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Abstract

In this study, the pet-like dog that interacts with reader for enhancing the reading
cadenced is being developed. Acoustic behaviors of voice signals are recorded to
analyze the condition during interaction. The reader reading rhythm is found by
endpoint detector. The endpoint detector is a classifier and based on the Hidden Markov
Model. It is trained by nonverbal auditory cues, such as zero-crossing rate, energy,
spectrum, and autocorrelation: The spectrul:nl and autocorrelation are chosen to
recognize the periodic signal.

To provide guidance of oral readhf{g the| robot’s 'tail is. developed into a two

| J__,.---" = |

Il .m |
directions metronome by the two pe endi'd(:';ular motots. The goal is to classify reading

i { | 1
states of the user, so the phase model of the words’ petiod in a sentence is defined, then

the synchronization and rhythm “parameter are defined by word phases. The
synchronization parameter characterizes the users’ response models with respect to the
tail input. And the rhythm of the sentence is characterized by the rhythm parameter.
Measuring the rhythm parameter, if the rhythm parameter is far from the commanded
rhythm, a new pace is then set up to control the metronome for the sentence reading
guidance. The guidance rule for a specific user considers not only the rhythm parameter

difference but also the synchronization parameter of the user.

vV



Experiments were conducted to demonstrate the effect of guidance on oral reading

performance. Rhythm parameters being controlled to approach better reading fluency is

observed under the proposed guidance rule.

Keywords: oral reading, rhythm, control, hidden Markov model, robot
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Chapter 1 Introduction

1.1 Motivation

A robotic pet dog is designed to enhance children’s love of reading by interacting
with children. A robotic pet dog for reading assistance is considered to be effective in
drawing children attention and creating intimacy. Turn-taking interaction is a general
way to help children learning by patrents or teachers. Traditionally, there are some
assisting means employed as the.educational gﬁidance, for example, gesture or handclap.

The tail mechanism of the robotic/dog was/deyveloped to mmplement this function.

T Ly
i

Acoustic behaviors of voice signalﬁ are L’r';cFB"rded while the child reads as a mean to
analyze the condition of interaction.; ”l.lhe zgvo-a-ll of ih,e study:is to use the robotic pet dog
as a tool to classify reading states of the child,"and furthermore try to change the state
into a good-learning condition, particularly for the oral reading fluency improvement. If
the child is not cadenced of the sentence, this study demonstrated that the reading

fluency can be improved by giving the more significant tempo provides by the robotic

pet dog. The robot can play as an assistant or even a teacher in the interaction.

1.2 Literature Review

Kuhn and Stahl provide instructional strategies that are effective in promoting

1



fluency among beginning readers in [1]. It also gives a review of many studies that have
attempted to improve fluency. It indicated that assisted approaches, such as
reading-while-listening, seem to be more effective than non-assisted approaches, such
as repeated reading. The basic ideal of the robot instructional strategies was derived
from this literature.

The studies by Mastropieri, Leinart and Scruggs [2] reviewed the strategies for
increasing reading fluency such as repeated reading, reading with computer or a reading
with a peer. They indicated that ‘careful applicéﬁbn of-eombing some of these strategies

can meaningfully improve“reéading fliéncy. Thestudy'was' inspired by their work to

T Ly
o
= =

design a robot for accompany readerf.l ; ;
1| " Ll

Rasinski [3] referred to r_eading .}ﬂuenc-}-/ as fhe reader’s ability to develop control
over surface-level text processing; sothat .he ‘or she can focus on understanding the
deeper levels of meaning embedded in the text. And he also referred to reading fluency
has three important dimension that build a bridge to comprehension, such that accuracy
in word decoding, automatic processing, and prosodic reading. In our work, our goal is
to make sure that the reader does not place the equal emphasis on every word, which is
related to the definition of the prosodic reading.

Then we are focus on the rhythm. Wolff has the discussion in [4] that dyslexic

students contrast to normal readers. The experiment is which had inordinate difficulty

2



reproducing simple motor rhythms by finger tapping and similar difficulty reproducing
the appropriate speech rhythm of linguistically neutral nonsense syllables. Then the
dyslexic students took significantly longer than normal readers did to recalibrate their
tapping cadence and switch back to the anticipation mode, after an abrupt change in the
metronome rate did. It provides the application of changing reading rhythm by the
metronome and relates to design the control equation of the metronome.

Brady [5] provides the study on, the metronome effect on stuttering. The adult
stutterers served as subjects in ‘four experime;lfs on the mechanism by which pacing

speech with a metronome ‘incréases/fltiency. There is the marked increase in fluency

|-
i

experienced by most severe stutterefs w};'t'anr‘;jchey i)ace their speech with a metronome.
Then the tail mechanism was design% as av ﬁletroho,me to'guide the user reading.

Topping and Lindsay [6] synthesizes and analyses the research on the technique for
non-professional tutoring of reading known as paired reading. The flow chart of the pair
reading is used in our turn-taking reading procedure.

The literature [7] is an educational book about mandarin oral reading method for
the young children. They use some simple symbols represent the different levels pause
duration of the sentence. The rhythm parameter has defined in three levels just like the

approach we adopted in this study.

In this work, endpoint detector was base on the hidden Markov model (HMM),
3



which was developed by Princeton (1980) [8]. This statistical model was usually used in

speech recognition, but also used for the endpoint detecting in [9-11].

1.3 Thesis Organization

This thesis is divided into six chapters. In chapter 2, the signal processing
techniques that were utilized to exact features for the endpoint detection. The endpoint
detector based on a Hidden Markov Model was. used to train and find the user state of
reading are presented in chapter 3. Then th(; 'pet deg platform and the turn-taking

reading model are introduced/in’chaptér4. In chapter 5, the application of this work and

e
-

the discussion are presented. Finally,!crapfér(f 'f)rt)yides conclusions and future work.
|

L]

|
'



Chapter 2 Voice Signal Processing

2.1 Introduction

This chapter shows the basic methods of voice signal processing. Oral reading

sound is a continuously acoustic pressure wave signal. This chapter shows how to deal

with those signals before the voice detector. First, the continuous acoustic signals turned

into discrete signal by sampling, then tblockzinto frames. Second, some features of

sounds can be exacted, for example, short time stationary energy, noisy autocorrelation

are the features in time domain. And/speetral-entropy, pitch are features in frequency
B

1. R
domain. Figure 2.1 is the flow chart of] this'chapter.

Speech signal
—> Sampling

x(1)

|

x(n) » Frame Block f,(l’l) » Window
i | x,(n)
Energy ZCR Autocorrelation FFT
E(1) 2() A1), 4,(1)  F (D), F, (1), H(1)

Fig. 2.1 Block diagram of the signal processing



2.2 Basic Voice Signal Processing

2.2.1 Sampling

Computer can only handle discrete signal, however, real world signals are
continuous in time. Therefore, we have to convert continuous time signals to discrete
signals, and this process is called sampling.

