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摘要 

本研究目的為使用寵物型機器人，在和使用者的互動朗讀過程中，評估閱讀

者文句節奏狀況，並給予回饋進而幫助閱讀流暢度的改善。辨識朗讀者節奏，必

須先利用語音端點偵測技術，找到字的端點。本研究機器人的端點偵測系統，是

使用過零率、能量、頻譜、自相關函數等特徵，訓練隱藏式馬可夫模型之分類器。

互動的機制上，在機器人上使用兩個垂直方向的馬達，發展出具節拍器功能之尾

巴，用以給予使用者閱讀節奏之引導。 

為了評估讀者和機器人相互影響關係以及讀者節奏狀態。以句子為單位，定

義字相位模型，並用此定義同步參數以及節奏參數。其中同步參數用以評估讀者

和節拍器的相互關係，節奏參數用以定義句子結構以及評估讀者節奏。評估使用

者節奏參數，若其沒有達到指定的朗讀節奏，在下一次的朗讀過程，節拍器回授

使用者一個更顯著差異的時間差，使之更具朗讀節奏。而時間的改變量也將根據

同步參數不同而有所調整。 

本研究實驗部份，首先藉由分析有節拍器引導與否，顯示尾巴引導機制的效

果。接著藉由重複的引導過程，觀察使用者朗讀狀態的改變。最後用隨機決定的

朗讀文句，觀察使用者受節拍引導的影響。未來，可用以陪伴幼童讀書以及幫助

其提升對文章節奏的熟悉度。 

關鍵詞:朗讀,節奏,控制,隱藏式馬可夫模型,機器人 
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Abstract 

In this study, the pet-like dog that interacts with reader for enhancing the reading 

cadenced is being developed. Acoustic behaviors of voice signals are recorded to 

analyze the condition during interaction. The reader reading rhythm is found by 

endpoint detector. The endpoint detector is a classifier and based on the Hidden Markov 

Model. It is trained by nonverbal auditory cues, such as zero-crossing rate, energy, 

spectrum, and autocorrelation. The spectrum and autocorrelation are chosen to 

recognize the periodic signal.  

To provide guidance of oral reading, the robot’s tail is developed into a two 

directions metronome by the two perpendicular motors. The goal is to classify reading 

states of the user, so the phase model of the words’ period in a sentence is defined, then 

the synchronization and rhythm parameter are defined by word phases. The 

synchronization parameter characterizes the users’ response models with respect to the 

tail input. And the rhythm of the sentence is characterized by the rhythm parameter. 

Measuring the rhythm parameter, if the rhythm parameter is far from the commanded 

rhythm, a new pace is then set up to control the metronome for the sentence reading 

guidance. The guidance rule for a specific user considers not only the rhythm parameter 

difference but also the synchronization parameter of the user.  
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Experiments were conducted to demonstrate the effect of guidance on oral reading 

performance. Rhythm parameters being controlled to approach better reading fluency is 

observed under the proposed guidance rule.  

Keywords: oral reading, rhythm, control, hidden Markov model, robot 
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Chapter 1 Introduction 

1.1 Motivation 

A robotic pet dog is designed to enhance children’s love of reading by interacting 

with children. A robotic pet dog for reading assistance is considered to be effective in 

drawing children attention and creating intimacy. Turn-taking interaction is a general 

way to help children learning by parents or teachers. Traditionally, there are some 

assisting means employed as the educational guidance, for example, gesture or handclap. 

The tail mechanism of the robotic dog was developed to implement this function. 

Acoustic behaviors of voice signals are recorded while the child reads as a mean to 

analyze the condition of interaction. The goal of the study is to use the robotic pet dog 

as a tool to classify reading states of the child, and furthermore try to change the state 

into a good-learning condition, particularly for the oral reading fluency improvement. If 

the child is not cadenced of the sentence, this study demonstrated that the reading 

fluency can be improved by giving the more significant tempo provides by the robotic 

pet dog. The robot can play as an assistant or even a teacher in the interaction. 

1.2 Literature Review 

Kuhn and Stahl provide instructional strategies that are effective in promoting 
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fluency among beginning readers in [1]. It also gives a review of many studies that have 

attempted to improve fluency. It indicated that assisted approaches, such as 

reading-while-listening, seem to be more effective than non-assisted approaches, such 

as repeated reading. The basic ideal of the robot instructional strategies was derived 

from this literature. 

The studies by Mastropieri, Leinart and Scruggs [2] reviewed the strategies for 

increasing reading fluency such as repeated reading, reading with computer or a reading 

with a peer. They indicated that careful application of combing some of these strategies 

can meaningfully improve reading fluency. The study was inspired by their work to 

design a robot for accompany readers. 

Rasinski [3] referred to reading fluency as the reader’s ability to develop control 

over surface-level text processing, so that he or she can focus on understanding the 

deeper levels of meaning embedded in the text. And he also referred to reading fluency 

has three important dimension that build a bridge to comprehension, such that accuracy 

in word decoding, automatic processing, and prosodic reading. In our work, our goal is 

to make sure that the reader does not place the equal emphasis on every word, which is 

related to the definition of the prosodic reading. 

Then we are focus on the rhythm. Wolff has the discussion in [4] that dyslexic 

students contrast to normal readers. The experiment is which had inordinate difficulty 
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reproducing simple motor rhythms by finger tapping and similar difficulty reproducing 

the appropriate speech rhythm of linguistically neutral nonsense syllables. Then the 

dyslexic students took significantly longer than normal readers did to recalibrate their 

tapping cadence and switch back to the anticipation mode, after an abrupt change in the 

metronome rate did. It provides the application of changing reading rhythm by the 

metronome and relates to design the control equation of the metronome.  

Brady [5] provides the study on the metronome effect on stuttering. The adult 

stutterers served as subjects in four experiments on the mechanism by which pacing 

speech with a metronome increases fluency. There is the marked increase in fluency 

experienced by most severe stutterers when they pace their speech with a metronome. 

Then the tail mechanism was designed as a metronome to guide the user reading. 

Topping and Lindsay [6] synthesizes and analyses the research on the technique for 

non-professional tutoring of reading known as paired reading. The flow chart of the pair 

reading is used in our turn-taking reading procedure. 

The literature [7] is an educational book about mandarin oral reading method for 

the young children. They use some simple symbols represent the different levels pause 

duration of the sentence. The rhythm parameter has defined in three levels just like the 

approach we adopted in this study. 

In this work, endpoint detector was base on the hidden Markov model (HMM), 
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which was developed by Princeton (1980) [8]. This statistical model was usually used in 

speech recognition, but also used for the endpoint detecting in [9-11].  

