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摘  要 

 

本論文提出一新的適應性前饋控制設計(AFC)技術來達成週期性追蹤和／或

週期性干擾消除。與傳統的AFC相比較，主要的不同點是運用重新參數化的回歸式

於適應性機制。這控制架構是包含一像干擾觀測器(DOB-like)的架構來產生一經

系統濾波後的週期性訊號，和一訊號辨識器來對此訊號進行參數識別。因此，AFC

控制系統的穩定問題不再受到受控體架構的影響。本論文更進一步利用此重新參

數化的技術於新的干擾估測器設計，進而獲得此新AFC設計方法的一重複控制的通

式。 

不同於以往的適應性設計，本方法有以下的優點：第一點是它的增益可以任

意選擇而不影響控制系統的穩定度。第二點是透過重新參數化過程，它不需反轉

系統模式，可以適用於極小相與非極小相系統。第三點是它顯示週期性干擾輸入

點與控制設計無關。第四點是本方法可運於線性系統有存在不確定性。最後一點

是此新AFC控制與基於干擾觀測器的控制有一等價關係的表示，進而提供可應用彼

此相關領域之控制知識的機會，因此，AFC的適應性增益可以藉由任何線性控制方

法或適應性方法更有效率的選擇，如特徵值安置，卡曼濾波器和最小平方法等。

另外，在控制設計方面，此控制技術提供工程師一非常友善及直覺的設計。 

 

關鍵字：重複控制；適應性前饋消除；干擾觀測器；週期性干擾消除；內模式控

制；週期性追蹤控制。 
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ABSTRACT

This dissertation proposes a new technique of adaptive feedforward control

(AFC) that achieves periodic tracking and/or periodic disturbance rejection. The

key difference compared with conventional AFC is a new re-parameterization re-

gression form employed in adaptive mechanism. This new control structure is a

combination of the disturbance-observer-like (DOB-like) structure and the distur-

bance identifier, where the DOB-like output generates a periodic disturbance which

is filtered by the plant model, and the disturbance identifier is to identify the un-

known parameter of the filtered disturbance. Consequently, the stabilizability prob-

lem is no longer subject to the plant structure. Utilizing the re-parameterization

technique, the dissertation further proposes a general form of AFC control using

repetitive control.

The proposed new control has several advantages over previous designs. First,

its adaptation gain can be arbitrarily chosen without upsetting the system stabil-

ity. Second, through re-parameterization process, the adaptive algorithm can be

applied to minimum phase as well as non-minimum phase systems without using

any approximations. Third, it is shown that the desired AFC control is independent

of where the disturbance enters the system. Fourth the proposed control is proved

to be robust with respect to system uncertainties. Finally and most importantly,

the equivalent interpretation between the disturbance observer based control and

the new AFC control provides an opportunity to apply knowledge to each other

field. Therefore, AFC’s adaptation gain can be efficiently chosen by any linear

control methods or adaptive algorithms, such as eigenvalue assignment, Kalman

filter, least-squares algorithm and so on. Besides, the control technique provides

engineers with very friendly and intuitive design on the control performance.

keywords : repetitive control; adaptive feedforward cancellation; disturbance ob-

server; periodic disturbance rejection; internal model control; periodic tracking

control.
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Chapter 1

Introduction

1.1 Motivation

In many industrial applications, the control system is required to track or reject

periodic exogenous signals (desired reference output or disturbance). Examples

include periodic motion of robot manipulators [1], repeatable runout in disk drive

[2], torque ripples in harmonic drives [3], periodic force disturbance in metal cutting,

and so on. Clearly, these disturbances degrade the system performance. Hence, the

basic requirements in control systems are that they have the ability to regulate

the controlled variables to reference commands without a steady-state error against

unknown and un-measurable disturbance inputs. Such control that can successfully

drive the system to track or reject periodic signals is called the repetitive control.

Besides, it may be desirable to estimate the unknown periodic disturbances acting

on the system. In some cases, the purpose of disturbance estimation is to monitor

the performance of systems for decision making. For examples, in the manufacturing

processing, one may wish to estimate the cutting torque in drilling process [4] and

the cutting force in CNC machine centers [5].

Although there are several approaches to cancel periodic disturbance, these

approaches may cause original closed-loop system stability affected or these designs

1



2 1.2. Literature Survey

are excessive complexity. Therefore one of the objectives of the dissertation is to

implement a simple plug-in type repetitive controller to cancel exogenous periodic

signal. The other objective is to construct an adaptive disturbance/state observer

to monitor the system performance for decision making. The last purpose is to

construct a robust update law for repetitive control.

1.2 Literature Survey

Since many control systems are often subject to the disturbance, one of the fun-

damental research topics in control theory is to study the problem of disturbance

rejection. The disturbances are mostly divided into un-deterministic and determin-

istic disturbance. In the case of un-deterministic disturbance, the robust disturbance

attenuation control, such as H∞ control [6] and variable structure control [7] which

are high-gain controllers, has been investigated by many researchers. Although those

are common methods for the improved performance of control systems, such high-

gain controllers may not be applied in a mechanical system due to the reason of

mechanical resonance. In contrast, from the 70s to the present, there have been

many researchers who proposed various approaches to realize effective disturbance

suppression without using high gains [8]-[13]. One of these methods employs that

disturbance is estimated using an observer and cancelled out, and then the control

design is reduced to nominal feedback control which generates just minimal control

based on disturbance free assumption. Thus the disturbance rejection problem is

transformed to the disturbance estimation design.

A recent survey paper on the disturbance estimation for linear systems can be

found in [14], and extension to the disturbance estimation for nonlinear systems

can be found in [15] and [16]. One approach for the disturbance estimation is

the use of disturbance observer [17, 18], which does not need the dynamic model

of the unknown disturbance. The disturbance observer estimates the equivalent
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disturbance which is the difference between the actual plant output and the output

of the nominal model. The estimate is then inversely added at the input of the plant,

so as to compensate for the disturbance effect on the output. Despite the simple

structure, disturbance observer based (DOB) control as an effective add-on controller

[19] is successful in enhancing disturbance attenuation capability. However, this

approach relies on inverse the system dynamics, and hence can not be applied to non-

minimum-phase systems (systems with unstable zeros). Even for minimum-phase

systems, the obtained disturbance estimate may not asymptotically converge to true

disturbance due to a Q-filter in the estimation process. Besides, in some systems,

such as disk drive servo, the rotational speed is usually required as increasingly

as possible for improving data transfer rate, so does the frequency of the periodic

disturbance, which leads to a high loop gain in the track-following servo. However,

such a design may not be feasible since the increase of the Q-filter cut-off frequency

may cause an undesirable increase of the control bandwidth, which is established by

a feedback controller.

The second approach for disturbance estimation applied to the unknown dis-

turbance is generated by a known dynamic model. In this dissertation one considers

the problem of rejecting periodic disturbances, whose magnitude and phase are un-

known but frequency is known. In this case, the periodic disturbance model is

augmented with the system model to form an expanded system. A Luenberger ob-

server is then constructed to estimate not only the system state, but also the state

of disturbance model. The disturbance estimated method was called unknown in-

put disturbance observer [20] or Kalman disturbance observer [21]. Consequently,

by using the reconstructed disturbance injecting into the plant input, disturbance

rejection is accomplished. Note that, since the disturbance observer constructed by

augmented system is only used to estimate the actual disturbance acting on the sys-

tem, it does not control the plant. Therefore, for achieving the closed-loop system

stability and performance, a normal feedback controller is still required.



4 1.2. Literature Survey

In addition to the above methods using the disturbance estimation, repetitive

control (RC) is a specialized control strategy designed for tracking a specific periodic

command or rejecting a periodic disturbance. A recent survey paper on repetitive

control designs can be found in [22] and [23]. These designs are roughly classified

as being either internal model base or external model base. The internal model

based repetitive control design is originally proposed in [24], which is based on the

internal modelling principle [25]. In [24], a time delay internal model is placed inside

the nominal stable feedback loop to guarantee asymptotic tracking or rejecting of

the periodic signal. However, this approach may alter original closed-loop system

stability and performance. Hence, it is often realized in a plug-in manner [22, 26].

The advantages of the internal model based repetitive control are that convergence

is very rapid and that the controller is linear, making analysis easy. However, the

internal model introduces an infinite number of open-loop poles on the stability

boundary; making stabilization of the overall system difficult [27]. As a result,

Hara et al. in [28] proposed a low-pass filter included in the repetitive controller to

ensure closed-loop stability, that is Q-filter. However, it makes exact internal model

lost and the system performance at the high frequency harmonics be sacrificed [29].

Another disadvantage of this approach is that robustness to noise and un-modelled

dynamics is impaired by the time delay internal model [22]. Moon et al. in [30]

proposed another repetitive controller design method on Q-filter, which is based on

Nyquist plot technique, for the system with un-model dynamics. However, even

under the ideal case, it can not reject the periodic disturbances asymptotically.

When the disturbance frequencies are unknown, adaptive internal model is often

used for disturbance rejection [31]-[34].

The other approach for repetitive control designs is the basis function ap-

proach, or often called adaptive feedforward cancellation (AFC) control, being a

main method in the external model based repetitive control design. With this ap-

proach, the periodic exogenous signal is modelled as a linear combination of finite or
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infinite basis functions with unknown coefficients [22] [35]. An adaptive algorithm

is proposed to estimate these unknown coefficients, and a feedforward control that

cancels the disturbance efforts is then constructed [36][37]. The adaptive approach

may be superior to the disturbance model based approach when the frequency can

not be obtained but the angle can be measured by the sensor, or injected signal need

to be disconnected temporarily. However, stability of the adaptive system is ensured

only if the system is SPR (strictly positive real). When the system is not SPR, the

adaptation gain must be constrained to be small in order to maintain stability. The

equivalence between the AFC and the internal model based approach is established

in [38]. A modified adaptive algorithm with an extra phase advance is proposed in

[38][39] to expedite the algorithm’s convergence. In [40], Ariyur and Krstić start with

the sensitivity method but arrive at the same scheme. However, the adaptation gain

is still constrained by the stability requirement. In [3], a different adaptive algorithm

is proposed, whose adaptation gain can be arbitrarily chosen without disturbing the

system stability. However, this adaptive algorithm is based on inversion of the sys-

tem transfer function; hence, they can be applied to minimum-phase systems only.

When the system is in a non-minimum phase, an approximation algorithm based

on the zero-phase-error-tracking design may be used [22]. The other AFC approach

called frequency adaptive control technique (FACT), which utilizes a collection of

frequency sampling filters (FSF) to obtain the magnitude of individual frequency

components of the truncated periodic signal and uses these individual components

to do adaptive update again, is proposed in [2]. The feature of FACT design is able

to cancel any unwanted harmonic signals without influencing the uncompensated

ones but needs more computational cost and carefully chooses adaptation gain for

the system stability.

The stability conditions for the general AFC controller design is analyzed in [41]

depending on the available adaptation method used in AFC design. Bayard uses

LTI representations of adaptive systems with sinusoidal regressors to do stability
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analysis. Under the plant model known exactly, he proved that adaptive algorithm

using augmented error signal is completely phase-stabilized. In [42], Guo further

shows that those AFC control algorithms on the time-varying frequency case are

equivalent to linear time-varying compensators which is implemented by the IMP

on the state space. It provides an opportunity to apply knowledge obtained from

either adaptive control or linear control to the other field.

1.3 Overview of the Dissertation

Even though the repetitive control approach is very complete already, but AFC is

preferred over other schemes because the AFC controller can easily freeze the pa-

rameter update when the output signal is not available during certain periods of

time, and can be driven by the measuring frequency, making the control response

more robust to variation in frequency. Furthermore, the adaptive implementation

can adopt angular measurements directly. However, under non-minimum phase sys-

tem, arbitrary update gain and controllable convergence rate, the current researches

in AFC control have not obtained effective solution yet. In view of the tradeoff

between system stability and disturbance rejection in the previous controller design,

the goal of this dissertation is to propose a new AFC design technique to cancel

exogenous periodic signal without altering the closed-loop stability. The key dif-

ference compared with conventional AFC is a new linear regression form employed

in adaptive mechanism. This new control structure is similar to a typical DOB

control, but the proposed AFC control uses a disturbance identifier instead of the

low-pass filter Q(s) in DOB control and does not need inverse plant model to obtain

disturbance estimate. Consequently, the stabilizability problem is no longer subject

to the plant structure. The proposed AFC control is just one of the special cases

of [41] which called augmented error algorithm. Although, both control structures

are the same, the proposed AFC control relies on an adaptive identifier through
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re-parameterization process to prove that AFC control system is nominally stable.

Utilizing the re-parameterization technique, a general form of AFC control using

repetitive control is proposed in advance.

The resultant new control has several advantages over previous designs. First,

since the adaptation gain of the proposed AFC is independent of the state feedback

gain, under exactly known plant model it can be arbitrarily chosen without affecting

the system stability. It means that the proposed AFC adds into the nominal closed-

loop system without affecting the performance. Second, through re-parameterization

process, the adaptive algorithm can be applied to minimum phase as well as non-

minimum phase systems without using any approximations. Third, the new design

is only one estimation algorithm while previous indirect schemes need two estima-

tion algorithms [2]. Fourth, this dissertation shows that the desired adaptive control

remains the same no matter where the disturbance enters the system. This justifies

many previous AFC designs in the literature in which the disturbance is ”assumed”

to come into the system at the input point even though in real situations it may not

be the case. Finally, for promoting that the repetitive control performance has more

design freedom on adaptive update law, we further propose DOB-AFC that is a gen-

eral AFC form. The interpretation of AFC in terms of disturbance observer design

can be implemented by any linear control methods, such as eigenvalue assignment,

Kalman filter, least-squares algorithm and so on. Therefore, the control technique

provides engineers with very friendly and intuitive design. Certainly, when the sys-

tem model can not be exactly obtained, the control structure using LMI method

will provide more robust performance.

A series of studies on disturbance rejection methods of control systems is orga-

nized as follows. Chapter 2 reviews internal model based repetitive control, which

includes dynamics model of multiple frequencies disturbance and time-delay model.

Chapter 3 firstly reviews the adaptive algorithm, formulates the problem, constructs

a linear regression form through re-parameterization process, and introduces con-
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ventional adaptive feedforward control. And then one proposes the new AFC design

and the adaptive disturbance estimation. In Chapter 4, one firstly reviews distur-

bance observer based control, which includes disturbance observer and unknown

input disturbance observer for un-deterministic disturbance and deterministic dis-

turbance respectively. And then, based on the linear regression form in Chapter

3, we propose a new disturbance observer design, which is different from previous

designed, and makes use of the equivalence between the new AFC and disturbance

observer to design a general form of AFC, called DOB-AFC. Chapter 5 gives the

concluding remarks.