Mathematically, we perform sampling by multiplying a continuous signal by an

impulse train which consists, of periodic. unit strength ‘delta function in the domain of

interest. Denoting the continuous waveform signal by x({), and x,(7) is the signal

after sampling. ‘ :{:F’-'.,
A
x, (1) =x(0)p(t) s (2-1)

p(t) is the impulse train, as follow:

p(t) = i 5(t-nT)) (2-2)

The signal after sampling x,(z) has value only at ¢ =nT_, as the follow equation:



x, ()= x(1)6(t-nT))

(2-3)
= D x(nT,)5(t-nT,)
So we can define a discrete time signal x(n) such that:
x(n) = x(nT)) (2-4)

The sampling period of this diserete time signalus 7, , and the sampling frequency

define by F, = %, . We use the samplingfrequency 8k Hz.
s ==

—

i

L m |
2.2.2 Frame Blocking | = 1]

To deal with the discrete-time signal x(n),framing is used to divide the speech
signal into several sections. Frame blocking is to collect several samples to become a
frame. We assumed that each frame’s feature is invariant and features are processed
from the speech signal frame by frame. The speech feature parameters can be extracted
from each frame. Therefore, the variation in the speech signal can be observed.

There are two factors affect frame blocking: frame duration and frame overlap.

Frame duration is the length of the frame, and frame overlap is the length of overlaps of

two neighbor frames. The frame shift is defined as the difference between the frame

7



duration and the overlap, see the Fig 2.2

overlap

. b
frame shift >
frame duration

Fig. 2.2Frame Blocking
Longer duration come with fewer, features.could be detected in the speech signal.

But if frame duration is small thah a tliréshold,' ;[he result will be affected easily by the

background noise. The feature extracted from”each fraﬁﬂe‘.ﬂwill be smoother by using

| -
Val Xy

. - -
frame overlap. Frame overlap 18 gen#r lly%ﬂ'élf f frame duration.
| T --
= l =T
The values of frame duratﬂti,_()n :}\’ f and overlft) M ;»-are 256 and 128 point in this

paper, which correspond to 32 1;1in framés and ‘éepar;téd by 16 ms when the sampling
rate of the speech is 8k Hz.

The first frame consists of samples from 1 to N,.. The start sample of the second
frame is (N, -M, +1) and the end sample is (2N, -M ). We assume that there are
L frames in the signal, and / is the number of frame. And the / frame is from
(I-)(N.-M.)+1 to (/I-1)(N.-M,) + N,. By applying the frame partitioning to

x(n), one will get L vectors of length N, , and f,(n) denoted the / frame of the

signal.



2.2.3 Windowing

In order to reduce the edge effect, we multiply a window. In this paper, the

hamming window is chosen. The function of hamming window is defined as

0.54-0.46*cos(—="), 0<n< N, -1
w(n) = N, -1 2.5)

0 , otherwise

The time and frequency _respgnseé'.dxf the Hagfnmin_g;w,indow shows on Fig 2.3.

Time domain Frequency domain
" " 40 : . "
| | | |
| | | |
| | | |
20y --——------ === e ——=-==-
l l l l
s EEEE T
— | | | |
% | | |
§ ;, 201} - ’ H A [ _____
= © | !
g— % 20 | | i |
40 -4 - - - | — 144 - 1 | —{
< =y I | ‘ | ‘ ‘ ‘ I
S | | | |
60 - - - -- - Tooo- - FHHAA
l l l l
80— R R R §
| | | |
| | | |
_’] 00 | | | |
0 0.2 0.4 0.6 0.8
Samples Normalized Frequency (xr rad/sample)

Fig. 2.3 Hamming window

By applying the w(n) to every frame f,(n),then x,(n) is obtained.



2.3 Time Domain Feature

2.3.1 Energy

The short-time log energy was computed according to the following formula:

E(l)= logL_ZI: f (n)z} (2.6)

Even though it is not very sobust against.neisy backgrounds and impulsive

interferences, energy is still a fundamerlig%l_ component in many widely used endpoint

| —k
| - |

detectors. The relationship between \}0“'ce -s‘-ifgjlal and energy shows on Fig. 2.4.

4

0.5¢ il
[0
e]
=2
= 0
E
05}t il
_1 L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5
Time(s)
5
(0]
2
2
g O N
@
o)
|
-5 | | | |
0 50 100 150 200
Frame Index

Fig. 2.4 Speech signal (up) and Log-Energy(down)
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2.3.2 Zero-crossing rate(ZCR)

Zero-crossing rate (ZCR) is the number of zero point a wave passed in each frame

The ZCR can be mathematically defined as

Z(l):NL Zl: 0.5|sgn[f,(n):|-sgn[fl(n-1)]|

2.7)
=I-Nj+1
B
where the function “©' [f ﬂﬁg‘@t -elﬁne %-’%"
4'3-.  _ "‘-3,.
=
Iﬂf\l L, ""r‘;l".li-i;
l;w:%’f@"‘ - 'IF ‘%|
or =
Sgn n)l=<q. E 2.8
el o] { A 28
\g
'\i-.r"-EI. E i ':“',."-I
{%} . i

K

s,

ZCR has an 1mportant~%a@ 1at ZC} @‘P\' i

0ise and aspiration signal are
“Cons SO
greater than that of speech and the ZCR curve is shows on Fig. 2.5.

73
o
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@ 05 ]
o
(@]
o
(]
N
0 . ! — |
0 50 nl.‘._-q:.-:fool'-" HElom, 200
4 -4 Frame Index- ‘_1_,.
A" 2,
W 7,

o
2.3.3 Autocorrelatig:n .

_—
:

The short-time noﬁ_rrl .(n) is defined as

follow: o

%F:xt (n)x,(n-k)
a(k)= = 1 (2.9)

By the definition, a(0) is guaranteed to be 1. It can be obtained a small number
of strong peaks for voice frames because of their periodic component, on the other hand,

12



there is a large number of small peaks for unvoice frames. We can see its figure on the

Fig. 2.6
1
0.8
S 06 5 08
& =
S 04 o
S S 06
8 02 S
>S =]
<C 0 <€
3 02 3
E ., :
S 202
0.6
_08 L L L L L | 0
0

20 40 60 80 1001120 140 . 0 20 40 60 80 100 120 140

Offset(samples) 2 Offset(samples)

Fig. 2.6 Autocorrelation results for voiced (left) ‘and anunvoiced (right) frane.

