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Abstract

Unlike describing the physical phenomenon in coordinate or momentum
spaces in quantum mechanics, semiclassical Boltzmann equation treats
the system in phase space, and it is much easier to describe the dynamics
of quantum gases. In this thesis, a class of semiclassical lattice Boltzmann
methods is developed for solving quantum hydrodynamics and beyond.
The present method is directly derived by projecting the
Uehling-Uhlenbeck Boltzmann-BGK equations onto the tensor Hermite
polynomials following Grad's moment expansion method. The intrinsic
discrete nodes of the Gauss-Hermite quadrature provide the natural lattice
velocities for the semiclassical lattice Boltzmann method. Formulations
for the second-order and third order expansion of the semiclassical
equilibrium distribution functions are derived and their corresponding
hydrodynamics are studied. Gases of particles of arbitrary statistics can
be considered. Simulations of one-dimensional compressible gas flow
by using D1Q5 lattices, two dimensional microchannel flow, two
dimensional flow over cylinder by using D2Q9 lattices and three
dimensional lid driven cavity flow by using D3Q19 lattices are provided
for validating this method. It is shown that the classical flow patterns
such like vortex and vortices shedding in flow over cylinder simulations,
temperature and pressure contours together with streamline patterns could
be produced from the present method in classical limit. The results also
indicate the distinct characteristics of the effects of quantum statistics
when they are compared with fluid phenomena in classical statistics.

Keywords: Lattice Boltzmann Method, Semiclassical, Quantum.
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CHAPTER 1

Introduction
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1.1 Overview . . . . v v v v v it it e e e 1
1.2 Conventional LB method . . . . ... ... ....... 3
1.3 Basics of Semiclassical LB method . . ... ... ... 5
1.4 Contents of the Dissertation . . . ... ... ...... 8

1.1 Overview

After more than twenty years developments on lattice Boltzmann (LB) method
since its introduction [1][2], the LB method is not just the extension of its
ancestor lattice-gas automaton [3], and even not just a hydrodynamical equa-
tions solver. It has been another approach analyzing Boltzmann equation in
compared with Chapman-Enskog expansion [4] and Grad moment method [5].

LB method is based on the kinetic equations for simulating fluid flow, see
[6][7][8]. Over the past two decades, significant advances in the development
of the LB method [2][9][10][11] based on classical Boltzmann equations with
the relaxation time approximation of Bhatnagar, Gross and Krook (BGK)
[12] have been achieved. The LB method has demonstrated its ability to

simulate hydrodynamic systems, magnetohydrodynamic systems, multi-phase
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and multi-component fluids, multi-component flow through porous media, and
complex fluid systems, see [13]. The LB equations can also be directly derived
in a priori manner from the continuous Boltzmann equations [14|[15][16]. Most
of the classical LB methods are accurate up to the second order, i.e., Navier-
Stokes hydrodynamics and have not been extended beyond the level of the
Navier-Stokes hydrodynamics. A systematical method [17]|[16] was proposed
for kinetic theory representation of hydrodynamics beyond the Navier-Stokes
equations using Grad’s moment expansion method [5][18]. The use of Grad’s
moment expansion method in other kinetic equations such as quantum kinetic

equations and Enskog equations can be found in [19][20].

Despite their great success, however, most of the existing LB methods
are limited to hydrodynamics of classical particles. Modern development in
nanoscale transport requires carriers of particles of arbitrary statistics, e.g.,
phonon Boltzmann transport in nanocomposite and carrier transport in semi-
conductors. The extension and generalization of the successful classical LB
method to quantum LB method for quantum particles is desirable. Analogous
to the classical Boltzmann equations, a semiclassical Boltzmann equations for
transport phenomenon in quantum gases has been developed by Uehling and
Uhlenbeck [21][22]. Following the work of Uehling and Uhlenbeck based on
the Chapman-Enskog procedure [4], the hydrodynamic equations of a trapped
dilute Bose gas with damping have been derived [23]. In [19], the quantum
Grad expansion using tensor Hermite polynomials has been applied to obtain
the non-equilibrium density matrix which reduces to the classical Grad mo-
ment expansion if the gas obeys the Boltzmann statistics. The full Boltzmann
equations is mathematically difficult to handle due to the collision integral in
different types of collisions. To avoid the complexity of the the collision term,

the relaxation time model originally proposed by BGK model for the clas-
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sical non-relativistic neutral and charged gases has been widely used. Also,
BGK-type relaxation time models to capture the essential properties of carrier
scattering mechanisms can be similarly devised for the UUB equations for var-
ious carriers and have been widely used in carrier transports |24]. Recently,
kinetic numerical methods for ideal quantum gas dynamics based on Bose-
Einstein(BE) and Fermi-Dirac(FD) statistics have been presented [25][26]. A
gas-kinetic method for the semiclassical Boltzmann-BGK equations for non-
equilibrium transport has been devised [27].

In this thesis, a new semiclassical LB method for the UUB-BGK equations
based on Grad’s moment expansion method by projecting the UUB-BGK
equations onto Hermite polynomial basis has been derived. The relations
between the relaxation time, viscosity and thermal conductivity are obtained
by applying the Chapman-Enskog method [4] to the UUB-BGK equations
for providing the basis for determining relaxation time used in the present
semiclassical LB method. Hydrodynamics based on moments up to second and
third order expansions are presented. Computational examples to illustrate
the methods are given and the effects due to quantum statistics are delineated.
In the rest of this dissertation, the conventional LB method and quantum LB
method will be introduced, then comes the basics of semiclassical LB method

which was first proposed in [28].

1.2 Conventional LB method

This section will describe the basic algorithm of the LB method. First, an
overview of the historical development of LB method including recently devel-
opments and reviews will be given. Next, the method itself will be described.

Finally, a derivation of the necessary equations and the lattice structures will
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be discussed. The conventional LB method originated from its predecessor,
the lattice gas cellular automata models [3] has become a competitive nu-
merical tool for simulating fluid flows over a wide range of complex physical
problems [2] [29] |30] [31] [32] [33]. The theoretical background of LB method
is the kinetic theory and Boltzmann equation, which are connected with the
macroscopic Navier-Stokes equation by the Chapman-Enskog expansion. The
LB method can be regarded as a simplified kinetic scheme by using a finite
set of discrete velocities and a simplified collision integral. Both the algorithm
and the boundary conditions are easy to implement in LB method. As the LB
method computes macroscopic behavior, such as the motion of a fluid, with
equations describing microscopic scales, it operates on a mesoscopic level in
between those two extremes. When compared to the traditional computa-
tional fluid dynamics techniques, the advantages of LB method are mostly on
its clear physics and simple algorithm. While conventional solvers directly dis-
cretize the Navier-Stokes equations, the LB method is essentially a first order
explicit discretization of the Boltzmann equation in a discrete phase-space. It
can also be shown, that the LB method approximates the Navier-Stokes equa-
tions with good accuracy. A good review of LB method can be found, e.g.,
in [6][7][8]. In LB method, the simulation region is divided into a cartesian
grid of cells, each of which only interacts with cells in its direct neighbor-
hood. The LB method consists of two steps, the stream step, and the collide
step. These are usually combined with no-slip boundary conditions for the
domain boundaries or obstacles. The simplicity of the algorithm is especially
evident when implementing it. Using a LB method, the particle movement
is restricted to a limited number of directions. As shown in Fig. 3.3 and
Fig. 3.4, a two-dimensional model with 9 velocities (commonly denoted as

D2Q9), and three-dimensional model with 19 velocities (commonly denoted
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as D3Q19) are provided.

1.3 Basics of Semiclassical LB method

Although Boltzmann Equation has been successfully applied to many field like
dilute gas dynamics, multi-scale simulations, however, in recent years, micro
and nano technology has been emerged quickly, and the transport phenomena
in semiconductors at low temperatures is very important. There have been
a successful theory in statistical mechanics which can predict the transport
coefficients like shear viscosity and thermal conductivity of ideal quantum
fluid such like electrons in the metal. The questions arise of whether quantum
systems like that can be described similar to the one developed for the clas-
sical counterpart. When solving these kinds of problems, classical Boltzmann
Equation is not enough and it require quantum mechanical treatments. In
quantum mechanics identical particles are absolutely indistinguishable from
one another and N-particle system can be described by a wave function with
permutation symmetry. In nature, it is found that particles with antisymmet-
ric wave functions are called fermions which obey FD statistics and particles
with symmetric wave functions are called bosons which obey BE statistics.
The statistical properties of fermion and boson systems are profoundly differ-
ent at low temperature. However, in the classical limit, both quantum dis-
tributions reduce to the Maxwell-Boltzmann(MB) distribution. Boltzmann
equation describes the dynamic behavior of ideal gas by a single-particle dis-
tribution function.

In general, there are three strategies to take for statistically treating a
quantum system [34]. One is to use a kinetic equation governing the density

matrix, another one is to use a kinetic equation with the Wigner distribution
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function, the last one, which is also the method used in this thesis, is to assume
a semiclassical kinetic equation such as the UUB [21][22] kinetic equation as a
generalization of the classical one. In UUB equation, the collision term of the
Boltzmann equation is rewritten with the quantum particle scattering form.
The equilibrium distribution to semiclassical Boltzmann equation is the BE
or FD distributions. The particles obey BE distribution are called bosons and

FD distribution for fermions, no third category has yet been found.

Considering of the recently successful developing on LB method and well
deriving semiclassical Boltzmann equation, it is natural to extend the conven-
tional LB method to the semiclassical LB method for dealing with different
quantum statistics. Although UUB equation introduced above has considered
the quantum statistics and would reveal quantum effects in specific problems.
However, dealing with UUB equation is still a challenge. In this dissertation,
we proposed a new semiclassical LB method which extends well known LB
method to solve semiclassical Boltzmann equation with BGK approximation.
In |28, a new semiclassical LB-BGK method had been developed, and this
method would describe quantum systems in different approaches. The follow-
ing works about rarefied channel flow [35] and axisymmetric flow of quantum
statistics [36] present different applications of this new method. The idea
of extending the conventional LB method to semiclassical LB method is to
adopt the Grad’s moment method to find solutions to semiclassical Boltz-
mann equation by expanding f(x, {,t) in terms of Hermite polynomials. And
in simulations, the N-th finite order truncated distribution function f~ was

considered. the details will be shown in chapter 3.