Chapter 2

Review of Internal Model Based
Repetitive Control

In many industrial applications [1]-[5], the control system is required to track or

reject exogenous periodic signals. When the system is subjected to periodic signal

input, it is well known that the repetitive controller can work well. The conven-

tional RC is often regarded as a simple learning control because the control input is

calculated using the result of preceding periods to improve the current performance.

One closely related study of repetitive control is iterative learning control (ILC) [44]

which is achieved by iteration of the control action within finite duration. The differ-

ence between RC and ILC is the setting of the initial conditions for each trial. In the

ILC, the same initial condition is assumed in every trial. Hence, the iterative action

is discrete and it is enough to assure not only the stability but the convergence of the

error. In the repetitive control, the repetitive process is continuously because the

initial conditions are set to the final conditions of the previous trial. The difference

in initial-condition resetting leads to different analysis techniques and results [45].

In this chapter, an internal model based repetitive control which is a typical

one will be introduced. In Section 2.1, one firstly gives a brief review of a periodic

signal for easy description on the latter sections and chapters. Section 2.2 reviews

an internal model principle which states that a generating system model of the ex-

9
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ogenous signal must be included in the feedback system in order to achieve perfect

tracking at the steady state. Based on this internal model principle, the time de-

lay internal model based repetitive control which includes all frequency modes of

periodic signal in the closed-loop system is then introduced in Section 2.3. Finally,

for keeping original feedback control performance and stability, a plug-in time delay

repetitive control was presented In Section 2.4.

2.1 Periodic Signal

The objective of this dissertation is to construct a control that can reject or track

an unknown periodic signal. Therefore, in the thesis, the periodic signal is assumed

to satisfy the following assumptions.

Assumption A2.1. d(t) is a periodic signal (in the thesis, it is taken as disturbance)

that is d(t) = d(t+ T ) for some known period T .

Assumption A2.2. d(t) is continuous and has a piecewise continuous derivative.

The periodic signal has a Fourier series representation

d(t) = θ0,c +
∞∑
i=1

θi,c cos(ωit) +
∞∑
i=1

θi,s sin(ωit), (2.1)

where ωi = i · 2π/T is the harmonic frequency in which 2π/T is the fundamental

frequency, and θ0,c, θi,c and θi,s are constant coefficients. In practical applications,

one uses a (2N + 1)-term finite series approximation for the periodic signal,

dN(t) = θ0,c +
N∑

i=1

θi,c cos(ωit) +
N∑

i=1

θi,s sin(ωit) = φT (t)θd, (2.2)

where the regressor φ(t) is a bounded vector

φ(t) =
[

1 cos(ω1t) sin(ω1t) . . . cos(ωN t) sin(ωN t)
]T
∈ R2N+1, (2.3)

and θd contains unknown parameters

θd =
[
θ0,c θ1,c θ1,s θ2,c θ2,s . . . θN,c θN,s

]T
∈ R2N+1. (2.4)
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The theorem below suggests that under certain conditions, the finite series approxi-

mation is a ”good” approximation of the periodic signal as long as N is large enough.

Theorem 2.1 [43] : Under Assumption A2.2, the finite series approximation dN(t)

in (2.2) converges uniformly to the true signal d(t) in (2.1) as N approaches infinity.

Because of Theorem 2.1, this dissertation will make no difference between dN(t)

and d(t) as long as N is sufficiently large. In fact, the low-pass properties of physical

systems, at most a handful of harmonics needs to be considered in general. Hence,

in the remainder of this thesis, one will write

d(t) = φT (t)θd. (2.5)

2.2 Internal Model Principle

After reviewing the property of the periodic signal, one goes back to the internal

model principle (IMP) design. The IMP was initially proposed by Francis and Won-

ham [25]. It means that the controlled output tracks a class of reference commands

without a steady-state error if the generator for the references is included in the sta-

ble closed-loop system. Figure 2.1 shows the basic control structure of IMP, where

P (s) is a linear time-invariant plant, C(s) is the controller, y(t) is a controlled out-

put, e(t) is a tracking error, and r(t) is a periodic reference signal which is expressed

as the following form

r(t) = θ1,c cos(ω1t) + θ1,s sin(ω1t), (2.6)

in which ω1 is a known frequency and θ1,c and θ1,s are unknown constant coefficients.

The compensator including an internal model 1/(s2 +ω2
1) is to provide a closed-loop

transmission zero to cancel unstable poles of the periodic input so that it achieves

perfect tracking. The design problem is to choose the remaining transfer function

C(s) so that the closed-loop transfer function is stable and has desire input-output

properties.
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Figure 2.1: IMP structure for the periodic reference with single frequency

y( )P s

2 2

( )n

n

C s
s

u

1
2 2

1

( )C s
s

1u

nu

er

Figure 2.2: IMP structure for the periodic reference with multiple frequencies

The advantages of this type of controller are that it is linear, making analysis

easier, and that convergence is very rapid. When the periodic exogenous signals

is the sum of two or more sinusoids, the method is easily extended to the cases

as shown in Figure 2.2. However, the stability problem becomes more and more

difficult as poles are added on the jw-axis.

2.3 Time Delay Repetitive Control

In this section, our objective is based on the IMP to obtain a repetitive control with

minimal system scheme that generates all periodic signals of period T . Based on the

reason, Inoue et al. [24] originally employed a time delay system as shown in Figure

2.3 to serve as a periodic signal generator. It is readily seen that the delay element
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stores the function of the past one period and the system has infinitely many poles

on the imaginary axis at jkω, where ω = 2π/T . It is therefore expected from the

IMP that the asymptotic tracking property for exogenous periodic signals may be

achieved by implementing the model 1/(1 − e−sT ) into the closed-loop system. A

controller including this model is said to be a repetitive controller and a system with

such a controller is called a repetitive control system [46] as shown in Figure 2.4. In

Figure 2.4, the feedback controller C(s) is designed to stabilize the plant and has

desire input-output properties.

sTe

Figure 2.3: Periodic signal generator

C s yr e ( )P ssTe−

Figure 2.4: Time delay repetitive control system

Therefore, the transfer function from r to e is

Wer(s) =
1− e−sT

1− (1− P (s)C(s)) e−sT
. (2.7)

Consequently, s = j2kπ/T becomes the transmission zeros of Wer(s). Therefore, the

system asymptotically tracks the periodic signal of a fixed period T if the closed-

loop system is stable. Let us start with some simple stability analysis. An easy loop

transformation converts Figure 2.4 to Figure 2.5 [29]. Using the small gain theorem,

the converted system is L2 input/output stable if

‖1− P (s)C(s)‖∞ < 1. (2.8)
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Figure 2.5: A system equivalent to Figure 2.4

Although the condition is only a sufficient condition, it is actually very close to

necessity since the delay e−sT introduces a large amount of phase shift especially in

the high frequency range. It is clearly seen that the above condition can never be

satisfied for a strictly proper P (s)C(s). This restriction comes from the apparently

unrealistic over specification of tracking in a very high frequency band. One way

of handling this is to introduce a low-pass filter in front of the delay term, thereby

replacing the delay element e−sT by Q(s)e−sT for some strictly proper stable ra-

tional filter Q(s) [28]. This, named finite dimensional repetitive control, relaxes

the tracking requirement in the high frequency range, thereby relaxing the stability

condition. The modified repetitive control system is shown in Figure 2.6. Then the

stability condition becomes

‖Q(s) (1− P (s)C(s)) ‖∞ < 1. (2.9)

Clearly, the high frequency band condition is relaxed here compared with (2.8), and

the above condition can be satisfied with strictly proper P (s)C(s). Although the

stability robustness was improved, it was paid by the degradation of the steady-state

tracking performance.

C s yr e ( )P s( ) sTQ s e−

Figure 2.6: Modified time delay repetitive control system
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The advantages of the time delay RC are that it is linear, making analysis

easier, and that convergence is very rapid. The other advantage is that the repetitive

compensator for any periodic signals is easily implemented by including the delay

element. However, it alters the loop gain of the system and is not possible for

selective harmonic cancellation. Besides, for the purpose of ensuring closed-loop

stability, additional filtering is usually added to such schemes, but it sacrifices high

frequency performance.

2.4 Plug-in Time Delay Repetitive Control

Normally, repetitive controller is realized in a plug-in manner, as shown in Figure

2.7. In Figure 2.7, the nominal controller is usually designed to stabilize the plant

and reject a disturbance being across a broad frequency spectrum, and the repetitive

controller is used to compensate periodic signals which have a known fundamental

frequency.

yr +

-

e

Repetitive 
Controller

+
+

v Nominal 
Controller 

C(s)

Plant
P(s)

Figure 2.7: Structure of plug-in repetitive control system

In this section, our purpose is to make a description of a plug-in time delay

repetitive controller design. Based on the stability analysis on the time delay repeti-

tive control which has been introduced in the previous section, we know that perfect

tracking for the periodic signal including higher order harmonic signal is the unre-

alistic. Therefore, for making stability condition be relaxed, a Q filter scheme must
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be also considered in the plug-in manner. Under this way, the RC could be added

directly into the existing closed-loop system since it did not influence internal sta-

bility and system performance very much. Such plug-in manner was presented as

shown in Figure 2.8.

C(s) y

+
+

r +

-

e ( )P s

( ) sTQ s e

+
+

v

Figure 2.8: Plug-in time delay repetitive control system

According to the Figure 2.8, the transfer function from r to e is

Wer(s) =
1−Q(s)e−sT

1 + P (s)C(s)−Q(s)e−sT
. (2.10)

Define a sensitivity function as

S(s) =
1

1 + P (s)C(s)
, (2.11)

where S(s) is a stable sensitivity function since the nominal closed-loop system is

stable. Then (2.10) becomes as

Wer(s) =

(
1−Q(s)e−sT

)
S(s)

1− S(s)Q(s)e−sT
. (2.12)

Note that the above equation shows the transmission zeros of Wer(s) are no longer

s = j2kπ/T , but in the lower frequency range, they are still very approximate.

It means that one must sacrifice the system performance at the high frequency

harmonics in order to ensure closed-loop stability.

Let us start with some simple stability analysis. By an appropriate operating,

Figure 2.8 can also be expressed equivalently as Figure 2.9. Therefore it exists a
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( ) ( )S s Q s

sTe

1 ( ) ( ) ( )sTQ s e S s r t
( )e t

Figure 2.9: A system equivalent to Figure 2.8

stabilizing repetitive control when the following condition is satisfied,

‖Q(s)S(s)‖∞ < 1. (2.13)

Clearly, when (2.13) is satisfied, the plug-in repetitive control system is stable.

Compared with time delay repetitive control, the main advantage of the design

method is that it employs a plug-in manner to reduce changing nominal closed-loop

system stability.





Chapter 3

AFC Control

As everyone knows, an internal model based repetitive control may cause large phase

shift to make original controlled system change into narrow bandwidth, and hence

makes the original system have poor transient response and be stabilized difficultly.

An external model design where the model is adjusted adaptively to match the

actual external signal and placed outside of the basic feedback loop, was then set

up to take care of the problems. Among the external model based repetitive control

designs, adaptive feedforward control (AFC) is a main method. In AFC design, it

assumes that the unknown disturbance consists of the sum of sinusoids of known

frequencies as the equation (2.1). The Fourier coefficients of the periodic disturbance

with known frequency will be estimated adaptively by an adaptive algorithm in real-

time. Since the output signal of repetitive controller is as being injected from outside

of the feedback loop, it is more like feedforward and therefore is expected not to

alter original closed-loop system stability and performance very much. This also

implies that both repetitive controller and feedback controller designs are mutually

independent.

Since synthesis of conventional repetitive control systems involves trade-off be-

tween robust stability and system performances, an optimized design method which

can address the problem systematically is difficult to obtain. As a result, the goal

19
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of this chapter is to find an ideal control that achieves asymptotic tracking of the

periodic reference r(t) regardless of the periodic disturbance d(t). Under this con-

sideration, a modified AFC control will be presented. The key difference compared

with conventional AFC is a new re-parameterization regression form employed in

adaptive mechanism. Consequently, the stabilizability problem is no longer subject

to the plant structure.

In the beginning of this chapter, one first gives a brief review of adaptive al-

gorithm in order to describe it easily at the latter sections. In Section 3.2, the

problem formulation in which we study will be discussed. In Section 3.3, a new

re-parameterization regression form is proposed to employ in adaptive mechanism.

Section 3.4 reviews conventional adaptive feedforward control (AFC). After review-

ing conventional AFC, a new AFC design, which is based on the linear regression

form of Section 3.3, is proposed to be independent of feedback control design. Fur-

thermore, regarding that open-loop system is stable whether or not, the proposed

control design takes different kinds of strategies in Section 3.5 and Section 3.6,

respectively. The robustness of the proposed AFC with respect to un-modelled

dynamics is studied in Section 3.7. Finally, Section 3.8 introduces an adaptive dis-

turbance estimation algorithm for situations when it is desirable to track or monitor

the unknown disturbance.

Note: In Chapter 3 and 4, notations in the time domain and frequency domain

may be mixed in one expression; for example, y(t) = W (s)u(t), where W (s) is the

transfer function from u(t) to y(t).
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3.1 Review of Adaptive Algorithm

The adaptive algorithm is usually used in situations where one wishes to estimate

an unknown constant vector θ ∈ Rp, which characterizes either a signal or a dy-

namic system. The first step of the estimation process is to obtain, through a

re-parameterization procedure, a linear regression form in θ,

w(t) = φT (t)θ, (3.1)

where w(t) ∈ R is an available signal, φ(t) ∈ Rp is a known bounded regressor, and

θ ∈ Rp is the unknown constant vector to be estimated. Let θ̂(t) be an estimate

of θ. Based on the above linear regression form, there are two different kinds of

identifier structures. One is the gradient algorithm, the other is the least-squares

(LS) algorithm. The gradient algorithm suggests the following update law for θ̂(t),

˙̂
θ(t) = γφ(t)(w(t)− φT (t)θ̂(t)), (3.2)

with a positive adaptation gain γ > 0, and an arbitrary initial guess θ̂(0). Note that

the regressor φ(t) in the linear regression form (3.1) needs to be uniformly bounded

for the gradient algorithm (3.2). If one denotes the estimation error θ̃(t) = θ− θ̂(t),

the update law (3.2) results in a linear error dynamics

˙̃θ(t) = −γ φ(t)φT (t)θ̃(t). (3.3)

Theorem 3.1 [47] : If the regressor vector φ(t) is persistently exciting in the sense

that for some finite interval length δ, the following matrix is positive definite for all

t > 0,

∫ t+δ

t
φ(τ)φT (τ)dτ > 0,

then the error dynamics (3.3) is exponentially stable, and θ̂(t) in (3.2) converges to

θ exponentially.
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Based on the linear regression form (3.1), the LS algorithm suggests the fol-

lowing update law for θ̂(t),

˙̂
θ(t) = γΩ(t)φ(t)

(
w(t)− φT θ̂(t)

)
, (3.4)

Ω̇(t) = −γ
(
−ηΩ(t) + Ω(t)φ(t)φT (t)Ω(t)

)
, (3.5)

where the adaptation gain γ > 0 is the design parameter which can be arbitrary

chosen, the matrix Ω ∈ Rpxp is called covariance matrix and acts in the update law

of θ̂ as a time-varying directional adaptation gain, and η > 0 being a forgetting

factor prevents that Ω becomes arbitrarily small in some directions. The initial

condition of the matrix Ω must be Ω(0) > 0. From the textbook [47], one knows

that it has the result which is similar to Theorem 3.1, that is, if the regressor φ(t)

is persistently exciting, then the matrix Ω(t) in (3.5) is positive definite and θ̂(t) in

(3.4) converges to θ exponentially.

