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ABSTRACT

This dissertation proposes a new technique of adaptive feedforward control
(AFC) that achieves periodic tracking and/or periodic disturbance rejection. The
key difference compared with conventional AFC is a new re-parameterization re-
gression form employed in adaptive mechanism. This new control structure is a
combination of the disturbance-observer-like (DOB-like) structure and the distur-
bance identifier, where the DOB-like output generates a periodic disturbance which
is filtered by the plant model, and the disturbance identifier is to identify the un-
known parameter of the filtered disturbance. Consequently, the stabilizability prob-
lem is no longer subject to the plant structure. Utilizing the re-parameterization
technique, the dissertation further proposes-a gencral form of AFC control using
repetitive control. 7

The proposed new cohtrol has?’everal a’d’vantageé over previous designs. First,
its adaptation gain can be arbltrarllyﬁlﬁsen! Wlthout upsetting the system stabil-

applied to minimum phase as well as non—mlln{lmum phase systems without using

ity. Second, through re- parametwlzafrf" process the adaptive algorithm can be
any approximations. Third; it 1s Shpwn that the désired AFC control is independent
of where the disturbance enters: thersﬁystem. ,]_F‘ourfh the proposed control is proved
to be robust with respect to systerﬂ uncertainties. Finally and most importantly,
the equivalent interpretation between the disturbance observer based control and
the new AFC control provides an opportunity to apply knowledge to each other
field. Therefore, AFC’s adaptation gain can be efficiently chosen by any linear
control methods or adaptive algorithms, such as eigenvalue assignment, Kalman

filter, least-squares algorithm and so on. Besides, the control technique provides

engineers with very friendly and intuitive design on the control performance.

keywords : repetitive control; adaptive feedforward cancellation; disturbance ob-
server; periodic disturbance rejection; internal model control; periodic tracking

control.
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Chapter 1

Introduction

1.1 Motivation

In many industrial applications, thz:contrgl:s-ystem is“required to track or reject

periodic exogenous signals (desired:' rg@i@e’ output ors disturbance). Examples
Fi |

include periodic motion of robot Iltl nipﬁgtors [1], repeatable runout in disk drive

- T

2], torque ripples in harmoni_qdriv!e§ [?)],-pe:-riod:icg1 force diéturbance in metal cutting,
and so on. Clearly, these disturbances‘degrade lth(-};'s.ystem performance. Hence, the
basic requirements in control systerﬁé. afe th%t they have the ability to regulate
the controlled variables to reference commands without a steady-state error against
unknown and un-measurable disturbance inputs. Such control that can successfully
drive the system to track or reject periodic signals is called the repetitive control.
Besides, it may be desirable to estimate the unknown periodic disturbances acting
on the system. In some cases, the purpose of disturbance estimation is to monitor
the performance of systems for decision making. For examples, in the manufacturing
processing, one may wish to estimate the cutting torque in drilling process [4] and

the cutting force in CNC machine centers [5].

Although there are several approaches to cancel periodic disturbance, these

approaches may cause original closed-loop system stability affected or these designs
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are excessive complexity. Therefore one of the objectives of the dissertation is to
implement a simple plug-in type repetitive controller to cancel exogenous periodic
signal. The other objective is to construct an adaptive disturbance/state observer
to monitor the system performance for decision making. The last purpose is to

construct a robust update law for repetitive control.

1.2 Literature Survey

Since many control systems are often subject to the disturbance, one of the fun-
damental research topics in control theory 15 to study the problem of disturbance
rejection. The disturbances' are mosfly"divi(i-'éa inte_un=deterministic and determin-
istic disturbance. In the'ease of ulisdeterministic d;éfurl?@nce, the robust disturbance
attenuation control, such as H o coﬁ?fol [6] arid variablée-structure control [7] which
are high-gain controllers, has been mP;/es‘l@:éd by many researchers. Although those
are common methods for_the 1mp1lo ed ﬂ@rformance of Control systems, such high-
gain controllers may not be apphle in ;_mecbsarmcal system due to the reason of
mechanical resonance. In Contrast from the 708 to the present, there have been
many researchers who proposed various approaches to realize effective disturbance
suppression without using high gains [§]-[13]. One of these methods employs that
disturbance is estimated using an observer and cancelled out, and then the control
design is reduced to nominal feedback control which generates just minimal control

based on disturbance free assumption. Thus the disturbance rejection problem is

transformed to the disturbance estimation design.

A recent survey paper on the disturbance estimation for linear systems can be
found in [14], and extension to the disturbance estimation for nonlinear systems
can be found in [15] and [16]. One approach for the disturbance estimation is
the use of disturbance observer [17, 18], which does not need the dynamic model

of the unknown disturbance. The disturbance observer estimates the equivalent
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disturbance which is the difference between the actual plant output and the output
of the nominal model. The estimate is then inversely added at the input of the plant,
so as to compensate for the disturbance effect on the output. Despite the simple
structure, disturbance observer based (DOB) control as an effective add-on controller
[19] is successful in enhancing disturbance attenuation capability. However, this
approach relies on inverse the system dynamics, and hence can not be applied to non-
minimum-phase systems (systems with unstable zeros). Even for minimum-phase
systems, the obtained disturbance estimate may not asymptotically converge to true
disturbance due to a Q-filter in the estimation process. Besides, in some systems,
such as disk drive servo, the rotational speed is usually required as increasingly
as possible for improving data transfey rate-z"_so does-the frequency of the periodic
disturbance, which leads o ahigh.leop gain in the; r’crack—following servo. However,

such a design may not be fea&ble smce the increaseiof: the Q-filter cut-off frequency

may cause an undesirable ingrease ofs th&cqhﬁrpi bandw1dth which is established by
L _.;--
3 e l

n |l

The second approach for dlstlu batice estlhiatlon apphed to the unknown dis-

a feedback controller. I

turbance is generated by a known d§namlc mode‘I In this dissertation one considers
the problem of rejecting per10d1c dlsturbances; whose magnitude and phase are un-
known but frequency is known. In this case, the periodic disturbance model is
augmented with the system model to form an expanded system. A Luenberger ob-
server is then constructed to estimate not only the system state, but also the state
of disturbance model. The disturbance estimated method was called unknown in-
put disturbance observer [20] or Kalman disturbance observer [21]. Consequently,
by using the reconstructed disturbance injecting into the plant input, disturbance
rejection is accomplished. Note that, since the disturbance observer constructed by
augmented system is only used to estimate the actual disturbance acting on the sys-
tem, it does not control the plant. Therefore, for achieving the closed-loop system

stability and performance, a normal feedback controller is still required.
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In addition to the above methods using the disturbance estimation, repetitive
control (RC) is a specialized control strategy designed for tracking a specific periodic
command or rejecting a periodic disturbance. A recent survey paper on repetitive
control designs can be found in [22] and [23]. These designs are roughly classified
as being either internal model base or external model base. The internal model
based repetitive control design is originally proposed in [24], which is based on the
internal modelling principle [25]. In [24], a time delay internal model is placed inside
the nominal stable feedback loop to guarantee asymptotic tracking or rejecting of
the periodic signal. However, this approach may alter original closed-loop system
stability and performance. Hence, it_is often realized in a plug-in manner [22, 26].
The advantages of the internal model based -.F_epetitive control are that convergence
is very rapid and that the controller'is linear;, ma,kmg analysis easy. However, the
internal model introduces an infinite Vnumber_,'of open"-_]Qop poles on the stability
boundary; making stabilization of Lbh%vléfl:s_a]lllsystem éifﬁcult [27].  As a result,
Hara et al. in [28] proposed & low—ip s"ﬁit?é;r;inc}uded in the repetitive controller to
ensure closed-loop stability, that i CE ﬁlter Holv&%ever it‘makes exact internal model
lost and the system performa,nce at Ethe high fr@;quency harmonics be sacrificed [29].
Another disadvantage of this approach 1s that. robustness to noise and un-modelled
dynamics is impaired by the time'delay internal model [22]. Moon et al. in [30]
proposed another repetitive controller design method on Q-filter, which is based on
Nyquist plot technique, for the system with un-model dynamics. However, even
under the ideal case, it can not reject the periodic disturbances asymptotically.

When the disturbance frequencies are unknown, adaptive internal model is often

used for disturbance rejection [31]-[34].

The other approach for repetitive control designs is the basis function ap-
proach, or often called adaptive feedforward cancellation (AFC) control, being a
main method in the external model based repetitive control design. With this ap-

proach, the periodic exogenous signal is modelled as a linear combination of finite or
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infinite basis functions with unknown coefficients [22] [35]. An adaptive algorithm
is proposed to estimate these unknown coefficients, and a feedforward control that
cancels the disturbance efforts is then constructed [36][37]. The adaptive approach
may be superior to the disturbance model based approach when the frequency can
not be obtained but the angle can be measured by the sensor, or injected signal need
to be disconnected temporarily. However, stability of the adaptive system is ensured
only if the system is SPR (strictly positive real). When the system is not SPR, the
adaptation gain must be constrained to be small in order to maintain stability. The
equivalence between the AFC and the internal model based approach is established
in [38]. A modified adaptive algorithm with an extra phase advance is proposed in
[38][39] to expedite the algorithm’s convergerice: In'{40], Ariyur and Krstié¢ start with
the sensitivity method but arrive-atsthe same échemé. However, the adaptation gain
is still constrained by the stabilify requirement. In 3], ardifferent adaptive algorithm
is proposed, whose adaptation gain (f@‘ii%fi%ﬁb}tfarﬂy ch(;éen without disturbing the
system stability. However, this adfix tiﬁp’;{fg&&ﬂt}}m is'based en inversion of the sys-
tem transfer function; hente, theyl can bejfappllgéid to minimum-phase systems only.
When the system is in a noﬁ;mirlliliﬂum phase!, rlan7app:‘roximaution algorithm based
on the zero—phase—error—tracking aesign may be us'-é:d [22]. The other AFC approach
called frequency adaptive control teéhnique (FACT), which utilizes a collection of
frequency sampling filters (FSF) to obtain the magnitude of individual frequency
components of the truncated periodic signal and uses these individual components
to do adaptive update again, is proposed in [2]. The feature of FACT design is able
to cancel any unwanted harmonic signals without influencing the uncompensated
ones but needs more computational cost and carefully chooses adaptation gain for

the system stability.

The stability conditions for the general AFC controller design is analyzed in [41]
depending on the available adaptation method used in AFC design. Bayard uses

LTT representations of adaptive systems with sinusoidal regressors to do stability
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analysis. Under the plant model known exactly, he proved that adaptive algorithm
using augmented error signal is completely phase-stabilized. In [42], Guo further
shows that those AFC control algorithms on the time-varying frequency case are
equivalent to linear time-varying compensators which is implemented by the IMP
on the state space. It provides an opportunity to apply knowledge obtained from

either adaptive control or linear control to the other field.

1.3 Overview of the Dissertation

Even though the repetitive control approacl.ll'is very.complete already, but AFC is
preferred over other schemes bBecause fhe A]!?C cox}troller can easily freeze the pa-
rameter update when the outputsignal is not avaﬂabl’é_ during certain periods of
time, and can be driven by the mea;sﬁ@g:lir’eqUency, méking the control response
more robust to variation in frequinrbyf%llﬁ'ﬁler%nore, the adaptive implementation
can adopt angular measurements di ectljzrftri-iov}le}/er, under non-minimum phase sys-
tem, arbitrary update gain and comt%rollable Corllx;brgencé rate, the current researches
in AFC control have not obtaihéd effective s_olugi:bn yet. In view of the tradeoff
between system stability and disturbz;nce rejection in the previous controller design,
the goal of this dissertation is to propose a new AFC design technique to cancel
exogenous periodic signal without altering the closed-loop stability. The key dif-
ference compared with conventional AFC is a new linear regression form employed
in adaptive mechanism. This new control structure is similar to a typical DOB
control, but the proposed AFC control uses a disturbance identifier instead of the
low-pass filter Q(s) in DOB control and does not need inverse plant model to obtain
disturbance estimate. Consequently, the stabilizability problem is no longer subject
to the plant structure. The proposed AFC control is just one of the special cases
of [41] which called augmented error algorithm. Although, both control structures

are the same, the proposed AFC control relies on an adaptive identifier through
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re-parameterization process to prove that AFC control system is nominally stable.
Utilizing the re-parameterization technique, a general form of AFC control using

repetitive control is proposed in advance.

The resultant new control has several advantages over previous designs. First,
since the adaptation gain of the proposed AFC is independent of the state feedback
gain, under exactly known plant model it can be arbitrarily chosen without affecting
the system stability. It means that the proposed AFC adds into the nominal closed-
loop system without affecting the performance. Second, through re-parameterization
process, the adaptive algorithm can be applied to minimum phase as well as non-
minimum phase systems without using any approximations. Third, the new design
is only one estimation algorithm While;:prevrc;tus indirect schemes need two estima-
tion algorithms [2]. Fourth this disertation shows trlat the desired adaptive control
remains the same no matter ‘where the, dlsturbance enters the system. This justifies
many previous AFC designs in the l]!tergnle in which the disturbance is ”assumed”
to come into the system at the 1npi1 ponqj even ‘though in real situations it may not
be the case. Finally, for promotlngi tL at the rep:etltlve Control performance has more
design freedom on adaptive update lgaw we further propose DOB-AFC that is a gen-
eral AFC form. The 1nterpretat10n of AFC ifiiterms of disturbance observer design
can be implemented by any linear contrel methods, such as eigenvalue assignment,
Kalman filter, least-squares algorithm and so on. Therefore, the control technique
provides engineers with very friendly and intuitive design. Certainly, when the sys-

tem model can not be exactly obtained, the control structure using LMI method

will provide more robust performance.