1.3 Thesis Organization 

This thesis is divided into six chapters. In chapter 2, the signal processing 

techniques that were utilized to exact features for the endpoint detection. The endpoint 

detector based on a Hidden Markov Model was used to train and find the user state of 

reading are presented in chapter 3. Then the pet dog platform and the turn-taking 

reading model are introduced in chapter 4. In chapter 5, the application of this work and 

the discussion are presented. Finally, chapter 6 provides conclusions and future work. 
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Chapter 2 Voice Signal Processing 

2.1 Introduction 

This chapter shows the basic methods of voice signal processing. Oral reading 

sound is a continuously acoustic pressure wave signal. This chapter shows how to deal 

with those signals before the voice detector. First, the continuous acoustic signals turned 

into discrete signal by sampling, then block into frames. Second, some features of 

sounds can be exacted, for example, short time stationary energy, noisy autocorrelation 

are the features in time domain. And spectral entropy, pitch are features in frequency 

domain. Figure 2.1 is the flow chart of this chapter. 

Sampling Frame Block Window

Energy  

Speech signal

FFTAutocorrelationZCR

( )x t

( )E l ( )Z l

( )x n ( )lf n

( )lf n ( )tx n

( ) ( ), v pA l A l ( ) ( ) ( ), , v f sF l F l H l

 

Fig. 2.1 Block diagram of the signal processing 



 

 6

2.2 Basic Voice Signal Processing 

2.2.1 Sampling 

Computer can only handle discrete signal, however, real world signals are 

continuous in time. Therefore, we have to convert continuous time signals to discrete 

signals, and this process is called sampling.  

Mathematically, we perform sampling by multiplying a continuous signal by an 

impulse train which consists of periodic unit strength delta function in the domain of 

interest. Denoting the continuous waveform signal by ( )x t , and ( )px t  is the signal 

after sampling.  

( ) ( ) ( )px t x t p t=                                                 (2-1) 

( )p t  is the impulse train, as follow: 

-
( ) ( - )s

n
p t t nTδ

∞

= ∞

= ∑                                             (2-2) 

The signal after sampling ( )px t  has value only at st nT= , as the follow equation: 
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-

-

( ) ( ) ( - )

        ( ) ( - )

p s
n

s s
n

x t x t t nT

x nT t nT

δ

δ

∞

= ∞

∞

= ∞

=

=

∑

∑

                                       (2-3) 

So we can define a discrete time signal ( )x n  such that: 

( ) ( )sx n x nT=                                                   (2-4) 

The sampling period of this discrete time signal is sT , and the sampling frequency 

define by 1
s

s
F T= . We use the sampling frequency 8k Hz. 

2.2.2 Frame Blocking  

To deal with the discrete-time signal ( )x n , framing is used to divide the speech 

signal into several sections. Frame blocking is to collect several samples to become a 

frame. We assumed that each frame’s feature is invariant and features are processed 

from the speech signal frame by frame. The speech feature parameters can be extracted 

from each frame. Therefore, the variation in the speech signal can be observed. 

There are two factors affect frame blocking: frame duration and frame overlap. 

Frame duration is the length of the frame, and frame overlap is the length of overlaps of 

two neighbor frames. The frame shift is defined as the difference between the frame 
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duration and the overlap, see the Fig 2.2 

 

Fig. 2.2Frame Blocking 

Longer duration come with fewer features could be detected in the speech signal. 

But if frame duration is small than a threshold, the result will be affected easily by the 

background noise. The feature extracted from each frame will be smoother by using 

frame overlap. Frame overlap is generally the half of frame duration.  

The values of frame duration FN  and overlap FM  are 256 and 128 point in this 

paper, which correspond to 32 ms frames and separated by 16 ms when the sampling 

rate of the speech is 8k Hz. 

The first frame consists of samples from 1 to FN . The start sample of the second 

frame is ( - 1)F FN M +  and the end sample is (2 - )F FN M . We assume that there are 

L  frames in the signal, and l  is the number of frame.  And the l  frame is from 

( -1)( - ) 1F Fl N M +  to ( -1)( - )  F F Fl N M N+ . By applying the frame partitioning to 

( )x n , one will get L  vectors of length FN , and ( )lf n  denoted the l  frame of the 

signal. 
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2.2.3 Windowing 

In order to reduce the edge effect, we multiply a window. In this paper, the 

hamming window is chosen. The function of hamming window is defined as 

20.54 - 0.46*cos( ),  0 -1
-1( )

0                                ,  

F
F

n n N
Nw n

otherwise

π⎧ ≤ ≤⎪= ⎨
⎪⎩

                       (2.5) 

The time and frequency responses of the Hamming window shows on Fig 2.3. 
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Fig. 2.3 Hamming window 

By applying the ( )w n  to every frame ( )lf n , then ( )tx n  is obtained. 
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2.3 Time Domain Feature 

2.3.1 Energy 

  The short-time log energy was computed according to the following formula: 

( ) ( )
 

2

- 1
log

F

l

l
n l N

E l f n
= +

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑                                        (2.6) 

Even though it is not very robust against noisy backgrounds and impulsive 

interferences, energy is still a fundamental component in many widely used endpoint 

detectors. The relationship between voice signal and energy shows on Fig. 2.4. 

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

Time(s)

A
m

pl
itu

de

0 50 100 150 200
-5

0

5

Frame Index

Lo
g-

E
ne

rg
e

 

Fig. 2.4 Speech signal (up) and Log-Energy(down) 
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2.3.2 Zero-crossing rate(ZCR) 

Zero-crossing rate (ZCR) is the number of zero point a wave passed in each frame. 

The ZCR can be mathematically defined as 

( ) ( )
- 1

1( ) 0.5 | sgn - sgn -1 |  
F

l

l l
n l NF

Z l f n f n
N = +

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑                  (2.7) 

where the function ( )sgn f n⎡ ⎤⎣ ⎦  is defined as 

  ( ) ( )1  ,  0
sgn

-1 ,
for f n

f n
otherwise

≥⎧⎪=⎡ ⎤ ⎨⎣ ⎦ ⎪⎩
                                 (2.8)   

ZCR has an important feature that the ZCR of noise and aspiration signal are 

greater than that of speech and the ZCR curve is shows on Fig. 2.5. 
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Fig. 2.5 Speech signal (up) and ZCR(down) 

2.3.3 Autocorrelation 

The short-time normalized autocorrelation of the signal ( )tx n  is defined as 

follow: 

( )

( )
1 1

- 2 22 2

0

( ) ( - )

( )

F

F F

N

t t
n k

N k N

t t
n n k

x n x n k
a k

x n x n

=

= =

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
                             (2.9) 

By the definition, ( )0a  is guaranteed to be 1. It can be obtained a small number 

of strong peaks for voice frames because of their periodic component, on the other hand, 
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there is a large number of small peaks for unvoice frames. We can see its figure on the 

Fig. 2.6 
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Fig. 2.6 Autocorrelation results for voiced (left) and an unvoiced (right) frane. 