. | \_".“\“ ~ VV‘ | .
There is one significant probleml"'tdﬁefsftap(;lard normalized autocorrelation. The
ol ’ H
very small and noisy periodic s1gnf w1ﬁ stlll'result in-strong peaks. To solve this

i f l
problem, signals is to add a Very low-power Gaus31an noise signal to each frame before
taking the autocorrelation. The figure 2.7 shows the relationship between the speech

signal and the autocorrelogram.

We use the maximum peak value and the number of peaks as our two features. The

maximum peak value and the number of peaks can be defined as 4, (1) and 4, (1)

13



Amplitude

120

100

Autoconelation Offset

Py

—

2.4.1 Fast Fourier Transform."
- e o
<o -

- . : oy 1L .
The variation of signals in the time domain is hard to find out the characteristic of

speaker signals. The signals transfer to frequency domain by FFT. Each frame after

multiplying the hamming window change into frequency domain by following FFT

equation:
Np-1 _jzlkn
X(k)=> x(n)e ™ (2.10)
n=0



X (k) is a complex number, so it can be divided into two parts:

X (k)=|x (k) ¢, (k) (2.11)

Arnplitude

Frequency(Hz)

Fig. 2.8 Speech signal (up) and spectrogram (down)

We use the maximum peak value and the corresponding frequency as our two

features. The maximum peak value and the number of peaks can be defined as F, (/)
and F,(I)
2.4.2 Spectral Entropy

Another key feature can be obtained as the FFT magnitudes. Voiced frames have a

15



series of very strong peaks resulting from the pitch period’s Fourier transform. This

result in the banded regions we have in the spectrograms and in a highly structured set

of peaks as seen in the first panel of Fig. 2.9. In the unvoiced frames, as seen in the right

panel, we see a fairly noisy spectrum, be it silence (with low magnitudes) or a plosive

sound (higher magnitudes). We thus expect the entropy of a distribution taking this form

to be relatively high.
14
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X (k)

X (k)=<22

D X(k)

140

16

120 140

Frequency(in 31.25 Hz units)

Fig. 2.9 FFT magnitude for a voiced (left) and an unvoiced (right) frame.

To compute the spectral entropy, X (k) is normalized to make it into a proper

(2.12)

Normalizing in this way makes this feature invariant to the signal energy. The



entropy of the resulting distribution can be computed by following equation:
H =-Y X, (k)log X, (k) (2.13)
k

In Fig 2.8, H, is 3.76 for the voiced frame, and 4.72 for the right panel. The

relationship between the signal and H, will show in Fig. 2.10.

0.5+

Amplitude

N

Spectral Entropy

L L L
0 50 100 150 200
Frame Index

Fig. 2.10 Speech signal (up) and Spectral Entropy(down)
H (1) is our final feature.
In this chapter, that there are six features be defined. They are short-time log
energy E(/), zero crossing rate Z([), autocorrelation maximum peak value 4 (l ),

autocorrelation number of peaks 4,(/), FFT maximum peak value F,(/), FFT

17



maximum peak value frequency F, (/), and spectral entropy H, (/).
These features are focus on recognizing voice and unvoice, and these features will

be used in next chapter-- HMM-Based Endpoint Detector.
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Chapter 3 HMM-Based Endpoint Detector

In this chapter we propose an effective, robust and computationally low-cost
HMM-based start-endpoint detector. The features used for voice activity detection are
energy, zero-crossing-rate, autocorrelation, and spectral entropy, which presented in
chapter 2.

The endpoint module is a critical partin.any spoken dialogue system. It cannot be
recovered since missed speech fragments: Two rhain approaches are adopted in
developing endpoint detectors: threshold-based-and classifier'based.

The first class is the most widesprea:(:{ffhe decision is performed according to one
B h

1
or more threshold. Its algorithms airé generally ' simpler-and faster to implement. Its

major drawback consists in the need of careful tuning of many parameters, something
that makes such algorithms sensitive to environmental variations. The second one uses
the classifier substitutes the threshold. This method relies on general statistics rather
than on local information.

In our application, it probably works in different environment, so it will be better to
choose the second way to approach this goal. The classifier that we use is presented in

the follow section.
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3.1 Hidden Markov Models

To understand the problem of choosing the endpoint detection method, we must
first examine the process of speech production and the Chinese language (We focus on
Chinese language in this thesis). Speech can be broken up into two kinds of sounds:
voiced and unvoiced. The voiced sounds are those that have a pitch, which we call
vowel. The unvoiced sounds are everything else. Almost every Chinese word involves a
vowel. Chinese is single syllable language. l:lllere are. different states in the speech
production process which we can’t'see. We introduce the HMM idea in the below.

We assume speech signal can be chatacterized as a parametric random process.

| - L

[ | ' ‘
We introduce the classifier-hidden Mfarkoxﬁ, model (HMM);, The HMM model is often

|

1 1
used in speech recognition, because thessame wreason of the pronounced state concept.

But it is much simplicity in our application. We use the two states HMM model as a
classifier. One represent the voice state and the other one represent the unvoice state. A
hidden Markov model is a Markov model where the states g, are not directly
observable. Instead, we can observe another measurement o, that is related to g, by

the stationary probability distribution p(o, |g,), i.e., o, is a probabilistic function of

the unobserved state ¢, .The graphical structure of the hidden Markov model is

illustrated in Figure 3.1.
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Fig 3.1 The graphical structure of a hidden Markov model

For a basic HMM, there some parameters that are necessary to described the

ol [OI o] e
process. An HMM is characten;ed ’by th& followmg' & S

,r' i

-——

in our application)

L]

e

2. The observation;ﬁet‘:‘por: ‘

ey

.55 A\l
V:{vl,vz,...,vM} , whéré Mis~

o, VT
Lo e
state Lo iy oy e ol

3. The state transition probability distribution:

A= {aij} ,a; 1s the probability from state i to state j, as the follow equation:

a,=P(q.,=S,1q,=S,), 1<i,j<N (3-1)

4. The observation symbol probability distribution in state j:
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B= {b (e )} , b;(v,) is the probability of the observed variable in state j, as the

follow equation:

(3-2)

5. The initial state distribution:

.' '\—"J

4 F R
VX *"

n={z}, =, isthe initial probabli % tstate i, as follow:
i
) _.ﬁ%._ ol

=) | (3-3)

a compact not QQ‘M,T A,B n) to indicate the

'_h {, "".
complete parameter set of é:ﬁ%ﬂ\{ilﬂ\iﬁlt .alséﬁ'-req l@&s spec1ﬁcat10n of two model
“RopspeenS”

parameters (N and M ).All parameters must be under the following constraints.

<i< (3-4)

j=1

N
Z 7 =1 (3-5)
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M
ij (Vk) =1 (3-6)

An example of a HMM of a three-state Hidden Markov Model is shown as follows.