A series of studies on disturbance rejection methods of control systems is orga-
nized as follows. Chapter 2 reviews internal model based repetitive control, which
includes dynamics model of multiple frequencies disturbance and time-delay model.
Chapter 3 firstly reviews the adaptive algorithm, formulates the problem, constructs

a linear regression form through re-parameterization process, and introduces con-
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ventional adaptive feedforward control. And then one proposes the new AFC design
and the adaptive disturbance estimation. In Chapter 4, one firstly reviews distur-
bance observer based control, which includes disturbance observer and unknown
input disturbance observer for un-deterministic disturbance and deterministic dis-
turbance respectively. And then, based on the linear regression form in Chapter
3, we propose a new disturbance observer design, which is different from previous
designed, and makes use of the equivalence between the new AFC and disturbance
observer to design a general form of AFC, called DOB-AFC. Chapter 5 gives the

concluding remarks.
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Chapter 2

Review of Internal Model Based
Repetitive Control

In many industrial applications [48[5], the comtrol system is required to track or
reject exogenous periodic. signals. When thessystenis subjected to periodic signal
input, it is well known that| the repétj{kﬂ_i"ye: eontroller lcan work well. The conven-
tional RC is often regarded as'a amplek?fxr;un‘g control because the control input is
calculated using the result of precéding p“éfiods‘.to improve the current performance.
One closely related study of i"é:p,etrijcive coitzol i itﬁrativé learning control (ILC) [44]
which is achieved by iteration of the control aetion within finite duration. The differ-
ence between RC and ILC is the setting of the initial conditions for each trial. In the
ILC, the same initial condition is assumed in every trial. Hence, the iterative action
is discrete and it is enough to assure not only the stability but the convergence of the
error. In the repetitive control, the repetitive process is continuously because the
initial conditions are set to the final conditions of the previous trial. The difference

in initial-condition resetting leads to different analysis techniques and results [45].

In this chapter, an internal model based repetitive control which is a typical
one will be introduced. In Section 2.1, one firstly gives a brief review of a periodic
signal for easy description on the latter sections and chapters. Section 2.2 reviews

an internal model principle which states that a generating system model of the ex-
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ogenous signal must be included in the feedback system in order to achieve perfect
tracking at the steady state. Based on this internal model principle, the time de-
lay internal model based repetitive control which includes all frequency modes of
periodic signal in the closed-loop system is then introduced in Section 2.3. Finally,
for keeping original feedback control performance and stability, a plug-in time delay

repetitive control was presented In Section 2.4.

2.1 Periodic Signal

The objective of this dissertation is to.eenstruct a control that can reject or track
an unknown periodic signal. Therefore, in th,'é_ thesis, the periodic signal is assumed

to satisfy the following assumptions.

Assumption A2.1. d(t)isa perlodlc s-1gna1 (m the the51s it is taken as disturbance)

that is d(t) = d(t + T") for some knomnﬁ‘ed'I

l
Assumption A2.2. d(t)-is contuTu us glfd hasia piecewise continuous derivative.
|

P

The periodic signal had s Fodrt’er series rep?res,entafion

d(t )—QOC—FZ@ZCCOS w;t +Z€,Ssm wit), (2.1)

=1 =1

where w; = i - 2m/T is the harmonic frequency in which 27/7T is the fundamental
frequency, and 6y, 0;. and 6; ; are constant coefficients. In practical applications,

one uses a (2N + 1)-term finite series approximation for the periodic signal,

N N
dn(t) = 0o+ > 0;ccos(wit) + > 0; gsin(wit) = ¢ (t)0g, (2.2)
i=1 i=1
where the regressor ¢(t) is a bounded vector
o(t) = [ 1 cos(wit) sin(wit) ... cos(wyt) sin(wyt) }T € RPNV (2.3)

and 6, contains unknown parameters

0= O Oc Ore Osc Do - One Oy. | € BVFL (2.4)
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The theorem below suggests that under certain conditions, the finite series approxi-

mation is a ”good” approximation of the periodic signal as long as NV is large enough.

Theorem 2.1 [43] : Under Assumption A2.2; the finite series approximation dy (¢)
in (2.2) converges uniformly to the true signal d(t) in (2.1) as N approaches infinity.

Because of Theorem 2.1, this dissertation will make no difference between dy (t)
and d(t) as long as N is sufficiently large. In fact, the low-pass properties of physical
systems, at most a handful of harmonics needs to be considered in general. Hence,

in the remainder of this thesis, one will write

d(t) =" ()0a. (2.5)

2.2 Internal ModelPrinciple

After reviewing the property of ther":f)"(_;;ﬂpdif% gi‘gnal, one goes back to the internal
model principle (IMP) design. Thel -lgﬁif"ffi;'iﬂihially proposed by Francis and Won-
ham [25]. It means that the Qontr(}?l‘ d eutput tfgaeks a piass of reference commands
without a steady-state error 'ﬁlfithe %;énerator for’1 t‘!lrl__e,refe'i"ences is included in the sta-
ble closed-loop system. Figure.2f1 shows the basic¢ control structure of IMP, where
P(s) is a linear time-invariant plant, €(s) is the controller, y(t) is a controlled out-
put, e(t) is a tracking error, and r(t) is a periodic reference signal which is expressed

as the following form
r(t) = 01 cos(wit) + 6 s sin(wit), (2.6)

in which w; is a known frequency and ¢, . and 6; ; are unknown constant coefficients.
The compensator including an internal model 1/(s*+w?) is to provide a closed-loop
transmission zero to cancel unstable poles of the periodic input so that it achieves
perfect tracking. The design problem is to choose the remaining transfer function
C'(s) so that the closed-loop transfer function is stable and has desire input-output

properties.
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 Internal Model :

A 4
A 4

Y
<

C(s) P(s)

Figure 2.1: IMP structure for the periodic reference with single frequency

o Cl(s) U,

s° + !
(5] u
r —o(O— > P(s) >y

_ A :

[l C(s) | U
"+
'
=

L

Figure 2.2: IMP structure for the perﬂ;),dic referénce with multiple frequencies
= :

|
1

The advantages of this type'of- controller aré that it is linear, making analysis
easier, and that convergence is‘very rapid. When the periodic exogenous signals
is the sum of two or more sinusoids, the method is easily extended to the cases
as shown in Figure 2.2. However, the stability problem becomes more and more

difficult as poles are added on the jw-axis.

2.3 Time Delay Repetitive Control

In this section, our objective is based on the IMP to obtain a repetitive control with
minimal system scheme that generates all periodic signals of period T'. Based on the
reason, Inoue et al. [24] originally employed a time delay system as shown in Figure

2.3 to serve as a periodic signal generator. It is readily seen that the delay element
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stores the function of the past one period and the system has infinitely many poles
on the imaginary axis at jkw, where w = 27/T. It is therefore expected from the
IMP that the asymptotic tracking property for exogenous periodic signals may be

into the closed-loop system. A

achieved by implementing the model 1/(1 — e~57)

controller including this model is said to be a repetitive controller and a system with
such a controller is called a repetitive control system [46] as shown in Figure 2.4. In
Figure 2.4, the feedback controller C(s) is designed to stabilize the plant and has

desire input-output properties.

+ _
.() > esT
+

Figure2:3: Periodic signal.generator

\ 4

—sT ‘: ji | C(S) > P(S) >y

D
-

Figure 2.4: Tirtte delay repetitive‘ control system

Therefore, the transfer function from r to e is

1— €_ST

Werls) = T (0 = P(s)0(s)y e

(2.7)

Consequently, s = j2kn /T becomes the transmission zeros of W,,.(s). Therefore, the
system asymptotically tracks the periodic signal of a fixed period T if the closed-
loop system is stable. Let us start with some simple stability analysis. An easy loop
transformation converts Figure 2.4 to Figure 2.5 [29]. Using the small gain theorem,

the converted system is Lo input/output stable if

11— P(s)C(5)]los < 1. (2.8)
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(1-e")rity—= 20 1-P(s)C(s)
+

—sT

Figure 2.5: A system equivalent to Figure 2.4

Although the condition is only a sufficient condition, it is actually very close to

ST introduces a large amount of phase shift especially in

necessity since the delay e~
the high frequency range. It is clearly seen that the above condition can never be
satisfied for a strictly proper P(s)C(s).,This restriction comes from the apparently
unrealistic over specification.of tracking in a very high frequency band. One way
of handling this is to introduce a low-pass filter in_front of the delay term, thereby
replacing the delay elemeiif e7*7 by, Q( Je ST for sOTme, strictly proper stable ra-
tional filter Q(s) [28].  This, named" ﬂmte dlmenswnal repetitive control, relaxes
the tracking requirement in the hl%h freﬁ" uency range, thereby relaxing the stability
condition. The modified repetltlveT ontro'l system is shown in Figure 2.6. Then the

stability condition becomes ; 1

1Q( @ P(5)C(5)) g 1. (2.9)

Clearly, the high frequency band condition is relaxed here compared with (2.8), and
the above condition can be satisfied with strictly proper P(s)C(s). Although the
stability robustness was improved, it was paid by the degradation of the steady-state

tracking performance.

Q(s)e™ Cis) = P() >y

A

Figure 2.6: Modified time delay repetitive control system
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The advantages of the time delay RC are that it is linear, making analysis
easier, and that convergence is very rapid. The other advantage is that the repetitive
compensator for any periodic signals is easily implemented by including the delay
element. However, it alters the loop gain of the system and is not possible for
selective harmonic cancellation. Besides, for the purpose of ensuring closed-loop
stability, additional filtering is usually added to such schemes, but it sacrifices high

frequency performance.

2.4 Plug-in Time Delay Repetitive Control

Normally, repetitive controller is realized ina plug-in.manner, as shown in Figure
2.7. In Figure 2.7, the nominal centroller is usual’lyz designed to stabilize the plant
and reject a disturbance beihg across-abroad-frequency, spectrum, and the repetitive

controller is used to compensate peyfétf@ signals which have a known fundamental

frequency. ! ' ,1
............... |
Repetitive |
Controller
........................... AP
r— € Controller > F;,I?St >y
- C(s)

Figure 2.7: Structure of plug-in repetitive control system

In this section, our purpose is to make a description of a plug-in time delay
repetitive controller design. Based on the stability analysis on the time delay repeti-
tive control which has been introduced in the previous section, we know that perfect
tracking for the periodic signal including higher order harmonic signal is the unre-

alistic. Therefore, for making stability condition be relaxed, a Q filter scheme must
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be also considered in the plug-in manner. Under this way, the RC could be added
directly into the existing closed-loop system since it did not influence internal sta-
bility and system performance very much. Such plug-in manner was presented as

shown in Figure 2.8.

Q(s)e™™

C(s) » P(s) >y

Figure 2.8: Plug-in-time delayrepetitive control system

According to the Figufe 2.8 thﬁe:' t-ransfer’ function'from r to e is
Y= o' )

’ ;-@.(ﬁ) 164
b f Lo (2.10)

i
S 55w

W.,(s)
Define a sensitivity functlon as
(2.11)

where S(s) is a stable sensitivity function since the nominal closed-loop system is

stable. Then (2.10) becomes as

(1-Q(s)e=T) S(s)
1—S(s)Q(s)e—sT

Note that the above equation shows the transmission zeros of W,,(s) are no longer

Wer‘(s) = (212)

s = j2kxw /T, but in the lower frequency range, they are still very approximate.
It means that one must sacrifice the system performance at the high frequency

harmonics in order to ensure closed-loop stability.

Let us start with some simple stability analysis. By an appropriate operating,

Figure 2.8 can also be expressed equivalently as Figure 2.9. Therefore it exists a
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(1-Q(s)e ™ )s(s)r(t)

e(t)

+
+

S(s)Q(s)

—-sT

A

Figure 2.9: A system equivalent to Figure 2.8

stabilizing repetitive control when the following condition is satisfied,

1Q(s)S

($)]|oo < 1.

(2.13)

Clearly, when (2.13) is satisfied, thf%i]@repetltlve control system is stable.

Compared with time delay a@ﬂétlmwgcon@ %’%m advantage of the design

method is that it employ pl‘fﬁ’ nging nominal closed-loop

oy
system stability. Al ol < N
Y y ‘s%f f. "‘.5.':'" 9:{
s 5}
ol i Ty
% - L ?
-:_T:l )
- B
o o
N A/
K, I J&0
'J,I__e'f;-i'_-\.l- __.r_ ™ 1# .@.






Chapter 3

AFC Control

As everyone knows, an internal model-based repetitive control may cause large phase
shift to make original controlled systerﬁ charlljge int’o narrow bandwidth, and hence
makes the original System have poot t tranS.lent response and be stabilized difficultly.
An external model de81gn where th,e— modél s adJusted adaptively to match the
actual external signal and placed o ts*d:f‘ f-the basi¢ feedback loop, was then set
up to take care of the problems. ong 1 %ﬁie eX‘ternal model based repetitive control
designs, adaptive feedforwazd:con rFl (AFC) mi %1 maifimethod. In AFC design, it
assumes that the unknown disf‘u}banee consists of the sum of sinusoids of known
frequencies as the equation (2.1): TherFourier eoefﬁcients of the periodic disturbance
with known frequency will be estimated adaptively by an adaptive algorithm in real-
time. Since the output signal of repetitive controller is as being injected from outside
of the feedback loop, it is more like feedforward and therefore is expected not to
alter original closed-loop system stability and performance very much. This also
implies that both repetitive controller and feedback controller designs are mutually

independent.

Since synthesis of conventional repetitive control systems involves trade-off be-
tween robust stability and system performances, an optimized design method which

can address the problem systematically is difficult to obtain. As a result, the goal

19
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of this chapter is to find an ideal control that achieves asymptotic tracking of the
periodic reference r(t) regardless of the periodic disturbance d(t). Under this con-
sideration, a modified AFC control will be presented. The key difference compared
with conventional AFC is a new re-parameterization regression form employed in
adaptive mechanism. Consequently, the stabilizability problem is no longer subject

to the plant structure.

In the beginning of this chapter, one first gives a brief review of adaptive al-
gorithm in order to describe it easily at the latter sections. In Section 3.2, the
problem formulation in which we study will be discussed. In Section 3.3, a new
re-parameterization regression form is proposed:to employ in adaptive mechanism.
Section 3.4 reviews conventional adap’si-ve feeé:forward control (AFC). After review-
ing conventional AFC, a new AFC design, which Ts based on the linear regression
form of Section 3.3, is proposed toy bhe mdependent of feedback control design. Fur-
thermore, regarding that open-loop sy:%gl_ _;s'sﬁable whether or not, the proposed
control design takes different kmﬁ of *ratejglbs i Section 3.5 and Section 3.6,
respectively. The robustness of 1' proposed AFC Wlth respect to un-modelled
dynamics is studied in Sectlon 3 7hiF‘1nally, Seotlon 3. 8 introduces an adaptive dis-

turbance estimation algorithm for sittiations When it is desirable to track or monitor

the unknown disturbance.