There is one significant problem to the standard normalized autocorrelation. The 

very small and noisy periodic signals will still result in strong peaks. To solve this 

problem, signals is to add a very low-power Gaussian noise signal to each frame before 

taking the autocorrelation. The figure 2.7 shows the relationship between the speech 

signal and the autocorrelogram. 

We use the maximum peak value and the number of peaks as our two features. The 

maximum peak value and the number of peaks can be defined as ( )vA l  and ( )pA l  
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Fig. 2.7 Speech signal (up) and autocorrelogram(down) 

2.4 Frequency Domain Feature  

2.4.1 Fast Fourier Transform 

The variation of signals in the time domain is hard to find out the characteristic of 

speaker signals. The signals transfer to frequency domain by FFT. Each frame after 

multiplying the hamming window change into frequency domain by following FFT 

equation: 

( ) ( )
2-1 -

0

F
F

N j kn
N

t
n

X k x n e
π

=

= ∑                                         (2.10) 
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( )X k  is a complex number, so it can be divided into two parts: 

( ) ( ) ( )xX k X k kφ= ∠                                          (2.11) 

( )X k  and k  can show the spectrogram in Fig. 2.8. 

 

Fig. 2.8 Speech signal (up) and spectrogram (down) 

We use the maximum peak value and the corresponding frequency as our two 

features. The maximum peak value and the number of peaks can be defined as ( )vF l  

and ( )fF l  

2.4.2 Spectral Entropy 

Another key feature can be obtained as the FFT magnitudes. Voiced frames have a 
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series of very strong peaks resulting from the pitch period’s Fourier transform. This 

result in the banded regions we have in the spectrograms and in a highly structured set 

of peaks as seen in the first panel of Fig. 2.9. In the unvoiced frames, as seen in the right 

panel, we see a fairly noisy spectrum, be it silence (with low magnitudes) or a plosive 

sound (higher magnitudes). We thus expect the entropy of a distribution taking this form 

to be relatively high. 
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Fig. 2.9 FFT magnitude for a voiced (left) and an unvoiced (right) frame. 

To compute the spectral entropy, ( )X k  is normalized to make it into a proper 

distribution. 

( )( )
( )n

X kX k
X k

=
∑

                                             (2.12) 

Normalizing in this way makes this feature invariant to the signal energy. The 
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entropy of the resulting distribution can be computed by following equation: 

- ( ) log ( )s n n
k

H X k X k= ∑                                   (2.13) 

In Fig 2.8, sH  is 3.76 for the voiced frame, and 4.72 for the right panel. The 

relationship between the signal and sH  will show in Fig. 2.10. 
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Fig. 2.10 Speech signal (up) and Spectral Entropy(down) 

( )sH l  is our final feature.  

In this chapter, that there are six features be defined. They are short-time log 

energy ( )E l , zero crossing rate ( )Z l , autocorrelation maximum peak value ( )vA l , 

autocorrelation number of peaks ( )pA l , FFT maximum peak value ( )vF l , FFT 
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maximum peak value frequency ( )fF l , and spectral entropy ( )sH l . 

These features are focus on recognizing voice and unvoice, and these features will 

be used in next chapter-- HMM-Based Endpoint Detector. 
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Chapter 3 HMM-Based Endpoint Detector 

In this chapter we propose an effective, robust and computationally low-cost 

HMM-based start-endpoint detector. The features used for voice activity detection are 

energy, zero-crossing-rate, autocorrelation, and spectral entropy, which presented in 

chapter 2. 

The endpoint module is a critical part in any spoken dialogue system. It cannot be 

recovered since missed speech fragments. Two main approaches are adopted in 

developing endpoint detectors: threshold based and classifier based. 

The first class is the most widespread. The decision is performed according to one 

or more threshold. Its algorithms are generally simpler and faster to implement. Its 

major drawback consists in the need of careful tuning of many parameters, something 

that makes such algorithms sensitive to environmental variations. The second one uses 

the classifier substitutes the threshold. This method relies on general statistics rather 

than on local information. 

In our application, it probably works in different environment, so it will be better to 

choose the second way to approach this goal. The classifier that we use is presented in 

the follow section. 
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3.1 Hidden Markov Models 

To understand the problem of choosing the endpoint detection method, we must 

first examine the process of speech production and the Chinese language (We focus on 

Chinese language in this thesis). Speech can be broken up into two kinds of sounds: 

voiced and unvoiced. The voiced sounds are those that have a pitch, which we call 

vowel. The unvoiced sounds are everything else. Almost every Chinese word involves a 

vowel. Chinese is single syllable language. There are different states in the speech 

production process which we can’t see. We introduce the HMM idea in the below. 

We assume speech signal can be characterized as a parametric random process.  

We introduce the classifier hidden Markov model (HMM). The HMM model is often 

used in speech recognition, because the same reason of the pronounced state concept. 

But it is much simplicity in our application. We use the two states HMM model as a 

classifier. One represent the voice state and the other one represent the unvoice state. A 

hidden Markov model is a Markov model where the states tq  are not directly 

observable. Instead, we can observe another measurement to that is related to tq  by 

the stationary probability distribution ( | )t tp o q , i.e., to  is a probabilistic function of 

the unobserved state tq .The graphical structure of the hidden Markov model is 

illustrated in Figure 3.1. 
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q1 qt-1 qt qt+1

o1 ot-1 ot ot+1

 

Fig 3.1 The graphical structure of a hidden Markov model 

For a basic HMM, there some parameters that are necessary to described the 

process. An HMM is characterized by the following: 

1. N , the number of states in the model. iS , the thi  state in the model. ( 2N =  

in our application) 

2. The observation vector: 

{ }1 2, ,..., MV v v v= , where M is the number of distinct observation symbols per 

state 

3. The state transition probability distribution: 

{ }ijA a= , ija  is the probability from state i  to state j , as the follow equation: 

( )1 |ij t j t ia P q S q S+= = = , 1 ,i j N≤ ≤                              (3-1) 

4. The observation symbol probability distribution in state j : 
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( ){ }j kB b v= , ( )j kb v  is the probability of the observed variable in state j , as the 

follow equation: 

( ) ( )|j k t k t jb v P o v q S= = = , 1 ,1j N k M≤ ≤ ≤ ≤                    (3-2) 

5. The initial state distribution: 

{ }π iπ= , iπ  is the initial probability that at state i , as follow: 

( )1i iP q Sπ = = , 1 i N≤ ≤                                       (3-3) 

For convenience we usually use a compact notation ( ), ,πA Bλ =  to indicate the 

complete parameter set of an HMM. It also requires specification of two model 

parameters ( N  and M ).All parameters must be under the following constraints. 

