in G. Thus this
step does not do anything with the generated pairs, either. It produces no new head terms.
This step will not affect the correctness of the algorithm, but only efficiency. We can think
of this step as achieving the same effect as computing the reduced row echelon form of the

large matrix in the original F, algorithm.
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Indeed, every step in the modified scheme achieves similar goals as it does in F,, al-
though they might look somewhat different. Therefore if F, works, then the modified

scheme should work too.
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Algorithm 3.1 Pseudocode of modified scheme

REM

2

REM

wn

REM

REM

10

11

12

13

14

15

REM

17

18

19

Input: F' size

Initialization

F +— ReducedRowEchelon (F)

G, P +— UpdateGP (G, P, F)

Main program - check pairs and let GG satisfied the condition
while P # {} do

step : Select Pair

mat_size <— size — G‘fsz

'in T

Poly, P «— Sele&?\alr

step : Reduction :'.""-'
-'.l

while Poly # {} dm

-
Poly’ +— Red‘u,cggiR EG

Poly” +— {p ] p Ia‘oiyﬁ‘h-
. I

Poly «— {p,h*g | p GfPoly”-*:g =X LﬁfrfR H"Irw
e o ks

" ; Sy S
R+ {p|p € Poly p¢PolyF
end
step : UpdateGP
G, P «— UpdateGP (G, P, R)

G +— ReduceG (G)

end

Output: G

T (h*g)}
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Algorithm 3.2  Pseudocode of SelectPairs function in modified scheme

Input: P, mat_size

o

while P # {} do

2 pair <— SelectStrategy (P)

3 P «— P\pair

4 Poly <— Poly U {pair. fimult*pair. f; , pair.fymult*pair. f;}
5 if #Monomials (Poly) *#Poly > mat_size then

6 break

7 end

8 end

Output: Poly, P

Algorithm 3.3 Pseudocode of ReducéG;gunction in modified scheme

Input: G : T ‘
1 forg e Gdo | r
2 if length of g > %max_length then
3 Poly +— {g}
4 for m € Monomials (g) do
5 Poly +— PolyU{h*¢' | ¢ € G, m =HT (h*¢') }
6 end
7 Poly’ +— ReducedRowEchelon (Poly)
8 g <— ¢ € Poly,HT (¢’) = HT (g)
9 end
10 end
Output: G
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Chapter 4

Experiment Results

In the previous chapter, we present outr modificationitothe F, algorithm that decreases the

minimum memory requirement.” We alsosadd a‘parameter'szze to control the total mem-

=

ory consumption of the modified F, algorill'fin_,so that the program can run with different

memory requirements. The modified F;4 scﬁﬁ;_me also has a bgtter efficiency than original
F, given the same amount of memoryé. ‘.

Under the condition of limited meniory, mostiof tﬁe information cannot be stored, and
the calculation cannot be done in one pass. Therefore, the modified scheme needs more
computation, for example, more transformation between matrix and polynomial forms. All
the overhead makes the modified scheme slower than the original F, when there is enough
memory. However, we will show in this chapter that the modified scheme has better time-
memory product than the original F, algorithm. This means that if we can spend a little
more time and save a lot of memory. Furthermore, users can trade time for memory at

various degrees, making the modified scheme extremely flexible.

In this chapter, we will show our experiment result and compare it with that of the
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original F, algorithm.

First, we implement both F, and the modified scheme in C++ language. Both of these
two programs use the same data structures and lower-level field operations. The Polynomial
Ring of the input data is GF14<X> with X =<zq, x5, ..., 2,,>.

According to the custom of multivariate cryptography, we let n be the number of vari-
ables and m be the number of input polynomials. The experiment is performed on the
following three different input parameters to see how the modified scheme works in the

ordinary systems as well as overdetermined systems:

1. m=n+2

2. m=1.5n

3. m=2n :.':
|

Section[4.T|shows the experiment r&e%ult cgfhe iri_put parameter m = n-+2 with n ranging
from 6 to 13. Section [4.2] shows th§; tescperiment rééu}t of the mput parameter m = 1.5n
with n ranging from 8 to 15. Sectioﬂ 4 3]shows theexpeﬁment result of the input parameter
m = 2n with n ranging from 10 to 18. The last Section |4.4|presents a generalized analysis
of the three different input parameters.