Note: In Chapter 3 and 4, notations in the time domain and frequency domain
may be mixed in one expression; for example, y(t) = W (s)u(t), where W (s) is the

transfer function from wu(t) to y(t).
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3.1 Review of Adaptive Algorithm

The adaptive algorithm is usually used in situations where one wishes to estimate
an unknown constant vector § € RP, which characterizes either a signal or a dy-
namic system. The first step of the estimation process is to obtain, through a

re-parameterization procedure, a linear regression form in 6,

w(t) = ¢ (1), (3.1)

where w(t) € R is an available signal, ¢(t) € RP is a known bounded regressor, and
6 € RP is the unknown constant veetor to be estimated. Let é(t) be an estimate
of 6. Based on the above linear regréssion'.,fprm, there are two different kinds of
identifier structures. One is the gradient algorithﬁi the other is the least-squares

(LS) algorithm. The gradjent algont—hm suggests the followmg update law for 49( ),

oo | wz%-:-as (3.2)
h |l

with a positive adaptation galn by + and an arbitrary initial guess 0(0). Note that
1

the regressor ¢(t) in the hnear regrelssmn form (3 l) needs to be uniformly bounded

for the gradient algorithm (3.2). If one' denotes the éstimation error 0(t) = 0 —0(t),

the update law (3.2) results in a linear error dynamics
0(t) = =7 6(t)o" (1)0(1). (3:3)

Theorem 3.1 [47] : If the regressor vector ¢(t) is persistently exciting in the sense
that for some finite interval length ¢, the following matrix is positive definite for all

t >0,

/t ST ()dr > 0,

then the error dynamics (3.3) is exponentially stable, and (¢) in (3.2) converges to

0 exponentially.
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Based on the linear regression form (3.1), the LS algorithm suggests the fol-
lowing update law for (t),

0(t) = ~Q)6(t) (w(t) — 6701)) (3.4)
Q) = =y (=nQt) + Q)et)e" (HA)) , (3.5)

where the adaptation gain v > 0 is the design parameter which can be arbitrary
chosen, the matrix €2 € RP*P is called covariance matrix and acts in the update law
of 6 as a time-varying directional adaptation gain, and n > 0 being a forgetting
factor prevents that {2 becomes arbitrarily small in some directions. The initial
condition of the matrix Q must be £(0) > 0. From the textbook [47], one knows
that it has the result which{s similar to Théérem 31 that is, if the regressor ¢(t)

is persistently exciting, then the matrix Q(t) m8.5) is positive definite and 6(t) in

(3.4) converges to 6 exponéhtially. 7, ™
i L
fnﬁ e :!I,-i- '
= | |
= |

3.2 Problem FormullFtién |

x |
After reviewing the property of-adaptive algorithm, one considers a linear time

invariant (LTT) system subject to-an unkhown periodic disturbance:

#(t) = Ax(t) + Bult) + Gd(t), (3.6)
y(t) = Cx(t) + Jd(1),

where z(t) € R" is the state vector, u(t) € R is the control input, y(t) € R is the
system output, d(t) € R is an unknown periodic disturbance, and A € R™*" B €
R*"G € R*, C € R, and J € R are known constant matrices. Note that the
formulation of this thesis allows the disturbance d(t) to enter the system at any
place. The disturbance can enter the system at the input point (G = B and J = 0),
at the output point (G = 0 and J # 0) [37], or at any place in the system. One

contribution of this dissertation is that the proposed control law remains the same no
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matter where the disturbance comes into the system; in other words, the proposed

control law is independent of the matrices G and J.

Our objective in repetitive control design is to construct a control u(t) for
the system (3.6) that can drive the system output y(t) to asymptotically track a
periodic reference r(t) despite the existence of unknown periodic disturbance d(t).
The disturbance d(¢) and the reference r(t) are assumed to satisfy the following

assumptions.

Assumption A3.1. d(t) and r(t) are of the same period; that is, d(t) = d(t + T)

and r(t) = r(t + T) for some known period 7.

Assumption A3.1 is only for easiness of lfgresentation, the disturbance d(t) and
reference 7(t) are assumed to“havesthe same peri‘o:d'. The proposed control can be

easily modified to allow d(£) and r(t).to have different’ﬁgriods.
Y F.'.; :Ei_i? |
Assumption A3.2. d(t) and r(t) areﬁﬁh dontinuotis and have a piecewise con-
- l
l
m 1

_“sr 1 J
Since the periodic signals d(!ti and_r(t) ]Bé}tisfy Assumption A3.1 and A3.2,

tinuous derivative. I

the periodic disturbance thus has aLourier s:erie"s:“:krepresentation in (2.2), and the

periodic reference signal also has has a. finite series approximation
r(t) = ¢" ()6, 0, € R*N*, (3.7)

where the harmonic regressor ¢(t) was defined in (2.3), and 6, is the unknown

constant vector to be estimated.

3.3 Linear Regression Form

Since this thesis will adopt the AFC approach to deal with the repetitive control de-

sign problem, one thus needs transform the state space system (3.6) to the following
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d
F,(s)
r
+ -
u— R(s) — y + e
Figure 3.1: System
input-output description,
y(t) = Pi(s)uld)=Fa(s)d(t), (3.8)

o

where Pi(s) and Ps(s) are.all stable transfer functions.. The objective of repetitive
control design is to construct a gomtrol u(t) for tﬁé‘zsystem (3.8) that can drive the

system output y(t) to asymptotically track & periodic reference ().
Fal =g ’j| '
b

Thus, setting a tracKingerror| as <" | l

n ||

3 e(tj y(#= r(h) (3.9)
and substituting (3.8) into :(’;).-9_)‘,;-11: becomes ; II )
e(t) = Pl(s)u(tj sz }DQ(S);z(t) — (). (3.10)
Figure 3.1 shows the system block diagram. Re-arrange (3.10) into
e(t) — Pi(s)u(t) = Py(s)d(t) — r(t). (3.11)

It is important to note that on the right hand side of the above equation is still the
periodic signal as a result of the periodic signal d(t) passing into stable filter Px(s).

Therefore, we guess that it has the following representation
Py(s)d(t) — r(t) = Pi(s)dy(t), (3.12)

where d;(t) is a periodic signal with the period T". To prove the existence of such

di(t) in (3.12), one needs the following assumption.
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Assumption A3.3. P;(jwy) # 0 for k=0,1,..., N where wy = k- 27/T, T is the
period of both d(t) and r(t), and Pi(s) is the stable transfer function.

Remark 3.1 : Assumption A3.3 requires that the transfer function P;(s) has no
system zero at s = jwy. The reason is obvious: if Pj(s) has a system zero at
s = jwy, due to the zero gain of Pi(s) at s = jwy, the equivalent periodic signal
dy in (3.12) can not generate the k’th harmonic sinusoidal at the output point of
Py(s). This assumption can be waived if the disturbance enters the system at the
input point (Py(s) = Py(s)), and there is no tracking mission (r(t) = 0). However,
as long as there is a periodic tracking mission (r(t) # 0), or the disturbance enters
the system "not” at the input point,’ Assumption 3.3, which has been neglected by

most previous literature, isinecessary: - =3

Lemma 3.2 : Given stable transfer function Py(s)land B,(s), and periodic reference

r(t) in (3.7) and periodic Vdisrturbaﬁvc-:f () 111(2&5), if Aééhmption A3.3 holds, there

exists an equivalent disturbance d{(t) 5" ‘ i

.r[J. l i

T

dl!(’i =¢T(t)0;| :| 7 (3.13)

satisfying equation (3.12), withr¢(f)-€ R*V*' agiin (2.3), and § € R?*N*! some

constant vector.

Proof: Since the steady state output of a stable system P;(s) subject to a sinusoid
input is also a sinusoid but with different amplitude and phase, all subsequent
analysis will assume that the filter output has reached a steady-state condition.

Therefore, one has, for sufficiently large t,
Pi(j0)

[Pr(jwr)| cos(wit + £Pi(jwr))
|P1(jwr)| sin(wit + ZP1(jwr))

| P (jwn)| cos(wnt + LPy(jwn))
| [P(jwn)| sin(wnt + £P1(jwn)) |
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pO,c
P1.ccos(wit) — py s sin(wit)
D15 cos(wit) + p1 e sin(wyt)

PN cos(wnt) — pa,s sin(wnt)
| Pn,s cos(wnt) + pyesin(wnt) |

= Mo(t). (3.14)
where
Pre = |Pi(jwk)|cos(LPri(jwr)),
Prs = |Pi(jwe)|sin(ZP(jwr)),
Poe =, 41@@5@5’1{:;{_‘ (3.15)
ol ek .
& 2 EF R
and M, is a square matmg,5 )f'

Mlzdiag;vrg;z;;g_.;, ,1 ; D (3.16)

(3.17)

"f"f‘.] - -r w k=

From Assumption A3.3, one Concﬁ({é%—ﬂi@ﬁﬂf T’;é 0; hence, M, is invertible. Note

also that

Pi(s)lo" ()] = {P(s)[p(t)]}"
= [Mip(t)]"
= T (t)MT. (3.18)

Substituting (2.5) and (3.7) into (3.12), and using a relationship similar to (3.14)

on Py(s), equation (3.12) becomes

Py(s)[¢" (1)0d] — " ()0, = & (t)[My 0q — 0]
= Pi(s)[dv(8)]. (3.19)
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It is straightforward to check, using (3.14), that d1(t) = ¢* (¢)0 with § = M T[MI6,—

6, satisfies the above equation. This proved the existence of d;(¢). End of proof.

After identifying the existence of the equivalent periodic disturbance d;(t),
substituting (3.12) into (3.11), one has

e(t) — Pi(s)u(t) = Pi(s)dy(t). (3.20)

Therefore, based on the equivalence of system, the system block in Figure 3.1 can

be simplified to Figure 3.2. Note that equation is the same as those previous AFC

R

Flgure 3 %A sysisen;agq,lhw?lent to Flgure 3.1
b p

|
systems when there is ne_trackin 1ssf[xn (r(t) =0, e(t) = y(t)). The equation
1 .

- Ty

shows that an ideal contro}_;.:whi }I achieves gﬁympﬁoﬁgic tracking of the periodic
reference 7(t) regardless of the periodic dlsturbance: d(i), is u = —d,. Therefore, the
control design problem becomes the p%oblém of-estimating di(t). According to (3.13)
in Lemma 3.2, the estimation of the periodic disturbance d(t) is further reduced to
the estimation of the unknown constant vector € in (3.13). In order to estimate 6,
one needs a linear regression form in 6. This can be obtained by substituting (3.13)

into (3.20),

et) — Pa(s)u(t) = Pu(s)[¢" (t)0] = Pi(s)[¢" (t)]6. (3.21)

The above equation is in fact a linear regression form, but the regressor P;(s)o(t)
increases many computational cost and analysis difficulties. In order to have a
fine expression in the linear regression form (3.21), one further utilizes LTI system

property, that is, when the periodic signal, d;(t), enters into an LTI system, P (s),
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the system can be characterized by a superposition or sum of the zero-input response,

€(t), and the zero-state response, ¥7 (t)0. Therefore, (3.21) is rewritten as

e(t) — Pi(s)u(t) = ¥ (1)0 + €(t), (3.22)

where €(t) is the exponentially decaying term since the plant model is stable, and
the regressor ¢y (t) is equivalent to P;(s)¢(t) arriving in the steady state, that is
Y1 (t) = Pi(s)o(t)], .., and thus it has

Ui(t) = Mio(1), (3.23)
in which M, is the nonsingular ,blo‘ék.'matrfiliras deﬁned in (3.16). The regressor
1 (t) is bounded since both Mjrand gb( | B deﬁned in (3 16) and (2.3) respectively,
are bounded. After some tran31ent tlmes ph,e exponentlally decaying term €(t) in
equation (3.22) approaches to zera. Tbe!!fpt | lWe will first neglect the presence of
the €(t) but latter show in-Section 3.7 it d‘es n0t| affect the property of the identifier.

In this case, the linear regression fm in (3 22\? \ls reptesented as
e(f) SR u(?) = L@ (3.24)

Note that equation (3.24) shows that the linear regression form remains the same no
matter where the disturbance enters the system. Therefore, if the system satisfies
Assumption A3.3, one can assume that the periodic disturbance enter the system

at input point.

Remark 3.2 : The key step in deriving the linear regression form (3.24) is to take
the constant vector 6 out of the square bracket of (3.21) after Py(s). Without this
step, one must resort to model reference adaptive control scheme to estimate 6, as
is done in many previous AFC designs, which have to enforce the minimum-phase

assumption of P;(s) or small adaptation gain assumption.



Chapter 3. AFC Control 29

3.4 Review of Adaptive Feedforward Control

Most of the AFC control systems are implemented in a plug-in manner as shown
in Figure 3.3. In Figure 3.3, d,r,u,us,v,e and y are, respectively, the exogenous
periodic disturbance, the reference input, the control input, the nominal feedback
control, the feedforward control, the output error and the system output, C(s) is
the feedback controller and P;(s) is the transfer function of the plant. For the
ease to analysis, it usually assumes that the control objective is to achieve the
periodic tracking mission and the system plant P; is stable, and hence has uy = 0.