It is worth mentioning here the differences between the present method and
quantum LB method which is proposed by Succi and Benzi [37][38]. In the

quantum LB method, Dirac equation which is the most general equation de-
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scribing single particle motion in compliance with quantum theory and special
relativity is solved by LB method. In [37], the procedure builds on a formal
analogy between the Dirac equation and a special discrete kinetic equation
known as LB method, it was then shown that the non-relativistic Schrodinger
equation ensues from the Dirac equation under an adiabatic assumption that
is formally similar to the one which takes the Boltzmann equation to the
Navier-Stokes equations in kinetic theory. In 38|, it was further shown that
by a proper resort to operator splitting methods, the Dirac equation can be in-
tegrated as a sequence of three one dimensional LB equation evolving complex
valued distribution function. In these works, LB method with complex distri-
bution function is treated as a numerical tool for solving a complex equation.
By using multiscale technique and the Chapman-Enskog expansion on com-
plex variables, the complex partial differential equations could be recovered.
Recent years, this procedure is applied for solving many different equations,
for examples, the one-dimensional nonlinear Dirac equation|39], the nonlin-
ear convection-diffusion equations in [40] and the complex Ginzburg-Landau
equation in [41]. It should be also noticed that several quantum lattice gas
cellular automata methods [37][42][43][44] have been recently presented which
applying and extending the concept of classical lattice gas cellular automata
models to treat the time evolution of wave functions for spinning particles and
the Schrodiger equation or the Dirac equation directly. For a more detailed
review, see [45]. However, present semiclassical LB method associated with
the works presented in [25][26][27] are based on the semiclassical kinetic de-
scription. i.e., the particle motion (velocity or momentum) and position are
treated in classical mechanics manner while the particles can be of quantum

statistics. The procedure and physical meanings are much different.
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1.4 Contents of the Dissertation

This Dissertation is organized as following.

Chapter 1 gives an overview of this dissertation, briefly describes the basic
ideas of semiclassical LB method which combines the elements of semiclassi-
cal kinetic theory and LB method. History and recent developments of LB
method are also given.

Chapter 2 describes the semiclassical kinetic theory. First, some important
concepts of quantum kinetic theory are introduced, then comes the semiclassi-
cal Boltzmann equation which has been developed for several years since UUB
equation [21][22]|. Following the previous works, the corresponding semiclas-
sical hydrodynamic equations are developed and compared with the classical
hydrodynamic equations.

In chapter 3, the semiclassical LB method is derived based on expanding
the BE and FD equilibrium distribution function onto the Hermite polyno-
mials. The analysis of semiclassical LB method is also given. In chapter
4, the initial condition and the boundary conditions of the semiclassical LB
method based on conventional LB method are introduced. Since LB method
is a mature fluid simulating method, extending the boundary conditions from
conventional LB method to semiclassical LB method is straightforward.

The numerical validation and examples are given in chapter 5, including
one dimensional shock tube simulation, two dimensional flow over cylinder,
natural convection flow, and three dimensional lid-driven cavity simulation.
In chapter 6 the conclusions and future works are given. In Appendix 1, the
Chapman-Enskog analysis of semiclassical LB method is given. Finally, a new
thermal LB model is proposed for the future development of semiclassical LB

method.



CHAPTER 2

Semiclassical Kinetic Theory

Contents
2.1 OVErview . . . v v v v v i e e e e e e e e e e e e e e 9
2.2 Introduction to Quantum Gases . . . .. ... .. ... 10

2.3 Semiclassical Boltzmann Equation(UUB Equation) . 12

2.4 Semiclassical Hydrodynamic Equations . .. ... .. 14

2.1 Overview

In quantum mechanics, the term semiclassical has different meanings and
all refer to some approximations or situations that combine quantum and
classical properties, for example, Wentzel-Kramers-Brillouin(WKB) approxi-
mation or UUB equation. In this chapter, from the basic concepts to quantum
gases, the collision term of semiclassical Boltzmann equation is derived. Then,
the approximation method, BGK method is introduced, and the equilibrium
distribution function is proposed based on Boltzmann H theory. Finally, semi-
classical hydrodynamic equations are derived from moment integration of the
semiclassical Boltzmann equation with BGK approximation and the results

are compared with their classical counterparts.
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2.2 Introduction to Quantum Gases

Comparing with classical mechanics statistics and quantum mechanics statis-
tics, distinguishability is a very important concept. In classical mechanics
statistics, particles in a system are distinguishable even if they are identical. It
is possible to label particles and track their phase space trajectories with cer-
tainty. Conversely, in quantum mechanics statistics the precise descriptions of
particles motions are limited by Heisenberg uncertainty relation where the si-
multaneous measurements on momentum and position are not allowed. Under
these fuzzy descriptions, the particles become untrackable and the property
of indistinguishability is inherent. The distinguishable property makes the
configuration different and the corresponding microstate distinct as particle in-
terchanges. The number of microstates are usually very large and microstates
will continually change as time goes on. The time-average behavior of the
system will be identical to the average behavior of all sort microstates cor-
responding to the macrostates at time t. The average behaviors on all the
collection of microstates in any systems are called ensembles of the systems.
In statistical theory, there are three different statistics which are microcanoni-
cal ensemble, canonical ensemble and grand canonical ensemble. In canonical
ensemble the macrostates are characterized by (N,V,T), and the partition
function is written as Qn(V,T) = Y., e PF, wherein = 1/kT. In the ideal
quantum gas system, the energy eigenvalues E are composed of single particle
states in occupation set {n.}, ¢ is the single-particle energy, and E can be
expressed in terms of € as ' = ZE n.c. The values of the numbers n. must

satisfy the condition

Zna - N (2.1)

According to the discussions of distinguishable property given above, we
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can write down the statistical weight factor for FD, BE and MB statistics as:

1 if all e=0 or 1
WFD{ns} = { }7 (2-2)

0 otherwise

Wap{n} =1, (2.3)

1
Wuyp = H — (2.4)

We can further write the partition function of a N particle system

Qn(V,T) =) W{n e f2enee (2.5)
{n<}

> means the summation over all distribution sets that satisfies (2.1). To
work out the partition function within Y is relatively complicated since the
summation is under some constraints. Now substituting (2.3) and (2.2) into

(2.5), one has

/

Qn(V,T) = Z e B2 net
{ns}

The differences between BE and FD statistics arises from the values that
the number n. can take. However, the restriction (2.1) makes the canonical
ensemble cumbersome here. The grand partition function seems to provide

an efficient way

Iz V. T) =Y 2N T) =Y > [Jze ™)™

N=0 {n.} ¢

— Z (Zefﬁso)no@efﬁsl)m(.,,)
{novnlf"}

11— ze_ﬂa)_1 BE case, ze <1

— £

[T(1 + ze=%¢)  FD case

£
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The average occupation number in state

<Ng > = 1[_l(a_ﬂ)zTall other z—:]
v B0
B 1
where n = —1 for bosons, n = —1 for fermions, n = 0 for MB gas. It

is convenient to define the thermodynamic potential q to find the average

number and energy

P‘/'
= = — = 58
q(z,V,T) = Inv o =1 Eg In(1 + nze™) (2.6)

=g = Sl (2.7

0% z7tefs + 1
_ dq €
E = —(%)z,v L0 i 1y (2.8)

2.3 Semiclassical Boltzmann Equation(UUB Equa-
tion)

Boltzmann equation is successful in describing dilute classical monatomic
gases. People showed the derivation of the Boltzmann equation from the
Newtonian of motion for the many particle system under suitable assump-
tions. Hereinafter, the semiclassical Botlzmann equation (also called UUB
equation) is used for describing the flow of fermions and bosons. The gener-

alized Boltzmann equation is
Ouf + 2 Vaf + F-Vef = R(f), (2.9)

where F' = ma is the external force. The quantum particles are assumed

to obey the streaming mythology like the left hand side of the Boltzmann
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equation. It should be emphasized here that the major and only difference
between semiclassical Boltzmann equation and classical Boltzmann equation
is the collision term R(f). In the classical one, collision term is derived based
on classical mechanics [46] while it is derived by quantum scattering theory
in the semiclassical one [23]. The collision term for semiclassical Boltzmann

equation is described below [21].

R(f) = /dpl/dQK(p,th){[l+77f(p7t)][1+nf(p1)]f(p*7t)f(p’iat)

(2.10)

—[+nfE5 I +nfPD]f(P.t)f(P1, 1)},

where the function K is the collision kernel, € is the solid angle. n = +1 de-
notes the case of BE statistics and n = —1 denotes the case of FD statistics.
We observe that the Pauli exclusion principle is included in the case of fermion
and a population factor for boson is included. It is noted that the Boltzmann
equation of the classical statistics is included in (2.10) as a special case when
1n = 0. The population in final state is neglected. This shows the classical col-
lision term can be recovered when considering dilute, non-degenerate classical
gases.

Although semiclassical Boltzmann equation has been derived from consid-
ering quantum particles collisions, the complexity of the collision term is still
a obstacle for computation. One straightforward way to solve this problem
is to approximate the complex collision term R(f) with BGK approximation
& which was first proposed in [12]. BGK approximation makes the di-
rect solution of the BGK-Boltzmann equation tractable. After introducing

the BGK approximation, (2.9) could be rewritten as

f= g

%f+£-vwf+a~ng=— (2.11)
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In this BGK-Boltzmann equation, f could be quantum equilibrium distri-
bution function f¢¢% or classical equilibrium distribution function fe*¢. fed
means the probability of particles (electrons, phonons, photons, etc...) occu-
pying a specific quantum state in equilibrium, such that, the physical meaning
of f¢? is the same as < n > which has been derived in last section. The gen-

eralized equilibrium distribution function is

1

eq:Q(2) — —
JHEE) =<ne >= z~1lefe 4+

(2.12)

where z = e7?# is the fugacity and € = m(€ —u)?/2 is the energy of particle.

The parameter 1 determines which statistics % belong to.

2.4 Semiclassical Hydrodynamic Equations

The semiclassical hydrodynamic equations are obtained by taking moments
Y = [1,m&, m&?/2] on the semiclassical Boltzmann equation of (2.9) with the

collision term (2.10), then integrating the resulting equations over all .

8t/¢de+Vw/¢§de L a/wvgde r /R(f)wdE (2.13)

The integrals of the collision terms in all three cases should preserve the
conservation property. That means the conservation of mass, momentum
and energy need to be satisfied all the time, which is called the compatibility

condition,

1
[ Ripaz =0, v - me , (2.14)
sml(& + & +€2)
where d= = m3d€/h? is the infinitesimal volume in momentum space. We

note that the collision in BGK model should also preserve the compatibility
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condition,
1
1 N hdBdt — —
> [ gvizar—o, v - 6 . )

& + & + &)

The definitions of the number density, number density flux, and energy

density are given, respectively, by
n(x,t) = /de,
i(esty=m. | fdz.
52
E(z,t) = m/;de.