There are three states, S,, S,, and S, in the model, and they generate 4, B, and C,

respectively. The state transition probability matrix is

06 03 010"

A={a,}=|01 07 xﬁ (3-7)
03 02 0.5 S
The observation p@ﬁ?ﬂl ; JQ
o & v
@
03 07 03]
B={b(v,)}=|02 0.1 06 (3-8)
0.5 02 0.1
And the vector of initial state probability is
(3-9)

n=[04 05 0.1]
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0.1 0.1
0.3 0.3
0.7 0.3
0.1 o2 0.6
0.2 = 0.1
v
(/ )

0.7 0.5

Fig. 3.2 Example of a three-state Hidden Markov Model.
Given an obseryation’ sequentes O ={4,B,C, B} there are 81 possible

corresponding state sequences, and tlhlé‘refd're the probablhty, (O |2), s
| | »7;

1 1

P(0|4)=>P(0,0, | 1) :iP(O|QI.,) P(Q, |,1) : state sequence  (3-10)

For example, if states sequences O, ={S,,5,,5,,5,}, then

P(0|0,,4)=P(A4|S,)P(B|S,)P(C|S;)P(B|S,)=0.7%0.1%0.1%0.2=0.0014

P(Q|2)=7(S,)P(S,]S,)P(S;]S,)P(S,]S,)=0.5%0.7*0.2%0.3 =0.021

The relative probability equals to 0.294*107*. In fact it is not necessary to
calculate all possible cases, it will be introduced in the below.

In the next step, there is a HMM model will be established. This process involves
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computing probability of this model, training model by input data (six features that
exact in above chapter), and finding the best sequence of state. We solve these problems

in the next section.

3.2 Three Basic Problems for HMM

There are usually three basic problems that we have to solve using the HMM
model. These problems are about evaluation efficiency, decoding, and training.

In the following sections, we describe sevéfal conyentional solutions to these three
standard problems.

_—
-

™= i

3.2.1 The Evaluation Problem | i

‘ | | 1
The main concern in the evaluattoniproblem is:¢omputational efficiency. Given a

observation sequenceO = (0,,0,,...,0,)5 andja HMM model A=(4,B,n). The most

straightforward way to compute P(O|A) is listing all possible state sequences and

summing up their probabilities. It can be shown as:

P(0|2)=3.P(0.5]A) = 73bs (0,)ass bs (0,)..a5, s bs (0;)  (3-11)

allQ allQ

Since the summation in (3-11) involves &V ! possible 0 sequences, the total
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. . T .
computational requirements are on the order of 27N"  operations. The need to compute

(3-11) without the exponential growth of computation, as a function of the sequence
length T, is the first challenge for implementation of the HMM technique.
There is a more efficient method, called forward algorithm. First, define the

forward variable:
a,(i)=P(0),q,=5,|2) (3-12)

a, (i) is the probability of the partial observation sequence O] ={0,,0,,...,0,} up to

| g |
time tand state g, =S, at time ¢. The forwatd variable can be calculated inductively

Hm |
N
at(i)z{Zat_l(i)al.j}bj(ot) 2<t<T,1<j<N (3-13)
i=1
The desired result is simply
N
P(0|2)= Z“T (i) (3-14)
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It requires about N’7 computations which are much less than direct calculation.
Our application needs few N and more T (according to sentence length). This
tremendous reduction in computation makes the HMM method attractive in our

application.

3.2.2 The Estimation Problem

Given a set of observations O=(0,,0,,..,0;) and a HMM A=(4,B,n), the
estimation problem involves finding the:"right"-model parameter values that specify a
model most likely to produce the given sequence. This is often called “training” in

speech processing. s 1 4
|

| ]
In solving the estimatron problFm,

'\Eyfe often follow. 'the method of maximum

|
1

s ! | |
likelihood (ML): Finding a model ;4= Bym)s-sueh that P(O| 1) is maximized for
the given training sequence O. The problem can be solved by the iterative Baum-Welch

algorithm. First we define the backward variable:
B.(i)=P(0/,.q,=5,|A) (3-15)

,Bt(l') is the probability of the partial observation sequence

OZT+1=(0H1,0H2,...,OT), given state S at time fand the model A. The backward
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procedure can be set by:

(1) Initialization f, (1) =1, 1<i<N (3-16)
N

(2) Induction 3, (i)=>_a,b,(0,,)B..(j), 1<t<T-1, 1< j<N (3-17)
Jj=1

(3-18)

Ing in state |S, r‘rtdam,g-t and state S, at time

f%.‘l.:} @’ ) : l'
t+1. And it can be inducted bgf.afp)rw @i&arlabléﬁnd thaﬁward variable.
"@ G u})?t%‘“lﬁ?ﬁﬂ

(i) = T4 =500 =5,011) e (i)t (001) A (1) (3-19)
a

P(02) S S (m)ay b, (0,0) B (n)

The variable y, (i) is defined as

¥, (i)=P(qt =5,10,2) (3-20)
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Which is the probability of being in state S, at time ¢. It also can be inducted by

forward variable and backward variable.

Ao P©0.4,=512) _a()B() _ a(i)B(i) i
7.(7) P(0)1) P(0|A) ia,(i)ﬂ,(i) 2D

Based on an existing model A, the Baum-Welch algorithm will be utilized to get

5 ir -H-Eu £ —'.'r €
the final models. After the Var@blé are: deﬁneqt,r I{e' ﬂe}:u parameters of HMM could be

lu—"!'

.r ,:;"F"..- '_"H-q'___
) S

re-estimated as follows s\

._'_'
,'l(-:I
-
=

7, = expected nunt:iéiarg.f

e Voo &2 (3-22)
=7 (1) S 4

expected number of transitions from state S; to state S
a. =

expected number of transitions from state .S,

(3-23)
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expected number of times in state S; and observing symbol v,

b, (v,)= ; :
expected number of times in state S

(3-24)

T

IAT)

t=1
__ sto=v

: tZ::%(f)

These parameters, then, would be updated, and go back to calculate the variables
J (l"] ) and 7 (l) These operations will be repeated until parameters”?, 4, and B,
are converged, and the HMM models are ﬁnall}; determinant,

The training process-chooses/the, obsefvation ‘with' single Gaussians having

| — |
diagonal covariance. We trained the od’é'rlié'ing several minutes of speech data from

17 m

&

reading textbook regularly with: rvoicfn;g states labéled in.¢ach frame.
3.2.3 The Decoding Problem

In this problem, the purpose is to find the best state sequence. The forward
algorithm described in the previous section can not find out such a state sequence, and
the Viterbi algorithm can be applied to solve this problem efficiently. The Viterbi
algorithm can be regarded as the dynamic programming algorithm applied to the HMM
or as a modified forward algorithm.