3.2 Problem Formulation

After reviewing the property of adaptive algorithm, one considers a linear time

invariant (LTI) system subject to an unknown periodic disturbance:

ẋ(t) = Ax(t) +Bu(t) +Gd(t), (3.6)

y(t) = Cx(t) + Jd(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control input, y(t) ∈ R is the

system output, d(t) ∈ R is an unknown periodic disturbance, and A ∈ Rn×n, B ∈

Rn, G ∈ Rn, C ∈ R1×n, and J ∈ R are known constant matrices. Note that the

formulation of this thesis allows the disturbance d(t) to enter the system at any

place. The disturbance can enter the system at the input point (G = B and J = 0),

at the output point (G = 0 and J 6= 0) [37], or at any place in the system. One

contribution of this dissertation is that the proposed control law remains the same no
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matter where the disturbance comes into the system; in other words, the proposed

control law is independent of the matrices G and J .

Our objective in repetitive control design is to construct a control u(t) for

the system (3.6) that can drive the system output y(t) to asymptotically track a

periodic reference r(t) despite the existence of unknown periodic disturbance d(t).

The disturbance d(t) and the reference r(t) are assumed to satisfy the following

assumptions.

Assumption A3.1. d(t) and r(t) are of the same period; that is, d(t) = d(t + T )

and r(t) = r(t+ T ) for some known period T .

Assumption A3.1 is only for easiness of presentation, the disturbance d(t) and

reference r(t) are assumed to have the same period. The proposed control can be

easily modified to allow d(t) and r(t) to have different periods.

Assumption A3.2. d(t) and r(t) are both continuous and have a piecewise con-

tinuous derivative.

Since the periodic signals d(t) and r(t) satisfy Assumption A3.1 and A3.2,

the periodic disturbance thus has a Fourier series representation in (2.2), and the

periodic reference signal also has has a finite series approximation

r(t) = φT (t)θr, θr ∈ R2N+1, (3.7)

where the harmonic regressor φ(t) was defined in (2.3), and θr is the unknown

constant vector to be estimated.

3.3 Linear Regression Form

Since this thesis will adopt the AFC approach to deal with the repetitive control de-

sign problem, one thus needs transform the state space system (3.6) to the following
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input-output description,

y(t) = P1(s)u(t) + P2(s)d(t), (3.8)

where P1(s) and P2(s) are all stable transfer functions. The objective of repetitive

control design is to construct a control u(t) for the system (3.8) that can drive the

system output y(t) to asymptotically track a periodic reference r(t).

Thus, setting a tracking error as

e(t) = y(t)− r(t), (3.9)

and substituting (3.8) into (3.9), it becomes

e(t) = P1(s)u(t) + P2(s)d(t)− r(t). (3.10)

Figure 3.1 shows the system block diagram. Re-arrange (3.10) into

e(t)− P1(s)u(t) = P2(s)d(t)− r(t). (3.11)

It is important to note that on the right hand side of the above equation is still the

periodic signal as a result of the periodic signal d(t) passing into stable filter P2(s).

Therefore, we guess that it has the following representation

P2(s)d(t)− r(t) = P1(s)d1(t), (3.12)

where d1(t) is a periodic signal with the period T . To prove the existence of such

d1(t) in (3.12), one needs the following assumption.
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Assumption A3.3. P1(jωk) 6= 0 for k = 0, 1, . . . , N where ωk = k · 2π/T , T is the

period of both d(t) and r(t), and P1(s) is the stable transfer function.

Remark 3.1 : Assumption A3.3 requires that the transfer function P1(s) has no

system zero at s = jωk. The reason is obvious: if P1(s) has a system zero at

s = jωk, due to the zero gain of P1(s) at s = jωk, the equivalent periodic signal

d1 in (3.12) can not generate the k’th harmonic sinusoidal at the output point of

P1(s). This assumption can be waived if the disturbance enters the system at the

input point (P1(s) = P2(s)), and there is no tracking mission (r(t) = 0). However,

as long as there is a periodic tracking mission (r(t) 6= 0), or the disturbance enters

the system ”not” at the input point, Assumption 3.3, which has been neglected by

most previous literature, is necessary.

Lemma 3.2 : Given stable transfer function P1(s) and P2(s), and periodic reference

r(t) in (3.7) and periodic disturbance d(t) in (2.5), if Assumption A3.3 holds, there

exists an equivalent disturbance d1(t) ,

d1(t) = φT (t)θ, (3.13)

satisfying equation (3.12), with φ(t) ∈ R2N+1 as in (2.3), and θ ∈ R2N+1 some

constant vector.

Proof: Since the steady state output of a stable system P1(s) subject to a sinusoid

input is also a sinusoid but with different amplitude and phase, all subsequent

analysis will assume that the filter output has reached a steady-state condition.

Therefore, one has, for sufficiently large t,

P1(s)[φ(t)] =



P1(j0)
|P1(jω1)| cos(ω1t+ 6 P1(jω1))
|P1(jω1)| sin(ω1t+ 6 P1(jω1))

...
|P1(jωN)| cos(ωN t+ 6 P1(jωN))
|P1(jωN)| sin(ωN t+ 6 P1(jωN))


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=



p0,c

p1,c cos(ω1t)− p1,s sin(ω1t)
p1,s cos(ω1t) + p1,c sin(ω1t)

...
pN,c cos(ωN t)− pN,s sin(ωN t)
pN,s cos(ωN t) + pN,c sin(ωN t)


= M1φ(t). (3.14)

where

pk,c = |P1(jωk)| cos(6 P1(jωk)),

pk,s = |P1(jωk)| sin( 6 P1(jωk)),

p0,c = P1(j0), (3.15)

and M1 is a square matrix,

M1 = diag

(
p0,c,

[
p1,c −p1,s

p1,s p1,c

]
, · · · ,

[
pN,c −pN,s

pN,s pN,c

])
. (3.16)

Since M1 is block diagonal, its determinant is

|M1| = p0,c

N∏
k=1

(p2
k,c + p2

k,s)

= P1(j0)
N∏

k=1

|P1(jωk)|2. (3.17)

From Assumption A3.3, one concludes that |M1| 6= 0; hence, M1 is invertible. Note

also that

P1(s)[φ
T (t)] = {P1(s)[φ(t)]}T

= [M1φ(t)]T

= φT (t)MT
1 . (3.18)

Substituting (2.5) and (3.7) into (3.12), and using a relationship similar to (3.14)

on P2(s), equation (3.12) becomes

P2(s)[φ
T (t)θd]− φT (t)θr = φT (t)[MT

2 θd − θr]

= P1(s)[d1(t)]. (3.19)
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It is straightforward to check, using (3.14), that d1(t) = φT (t)θ with θ = M−T
1 [MT

2 θd−

θr] satisfies the above equation. This proved the existence of d1(t). End of proof.

After identifying the existence of the equivalent periodic disturbance d1(t),

substituting (3.12) into (3.11), one has

e(t)− P1(s)u(t) = P1(s)d1(t). (3.20)

Therefore, based on the equivalence of system, the system block in Figure 3.1 can

be simplified to Figure 3.2. Note that equation is the same as those previous AFC

1( )P s

1d

Figure 3.2: A system equivalent to Figure 3.1

systems when there is no tracking mission (r(t) = 0, e(t) = y(t)). The equation

shows that an ideal control, which achieves asymptotic tracking of the periodic

reference r(t) regardless of the periodic disturbance d(t), is u = −d1. Therefore, the

control design problem becomes the problem of estimating d1(t). According to (3.13)

in Lemma 3.2, the estimation of the periodic disturbance d1(t) is further reduced to

the estimation of the unknown constant vector θ in (3.13). In order to estimate θ,

one needs a linear regression form in θ. This can be obtained by substituting (3.13)

into (3.20),

e(t)− P1(s)u(t) = P1(s)[φ
T (t)θ] = P1(s)[φ

T (t)]θ. (3.21)

The above equation is in fact a linear regression form, but the regressor P1(s)φ(t)

increases many computational cost and analysis difficulties. In order to have a

fine expression in the linear regression form (3.21), one further utilizes LTI system

property, that is, when the periodic signal, d1(t), enters into an LTI system, P1(s),
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the system can be characterized by a superposition or sum of the zero-input response,

ε(t), and the zero-state response, ψT
1 (t)θ. Therefore, (3.21) is rewritten as

e(t)− P1(s)u(t) = ψT
1 (t)θ + ε(t), (3.22)

where ε(t) is the exponentially decaying term since the plant model is stable, and

the regressor ψ1(t) is equivalent to P1(s)φ(t) arriving in the steady state, that is

ψ1(t) = P1(s)φ(t)|t→∞, and thus it has

ψ1(t) = M1φ(t), (3.23)

in which M1 is the nonsingular block matrix as defined in (3.16). The regressor

ψ1(t) is bounded since both M1 and φ(t), defined in (3.16) and (2.3) respectively,

are bounded. After some transient times, the exponentially decaying term ε(t) in

equation (3.22) approaches to zero. Therefore, we will first neglect the presence of

the ε(t) but latter show in Section 3.7 it does not affect the property of the identifier.

In this case, the linear regression form in (3.22) is represented as

e(t)− P1(s)u(t) = ψT
1 (t)θ. (3.24)

Note that equation (3.24) shows that the linear regression form remains the same no

matter where the disturbance enters the system. Therefore, if the system satisfies

Assumption A3.3, one can assume that the periodic disturbance enter the system

at input point.

Remark 3.2 : The key step in deriving the linear regression form (3.24) is to take

the constant vector θ out of the square bracket of (3.21) after P1(s). Without this

step, one must resort to model reference adaptive control scheme to estimate θ, as

is done in many previous AFC designs, which have to enforce the minimum-phase

assumption of P1(s) or small adaptation gain assumption.
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3.4 Review of Adaptive Feedforward Control

Most of the AFC control systems are implemented in a plug-in manner as shown

in Figure 3.3. In Figure 3.3, d, r, u, uf , v, e and y are, respectively, the exogenous

periodic disturbance, the reference input, the control input, the nominal feedback

control, the feedforward control, the output error and the system output, C(s) is

the feedback controller and P1(s) is the transfer function of the plant. For the

ease to analysis, it usually assumes that the control objective is to achieve the

periodic tracking mission and the system plant P1 is stable, and hence has uf = 0.

Consequently, according to Lemma 3.2, the control structure is simplified as Figure

3.4.

C s u

d

y
ufr

v
e

1( )P s

Figure 3.3: Control system with Plug-in AFC controller

u e1( )P s

1d

Figure 3.4: AFC control System

In Figure 3.4, the system output error is

e(t) = P1(s) (u(t) + d1(t)) , (3.25)
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where the periodic disturbance d1 has an expression form like (3.13). For being

convenient to state, one assumes that d1 is a single-tone harmonic signal

d1(t) = θ1,c cos(ω1t) + θ1,s sin(ω1t), (3.26)

in which ω1 is a known frequency and θ1,c and θ1,s are unknown constant coefficients.

Certainly, extended compensation for many sinusoids is straightforward. By adding

the negative of disturbance at all time, the disturbance can be easily cancelled at the

input of the plant. Hence, the feedforward control u(t) is suggested as the negative

of disturbance estimation. Consequently, the feedforward control has

u(t) = −φT (t)θ̂(t). (3.27)

Substituting (3.13) and (3.27) into (3.25), the plant output error is rewritten as

e(t) = P1(s)[φ
T (t)θ − φT (t)θ̂(t)]. (3.28)

The problem is how to find an adjustment mechanism so that the parameter estima-

tion θ̂(t) converges to the nominal value θ and further the disturbance is cancelled

exactly. Since this expression is similar to conventional model reference identifiers

structure [47], the parameter vector θ̂(t) has a possible update law which called the

pseudo-gradient algorithm, that is

˙̂
θ(t) = γφ(t)e(t), (3.29)

where γ > 0 is an adaptation gain. The AFC control diagram is shown in the Figure

3.5. According to the adaptive theory [47], if P1(s) is a strictly positive real (SPR),

the system output e(t) will converge to zero as t → ∞. As a result of the SPR

condition, stabilizing controller is only guaranteed on few physical systems.

Furthermore, based on the Laplace transform analysis, Messner and Bodson

in [38] obtained an equivalent LTI representation. The resulting continuous-time

transfer function from e(t) to u(t) is

u(t)

e(t)
= −γ s

s2 + ω2
1

. (3.30)
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Figure 3.5: AFC control

Although it is derived from frequency domain, it can be derived from time domain

more easily. Firstly, substituting the integration of (3.29) into (3.27), the control u

can be written as

u(t) = −φT (t)
∫ t

0
γφ(τ)e(τ)dτ

= −γ
∫ t

0
cos(ω1(t− τ))e(τ)dτ, (3.31)

where the term of integral at the last equation expresses a convolution integral,

that is cos(ω1t) ∗ e(t). Finally, taking the Laplace transform on cos(ω1t), one can

immediately obtain the result of (3.30).

0 1( )P s2 2
1

s
s

u e

1d

Figure 3.6: IMP control which is equivalent to Figure 3.5

It is obvious that the AFC scheme of Figure 3.5 and the IMP scheme of Figure
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3.6 are functionally equivalence in principle. The result allows LTI analysis tech-

niques to be used in adaptive system. Therefore, from the IMP controller design, the

SPR condition can be relaxed if the adaptation gain γ is carefully chosen. Besides,

Messner and Bodson also stated that the phase difference between the input distur-

bance and the measurement output might deteriorate the convergence property of

the AFC system. The cause of the phase lag is the conventional AFC design without

considering the plant model. In order to compensate for the phase lag, they add a

phase shift α1 into the regressor of (3.29). The modified regressor then becomes

φα(t) =
[

cos(ω1t+ α1) sin(ω1t+ α1)
]T
,

and the update law (3.29) becomes

˙̂
θ(t) = γφα(t)e(t).