Other definitions of higher order moments such as internal energy density

e(x,t), stress tensor Pj;(x,t), heat flux vector ¢;(x,t) are also given,

c(wt) <5 [ 16 <uPs(E o )
Pat ) = m [ (6= )& — ) (& w002

We can have the familiar form of hydrodynamic equations,

on  Onu;
- = 2.1
oot O = e, (217

J

de  p Ot _ 04
pdt Zjé?:vj N al'j7

(2.18)

where, % = % + “iaizi' We have briefly described the equilibrium distribu-

tion including MB, FD, and BE distributions. The next step is to derive the

corresponding hydrodynamic equations under these statistics. Although the
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hydrodynamic equations are the same in both classical and semiclassical ver-
sion, the transport coefficients are different due to the differences between f¢%?
and f°¢¢. After some straightforward algebraic manipulations, the equation
of state of pressure p, the number density n and total energies F in classical

and quantum statistics as:

DPec = nkBT
z
Ne = F
3 D
E.= §n/<;BT + Emmﬁ,
and
Py = nkBTgs/2(Z)
93/2(2’)
N 93/2(2)
Nng = A3
3 gspalz) | D 2
E, = —nkgT + —mnu”.
J 2 r 93/2(2) 2

gy is the generalized FD/BE function which is defined as

1 S
9v(2) = )/0 dr, (2.19)

(v z7ler +1n

wherein I'(v) is the Gamma function. Notice that in classical limit, g,(z)
will approach z no matter what the number v is. We can check that the
pressure p,, number density n, and total energies I/, will approach the classical

counterpart in classical limit. We can also check the specific heat v = C,/C,,

5 95/2(2)g1/2(2)

in ideal classical gas,y. = 5/3 for monatomic gas, but 7, = 3 e
3/2

in ideal quantum gas, which depends on the fugacity z and not constant.

Obviously, v, approaches 7, in classical limit. Moreover, more hydrodynamical
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coefficients like viscosity and thermal conductivity are given by

95/2(2)
g3/2(2)

fg = TnkgT =7P

K :T5k3 T91/2(2)  5g5/2(2)
T am2gsn(2) 203(2)

and the classical coefficients are also listed for comparing;:

e =TnkgT = 1P

5k 5k
ke = T—2nkpT = 7—2 P, (2.21)
2m 2m

All the semiclassical coefficients will approach their classical counterparts and
Prandtl number equals 1 in classical coefficients. However, in semiclassical
model, the Prandtl number depends on the fugacity z and is no more a con-
stant number. Similar results could be found in linearized semiclassical Boltz-
mann equations [23|. Until now, the semiclassical Boltzmann Equation and
the semiclassical hydrodynamical equations have been introduced and com-
pared with their classical counterparts. In those descriptions there appears an
important parameter z which is not shown in classical Boltzmann equation
or MB statistics. The physical meaning of the fugacity z is described below:

. . ! % . g z) .
Recall number density in semiclassical representation n, = 3%( ), if we con-

sider 0 < z < 1, then gs/s(2) =~ 2, we have z = ny(h*/2rmkgT)*? = n,A>.
From this equation, z can be interpreted as the ratio of A3 to average volume
occupied by particles. In other words, it is the ratio of occupied length to
particles thermal wavelength. When z is small, it means the order of spa-
tial dimension is larger than the thermal wavelength and we can neglect the
degeneracy effect of particles (highly non-degenerate gas). For large z, the
degeneracy effect is important (highly degenerate gas) because the order of
thermal wavelength is comparable to the spatial dimension. Moreover, the

thermal wavelength is proportional to 7-'/2, that means when the number
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density is in normal condition this effect will be obvious especially in the low
temperature. In summary, when z — 0 the quantum distribution will coin-
cide with the classical one, and the physical explanation is that the length
dimension of particle is larger than the particle de Broglie wavelength. The
wave property will not be important. When z is considerably large, two length
scales become comparable and one cannot omit the quantum effect anymore.
So, we can think the fugacity z is the index of the degree of degeneracy. The
fugacity z has some restrictions in two different quantum distributions. In the
case of Boson, z should not exceed 1 because of the non-negative density, and
in the Fermion case there are no such restrictions on z.

Finally, the actual correction values of the generalized Fermi function is shown
in Fig. 2.1. One finds the BE and FD curves overlap MB curve in 2z — 0
limit, that means the classical statistics could only work in the classical limit
(z = 0) of quantum statistics. Moreover, z is restricted in 0 < z < 1 for Bose
gas, the function gs/»(2) increases monotonically with 2 and is bounded, its

largest value being gz/2(1) = 2.612.
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Bose and Fermi functions in different fugacity z. (a) Bose Func-
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3.1 Overview

In this chapter, the semiclassical LB method will be derived from semiclas-
sical Boltzmann equation with BGK approximation (2.11). In general, there
are two steps for deriving LB method from the continuous Boltzmann equa-

tion. First, the time discretization is achieved by integrating the Boltzmann
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equation along characteristic line. Second, the discretization of space is done
by low Mach expansion or Hermite polynomials expansion. The derivations
of semiclassical LB method is following the Hermite expansion procedures
and the results are extended to multiple relaxation time version. The derived
equations could be validated by reducing the SLLB equation to classical one in

classical limit.

3.2 The Derivations of Conventional LB method

Just like other numerical methods, discretization of time and space before
simulating continuous models or equations on a discrete digital computer is

necessary, the detailed procedures are listed below.

3.2.1 Time Discretization

Consider the semiclassical Boltzmann equation with BGK approximation (2.11),

and neglect the forcing term here:

Of +&-Vf = Roarlf) = —[f — 0 (3.1)

;
Rewrite the Boltzmann BGK Equation (3.1) in the form:
1.1,
Dif +—f =—f (3:2)
T T

where D; = 0; + & - V. Then, integrating (3.2) over a time step J; along
characteristics:

1 L / N
fl@+&6, &t +0) = e f(@ & 1) + e / eI + 80, &t + 0 )t
0

(3.3)
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By using Taylor expansion, and neglecting the high order terms O(8,%), also

with 7% = 7/d;, the standard LB equation is derived as:

f(CU + €5t7£7t + 5t> - f(CU,E,t) = RBGK(f) = _%[f<w7€7t) - f€q<.’13,£,t)],
(3.4)

This equation indicates the basic procedures of LB method: streaming and
collision. Since we have got the time discretization LB equation, the follow-
ing processes will focus on discretizing the equilibrium distribution function

fel(x, &, t) on velocity space .

3.2.2 Space and Velocity Discretization

In LB method, computational domain is discretized on a regular lattice with
fixed grid spacing which makes this method simple. Although original LB
method is empirically derived from lattice gas automata, however, modern LB
method is derived from continuous Boltzmann equation and has a concrete
physical interpretation compared with those come from empirical derivations.
The two different approaches to discretizing the computational domain are
low mach number expansion and hermite polynomials expansion. In
the following derivations, particles are in high temperature, low density and
under classical statistics are assumed. That means, the distribution follows
the classical MB statistics. And the MB equilibrium distribution function is:
2

§1€ = Grgromerrl=gg) (3.5)

wherein n is the number density, D is the space dimension, § = RT the
temperature and the peculiar velocity ¢ = & — u. & is the molecular velocity
and u the mean velocity. C means classical equilibrium distribution function

here.
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3.2.2.1 Low Mach Number Expansion

Expanding (3.5) by Taylor expansion, we can get the discrete equilibrium

distribution function as:

eq,C' n §2 € U (5 ’ U)2 u?
I~ rgypn (g L+ 25— + o — 5]

(3.6)

After choosing some suitable weighting and quadrature points to recover the
original moment integration, it will become the frequently used LB model. We
use D2Q9 model for example for presenting these procedures. First, we need
to discretize the momentum space £ properly. The integration is replaced by

the summations as:

[ o€ =3 W) @0 ) (3.7)

where 1(€) is the polynomial of £&. Then, the above integral is evaluated by a

Gaussian-type quadrature:

1= [en-SEe =Y mem-Spe).  69)

A cartesian coordinate system is used to recover the D2Q9 model. Therefore,
we set (&) = ¢, where &, and &, are the z and y components of §. Such

that, the integrand I will be
= (o) 1, (3.9)

where I, = fj;o e and ¢ = &,/vV20 or ¢ = &,/v26. For D2Q9 model, the
third-order Hermite formula for evaluating [, is chosen, i.e. [, = Z?zl w;s"

The three abscissas of the quadrature are:

a=-3/2

G =20

s =13/2, (3.10)
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and the corresponding weight coefficients are:

= VA6
wy = 2¢/7/3
= /7/6. (3.11)
After this integrating, the equilibrium distribution function of the D2Q9 model
is:

N 3¢, - u N 9(& -u)?  3u?

c? 2ct 2c2

], (3.12)

where ¢ = V30 = ‘5:” . 0x is the space between two adjacent lattices. Similarly,

other models like D2Q7 and D3Q27 can be derived in a similar manner.

3.2.2.2 Hermite Polynomials Expansion

Hermite polynomials expanding of the distribution function for LB method
was firstly presented in [17], then well developed in [47] and [16]. This method
is inspired by [5], [18] and [48]. The brief descriptions are described below.
Following the approaches in [17][16][47], we adopt the Grad’s moment ap-
proach and seek solutions to (3.4) by expanding f(x, &, ) in terms of Hermite

polynomials,

e}

fl@6.1) = (@)Y —a (w /HO(E) (3.13)

And the expansion coefficients a™ are given by

(@, t) /fwﬁt "(¢)dg (3.14)

where w(&) = W@‘éﬂ is the weighting function, a®™ and H (™ (¢) are rank-
n tensors and the product on the right-hand side denotes full contraction. Here
and throughout the dissertation, the shorthand notations of Grad [5] for fully

symmetric tensors have been adopted.
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Some of the first few tensor Hermite polynomials are given here,

HOE) =1

HO(€) =¢

HE (€)= &85 — 0

HEE) = €56, — &b — ik — &0

The first few expansion coefficients can be easily identified with the familiar

hydrodynamic variables:

a® = / fdé =n

all) = / f€de = nu

a® = [ f(g* - 5)dg =P +nlu’~ )

a® = [ (& - €0)d€ = Q + u(a® — mu?) (3.15)

Where the momentum flux tensor is defined as P = P;; = [ fc;c;de, the
heat flux tensor is defined as Q = g;jx = [ fcicjcpde, and We also have e =
2
1al?