1
1, 1

N

ij
j

a i N
=

= ≤ ≤∑                   (3-4) 

1
N

i
i
π =∑              (3-5) 
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( )
1

1
M

j k
j

b v
=

=∑             (3-6) 

An example of a HMM of a three-state Hidden Markov Model is shown as follows.  

There are three states, 1S , 2S , and 3S  in the model, and they generate A, B, and C, 

respectively. The state transition probability matrix is 

{ }
0.6 0.3 0.1
0.1 0.7 0.2
0.3 0.2 0.5

ijA a
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

              (3-7) 

The observation probability with respect to a state is 

( ){ }
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3

1 2 3

1 2 3

0.3 0.7 0.3
0.2 0.1 0.6
0.5 0.2 0.1

i k

P A P A P A
B b v P B P B P B

P C P C P C

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

    (3-8) 

And the vector of initial state probability is 

[ ]π 0.4 0.5 0.1 T=             (3-9) 
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Fig. 3.2 Example of a three-state Hidden Markov Model. 

Given an observation sequences { }, , ,O A B C B= , there are 81 possible 

corresponding state sequences, and therefore the probability, ( )|P O λ , is 

( ) ( ) ( ) ( )
81 81

1 1
| , | ,i i i

i i
P O P O Q P O Q λ P Q λλ λ

= =

= =∑ ∑ , iQ : state sequence   (3-10) 

For example, if states sequences { }2 2 3 1, , ,iQ S S S S= , then 

( ) ( ) ( ) ( ) ( )2 2 3 1, 0.7*0.1*0.1*0.2 0.0014iP O Q λ P A S P B S P C S P B S= = =  

( ) ( ) ( ) ( ) ( )2 2 2 3 2 2 1 0.5*0.7*0.2*0.3 0.021iP Q λ S P S S P S S P S Sπ= = =  

The relative probability equals to 40.294*10− . In fact it is not necessary to 

calculate all possible cases, it will be introduced in the below.  

In the next step, there is a HMM model will be established. This process involves 
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computing probability of this model, training model by input data (six features that 

exact in above chapter), and finding the best sequence of state. We solve these problems 

in the next section. 

3.2 Three Basic Problems for HMM 

There are usually three basic problems that we have to solve using the HMM 

model. These problems are about evaluation efficiency, decoding, and training.  

In the following sections, we describe several conventional solutions to these three 

standard problems. 

3.2.1 The Evaluation Problem 

The main concern in the evaluation problem is computational efficiency. Given a 

observation sequence 1 2( , ,..., )TO o o o= , and a HMM model ( ), ,πA Bλ = . The most 

straightforward way to compute ( )|P O λ  is listing all possible state sequences and 

summing up their probabilities. It can be shown as: 

( ) ( ) ( ) ( ) ( )
1 1 1 2 2 11 2

Q Q
, ...

T T TS S S S S S S S T
all all

P O P O S b o a b o a b oλ λ π
−

= =∑ ∑      (3-11) 

Since the summation in (3-11) involves 
TN  possible Q  sequences, the total 
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computational requirements are on the order of 2 TTN  operations. The need to compute 

(3-11) without the exponential growth of computation, as a function of the sequence 

length T , is the first challenge for implementation of the HMM technique. 

There is a more efficient method, called forward algorithm. First, define the 

forward variable: 

( ) ( )1 ,t
t t ii P O q Sα λ= =                                      (3-12) 

( )t iα  is the probability of the partial observation sequence { }1 1 2, ,...,t
tO o o o= up to 

time t and state t iq S=  at time t . The forward variable can be calculated inductively 

by  

( ) ( ) ( )1
1

2 ,1
N

t t ij j t
i

i i a b o t T j Nα α −
=

⎡ ⎤
= ≤ ≤ ≤ ≤⎢ ⎥⎣ ⎦
∑             (3-13) 

The desired result is simply 

 ( ) ( )
1

N

T
i

P O iλ α
=

=∑                                           (3-14) 
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It requires about 2N T  computations which are much less than direct calculation. 

Our application needs few N  and more T (according to sentence length). This 

tremendous reduction in computation makes the HMM method attractive in our 

application.  

3.2.2 The Estimation Problem 

Given a set of observations 1 2( , ,..., )TO o o o=  and a HMM ( ), ,πA Bλ = , the 

estimation problem involves finding the "right" model parameter values that specify a 

model most likely to produce the given sequence. This is often called “training” in 

speech processing.  

In solving the estimation problem, we often follow the method of maximum 

likelihood (ML): Finding a model ( ), ,πA Bλ =  such that ( )|P O λ  is maximized for 

the given training sequence O. The problem can be solved by the iterative Baum-Welch 

algorithm. First we define the backward variable: 

( ) ( )1,
T

t t t ii P O q Sβ λ+= =                                      (3-15) 

( )t iβ  is the probability of the partial observation sequence 

( )1 t+1 t+2 T= o ,o ,...,oT
tO + , given state iS at time t and the model λ . The backward 
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procedure can be set by: 

(1) Initialization ( ) 1,  1Tβ i i N= ≤ ≤                                (3-16) 

(2) Induction ( ) ( ) ( )1 1
1

 , 1 1  1
N

t ij j t t
j

i a b o j t T - , j Nβ β+ +
=

= ≤ ≤ ≤ ≤∑       (3-17) 

Then, two new variables can be defined: 

( ) ( )1, , | ,t t i t ji j P q S q S Oξ λ+= = =                               (3-18) 

( ),t i jξ  is the probability of being in state iS  at time t  and state jS  at time 

1t + . And it can be inducted by forward variable and backward variable. 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
1 1 1

1 1
1 1

, ,
, t i t j t ij j t t

t N N

t mn n t t
m n

P q S q S O i a b o j
i j

P O m a b o n

λ α β
ξ

λ α β

+ + +

+ +
= =

= =
= =

∑∑
    (3-19) 

The variable ( )t iγ  is defined as 

( ) ( )| ,t t ii P q S Oγ λ= =                                          (3-20) 
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Which is the probability of being in state iS  at time t . It also can be inducted by 

forward variable and backward variable. 