Note that the feedforward control is still set as (3.27). Consequently, using similar

operating process in (3.31), the resulting continuous-time transfer function from e(t)

to u(t) becomes

u(t)

e(t)
= −γ s cos(α1) + ω sin(α1)

s2 + ω2
1

.

To achieve the fastest elimination of the periodic disturbance at low adaptive gain,

Bodson and co-workers [39] suggested that the optimal regressor phase advance α1

is the phase of the plant at the disturbance frequency.

The main advantages of the AFC have the following items. First, it can selec-

tively remove harmonics from the frequency spectrum. Second, it is not necessary

to acquire an exact plant model. Third, when the output signal is not available

during certain periods of time, the AFC controller can simply freeze the parameter

updates. On the contrary, the internal model based controller is not robust to this

variation. Forth, it can be driven by the measuring frequency, making the control

response more robust to variation in frequency. Finally, the adaptive implemen-

tation can adopt angular measurements directly. It needn’t require the frequency
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to be computed from the angular measurements. However, the system must be

SPR or the adaptation gain be small in order to maintain stability. Besides, from

IMP equivalence perspective, when the controller introduces a number of sinusoidal

signals, the stability problem becomes more and more difficult.

Example 3.1 : Consider an open-loop stable system with the input-output descrip-

tion as in (3.25), where the plant transfer function P1(s) is

P1(s) =
(s+ 3)(s+ 5)

(s+ 2)(s+ 4)(s+ 6)
,

and the periodic disturbance d1 is

d1(t) = 6 cos(ωt) + cos(2ωt) + 0.5 sin(3ωt),

in which the frequency ω = 1.

In the adaptive estimation algorithm (3.29), one sets the adaptation gain γ = 5,

and the regressor

φ(t) =
[

1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) cos(3ωt) sin(3ωt)
]T
,

Figure 3.7 shows the output error asymptotically converges to zero and the root

mean square error at 70s ≤ t ≤ 100s is 7.1387 × 10−8. Figure 3.8 shows the time

history of the disturbance, where the true disturbance d1(t) and the disturbance

estimation d̂1(t) are shown by dotted line and solid line respectively. It shows the

estimate asymptotically converges to the true disturbance. Therefore, the simulation

verifies successfully that the AFC design has good performance under SPR system.
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Figure 3.7: Trajectory of the output error e(t)
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Figure 3.8: Time history of the disturbance d1(t) and the estimate d̂1(t)
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3.5 New AFC Design for Open-Loop Stable Sys-

tem

The goal of this section is to construct a new AFC controller for open-loop stable

systems subject to unknown periodic disturbances. One assumes that the system

matrix A in (3.6) is stable. Denote

P1(s) = C(sI − A)−1B, (3.32)

and

P2(s) = C(sI − A)−1G+ J, (3.33)

where P1(s) and P2(s) are stable transfer functions since the system matrix A is

stable. Therefore, the state space system (3.6) has the input-output description as

(3.8).

As a result of Lemma 3.2, the equivalent disturbance d1(t) is set up. In the

thesis, one makes use of disturbance-observer-like method to obtain the filtered dis-

turbance P1(s)d1(t) and then do disturbance identification obtaining the estimated

disturbance d̂1. Therefore, the AFC control u is set as −d̂1. So the identified mech-

anism for the disturbance is regarded as AFC controller by us. Figure 3.9 shows the

control system structure. Our proposed AFC control designs in this section are all

based on this one to set up.

3.5.1 Gradient Based AFC

Based on the new linear regression form (3.24), the gradient algorithm in (3.2)

suggests the following update law for the estimated θ̂(t),

˙̂
θ(t) = γψ1(t)(e(t)− P1(s)u(t)− ψT

1 θ̂(t)), θ̂ ∈ R2N+1, (3.34)

where the adaptation gain γ > 0 can be arbitrarily chosen and plant transfer function

P1 is assumed to know exactly.
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u
e1( )P s

1( )P s

1 1( )P s d

1d

( )tφ−

ˆ( )tθ

AFC 
Controller

1̂d−

Figure 3.9: AFC control system

Lemma 3.3 : Under Assumption A3.3, ψ1(t) as defined in (3.23) is persistently

exciting, and θ̂(t) in (3.34) converges exponentially to θ.

Proof: One will prove Lemma 3.3 for N = 2 in (3.13); that is, φ(t) ∈ R5. To prove

that ψ1(t) is persistently exciting, one can derive, by using (3.23),

∫ t+T

t
ψ1(τ)ψ

T
1 (τ)dτ = M1

∫ t+T

t
φ(τ)φT (τ)dτMT

1 . (3.35)

Using equalities

∫ t+T

t
sin(ωkτ) sin(ωmτ)dτ =

{
0, k 6= m
T/2, k = m

,

∫ t+T

t
cos(ωkτ) cos(ωmτ)dτ =


0, k 6= m
T/2, k = m 6= 0
T, k = m = 0

,

∫ t+T

t
sin(ωkτ) cos(ωmτ)dτ = 0.

with m and k being integers, one can show that

∫ t+T

t
φ(τ)φT (τ)dτ
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=
∫ t+T

t


1 cos(ω1τ) sin(ω1τ)

cos(ω1τ) cos2(ω1τ) cos(ω1τ) sin(ω1τ)
sin(ω1τ) sin(ω1τ) cos(ω1τ) sin(ω2τ)
cos(ω2τ) cos(ω2τ) cos(ω1τ) cos(ω2τ) sin(ω1τ)
sin(ω2τ) sin(ω2τ) cos(ω1τ) sin(ω2τ) sin(ω1τ)

cos(ω2τ) sin(ω2τ)
cos(ω1τ) cos(ω2τ) cos(ω1τ) sin(ω2τ)
sin(ω1τ) cos(ω2τ) sin(ω1τ) sin(ω2τ)

cos2(ω2τ) cos(ω2τ) sin(ω2τ)
sin(ω2τ) cos(ω2τ) sin2(ω2τ)

 dτ

=
T

2


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3.36)

Substituting (3.36) and (3.16) into (3.35) leads to

∫ t+T

t
ψ1(τ)ψ

T
1 (τ)dτ

=
T

2


2|P1(j0)|2 0 0 0 0

0 |P1(jω1)|2 0 0 0
0 0 |P1(jω1)|2 0 0
0 0 0 |P1(jω2)|2 0
0 0 0 0 |P1(jω2)|2

 , (3.37)

which is positive definite since it is a diagonal matrix with positive elements on the

diagonal. Hence, ψ1(t) is persistently exciting. Finally, quoting Theorem 3.1, one

concludes that θ̂(t) in (3.34) converges to θ exponentially. End of proof.

Remark 3.3 : It is interesting to know if it is possible to estimate all the coefficients

in the infinite-term Fourier series of the reference input d1(t). Equation (3.37) in

the proof of Lemma 3.3 gives a negative answer to this question. The reason is that

P1(s) = C(sI − A)−1B is strictly proper, and hence P1(jωN) in (3.37) approaches

zero as N approaches infinity. As a result, the diagonal matrix in (3.37) approaches

singular as N approaches infinity, and hence the regressor ψ1(t) no longer satisfies

the persistent excitation condition. Without the persistent excitation condition, the

gradient algorithm can not guarantee convergence of θ̂(t) to θ. For this reason, one
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”must” use the finite series approximation instead of the infinite Fourier series in

the disturbance estimation process.

The proposed control u(t) is then set to be

u(t) = −d̂1(t) = −φT (t)θ̂(t). (3.38)

Since θ̂(t) converges to θ according to Lemma 3.3, one has

u(t) + d1(t) = φT (t)
(
−θ̂(t) + θ(t)

)
,

converges to zero which achieves tracking of the given reference r(t) in the face of

unknown disturbance d(t). The result is summarized in the theorem below.

Theorem 3.4 : Under Assumptions A3.1, A3.2, and A3.3, the proposed control

u(t) in (3.38) and (3.34) drives the system output y(t) to track exponentially the

periodic reference r(t) despite the existence of unknown periodic disturbance d(t).

Remark 3.4 : Even though there is a small error d̃1(t) = d1(t)−φT (t)θ between the

finite series approximation φT (t)θ and the infinite Fourier series d1(t), this approxi-

mation error d̃1(t) approaches zero as N approaches infinity according to Theorem

2.1. Therefore, the small error d̃1(t) will not create problems in the reference input

estimation process in Theorem 3.4. The reason is as follows. Denote the estimation

error θ̃(t) = θ−θ̂(t). Using (3.24), the update law (3.34) results in an error dynamics

˙̃θ(t) = −γ ψ1(t)ψ
T
1 (t)θ̃(t)− γ ψ1(t)P1(s)d̃1(t).

Since the error dynamics (3.3) of the gradient algorithm is exponentially stable, small

additive error d̃1(t) will only create small estimation bias. The final disturbance

estimate d̂1(t) will only be minutely biased from the equivalent disturbance d1(t) for

sufficiently large N .

Notice again that the proposed adaptive feedfoward cancellation control in

(3.38) and (3.34) is independent of the system matrices G and J in (3.6). In other
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words, no matter where the disturbance comes into the system, the proposed control

remains the same. This is shown for the first time in the literature, and it justifies

previous AFC designs in which the disturbances are mostly assumed to enter the

system at the control input point, even though in reality it is not the case.

Example 3.2: Consider an open-loop stable system (3.6) with the input-output

description as in (3.8), where the plant transfer function

P1(s) =
(s+ 6)(s− 4)

(s+ 2)(s+ 3)(s+ 4)
, and P2(s) =

(s+ 1)(s− 1)

(s+ 2)(s+ 3)(s+ 4)
,

and the unknown periodic disturbance

d(t) =


8
T
t, 0 ≤ t < T

4

2, T
4
≤ t < 3T

4

8− 8
T
t, 3T

4
≤ t < T

, (3.39)

with a period T = 10 seconds as shown in Figure 3.10. Note that both transfer

functions above are non-minimum phase (have unstable zeros). The system output

y(t) is required to track a periodic reference

r(t) =

{
−3 + 12

T
t, 0 ≤ t < T

2

9− 12
T
t, T

2
≤ t < T

. (3.40)

In the adaptive estimation algorithm (3.34), one sets N = 4; in other words,

there are 2N + 1 = 9 terms in the finite series approximation of the periodic d1(t).

The adaptation gain is set to be γ = 0.45. Figure 3.11 shows the periodic reference

r(t) (dotted line) and the system output y(t) (solid line). It shows that almost

perfect tracking is achieved except those high frequency components which are un-

modeling residual terms. The root mean square tracking error at 70s ≤ t ≤ 100s

is 0.0697. The simulation study shows that if the number of terms 2N + 1 in the

finite series approximation of d1(t) is increased, the tracking error can be further

reduced. Finally, Figure 3.12 shows the time history of control input u(t), which

remains uniformly bounded even though the system is non-minimum phase.
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Figure 3.10: Time history of periodic disturbance d(t)
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Figure 3.11: Trajectory of the reference signal r(t) and the output y(t)



Chapter 3. AFC Control 41

0 25 50 75 100
-4

-2

0

2

4

 time (seconds)

Figure 3.12: Trajectory of the control input u(t)

3.5.2 LS Based AFC

Although, in previous subsection, the gradient algorithm was used in our proposed

control, any identification algorithms based on the new linear regression form (3.24)

can also be done well. Therefore, we will introduce another kind of common method,

that is least-squares (LS)[47]. Based on (3.24), the LS algorithm in (3.4) suggests

the following update law for the estimated θ̂(t),

˙̂
θ(t) = γΩ(t)ψ1(t)

(
e(t)− P1(s)u(t)− ψT

1 θ̂(t)
)
, θ̂ ∈ R2N+1, (3.41)

Ω̇(t) = −γ
(
−ηΩ(t) + Ω(t)ψ1(t)ψ

T
1 (t)Ω(t)

)
, Ω ∈ R(2N+1)×(2N+1), (3.42)

where the adaptation gain γ > 0 is the design parameter which can be arbitrary

chosen, the matrix Ω is called covariance matrix and acts in the update law of θ̂

as a time-varying directional adaptation gain, and η > 0 being a forgetting factor

prevents that Ω becomes arbitrarily small in some directions. The initial condition

of the matrix Ω must be Ω(0) > 0.
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Theorem 3.5 : Under Assumptions A3.1, A3.2, and A3.3, the proposed control

u(t) in (3.38) and (3.41) drives that the output error e(t) in (3.20) converges to zero

exponentially despite the existence of unknown periodic disturbance d1(t).

Proof: Denote the estimation error θ̃(t) = θ − θ̂(t). Using (3.24), the update law

(3.41) results in the parameter error dynamics

˙̃θ(t) = −γΩ(t)ψ1(t)ψ
T
1 (t)θ̃(t).

Define a Lyapunov function V = θ̃T Ω−1θ̃. The change rate of V along the above

parameter error dynamics satisfies

V̇ (t) = 2θ̃T Ω−1
(
−γΩ(t)ψ1(t)ψ

T
1 (t)θ̃(t)

)
+ θ̃T Ω̇−1θ̃.

Using Ω̇−1 = −Ω−1Ω̇Ω−1 and (3.42), V̇ becomes

V̇ (t) = −γ
(
ψT

1 (t)θ̃(t)
)2
− γηV (t).

Due to V̇ < 0, this implies that V (t) and hence θ̃(t) decay to zero exponentially.

One thus proves that the system (3.20) is globally exponentially stable. End of

proof.

It is important to note that the above theorem shows that the proposed LS

based AFC can obtain an arbitrary fast convergence rate if γ is set sufficiently large.

The following simulations mainly test the feasibility and convergence rate of the

proposed LS based AFC control. Besides, when the direction of both disturbance

and control are same, the following example also shows the proposed AFC can deal

with the disturbance with time-varying frequency.