Instead of summing probabilities from different paths coming to the same
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destination state, the Viterbi algorithm picks and remembers the best path. We define the

probability quantity o,(i) which represents the maximum probability along the best
probable state sequence path of a given observation sequence after ¢ instants and being

in state .

5,(i)= max P(q,q,.-4,,4,=5,0,|2)

992,91 (3-25)

’ l :..'1 ::.l.\[ o 8 '{L'J _:ﬁr_ .

X
| i
o ;

g ¥ ) -
And the best state se%ﬂﬁig?{ is by p@o%ﬁ.g function w,(i). Then the

complete Viterbi algorithm ica
=i
steps: i

=
-
'

!
L

-

Step 1: Initializatiof?j.;_l_ - T“,tss

6, (i)=xnb,(0), 1<i<N (3-26)
w,()=0 (3-27)

Step 2: Induction

5,(j)=max[6,_ (i)a,1b,(0,), 2<t<T 1<j<N (3-28)

1<i<N
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w,(j)=argmax[5,, (i)a,], 2<t<T,1<j<N (3-29)

1<isN

Step 3: Termination

P’(O|2) = max 5, (i) (3-30)

1<isN

q; = arg max &, (i) (3-31)
Step 4: Backtracki

4, =V.(q,.)s = =251 |y .,:.::Z;:;f:' (3-32)
O =(4,:9>-4r) o (3-33)

is the best sequence.
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3.3 Performance
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Fig.3.3 Performance-of:the model on speech
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1

An example of the result that generalized by‘ Vi-tcrbi algorithm for HMM is shown
in Fig. 3.3.As we had hoped, the model has correctly indicated the word region by the
voiced/uuvoiced states. The best states sequence are correspond to the frame index,

defined as follow:

S, (1)=0(4: 45547 ) (3-34)

S, (1) is the state of the voice. This is an important feature that we will use in the
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next chapter. At this point, we determine all of the nonverbal speech feature we were

interested in. We can now use these feature on interaction between robot and people.
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Chapter 4 Guided Oral Reading with Robot

Reading fluency is an indicator of reading ability. Improving reading ability can be
approached by teaching the fluency of the sentence. Rhythm of a sentence is unique
because of its syntax. Good comprehension of the syntax structure comes with the right
rhythm in reading. In this chapter, the guided reading method with pet-like robot will be
illustrated. Our target users will be the.children, or the people who are lack of reading
ability. We can get beginning and-‘end tume of e!ﬁ:h word after the HMM based endpoint
detector from chapter 3. The' robot d0g, can uSé this featutes to measure the reading
fluency then giving an appropriate glgliﬂan;t:e-?the ﬁser.

Before describing the flueney ;n.l{easuvr-e-ment' method, the robot hardware will be
introduced first, which included the illustration of robot appearance and function. The
robot will be used to enhance the user reading ability.

Then the guided reading scenario can be designed for the user and robot. The tail
mechanism plays a key role in this interaction. The detail of the tail swing mechanism
will be showed in following section.

The turn-taking reading situation can be corresponded to the close loop control

system. It was the basic concept of our guide reading process. To achieve this concept,

the word phase model from the constant speed circular motion can be used in our
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situation. The synchronization parameter and rhythm parameter can also be defined for
describing the turn-taking reading condition. Then the final section illustrates the

method for “controlling” the reader and improving the reading fluency.

4.1 Robotic Dog

The robotic dog is selected because its pet-like look is accessible for the children.

&

The robot is about 90 cm high with ﬁou; wheels .,an(} the friendly appearance (see the Fig.
= .

7 " 3

- H.'

4.1). & 'r_:_'_é- v,.ﬁ 5

Fig. 4.1 The photo of the robotic dog
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The hardware architecture is shown in Fig. 4.2.
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: Laser Sensor : | : : Neck Motor :
' | : Computer ! ' l
| | Stereo Camera : | : | | Wheel Motor :
e T S —— |
| Sensor ' | Feedback !
Lo ___/ Lo ___/

L

Fig. 4.2 The robotic dog hardware architecture

..F..
)

The control computer is the PC104 produced b;;'Adggntech. The laser sensor and

e By

the stereo camera are used to recogniz tfﬂh;gngp Fiface and measure the distance. And it
a | T #
e

|

uses the wireless Ethernet to-commun cat?{_gl‘_ith &1 other devices. The microphone and

speaker are devices for the"'éuiq;:d reading appl»igafcioh, with the help of the tail

mechanism. Tail is acing as the mechanism for the guided reading interaction process,

and it will be explained in detail in next section.

4.2 Interaction with Robot

The general way to teach children reading is the turn-taking reading, such that
children repeating after the robot. With reading guide, turn taking process can be an

effective and a powerful way to improve its reading fluency. Besides, our purpose is to
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prepare an environment that children can learn by interacting with the robot, so we
design an online training system with the robotic dog that can measure the reading
fluency and giving the guidance while the user is reading.

Measuring reading speed, word accuracy, pause duration, pitch, and stress are
necessary factors to assess oral reading fluency. We assume that user has the basic
ability that he/she can recognize every single word of the article. He can read every
single word slowly, but he may not actually know the phrase meaning. The word
accuracy can be ignored by, this assumption:

For simplifying the question, we also asSume that ‘the better pitch and stress of

."-..‘_‘"
i

fluency can come with the better rea[dling"é"%’éé and the pause duration. Then the focus
of this chapter is on the readingrtimeé afijus‘[-n:l-ént. .

On early childhood teachiﬁg - ‘reading; thé gesture or hand clapping are
commonly used for guiding the correct word time for a child. Giving the word reading
tempo can enhance the impression of the sentence rhythm. According to this idea, the
tail mechanism is developed into a kind of metronome, or a kind of conductor's baton.

Its speed and direction can be decided by controlling two motor, the photo of tail is

shown in the Fig. 4.3.
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Fig. 4.3 The tail mechanism: (a), (bj-show the‘phota of the tail mechanism. (c), (d)
gl
ALLIF i L
are diagrams of the tail corresponding to photos (a) and (b) respectively. The
motor 1 control the degree-of-freedom of up and down. The motor 2 control the
waving.
The tail can be used to point out the specific time of every word. Putting up and
down can represent the beginning and the end of the guided reading. The waving time

of the tail signals the each words time. The guided reading method with tail can be

illustrated in Fig. 4.4.
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read in the specific rhythm:ﬁy:'thgélﬁy'mnﬁm in the next chapter verifies this
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point. 7 5y ey (LSS

After a user reads the sentence, the voice signal can be analyzed and the the rhythm

features could be calculated by the technique presented in the chapter 3. The process is

under control to reach the desired fluency. The definition of the rhythm and the guiding

signal provided b the tail will be illustrated in following section.