( ) ( )
( ) ( )
( )

( ) ( )

( ) ( )
1

( , | ) t t t tt i
t N

t t
i

i i i iP O q Si
P O P O i i

α β α βλγ
λ λ α β

=

=
= = =

∑
               (3-21) 

Based on an existing model λ , the Baum-Welch algorithm will be utilized to get 

the final models. After the variable are defined, the new parameters of HMM could be 

re-estimated as follows 

( )1

expected number of times in state  at time ( 1)
   
    

i iS t

i

π

γ

= =

=

              (3-22) 

( )

( )

j

-1

1
-1

1

expected number of transitions from state  to state 
 

expected number of transitions from state  

,
    

i
ij

i

T

t
t
T

t
t

S S
a

S

i j

i  

ξ

γ

=

=

=

=
∑

∑

         (3-23) 
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( )

( )

( )

T

    t 1
s.t. 

T

t 1

expected number of times in state  and observing symbol 
 

expected number of times in state  

          
 

t k

j k
j k

j

t

o v

t

S v
b v

S

j

j

γ

γ

=
=

=

=

=

∑

∑

(3-24) 

These parameters, then, would be updated, and go back to calculate the variables 

( ),t i jξ  and ( )t iγ .  These operations will be repeated until parametersπ , A , and B , 

are converged, and the HMM models are finally determinant. 

The training process chooses the observation with single Gaussians having 

diagonal covariance. We trained the model using several minutes of speech data from 

reading textbook regularly with voicing states labeled in each frame. 

3.2.3 The Decoding Problem 

In this problem, the purpose is to find the best state sequence. The forward 

algorithm described in the previous section can not find out such a state sequence, and 

the Viterbi algorithm can be applied to solve this problem efficiently. The Viterbi 

algorithm can be regarded as the dynamic programming algorithm applied to the HMM 

or as a modified forward algorithm.  

Instead of summing probabilities from different paths coming to the same 
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destination state, the Viterbi algorithm picks and remembers the best path. We define the 

probability quantity ( )t iδ  which represents the maximum probability along the best 

probable state sequence path of a given observation sequence after t  instants and being 

in state i . 

( ) ( )
1, 2, -1

1, 2, -1,...
max ... , |

t
t t t i tq q q

i P q q q q S Oδ λ= =
                        (3-25) 

And the best state sequence is backtracked by another function ( )t iψ . Then the 

complete Viterbi algorithm can be described by using ( )t iδ  and ( )t iψ  by following 

steps: 

Step 1: Initialization 

( ) ( )1 1 ,      1i ii b o i Nδ π= ≤ ≤                                 (3-26) 

1( ) 0iψ =                                                 (3-27) 

Step 2: Induction 

( ) ( ) ( )-11
max[ ] O       2  1t t ij j ti N

j i a b ,  t T, j Nδ δ
≤ ≤

= ≤ ≤ ≤ ≤           (3-28) 
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( )-1
1

( ) arg max[ ],     2 ,  1t t ij
i N

j i a  t T j Nψ δ
≤ ≤

= ≤ ≤ ≤ ≤               (3-29) 

Step 3: Termination 

( ) ( )*

1
max Ti N

P λ iδ
≤ ≤

=O                                         (3-30) 

( )
1

arg max*
T T

i N
q iδ

≤ ≤
=                                            (3-31) 

Step 4: Backtracking 

*
1 1( ),  1. 2,...,1*

t t tq q t T Tψ + += = − −                                (3-32) 

* * * *
1 2( , ,..., )TQ q q q=                                             (3-33) 

is the best sequence. 
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3.3 Performance 
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Fig.3.3 Performance of the model on speech 

 

An example of the result that generalized by Viterbi algorithm for HMM is shown 

in Fig. 3.3.As we had hoped, the model has correctly indicated the word region by the 

voiced/uuvoiced states. The best states sequence are correspond to the frame index, 

defined as follow: 

( ) ( )1 2, ,...,v TS l Q q q q≅                                         (3-34) 

( )vS l  is the state of the voice. This is an important feature that we will use in the 
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next chapter. At this point, we determine all of the nonverbal speech feature we were 

interested in. We can now use these feature on interaction between robot and people. 
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Chapter 4 Guided Oral Reading with Robot 

Reading fluency is an indicator of reading ability. Improving reading ability can be 

approached by teaching the fluency of the sentence. Rhythm of a sentence is unique 

because of its syntax. Good comprehension of the syntax structure comes with the right 

rhythm in reading. In this chapter, the guided reading method with pet-like robot will be 

illustrated. Our target users will be the children, or the people who are lack of reading 

ability. We can get beginning and end time of each word after the HMM based endpoint 

detector from chapter 3. The robot dog can use this features to measure the reading 

fluency then giving an appropriate guidance to the user.  

Before describing the fluency measurement method, the robot hardware will be 

introduced first, which included the illustration of robot appearance and function. The 

robot will be used to enhance the user reading ability. 

Then the guided reading scenario can be designed for the user and robot. The tail 

mechanism plays a key role in this interaction. The detail of the tail swing mechanism 

will be showed in following section. 

The turn-taking reading situation can be corresponded to the close loop control 

system. It was the basic concept of our guide reading process. To achieve this concept, 

the word phase model from the constant speed circular motion can be used in our 
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situation. The synchronization parameter and rhythm parameter can also be defined for 

describing the turn-taking reading condition. Then the final section illustrates the 

method for “controlling” the reader and improving the reading fluency. 

4.1 Robotic Dog 

The robotic dog is selected because its pet-like look is accessible for the children. 

The robot is about 90 cm high with four wheels and the friendly appearance (see the Fig. 

4.1).  

 

Fig. 4.1 The photo of the robotic dog 
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The hardware architecture is shown in Fig. 4.2. 

 

Fig. 4.2 The robotic dog hardware architecture 

The control computer is the PC104 produced by Advantech. The laser sensor and 

the stereo camera are used to recognize the human face and measure the distance. And it 

uses the wireless Ethernet to communicate with the other devices. The microphone and 

speaker are devices for the guided reading application, with the help of the tail 

mechanism. Tail is acing as the mechanism for the guided reading interaction process, 

and it will be explained in detail in next section. 

4.2 Interaction with Robot 

The general way to teach children reading is the turn-taking reading, such that 

children repeating after the robot. With reading guide, turn taking process can be an 

effective and a powerful way to improve its reading fluency. Besides, our purpose is to 
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prepare an environment that children can learn by interacting with the robot, so we 

design an online training system with the robotic dog that can measure the reading 

fluency and giving the guidance while the user is reading.  

Measuring reading speed, word accuracy, pause duration, pitch, and stress are 

necessary factors to assess oral reading fluency. We assume that user has the basic 

ability that he/she can recognize every single word of the article. He can read every 

single word slowly, but he may not actually know the phrase meaning. The word 

accuracy can be ignored by this assumption. 

For simplifying the question, we also assume that the better pitch and stress of 

fluency can come with the better reading speed and the pause duration. Then the focus 

of this chapter is on the reading time adjustment. 