Example 3.3: In this example, a time-varying periodic disturbance rejection prob-

lem will be examined. Consider an open-loop stable system (3.20), where the plant

transfer function

P1(s) =
(s+ 6)(s− 4)

(s+ 2)(s+ 3)(s+ 4)
,
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and the unknown periodic disturbance

d1(t) = 3 sin(α(t))− 2 cos(2α(t)),

α(t) = t+ sin(0.5πt),

in which α is an angle displacement with time-varying frequency.
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Figure 3.13: Output error e(t)

In the LS algorithm (3.41), one sets N = 2; in other words, there are 2N+1 = 5

terms in the finite series approximation of the periodic d1(t). The adaptation gain,

forgetting factor and initial covariance matrix are set to be γ = 50, η = 10−5 and

Ω(0) = I respectively. Figure 3.13 shows the output error e(t). It is seen that time-

varying periodic disturbance is almost rejected completely. The root mean square

output error at 70s ≤ t ≤ 100s is 0.0015. Figure 3.14 shows the disturbance d1(t)

(dotted line) and the estimated disturbance d̂1(t) (solid line). Since both signals

are almost overlapping, it shows that LS algorithm performs well. The root mean

square estimation error of d1 − d̂1 at 70s ≤ t ≤ 100s is 0.0022. Finally, Figure 3.15

shows the time history of the parameter estimation θ̂. It shows that the estimation

approaches true parameter even though the frequency of disturbance is time-varying.
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Figure 3.14: Trajectory of the disturbance d1(t) and estimated disturbance d̂1(t)
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Figure 3.15: Trajectory of the parameter estimation θ̂(t)
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Example 3.4: Consider the same system as in Example 3.3. The adaptive control

law is as in Example 3.3 except the adaptation gain γ is chosen as γ = 5000.

Figure 3.16 shows the output error e(t). The root mean square output error at

70s ≤ t ≤ 100s is 6.1904−5. Figure 3.17 shows the disturbance d1(t) (dotted line)

and the estimated disturbance d̂1(t) (solid line). The root mean square estimation

error of d1 − d̂1 at 70s ≤ t ≤ 100s is 9.7019−5. Obviously, the root mean square

of e and d1 − d̂1 is smaller than those in Example 3.3; and further, comparing with

Figure 3.13 and Figure 3.14, Figure 3.16 and Figure 3.17 show more fast convergence

rate. Consequently, according to the simulation result, one can conclude that the

proposed LS based AFC has an arbitrary convergence rate.
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 time (seconds)

Figure 3.16: Output error e(t)
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Figure 3.17: Trajectory of the disturbance d1(t) and estimated disturbance d̂1(t)

3.6 New AFC Design for Open-Loop Unstable Sys-

tem

When the open-loop system matrix A is unstable, the AFC controller introduced

in the previous section no longer guarantees a bounded control. The reason is that

P1(s)φ(t) in (3.22) becomes unbounded since P1(s) = C(sI − A)−1B is unstable in

this case. In this section, the key difference for the AFC design is that one needs

a stabilizing controller to stabilize the system firstly when the open-loop system is

unstable.

Therefore, the control input u(t) in (3.6) becomes

u(t) = v(t)−Kx̂(t), (3.43)

where v is a feedforward control for cancelling the periodic disturbance d(t) or/and

tracking the periodic reference r(t), and −Kx̂(t) is a stabilizing control in which K

is a feedback gain, and x̂ is an estimated state obtained from the following state
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observer

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)), (3.44)

in which L is an observer gain. Denote the state error x̃ = x − x̂. Using (3.6), the

state observer (3.44) results in the state error dynamics

˙̃x(t) = (A− LC)x̃(t) +Gd(t)− LJd(t). (3.45)

The corresponding input-output description from d to x̃ is expressed as

x̃(t) = Wo(s)d(t) (3.46)

where

Wo(s) = (sI − A+ LC)−1(G− LJ).

Wo(s) is a stable transfer matrix since A − LC is a stable matrix by design of L.

Hence the state error is a bounded limit. Using (3.43), and (3.44), system equation

(3.6) can be rewritten as

ẋ(t) = (A−BK)x(t) +BKx̃(t) +Bv(t) +Gd(t)

= (A−BK)x(t) + (BKWo(s) +G) d(t) +Bv(t). (3.47)

where the last equality results from (3.46). Denote

P1(s) = C(sI − A+BK)−1B, (3.48)

and

P2(s) = C(sI − A+BK)−1(G+BKWo(s)) + J, (3.49)

where P1(s) and P2(s) are all stable transfer functions since A−BK is a stable matrix

by design of K. Furthermore, the system output y(t) in (3.6) can be expressed as

(3.8). Note that P1(s) is different from one which is in (3.34) since P1(s) in (3.48)
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contains feedback control. Using the similar to open-loop stable system operating

in previous section, one has the same as the update law defined in (3.34) for the

estimated θ̂u, that is

˙̂
θ(t) = γψ1(t)(e(t)− P1(s)u(t)− ψT

1 θ̂(t)), θ̂ ∈ R2N+1. (3.50)

Therefore, the proposed AFC control is also set to be

v(t) = −φT (t)θ̂.

It is important to note that when the system matrix A is stable, the equation (3.48)

and (3.49) are equivalent to (3.32) and (3.33) respectively due to the stabilizing

control gain K = 0.

Example 3.5: Consider an open-loop unstable system (3.6) with system matrices

A =

 −2.9 1 0
−1.7 0 1

0.2 0 0

 , B =

 0
1

−5

 , G =

 0
1

−2

 , C =
[

1 0 0
]
, J = 0,

x(0) = [1, 1, 1]T , and the unknown periodical disturbance is the same as (3.39) that

was in Example 3.2. The system output y(t) is required to track a periodic reference

r(t) in (3.40). The input-output description of the system is

y(t) =
s− 5

(s+ 1)(s+ 2)(s− 0.1)
u(t) +

s− 2

(s+ 1)(s+ 2)(s− 0.1)
d(t).

Note that the above transfer function from both u and d to y are unstable and

non-minimum phase (has unstable zeros).

In the adaptive estimation algorithm (3.34), one also sets N = 4. The adap-

tation gain, observer gain and feedback gain, respectively, are set to be γ = 5,

L = [ 3.1 9.3 6.2 ]T which makes the observer (3.44) have closed-loop poles

λ(A − LC) = {−1,−2,−3}, K = [ 0.8855 −1.1449 −1.4490 ] which makes the

plant (3.48) have closed-loop poles λ(A− BK) = {−2,−3,−4}. Figure 3.18 shows

the reference signal r(t) (dotted line) and the system output y(t) (solid line). It is
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Figure 3.18: Trajectory of the reference signal r(t) and the output y(t)
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Figure 3.19: Trajectory of the control input u(t)
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seen that almost perfect tracking is achieved except at high frequency region. The

root mean square tracking error at 70s ≤ t ≤ 100s is 0.0680. Figure 3.19 shows the

time history of control input u(t), which remains uniformly bounded even though

the system is unstable and non-minimum phase.

3.7 Robustness Analysis

It is interesting to study if the adaptive feedforward control proposed in the

previous section is robust with respect to system uncertainties such as un-modelled

dynamics. The purpose of this section is to show that the proposed adaptive feedfor-

ward control is indeed robust with respect to un-modelled dynamics if the adaptive

gain γ in (3.34) is small.

To study robustness, the transfer function P1(s) in the system representation

e(t) = P1(s)[u(t) + d1(t)], (3.51)

is assumed to have the form

P1(s) = P̄1(s) + ∆(s), and ‖∆(s)‖∞ < β, (3.52)

where P̄1(s) is the nominal system transfer function and ∆(s) is an additive un-

modelled dynamics. One assumes that both P̄1(s) and ∆(s) are stable. Besides,

we also want to know an un-modelled residual term d̃1(t), measurement noise ξ(t),

the exponentially decaying term ε(t) in (3.22), and a bounded aperiodic input uf (t),

which was concerned in [3], impact on the system stability. Therefore, we set

u(t) = uf (t)− φT (t)θ̂, (3.53)

d1(t) = φT (t)θ + d̃1(t), (3.54)

P̄1(s)φ
T (t)θ = ψ̄T

1 (t)θ + ε(t), (3.55)
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where ψ̄1(t) is equivalent to P̄1(s)φ(t) arriving at steady state, that is

ψ̄1(t) = P̄1(s)φ(t)
∣∣∣
t→∞

=



P̄1(j0)
|P̄1(jω1)| cos(ω1t+ 6 P̄1(jω1))
|P̄1(jω1)| sin(ω1t+ 6 P̄1(jω1))

...
|P̄1(jωN)| cos(ωN t+ 6 P̄1(jωN))
|P̄1(jωN)| sin(ωN t+ 6 P̄1(jωN))



=



p̄0,c

p̄1,c cos(ω1t)− p̄1,s sin(ω1t)
p̄1,s cos(ω1t) + p̄1,c sin(ω1t)

...
p̄N,c cos(ωN t)− p̄N,s sin(ωN t)
p̄N,s cos(ωN t) + p̄N,c sin(ωN t)


, (3.56)

in which

p̄k,c = |P̄1(jωk)| cos(6 P1(jωk)),

p̄k,s = |P̄1(jωk)| sin( 6 P1(jωk)),

p̄0,c = P̄1(j0).

Figure 3.20 shows the robust AFC control system structure.

The proposed adaptive law (3.34) is to estimate θ in the periodic disturbance

d1(t) in (3.54). When there is un-modelled dynamics and measurement noise, one

must add noise ξ and use the nominal transfer function P̄1(s) instead of the practical

transfer function P1(s) in the adaptive law. Hence, the adaptive law (3.34) becomes,

˙̂
θ(t) = γψ̄1(t)

(
e(t)− ξ(t)− P̄1(s)u(t)− ψ̄T

1 (t)θ̂(t)
)
. (3.57)

Using (3.51)—(3.54), the equation (3.57) can be written as

˙̂
θ(t) = γψ̄1(t)

(
P̄1(s)(u(t) + φT (t)θ + d̃1(t)) + ∆(s)(u(t) + d1(t))−

ξ(t)− P̄1(s)u(t)− ψ̄T
1 (t)θ̂(t)

)
= γψ̄1(t)

(
ψ̄T

1 (t)(θ − θ̂(t)) + ε(t) + P̄1(s)d̃1(t)+

∆(s)(u(t) + d1(t))− ξ(t)) , (3.58)
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Figure 3.20: AFC control system under model with uncertainty

where the last equality results from (3.55). If one denotes θ̃(t) = θ − θ̂(t),

ũ(t) = u(t) + d1(t) = uf (t) + d̃1(t) + φT (t)θ̃(t), (3.59)

ũF (t) = ψ̄T
1 (t)θ̃(t), (3.60)

h(t) = ũF (t) + P̄1(s)d̃1(t) + ∆(s)ũ(t) + ε(t)− ξ(t), (3.61)

where the last equality in (3.59) results from (3.53) and (3.54), the adaptive law

(3.58) results in an error dynamics

˙̃θ(t) = −γψ̄1(t)h(t). (3.62)

Substituting the integration of (3.62) into (3.59), the control error ũ can be

written as

ũ(t) = uf (t) + d̃1(t) + φT (t)
∫ t

0
−γψ̄1(τ)h(τ)dτ

Substituting (3.56) into the above equation,

ũ(t) = uf (t) + d̃1(t)−
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γ
∫ t

0

(
p̄0,c +

N∑
i=1

p̄i,c cosωi(t− τ) + p̄i,s sinωi(t− τ)

)
h(τ)dτ

= uf (t) + d̃1(t)− Γ(s)h(t), (3.63)

where the term of integral expresses a convolution integral, that is(
p̄0,c +

N∑
i=1

p̄i,c cosωit+ p̄i,s sinωit

)
∗ h(t),

and Γ is defined as

Γ(s) = γ · L
{
p̄0,c +

N∑
i=1

p̄i,c cosωit+ p̄i,s sinωit

}

=
γp̄0,c

s
+

N∑
i=1

γ
p̄i,cs+ p̄i,sωi

s2 + ω2
i

, (3.64)

in which the sign, L, is denoted as Laplace operator. Using (3.56) and (3.62),

equation (3.60) also has a convolution integral expression, that is

ũF (t) = −γ
∫ t

0

(
P̄ 2

1 (j0) +
N∑

i=1

P̄ 2
1 (jωi) cosωi(t− τ)

)
h(τ)dτ

= −ΓF (s)h(t), (3.65)

where

ΓF (s) = γ · L
{
P̄ 2

1 (j0) +
N∑

i=1

P̄ 2
1 (jωi) cosωit

}

=
γP̄ 2

1 (j0)

s
+

N∑
i=1

γP̄ 2
1 (jωi)s

s2 + ω2
i

. (3.66)

Finally, combining (3.61), (3.63) with (3.65), one obtains

ũ =
1

1 +Kγ(s)∆(s)

(
uf + (1−Kγ(s)P̄1(s))d̃1 +Kγ(s)(ξ − ε)

)
, (3.67)

where the internal model control Kγ(s) is

Kγ(s) =
Γ(s)

1 + ΓF (s)
. (3.68)
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Figure 3.21: Feedback connection

The robust stability problem in (3.67) becomes that of proving 1+Kγ(s)∆(s) 6= 0 for

s in the right-half plane (RHP). The robustness study is in fact a stability problem of

the feedback structure in Figure 3.21. In Figure 3.21, the feedback block is stable by

hypothesis, and the feedforward block is stable if only 1/ (1 + ΓF (s)) is stable (note

that both Γ(s) and ΓF (s) have the same denominator). The next lemma proves by

mathematical induction that 1/ (1 + ΓF (s)) is stable.

Lemma 3.6 : If the nominal frequency response P̄1(jωi) 6= 0 for i = 0, 1, . . . , N ,

the transfer function S(s) = 1/ (1 + ΓF (s)) is stable.

Proof: Proving that S(s) is stable is equivalent of proving all zeros of 1+ΓF (s) lie in

the left-half complex plane (LHP). One will prove by mathematical induction that

in fact all zeros of 1 + Γk
F (s) lie in LHP for all k = 0, 1, · · · , N , where

Γk
F (s) =

γ′0
s

+
k∑

i=1

γ′is

s2 + ω2
i

=
k∑

i=0

γ′is

s2 + ω2
i

=
Bk(s)

Ak(s)
, (3.69)

in which ω0 = 0, γ′0 = γ|P̄1(j0)|2, γ′i = γ|P̄1(jωi)|2, and the summation is from 0 to

k. Note that ΓF (s) = ΓN
F (s).

When one substitutes s = jΩ in Ak and Bk in (3.69), one obtains

Ak(jΩ) = s
k∏

i=1

(s2 + ω2
i )

∣∣∣∣∣
s=jΩ

= jXk(Ω),

Bk(jΩ) = γ′0

k∏
i=1

(s2 + ω2
i ) +

k∑
m=1

γ′ms
2

k∏
i6=m

(s2 + ω2
i )

∣∣∣∣∣∣
s=jΩ

= Yk(Ω),
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where both Xk and Yk are real numbers. Since 1 + Γk
F (s) = Qk(s)/Ak(s), where the

numerator is given by

Qk(s) = Ak(s) +Bk(s),

the robust stability problem becomes that of proving Qk(s) 6= 0 for s in the RHP.

In the sequel, one will use mathematical induction to establish the proof.