Consequently, according to Lemma 3.2,,the control structure is simplified as Figure

3.4.
AFC
—.’
Controller
e
r— » C(5) f R (s) >y

Figure 3.3: Control systém with Plug-in AFC controller

AFC u
| Controller

A
+

R(s) > €

Figure 3.4: AFC control System

In Figure 3.4, the system output error is

e(t) = Pi(s) (u(t) + di(2)), (3.25)
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where the periodic disturbance d; has an expression form like (3.13). For being

convenient to state, one assumes that d; is a single-tone harmonic signal
di(t) = 01 . cos(wit) + 0y s sin(wyt), (3.26)

in which w; is a known frequency and ¢, . and 6; ; are unknown constant coefficients.
Certainly, extended compensation for many sinusoids is straightforward. By adding
the negative of disturbance at all time, the disturbance can be easily cancelled at the
input of the plant. Hence, the feedforward control u(t) is suggested as the negative

of disturbance estimation. Consequently, the feedforward control has

u(t) ==~ ()0(2). (3.27)

Substituting (3.13) and (3.27).into (3.25), the plant, output error is rewritten as

Sy PO (0P —Q_T@)'é(t)-}-_'_ﬁ (3.28)

| l", i ;
The problem is how to find an adjus 'Iﬂ@;ﬁ_ech?msm so that the parameter estima-
tion A(t) converges to the nominal' aluerﬁ_and further the disturbance is cancelled
l 1 ;‘
exactly. Since this expression’is s{ ilarto’ convbnmonal model reference identifiers

structure [47], the parametet Vectérig has a p!)s&ble update law which called the

pseudo-gradient algorithm, that is

0(t) = 1o(t)e(t), (3.29)

where v > 0 is an adaptation gain. The AFC control diagram is shown in the Figure
3.5. According to the adaptive theory [47], if P;(s) is a strictly positive real (SPR),
the system output e(t) will converge to zero as t — oo. As a result of the SPR

condition, stabilizing controller is only guaranteed on few physical systems.

Furthermore, based on the Laplace transform analysis, Messner and Bodson
in [38] obtained an equivalent LTI representation. The resulting continuous-time

transfer function from e(t) to wu(t) is

(3.30)
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P.(s) > e

AFC :
Controller

Figure 3.5: AEC control

Although it is derived from' frequené¢y domain; it can be derived from time domain
more easily. Firstly, substituting'the integration of (3.29) into (3.27), the control u

can be written as

u(t) & o (5ol @l
| /¢
X -4 / o5l (b & W e(r)dn (3.31)
oA Po ‘
where the term of integral at the last equation :expresses a convolution integral,

that is cos(wit) * e(t). Finally, taking the Laplace transform on cos(w;t), one can

immediately obtain the result of (3.30).

\
™

P(s)

Figure 3.6: IMP control which is equivalent to Figure 3.5

It is obvious that the AFC scheme of Figure 3.5 and the IMP scheme of Figure
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3.6 are functionally equivalence in principle. The result allows LTI analysis tech-
niques to be used in adaptive system. Therefore, from the IMP controller design, the
SPR condition can be relaxed if the adaptation gain 7 is carefully chosen. Besides,
Messner and Bodson also stated that the phase difference between the input distur-
bance and the measurement output might deteriorate the convergence property of
the AFC system. The cause of the phase lag is the conventional AFC design without
considering the plant model. In order to compensate for the phase lag, they add a

phase shift a; into the regressor of (3.29). The modified regressor then becomes
, T
da(t) = [ cos(wit + aq) sin(wit + ap) } ,
and the update law (3.29) begomes. -4
=

10" LOTO, N

Note that the feedforward control 1s_§t111 sef, aé‘w (3:27% -éonsequently, using similar
[ e

—e Al
operating process in (3.319, the resu Etin,é}f“pgm;ﬁI}dous—1:ime transfer function from e(t)
£

to u(t) becomes ;‘1}__ |
a1
U1 )N !sk:os(al) +w s’sin(al)r;
e(t) B Plire 52 +,w% -y

To achieve the fastest elimination of the periodic disturbance at low adaptive gain,
Bodson and co-workers [39] suggested that the optimal regressor phase advance o

is the phase of the plant at the disturbance frequency.

The main advantages of the AFC have the following items. First, it can selec-
tively remove harmonics from the frequency spectrum. Second, it is not necessary
to acquire an exact plant model. Third, when the output signal is not available
during certain periods of time, the AFC controller can simply freeze the parameter
updates. On the contrary, the internal model based controller is not robust to this
variation. Forth, it can be driven by the measuring frequency, making the control
response more robust to variation in frequency. Finally, the adaptive implemen-

tation can adopt angular measurements directly. It needn’t require the frequency
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to be computed from the angular measurements. However, the system must be
SPR or the adaptation gain be small in order to maintain stability. Besides, from
IMP equivalence perspective, when the controller introduces a number of sinusoidal

signals, the stability problem becomes more and more difficult.

Example 3.1 : Consider an open-loop stable system with the input-output descrip-
tion as in (3.25), where the plant transfer function P;(s) is

(s+3)(s+5)

P(s) = (s+2)(s+4)(s +6)’

and the periodic disturbance d; is

di(t) = 6icos(wt) 4 cos(2wt) + 0.5sin(3wt),
| I

in which the frequency @ = 1.

g W e
i %
o

In the adaptive estimation algorithm (3 2?)', one sets the adaptation gain v = 5,
= ||
and the regressor -

g |

os(2wt) SH(th): ._Cgs(Swt) sin(3wt) }T,

o(t) = { 1 cos(wt) Si?,(_wt)

Figure 3.7 shows the output éffi)’r @symptoti—g_éaﬂ? converges to zero and the root
mean square error at 70s <t < 1005 is: 71387 x 10~%. Figure 3.8 shows the time
history of the disturbance, where the true disturbance d;(¢) and the disturbance
estimation d, (t) are shown by dotted line and solid line respectively. It shows the
estimate asymptotically converges to the true disturbance. Therefore, the simulation

verifies successfully that the AFC design has good performance under SPR system.
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Figure 3.8: Time history of the disturbance d; (£) and the estimate dy(t)
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3.5 New AFC Design for Open-Loop Stable Sys-
tem

The goal of this section is to construct a new AFC controller for open-loop stable
systems subject to unknown periodic disturbances. One assumes that the system

matrix A in (3.6) is stable. Denote
Pi(s)=C(sI — A)7'B, (3.32)
and
Py(s) = C(sL~A)'G + J, (3.33)

where Pi(s) and Py(s) are stable tramsfer functions since the system matrix A is
stable. Therefore, the state spacesystem (3.6) has-the input-output description as
(3.8). — ’

As a result of Lemma 3.2, the eqi]luula:lent disturbance d;(t) is set up. In the
thesis, one makes use of dlsturbanée obs{a}yer hke method: to obtain the filtered dis-
turbance P (s)d;(t) and then:de c*lsturbance mlentlﬁcatlon obtaining the estimated
disturbance d1 Therefore, the AFC control U 1s set.as —d1 So the identified mech-
anism for the disturbance is regarded as AFC contioller by us. Figure 3.9 shows the

control system structure. Our proposed AFC control designs in this section are all

based on this one to set up.

3.5.1 Gradient Based AFC

Based on the new linear regression form (3.24), the gradient algorithm in (3.2)

suggests the following update law for the estimated é(t),

0(t) = 101 (£)(e(t) — Pi(s)u(t) — 9T0(1)), 6 € RN+, (3.34)

where the adaptation gain v > 0 can be arbitrarily chosen and plant transfer function

P, is assumed to know exactly.
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» R(s) = +
. R(s)d,
—d, 6(t) | Disturbance
Identifier
AFC
—4(t) Controller

Figure 3.94 AFC control system

Lemma 3.3 : Under Assﬁmption AB.3, (1) as defined in (3.23) is persistently
exciting, and (¢) in (3:34) converge‘s' éiip'oﬁéntially tolh.
|

1

Proof: One will prove Lemma 3.3 lf(%r N. 114.-12 in 7(3.13); that'is, ¢(t) € R>. To prove
that v (t) is persistently exc_jt;ingthe can deri;Ve, byaising (3.23),

i+ T “
)
t

/tt+T Py (T)i/}f(T)dT =M / o(m)@" (T)dr M. (3.35)

Using equalities

=T | . B 0, k#m
/t sin(wgT) sin(w,,7)dr = { T/2, k—m
T 0, k#m
/ cos(wyT) cos(wy,T)dr = T/2, k=m#0 |,
¢ T, k=m=20

t+T
/ sin(wyT) cos(wp,T)dr = 0.
t
with m and £ being integers, one can show that

[ oot ryr
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1 cos(wyT) sin(w )
it | cos(wiT) cos®(wyT) cos(wyT) sin(w T)
= / sin(wyT)  sin(wyT) cos(wiT) sin(woT)
! cos(woT) cos(weT) cos(wiT) cos(wseT) sin(wyT)
sin(wyr)  sin(waT) cos(wyT)  sin(weT) sin(w; 7)
cos(wsT) sin(wsT)
cos(wqT) cos(waT) cos(wyT) sin(waT)
sin(wy7) cos(war)  sin(wy7) sin(we) | dT
cos? (waT) cos(woT) sin(wsT)
sin(wyT) cos(waT) sin?(wyT)
20000
T 01 00O
=S[00 100} (3.36)
0001O0
00001
T EY
Substituting (3.36) and (3.16) into (3:35) Teads to_
t+T ! A -,
JRARTC AU A
t 0)[2 | (=8|
2|~ (50) 0 2&;9_' 0 0
T 0 Baidl° & 0] 0 0
= 3 0 0 _{EI:W}W (0] 0 ,(3.37)
0 ()I i 01 Fl IPlr(jw2)|2 0
0 L ‘0 | Py (jwn)|?

which is positive definite since itis a diagbnal matrix with positive elements on the
diagonal. Hence, 1;(t) is persistently exciting. Finally, quoting Theorem 3.1, one

concludes that A(t) in (3.34) converges to 6 exponentially. End of proof.

Remark 3.3 : It is interesting to know if it is possible to estimate all the coefficients
in the infinite-term Fourier series of the reference input d;(¢). Equation (3.37) in
the proof of Lemma 3.3 gives a negative answer to this question. The reason is that
Py(s) = C(sI — A)"'B is strictly proper, and hence P;(jwy) in (3.37) approaches
zero as N approaches infinity. As a result, the diagonal matrix in (3.37) approaches
singular as N approaches infinity, and hence the regressor 1 (t) no longer satisfies
the persistent excitation condition. Without the persistent excitation condition, the

gradient algorithm can not guarantee convergence of é(t) to 6. For this reason, one
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"must” use the finite series approximation instead of the infinite Fourier series in

the disturbance estimation process.

The proposed control u(t) is then set to be
u(t) = —di(t) = —¢" (1)0(1). (3.38)
Since 0(t) converges to 6 according to Lemma 3.3, one has

u(t) + dilt) = 7 (1) (~6(0) + 0(1))

converges to zero which achieves tracking of the given reference r(¢) in the face of

unknown disturbance d(t). Theyresult,is summarized in the theorem below.
. =

Theorem 3.4 : Under Assuﬁiptions A3.1, A3.2r,-,;éind A3.3, the proposed control
u(t) in (3.38) and (3.34) diives thersystem output Y@y 10 track exponentially the
periodic reference r(t) despite the ex‘létﬂ&cé Df' unknown perlodlc disturbance d(t).

Remark 3.4 : Even though there is'a :r;jen‘"dr di(t) =.di(t) — ¢ (t)0 between the
finite series approximation ng( )0 |a d the 1nﬁﬂ1¢e Fourler series dy (t), this approxi-
mation error dl( ) approaches 260 a8 N approaches mﬁmty according to Theorem
2.1. Therefore, the small error dl( )=swill not ‘create problems in the reference input

estimation process in Theorem 3.4. The reason is as follows. Denote the estimation

error O(t) = 0—0(t). Using (3.24), the update law (3.34) results in an error dynamics

é(t) =7 ¢1(t)¢1T(t)§(t) -7 ?/)1(75)P1(5)021(t)-
Since the error dynamics (3.3) of the gradient algorithm is exponentially stable, small
additive error d, (t) will only create small estimation bias. The final disturbance
estimate d () will only be minutely biased from the equivalent disturbance d; () for

sufficiently large V.

Notice again that the proposed adaptive feedfoward cancellation control in

(3.38) and (3.34) is independent of the system matrices G and J in (3.6). In other
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words, no matter where the disturbance comes into the system, the proposed control
remains the same. This is shown for the first time in the literature, and it justifies
previous AFC designs in which the disturbances are mostly assumed to enter the

system at the control input point, even though in reality it is not the case.

Example 3.2: Consider an open-loop stable system (3.6) with the input-output

description as in (3.8), where the plant transfer function

(s+6)(s—4)
(s+2)(s+3)(s+4)’

(s+1)(s—1)
(s+2)(s+3)(s+4)

Pi(s) = and  Py(s) =

and the unknown periodic disturbance

5. 0=st<ZT
d(t) = " W< (3.39)
N it % §t<'T

,1—=.

with a period T = 10 seconds as| show.n. 1.1‘1 Ijlgure 3\ 10 Note that both transfer

functions above are non- mmzmuml haﬁavé lllnstable zeros). The system output

y(t) is required to track a perlodch fer@m;e

1
I -
| i 1
f',T ) - 2 =

In the adaptive estimation algorithm (3.34), one sets N = 4; in other words,
there are 2N + 1 = 9 terms in the finite series approximation of the periodic d;(t).
The adaptation gain is set to be v = 0.45. Figure 3.11 shows the periodic reference
r(t) (dotted line) and the system output y(¢) (solid line). It shows that almost
perfect tracking is achieved except those high frequency components which are un-
modeling residual terms. The root mean square tracking error at 70s < ¢t < 100s
is 0.0697. The simulation study shows that if the number of terms 2N + 1 in the
finite series approximation of d;(t) is increased, the tracking error can be further
reduced. Finally, Figure 3.12 shows the time history of control input w(t), which

remains uniformly bounded even though the system is non-minimum phase.
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Figure 3.11: Trajectory of the reference signal r(¢) and the output y(t)
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3.5.2 LS Basedl AT == - g

Although, in previous subseeiu the gradient algorithin v'\-?és used in our proposed

*

control, any identification & algomthm‘si‘rﬂm«new hhear regression form (3.24)
can also be done well. Therefore,r we W111 1ﬂtrod-:uce @nbther kind of common method,
that is least-squares (LS)[47]. Based on §24 the LS algorithm in (3.4) suggests
the following update law for the estimated 6(¢),

0(t) = Q)i (t) (e(t) - Pils)ult) — wT0()), 0 RN, (3.41)
Q) = =y (=nQ) + Q) (P! (1)Q)), Qe REVIDXENTD (349

where the adaptation gain v > 0 is the design parameter which can be arbitrary
chosen, the matrix ) is called covariance matrix and acts in the update law of 0
as a time-varying directional adaptation gain, and n > 0 being a forgetting factor
prevents that 2 becomes arbitrarily small in some directions. The initial condition

of the matrix £ must be Q(0) > 0.
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Theorem 3.5 : Under Assumptions A3.1, A3.2, and A3.3, the proposed control
u(t) in (3.38) and (3.41) drives that the output error e(t) in (3.20) converges to zero

exponentially despite the existence of unknown periodic disturbance d;(¢).