On early childhood teaching in reading, the gesture or hand clapping are 

commonly used for guiding the correct word time for a child. Giving the word reading 

tempo can enhance the impression of the sentence rhythm. According to this idea, the 

tail mechanism is developed into a kind of metronome, or a kind of conductor's baton. 

Its speed and direction can be decided by controlling two motor, the photo of tail is 

shown in the Fig. 4.3. 
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Fig. 4.3 The tail mechanism; (a), (b) show the photo of the tail mechanism. (c), (d) 

are diagrams of the tail corresponding to photos (a) and (b) respectively. The 

motor 1 control the degree-of-freedom of up and down. The motor 2 control the 

waving. 

The tail can be used to point out the specific time of every word. Putting up and 

down can represent the beginning and the end of the guided reading. The waving time 

of the tail signals the each words time. The guided reading method with tail can be 

illustrated in Fig. 4.4.  
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Original
appearance

Preparing Signal

Waving with 
reading time

Waving with 
reading time  

Fig. 4.4 Four conditions of the tail  

Although it is impossible to catch the time exactly, the user generally can be lead to 

read in the specific rhythm by this way. The experiment in the next chapter verifies this 

point. 

After a user reads the sentence, the voice signal can be analyzed and the the rhythm 

features could be calculated by the technique presented in the chapter 3. The process is 

under control to reach the desired fluency. The definition of the rhythm and the guiding 

signal provided b the tail will be illustrated in following section. 

There is a scenario designed for teaching fluency with the robot. The flow chart of 

the guided reading is shown in Fig. 4.5. The user can be taught the right oral reading 
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paces of the article by the robot alone. 

User read the sentence 
with tail pace

Producing a new 
time of tail pace 

Fluency 
detection

Next sentence

Wrong

Correct

Give a sentence

 

Fig. 4.5 Flowchart of the guided reading  

4.3 Word Phase Control Model 

In the guided reading process, the user can receive the signal which sent by the 

robot and response after the signal. Robot can give the new guidance signal according to 

the user output. This process is modeled by a closed-loop feedback system. A control 

system in general, can be represented by a reference input, controller, plant, and sensors. 

Controller produces input to the plant, or controlled system. The control error can be 

computed by comparing the reference and the measured output. Then the controller can 

generate a new system input. The closes-loop control system of the guided reading is 
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shown as the Fig. 4.6. 

 

Fig. 4.6 Closed-loop control system 

In this study, the user can be corresponded to the system, and the tail can be the 

controller. The robot is used to measure the error and produce the new waving time of 

the tail.  

When the tail’s signal is giving to user, the new output will be produced, just like 

the controller providing the signal to the system. Then the system output can be 

measured by the robot’s sensor and assessed by the computer of robot. The new tail’s 

action can be decided by this assessment of the fluency. The user can be affected by the 

different signals of the tail and read the sentence with different rhythm. So the Fig. 4.6 

can be interpreted to the Fig. 4.7. 
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Fig. 4.7 Closed loop of the reading control system 
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To describe this idea, the output and the error have to be defined in control field. 

The mathematical description of the control process will be illustrated in the following 

section. 

4.3.1 Phase Model 

After the user reading a sentence, the robot can find out the boundary time of the 

every word, the reading speed and the pause duration can also be measured.  

The mathematical description of the voice signal has to be concerned. Since the 

sentence is the basic unit of the guided reading process, all of the definition can be 

constrain in a single sentence.  
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Fig. 4.8 Beginning time of words 

The tail can wag with the defined time jt . The jt  represents a teacher’s rhythm 
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which is given in advance. It can lead the user to produce a voice signal. The feature can 

be extracted from voice signal as described in chapter 3. The time of the word beginning 

can be defined as kt , which can be founded in the state of the voice, ( )vS l , as shown in 

Fig. 4.8. The variable wN  is defined as the number of the word of the sentence, 

7wN =  was used in the example. 
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tj=[0.3  0.8 1.1 2.0 2.5 2.8 3.5]
tk=[0.304 0.816 1.136 2.032 2.448 2.8 3.408]
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Fig. 4.9  Example for the phase model. 

The control command time jt and the user time kt  can be defined in a unit 

circle.  jθ  and kθ  are phase angle corresponding to jt and kt  , respectively . 

The wp and θD are the synchronization error and the rhythm parameter. 

The phase model was illustrated using an unit circle as shown in Fig. 4.9. The 
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standard time jt can be treated as a particle which on the constant speed circular motion. 

The guided reading problem can then be transferred into the location control problem in 

terms of a unit circle’s phase angle.  

The jt  is the teacher’s position on the unit circle. The position of the jt  can be 

defined as phase by the sT , which means the teacher’s sentence period. 

1- ,   s j wT t t when j N= =                                (4-1) 

And the phase of the tail can be defined as  

1( - )
*2j

j
s

t t
T

θ π=                              (4-2) 

The output of the user’s voice of a word can be treated as a location in the unit 

cycle that is to be controlled with guided motion commands. The word period can be 

defined in the circular domain too. The word phase can be defined as  

1( - )
*2k j

k
s

t t
T

θ π=                                (4-3) 

The ω  can be defined as the reading speed parameter.  
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 2

sT
πω =                                            (4-4) 

The tail waving “particle” and the user reading “particle” are also traveling along 

the circle with the ω . The controlled performance can be examined after finishing the 

each round of the guided reading by checking the location of the particle.  

4.3.2 Error definition 

In the guided reading process, the purpose is making sure about the user following 

the paces with the tail and reading with the rhythm of expectation. There have two steps 

of the error definition, synchronization parameter and the rhythm parameter. 

Firstly, the synchronization error can be used to measure whether the user follow 

the tail paces exactly and the user is controllable with our method. The synchronization 

error can observe if the user follows the tail’s signal by calculating the difference 

between the jθ  and kθ . 

The synchronization error can be defined as 

, 1

( - )
kN

k j
j k

pθ θ θ
=

= ∑                                    (4-5) 

The parameter pθ  means the error in the whole sentence, which can represent the 
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synchronization of the user and the tail paces. 

The different users and different comprehension of the sentence may cause the 

different result. That will be an important parameter to determine the characteristic of 

the user. 

It can’t not be expected that the synchronization error be exactly zeros. There will 

be a specific error value to a specific user. The characteristic of a user in terms of the 

synchronization error must be decided by experiment.  

The rhythm parameter can represent the preconception about the rhythm of the 

sentence. The rhythm error of the user is caused by his/her lack of understanding on the 

sentence.  