When k = 0, A0(s) = s, B0(s) = γ′0, one has

Q0(s) = A0(s) +B0(s) = s+ γ′0.

Obviously, the root ofQ0(s) lies in the LHP (γ′i = γ|P̄1(jωi)|2 > 0), henceB0(s)/Q0(s)

is analytic in the closed RHP. Quoting maximum modulus principle [48], the maxi-

mum of the modulus of B0(s)/Q0(s) takes place on the imaginary axis as below

∥∥∥∥∥B0(s)

Q0(s)

∥∥∥∥∥
∞

= sup
Ω

∣∣∣∣∣B0(jΩ)

Q0(jΩ)

∣∣∣∣∣ = sup
Ω

∣∣∣∣∣∣ Y0(Ω)√
X2

0 (Ω) + Y 2
0 (Ω)

∣∣∣∣∣∣

< 1, Ω 6= ω0

= 1, Ω = ω0 = 0
.(3.70)

One can then follow the induction procedure to assume that (3.70) holds for k =

0, 1, · · · , N − 1. Hence, all roots of QN−1(s) lie in the LHP and the following is true,

∥∥∥∥∥BN−1(s)

QN−1(s)

∥∥∥∥∥ = sup
Ω

∣∣∣∣∣BN−1(jΩ)

QN−1(jΩ)

∣∣∣∣∣
∞


< 1, Ω 6= ωi, i = 0, 1, . . . , N − 1

= 1, Ω = ωi, i = 0, 1, . . . , N − 1
. (3.71)

Now, one needs to verify that (3.71) also holds for k = N . When k = N , using

(3.69), one has

BN(s)

AN(s)
=
BN−1(s)

AN−1(s)
+

γ′Ns

s2 + ω2
N

=
BN−1(s) (s2 + ω2

N) + AN−1(s)γ
′
Ns

AN−1(s) (s2 + ω2
N)

.

Thus,

QN(s) = AN(s) +BN(s)

= AN−1(s)
(
s2 + ω2

N

)
+BN−1(s)

(
s2 + ω2

N

)
+ AN−1(s)γ

′
Ns

= (AN−1(s) +BN−1(s))
(
s2 + γ′Ns+ ω2

N

)
− γ′NsBN−1(s)

= QN−1(s)
(
s2 + γ′Ns+ ω2

N

)(
1− γ′NsBN−1(s)

QN−1(s) (s2 + γ′Ns+ ω2
N)

)
.(3.72)
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Using the induction hypothesis, (3.71), and according to maximum modulus prin-

ciple since both 1/QN−1 and 1/(s2 + γ′Ns + ω2
N) are analytic over the closed RHP,

one has∥∥∥∥∥ γ′NsBN−1(s)

QN−1(s) (s2 + γ′Ns+ ω2
N)

∥∥∥∥∥
∞
≤
∥∥∥∥∥BN−1(s)

QN−1(s)

∥∥∥∥∥
∞

∥∥∥∥∥ γ′Ns

(s2 + γ′Ns+ ω2
N)

∥∥∥∥∥
∞
< 1, (3.73)

where one has used (3.71), ‖γ′Ns/ (s2 + γ′Ns+ ω2
N)‖∞ < 1 for all s 6= jωN and = 1

for s = jωN , and ‖BN−1(Ω)/QN−1(Ω)‖∞ and ‖γ′Ns/ (s2 + γ′Ns+ ω2
N)‖∞ equal to 1

at different frequencies to conclude the inequality in (3.73) .

Since no roots of QN−1(s) lie in the RHP from the induction hypothesis and so

do the roots of (s2 + γ′Ns+ ω2
N), one can conclude from (3.72) and (3.73) that no

roots of QN(s) lie in the RHP. End of proof.

Therefore, using (3.67), one rewrites output error (3.51) as

e(t) = P1(s)ũ(t)

=
P1(s)

1 +Kγ(s)∆(s)

(
uf (t) + (1−Kγ(s)P̄1(s))d̃1(t) +Kγ(s)(ξ(t)− ε(t))

)
.(3.74)

In (3.74), we can replace d̃1 with d1 since the difference between d1 and d̃1, that is

φT (t)θ, is eliminated by 1−Kγ(s)P̄1(s) = 0 at the frequencies ωi where i = 0, 1, ..., N .

Figure 3.22 shows the LTI control system is equivalent to the AFC control system

in Figure 3.20.

Recall the hypothesis that the feedback block in Figure 3.21 satisfies ‖∆(s)‖∞ <

β. Note also that if the adaptive gain γ is sufficiently small, both Γ(s) in (3.64)

and ΓF (s) in (3.66) will have sufficiently small gains, and so does the feedfoward

block transfer function Kγ(s) = Γ(s)/(1 + ΓF (s)). One can then quote the small

gain theorem to conclude stability of the feedback structure in Figure 3.21.

Obviously, according to the transfer function from noise ξ(t) to output error

e(t), that is P1(s)Kr(s) in (3.74), we can find it has low pass property and thus has

an anti-noise ability. Besides, for the small additive error d̃1(t), the equation (3.74)
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Figure 3.22: LTI control system which is equivalent to Figure 3.20

shows it will only create small output error e(t). Fortunately, by using artificial tak-

ing sufficiently large N to approximate the periodic signal or the low-pass properties

of physical systems, we can often make the additive error d̃1 be small. This conclu-

sion is a supplementary explanation in the result of Remark 3.4 which discussed in

Section 3.5. Furthermore, the equation (3.74) also shows that the bounded aperiodic

input uf and the decaying term ε(t) do not influence the stability of the proposed

AFC control. And the decaying term will exponentially converge to zero as t→∞.

So, the following theorem will no longer consider the bounded aperiodic input uf ,

the decaying term ε, the measurement noise ξ and the disturbance modelling error

d̃1 influence on the output error.

Theorem 3.7 : Given any stable additive un-modelled dynamics ∆(s) satisfying

‖∆(s)‖∞ < β, if the adaptive gain γ in the proposed adaptive law (3.57) is suffi-

ciently small such that

‖Kγ(s)‖∞ <
1

β
,

then the proposed control u(t) in (3.38) drives that the output error e(t) in (3.51)

goes to zero despite the existence of unknown periodic disturbance d1(t).
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Proof: As explained before the theorem, the internal state in Figure 3.21 decays to

zero exponentially according to the small gain theorem. Therefore, the estimation

disturbance d̂1(t) converges to the ideal disturbance d1(t) which achieves disturbance

rejection in the face of unknown disturbance d1(t) and un-modelled dynamics ∆(s).

End of proof.

Next, we need to check the internal state of the system is stable whether or

not. Therefore, the update law (3.57) is re-written as

˙̂
θ(t) = −γψ̄1(t)ψ̄

T
1 (t)θ̂(t) + γψ̄1(t)

(
e(t)− ξ(t)− P̄1(s)u(t)

)
. (3.75)

Based on ψ1(t) being persistently exciting, Theorem 3.1 guarantees the unperturbed

update law,

˙̂
θ(t) = −γψ̄1(t)ψ̄

T
1 (t)θ̂(t), (3.76)

is an exponential convergence. Therefore, from converse theorem of Lyapunov (see

[47], Theorem 1.5.1 and Theorem 5.3.1), equation (3.76) exists a function V (t, θ̂),

and some strictly positive constants κ1, κ2, κ3, and κ4, such that

κ1‖θ̂‖2 ≤ V (t, θ̂) ≤ κ2‖θ̂‖2, (3.77)

dV (t, θ̂)

dt

∣∣∣∣∣
(3.76)

≤ −κ3‖θ̂‖2, (3.78)

∣∣∣∣∣∂V (t, θ̂)

∂θ̂

∣∣∣∣∣ ≤ κ4‖θ̂‖. (3.79)

Consider the same function to study perturbed update law (3.75), inequalities (3.77)

and (3.79) still hold, while (3.78) is modified, since the derivative is now taken along

trajectories of (3.75) instead of (3.76). Therefore, one has

dV (t, θ̂)

dt

∣∣∣∣∣
(3.75)

=
∂V (t, θ̂)

∂t
+
∂V (t, θ̂)

∂θ̂

˙̂
θ

∣∣∣∣
(3.75)

=
dV (t, θ̂)

dt

∣∣∣∣∣
(3.76)

− ∂V (t, θ̂)

∂θ̂

˙̂
θ
∣∣∣∣
(3.76)

+
∂V (t, θ̂)

∂θ̂

˙̂
θ
∣∣∣∣
(3.75)

=
dV (t, θ̂)

dt

∣∣∣∣∣
(3.76)

+
∂V (t, θ̂)

∂θ̂
γψ̄1(t)

(
e(t)− ξ(t)− P̄1(s)u(t)

)
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≤ −κ3‖θ̂‖2 + κ4‖θ̂‖
∥∥∥γψ̄1(t)

(
e(t)− ξ(t)− P̄1(s)u(t)

)∥∥∥
∞

≤ −κ3‖θ̂‖
(
‖θ̂‖ − µ

)
, (3.80)

where µ = κ4

∥∥∥γψ̄1(t)e(t)− ξ(t)− P̄1(s)u(t)
∥∥∥
∞
/κ3. According to Theorem 3.7, one

knows that e(t) in (3.74) and ũ(t) in (3.67) are bounded. Therefore, one concludes

from (3.80) that θ̂ is bounded, and further, the overall system is stable.

From equation (3.74), one knows that the system convergence rate is dependent

on the transfer function Kγ(s). Therefore, according to the loop gain, ΓF (s), one can

use root locus technique to decide how large γ has better performance. Figure 3.23

shows the root-locus diagram of ΓF that is AFC system in Example 3.2. And Table

3.1 shows its different combinations of closed-loop poles versus adaptation gain γ.

Figure 3.23 and Table 3.1 show, under ∆ = 0, the proposed AFC is a stabilizing

controller in the whole system, and has maximum convergence rate appearing at the

neighbor area of γ = 0.496.
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Figure 3.23: Root-locus of ΓF (s)
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Table 3.1: Closed-loop poles of ΓF (s) versus adaptation gain γ
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Example 3.6: Consider the same system as in Example 3.2, except that the plant

transfer function P1(s) contains an uncertainty ∆(s), where

∆(s) =
−0.5

s+ 1

(s+ 6)(s− 4)

(s+ 2)(s+ 3)(s+ 4)
.

The infinity norm of the uncertainty satisfies ‖∆‖∞ < 0.5. The adaptive control

law is as in Example 3.2 except the adaptation gain γ is chosen as γ = 0.15 so that

the robust stability condition in Theorem 3.7 is satisfied : ‖−Γ(s)/(1 + ΓF (s))‖∞ =

1.9531 < 2. Figure 3.24 shows that the output y achieves almost perfect tracking

in spite of the existence of system uncertainty ∆(s). However, note that in order to

satisfy the robust stability condition, the adaptation gain γ can not be too large.

As a result, the convergence rate of y(t) towards r(t) becomes slow.
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Figure 3.24: Trajectory of r(t) and y(t) under model with uncertainty
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3.8 Adaptive Disturbance Estimation

In some applications, it may be desirable to monitor and track the time history

of the unknown disturbance d(t). Hence, the goal of this section is to construct

an adaptive disturbance estimator for the system subjects to unknown periodic

disturbances. The first step is to transform the system equation (3.6) to input-

output description. Therefore, for obtaining a stable transfer function, rewrite the

system equation (3.6) as

ẋ(t) = Ax(t) +Bu(t) +Gd(t)± Fy(t)

= (A− FC)x(t) +Bu(t) + (G− FJ)d(t) + Fy, (3.81)

where F ∈ Rn is any feedback gain that stabilizes the matrix A−FC. The observ-

ability of (A,C) ensures the existence of such F . Denote

W1(s) = C(sI − A+ FC)−1B,

W2(s) = C(sI − A+ FC)−1(G− FJ) + J,

W3(s) = C(sI − A+ FC)−1F, (3.82)

where W1(s),W2(s) and W3(s) are all stable transfer functions since A − FC is a

stable matrix by design of F . The state space equation (3.81) has the following

input-output representation,

y(t)−W1(s)u(t)−W3(s)y(t) = W2(s)d(t). (3.83)

The disturbance observer design in this section will be based on the above transfer

function representation of the system. Estimation of the periodic disturbance d

is equivalent to estimation of the unknown constant vector θd in (2.5). In order to

estimate θd, one needs a linear regression form in θd. This is obtained by substituting

(2.5) into (3.83),

y(t)−W1(s)u(t)−W3(s)y(t) = W2(s)
[
φT (t)θd

]
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= W2(s)
[
φT (t)

]
θd

= ψT
2 (t)θd + ε1(t), (3.84)

where ε1(t) is an exponentially decaying term and the regressor

ψ2(t) = W2(s)φ(t)|t→∞ , (3.85)

is bounded since φ(t) as defined in (2.3) is bounded and W2(s) is now a stable

transfer function. Since ε1 exponentially approaches to zero for sufficiently large t,

it does not affect the property of the identifier. The following derivation will neglect

it. Therefore, one represents (3.84) as

y(t)−W1(s)u(t)−W3(s)y(t) = ψT
2 (t)θd, (3.86)

Based on the linear regression form (3.86), the gradient algorithm in Theorem 3.1

suggests the following update law for the estimated θ̂d(t),

˙̂
θd(t) = γψ2(t)(y −W1(s)u(t)−W3(s)y(t)− ψT

2 (t)θ̂d(t)), (3.87)

where γ > 0 is the adaptation gain. Therefore the structure of the adaptive distur-

bance observer can be expressed as Figure 3.25. To show that ψ2(t) as defined in

(3.85) is persistently exciting, one needs another assumption.

Assumption A3.4 W2(jωk) 6= 0 for k = 0, 1, . . . , N where ωk = k · 2π/T , T is the

period of d(t), and W2(s) is as given in (3.82).

The proof of the following lemma is omitted since it is the same as the proof

of Lemma 3.3.

Lemma 3.8 : Under Assumption A3.4, ψ2(t) as defined in (3.85) is persistently

exciting.

Theorem 3.9 : Under Assumptions A3.1, A3.2, and A3.4, the disturbance estimate

d̂(t) = φT (t)θ̂d(t), (3.88)
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Figure 3.25: Adaptive Disturbance Estimation

where θ̂d(t) is from (3.87) and it converges to the true disturbance d(t) = φT (t)θd

exponentially.