27

—n(uu—3)|. The orthogonality of Hermite polynomials implies that the
leading moments of a distribution function up to the Nth order are preserved
by truncations of the higher-order terms in its Hermite expansion. Thus, a
distribution function of the Boltzmann-BGK equation can be approximated by
its projection onto a Hilbert space spanned by the first N Hermite polynomials
without affecting the first N moments. Here, up to Nth order, f™(x,&,t)
has exactly the same velocity moments as the original f(x,&,t) does. This
guaranties that a LB method gas dynamic system can be constructed by a
finite set of macroscopic variables. As a partial sum of Hermite series with
finite terms, the truncated distribution function f can be completely and

uniquely determined by its values at a set of discrete abscissae in the velocity
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space. This is possible because with f truncated to order IV, the integrand

on the right-hand side of (3.14) can be expressed as:

N, &, )HM (&) = w(€)q(w, €, 1) (3.16)

where g(x,&,t) is a polynomial in & of a degree no greater than 2N. Using
the Gauss-Hermite quadrature, a®™ can be precisely calculated as a weighted

sum of functional values of ¢(x, &, t):

a@.0) = [ (€. E.00E = 3wl &t

—00

=) wq(ﬂga)fN(-’lfa £, YH™ (€0), (3.17)

where w, and &,,a = 1,....[, are, respectively, the weights and abscissae of
a Gauss-Hermite quadrature of degree > 2N. Thus, fV is completely de-
termined by the set of discrete functional values, fV(x,&,,t);a =1, ...,1, and
therefore its first N velocity moments, and vise versa. The set of discrete dis-
tribution functions f(x, &,,t) now serve as a new set of fundamental variables
(in physical space) for defining the fluid system in place of the conventional

hydrodynamic variables.
Next, we expand the equilibrium distribution f¢*¢ in the Hermite polyno-

mial basis to the same order as fV, i.e., f9C(x,&,t) ~ fOON(x, € 1), and

we have

N
FOCN (@, 1) = w(€) ) %aé’”(a:, B H™(E) (3.18)

n=

0
™ (z, 1) = / F0C (@, &, (YH de (3.19)
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These coefficients a((]") can be evaluated exactly and we have

a(()o) =n, a(()l) = nu,

aéQ) = nluu + (0 — 1)0],

a’ = nfuvu + (6 — 1)du] (3.20)

where n,u and 6 are in non-dimensional form hereinafter.
Denote féo)’c = w,fY(&,)/w(&,) and for N = 3, we get the explicit

Hermite expansion of the MB distribution at the discrete velocity &, as:

AT = {14 €t 2f(we €)? — 7 + (6 (€ — D)

+£'T“[(u €)= 3u+3(0 - 1)(& — D — 2)]}. (3.21)
where D = 6;;. We could check if § = 1 which means isothermal here. Then

(3.21) up to second order will be as the same as (3.6).

3.3 The Derivations of Single Relaxation Time
Semiclassical LB method

The left hand side of UUB-BGK equation is as the same as the conventional
Boltzmann-BGK equation (3.1). The only difference of this two equation is
the equilibrium distribution function on the right hand side, that means, the
classical equilibrium distribution function f¢¢ (3.5) is replaced by the quan-
tum equilibrium distribution function f¢*@ (3.22) in UUB-BGK equation.
The quantum equilibrium distribution function which includes BE equilib-
rium distribution function and FD equilibrium distribution function has been

derived as (2.12) and rewritten here as:

feq,Q _ {Z_l exp[<€ B ’U,>2

= m (322)
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First, The macroscopic variables is defined as

m3dg
For examples, the number density
* mid¢ . 1
n('r,t) = - h,3 f 7.Q = Fgg/z(Z) (324)
the pressure is
kT
p(x,t) = Py/3=2¢/3 = %g5/2(2) (3.25)

wherein, A = [h?/27m?0]"/? is the de Broglie thermal wavelength, g, the
generalized FD/BE function which has been defined in Ch2 (2.19) together

with the calculation approximations is listed as

& =L /OO =i d:z:—i(— 1z (3.26)
N TI) M| s T '

=1

Notice that the series is valid only when z < 1. In deriving semiclassical
LB method, the particle velocity dimension d and space dimension D do not
need to be the same, such that we could have the more generalized results.
Following the same procedures applied to classical gases in [16] and already
briefly described above, defining ¢ = mh—(jf, and d¢ = m4d¢/h?, such that the
coefficients ag”) which is defined as (3.14) of the semiclassical expansion can

be calculated as

(0) _ 9ay2 __
ay’ =T =N
1 _
ag’ =nu

, . (3.27)
al? = nfuu + %9%5 — 9]

at¥ = nfuvu + (%9%5 —6)u).

Notice that the coefficients a(()N) here is not yet non-dimensional, and § has

the same dimension as uu, é represents delta without dimension. To nondi-
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mensionalize those coefficients we choose some reference variables as:

h
Aref = ———=
m(27r9ref)2
Uref = eref
1
Mref = 73—
Aref
A 0
h— "
gref

and notice the non-dimensional coeflicients are:

0
&(0) _ aé)
0 Nref
1
&(1) B “g) )
0 7 nperu
refUref
g
s (" o)
a/0 = P]
nT‘Gfu'lcj
3
(e _af
o =
Tire fUy.c f

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Combine (3.27) and (3.32), the non-dimensional coefficients are derived as

below:
o9,
0 9dj2
S
0 gd/2 «
Clé) *Npef = F =T Nyef
NONS Afefgdﬂ _ A
0o - Ad -
Qg ) = éd/2gd/2
o

A~

) A A
Ay~ NpefUref = T+ NypefU * Upef

A1) oan
ap’ = na

(3.33)

(3.34)
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o2

d
a(()2) = n[= 99d/2+15 5

+ nuu
D gd/2 ]
. d 5 9dj2+1 2
2 +
al? Mpeflings = n,,ef[De UL ” 0 — 0 ules] + NAT - Npesures
d - .
a® = a[ Lo 115 1 haa (3.35)
gd/2
al?:
d - .
o = plaaa + (Z6%4H _ 1)§q) (3.36)
gd/2

Finally, we take off"on every variables and all the non-dimensional coeffi-

cients are listed as:

0) - ecl/di/2 —h

a(()l) = nu
d
a((f) o n[—@gd/2+1 — 1]6 + nuu
gd/2

(3 d ,Gds2+1

ag nfuuw + (=0—— — 1)du] (3.37)
D ga

Put (3.37) into (3.13) and notice the variable £ has been replaced by ¢ now,

we can get the expansion of the quantum equilibrium distribution function.

d

Ot = wan {14 Gt [(ca- u)? —u+Deg§ 1<c - D))

Ca d g+1

HlCaw? =3 3G EE - D2 639

To validate this result, we note that in classical limit z << 1, the general-

ized FD function g,(z) will approximately equal z no matter what the order v

. That means, gd/j/—;(lz()) = 1in (3.38), such that, the semiclassical equilibrium
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distribution function (3.38) in classical limit will become

(3.38)1niClassical7Limit _ wan{l + Ca ‘u

Ca 2 2 d 2
(G w)? = 30+ 3(50)(¢2 — D~ 2]}

(3.39)

+%[(ca ‘u)’ - u"’%@(ci - D)l+

Comparing this result with (3.21), when d equals D, (3.21) and (3.39) are the

same in the classical limit.

3.3.1 Summary of Single Relaxation Time Semiclassical

LB Method

Once we have obtained f% and f°@@%" at the discrete velocity abscissae (,,
we are ready to set up the whole system for solving (3.1) in the physical
configuration space. We use (3.4) for solving (3.1) in the following simulations.
For clearly (3.4) is listed below.

@ + ot 1) = ful,6) = [fo — f09) (3.40)

where fi°"9 is given by (3.38) and 7 could be calculated from (2.20). Ap-
plying Gauss-Hermite quadrature to the moment integration, we have the
macroscopic quantities, the number density, number density flux, and energy

density. And the macroscopic variables become:

l

n(@,t) =Y ful,1),

a=1
l
nu = Z faCm
a=1
95/2(2) N l 2
n(D993/2 Bk ) = ; faC2. (3.41)

In summary, (3.40) and (3.41) form a closed set of differential equations gov-

erning the set of variables f,(x,t) in the physical configuration space. All the
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macroscopic variables and their fluxes can be calculated directly from their
corresponding moment summations.

We should note that there appears the fugacity z in this semiclassical LB
method that not shown in classical LB method, such that, we need some addi-
tional procedures to calculate the fugacity z. The detail calculating procedures

are shown below. First, the density can be calculated as

d fa=n (3.42)

and the velocity is calculated as

Z faCa = nu, (343)

Then, recall the two formulas:

n=0"g,5 (3.44)
Z fiGe= nd&% +nu’® = 2F, (3.45)

where E is the total energy. Combining (3.44) and (3.45), we can get

n |\ 24d
gd_/z) E gajpr1 — nu? =0 (3.46)

2F — d(
By solving(3.46) with Newton method, we can get the fugacity z. then we
can get temperature 6 from (3.44). Since the derivation is based on expanding
distribution function f onto Hermite polynomials as [16], the lattices and
corresponding weights listed in [16] also could be used. The D2Q9 lattice
model for two dimensional flow and D3Q19 lattice model for three dimensional

flow are listed in Fig. 3.3, Table 3.2 and Fig. 3.4, Table 3.3. The subscript

fs denotes a fully symmetric set of points.
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The present semiclassical LB method is derived from expanding distribu-
tion function onto Hermite polynomials. The accuracy of semiclassical LB
method should be carefully discussed. According to [16], the second order
N = 2 kinetic theory of hydrodynamics is necessary for representing n,u, 6
and the momentum flux tensor P. On the other hand, to describe the dynam-
ics of the internal energy of a fluid system, the third-order N = 3 Hermite
terms must be retained. The most important principle we should notice is
that the higher order N we expand the equilibrium distribution function f,
the higher quadrature degree n of lattice structure we should use. The rela-
tion between them is n > 2N. Such that, an accurate Navier-Stokes level of
description for an isothermal momentum equation requires a quadrature of a
degree of precision greater than 6. And we should include the Hermite expan-
sion up to NV > 4, and the quadrature degree up to n > 8 to ensure accuracy
up to the Burnett order for isothermal fluids. See the details in [16]. Since
the semiclassical LB method is also derived from expanding the equilibrium
distribution function onto Hermite polynomials, the principle of n > 2N may
be followed. But, we can not forget in deriving both classical LB method and
semiclassical LB method, there are still higher order terms have been drop off,
and the total influences of different order method are worth studying. A two
dimensional cylinder flow is considered here for studying this issue of accuracy.
we consider a uniform two-dimensional viscous flow over a circular cylinder
in a BE quantum gas to illustrate the present semiclassical LB method in
different order on D2Q9 lattices. N = 2 and N = 3 expansion equations
are both set for this case. The computation domain is (—1,1) x (—=1,1) and
set by 201 x 201 lattices, and the cylinder is set at the center of the com-
putation domain with the radius D = 0.1. Uniform Cartesian grid system is

used. The free stream velocity is u., = 0.1, free stream temperature 6., = 0.5
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and the Reynolds number Re,, = u.,D/v. Notice according to the relation
n > 2N, the D2Q9 lattices with quadrature degree 5 suppose to be only used
on N = 2 but not N = 3. The results are depicted in Fig. 3.1, the vortices
in the wake region in both cases are clearly shown. The differences of the
streamline pattern is not easy to delineate. However, in [16], the accuracy of

different quadrature degree is validated by shear decay simulations.