There is a scenario designed for teaching fluency with the robot. The flow chart of

the guided reading is shown in Fig. 4.5. The user can be taught the right oral reading
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paces of the article by the robot alone.

Give a sentence

A

User read the sentence
with tail pace

A 4

Wrong

Producing a new
time of tail pace

Fluency
detection

Next sentence

Fig. 4.5 Flowchartof the guided reading

-
‘ o |

|
|| =5 |
4.3 Word Phase ControlModel ||

In the guided reading process, the user can receive the signal which sent by the
robot and response after the signal. Robot can give the new guidance signal according to
the user output. This process is modeled by a closed-loop feedback system. A control
system in general, can be represented by a reference input, controller, plant, and sensors.
Controller produces input to the plant, or controlled system. The control error can be
computed by comparing the reference and the measured output. Then the controller can

generate a new system input. The closes-loop control system of the guided reading is
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shown as the Fig. 4.6.

Reference Measured System System
+ Error Input Output
—— »@® ——————————» Controller System »

Sensor <

Measured Output

Fig. 4.6 Closed-loop control system
In this study, the user can be corresponded to the system, and the tail can be the
controller. The robot is used to measure the error and produce the new waving time of
the tail.

When the tail’s signal“is"giving to user, the 'qew output' will be produced, just like
N :L.‘ ‘1

| T ||
the controller providing the signalﬁ 0 t‘ff;ﬁsﬁem Then the system output can be
| "‘, 1 |

- e

measured by the robot’s sensor. andEaLsseséed- by 'fl;:e compui:er of robot. The new tail’s
action can be decided by this assésément ofithe ﬂuenéy. The user can be affected by the
different signals of the tail and read the sentence with different rhythm. So the Fig. 4.6
can be interpreted to the Fig. 4.7.

Measured System Voice |
Reference + Error — Input Output M

— »@ ———» TheTal ——»
4>

\ 4

Measured Output

Fig. 4.7 Closed loop of the reading control system
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To describe this idea, the output and the error have to be defined in control field.
The mathematical description of the control process will be illustrated in the following

section.

4.3.1 Phase Model

After the user reading a sentence, the robot can find out the boundary time of the
every word, the reading speed and the pause duration can also be measured.
The mathematical description of.the voice-signal has to be concerned. Since the

sentence is the basic unit of the guided reading process, all of the definition can be

o

constrain in a single sentence. o
|
B = ©
1
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Fig. 4.8 Beginning time of words

The tail can wag with the defined time 7,. The ¢, represents a teacher’s rhythm
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which is given in advance. It can lead the user to produce a voice signal. The feature can

be extracted from voice signal as described in chapter 3. The time of the word beginning

can be defined as¢, , which can be founded in the state of the voice, S,(7), as shown in
Fig. 4.8. The variable N, is defined as the number of the word of the sentence,

N, =7 was used in the example.

0.8F ]

0.6} ]

0.4} .
t=[03 0.8 11 20 25 28 35

021 | t=[0.304 0.816 1.136 2.032 2.448 2.8 3.408]

Bkt
Bj1j7 @

Ok7

Fig. 4.9 Example for the phase model.

The control command time ¢, and the user time ¢, can be defined in a unit
circle. @, andd, are phase angle corresponding toz;and ¢, , respectively .
The p, and D,are the synchronization error and the rhythm parameter.

The phase model was illustrated using an unit circle as shown in Fig. 4.9. The
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standard time ¢, can be treated as a particle which on the constant speed circular motion.
The guided reading problem can then be transferred into the location control problem in

terms of a unit circle’s phase angle.

The ¢; is the teacher’s position on the unit circle. The position of the ¢, can be

defined as phase by the T, which means the teacher’s sentence period.

T, =t,-t,, whenj=N, (4-1)

s

And the phase of the tail can be defined as

), 1 |
e]._T 27 N | 1 (4-2)

The output of the user’s voice of a word can be treated as a location in the unit
cycle that is to be controlled with guided motion commands. The word period can be
defined in the circular domain too. The word phase can be defined as
(tk -1 jl)

0, = 27 (4-3)

S

The @ can be defined as the reading speed parameter.
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0= (4-4)

The tail waving “particle” and the user reading “particle” are also traveling along
the circle with the @. The controlled performance can be examined after finishing the

each round of the guided reading by checking the location of the particle.
4.3.2 Error definition

In the guided reading process, the purpose-s making sure about the user following
the paces with the tail and readingswith the rhythm of expectation. There have two steps

of the error definition, synchronization'parameter and the rhythm parameter.
1 — e

| .;!"’- - l
|

‘ 7 1 ‘
‘can‘_%g used to 'measure whether the user follow

Firstly, the synchronization error

+1 1 1

the tail paces exactly and the user'is, controllable Wit-h our method. The synchronization
error can observe if the user follows the tail’s signal by calculating the difference

between the 6, and 6.

The synchronization error can be defined as

Ny

pezz

Jok=1

(6, -6)) (4-5)

The parameter p, means the error in the whole sentence, which can represent the
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synchronization of the user and the tail paces.

The different users and different comprehension of the sentence may cause the
different result. That will be an important parameter to determine the characteristic of
the user.

It can’t not be expected that the synchronization error be exactly zeros. There will
be a specific error value to a specific user. The characteristic of a user in terms of the
synchronization error must be decided by-experiment.

The rhythm parameter canstepresent theilﬁreconception about the rhythm of the
sentence. The rhythm error‘of'the usef 1s .g:ausgd’by his/her:lack of understanding on the
sentence. | | <= |

Symbols for differentiating t&e diff(;r;nt r%aa:ding speéd are illustrated here. For

example:
IR S R

(1) Underline: Used in the phrase which we can read rapidly. That will be the
fastest speed in the sentence.
(2) Space: Used in stressed phrase or the key word, which we can’t read it slightly.

(3)The circle between two words: Use after the word we want to emphasis. The
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pause will be longer than first two symbols.

To describe the reading speed, three levels of the pause duration are defined as
follows. This thythm variable is defined by the relative 6, .

D=[D, D, D] (4-6)

where D,,D,,D, are defined as

D - ZA@k of thelevell

(4-7)
number of the level 'l At
i '.‘_:’-F"' |
Il m |
_ ZAHk of thelevel 2 ‘. | 20 | 4-8)
number of the level 2 ! | 1
D - ZAHk of the level 3 (4-9)

number of the level 3

It is anticipated that most sentences’ pause duration could be described by the
three-level pause duration parameters. When a sentence is given, the target D can be
established by a fluent reader. Then the user’s rhythm parameters are measured, and

controlled to approach the target set up by the fluent reader.
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4.3.3 Control Method

In case that the user can not make the goal due to poor following ability, the pace
of the tail is modified according to the measured pause error. If the user’s rhythm
develops a bias to that of the tail, the guiding pace of the tail will be produced to
eliminate the bias or error.