Proof: Denote the estimation error θ̃d(t) = θd − θ̂d(t). Using (3.86), the update law

(3.87) results in an error dynamics

˙̃θd(t) = −γ ψ2(t)ψ
T
2 (t)θ̃d(t). (3.89)

Since ψ2(t) is proved to be persistently exciting in Lemma 3.8, Theorem 3.1 says

that the error dynamics (3.89) is exponentially stable. One then concludes that θ̃d(t)

converges to zero exponentially. In other words, the update law (3.87) guarantees

that the estimated θ̂d(t) exponentially converges to the true θd, and hence d̂(t) in

(3.88) exponentially tracks d(t) in (2.5). End of proof.
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Example 3.7: Consider an open-loop stable system (3.6) with system matrices

A =

 −6 1 0
−11 0 1
−6 0 0

 , B =

 0
1

−5

 , G =

 0
1

−2

 , C =
[

1 0 0
]
, J = 0,

x(0) = [1, 1, 1]T , and the unknown periodical disturbance

d(t) = 2 + 3 cos(0.4πt) + sin(πt).

0 25 50 75 100
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0
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Figure 3.26: Time history of the disturbance d(t)

In this simulation, one assumes u = 0. Figure 3.26 shows the time histories

of the true disturbance. For the adaptive disturbance observer design, one sets the

regressor φ(t) =
[

1 cos(0.4πt) sin(0.4πt) cos(πt) sin(πt)
]
, and the adaptation

gain γ = 30 in the gradient algorithm (3.87). Since the matrix A is stable, one sets

the feedback gain F = 0 and thus results the transfer function W3(s) = 0 in (3.83).

Figure 3.27 shows the disturbance estimation error |d(t) − d̂(t)|. For showing its

transient and steady state, the horizontal and vertical axis are plotted in the log

scale. The disturbance estimation error is found to have a very small root mean

square error, that is 1.9615× 10−8 at 700s ≤ t ≤ 1000s.
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Figure 3.27: Trajectory of the disturbance error |d(t)− d̂(t)|

Next, one proceeds to construct a robust observer that can accurately estimate

the system state x in (3.6) despite the existence of periodic disturbance d. Such

a robust observer can be easily obtained by employing the information of the dis-

turbance estimate d̂(t) in the observer design. In other words, one combines the

Luenberger observer with the adaptive disturbance estimator previously proposed

to come up with the following robust observer,

˙̂x(t) = Ax̂(t) +Bu(t) +Gd̂(t) + L(y(t)− Cx̂(t)− Jd̂(t)), (3.90)

where x̂(t) is an estimate of x(t), L ∈ Rn is the observer gain chosen to stabilize the

matrix A−LC, and d̂(t) is as given by Theorem 3.9. Since the disturbance estimate

d̂(t) converges exponentially to the truce disturbance d(t) according to Theorem 3.9,

one can easily show that the above state estimate x̂(t) converges to the true system

state x(t) exponentially.

Theorem 3.10 : The state estimate x̂(t) from the robust observer (3.90) converges

to the true state x(t) exponentially.
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Example 3.8: Consider an open-loop unstable system (3.6) with system matrices

A =

 −2.9 1 0
−1.7 0 1

0.2 0 0

 , B =

 0
1
5

 , G =

 0
1

−2

 , C =
[

1 0 0
]
, J = 0,

x(0) = [1, 1, 1]T , and the unknown periodical disturbance

d(t) =


8
T
t, 0 ≤ t < T

4

2, T
4
≤ t < 3T

4

8− 8
T
t, 3T

4
≤ t < T

.

The disturbance d has a period T = 10 seconds. The input-output description of

the system is

y(t) =
s+ 5

(s+ 1)(s+ 2)(s− 0.1)
u(t) +

s− 2

(s+ 1)(s+ 2)(s− 0.1)
d(t).

Note that the above transfer function from d to y is unstable and non-minimum

phase (has unstable zeros).

In this simulation, one sets u = 0; hence, the system remains unstable and

the system state x explodes to infinity exponentially. Figure 3.28 shows the time

histories of the state. For the adaptive disturbance observer design, one chooses

N = 4 in (2.2); in other words, there are 2N + 1 = 9 terms in the finite series

approximation of the periodic disturbance d(t). One designs the feedback gain

F = [3.1, 9.3, 6.2]T such that λ(A−FC) = −1,−2,−3 in (3.81), and the adaptation

gain γ = 3 and in the gradient algorithm (3.87). For the robust observer design in

(3.90), one chooses the observer gain L = F . Figure 3.29 shows the time histories

of the true (dotted line) and estimated (solid line) disturbance. The disturbance

estimation error d(t) − d̂(t) is found to have a very small root mean square error

at 70s ≤ t ≤ 100s is 0.0358. Figure 3.30 shows the norm of state estimation error,

‖x(t) − x̂(t)‖, resulting from the proposed state observer (3.90). The root mean

square state estimation error at 70s ≤ t ≤ 100s is around 0.0440.
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Figure 3.28: Trajectory of the state x(t)
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Figure 3.29: Trajectory of the disturbance d(t) and the estimated d̂(t)
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Figure 3.30: Trajectory of the norm of state estimation error ‖x(t)− x̂(t)‖





Chapter 4

Disturbance Observer Based
Control

The goal of this dissertation is to develop a robust control to deal with exogenous

periodic disturbances. Among control methods of disturbance rejection, control

including the disturbance observer mechanism is an effective method for disturbance

rejection. In the two-degree-of-freedom (2-dof) controller structure, 1-dof is used to

design nominal feedback control for command input response, the other is designed

to obtain disturbance rejection. The benefit of this control mechanism is that the

disturbance observer design can be designed independently on the nominal feedback

controller without affecting the closed-loop system performance very much.

Besides, in contrast with those designs of AFC which is in Chapter 3, we may

want to ask how to speed up the convergence rate of AFC system. Although one

knows that the convergence rate of gradient based AFC control system is correlated

with adaptation gain γ, between of them are not proportional. So, we can not

adjust directly by γ. The only method is to utilize root locus technique to try to get

optimal gain γ. However, how to decide how large γ has better performance is still

hard. Therefore, the other goal of this chapter is to propose a new method being

different from AFC designs previously. The key difference compared with the AFC

proposed in previous chapters is that adaptation gain of scalar becomes vector.

71
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This chapter is constructed as follows. Firstly, Section 4.1 reviews disturbance

observer based control, which includes a conventional disturbance observer based

(DOB) control and an unknown input disturbance observer (UIDO). In Section 4.2,

a non-adaptive control, which is a new disturbance observer based control using

internal model principle, is established. Then, an expediting method of the AFC

control introduced in previous chapter will be presented in Section 4.3. Finally,

the robustness of the periodic disturbance observer based control with respect to

un-modelled dynamics is studied in Section 4.4.

4.1 Review of Disturbance Observer Based Con-

trol

In this section, one reviews two kinds of disturbance observer designs which are

the disturbance observer design and the unknown input disturbance observer design

respectively. The two disturbance observers estimate the equivalent disturbance

from the difference between the actual plant output and the nominal plant output.

The estimate is then inversely added at the input of the plant in order to compensate

for the disturbance effect on the output. Such designed control is called disturbance

observer based control, which is the 2-dof control.

4.1.1 Disturbance Observer Based Control

The objective of this section is to construct a disturbance observer for the LTI

system of (3.20). The disturbance observer structure that originated from the 2-

dof control structure is depicted in Figure 4.1 [49, 19]. In Figure 4.1, P̄1(s), ξ

and d̂1 are, respectively, a nominal plant, a measurement noise and an estimate

of the disturbance d1, uf is a nominal feedback control which is designed under

disturbance free and Q(s) is designed as a low pass filter in order to make the

estimated disturbance observer be realized. Note that, in Figure 4.1, it has assumed
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Figure 4.1: Disturbance observer based control

that the system is minimum phase and the plant output signal is located at low

frequency range so that the disturbance observer can be constructed and can further

obtain a satisfying disturbance attenuation.

From this figure, one shows the estimate of disturbance

d̂1(t) = P̄ 1
−1(s) (e(t)− ξ(t))− u(t)

= P̄ 1
−1(s) [P1(s) (u(t) + d1(t))− ξ(t)]− u(t). (4.1)

Obviously, if one knows the exactly plant model, i.e. P̄1 = P1, and assumes mea-

surement noise free, the above equation shows the disturbance estimate d̂1 equal

to the true disturbance d1. However, since the inverse nominal plant model, P̄−1
1 ,

is non-proper, the disturbance estimate can not be realized. Hence, the low pass

filter Q is introduced to make the disturbance observer be proper. Consequently,

the output error of the disturbance observer can be derived as

e(t) = Heuf
(s)uf (t) +Hed1(s)d1(t) +Heξ(s)ξ(t), (4.2)

where the transfer functions Heuf
(s), Hed1(s), and Heξ(s), respectively, are

Heuf
(s) =

P1(s)

1 +Q(s)P̄−1
1 (s)∆(s)

, (4.3)
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Hed1(s) =
P1(s)(1−Q(s))

1 +Q(s)P̄−1
1 (s)∆(s)

, (4.4)

Heξ(s) =
P1(s)P̄

−1
1 (s)Q(s)

1 +Q(s)P̄−1
1 (s)∆(s)

, (4.5)

in which ∆ = P1− P̄1 is an additive uncertainty. Assume that the nominal model of

the plant is correct, i.e. P̄1 = P1. Then the above transfer functions is simplified as

Heuf
(s) = P1(s), (4.6)

Hed1(s) = P1(s)(1−Q(s)), (4.7)

Heξ(s) = Q(s). (4.8)

Equation (4.6) shows the feedback control design is independent of the disturbance

observer design. Equation (4.7) and (4.8) show that the ability of disturbance and

noise attenuation are based on the design of Q(s). Therefore, for satisfying proper

condition and rejecting disturbance, Q(s) at low frequency range is designed as

Q ≈ 1. Besides, for rejecting noise, Q(s) at the high frequency range is designed as

Q ≈ 0.

The advantages of DOB control are that it is a 2-dof design and is a linear

control, making analysis easier, and that convergence is very rapid. Moreover, the

DOB control is robust to parameter uncertainty, it can deal with un-deterministic

disturbance and it can generate a minimum control force to attenuate disturbance.

However, the controlled system must be a minimum phase and can not easily cope

with the disturbance of high frequency components. The other disadvantage is that

DOB can only achieve disturbance attenuation even though the nominal model of

the plant is correct.

In the following example, I want to state that typical DOB control can only

achieve disturbance attenuation. The other objective is to discuss the influence of

the unknown disturbance having high frequency component on DOB performance.
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Example 4.1 : Consider an open-loop stable system with the input-output descrip-

tion as in (3.20), where the plant transfer function P1(s) is

P1(s) =
(s+ 3)(s+ 5)

(s+ 2)(s+ 4)(s+ 6)
,

and the periodic disturbance d1 has following two kinds of disturbances, in which

the frequency ω = 1,

Case 1: periodic disturbance being all low frequency components

d1(t) = 6 cos(ωt) + cos(2ωt) + 0.5 sin(3ωt),

Case 2: periodic disturbance including a high frequency component

d1(t) = 6 cos(ωt) + cos(2ωt) + 0.5 sin(3ωt) + 3 sin(15ωt).

In this example, one selects the filter Q(s) = 8/s + 8 to make Q ≈ 1 at low

frequency range and Q ≈ 0 at the high frequency range. Although we can utilize

loop shaping technique and H∞ control to choose a better Q filter, it will increase

the effort on design and computation. Figure 4.2 and Figure 4.4 show the time

history of the output error e(t) of Case 1 and Case 2 respectively. Figure 4.3 and

Figure 4.5 show the time history of the disturbance of Case 1 and Case 2 respectively,

where the true disturbance d1(t) and the disturbance estimation d̂1(t) are shown by

dotted line and solid line respectively. Obviously, the simulation result shows that

the disturbance observer design which was used to cope with periodic disturbance

only achieves disturbance attenuation and thus is not very good, disturbance with

high frequency components especially. However, even though DOB control can not

effectively reject deterministic disturbance, one must emphasize that it is a powerful

method on un-deterministic disturbance attenuation since it does’t need to know

the information of disturbance exactly.
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Figure 4.2: Trajectory of the the output error e(t) on Case 1
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Figure 4.3: Time history of the disturbance d1 and the estimate d̂1 on Case 1



Chapter 4. Disturbance Observer Based Control 77

0 5 10 15 20
-1

-0.5

0

0.5

1

 time (seconds)

Figure 4.4: Trajectory of the the output error e(t) on Case 2
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Figure 4.5: Time history of the disturbance d1 and the estimate d̂1 on Case 2
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4.1.2 Unknown Input Disturbance Observer Based Control

In this section one will review a called unknown input disturbance observer [11, 20].

It is an effective method for disturbance rejection control under the dynamic model

of disturbance being known exactly. In this case, the periodic disturbance model is

augmented with the system model to form an expanded system.

Considering an LTI system subject to periodic disturbance in equation (3.20),

the plant model P1 is assumed as a strictly proper and thus can be realized by the

following equation

ẋ(t) = Ax(t) +B (u(t) + d1(t)) , (4.9)

e(t) = Cx(t),

where x(t) ∈ Rn is the state vector, and A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n are

known constant matrices. Therefore, in (3.13), the disturbance

d1(t) = φT (t)θ = θ0,c +
N∑

i=1

cosωit · θi,c + sinωit · θi,s, (4.10)

by using internal model, can be represented as

ẋd(t) = Adxd(t), (4.11)

d1(t) = Fdxd(t),

where xd ∈ R2N+1 is the state vector of disturbance with the initial condition xd(0) =

θ =
[
θ0 θ1,c θ1,s . . . θN,c θN,s

]T
, and

Ad = diag

(
0,

[
0 ω1

−ω1 0

]
, · · · ,

[
0 ωN

−ωN 0

])
,

Fd =
[

1 1 0 · · · 1 0
]
. (4.12)

Combining the plant (4.9) with the disturbance generator (4.11), the augmented

plant is then constructed. Therefore, an augmented plant observer which is called
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an unknown input disturbance observer, is constructed as[
˙̂x(t)
˙̂xd(t)

]
=

[
A BFd

0 Ad

] [
x̂(t)
x̂d(t)

]
+

[
B
0

]
u(t) +

L

(
e−

[
C 0]

] [ x̂(t)
x̂d(t)

])
, (4.13)

where x̂(t) is an estimate of x(t), x̂d(t) is an estimate of xd(t), and L ∈ Rn+2N+1 is

the augmented plant observer gain chosen to stabilize the following matrix[
A BFd

0 Ad

]
− L

[
C 0

]
. (4.14)

Consequently, the disturbance observer based control is set as

u(t) = uf (t)− d̂1(t),

where

d̂1(t) = Fdx̂d(t).