3.4 Generalized Semiclassical LB method

Numerical stability and dispersion are important issues in numerical simula-
tions. The semiclassical LB method derived above is based on the BGK model
which involves the single relaxation time approximation. The single relaxation
time semiclassical LB method-BGK equation should have the same deficits as
the classical counterpart such like numerical instability and the fixed Prandtl
number which is unity. To overcome the LB method-BGK deficiencies. The
generalized LB method [49] which is also called multiple relaxation time LB
method has been proposed and examined recently by [50].The generalized LB
method is of better numerical stability and has attract much attention in re-
cent years. Its basic idea is that in the single relaxation time LB method, the
bulk and shear viscosities ate both determined by the same relaxation time 7.
In another way, the generalized LB method use several relaxation times to re-
lax different modes such that the bulk and shear viscosities could be adjusted
independently. Consequently, the stability and dispersion could be tuned into
a better situation. In this section, the single relaxation time semiclassical LB
method derived above is extended to the generalized semiclassical LB method.
The derivations of generalized semiclassical LB method is based on the steps

in [51] and [52]. At first, consider the equation (3.4), We expand distribution
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function on Hermite polynomials, namely, the following finite expansion for
f

flx, &t) = Zi H™(£). (3.47)

n!
n=0

The Hermite coefficients of f and f@ are noted by a™ and a(()") respectively.
Due to the conservation laws, a® = aéo),a(l) = aO ) and Tr(a®) = Tr(aé2)),
where T'r denotes the trace of the second order tensors. The BGK collision
model can be written as:

= L

Z [l alM ™. (3.48)

n:
n=2

Rpck(f

\ll»—

Assumes that relaxation time is different from different order expansions.

N
1 n n
Rpcr(f E 2 n' al JH™, (3.49)
n=27

and integrating (3.1) over cede

N

[ g peate= -3 iath —al ) [Hcete. (350

Noticing that cc = H? (&) — uHM (&) + uw + &, the right hand side is simply

_T_Q[a@) _ a((f)]. (3.51)
That means,
a® —al) = 7, /((ZJ; +&-0f)ecde. (3.52)

Since we already have aéQ) in previous procedures, what we should do now is

to calculate a®. The first step to get a® is from continuity equation and
momentum equation which could be easily got by integrating the governing

equation (3.1). In the following derivations, Einstein summation convention



3.4. Generalized Semiclassical LB method 37

is used for convenience.

on + 0;(nu;) =0 (3.53)
Or(nu;) + 0j(nuu;) = —0;(nb). (3.54)
Then, summing (3.53) and (3.54),
—1

Calculating 0,( [ f¢9&¢;) and Oy, [ f096E;E:

/ FerQeE) = 9, (nuau; + nf—2425,,)

dd/2+1
= Bh(ns)u; + nugdyu; + 0-2L25,,0m + ndy; 0,022
gdj2+1 dd/2+1
= —8k(nuLuj)u] PE 81(719 gd/2 )Uj i nuiujakuj - uzﬁj(ne gd/2 )
9d/2+1 gd/2+1
2
= E)k(nuk)ﬁ gd/2 5ij —a nukﬁk(ﬁ gd/2 51]) - —n@kuké gd/2
gd/2+1 dd/2+1 3 dd/2+1
=—0, (Nl v fut) —an0 1¢/2 Ju; — 0;(nd 942 Ju; — O(né 942 k)0
9dj2+1 9d/2+1 9d/2+1
2
20922 g, (3.56)
3 gajar1

Ok /f QQﬁlfjfk = 0;(nd Ja/2 u;) + 0;(nd Ja/2 u;) + Ok(nd Ja/2 ug)0ij + Ok (nuujuy)

dd/2+1 dd/2+1 gd/2+1
(3.57)
Summing (3.56) and (3.57):
2
no Jd/2 (Ojuj + Oju;) — =nb Jd/2 Oy, = nb Jd/2 Aij. (3.58)
9d/2+1 3 gajan1 9dj2+1
Recall agf) = nf == gd/ : 5ZJ such that, the overall momentum stress tensor is
derived as:
P, E/fcicjdc:?w 9ij2 5. — rnf-LU2 A, (3.59)
9d/2+1 9d/2+1
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After getting the stress tensor, we need to calculate the conduction coefficient

along with an additional relaxation time. In the similar steps, we calculate

f[af;:’Q +&-V Q- c2de. First, the zeroth order energy conservation equa-

tion is derived from integrating (3.1) xc? over £

30,(n-242) 4 g, / fectde + 09 0 4 O =0 (3.60)
dd/2+1 9da/2+1

and notice that
/fficgdg = /feq’inCQdé = 3n0ﬂui + 0(82) (3.61)
dd/2+1

combine (3.60) with (3.53) and (3.61)

%
8,032 | ;0,022 — _Zou,0-242 4 0(5?) (3.62)
9d/2+1 9dj2+1 3 9d/2+1

/ 0026 — u)dE = O, / R (€~ u)? k2 / 9, (6 — u) Oy

gd/2 gd/2

gd/2+1 gd/2+1
2
= 30 gd/2 [—@(nuzuj) —3Z(n0 gd/2 )]+3TLUZ(—U]638 gd/2 ——8juj9 gd/2 )
9d/2+1 9dj2+1 gdj2+1 3 9d/2+1
1
2022 0 — —0,(nf-22 )
gdj2+1 n gd/2+1
= 83(—39 gd/2 nuiuj) — 2nd gd/2 @(uluj) — 56 gd/2 8Z(n9 gd/2 )
dd/2+1 gdj2+1 gdj2+1 gdj2+1
(3.63)

/ajfqugifjgdf = 0; / fer9g,€,c* + 2 / FEr9EE(& — ug)Ojuy

= 0; / ferCcic;c*dE — 9;(3n0 da/2 ugug) + 2nd Ja/2 (wi0ju; + u;0ju;)
dd/2+1 9d/2+1
2
= 0502127y 4 0, (3n0 212 ii01;) + 2002120, (usu)
gd/2+1 gd/2+1 gd/2+1

(3.64)
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Finally, Combine (3.63) and (3.64) to get heat flux.
gd/2 gd/2
(3.63) + (3.64) = bnb 0,0 (3.65)
ddj2+1  9d/2+1
2] 9d/2 9d/2
= SN (D) 9)g, g2 Saen 3.66
1 ox; ( ) 30 dd/2+1 Ox; ( )
D+2 9d/2
o N 2 9a/2+1 _ 40 gad/2 (3.67)
PCp PCp ga/2+1

In this section, we show that the single relaxation time semiclassical LB

method can be extended to include multiple relaxation times using Hermite

decomposition. The viscous and thermal transport coefficients are shown to

be governed independently by the individual relaxation times. Higher order

moments and more relaxation times being used is possible.
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Figure 3.1: Comparisons of streamlines of uniform flow over a circular cylinder
in a BE quantum gas in different expansion order with z = 0.2 and Re., = 40.

(a) N =3, (b) N =2.
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Table 3.1: D1Q5 quadratures and

weights

Ca W,

0 8/15
+/5 - V10 (7 +2v/10)/60
+v/5++/10 (7 —2v/10)/60

Figure 3.2: D1Q5 lattice structure

2
6 5
3 @< >@ 1
Table 3.2: D2Q9 quadratures and
7 4 8 weights
Ca wq
(0,0) 4/9

Figure 3.3: D2Q9 lattice structure

(V3,0)5  1/9
(£v3,£v3) 1/36

Table 3.3: D3Q19 quadratures and

weights

Ca Wq

(0,0,0) 1/3
(v/3,0,0)y, 1/18
(£v3,+v3,+V3);, 1/36

Figure 3.4: D3Q19 lattice structure
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4.1 Overview

This section focuses on the implementation of initial conditions and boundary

conditions for the semiclassical LB method. The choices of initial conditions
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and boundary conditions influence the stability, accuracy and efficiency of
the numerical scheme [53][54]. In semiclassical LB method, the primitive
variables are the distribution functions f, just as in the usual LB method,
but not the hydrodynamic variables n, u, and #(or T'). Most of the bound-
ary conditions used in the classical LB method, including periodic boundary
conditions, extrapolation boundary condition, bounce back boundary condi-
tion, non-equilibrium boundary condition should also work in semiclassical LB
method since they are all dealing with distribution functions. In view of the
complex boundaries, the real curves of the boundary are not always on lattice
points, the layout of the curved wall boundary in the regularly spaced lattices
is shown on Fig. 4.1, the circles represent the fluid nodes, the rectangles rep-
resent solid nodes, the real boundary dose not always lay on the solid nodes
but on the intersections between solid nodes and fluid nodes. The real bound-
ary intersection point is labeled by triangle. Obviously, simple bounce back
boundary condition can not be applied to this situation and some interpola-
tion skills should be used, more discussions will be given below. For a lattice
node near a boundary, density distributions entering the fluid domain after
the propagation step are not available, the boundary conditions must then be
implemented by specifying the unknown distribution function f, entering the
simulation domain across boundaries, such that the macroscopic velocity and
pressure requirements are satisfied. These stipulations pose some difficulties
in the LB method implementation. In this section, some important bound-
ary conditions will be introduced, especially those suitable for semiclassical
LB method. In the end of this section, a special issue about the boundary

conditions for microchannel flow will be discussed.
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4.2 Initial Conditions

In general, the steady state problem is not sensitive to the initial conditions.
Such that, in many cases we can just set initial conditions of the distribu-
tion functions as its equilibrium state. That is, f7%al = 99 (ng ug, by, 2),
wherein ng, ug, 0y and 2y are the initial macroscopical variables. Since in
this thesis the problems we consider are not sensitive to initial conditions, the
initial distribution functions are simply set by the equilibrium distribution
functions as described above. In conventional LB method, there are other
methods applying initial conditions. For example, in [53] the non-equilibrium
initial condition is considered. In [55] and [56] pressure is solved from Poisson
equation and used to initialize the distribution functions. It should be noticed

that some nonlinear flow problems like turbulence and multi-phase flow are

sensitive to initial conditions [57].