Proof: Denote the estimation error 0(t) = 6 — (t). Using (3.24), the update law

(3.41) results in the parameter error dynamics

O(t) = —7QE) e (PT (B)(E).

Define a Lyapunov function V = 67Q~'4. The change rate of V along the above

parameter error dynamics satisfies
V) = 207Q" (—7Q(t)@/)1(t)¢f(t)0~(t)) +67Q710.
r ] Jl: )

Using Q! = —Q 1001 and (3.42), V becomesi. -

- a "';T—!ll'l.' 3 .':':2 L
V(t)=—y (@bﬁt.);_@(ﬂ),i mv ().
Due to V < 0, this implies that \l/ t) a;ﬁ helim%_e G(t) decay to zero exponentially.
One thus proves that the sys_.tem' (i .205 ?s gl(:)ﬂl)ally exp-onentially stable. End of

proof. I

It is important to note that th; above tvheorem shows that the proposed LS
based AFC can obtain an arbitrary fast convergence rate if v is set sufficiently large.
The following simulations mainly test the feasibility and convergence rate of the
proposed LS based AFC control. Besides, when the direction of both disturbance
and control are same, the following example also shows the proposed AFC can deal

with the disturbance with time-varying frequency.

Example 3.3: In this example, a time-varying periodic disturbance rejection prob-
lem will be examined. Consider an open-loop stable system (3.20), where the plant
transfer function

(s+6)(s—4)
(s+2)(s+3)(s+4)

Pl(S) =
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and the unknown periodic disturbance
di(t) = 3sin(a(t)) — 2cos(2a(t)),
a(t) = t+sin(0.57t),

in which « is an angle displacement with time-varying frequency.

“ 25 50 75 100
time (seconds)

iy i 1 4
Figu_r»e;3.i3: Output'err;gr e(t)

In the LS algorithm (3.41), one SetisI\om 2: in other words, there are 2N +1 =5

terms in the finite series approximation of the periodic d;(¢). The adaptation gain,

forgetting factor and initial covariance matrix are set to be v = 50, n = 107 and

2(0) = I respectively. Figure 3.13 shows the output error e(t). It is seen that time-

varying periodic disturbance is almost rejected completely. The root mean square

output error at 70s < t < 100s is 0.0015. Figure 3.14 shows the disturbance d;(t)

(dotted line) and the estimated disturbance dy(t) (solid line). Since both signals

are almost overlapping, it shows that LS algorithm performs well. The root mean

square estimation error of d; — cil at 70s <t < 100s is 0.0022. Finally, Figure 3.15

shows the time history of the parameter estimation 6. 1t shows that the estimation

approaches true parameter even though the frequency of disturbance is time-varying.
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Figure 3.15: Trajectory of the parameter estimation 6(t)
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Example 3.4: Consider the same system as in Example 3.3. The adaptive control

law is as in Example 3.3 except the adaptation gain v is chosen as v = 5000.

Figure 3.16 shows the output error e(¢). The root mean square output error at
70s <t < 100s is 6.19047°. Figure 3.17 shows the disturbance d;(t) (dotted line)
and the estimated disturbance d; (¢) (solid line). The root mean square estimation
error of d; — cil at 70s < t < 100s is 9.701975. Obviously, the root mean square
of e and d; — d; is smaller than those in Example 3.3; and further, comparing with
Figure 3.13 and Figure 3.14, Figure 3.16 and Figure 3.17 show more fast convergence
rate. Consequently, according to the simulation result, one can conclude that the

proposed LS based AFC has an asbitrary convergence rate.

0 25 50 75 100
time (seconds)

Figure 3.16: Output error e(t)
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IIiien—Loop Unstable Sys-

3.6 New AFC Desi% .7
tem

When the open-loop system méﬁrix A is unsjcabl'éi,: the AFC controller introduced
in the previous section no longer gua:fantees a'-bounded control. The reason is that
Py(s)é(t) in (3.22) becomes unbounded since P;(s) = C(sI — A)"!'B is unstable in
this case. In this section, the key difference for the AFC design is that one needs
a stabilizing controller to stabilize the system firstly when the open-loop system is

unstable.
Therefore, the control input u(t) in (3.6) becomes
u(t) =v(t) — Kz(t), (3.43)

where v is a feedforward control for cancelling the periodic disturbance d(t) or/and
tracking the periodic reference r(t), and —Kz(t) is a stabilizing control in which K

is a feedback gain, and 7 is an estimated state obtained from the following state
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observer
I(t) = Az(t) + Bu(t) + L(y(t) — Ci(t)), (3.44)

in which L is an observer gain. Denote the state error £ = x — 2. Using (3.6), the

state observer (3.44) results in the state error dynamics
T(t) = (A — LC)Z(t) + Gd(t) — LJd(t). (3.45)
The corresponding input-output description from d to T is expressed as

(t) ;W o(5)d ( ) (3.46)
L

i o)
where AP |

ahle"matrix by design of L.

I'--.

Hence the state error 1s a bo d l_mi‘igsin (343), and [‘3 44), system equation
(3.6) can be rewritten a’s 4 - g ,rl “""
% N b "'-r
#(t) = (A foqfn (44 BRi@) +Bv{i "+ Ga)
= (A— BK)f(’t)@,(BKW (s )+ G)d(t) + Bu(t). (3.47)
where the last equality results from (3.46). Denote
Pi(s) = C(sI — A+ BK)'B, (3.48)
and
Py(s) = CO(sI — A+ BK) (G + BKW,(s)) + J, (3.49)

where P;(s) and P»(s) are all stable transfer functions since A—BK is a stable matrix
by design of K. Furthermore, the system output y(¢) in (3.6) can be expressed as
(3.8). Note that Py(s) is different from one which is in (3.34) since Pi(s) in (3.48)
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contains feedback control. Using the similar to open-loop stable system operating
in previous section, one has the same as the update law defined in (3.34) for the

estimated ém that is

0(t) = 701 (£) (e(t) — Pi(s)u(t) — oT0(t)), 6 € RN+, (3.50)

Therefore, the proposed AFC control is also set to be

v(t) = —¢T(t)0.

It is important to note that when the system matrix A is stable, the equation (3.48)
and (3.49) are equivalent to (3.32)and (8.33) respectively due to the stabilizing

control gain K = 0. 2 =
Example 3.5: Consider an open-loop unstable syéfem_(?)ﬁ) with system matrices

29 1 0
A=|-17 0 1|.,B=

0
1 ,C=[1o OLJ:Q
0.2 0 0 %

2(0) = [1,1,1)7, and the unknownl eriodical dis}turbafnce is the same as (3.39) that
was in Example 3.2. The system output y(t) is requlred to track a periodic reference

r(t) in (3.40). The input-output desc-rlptlon of the system is

s—5 ; s— 2
G126 00)" D Gr s 6 00

d(t).

y(t) =

Note that the above transfer function from both v and d to y are unstable and

non-minimum phase (has unstable zeros).

In the adaptive estimation algorithm (3.34), one also sets N = 4. The adap-
tation gain, observer gain and feedback gain, respectively, are set to be v = 5,
L = [31 93 6.2]" which makes the observer (3.44) have closed-loop poles
MA—-LC) ={-1,-2,-3}, K = [ 0.8855 —1.1449 —1.4490 | which makes the
plant (3.48) have closed-loop poles A\(A — BK) = {—2, -3, —4}. Figure 3.18 shows
the reference signal r(t) (dotted line) and the system output y(¢) (solid line). It is
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Figure 3.19: Trajectory of the control input w(t)



50 3.7. Robustness Analysis

seen that almost perfect tracking is achieved except at high frequency region. The
root mean square tracking error at 70s < ¢ < 100s is 0.0680. Figure 3.19 shows the
time history of control input u(t¢), which remains uniformly bounded even though

the system is unstable and non-minimum phase.

3.7 Robustness Analysis

It is interesting to study if the adaptive feedforward control proposed in the
previous section is robust with respect to system uncertainties such as un-modelled
dynamics. The purpose of this section isstoshow that the proposed adaptive feedfor-
ward control is indeed robustiwith respect tQI'_un—modelled dynamics if the adaptive

gain 7 in (3.34) is small.

To study robustness, the transfgfll'{unctib'ﬁ*.FPl(s) inthe system representation
| i ra

A | |
= PiHELE (1) (3.51)
is assumed to have the form.. | i e : |
¢

Py(s) = Pyi(s) +A s), and. HA(S)HOO < B, (3.52)

where Pj(s) is the nominal system transfer function and A(s) is an additive un-
modelled dynamics. One assumes that both Pj(s) and A(s) are stable. Besides,
we also want to know an un-modelled residual term d; (¢), measurement noise &(t),
the exponentially decaying term €(t) in (3.22), and a bounded aperiodic input wus(t),

which was concerned in [3], impact on the system stability. Therefore, we set

u(t) = ug(t) — ¢ ()6, (3.53)
di(t) = ¢T(£)0 + dy (1), (3.54)

Pi(s)¢" ()0 = vy ()0 + €(t), (3.55)
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where 1), (t) is equivalent to P;(s)¢(t) arriving at steady state, that is

[ Pi(jo)
|P1(jwr)| cos(wit + LPi(jwr))
_ _ |P1<jo.)1)| sin(wlt -+ ZPl(ju)l))

| Pr(jwn)| co s(w
[ [P(jwn)]si (th+ZP1( ))_

D1,c cos(wit) — 151,5 sin(wqt)

)
p1.s COS(wit) + P1.csin(wqt
P, ( 1 ) . b1, ( 1t) ’ (3.56)

D, cos(wnt

]3 s sin(wpt)
DPn.esin(wyt) |

in which

r
M

Figure 3.20 shows the rqbust‘:—» AFC ontrol Sys

The proposed adaptlve'la,\xﬁi?) ?}4: 1S !0 }gstlmgﬁfe 19. in the periodic disturbance

di(t) in (3.54). When there is unﬁngde}lecil d;ynmﬁlcs and measurement noise, one

must add noise ¢ and use the nominal transfer function P (s) instead of the practical

transfer function P (s) in the adaptive law. Hence, the adaptive law (3.34) becomes,

A —

0(t) =y (t) (e(t) = (1) — Puls)u(t) — 01 (1)0(1)) . (3.57)

Using (3.51)—(3.54), the equation (3.57) can be written as

0t) = (1) (Pi(s)(ult) + 67 (1)0 + di (1)) + Als)(u(t) + da (1))~

E(t) = Pa(s)u(t) — 9 (1)0(1))

Y (t) (1 ()0 = 0(£)) + €(t) + Pi(s)da (t)+

As)(ult) + di (1) = (1)) , (3.58)
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Figure 3.20: AFC Cdf:itr stem u
"‘ bh ) '~
\- .

| (3.59)
i ’ *:a‘ "'1..';- (360)
ht) = ~p-(t)+ffPW1 <°‘3 (f)x+e<> (1), (3.61)

o g
where the last equality in (3. 59) resul’t§ f}’on{ (3.53) and (3.54), the adaptive law

(3.58) results in an error dynamics

0(t) = —vy1(t)h(t). (3.62)

Substituting the integration of (3.62) into (3.59), the control error @ can be

written as

() = us () + i (8) + 67 (0) /O G ()R dr

Substituting (3.56) into the above equation,

a(t) = up(t) +di(t) -
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fy/ (poc + Zp,ccos wi(t —7) + pissinw;(t — T)) h(T)dr

i=1

= uyp(t) +di(t) — I'(s)h(t), (3.63)
where the term of integral expresses a convolution integral, that is

N
(ﬁo,c + Y Piccoswit + P sin wit) x h(t),
=1

and I' is defined as

©0S wzt + Pi,s Sin wzt}
(3.64)
in which the sign, E, 8 -U_'§1ng (3.56) and (3.62),
equation (3.60) also xpression ﬁlla{at is
e )) ey
(3.65)
where
— N —
Lp(s) = v-L { 2(50) + Y P (jwi) coswit}
i=1
~P2(j 2(
1 7P ]wz
= 3.66
Z s? + w? (3.66)
Finally, combining (3.61), (3.63) with (3.65), one obtains
- 1 _ -
= R AG) (us + (1= Ky (s)Pu(s))dy + Ko (s)(§ =€), (3.67)
where the internal model control K (s) is
r
K, (s) = () (3.68)
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y

K, (5)

A(s)

A

Figure 3.21: Feedback connection

The robust stability problem in (3.67) becomes that of proving 14+ K., (s)A(s) # 0 for
s in the right-half plane (RHP). The robustness study is in fact a stability problem of
the feedback structure in Figure 3.21. In Figure 3.21, the feedback block is stable by
hypothesis, and the feedforwardsblock is stable'if only 1/ (1 + T'r(s)) is stable (note
that both I'(s) and I'p(s) have,the dame deri'dmiqator). The next lemma proves by

mathematical induction that 1 / (@ —I— FF( ) is stabié.

Lemma 3.6 : If the nomlnal frequé"nc;&résppnse P (]w,) # (0 fori=0,1,...,N,

the transfer function S(s) =1/ ( ]—FLFFTIS $tpble

Proof: Proving that S(s) is stable ISE quivalent 'of provmg “all zeros of 1+ T r(s) lie in
the left-half complex plane (LHP bne will prove by mathematical induction that

in fact all zeros of 1+ I'k.(s) lievi in LHP for all’k =0,1,---, N, where

k Ig k Ig Bk(s)

% Vi Vi
r(s) = S+Z182+wi2 §SQ+w3 Ag(s)’ ( )

in which wyg = 0, 7 = | P1(jO)|?, i = v| Pi(jw;)|?, and the summation is from 0 to
k. Note that I'p(s) = TN (s).