 Symbols for differentiating the different reading speed are illustrated here. For 

example: 

小 魚 兒 大 聲 的 o 說 

(1) Underline: Used in the phrase which we can read rapidly. That will be the 

fastest speed in the sentence.  

(2) Space: Used in stressed phrase or the key word, which we can’t read it slightly. 

(3)The circle between two words: Use after the word we want to emphasis. The 
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pause will be longer than first two symbols.   

To describe the reading speed, three levels of the pause duration are defined as 

follows. This rhythm variable is defined by the relative kθ .  

1 2 3[   ]D D D D=                                  (4-6) 

where 1 2 3, ,D D D  are defined as 

1

    1 
    1

k of the level
D

number of the level
θΔ

= ∑                           (4-7) 

2

    2 
   2

k of the level
D

number of the level
θΔ

= ∑                          (4-8) 

3

    3 
    3

k of the level
D

number of the level
θΔ

= ∑                          (4-9) 

It is anticipated that most sentences’ pause duration could be described by the 

three-level pause duration parameters. When a sentence is given, the target D  can be 

established by a fluent reader. Then the user’s rhythm parameters are measured, and 

controlled to approach the target set up by the fluent reader.  
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4.3.3 Control Method 

In case that the user can not make the goal due to poor following ability, the pace 

of the tail is modified according to the measured pause error. If the user’s rhythm 

develops a bias to that of the tail, the guiding pace of the tail will be produced to 

eliminate the bias or error.  

The command to the tail , 'D , can be calculated by the following equations.  

1 1 1'
1

1 1 1 1 1

                  ,     
- ( - ),    

m

m m

D if D D
D

D D D if D D
≤⎧

= ⎨ >⎩
                    (4-10) 

2 2 2'
2

2 2 2 2 2

                  ,     
( - ),    

m

m m

D if D D
D

D D D if D D
≥⎧

= ⎨ + <⎩
                     (4-11) 

3 3 3'
3

3 3 3 3 3

                  ,     
( - ),    

m

m m

D if D D
D

D D D if D D
≥⎧

= ⎨ + <⎩
                    (4-12) 

Where the mD  is the measured rhythm parameters of user.  

In case the user’s pause duration was shorter than the tail’s command, the control 

target has been reached. If the pause duration exceeds its targeted range, the control 

command will be re-calculated and adjusted for the next round in the sentence guiding 
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process. 

Different user’s characteristics may cause different controlling result. Consider pθ  

as the controlled system characteristic, or the users’ ability to follow the tail. Smaller 

pθ  indicates that the system has naturally smaller phase bias, which can also represent 

that the system can be controlled more easily, and the system is more stable to accept 

various ranges of control input. Considering the human ability to follow the tail pace, 

control equations can be further transformed into the following. 

1 1 1
'

1
1 1 1 1 1

                  ,     
( - )- ( - )* ,    

2

m

m
m m

D if D D
D p pD D D if D Dθ

π

≤⎧
⎪= ⎨

>⎪⎩

                (4-13) 

2 2 2
'
2

2 2 2 2 2

                  ,     
( - )( - )* ,    

2

m

m
m m

D if D D
D p pD D D if D Dθ

π

≥⎧
⎪= ⎨

+ <⎪⎩

               (4-14) 

3 3 3
'
3

3 3 3 3 3

                  ,     
( - )( - )* ,    

2

m

m
m m

D if D D
D p pD D D if D Dθ

π

≥⎧
⎪= ⎨

+ <⎪⎩

               (4-15) 

mp  represents the user’s worst tracking error with respect to the tail paces, which 

can be measured by experiments. If the user has better ability to track tail paces, the 

more increment of amended command will be delivered with respect to the previous 
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command. 

The following example explains the control procedure to improve a users reading 

rhythm. In this example, there is a sentence that the user wants to read it with better 

rhythm. 

小 魚 兒 大 聲 的 o 說 

The tail’s default time may be [1.2 1.55 1.9 2.4 2.9 3.4 4.2]jt = .               

The word phase can be calculated by Eq. 4-2, such that 

=[0   42   84  144  204  264  360]jθ  degrees. And the rhythm parameter can be 

calculated by Eq. 4-7 to 4-9. D was found to be =[42 60 96]D . 

After the first round of the guided reading, we can get the user reading time, for 

example, we can get the time as: [1.21 1.61 2.03 2.51 3.02 3.5 4.35]kt = . And the kθ  

can also be calculated by Eq. 4-3. 

[1.2  49.2  99.6  157.2  218.4  276  378 ]kθ = degrees.  And the new 

[49.2  58.8  102]mD = .  Then pθ  can be calculate by Eq 4-7 to be 81.6pθ = . Then 

we assume the mp  is 180 for this user. So the 'D  can be calculated by Eq 4-13 to 

4-15. The calculated results were shown as follows. 
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'
1 1 1 1

( - )- ( - )*
360

180-81.6     = 42-(49.2-42)* =  40.032
360

m
m

p pD D D D θ=
 

'
2

180-81.660+(60-58.8)* =60.3280
360

D =  

'
3 3 396    ,   because mD D D= ≥  

According to the 'D , the new waving time can be derived as, 

' 1.2    1.5336    1.8672    2.3699    2.8727    3.3754    4.1754jt =  

The new time has the difference between the original times, but not huge enough to 

confuse the user. The user was affected by this waving time and tended to get the right 

rhythm of reading. Different range of the command change must be adjusted and be 

accepted by different user. Magnitude of command changes can be tuned by setting the 

value of mp .  
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Chapter 5 Experiment and Discussion 

This chapter introduces some experiment results to illustrate the concept presented 

in Chapter 4. The purpose in the thesis was to design an autonomous robot which can be 

a company with children while they are reading by teaching the right rhythm of the 

sentence. Scenario of the experiment procedure was established as follows.  

First of all, it has to be tested if the tail mechanism is effective to the user. The 

experiment can be done by simply testing the user’s responses to various tail commands. 

The human response characteristic to the input device was obtained by step response 

tests. Finally, the reading fluency experiment with and without feedback control were 

compared, and the effectiveness of the proposed feedback method via robotic dog’s tail 

mechanism was evaluated. 

5.1 Experiment for Tail Mechanism Effect 

The tail mechanism was the fundamental technique to “control” or guide the user 

response. In the first experiment, results from two situations were compared to show the 

tail effect. One of them is that the subject reads a randomly generated sentence with 

tail’s guidance but only for the first and final word. Another reading experiment was 

carried out with the guidance for all of the words. And they also could watch the signal 
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at first, and read with the tail waving in the next time. Figure 5.1 shows the flow chart 

of these two experiments. 

 

Fig. 5.1 The flow chart of experiment 

The randomly generated sentence was used for ensuring that the word difficulty 

and syntax of sentence has minimum effects on the result. The error of the each word 

can be found by Eq. 5-1.  