4.3 Boundary Conditions

4.3.1 Periodic Boundary Condition

When a system exhibits symmetric or periodic features in space, symmetric,
or periodic boundary conditions can be utilized to reduce the domain size for
a better computational efficiency. Due to the particulate nature, these bound-
ary conditions can be easily implemented in LB method. Fig. 4.2 illustrates
a horizontal symmetry boundary along the inlet and outlet of the compu-
tational domain. The basic idea is that an unknown incoming distribution
across a symmetry boundary is exactly the reflection image of this required
distribution about the symmetry boundary. For periodic boundaries, all par-

ticles leave the domain across a periodic boundary re-enter the domain from
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the opposite side. Therefore, the actual system being simulated is then an
infinitely long horizontal domain with identical repeated units. To impose a
pressure gradient along the periodic direction, for example, along a channel,
the periodic boundary condition can be modified to incorporate the pressure
drop between the domain inlet and outlet [58|. Periodic boundary condition
is widely used since it is easily and directly implemented on the distribu-
tion functions. For example, referring to Fig. 4.2, the boundary conditions
are set as: fesr(nx,j) = fes7(1,j) and fi55(1,5) = fi5s(nx,j), such that
the periodic boundary conditions are applied on inlet and outlet of the two

dimensional computational domain.

4.3.2 Bounce Back Boundary Condition

The no-slip boundary condition at a solid-liquid interface is important for our
understanding of liquid mechanics. In conventional computational fluid dy-
namics, the vast majority of problems are concerned with solving the Navier-

Stokes equations for incompressible flow

V-u=0

(O +u-V)u= —% + vV%u.

Most of these studies assume the validity of the no-slip boundary condition
which means that all components of the fluid velocity on a solid surface are
equal to the respective velocity components of the surface. In mesoscopical
computational tools like LB method, smoothed-particle hydrodynamics et al.,
there should be a method corresponding to the no-slip boundary condition in
macroscopical world, and it is called "Bounce Back Boundary Condition" in
LB method. The success of LB method is mainly due to the most widely used

bounce back boundary condition which evolved from the boundary conditions
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of lattice gas and is well documented in the literature [59][60][61][62]|63]. The
standard bounce back boundary condition is simple to implement and shown
here: a particle will reverse its momentum when it hits on a solid surface.
Suppose a lattice site x; is designated as a solid site on a boundary, and a
lattice site z; is designated as a fluid site next to the boundary. The bounce

back boundary conditions can be simply expressed as

fa(xy) = fa(xs)

where @ means the oppose direction of a, but this standard bounce back
boundary condition has only first order accuracy. Recent research reveals
that keeping the real boundary on the link between two adjacent lattices will
get second order accuracy. Although this modified bounce back boundary
condition is second-order accurate when the solid boundary resides on the
midpoint of the link, this is not the case for an arbitrary surface or, say, com-
plex boundary, for which the accuracy of the bounce-back method degrades
into a first-order-accurate velocity field. The research of bounce back bound-
ary condition for complex boundary has long history on the development of
LB method, and we will discuss it here by dividing these methods into two
groups: Node-based methods and Link-based methods. Node-based methods
treat the lattices most closing to the real physical boundaries as solid lat-
tices, the standard bounce back boundary condition belongs to this kind of
group. In contrast of this method, the link-based methods always put the
real physical boundaries on the middle of the link of two adjacent lattices,
the modified bounce back boundary condition belongs to this kind of group.
The node-based method keeps the real physical boundary on the lattices and
increases the accuracy of the fluid solid coupling through the direct alteration

of fluid nodes adjacent to the solid surface. Early methods based on the work
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of [64] and [65] alter the collision operator with forcing terms dependent on
the volume fraction of solid in the given lattice cell. This method requires
the accurate calculation of the solid fraction for each of these cells, which is
complicated for arbitrarily shaped particles in three dimensions. Without an
accurate calculation of the partially filled fluid cell volume fraction, spikes in
particle force and torque are reported [66]. In [67], the no-slip condition is
enforced directly on fluid nodes adjacent to the solid in a method called the
external boundary force LB method. For link-based methods, the standard
bounce back method is altered by interpolation or extrapolation to make the
real physical boundary lie at the midpoint of the link. Filippova et al. use
interpolation methods on standard bounce back method [68], then Mei et al.
improved this kind of method [69]. In [70] Bouzidi et al. proposed a new
method combining bounce-back and space interpolation for dealing with the
complex boundary. In [71] Lallemand and Luo improved the methods from
Bouzidi et al.. In the following context, the modified bounce-back method
is based on the works of [71] and extended to semiclassical LB method. Ac-
cording to Fig. 4.4, the circle points F, E and A are fluid lattices, the square
point B is solid lattice. The dashed line represents the real wall, the particle
from fluid lattice A toward to wall lattice B will hit the real wall and bounce
back to the solid circle point D. Before continuing the following discussions,
define a quantity q as a fraction of the total link distance ¢ = %. For the
case when the solid boundary is closer than the link midpoint, 0 < ¢ < 1/2 in
Fig. 4.4(a). The distribution function with velocity moving to the wall (the
arrow in Fig. 4.4(a)) at the fluid grid point A would end up at the point D
located at a distance (1 — 2¢)d, away from the fluid grid point A. Because D
is not a grid point, the distribution function f3 at the grid point A needs to

be reconstructed. Noticing that according to the standard bounce back rule,
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the f1 from grid point D would become f3 at grid point D after one time step,
such that, what we should do is to construct the values of f; at the point D
by a interpolation involving three distribution function fi: fi(A), fi(F) and
f1(F). The similar procedures are applied to the case of ¢ > 1/2 depicted in
Fig. 4.4(b). The interpolation formulas are ( where the f, and f, denote the
post-collision distribution functions before and after advection):

Forq<%

fal€art) = q(1 +29) fu(€a,t) + (1 — 4¢%) fu(€p. t) — (1 — 2q) fu(Ep, t).

1
FOI"QZ 2

2q

1.
(&g, t) — 2 +1

fﬁ(§A7t) = fIl(gA?t) o

0+ 29 (€, t).

Although these kind of methods are accurate, there also exists an error in
the boundary location that is dependent on the viscosity [72] [73]. This error
exists for standard bounce back methods, even with the boundary located at
the midpoint of two adjacent lattices, and for the linear and quadratic in-
terpolation methods mentioned above. We should also notice that there is a
disadvantage to all interpolation methods due to the lack of mass conserva-
tion. Although the magnitude of mass leakage for the multi reflection and
equilibrium interpolated methods is small, it may be important in cases such
as the simulation of deformable capsules, in which mass leakage results in an

overall change in particle volume.

4.3.3 Non-Equilibrium Extrapolation Boundary Condi-
tion

The usually used bounce-back scheme is easy for implementation as described

above. However, the standard bounce-back scheme is only of first order in nu-
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merical accuracy at boundaries [59][73]. There are many alternative boundary
conditions proposed for solving the accuracy degrading problem in complex
geometry, for example, half-way bounce-back scheme [63], the non-equilibrium
bounce-back scheme |74] and the extrapolation scheme |75] and so on. How-
ever, there still exist some disadvantages and will introduce some additional
errors [76]. Guo et al. introduced non-equilibrium extrapolation boundary
condition in |76] to solve those problems, they used this method to deal with
the curved boundaries, and in the following years it had been widely used
on many numerical simulations [77][78][79][80] due to its easy implementa-
tion and stabilization. Before introducing the present boundary condition, we
recall the extrapolation boundary condition introduced in [75], this method
is easily applied and it keeps zero derivative in the present boundary. It is

derived from simple finite difference method and could be illustrated as:

fa(17j> = fa(zvj)
fa(n:v,j) : fa(ﬂl' B 17])

In which ¢ = 1 and ¢ = nz are inlet and outlet boundaries. We can also use
second order finite difference method to derive the extrapolation boundary

condition and it will be shown as:

fa(17j) = 2fa(27j) - fa(37j)
falnz,j) =2f,(nx —1,j) — fo(nz —2,7)

This method is suitable for many different boundaries like Dirichlet and Neu-
mann boundary conditions because it is derived from the finite difference
method. However, some researches shows this kind of extrapolation boundary
conditions will degrade the numerical stability [74||76]. The non-equilibrium
extrapolation boundary condition first introduced in [76] is separating the un-

known distribution functions on the wall into equilibrium and non-equilibrium
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parts, where the equilibrium part is determined by the macroscopic variables,
and the non-equilibrium part is determined by that of the distribution func-
tion at the nearest neighbor nodes in the fluid region. For example, D2Q9
model is used for describing this principle, and we consider Fig. 4.3, after
streaming, the distribution functions fi, f5 and fg on left open boundary are

unknown, we can represent it by equilibrium and non-equilibrium parts as:
ftI(xb? t) = f;q(‘rbv t) + f:eq(xbv t)? a=1,5,8,

where ™% represents the non-equilibrium part. Since we do not know the non-
equilibrium part "¢ on the wall, we use the nearest fluid nodes approximating

it.
Jat (o, t) =[5 @y, t) = falap, t) = fol(wg,t),0 = 1,5,8,

such that, the non-equilibrium extrapolation boundary condition can be de-

scribed as:

fa(@p, t) = fil(@p,t) + (falay, t) — f(xy,t),a=1,5,8.

For another example, referring to Fig. 4.2, adiabatic wall and isothermal wall
boundary conditions are important in thermal flow simulation. According to
this approach, the distribution function f,(x;) can be assigned new values by
setting u, = 0, and, for adiabatic wall 8, = 0, for isothermal wall 8, = 0y,
or 6, = 0. Here, 8 means the high temperature at the isothermal wall and
the 6, means the low temperature one. Finally, the distribution functions on

the boundary points are calculated as:

fa(xb) - f§q7Q(xb7uba (9[,) + [fa(xfaufa 0f> - f;%Q(xf) Ug, 9f)]7 a = ]-7 57 8.

where py, 6, uy denote the hydrodynamic variables at the boundary points and

pf,0f,up denote the corresponding ones at the nearest neighborhood. Non-
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equilibrium boundary condition has been proven for its stability and accuracy

1N numerous cases.