When one substitutes s = jQ in Ay and By in (3.69), one obtains

k
Ar(59) —sHs + w?) = j Xx(),
=1 s=342
k k
Bi() = 1 [[(s* + w} —|—va 1" +w)) = Y,(Q),
i=1 m=1 i#=m s=j0
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where both X; and Y}, are real numbers. Since 1+ I'%(s) = Q(s)/Ax(s), where the

numerator is given by

Qr(s) = Ax(s) + Bi(s),

the robust stability problem becomes that of proving Qx(s) # 0 for s in the RHP.

In the sequel, one will use mathematical induction to establish the proof.
When k =0, Ay(s) = s, Bo(s) =, one has
Qo(s) = Ao(s) + Bo(s) = s + .

Obviously, the root of Qq(s) lies in the LHP. (/. = 7| P, (jw;)|? > 0), hence By(s)/Qo(s)

is analytic in the closed RHP: Quotmg maxuﬁum modulus principle [48], the maxi-

(3.70)

mum of the modulus of By(s)/Qg(s ) takes place @n sthe imaginary axis as below
BO( Q)‘ il " .:—{,__1 YE)'(Q)

(s) To<l, QF#wy
H (s) (%) Xﬁézﬁﬂfo {

= Q= Wo = 0
One can then follow the 1nduct10rl roqﬂure té) assume that (3.70) holds for k =
N— 1( ) lie i(% the LHP and the following is true,

y. 235 G, 1=0,1,..., N —1
BN_l(Jﬂﬁl { -

L 9= i=01,. .. N—1

0,1,---, N —1. Hence, all roots of

B
H n-1(5) (3.71)

QNlS

Now, one needs to verify that (3.71) also holds for ¥ = N. When k& = N, using
(3.69), one has

By(s) _ Bn-i(s) | ws  _ By-a(s) (82 +wiy) + Av-i1(s)vys
An(s)  An_1(s)  s2+w% An_1(s) (s? + w%) '

Thus,
@n(s) = An(s)+ Bn(s)
= An_1(s) (32 + wf\,) + Bn_1(s) (52 + w?\,) + An_1(8)7ys
= (Ay-1(s) + By-1(5)) (8> + ks + i) = YasBy-1(s)

_ 2 2 B YnsBr-1(s)
= Qn-1(s) (s + Vs + wN) (1 Ona(3) (24 s 1 W?\/)) (3.72)
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Using the induction hypothesis, (3.71), and according to maximum modulus prin-
ciple since both 1/Qx_; and 1/(s* 4+ s + w%) are analytic over the closed RHP,
one has

NS
(82 4+ s +wi) |l

’YNSBN 1(
Qn_1(5) (82 + Y\s + wk)

<1, (3.73)

Ble
Qn-1(s)

where one has used (3.71), ||[vys/ (32 + VS —Hu?v)”m < 1 for all s # jwy and =1
for s = jwy, and || Bn-1(Q)/Qn-1(Q)], and [[vys/ (s* +vys +wi)|l., equal to 1

at different frequencies to conclude the inequality in (3.73) .

Since no roots of Qy_1(s) lie in the RHP from the induction hypothesis and so
do the roots of (s* + Vs + wi); one can conclude from (3.72) and (3.73) that no
roots of @y (s) lie in the RHP. End o proof'

Therefore, using (3.677')_,7 one reyviites OuEE}lt eléror-(_'3_.51) as
e(t) = Ps)alt Ie f,l_ |

Py ( |
= e A ok il Ly REC (1) (374)

~—

In (3.74), we can replace czlvvlthil i singéthe (ﬂllﬁerence between d; and dy, that is
¢T'(t)0, is eliminated by l—Kv(;G)f’l(sr),': Q atithe frequen(nes w; wherei =0,1,...,N.
Figure 3.22 shows the LTT control system is equivalent to the AFC control system
in Figure 3.20.

Recall the hypothesis that the feedback block in Figure 3.21 satisfies || A(s)]|0 <
(. Note also that if the adaptive gain v is sufficiently small, both I'(s) in (3.64)
and I'p(s) in (3.66) will have sufficiently small gains, and so does the feedfoward
block transfer function K,(s) = I'(s)/(1 + I'r(s)). One can then quote the small

gain theorem to conclude stability of the feedback structure in Figure 3.21.

Obviously, according to the transfer function from noise £() to output error
e(t), that is P(s)K,(s) in (3.74), we can find it has low pass property and thus has

an anti-noise ability. Besides, for the small additive error dy(t), the equation (3.74)
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= P(s)
K, (s)
AFC Controller

Figure 3.22: LTI contrel system which is equivalent to Figure 3.20

shows it will only create small oufput error e(t): Foftunately, by using artificial tak-

ing sufficiently large N-to approximate_:iil_e periodic signai or the low-pass properties
— = | .
of physical systems, we cdn often mék&.ﬁﬁé’ -&'dditive error d; be small. This conclu-

sion is a supplementary explanatiobn in t‘ﬁénresulfc of Remark 3.4 which discussed in

Section 3.5. Furthermore, the‘'equ tiLon (3,74) aliszp shows that the bounded aperiodic
input us and the decaying termi e(t) do not influence the stability of the proposed
AFC control. And the decaying termirwill exp(;nentially converge to zero as t — 00.
So, the following theorem will no longer consider the bounded aperiodic input uy,

the decaying term e, the measurement noise & and the disturbance modelling error

dy influence on the output error.

Theorem 3.7 : Given any stable additive un-modelled dynamics A(s) satisfying
|A(s)]|eo < B, if the adaptive gain ~ in the proposed adaptive law (3.57) is suffi-
ciently small such that

1

3

then the proposed control u(t) in (3.38) drives that the output error e(t) in (3.51)

15 ()l <

goes to zero despite the existence of unknown periodic disturbance d; ().
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Proof: As explained before the theorem, the internal state in Figure 3.21 decays to
zero exponentially according to the small gain theorem. Therefore, the estimation
disturbance d, (t) converges to the ideal disturbance d; (t) which achieves disturbance
rejection in the face of unknown disturbance d;(¢) and un-modelled dynamics A(s).

End of proof.

Next, we need to check the internal state of the system is stable whether or
not. Therefore, the update law (3.57) is re-written as

~ —

O(t) = = (DT (1)0(t) + v (1) (e(t) — (1) — Pi(s)u(t)). (3.75)

Based on 11 (t) being persistently exciting;Theorem 3.1 guarantees the unperturbed

update law, If

é@r:' ;. <t>zzT<t>é<"2>"i' (3.76)

P i -

is an exponential convergence. Thbrefdr Q‘T converse theorem of Lyapunov (see
[47], Theorem 1.5.1 and Theorem|5 3%3,‘51!011 (3.76) exists a function V(t,0),
and some strictly positive constarjs K1, %‘},Hg, j‘d K4, such that

*mn@<vum

dial| 1% (3.77)
s sl (3.78)
t (3.76)
OV (t,0 X
| U )|sﬁ4||e||. (3.79)

Consider the same function to study perturbed update law (3.75), inequalities (3.77)
and (3.79) still hold, while (3.78) is modified, since the derivative is now taken along
trajectories of (3.75) instead of (3.76). Therefore, one has

dv (t,0) ov(t,0) oV(t,0) :
= + & 0
dt (3.75) ot o0 375)
_ v@h| v g ov(Ld) ;
dt (3.76) 00 (3.7@) 90 (3.75)
dV (t,0) ov(t,0) )
avit,v) oV (t,6) B L
dt 3 76 o 11(t) (e(t) §(t) 1(8)u(t))
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—r3l|6]1” + ral| 6] |7 1(8) (e(t) — €(8) = Pr(s)u())|
—ria ]| (1161 = 1), (3.80)

IN

IN

where (1 = Ky H’y@l (t)e(t) — &(t) — Pl(s)u(t)H /k3. According to Theorem 3.7, one
knows that e(t) in (3.74) and u(t) in (3.67) are bounded. Therefore, one concludes
from (3.80) that 0 is bounded, and further, the overall system is stable.

From equation (3.74), one knows that the system convergence rate is dependent
on the transfer function K, (s). Therefore, according to the loop gain, I'r(s), one can
use root locus technique to decide how large v has better performance. Figure 3.23
shows the root-locus diagram of I'r that is AFC system in Example 3.2. And Table
3.1 shows its different combinations: of closed—loop poles versus adaptation gain 7.
Figure 3.23 and Table 3.1 shevv under A 0 the proposed AFC is a stabilizing

controller in the whole system and has max1mum convergence rate appearing at the

neighbor area of v = 0.496. | F | B .r;:“‘ F
. __1-l-_; ]
Root—Locus
3 x . L
~v = 0.496 s
2ﬁ AR 1
1- o g

Imaginary Axis
o

-1k -‘—r, i

2L m

-_03.'16 -0.12 -0.08 -0.04 0
Real Axis

Figure 3.23: Root-locus of I'g(s)
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Table 3.1: Closed-loop poles of I'r(s) versus adaptation gain ~y
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Example 3.6: Consider the same system as in Example 3.2, except that the plant

transfer function Pj(s) contains an uncertainty A(s), where

=05 (s+6)(s—4)
Als) = s+1(s+2)(s+3)(s+4)

The infinity norm of the uncertainty satisfies ||Al < 0.5. The adaptive control
law is as in Example 3.2 except the adaptation gain v is chosen as v = 0.15 so that
the robust stability condition in Theorem 3.7 is satisfied : ||-I'(s)/(1 +T'r(s))|l., =
1.9531 < 2. Figure 3.24 shows that the output y achieves almost perfect tracking
in spite of the existence of system uncertainty A(s). However, note that in order to
satisfy the robust stability CanrdirtiOI‘l[,V the éaéptzx_ﬁign gain v can not be too large.

As a result, the convergence raté of y(t) towards r(t) becomes slow.

@Y NV
: iirn ".'- I';-% F
ey,
[ == ||
4 : : —

0 50 100 150
time (seconds)

Figure 3.24: Trajectory of r(¢) and y(t) under model with uncertainty
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3.8 Adaptive Disturbance Estimation

In some applications, it may be desirable to monitor and track the time history
of the unknown disturbance d(t). Hence, the goal of this section is to construct
an adaptive disturbance estimator for the system subjects to unknown periodic
disturbances. The first step is to transform the system equation (3.6) to input-
output description. Therefore, for obtaining a stable transfer function, rewrite the

system equation (3.6) as

©(t) = Ax(t) + Bu(t) + Gd(t) £ Fy(t)
= (A—- FE@)x(t) + Bu(t) +(G — FJ)d(t) + Fy, (3.81)

where F' € R" is any feedback gaimthat stabilizes“tﬁe matrix A — F'C'. The observ-

ability of (A, C') ensures thé!existenee. of such F Denote

Wi(s)» = sILd:'#F.C{)HB
W)~ sJ%AlFC’ . ¥ %

Ws(s) :-'-ic(sug A+FC’)*1F (3.82)

where Wi (s), Wa(s) and Ws(s) are all stable transfer functions since A — FC is a
stable matrix by design of F. The state space equation (3.81) has the following

input-output representation,
y(t) — Wis)u(t) — Ws(s)y(t) = Wa(s)d(t). (3.83)

The disturbance observer design in this section will be based on the above transfer
function representation of the system. Estimation of the periodic disturbance d
is equivalent to estimation of the unknown constant vector 6, in (2.5). In order to
estimate 6,4, one needs a linear regression form in #;. This is obtained by substituting

(2.5) into (3.83),

(t) = Wa(s)ult) — Wals)y(t) = Wals) [67 ()0
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= Wa(s) [¢"(1)] ba
= 1y ()04 + €1 (t), (3.84)

where € (t) is an exponentially decaying term and the regressor

Pa(t) = Wa(s)d(t)],_ o » (3.85)

is bounded since ¢(t) as defined in (2.3) is bounded and W(s) is now a stable
transfer function. Since €; exponentially approaches to zero for sufficiently large ¢,
it does not affect the property of the identifier. The following derivation will neglect

it. Therefore, one represents (3.84) as

y<t>——rwa<;>u<t>¢!wwa<s>&(t>:=fwgkt>ed, (3.:86)

Based on the linear regress1on form (3 86), the gradlent algorithm in Theorem 3.1

suggests the following update law fop-the es'trmated Qd( )

’i:r

0alt) = (1) (y = %% IO (3.87)

where v > 0 is the adaptatusn— ga,ll.lTherefore lltLe structure of the adaptive distur-
bance observer can be expresséd’?las Figure 3;2_5.7 To show that o(t) as defined in

(3.85) is persistently exciting, one needs.another assumption.

Assumption A3.4 Ws(jwy) # 0 for k =0,1,..., N where wy, = k- 27/T, T is the
period of d(t), and Wh(s) is as given in (3.82).

The proof of the following lemma is omitted since it is the same as the proof

of Lemma 3.3.

Lemma 3.8 : Under Assumption A3.4, ¥(t) as defined in (3.85) is persistently

exciting.

Theorem 3.9 : Under Assumptions A3.1, A3.2, and A3.4, the disturbance estimate

d(t) = ¢" (t)0a(t), (3.88)
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Figure 3.25: Adh?tive\l‘pisturbance Estimation
: ! | 1
where 0,4(t) is from (3.87) and'it:con\(erges to-the'true disturbance d(t) = ¢7 ()04

exponentially.