-
 ,     

2
k j

wp when k j
θ θ

π
= =                          (5-1) 

The wp  of the 20 testing subjects was found and shown in the Figs. 5.2 and 5.3. 
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Fig. 5.2 wp  of the rhythm error with tail 
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Fig. 5.3 wp  of the rhythm error without tail 

The mean of the wp  is 0.0143 in Fig.5.1, and it is 0.0419 in Fig. 5.3. The standard 

deviations are 0.0287 and 0.0634, respectively. As we would expect, the tail is effective 
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in giving the rhythm command.  

5.2 Experiment for Human Characteristic 

In this section, human response to the input of the tail device was tested by a rapid 

step command of the tail. To obtain the step response of the user, instead of using 

turn-taking reading, the user has to read and learn the rhythm at the same time. The 

identification process measures the instinct reaction of the human user to the tail input, 

the response may indicate the inherent reaction speed of the test subject to the robotic 

dog’s guiding device.  

The process was repeated ten times with the same pace, and the pθ  was recorded 

as shown in the Fig. 5.4. And if the experiment process becomes that the waving time 

was changed every five reading rounds, the result has been recorded as shown in Fig. 

5.5. Results shown in both figures were the averages of the subject’s responses out of 

five experiments. The test sentences were randomly generated series of numbers.  
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Fig. 5.4  Time evolution of the pθ  indicating the subject’s ability to adapt to the 

input device. 
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Fig. 5.5  pθ  performance showing the subject’s response to step changes of input.  

As we expected, the pθ  will drop straightly at beginning and maintain the 
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stability in a small range. pθ  can be used to identified subject’s ability to adapt to a 

specific rhythm, and for identifying the subject’s response characteristic. pθ  is 

different for different users, provides information about the worst possible human delay 

mp , that is a parameter for controlling the tail pace.  

5.3 Experiment of Turn-Taking Reading 

The final experiment was expected to simulate the turn-taking reading situation. 

The robot demonstrated the ideal pace by the tail first, and the user follows the tail in 

the next time. In the next round, the tail’s guiding time can be changed by the way Eqs. 

4-13 to 4-15 described. The rhythm vector, D  of one of the subject’s test results were 

shown in Fig.5.6 and Fig. 5.7. 
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Fig. 5.6 Rhythm parameter response under control. 
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Fig. 5.7 Rhythm parameter response without control. 

In this case, =[41.31   70.82  106.23]D , and 216mp = . It is shown that the 

rhythm of the oral reading con be effectively guided into the commanded values. As 
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guided time approached a large time, the results tended to be stable within a certain 

bound of the commanded rhythm.  

Users with bigger mp  comes with results of the increasing overshoots and with 

more displacement from the original phase. This may cause the user’s rhythm 

performance approaching the commanded rhythm values faster but also may cause the 

rhythm performance far from the original rhythm as shown in Fig. 5.8. 

The figure 5.8 is two of the user’s data of 1D on the different mp . It shows the 

effect of different mp . Higher mp results in bigger overshoots. 
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Fig. 5.8 The different mp  effect on the overshoots. 

The ratio of the rhythm parameters indicate the user’s ability to read fluently. 

Higher ratio of rhythm parameters expresses that the reader is able to manipulate the 



 

 61

sentence with high degree of freedom. In this respect, the ratio can be considered as the 

score of the oral reading performance. Here, two ratio parameters are defined as 

2
2

1

DC
D

=       (5-2) 

3
3

1
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D

=       (5-3) 
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Fig. 5.9 Rhythm parameter ratio under control. 
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Fig. 5.10 Rhythm parameter ratio without control. 

Figures 5.9 and 5.10 displayed the comparing results of the ratio of rhythm 

parameters trend. The user of the figure 5.9 reached the rhythm goal at the fifth times. 

And the user of the figure 5.10 doesn’t reach the goal. 

Data of ten subjects were recorded. The average time to reach the commanded ratio 

under control was 4.2th rounds, and the one without control was 9.2th round. The user’s 

data with control reached the commanded ratios in a shorter time compared to readers 

not under control of the tail. 
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Chapter 6 Conclusions  

Reading fluency is an indicator of reading ability. Improving reading ability can be 

approached by teaching the fluency of the sentence. Rhythm of a sentence is unique 

because of its syntax. Good comprehension of the syntax structure comes with the right 

rhythm in reading. In this study, the guided reading using a pet-like robot as an in-line 

feedback mechanism to readers was explored. The rhythmic behavior of the reader’s 

oral reading voices were recognized and analyzed by the robot’s computer. Beginning 

and ending time of each word was detected through a HMM based endpoint detector. 

Features of voices were then utilized to calculated error measures of the reading pace 

with respect to a teacher. Based on these error measures, rhythm parameters represent 

the reader’s fluency while reading a sentence were displayed and control actions to 

improve the reading rhythm were given through the tail mechanism. 

Main contribution of this study is the proposition that turn-taking reading guidance 

could be modeled by closed-loop control system. Each word in a single sentence is 

represented by its phase relationship with respect to the other words of the sentence. A 

constant speed circular motion was used to describe the sentence processing. A 

synchronization parameter and rhythm parameters were defined based on the error of 

phases between the phases of a teacher to that of a reader. Then the method for 
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‘controlling’ the readers reading rhythm and improving the reading fluency were 

provided.  

The method was experimentally evaluated to illustrate its effectiveness. First of all, 

it has to be tested if the tail mechanism is effective to the user. The experiment can be 

done by simply testing the user’s responses to various tail commands. The human 

response characteristic to the input device was obtained by step inputs of rhythm 

commands. Reader’s controllability was modeled by a synchronization parameter. 

Based on this parameter, human’s delay in following the input commands was used to 

design control laws in the feedback loop to control the reading rhythm. The control law 

gives rhythm command changes following the error measures derived from the phase 

differences of each word in a sentence between a teacher and a reader’s oral reading 

voices. Results of reading fluency experiments with and without feedback control were 

compared, and the effectiveness of the proposed feedback method via robotic dog’s tail 

mechanism was evaluated. 

It was shown that the proposed guided reading technique through a robot in the 

feedback control loop is feasible. Parameters defined in this study display clearly the 

reader’s oral reading fluency performance. Control strategies for improving the fluency 

were established with an error measure modeled by the phase difference of each reading 

word in a sentence conducted by a teacher and by the reader. It was shown by 
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experimental results that the reading rhythm is actually can be controlled and be 

improved while the reading is in progress. It was shown that reading fluency could be 

guided directly by the robot to reach in their rhythmic state in a few trials of a sentence.  
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