4.3.4 Immersed Boundary Condition

Immersed boundary method (IBM) was invented by [81] to simulate cardiac
mechanics and associated blood flow. The feature of this method is implement-
ing entire simulations on a cartesian grid without conforming to the geometry
of the rigid body. In another words, IBM is replacing the effect boundaries
acting on the surrounding fluid by the force added in the governing equa-
tions. Based on the work of Peskin, numerous modifications and refinements
have been proposed and a number of variants of this approach now exist. [2-
10]. Among the remarkable works, Goldstein et al. [82] proposed a model
named virtual boundary method which permits simulations with complex ge-
ometries. Lai and Peskin [83] proposed a second-order accurate immersed
boundary method with adoption of a well-chosen Dirac delta function. Lin-
nick and Fasel [84] proposed a high-order modified immersed interface method
for the two-dimensional, unsteady, incompressible Navier-Stokes equations in
the stream function-vorticity formulation, which employs an explicit fourth-
order Runge-Kutta scheme for time integration and the fourth-order compact
finite-difference schemes for approximation of spatial derivatives. Lima E Silva
et al. [85] proposed a version named physical virtual model, which is based
on the conservation laws, and simulated an internal channel flow and the flow
around a circular cylinder. Due to the common feature of using Cartesian
mesh in the LB method (LB method) and IBM, some researchers tried to
combine these two methods into an efficient one. The first such attempt was
made by Feng and Michaelides [86][87]. In their work, the restoration force due

to deformation is computed by the penalty method [86] or the direct-forcing
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scheme [87|. The penalty method introduces a user-defined spring parame-
ter which may have a significant effect on the computational efficiency and
accuracy. The direct-forcing immersed boundary [88] in order to overcome
the drawbacks of the virtual boundary force method, and its improved ver-
sions [89] are very suitable for finite difference applications to simulate flows
in complex domains. However, the direct-forcing scheme requires solving the
N-S equations by the finite-difference method, which may spoil the merits
of LB method. In recent years, IBM is introduced in LB method, Since the
Cartesian mesh is used in both LB method and IBM, the combinations of IBM
and LB method should make the computations easy, efficient and suitable for
complex boundaries. A boundary treatment using the immersed boundary
velocity correction method proposed in [86][90][91] which enforcing the phys-
ical boundary condition is also adopted here. Since the immersed boundary
method is dealing with real curved geometries in simulation, it must be better
than the standard bounce back method. The detailed comparisons between
immersed boundary method and bounce back method are given in Fig. 5.6.
In this case, we used flow over cylinder to test the accuracy of two different
boundary conditions. We could find that immersed boundary method is much
better than the bounce back method while dealing with complex geometries.
And also referring to Table. 5.1, the results of standard bounce back bound-
ary condition oscillate in different Reynolds number and can not reveal the

real physical phenomena well.

4.3.5 Issues on Microchannel Boundaries

Microchannel flow has drawn a lot of attentions in recent years, there are
several interesting phenomenons in microchannel flow like slip velocity, tem-

perature jump and Knudsen minimum [92], simulating microchannel flow and
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these phenomenons is a challenging problem. Conventionally, direct simula-
tion monte carlo method has been used wildly on this topic and got good
results. Recently, LB method is also applied to this topic and got accurate
results. In the developing of LB method on microchannel flow, there are two
important issues, one is the relations between Knudsen number Kn and the
relaxation time 7, the other is the boundary conditions. The detailed descrip-
tions covering the first issue will be discussed in Chapter 5. Here introducing
and comparing the state of art boundary conditions for microchannel simula-
tions, and the adequate boundary condition is chosen, modified and adopted
on semiclassical microchannel flow simulations in Chapter 5. In microchannel
simulations, diffusive boundary conditions are the most important and worth
to introduce in detail. Ansumali et al. disclosed the first idea of diffusive
boundary conditions [93]. In their work, derivation of the LB method from
the continuous kinetic theory [14][17] is extended to obtain boundary condi-
tions. For the model of a diffusively reflecting moving solid wall, the boundary
condition for the discrete set of velocities is derived. This diffusive boundary
condition is formulated in the continuous kinetic theory and listed in equa-
tion (10) of [93] then expanded and discretized on the hermite polynomials.
In 2005, Tang et al. followed the idea and introduced the discrete maxwellian
method which use the discrete kinetic theory boundary conditions to get the
slip velocity at the solid boundaries [94]. According to the bottom wall, shown

in Fig. 4.3, the discrete maxwellian method is described as:

fo=1
f5 = Tngq(pw,uw) + (1 - T)fé

fo = r K f5" (pw, ww) + (1 — r)fé (4.1)
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where p,, and u,, are the density and velocity of wall, and K is a factor defined

. _ fat+fo+ri
as: K = e e S T )

There is another diffusive boundary
conditions which reflects the sum of incoming distribution function to the wall
according to the weight of each distribution function come to the fluids. the

detail descriptions also referring to the bottom wall of 4.3 is described as:

fa=Qx f3/(fa+ f5+ [5)
fo = QX f5/(fs+ f5+ [5)
fo=@Qx [/ (fs+ f5+ f5) (4.2)

where Q = fi+ f7+ f§ is the sum of incoming distribution function to the wall,
f5/(f5+ fi+ f§) is the weight of f; comes to the fluid. The diffusive boundary
conditions are applied to microchannel flow simulations and got great success.
In 2002, Succi et al. combined bounce back and specular reflection methods
to capture the gas slip velocity in the microflows [95], which is called bounce-
back specular reflection method here. Referring to the bottom wall of Fig.

4.3. The bounce-back specular reflection method is introduced as:

fo =
Js =Tl (=)
fo=rfit L=)f; (43)

fo=fatrfi+rfs
fo=@0=r)fg
fo=Q0-r)f7 (4.4)
Microchannel flow simulation is used for comparing the influences of different

boundary conditions, In these different boundary conditions, all of them have

a tunable variable r. It can be tuned to match the experimental data. Here we
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use classical microchannel flow simulation to validate and compare different
boundary conditions and the influences of accommodation coefficients. First,
we compare the influences of different accommodation coefficients on velocity
profile based on two different boundary conditions are shown in Fig. 4.5.
From the results of this figure, the accommodation coefficient r represents the
magnitude of the specular, and 1—7 means the magnitude of the bounce-back.
That means, the higher » makes slip velocity more obvious. Next, we consider
the influences of different boundary conditions on velocity profile based on
the same accommodation r» = 0.8. We chose two Kn number, Kn = 0.5
and (b) for Kn = 2, and the results are in Fig. 4.6. We found that slip
boundary condition and discrete Maxwellian boundary condition both reveals
the same velocity profile in low Kn number, but the velocity profiles will split
in high K'n number. As shown in Fig. 4.6(b), different boundary conditions
indeed affect the slip velocity on the wall, the slip boundary condition has the
maximum slip velocity on the wall. Finally, we consider the velocity profile
of different Knudsen number based on the same accommodation r = 0.8 for
two different boundary conditions, as shown in Fig. 4.7(a) for bounce-back
specular reflection boundary condition and Fig. 4.7(b) for discrete maxwellian
boundary condition respectively, we found that different K'n number really
affects the slip velocity. In high Knudsen number, the velocity slip is obvious.

We should notice that there are still many other boundary conditions for
the slip velocity boundaries not discussed here, for example, [96] introduced a
modified LB model with a stochastic relaxation mechanism mimicking virtual
wall collisions between free streaming particles and solid walls. Virtual wall
collisions model combined with bounce back method or diffusive boundary
conditions [93] were compared to show that this model can help the latter two

methods work in high K'n number flow.
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5.1 Overview

In this chapter, Some numerical examples for testing theory and illustrating
the present semiclassical LB method are reported. For validation and compari-
son purposes, the present single relaxation time semiclassical LB method is ap-
plied to one-dimensional quantum gas flows in a shock tube, two-dimensional
quantum gas flow over cylinder, two-dimensional quantum gas microchannel
flow and three-dimensional quantum gas flow lid-driven cavity. Moreover, a
new thermal LB method presented in Appendix 2 is validated by two dimen-

sional natural convection flow and two-dimensional Rayleigh-Benard thermal
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convection.

5.2 One Dimensional Shock Tube

The constant relaxation time 7 = 0.001 is used in testing the applicability
of the present methods. The D1Q5 discrete velocities scheme as Table 3.1 is
employed. The expansion equations up to the N = 3 order, i.e., (3.38), is used
for this one-dimensional problem. The computational domainis(0 < z < 1 and
is divided into uniform cells of size 1/L, where L is the number of cells. The
diaphragm is initially located at £ = 0.5. The initial conditions at the left and
right sides of the diaphragm in the shock tube are (n;,u;, ;) = (1.0,0.0,1.0)
and (n,, u,, &) = (0.7,0.0, 1.5), the fugacity is set as z = 0.2 everywhere. The
relaxation time is set to constant 7 = 0.001. Here, we adopt the conventional
finite volume schemes on those equations, in which (3.4) is solved by first
order upwind scheme. In this case, (3.40) is treated as a system consisting of
five one-dimensional linear wave equations. After applying first order upwind
scheme, the discrete equations become

ntl _ rn () i fn‘+1_ n.
a,i a,i + Ja,i a,i— —_Ja, a,i
e
n __ f€q
_ _( a,i fa,z) (51)

T

where ¢ = max({,,0) and ¢; = min({,,0) and the superscript n denotes the
time level. We first performed a grid refinement test using L = 100, 200, and
400 cells to ensure the convergence of solution which are shown in Fig. 5.1.
The convergence of solution is evident. Next, we compare the different behav-
iors due to the three statistics, namely, BE, FD, and MB statistics. The initial
conditions at the left and right sides of the diaphragm in the shock tube are
(ng,u,0;) = (1.0,0.0,2.0) and (n,,u,,6,) = (0.7,0.0,1.8) and the same con-
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stant relaxation time is used. The results using L = 200 cells for the three
statistics are shown in Fig. 5.2. The main features of a typical shock tube
flow, namely, the shock wave, contact discontinuity and the expansion fan, are
well represented. We can clearly delineate the difference of three statistics. It
is shown that under different statistics although the initial temperature, den-
sity, and relaxation time are the same, the pressure, internal energy, and the
temperature are different. It is noted that the results of MB statistics always
lie between those of BE and FD statistics. Finally, we increase the tempera-
ture and keep other parameters the same as (n;,u;, 6;) = (1.0,0.0,10.0) and
(ny, uy, 0,) = (0.7,0.0,12.0). The results in Fig. 5.3 show that the dilute quan-
tum gas in high temperature represent the quantum gas in classical limit, the
difference of three different statistics can not be delineated. The results are
in consistent with the characters in classical limit: high temperature and low

density.