Proof: Denote the estimation error 0,(t) = 64 — 0,4(t). Using (3.86), the update law

(3.87) results in an error dynamics
Ou(t) = — La(t)e5 (£)0a(t). (3.89)

Since 15(t) is proved to be persistently exciting in Lemma 3.8, Theorem 3.1 says
that the error dynamics (3.89) is exponentially stable. One then concludes that 64(t)
converges to zero exponentially. In other words, the update law (3.87) guarantees
that the estimated 4(t) exponentially converges to the true 6,, and hence d(t) in

(3.88) exponentially tracks d(t) in (2.5). End of proof.
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Example 3.7: Consider an open-loop stable system (3.6) with system matrices

—6 1 0 0 0
A=|-11 01| ,B=| 1[,G=| 1]|,C=[100],J=0
—6 0 0 -5 —2

z(0) = [1,1,1]7, and the unknown periodical disturbance

d(t) = 2 + 3 cos(0.47t) + sin(nt).

|| ] ﬂﬂw |||

U |

0 25 50 75 100
time (seconds)

Figure 3.26: Time H.i-stof‘y of the disturbance d(t)

In this simulation, one assumes u = 0. Figure 3.26 shows the time histories
of the true disturbance. For the adaptive disturbance observer design, one sets the
regressor ¢(t) = [ 1 cos(0.47t) sin(0.47mt) cos(mt) sin(nt) }, and the adaptation
gain v = 30 in the gradient algorithm (3.87). Since the matrix A is stable, one sets
the feedback gain F' = 0 and thus results the transfer function W;5(s) = 0 in (3.83).
Figure 3.27 shows the disturbance estimation error |d(t) — d(t)]. For showing its
transient and steady state, the horizontal and vertical axis are plotted in the log
scale. The disturbance estimation error is found to have a very small root mean

square error, that is 1.9615 x 1078 at 700s < t < 1000s.
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Figure 3.27; Tra_jectory of the disturbar-iée error |d(t) — d(t)|
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Next, one proceeds to Construc’[g a @;‘ st bbserver that ‘can accurately estimate
the system state x in (3.6) desplde the iltgglstep&e of perlodlc disturbance d. Such
a robust observer can be eafsllly obtained by ef!n!\ploymgr the information of the dis-
turbance estimate cZ(t) il t:};e- _Qb,seliver design.I II-];_: other words, one combines the

Luenberger observer with the adaptiv-e disturbanee estimator previously proposed

to come up with the following robust observer,
i(t) = Az(t) + Bu(t) + Gci(t) + L(y(t) — Cz(t) — Jd(t)), (3.90)

where #(t) is an estimate of z(t), L € R" is the observer gain chosen to stabilize the
matrix A— LC, and ci(t) is as given by Theorem 3.9. Since the disturbance estimate
OZ(t) converges exponentially to the truce disturbance d(t) according to Theorem 3.9,
one can easily show that the above state estimate (t) converges to the true system

state x(t) exponentially.

Theorem 3.10 : The state estimate #(t) from the robust observer (3.90) converges

to the true state x(t) exponentially.
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Example 3.8: Consider an open-loop unstable system (3.6) with system matrices

—29 1 0 0 0
A=|-17 0 1| ,B=|1|,G=| 1|.C=[100],J=0,
02 0 0 5 )

z(0) = [1,1,1]7, and the unknown periodical disturbance

2t 0<t< T
d(t) = 2, T<t<i
8—2t, L <t<T

The disturbance d has a period T" = 10 seconds. The input-output description of

the system is

s+5 s—2

(s+1)(s+ 2)(87— 0.1)u;:(t) + (s + 1)7(_5 +2)(s—0.1)

d(t).

y(t) =

Note that the above transfer funetion from d to y is unstable and non-minimum

phase (has unstable zeros): ; [ X020
1= I =

-"".'.;:‘|

\

In this simulation, one sets ﬁﬁenqe the system remains unstable and
the system state z explodes to in [}nty gtponéntlally Figure 3.28 shows the time
histories of the state. For-tlie aixt)tlve dlstumance observer design, one chooses
N = 4 in (2.2); in other words; ‘there are 2N +1'= 9 terms in the finite series
approximation of the periodic dlsturbance d( ). "One designs the feedback gain
F =13.1,9.3,6.2]7 such that A\(A— FC) = —1,—2,—3 in (3.81), and the adaptation
gain v = 3 and in the gradient algorithm (3.87). For the robust observer design in
(3.90), one chooses the observer gain L = F. Figure 3.29 shows the time histories
of the true (dotted line) and estimated (solid line) disturbance. The disturbance
estimation error d(t) — d(t) is found to have a very small root mean square error
at 70s <t < 100s is 0.0358. Figure 3.30 shows the norm of state estimation error,
|lz(t) — z(t)]|, resulting from the proposed state observer (3.90). The root mean

square state estimation error at 70s < ¢ < 100s is around 0.0440.
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Figure 3.29: Trajectory of the disturbance d(¢) and the estimated d(t)
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Chapter 4

Disturbance Observer Based
Control

The goal of this dissertation is/ tosdevelop a robust control to deal with exogenous
periodic disturbances. Amiong control methods ofidisturbance rejection, control

including the disturbance observer méé@ijsiﬁ is an effective method for disturbance

rejection. In the two—degree—of—free}dfrﬂ ‘E;(;aof)' controller structure, 1-dof is used to
design nominal feedback contrel fqr comimand input response, the other is designed
to obtain disturbance rejecﬁc;n., ILHe benefit o'f thls control mechanism is that the
disturbance observer design cah be designed indepéndently on the nominal feedback

controller without affecting the closed-loop system performance very much.

Besides, in contrast with those designs of AFC which is in Chapter 3, we may
want to ask how to speed up the convergence rate of AFC system. Although one
knows that the convergence rate of gradient based AFC control system is correlated
with adaptation gain v, between of them are not proportional. So, we can not
adjust directly by v. The only method is to utilize root locus technique to try to get
optimal gain +. However, how to decide how large v has better performance is still
hard. Therefore, the other goal of this chapter is to propose a new method being
different from AFC designs previously. The key difference compared with the AFC

proposed in previous chapters is that adaptation gain of scalar becomes vector.

71
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This chapter is constructed as follows. Firstly, Section 4.1 reviews disturbance
observer based control, which includes a conventional disturbance observer based
(DOB) control and an unknown input disturbance observer (UIDO). In Section 4.2,
a non-adaptive control, which is a new disturbance observer based control using
internal model principle, is established. Then, an expediting method of the AFC
control introduced in previous chapter will be presented in Section 4.3. Finally,
the robustness of the periodic disturbance observer based control with respect to

un-modelled dynamics is studied in Section 4.4.

4.1 Review of Dlsturbance Observer Based Con-
trol

In this section, one reviews, two kinds of disturbance ,VQrbserver designs which are
the disturbance obseryer design and tﬁe-mlknqwn input disturbance observer design

respectively. The two dlStU_I‘banCF obseivers estimate the equivalent disturbance
\Lal piant output and the nominal plant output.

from the difference between the a(ft
The estimate is then inversely addéd at the 1nput of thé’plant in order to compensate
for the disturbance effect on the output. Such’ de&gned control is called disturbance

observer based control, which is the 2-dof c¢ontrol.

4.1.1 Disturbance Observer Based Control

The objective of this section is to construct a disturbance observer for the LTI
system of (3.20). The disturbance observer structure that originated from the 2-
dof control structure is depicted in Figure 4.1 [49, 19]. In Figure 4.1, P.(s), £
and d; are, respectively, a nominal plant, a measurement noise and an estimate
of the disturbance d;, us is a nominal feedback control which is designed under
disturbance free and Q(s) is designed as a low pass filter in order to make the

estimated disturbance observer be realized. Note that, in Figure 4.1, it has assumed
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dl
+
u
U —0) T R(s)
- + _
R(s)
Q(s) e Disturbance

Observer

Figure 4.1: Disturbance observer based control

that the system is minimaum phase'and the' plant-eutput signal is located at low
frequency range so that the distutbance observer can be constructed and can further

obtain a satisfying disturbance atteh@a}fion. .
r 1 'l.; :~ ., ‘

| ';';- i - |
From this figure; one shows t? ) esf‘ﬂtana?fé of disturbance
i\ 1§

~

di(t) S0P ) () —€(0) Hug)

— By EpiP Y 4D) <€) - u(t). (4.1)

Obviously, if one knows the exactly plant model, i.e. P, = P;, and assumes mea-
surement noise free, the above equation shows the disturbance estimate d equal
to the true disturbance d;. However, since the inverse nominal plant model, P, *,
is non-proper, the disturbance estimate can not be realized. Hence, the low pass
filter @ is introduced to make the disturbance observer be proper. Consequently,

the output error of the disturbance observer can be derived as

e(t) = Heuy (s)uy(t) + Hea, (5)di(t) + Hee(s)€(2), (4.2)

where the transfer functions He,,(s), Heq, (), and Hee(s), respectively, are

Pi(s)
1+ Q(s) Py (s)A(s)

Heuf(s) - (43)
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H€d1 (S) =

(4.4)

Hee(s) = (4.5)

in which A = P, — P, is an additive uncertainty. Assume that the nominal model of

the plant is correct, i.e. P, = P;. Then the above transfer functions is simplified as

H,,(s) = Pi(s), (4.6)
Hea (s) = Pi(s)(1—Q(s)), (4.7)
Hee(s) = Q(s). (4.8)

Equation (4.6) shows the feedback control design is.independent of the disturbance
observer design. Equation (4.7) and (48) show that the ability of disturbance and
noise attenuation are based on the design of Q( il -:Therefore for satisfying proper
condition and rejecting dlsturbance— Q a,t low frequency range is designed as

Q) ~ 1. Besides, for rejecting noise, gﬁt‘lhe lhlgh frequency range is designed as
Q~0. ‘-14__ l g-

| l

The advantages of DGB Contrgol are that!| 1=t 1S a 2 dof design and is a linear
control, making analysis easier, and that convergence is very rapid. Moreover, the
DOB control is robust to parameter uneertainty, it can deal with un-deterministic
disturbance and it can generate a minimum control force to attenuate disturbance.
However, the controlled system must be a minimum phase and can not easily cope
with the disturbance of high frequency components. The other disadvantage is that
DOB can only achieve disturbance attenuation even though the nominal model of

the plant is correct.

In the following example, I want to state that typical DOB control can only
achieve disturbance attenuation. The other objective is to discuss the influence of

the unknown disturbance having high frequency component on DOB performance.
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Example 4.1 : Consider an open-loop stable system with the input-output descrip-

tion as in (3.20), where the plant transfer function Pj(s) is

(s+3)(s+5)
(s+2)(s+4)(s+6)

P1(5> =

and the periodic disturbance d; has following two kinds of disturbances, in which

the frequency w =1,

Case 1: periodic disturbance being all low frequency components

di(t) = 6 cos(wt) + cos(2wt) + 0.5 sin(3wt),

Case 2: periodic disturbancg ineludinig a high-frequency component
g I A

di(t) = 6 gos(wt) €o8(2wt) + 0.5 sir-lr-(éwt)ij— 3 sin(15wt).

g—
"l. '
[ = 1

In this example, one selects the ﬁfir'- QGS) = 8/s + 8 to make ) ~ 1 at low
frequency range and @ ~ 0 ‘at thei: 1ghrfrequ‘eﬂcy Tange. Although we can utilize
loop shaping technique and Hoo 04) trol to chdo%e a better @ filter, it will increase
the effort on design and computat Oll. Flguré u® 2 and Figure 4.4 show the time
history of the output error e(t) of Cafe b andFCasel® respectively. Figure 4.3 and
Figure 4.5 show the time history of the disturbance of Case 1 and Case 2 respectively,
where the true disturbance dy(t) and the disturbance estimation d; (¢) are shown by
dotted line and solid line respectively. Obviously, the simulation result shows that
the disturbance observer design which was used to cope with periodic disturbance
only achieves disturbance attenuation and thus is not very good, disturbance with
high frequency components especially. However, even though DOB control can not
effectively reject deterministic disturbance, one must emphasize that it is a powerful
method on un-deterministic disturbance attenuation since it does’t need to know

the information of disturbance exactly.
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time (seconds)

(t) on Case 1

[

0 5 10 15 20
time (seconds)

KN
(@]

Figure 4.3: Time history of the disturbance d; and the estimate d; on Case 1
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Figure 4.5: Time history of the disturbance d; and the estimate d; on Case 2
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4.1.2 Unknown Input Disturbance Observer Based Control

In this section one will review a called unknown input disturbance observer [11, 20].
It is an effective method for disturbance rejection control under the dynamic model
of disturbance being known exactly. In this case, the periodic disturbance model is

augmented with the system model to form an expanded system.

Considering an LTT system subject to periodic disturbance in equation (3.20),
the plant model P; is assumed as a strictly proper and thus can be realized by the

following equation

©(t) =1 Ax(t) + Blu(t) +di(t)), (4.9)

eft) A Calbr,

where z(t) € R" is the state’vectdt, and A"€, R™™ B c R", and C € R™™ are

=1
1 Fa

known constant matrices, Thereford, in+(i 13), the disturbance

Ci |
l
I N j'L |
ZCOS witl- 102-70 B sinwit . 0@',57 (410)
i=1 T :
| \V
by using internal model, can be vepresented as

dy(t) = G110 <,

jjd(t) = Adl‘d(t), (4.11)

d1 (t) = Fd$d(t),

where x4 € R?VT1 is the state vector of disturbance with the initial condition z4(0) =

T
0=[060 6ic 1o ... Onc Oy. ]|, and
Ad = d2a9<07[ S) %I]a"'vl (,(()J wév‘|>7
w1 —WwWN
Fy = |1 10 10]. (4.12)

Combining the plant (4.9) with the disturbance generator (4.11), the augmented

plant is then constructed. Therefore, an augmented plant observer which is called
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an unknown input disturbance observer, is constructed as
z(t) ] [ A BF (1) B
B e | M ECE
L <e-[ c 0| l:gjé% 1), (4.13)

where () is an estimate of x(t), £4(t) is an estimate of x4(t), and L € R"2N*1 g

the augmented plant observer gain chosen to stabilize the following matrix

A BFy
0 Ay

]—L[O 0]. (4.14)

Consequently, the disturbance observer based control is set as

:

u(t) =mup(t) —di(t),

where

di (t) =Fadit)-
1
Figure 4.6 shows this augmented Tpltant abservet is in the block diagram of dashed

. | 11
line. A 1

Xd = Adxd

n—‘Q_)
1
o.><> <>
I

Il
| —
o >
> T

anl
L 1
| —
Q><> <>
L 1

+
| —
o W
|

[

+

—

—~

D

|

O

x>

N—"

Disturbance | d, = F,X,
Observer

Figure 4.6: Unknown input disturbance observer
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Note that, for achieving the 2-dof design, the disturbance observer constructed
by augmented system is only used to estimate the actual disturbance acting on
the system, but it does not control the plant. It means that another new state
observer may be needed for output feedback controller design. The advantages of
unknown input disturbance observer are that it can selectively remove harmonics
from the frequency spectrum and is a linear control, making analysis easier, and

that convergence is very rapid.