The experiments shown in this chapter are performed on a computer with two In-
tel Xeon E5620 CPUs running at 2.40 GHz. Each processor has 128 KB of L1 cache, 1 MB
of L2 cache, and 8 MB of L3 cache. The main memory is 24 GB running at 1333 MHz.

Each data point here represents the average of 20 runs.
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4.1 m=n+2

We will check the case m = n + 2 in this section. We compare the running time of F,

algorithm from n = 8 to n = 15 with our modified scheme.

100000000 Memory
10000000

1000000
~—Fa4

int

~#-size/3
size/4
~*-size/10

100000

10000

1000

@
~
o
©

10 1 12 13 14 15

Figure 4:1: Memory.curve for m =n+2 (unit:int)

! '] |

i !I'f rzﬁr_‘ii‘ﬁ ‘
T ﬂ

First, we see from Figure 4. 1|that T quie cor%plexity of F, algorithm is indeed expo-
Il | :

T, |

nential by noting that the y—axjgl_is inil garithmic éfcﬂple. He,ré we run the F4 program first
and record the memory usage.v‘We ‘then try to runtlhf:: 'ﬂ;iodiﬁed scheme with 1/3, 1/4, and
1/10 memory. The reason why we use tﬂese ratioé- 1/3'and 1/4 is that we want to see that
how the program performs under different memory budgets. The reason for the ratio 1/10
is that we want to see how the program performs when the memory budget is extremely
low. Notice that for n = 6, instead of using 1/10-memory of F,, we use 1/5-memory of
F4, as the memory usage of F4 at n = 6 is too small to have the enough memory to run the
modified program.

From Table {.1] and Figure 4.2] we see how the programs performs in different n and
amounts of memory. In Figure we notice that the time complexity of F, algorithm is

again exponential, as the y-axis is in logarithmic scale, and so is the modified scheme. The
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Table 4.1: Running Time for m = n+2 (unit:s)

n 6 7 8 9 10 11 12 13

F4 0.01 0.10 0.57 3.29 16.14 7624 868.29 4567.00
size/3 | 0.05 0.14 0.62 338 2343 11476 1041.52 4956.00
size/4 | 0.01 0.10 0.57 3.19 2590 119.10 1031.48 5140.00

size/10 | 0.05 0.25 1.00 5.10 37.67 183.95 1334.67 7578.50

10000.00

1000.00

100.00

~—F4

9
@ 10.00

~#-size/3
size/4
1 15 —size/10

1.00

Il m |
Figure 4.2: Ti{n curyefor ‘m = n+2 (Umit:s)
: , : il "i TE '
two programs have the same time complexity.

In Table we also see that the runﬁing time ;)f 1/3-memory and 1/4-memory do not
differ very much, as their memory usages are also similar. However, when the memory is
extremely low, we see that the running time apparently becomes longer. It takes more than
2 times running time when n is small, and 1.5 times when n is larger.

In Figure 4.3 we use the time-memory product as the metric to see how the programs
trade off between time and memory. We calculate the time-memory product and compare
this value with that of F4 algorithm at every point. At n = 6, since the time is small (less
than one second), the ratio is large, and we got unusual value here. In most cases, if we use

1/3 memory, we will need to run 1.2 times longer. For 1/4 memory, we also need around
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Lo Time * Memory

1.60

140

1.20

100 - - > > - - - -

e ~+F4

Py 0.80 ~B-size/3
-

2 ——size/d
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==gize/10

0.00

,dt takes 2 times longer.
<
between n = 9 and n = 12.
=) I N
This is because we do not havefa g _<|l ontrol of the'si e'@fC ‘and this influences the free

o, o % N -."

memory we can use to check SP@lyl{om;’ctls How%ver it 1s"n0t obvious since the memory
o v

usage of F, in the case m = n + 2 is farge a‘nﬂigrbws very fast. When n is larger, the ratio

decreases again.