The command to the tail , D', can be calculated by the following equations.

C_ ) if Dy <Dy
D, = ' (4-10)
D, '(Dml -Dy), lf“Dml >D
| ==
1l h
D 7 N AD, |
D, =4 7 e % , (4-11)
D, +(D2 'sz)a ifsz <D,
_ D, . if D,; 2 D; (4-12)
’ D3+(D3-Dm3), ifDm3<D3

Where the D, is the measured rhythm parameters of user.
In case the user’s pause duration was shorter than the tail’s command, the control
target has been reached. If the pause duration exceeds its targeted range, the control

command will be re-calculated and adjusted for the next round in the sentence guiding
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process.

Different user’s characteristics may cause different controlling result. Consider p,

as the controlled system characteristic, or the users’ ability to follow the tail. Smaller

p, indicates that the system has naturally smaller phase bias, which can also represent

that the system can be controlled more easily, and the system is more stable to accept

various ranges of control input. Considering the human ability to follow the tail pace,

control equations can be further transformed into the following.

Dl ] l.fDmlng
D = A ‘
l Dl'(Dml'Dl)*Ma lf,_p..l >D, |
2r | Lo=g |
Il m®
D2 ) l:f‘DmZZLjDZ | ;
D, = : s
27\ D,+ (D, - D, *BuP) Ty ¥y
27
D3 ’ l.fDm32D3
D, =

<D,

m3

D3 +(D3 'Dms)*(pmz;pg)a lf D
T

(4-13)

(4-14)

(4-15)

p,, represents the user’s worst tracking error with respect to the tail paces, which

can be measured by experiments. If the user has better ability to track tail paces, the

more increment of amended command will be delivered with respect to the previous
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command.
The following example explains the control procedure to improve a users reading
rhythm. In this example, there is a sentence that the user wants to read it with better

rhythm.

RN N

The tail’s default ' time Mmay—be t7=[121551.9 242934 42]
The word phase = can / be / ecalculated by "+*Eq. 4-2, such that

|-

0,710 42 84 144 204 264 360] | degrées™ And thé rhythm parameter can be
Il | ‘
calculated by Eq. 4-7 to 4-9. D-was onﬁnd to be D=[42 60-96].
After the first round of the gﬁided teading, we _can get the user reading time, for

example, we can get the time as: ¢, =[1.21 1.61 2.03 2.51 3.02 3.5 4.35]. And the 6,

can also be calculated by Eq. 4-3.

6, =[1.2 49.2 99.6 157.2 218.4 276 378 ] degrees. And the new
D =[49.2 58.8 102]. Then p, can be calculate by Eq 4-7 to be p, =81.6. Then
we assume the p_is 180 for this user. So the D can be calculated by Eq 4-13 to

4-15. The calculated results were shown as follows.
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360

= 42-(49.2-42)*w= 40.032
360

D, = 60+(60-58.8)*%=60.3280

D, =96 , because D,, > D,

1 |[ ﬂ-EL*'{q.fL _{
\v w2 B ,:-*
According to the D' {h t;ﬁw w. ime.can b‘é-:defl __ed as,
'-.‘,z
t.=12 3.3754 4;_-1754
ey S
w
2
- o5 ", ';\"
B otr ﬁ?ﬁ"‘l 'ﬂ'l
The new time has the dlffe.rbgce btﬁveen tFl"ﬂ'—OI‘l%lﬂB:l times, but not huge enough to

i J",_J,i' o718 j“b

confuse the user. The user was affected by this waving time and tended to get the right
rhythm of reading. Different range of the command change must be adjusted and be

accepted by different user. Magnitude of command changes can be tuned by setting the

value of p, .

52



Chapter 5 Experiment and Discussion

This chapter introduces some experiment results to illustrate the concept presented
in Chapter 4. The purpose in the thesis was to design an autonomous robot which can be
a company with children while they are reading by teaching the right rhythm of the
sentence. Scenario of the experiment procedure was established as follows.

First of all, it has to be tested if the tail mechanism is effective to the user. The
experiment can be done by simply testing-the uéér’s résponses to various tail commands.

The human response charaeteristic to"the input device'was' obtained by step response

|-
i

tests. Finally, the reading fluency eﬂ(ﬁerirﬁe’tllgt"’\;vith and without feedback control were
| | f

1

compared, and the effectiveness.of t}lé proposed feedback-method via robotic dog’s tail

mechanism was evaluated.

5.1 Experiment for Tail Mechanism Effect

The tail mechanism was the fundamental technique to “control” or guide the user
response. In the first experiment, results from two situations were compared to show the
tail effect. One of them is that the subject reads a randomly generated sentence with
tail’s guidance but only for the first and final word. Another reading experiment was

carried out with the guidance for all of the words. And they also could watch the signal
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at first, and read with the tail waving in the next time. Figure 5.1 shows the flow chart

of these two experiments.

With tail No tail

Rl el seishs Robot read sentence

with the tail
A
User repeat the User repeat the

sentence with the tail sentence

J ol S ey, J

\~ £ B
= _.ig;' '.!

.f 4 4 __\4“:-:{ Eiin

F*ig 5 1 ow chart erﬁyp
l-\.i h b :__:; i

h=

The randomly geﬂgrated senter ‘ or ens urlng‘.:."ihat the word difficulty
*

D, = , Wwhen k=j (5-1)

The p, ofthe 20 testing subjects was found and shown in the Figs. 5.2 and 5.3.
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0 | |
-0.2 -0.15 -0.1 -0.05 0 0.05-01 .015 02 025 0.3
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Fig. 5.2 P of the rhythm error with tail

50

45} 7

30+ B

25+ a

number of word

-0.2 -0.15 -0.1 -0.05 0 005 01 015 02 025 0.3
p of everyword

Fig. 5.3 P+ of the rhythm error without tail

The mean of the p, is 0.0143 in Fig.5.1, and it is 0.0419 in Fig. 5.3. The standard

deviations are 0.0287 and 0.0634, respectively. As we would expect, the tail is effective
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in giving the rhythm command.