Example 4.2 : Consider an open-loop stable system with the input-output descrip-

tion as in (3.20), where the plant transfer function

P (4 6)(s'=4)
Pi(s)= (s¥2)(s +;|5)f)(8 +74)7

and the unknown periodie disthrbafice

da (1) = 6'cgs(wt) T dos(2468) + 0.5 sinif3et);
=3

1 |
in which w is the fundamental fref ue i‘j’ithla period 7" = 10 seconds. ( Note
that conventional AFC and DOB'C ntroller diﬁéign cait not be adopted here since

the transfer function above ‘i‘é':nonlrlilinimum p}Hse )

In this example, one seleets N =3 and takes it/into (4.11) and (4.12), and then

the disturbance observer has matrices

| 0 2 0 2 0 2
Adzdzag<0,[_m 16)]’[—2”2 0 || s )

10 10 10
Fd:[1101o10}.

In the disturbance observer design (4.13), one chooses the disturbance observer gain

L:[4.3982 60.3980 216.5932 —1.7453 —3.5941 0.5483

~3.8680 05144 33161 —0.9722 ]
which makes the disturbance observer (4.13) have closed-loop poles

MAg— LiCy) ={-2,-3,—4, —w, —w + jw, —w + j2w, —w + j3w}.
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Figure 4.8: Trajectory of the periodic disturbance d;
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Figure 4.7 shows the time history of the output error e(t). The output error of
root mean square at 70s < t < 100s is 4.1609 x 107°. Figure 4.8 shows the time
history of the disturbance, where the true disturbance d;(¢) and the disturbance
estimation d; (t) are shown by dotted line and solid line respectively. It shows the
estimate converges to the true disturbance quickly. Certainly, if we expect that the
disturbance observer has faster convergence rate, we can design observer gain L to
make the eigenvalues in (4.14) move far away the imaginary axis. The simulation

result shows the unknown input disturbance observer design has good performance.

4.2 New Disturbance Observer Based Control

e
In this section, we want t0 proposed new distﬁrbaﬁée observer design which utilizes
a re-parameterization process to obi;aln an mformal dlsturbance observer on the
state space. For realizing the dlstufBahee Otherver one needs to make use of the
linear regression form of (3.22) W}1 ch"frre barameterlzatlon result, to construct

an output equation. Hence, {f (¢ )f n thef-rlght, hand 81de of (3.22) denotes
E 1
I

: v ) ! :
w?(t)e = Do, 660 el A+ Z Dic COS wzt Piss sin wzt) ei,c +
I, 1
(pi s COS @it PDieSin wit) 0, s, (4.15)

where poc, pi. and p; s are defined in (3.15), and the left hand side of (3.22) treats

as the measurable signal. Besides, from (4.11), one has the state solution
zq(t) = ®(t)x4(0), (4.16)
where 4(0) = 0 and ®(t) € R*VFT1¥2N+L g the state-transition matrix

. coswit  sinwit coswyt  sinwyt
(t) = diag (1’ l —sinwit coswyt 1 L l —sinwyt coswpt ]) ' (4.17)

Using (4.16) and (4.17), (4.15) can be represented as

V()0 = Cyzqa(t), (4.18)
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where

Ca=|Poc Pre Prs =+ Pne Dns | € RNTL (4.19)

Substituting (4.18) into (3.22), one obtains an output equation

e(t) — Pu(s)u(t) = Cazalt) + €(t). (4.20)

According to the equation (4.11) and (4.20), a Luenberger observer is then

constructed as

. (4.21)
where 4(t) is an esti is (t«hetobserver gain chosen to
stabilize the matrix A;u— Ed. mate f’ d1 (@- Denote T4 = x4 — 24.
Substituting (4.20) IILJO (4. he exror “dynamics of Z4(t), which
converges to zero expd;ten?;ta

(4.22)

One then concludes that the eﬁzitﬁafﬁﬂdq d_l 11}1 (4 EIf) exponentlally approaches the
true disturbance d; in (4.11). Consequently, the disturbance observer based (DOB)

control is proposed as
u(t) = —di(t) = —Fazq(t). (4.23)

Figure 4.9 shows the DOB control system structure.
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Xy = AyXy
d, = FyX
I
+ u +
0—O) S R(s) - e
- +
» P(s)
R(s)d,

Cil Xs = A%y +Ld(P1(S)dl_CdXd) . f
R R Disturbance :
1= FaXq Observer

Figure 4.97 DOB_control system

4.3 DOB-AFC design)\

In this section, our objective is to in;fopoél;_‘a new AFC control, DOB-AFC, which is
based on the disturbance observel‘.r aesign in Seétion A2, According to (4.16), the

parameter ¢ in (4.10) is
0 = 240y =@ (H)z,(t), (4.24)
where
d(t) = dT(2). (4.25)
Based on (4.24), the estimated parameter is set naturally as
0(t) = 1 (t)24(t), (4.26)

where Z, is the state of disturbance observer that is defined in (4.21). Hence, the

parameter update law of 0 along the closed-loop trajectory (4.21) satisfies

0t) = —D L) Agia(t) + D () 2a(t)
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= —(I)_l(t)Adii‘d(t) + q)_l(t) [Adlffd(t) + Lyg (G(t) - P (s)u(t) — Odiﬁd(t))}
= O )L (elt) — Pi(s)ult) — Cuialt)). (.27

Substituting (4.18) into (4.27),

0(t) = &' (t)La (e(t) — Pu(s)u(t) — o7 (1)0(1)) . (4.28)
By the above analysis, one obtains the update law of DOB-AFC is a general form
for adaptive algorithm. The adaptive update law has an arbitrary convergence rate

based on the observer gain Ly resulting from disturbance observer design defined in

(4.21).

Note that observer gain, L, ~can be. 6btained:from eigenvalue assignment,
y . I:

Kalman filter or adaptive algofithm. Such as'the g.rrréidient based AFC in Section 3.5

is a special case of (4.28) When one §_elects Ld. T = Slmllarly, when one sets Ly,

a time-varying observer gain} into L;l(‘t)p ‘y@‘ Q(t )2/)1( ), it immediately becomes
i

LS based AFC defined in Section ? "'LJ—;' | |

IJ._ |i

T

Example 4.3 : Consider the samla ystem as 1h' Example 4.2. Selecting N = 3 and
taking it into (4.11), (4.12) and (4 19), the dlsturbance observer have matrices

» 0 orx1-F [ s 0" 2 %2 0 2rx3
Ay = dzag(O,[_M 16) },[_M 16) | 2mx3 16) )

10 10 10
Fd=[1101o10},

Ca

{—1.0000 —0.7070 0.6178 —0.1670 0.7803 0.2046 0.6126}.

In this example, we want to make use of the simulation to show the performance
of DOB-AFC is better than robust AFC in Section 3.5. Therefore, the following two

kinds of design methods is discussed.
Case 1: Robust AFC based on the gradient algorithm

In the adaptive estimation algorithm (3.34), one sets v = 0.496, that is the

fast convergence rate derived from Figure 3.23 and Table 3.1. Since the gradient
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based AFC can be expressed as a DOB-AFC’s special case, one thus has disturbance

observer gain
Lq=~C] =] —0.4960 —0.3507 0.3064 —0.0828 0.3870 0.1015 0.3039 T,
and DOB-AFC closed-loop poles

AMAs—LyCy) = {—0.9619, —0.0579+51.8307, —0.1012+50.4884, —0.0880+51.1666}.

Case 2: DOB-AFC based on eigenvalue assignment

In this case, we want to _reveal that DOB-AFC using eigenvalue assignment
on the design performance has more broad choice. One chooses the disturbance

observer gain

g—

o

) :

| AL I T
Lg=| —1.7453 =3.5941 0.5483 ~=3.8680 0.5144 —8.3161 —0.9722 | ,
s ||

-

L7 |

.
which makes the disturbance obser r (421) haiye DOB-AEC closed-loop poles
4 W
AMAg — LaCa)i= Lo, —w £ ju,—0 #'j20, —w + j3w}.

Figure 4.10 shows the time history of the output error e(t), where e(t) of both
the gradient based AFC and DOB-AFC are shown by dashed line and solid line
respectively. Figure 4.11 shows the time history of the disturbance, where the true
disturbance d (t), the gradient based AFC dy(t) and DOB-AFC d;(t) are shown by
dotted line, dashed line and solid line respectively. Comparing with the gradient
algorithm based AFC, the DOB-AFC control has faster response ability. Besides,
the output error of root mean square at 70s < ¢t < 100s is 1.9017 x 10~ which
is better than that gradient based AFC is 0.0020. Certainly, if we expect that the
disturbance observer has faster convergence rate, we can also design observer gain

L, to make the eigenvalues in (4.21) move far away the imaginary axis.
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Figure 4.11: Trajectory of the periodic disturbance d;
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4.4 Robustness Analysis

In Section 4.2, our proposed disturbance observer based control needs to make use
of an exact system model information. However, if a nominal plant can be got only,
we may want to know how robust the proposed DOB control is. For comparing
with the robustness of gradient based AFC control analysed in Section 3.7, we will
analyse the DOB control design perturbed by un-modelled dynamics A(s) in (3.52),

disturbance modelling error dy(t) in (3.54), and measurement noise &(t).

Under considering un-modelled dynamics and measurement noise £, the distur-

bance observer in (4.21) becomes

Balt) = Aghdlt) 4 Lo (o) =€)~ PNug) — Coia(t)) . (4.29)
where the control inpuf is 8¢t as —~ .y

b(t) 3 f AR (4.30)

Galt) = (sT = A5a: /;diaﬁ)—l La(e(t) S5 Bils)u(t)). (4.31)
Substituting (4.31) into (4.30), 7 |
u(t) = us(t) = Fa(sI = Ag+ LaCa) " La (e(t) = £(t) = Pu(s)u(t)) . (4.32)
Setting the DOB controller as

Ki(s) = Fy(sI — Ag+ LqCy) ™" L, (4.33)

and then substituting it into (4.32), one obtains

1
U = TR 5B )

(up(t) = Kp(s)e(t) + Kr(s)E(1)) - (4.34)

Therefore, substituting the equation into (3.51), the output error e(t) is obtained as

the following equation

B Py(s)
=R P 0)

(up(t) — Kp(s)e(t) + Kp(s)€(t) + Pi(s)da(t).  (4.35)



Chapter 4. Disturbance Observer Based Control 89

By rearranging e(t) and using (3.52), one obtains

. Pl(S)
1+ K (s)A(s)

e(t) (ur(t) + (1= Ki(s)Pi(s)) di(t) + Kp(s)E(t)) . (4.36)

Obviously, 1 — K1(s)Py(s) is a zero gain at the frequencies w;, where i =
0,1,..., N, since zero output error obtained from (4.22) under A(s) = 0. Hence, one
has (1 — KL(S)Pl(S)) di(t) = (1 — KL(S)P1(5)> dy (t)— K (s)e(t). Consequently, the
small un-modelled residual disturbance d; creates the small output error e which is
(1 — KL(S)Pl(S)) dy (t). Furthermore, comparing with the controller K (s) of (3.68),
the observer gain L, in the DOB control is not a scalar, but vector. As a result, it
has more large adjusting freedom to obtain better performance on repetitive system.

Figure 4.12 shows the DOB control System éffuoture.

Disturbance :
K, (s) Observer

Figure 4.12: DOB control system under model with uncertainty

Comparing (4.36) with (3.74), the following corollary can be obtained directly

from Theorem 3.7.

Corollary 4.1 : Given any stable additive un-modelled dynamics A(s) satisfying
|A(S)|lo < S, if the gain vector Ly in the proposed disturbance observer (4.29) is
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selected properly such that

1K(5) ] < %

then the proposed control u(t) in (3.38) drives that the output error e(t) in (3.51)

goes to zero despite the existence of unknown periodic disturbance d; ().




Chapter 5

Conclusions

This dissertation presents a_néw AFC control to track and/or reject exogenous
periodic signal in a linear timeinvasiant Sys!t'em.&_The new AFC design uses a re-
parameterization process in- the inpli’p—output-descfiption of the system in order to
obtain a linear regression fbrm. Baséd-g)illa_thé;iﬁn‘éar regréééion form, any mechanisms
of system identification afe regarded asfiif@ qo"ntroller by us.

The new control has seVQral a'fi\[antz%%s C()llxg}pared With previous designs. First,
its adaptation gain can be ai"'b.iitrarrhjrf chosen Wiih!Q}lt disturbing the system stability.
Second, it can be applied to noﬁ—fninimum phase sy-stems without using any approx-
imation, while most previous AFC designs apply to minimum-phase systems only.
Third, it is shown that the proposed control remains the same no matter where the
disturbance comes into the system. This is shown for the first time in the literature,
and it justifies previous AFC designs in which the disturbances are mostly assumed
to enter the system at the control input point, even though in reality it is not the
case. Forth, it shows the proposed control has good robustness. Hence, it can be
applied on many engineering applications in the real world. Finally, for promoting
the repetitive control performance, the thesis further proposes DOB-AFC, that is

a general AFC form which has more design freedom on adaptive update law. The

interpretation of AFC in terms of disturbance observer design can be implemented
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by any LTI control methods; making the proposed design very friendly and intuitive
for engineers. Therefore, one can use eigenvalue assignment, Kalman filter, adap-
tive algorithm and so on to design the AFC. Certainly, when the system model can
not be exactly obtained, the control structure using LMI method will provide more

robust performance.
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