Notice that the metric function can vary. If the memory is more important to the user,

then it can be changed to, e.g., time - memory? or time - memory>.

42 m=1.5n

We will discuss the case m = 1.5n in this section. We compare the running time of Fy

algorithm from n = 8 to n = 15 with the modified scheme using 1/3, 1/4 and 1/10
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memory.

Table 4.2: Running Time for m = 1.5n (unit:s)
n 8 9 10 11 12 13 14 15

Fy4 0.14 086 195 881 2195 9257 21133 2805.24
size/3 | 0.14 1.05 243 11.71 31.38 123.24 395.33 3010.90
size/4 | 0.10 1.00 252 11.71 32.62 18243 647.62 339295

size/10 | 0.19 0.86 4.05 1948 60.14 358.62 976.48 4703.29

10000 Time

1000

100
~—F4

~-size/3
size/4
~*size/10

sec

Figure 4.4: Time curve for m =1.5n (unit:s)

From Table §.2] and Figure §.4] we see the curves of F, and the modified scheme in

overdetermined systems. Obviously, the time complexity is exponential, and the exponents

are similar in both schemes.

In Table {.1] we also see that the running time of 1/3-memory and 1/4-memory cases

do not differ very much except when n = 14. When the memory usage is 1/10, it takes

longer executing time than m = n + 2; when n is small, it takes 2 to 3 times longer, and

when n is larger, it take 1.5 to 2 times longer.
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Notice that when n = 14, the ratio of running time is larger. This is because in overde-
termined systems, it takes more memory to record G and P, and thus the memory for

storing the matrix decreases. However, when n is larger it decreased again.

Time * Memory

0.80

0.60 ~*F4
~W-size/3
size/4
0.40 >
/—'/./—.»\ \ —%size/10

0.20

sec* int

0.00

.;_'II
"

Figure 4.5 Tim Meﬁﬂory ¢ rve for m=1.5n
Y P I

>\ \)

Figure {4.5] shows the time-mefﬁéfy product r‘a_tfio.' "We see that there is a larger peak at

n = 14, as the ratio of time here is larger. And the ratio decreases again. The ratio of the
1/3-memory case is around 0.4, 1/4-memory, around 0.3, and 1/10, around 0.2. This is
the same as m = n + 2. That is, in overdetermined systems of m = 1.5n, to use 1/10

memory, we will get 2 times longer, too.

4.3 m=2n

We will discuss the case m = 2n in this section. These are also overdetermined systems.

We have more information here in input data than m = n + 2 and m = 1.5n. We compare
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the running time of F, algorithm from n = 10 to n = 18 with that of the modified scheme
using 1/3, 1/4 and 1/8 memory. The reason why we do not use 1/10 memory is that it is

simply too small. It cannot even record all information of GG and P.

Table 4.3: Running Time for m = 2n (unit:s)

n 10 11 12 13 14 15 16 17 18

F4 0.57 1.38 3.57 7.67 18.10 42.05 163.00 406.10 1707.86
size/3 | 0.57 133 343 724 21.81 75.10 41595 96543 1906.29

size/4 | 0.52 124 3.10 7.00 4048 108.76 459.00 943.05 1919.38

size/8 | 0.43 1.19 5.19 _18.67_.-69.86 =223.67 569.95 1059.05 3120.95

10000 Time
1000

100
~—F4

sec

~B-size/3
size/4
“-size/8

Figure 4.6: Time curve for m = 2n (unit:s)

From Table d.3|and Figure 4.6 we see the curves of F4 and modified scheme in overde-
termined systems for m = 2n. The time complexity is exponential, and the exponents are
also similar.