5.2 Experiment for Human Characteristic

In this section, human response to the input of the tail device was tested by a rapid
step command of the tail. To obtain the step response of the user, instead of using
turn-taking reading, the user has to read and learn the rhythm at the same time. The
identification process measures the instinet reaction of the human user to the tail input,
the response may indicate the inherent reactioﬁ 'speed of the test subject to the robotic

dog’s guiding device.
<= | Py
W}fh the sameipace, and the was recorded

i -
The process was repeated ten tiwes

as shown in the Fig. 5.4. And:if theL experiment ior,ocess becomes that the waving time
was changed every five reading rdunds, the result has been recorded as shown in Fig.
5.5. Results shown in both figures were the averages of the subject’s responses out of

five experiments. The test sentences were randomly generated series of numbers.
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Synchronization Paramter p theta (degree)

Index ‘of Reading: Times
L ey

Fig. 5.4 Time evolution of the/®2 indicating thevsubject’s ability to adapt to the
ifpdlevice.

22

20+

16+

141

12

Synchronization Paramter p theta (degree)

1 1
2 4 6 8 10 12 14 16 18 20

10 I I I I
0

Index of Reading Times

Fig.5.5 ¢ performance showing the subject’s response to step changes of input.

As we expected, the p, will drop straightly at beginning and maintain the
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stability in a small range. p, can be used to identified subject’s ability to adapt to a
specific rhythm, and for identifying the subject’s response characteristic. p, is

different for different users, provides information about the worst possible human delay

p,, » that is a parameter for controlling the tail pace.

5.3 Experiment of Turn-Taking Reading

The final experiment was expected-to simulate the turn-taking reading situation.
The robot demonstrated the ideal pace by-the fail first; and.the user follows the tail in

the next time. In the next round, the dil’s guidihg time can be changed by the way Egs.

T Ly

4-13 to 4-15 described. The rhythmhdect&? of one of the subject’s test results were
| \} "“ |

shown in Fig.5.6 and Fig. 5.7. % ; ‘ 1
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Fig. 5.6 Rhythm parameter response under control.
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Fig. 5.7 Rhythm parameter response without control.

In this case, D=[41.31 70.82 106.23], and p, =216. It is shown that the

rhythm of the oral reading con be effectively guided into the commanded values. As
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guided time approached a large time, the results tended to be stable within a certain
bound of the commanded rhythm.

Users with bigger p ~ comes with results of the increasing overshoots and with
more displacement from the original phase. This may cause the user’s rhythm
performance approaching the commanded rhythm values faster but also may cause the
rhythm performance far from the original rhythm as shown in Fig. 5.8.

The figure 5.8 is two of the user’s.data of D, on the different p, . It shows the

effect of different p, . Higher = pi.results.in bigéér overshoots.

—*—— pm=144 user D1
--+-- pm=144 D1'

—©— pm=288 user D1
--6-- pm=288 D1' -

3 0 L L L 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Number of Reading Round

Fig. 5.8 The different ”= effect on the overshoots.

The ratio of the rhythm parameters indicate the user’s ability to read fluently.

Higher ratio of rhythm parameters expresses that the reader is able to manipulate the
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sentence with high degree of freedom. In this respect, the ratio can be considered as the

score of the oral reading performance. Here, two ratio parameters are defined as
D
C = HZ (5-2)

D
G 233 (5-3)

2.2 \

o 1.8¢ <
¢ - —+— usersC ||
1.6 —o— tail's C 7
— ourgoal C
14 1 L L . 1 —— 1 | T T
1 2 3 41 = 6l] ]} 8 9 10
NLumber of Reading|Round
3.5
3+
3]
O ~
257 & —k— users C ]
\*_'7,%/4/ —o— tails C
— ourgoal C
2 L L L 1 1 1 T T
1 2 3 4 5 6 7 8 9 10

Number of Reading Round

Fig. 5.9 Rhythm parameter ratio under control.
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Fig. 5.10 Rhythm parameter ratio.without control.

Figures 5.9 and 5.10 displayed thﬁcomparing results .of the ratio of rhythm

| l

parameters trend. The user-of the ﬁQre 5.‘_3, teached the rhythm goal at the fifth times.
\ S

1

And the user of the figure 5. ld doesn’t reach the gozal;3

Data of ten subjects were recorded. The average time to reach the commanded ratio
under control was 4.2th rounds, and the one without control was 9.2th round. The user’s
data with control reached the commanded ratios in a shorter time compared to readers

not under control of the tail.
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Chapter 6 Conclusions

Reading fluency is an indicator of reading ability. Improving reading ability can be
approached by teaching the fluency of the sentence. Rhythm of a sentence is unique
because of its syntax. Good comprehension of the syntax structure comes with the right
rhythm in reading. In this study, the guided reading using a pet-like robot as an in-line
feedback mechanism to readers was_explored.. The rhythmic behavior of the reader’s
oral reading voices were recognized and analy;z'ed by-the robot’s computer. Beginning
and ending time of each werd was détected through a'HMM based endpoint detector.

] X

| — |
Features of voices were then utilized 'to 'Eﬁlcu[ated error measures of the reading pace

I

'

with respect to a teacher. Based on ;these eﬁbr rfqeézasures, rhythm parameters represent
the reader’s fluency while reading a-sehtence were‘ displayed and control actions to
improve the reading rhythm were given through the tail mechanism.

Main contribution of this study is the proposition that turn-taking reading guidance
could be modeled by closed-loop control system. Each word in a single sentence is
represented by its phase relationship with respect to the other words of the sentence. A
constant speed circular motion was used to describe the sentence processing. A
synchronization parameter and rhythm parameters were defined based on the error of

phases between the phases of a teacher to that of a reader. Then the method for
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‘controlling’ the readers reading rhythm and improving the reading fluency were
provided.

The method was experimentally evaluated to illustrate its effectiveness. First of all,
it has to be tested if the tail mechanism is effective to the user. The experiment can be
done by simply testing the user’s responses to various tail commands. The human
response characteristic to the input device was obtained by step inputs of rhythm
commands. Reader’s controllability was medeled by a synchronization parameter.
Based on this parameter, human’s delay-in folfolwing the input commands was used to

design control laws in the feedback lo0p+to control the reading rhythm. The control law

."-..‘_‘"

("1

'

gives rhythm command changes folliwiﬂg.'tffé:' er‘r‘or measures derived from the phase
differences of each word in a sentqnf:e between ;‘a‘f teacher and a reader’s oral reading
voices. Results of reading ﬂuenéy ‘experiments with ahd without feedback control were
compared, and the effectiveness of the proposed feedback method via robotic dog’s tail
mechanism was evaluated.

It was shown that the proposed guided reading technique through a robot in the
feedback control loop is feasible. Parameters defined in this study display clearly the
reader’s oral reading fluency performance. Control strategies for improving the fluency

were established with an error measure modeled by the phase difference of each reading

word in a sentence conducted by a teacher and by the reader. It was shown by
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experimental results that the reading rhythm is actually can be controlled and be

improved while the reading is in progress. It was shown that reading fluency could be

guided directly by the robot to reach in their rhythmic state in a few trials of a sentence.
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