Figure 4.6 shows this augmented plant observer is in the block diagram of dashed

line.

u
e

( )

1

ˆ ˆ
ˆ

ˆ0 0ˆ
ˆ ˆ

d

d dd

d d

x A BF x B
u L e Cx

A xx

d F x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=

1( )P s

1̂d

1

d d d

d d

x A x
d F x

=

=

fu
1d

Disturbance 
Observer

Figure 4.6: Unknown input disturbance observer



80 4.1. Review of Disturbance Observer Based Control

Note that, for achieving the 2-dof design, the disturbance observer constructed

by augmented system is only used to estimate the actual disturbance acting on

the system, but it does not control the plant. It means that another new state

observer may be needed for output feedback controller design. The advantages of

unknown input disturbance observer are that it can selectively remove harmonics

from the frequency spectrum and is a linear control, making analysis easier, and

that convergence is very rapid.

Example 4.2 : Consider an open-loop stable system with the input-output descrip-

tion as in (3.20), where the plant transfer function

P1(s) =
(s+ 6)(s− 4)

(s+ 2)(s+ 3)(s+ 4)
,

and the unknown periodic disturbance

d1(t) = 6 cos(ωt) + cos(2ωt) + 0.5 sin(3ωt),

in which ω is the fundamental frequency with a period T = 10 seconds. ( Note

that conventional AFC and DOB controller design can not be adopted here since

the transfer function above is non-minimum phase )

In this example, one selects N = 3 and takes it into (4.11) and (4.12), and then

the disturbance observer has matrices

Ad = diag

(
0,

[
0 2π×1

10

−2π×1
10

0

]
,

[
0 2π×2

10

−2π×2
10

0

]
,

[
0 2π×3

10

−2π×3
10

0

])
,

Fd =
[

1 1 0 1 0 1 0
]
.

In the disturbance observer design (4.13), one chooses the disturbance observer gain

L =
[

4.3982 60.3980 216.5932 −1.7453 −3.5941 0.5483

−3.8680 0.5144 −3.3161 −0.9722
]T
,

which makes the disturbance observer (4.13) have closed-loop poles

λ(Ad − LdCd) = {−2,−3,−4,−ω,−ω ± jω,−ω ± j2ω,−ω ± j3ω}.
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Figure 4.7: Trajectory of the the output error e(t)
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Figure 4.8: Trajectory of the periodic disturbance d1
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Figure 4.7 shows the time history of the output error e(t). The output error of

root mean square at 70s ≤ t ≤ 100s is 4.1609 × 10−9. Figure 4.8 shows the time

history of the disturbance, where the true disturbance d1(t) and the disturbance

estimation d̂1(t) are shown by dotted line and solid line respectively. It shows the

estimate converges to the true disturbance quickly. Certainly, if we expect that the

disturbance observer has faster convergence rate, we can design observer gain L to

make the eigenvalues in (4.14) move far away the imaginary axis. The simulation

result shows the unknown input disturbance observer design has good performance.

4.2 New Disturbance Observer Based Control

In this section, we want to propose a new disturbance observer design which utilizes

a re-parameterization process to obtain an informal disturbance observer on the

state space. For realizing the disturbance observer, one needs to make use of the

linear regression form of (3.22), which is a re-parameterization result, to construct

an output equation. Hence, ψT
1 (t)θ in the right hand side of (3.22) denotes

ψT
1 (t)θ = p0,cθ0,c +

N∑
i=1

(pi,c cosωit− pi,s sinωit) θi,c +

(pi,s cosωit+ pi,c sinωit) θi,s, (4.15)

where p0,c, pi,c and pi,s are defined in (3.15), and the left hand side of (3.22) treats

as the measurable signal. Besides, from (4.11), one has the state solution

xd(t) = Φ(t)xd(0), (4.16)

where xd(0) = θ and Φ(t) ∈ R2N+1×2N+1 is the state-transition matrix

Φ(t) = diag

(
1,

[
cosω1t sinω1t
− sinω1t cosω1t

]
, · · · ,

[
cosωN t sinωN t
− sinωN t cosωN t

])
. (4.17)

Using (4.16) and (4.17), (4.15) can be represented as

ψT
1 (t)θ = Cdxd(t), (4.18)
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where

Cd =
[
p0,c p1,c p1,s · · · pN,c pN,s

]
∈ R2N+1. (4.19)

Substituting (4.18) into (3.22), one obtains an output equation

e(t)− P1(s)u(t) = Cdxd(t) + ε(t). (4.20)

According to the equation (4.11) and (4.20), a Luenberger observer is then

constructed as

˙̂xd(t) = Adx̂d(t) + Ld (e(t)− P1(s)u(t)− Cdx̂d(t)) ,

d̂1 = Fdx̂d(t), (4.21)

where x̂d(t) is an estimate of xd(t), Ld ∈ R2N+1 is the observer gain chosen to

stabilize the matrix Ad−LdCd, and d̂1 is an estimate of d1(t). Denote x̃d = xd− x̂d.

Substituting (4.20) into (4.21), one can show the error dynamics of x̃d(t), which

converges to zero exponentially, as

˙̃xd(t) = (Ad − LdCd)x̃d(t)− Ldε(t). (4.22)

One then concludes that the estimated d̂1 in (4.21) exponentially approaches the

true disturbance d1 in (4.11). Consequently, the disturbance observer based (DOB)

control is proposed as

u(t) = −d̂1(t) = −Fdx̂d(t). (4.23)

Figure 4.9 shows the DOB control system structure.
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Figure 4.9: DOB control system

4.3 DOB-AFC design

In this section, our objective is to propose a new AFC control, DOB-AFC, which is

based on the disturbance observer design in Section 4.2. According to (4.16), the

parameter θ in (4.10) is

θ = xd(0) = Φ−1(t)xd(t), (4.24)

where

Φ−1(t) = ΦT (t). (4.25)

Based on (4.24), the estimated parameter is set naturally as

θ̂(t) = Φ−1(t)x̂d(t), (4.26)

where x̂d is the state of disturbance observer that is defined in (4.21). Hence, the

parameter update law of θ̂ along the closed-loop trajectory (4.21) satisfies

˙̂
θ(t) = −Φ−1(t)Adx̂d(t) + Φ−1(t) ˙̂xd(t)
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= −Φ−1(t)Adx̂d(t) + Φ−1(t) [Adx̂d(t) + Ld (e(t)− P1(s)u(t)− Cdx̂d(t))]

= Φ−1(t)Ld (e(t)− P1(s)u(t)− Cdx̂d(t)) . (4.27)

Substituting (4.18) into (4.27),

˙̂
θ(t) = Φ−1(t)Ld

(
e(t)− P1(s)u(t)− ψT

1 (t)θ̂(t)
)
. (4.28)

By the above analysis, one obtains the update law of DOB-AFC is a general form

for adaptive algorithm. The adaptive update law has an arbitrary convergence rate

based on the observer gain Ld resulting from disturbance observer design defined in

(4.21).

Note that observer gain, Ld, can be obtained from eigenvalue assignment,

Kalman filter or adaptive algorithm. Such as the gradient based AFC in Section 3.5

is a special case of (4.28) when one selects Ld = γCT
d . Similarly, when one sets Ld,

a time-varying observer gain, into Ld(t) = γΦ(t)Ω(t)ψ1(t), it immediately becomes

LS based AFC defined in Section 3.5.

Example 4.3 : Consider the same system as in Example 4.2. Selecting N = 3 and

taking it into (4.11), (4.12) and (4.19), the disturbance observer have matrices

Ad = diag

(
0,

[
0 2π×1

10

−2π×1
10

0

]
,

[
0 2π×2

10

−2π×2
10

0

]
,

[
0 2π×3

10

−2π×3
10

0

])
,

Fd =
[

1 1 0 1 0 1 0
]
,

Cd =
[
−1.0000 −0.7070 0.6178 −0.1670 0.7803 0.2046 0.6126

]
.

In this example, we want to make use of the simulation to show the performance

of DOB-AFC is better than robust AFC in Section 3.5. Therefore, the following two

kinds of design methods is discussed.

Case 1: Robust AFC based on the gradient algorithm

In the adaptive estimation algorithm (3.34), one sets γ = 0.496, that is the

fast convergence rate derived from Figure 3.23 and Table 3.1. Since the gradient
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based AFC can be expressed as a DOB-AFC’s special case, one thus has disturbance

observer gain

Ld = γCT
d =

[
−0.4960 −0.3507 0.3064 −0.0828 0.3870 0.1015 0.3039

]T
,

and DOB-AFC closed-loop poles

λ(Ad−LdCd) = {−0.9619,−0.0579±j1.8307,−0.1012±j0.4884,−0.0880±j1.1666}.

Case 2: DOB-AFC based on eigenvalue assignment

In this case, we want to reveal that DOB-AFC using eigenvalue assignment

on the design performance has more broad choice. One chooses the disturbance

observer gain

Ld =
[
−1.7453 −3.5941 0.5483 −3.8680 0.5144 −3.3161 −0.9722

]T
,

which makes the disturbance observer (4.21) have DOB-AFC closed-loop poles

λ(Ad − LdCd) = {−ω,−ω ± jω,−ω ± j2ω,−ω ± j3ω}.

Figure 4.10 shows the time history of the output error e(t), where e(t) of both

the gradient based AFC and DOB-AFC are shown by dashed line and solid line

respectively. Figure 4.11 shows the time history of the disturbance, where the true

disturbance d1(t), the gradient based AFC d̂1(t) and DOB-AFC d̂1(t) are shown by

dotted line, dashed line and solid line respectively. Comparing with the gradient

algorithm based AFC, the DOB-AFC control has faster response ability. Besides,

the output error of root mean square at 70s ≤ t ≤ 100s is 1.9017 × 10−9 which

is better than that gradient based AFC is 0.0020. Certainly, if we expect that the

disturbance observer has faster convergence rate, we can also design observer gain

Ld to make the eigenvalues in (4.21) move far away the imaginary axis.
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Figure 4.10: Trajectory of the the output error e(t)
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Figure 4.11: Trajectory of the periodic disturbance d1
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4.4 Robustness Analysis

In Section 4.2, our proposed disturbance observer based control needs to make use

of an exact system model information. However, if a nominal plant can be got only,

we may want to know how robust the proposed DOB control is. For comparing

with the robustness of gradient based AFC control analysed in Section 3.7, we will

analyse the DOB control design perturbed by un-modelled dynamics ∆(s) in (3.52),

disturbance modelling error d̃1(t) in (3.54), and measurement noise ξ(t).

Under considering un-modelled dynamics and measurement noise ξ, the distur-

bance observer in (4.21) becomes

˙̂xd(t) = Adx̂d(t) + Ld

(
e(t)− ξ(t)− P̄1(s)u(t)− Cdx̂d(t)

)
, (4.29)

where the control input is set as

u(t) = uf (t)− Fdx̂d(t). (4.30)

Then, x̂d can be represented as

x̂d(t) = (sI − Ad + LdCd)
−1 Ld

(
e(t)− ξ(t)− P̄1(s)u(t)

)
. (4.31)

Substituting (4.31) into (4.30),

u(t) = uf (t)− Fd (sI − Ad + LdCd)
−1 Ld

(
e(t)− ξ(t)− P̄1(s)u(t)

)
. (4.32)

Setting the DOB controller as

KL(s) = Fd (sI − Ad + LdCd)
−1 Ld, (4.33)

and then substituting it into (4.32), one obtains

u(t) =
1

1−KL(s)P̄1(s)
(uf (t)−KL(s)e(t) +KL(s)ξ(t)) . (4.34)

Therefore, substituting the equation into (3.51), the output error e(t) is obtained as

the following equation

e(t) =
P1(s)

1−KL(s)P̄1(s)
(uf (t)−KL(s)e(t) +KL(s)ξ(t)) + P1(s)d1(t). (4.35)
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By rearranging e(t) and using (3.52), one obtains

e(t) =
P1(s)

1 +KL(s)∆(s)

(
uf (t) +

(
1−KL(s)P̄1(s)

)
d1(t) +KL(s)ξ(t)

)
. (4.36)

Obviously, 1 − KL(s)P̄1(s) is a zero gain at the frequencies ωi, where i =

0, 1, ..., N , since zero output error obtained from (4.22) under ∆(s) = 0. Hence, one

has
(
1−KL(s)P̄1(s)

)
d1(t) =

(
1−KL(s)P̄1(s)

)
d̃1(t)−KL(s)ε(t). Consequently, the

small un-modelled residual disturbance d̃1 creates the small output error e which is(
1−KL(s)P̄1(s)

)
d̃1(t). Furthermore, comparing with the controllerKγ(s) of (3.68),

the observer gain Ld in the DOB control is not a scalar, but vector. As a result, it

has more large adjusting freedom to obtain better performance on repetitive system.

Figure 4.12 shows the DOB control system structure.

u +
e

+-
1( )P s

1( )P s
+

-

1d̂
Disturbance 

Observer

1

d d d

d d

x A x

d F x





1d

( )LK s

fu

ξ

+
-

Figure 4.12: DOB control system under model with uncertainty

Comparing (4.36) with (3.74), the following corollary can be obtained directly

from Theorem 3.7.

Corollary 4.1 : Given any stable additive un-modelled dynamics ∆(s) satisfying

‖∆(s)‖∞ < β, if the gain vector Ld in the proposed disturbance observer (4.29) is
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selected properly such that

‖KL(s)‖∞ <
1

β
,

then the proposed control u(t) in (3.38) drives that the output error e(t) in (3.51)

goes to zero despite the existence of unknown periodic disturbance d1(t).



Chapter 5

Conclusions

This dissertation presents a new AFC control to track and/or reject exogenous

periodic signal in a linear time-invariant system. The new AFC design uses a re-

parameterization process in the input-output description of the system in order to

obtain a linear regression form. Based on the linear regression form, any mechanisms

of system identification are regarded as AFC controller by us.

The new control has several advantages compared with previous designs. First,

its adaptation gain can be arbitrarily chosen without disturbing the system stability.

Second, it can be applied to non-minimum phase systems without using any approx-

imation, while most previous AFC designs apply to minimum-phase systems only.

Third, it is shown that the proposed control remains the same no matter where the

disturbance comes into the system. This is shown for the first time in the literature,

and it justifies previous AFC designs in which the disturbances are mostly assumed

to enter the system at the control input point, even though in reality it is not the

case. Forth, it shows the proposed control has good robustness. Hence, it can be

applied on many engineering applications in the real world. Finally, for promoting

the repetitive control performance, the thesis further proposes DOB-AFC, that is

a general AFC form which has more design freedom on adaptive update law. The

interpretation of AFC in terms of disturbance observer design can be implemented
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by any LTI control methods; making the proposed design very friendly and intuitive

for engineers. Therefore, one can use eigenvalue assignment, Kalman filter, adap-

tive algorithm and so on to design the AFC. Certainly, when the system model can

not be exactly obtained, the control structure using LMI method will provide more

robust performance.
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