There is also a peak in Figure and this peak is larger than that in m = n + 2 and

m = 1.5n. However, when n becomes larger, it decreases again. And the ratio of 1/3
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Figure shows the total memory usage of F, algorithm in the cases m = n + 2,
m = 1.5n, and m = 2n. We see that in each of these cases, the space complexity of
F, algorithm is all exponential. However, when there is more information in Input F', Fy4
needs less memory. Solving overdetermined systems m = 2n needs less memory and has
a smaller exponent in the exponential time complexity.

Since it use less memory in m = 1.5n and m = 2n, there is fewer memory stress,
and less space to reduce the memory. The modified scheme does not work as well as it
does in m = n + 2, since there are obvious peak. Nevertheless, it still has a small ratio of

time*memory than F4 algorithm.

——mene2
—8—-m=15n

m=2n

Figure 4.9: Time * Memory curve for each case for 1/10 and 1/8 memory

In our implementation, we focus on the matrix size and do not have a better control
over the size of GG as we have for matrix. But we do have an efficient way in control matrix

size.
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Chapter 5

Conclusion

We mitigate the problem of memory.usage explosion.in the F4 algorithm in this thesis. In
Chapter [3| we can see that by modifyifg 1) SeléctPair function, (2) Reduction step of the
algorithm and (3) adding the:ReduceG fun;::t;_i?“;n;intq the algorithm, the modified scheme can
run in memory limitation asleng as it‘!‘isi grea{g,e_‘r thanithe least fiecéssary memory (size of G
plus size of P). Moreover, the-runnir‘:lg. speed. of tllie‘ modified scheme is not unendurable,
which is supported by experiment result.as shown'in Chapter

The modified scheme in this thesis is a practical solution to add some memory con-
sumption control mechanisms to the F4 algorithm. The modified scheme now can fit in
most of memory limitation. Users now may do a time-memory trade-off based on their
demand and the hardware support they have.

In the modified scheme, not only the checking of SPolynomials in one Reduction loop
decreases, the check steps and the transformation between matrix and polynomial forms

also increase. Due to this overhead, the modified scheme is not as fast as the original F4

algorithm when there is enough memory. However, when the memory is not sufficient, the
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modified scheme works better than the original F4 algorithm. The running time of original
F4 algorithm is too long that to be practical under limited memory. On the other hand, the
modified F4 scheme can be executed under 1/10 memory and have only 2 times running
time. This achieves our goal in this thesis — let F4 can be executed on different hardware
and still efficient.

Our scheme in this thesis is not perfect. Indeed, the scheme shown here is only a
concept of the basic structure. There is room for improvement to make the program run
faster. Users can optimize many parts of the program to improve the efficiency. For ex-
ample, users may optimize the transformation between polynomials and matrices since the
operation would be executed many. times:

Users may also like to optimize the ReduceG functions which is not in the original F4

algorithm. Indeed, we do not have anfoptimized operation of reducing G in this thesis.
=

™|

Users can change every step in ReduceG aé.ﬂéng és Gr4is minimized and does not change
the head terms in G. This is an_imporltafnt stéI:)- of the modified scheme. If we can optimize
it, then it would give a great improvemént on the efﬁciéncy of the modified scheme.

In the Reduction step of the modified F4.scheme, we can see that the size of the matrix
will become smaller and smaller. Though we do not use this free space in the scheme in
this thesis, users can try to use this extra memory to enhance the performance, like trying
to check the divisibility of monomials next to head terms, which has the highest probability
to become head terms of new remainders. Efficient use of this memory would help the
performance a lot.

There are also some applications of the modified scheme that can be done in the future.
Having the advantage of less memory consumption, the modified scheme can be ported

into computation systems with limited memory like FPGA. We even can port the program
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into a parallel or distributed system that has only very little resource. For example, we can
do the design — select some pairs and assign the Reduction step to a node, which only
needs a small amount of computation resource, and passes the set of new remainders R to

the main program.
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