5.3 Two Dimensional Microchannel Flow

The transition from molecular to viscous flow was one of the main subjects
of the early experiments of Knudsen [92] in which the Knudsen minimum
phenomenon was first discovered where experimentally observed that the vol-
umetric flow rate per unit pressure drop across a long capillary does not vanish
as the mean pressure reduces to very small values. Since then, the capturing
the Knudsen minimum phenomena in rarefied gas channel flows have been
a challenging and long investigating problem [97][98][99][100][101]. This phe-
nomenon not only occurs in classical dilute gas but also in liquid helium at low
temperature which indicates a flow minimum in phonon system [51]. The fun-

damental physics of the phenomena of Knudsen minimum is associated with
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rarefied gas flows in the slip- and transition-flow regimes and the boundary
effects of the kinetic boundary layer and so-called Knudsen layer is dominant.
This type of flow is also found in micro- and nano-scale fluidic applications typ-
ically involved in MEMS. The Navier-Stokes equations with no-slip boundary
conditions often fail to explain important experimental observations, e.g., that
the measured flow rate is higher than expected while the drag and friction fac-
tor are lower than expected [102|. The main reason is that the Navier-Stokes
equations can only describe flows that are close to local thermodynamic equi-
librium. When the mean free path of the gas molecules approaches the length
scale of the device, the flow lacks scale separation and is unable to achieve
local equilibrium [103]. Gas flows in miniaturized devices are often in the slip
regime (0.001 < Kn < 0.1) or the transition regime (0.1 < Kn < 10). In these
regimes, the gas can no longer be described as continuous quasi-equilibrium
fluid nor as a free molecular flow [104]. Also, the flows encountered in mi-
cro system typically involve low Mach numbers. The LB method offers an
attractive technique for micro- and nano-scale fluidic applications where the
microscopic and macroscopic behavior are coupled. The method retains a
computational efficiency comparable to Navier-Stokes solvers but is a more
physically accurate method for gas flows, over a broad range of Knudsen
numbers due to its original link to kinetic theory. The LB equations can be
directly derived in a priori manner from the continuous Boltzmann equations
[102][103]. In this section, our objective is to study the planar channel flow
of gas particles of arbitrary statistics in the slip and transition regimes and
in particular, we investigate the Knudsen minimum phenomena using semi-
classical LB method. While considering the microchannel flow simulations,
one of the two most important issues is the boundary conditions which have

been discussed in Ch. 4, and another one is the relation between Knudsen
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number Kn and relaxation time 7. In the literatures, there are many methods
of calculating 7 from Kn. However, generally we can write down the relation
as 7 = % + ZYpim X Kn, ypim is the lattice number in the y direction, c is the
sound speed in the present lattices, which will be v/3 in our D2Q9 model, and
c* is different in many literatures, for example, ¢* = \/% in [105] which is
the average speed of molecular. Others chose ¢* = v/30 or ¢* = \/m Even
more, Zhang et al. disclosed an idea of wall function that can provide a cor-
rection to the mean free path [51]. Such that, the mean free path is variable
from wall to fluid, as a result, ¢* becomes the function of Knudsen number
Kn. We consider a uniform two-dimensional pressure-driven channel flow in
a quantum gas. The channel length is L and height H and L/H = 25. With
the given fugacity zinier = 0.2, Zouner = 0.09835 for the Fermi gas, zjner = 0.2,
Zouttet = 0.10191 for the Bose gas, and 2;nie = 0.2,20ue = 0.1 for the classical
limit, the temperature is 0;,,.; = 0.5, Opuner = 0.5, then the pressure ratio will

g5 (2) g5 (2)
be (Pinlet/Poutlet) = (nQQ_)inlet/(neg%(z))outlet = gg (Zinlet)/g%(zoutlet) = 2 for
2}

93(2)
the three cases. Since t}21e D2Q9 square lattice is applied, L can be written
as L = (N, — 1)d,, and H = (N, — 1), where N, and N, are the number of
lattice nodes in the x- and y-direction, respectively. The accommodation co-
efficient 0 = 0.6 is used in the simulation. Other values can also be calculated.
To begin with the computation, the desired Kn = A/H is first input, where
H is the height of the channel. We also set the lattice spacing §, = 6, = 1. In
the simulations of these cases, ¢* = \/W is chosen, such that the relaxation

time 7 can be expressed as

T=Kn(Ny, —1) x4/ 3% + 0.5. (5.2)

Having Kn defined, appropriate N, and 7 could be chosen, which could then

be used in the determination of mesh size and the collision propagation updat-



68 Chapter 5. Numerical Results

ing procedure, respectively. We used the N = 2 expansion equations set for all
the cases computed. The computation domain is (0 < z < 500,0 < y < 20)
and 501 x 21 uniform lattices were used. Several Knudsen numbers covering
near continuum, slip and transition flow regimes are calculated. The steady
velocity profiles for the three statistics, BE, MB, and FD gases for the case of
z = 0.2 are shown in Fig. 5.4 (a), (b) and (c), respectively, for three different
Knudsen numbers to represent the Knudsen, slip and Poiseuille regions. For
the small Knudsen number, Kn = 0.05, the characteristic parabolic velocity
profile is evident and for Kn = 0.2, the velocity slip at the walls can be clearly
observed. Again, the profile for MB gas lies always in between that of the BE
and FD gas and for small Knudsen number, the three profiles get closer to each
other. The mass flow rates for all three statistics, BE, MB, and FD gases for
the case of z = 0.2 for Knudsen number covering Knudsen, slip and Poiseuille
regions are shown in Fig. 5.4 (d). Seven values of Knudsen number from 0.06
to 6.0 were calculated. The Knudsen minimum can be clearly identified for
all three statistics and the profile for MB gas lies always in between that of
the BE and FD gas. The Knudsen minimum is found to be near Kn = 0.6.
Basically, the Knudsen minimum of a pipe of channel flow can be viewed and
explained as a phenomena that appears when the flow passing through the
competition between the classical Poiseuille continuum flow and the Knudsen
flow and the value of Knudsen number at this minimum should lie in the slip
and transition regime. It is also found that the Knudsen number value at
Knudsen minimum is very sensitive to the specularity condition (specified by
o) of the wall surface. Our value obtained here is in agreement with that
reported in the literatures (See [106][107|[108]). For example, in [106], first
observation of the Knudsen minimum in normal liquid *He was reported and

the position of Knudsen minimum was found to lie at Knudsen number of
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~ (.5 as compared to the value of 0.75. Also, Knudsen minima for phonons
at Knudsen numbers of 0.87+0.13 and 0.65, respectively, have been reported,
see [107][108]. Theoretically, as comparing with particles of classical statistics,
the effects of quantum statistics at finite temperatures (non-degenerate case)
are approximately equivalent to introducing an interaction between particles
[109]. This interaction is attractive for bosons and repulsive for fermions and
operates over distances of order of the thermal wavelength A. Our present sim-
ulation examples seem to be able to illustrate and explore the manifestation

of the effect of quantum statistics.

5.4 Two Dimensional Flow over Cylinder

Next we consider a uniform two-dimensional viscous flow over a circular cylin-
der in a quantum gas to illustrate the present semiclassical LB method in
practical flow simulation. We used the N = 2 expansion equations set for
this case. The computation domain is (—1,1) x (=1,1) and set by 201 x 201
lattices, and the cylinder is set at the center of the computation domain with
the radius D = 0.1. Uniform Cartesian grid system is used. The free stream
velocity is us, = 0.1, free stream temperature T, = 0.5 and the Reynolds
number Rey, = uxD/v. First, we simulate the dilute quantum gas in clas-
sical limit and compare the results with the classical LB method to validate

semiclassical LB method in this case. The drag and lift coefficients are de-

fined as C; = 35;[1’4 and C; = p%f;ﬁ‘ respectively, Fp and Fp are the drag and
lift forces, A is the planform area. C; and C; of different Reynolds number
Re = 100 and Re = 500 are depicted in Fig. 5.5, we found the oscillation

amplitude is consistent with the results from conventional LB method. After

that, We consider two cases with Re,, = 20 and Re,, = 40 in three differ-
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ent statistics. The kinematic viscosity v of the fluid could be obtained from
the given Reynolds number and the relaxation time 7 is calculated according
to (2.20), rather than the classical one (2.21), and both of them come from
the Chapman-Enskog analysis [110] which considers the numerical viscosity
in LB scheme. The equilibrium density distribution function with the given
free stream velocity and density is used to implement the boundary conditions
at the far fields. A boundary treatment using the immersed boundary veloc-
ity correction method proposed in [86][91] and described in Sec. 4.3.4 which
enforcing the physical boundary condition is adopted at the cylinder surface.
The D2Q9 velocity lattice used is as Table 3.2. The streamline patterns for all
three statistics, BE, MB, and FD gases for the case of Re,, = 20 are shown
in Fig. 5.7. For this low Reynolds number, the flow patterns are symmetric
and the wake vortices are larger for the FD gas and smaller for the BE gas
as compared with the classical MB gas. Similarly, the results for the case
Reo, = 40 are shown in Fig. 5.8. The flow patterns are symmetric and the
vortices in the wake region become larger as compared with Re,, = 20 case.
Again, the size of the vortex for the MB gas is always larger than that of
BE gas and smaller than that of FD gas. This reflects the fact that the MB
distribution always lies in between the BE and FD distributions. Moreover,
Fig. 5.9 shows the streamline patterns for higher Re number, Re,, = 200 with
z = 0.2 when time steps equals 65000. The vortex shedding is obvious, and
we could see that the streamline patterns in the same time steps are different
due to different quantum statistics. Finally, Fig. 5.10 shows different con-
tours and streamlines of uniform flow over a circular cylinder in a quantum
gas in classical limit with Re,, = 200 when time steps equals 94200. The
velocity contours of both x-direction u, and y-direction u, are shown, and

we can find out that density p, fugacity z and temperature 6 have similar
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patterns because of the formula n = QZZ%. Theoretically, as comparing with
particles of classical statistics, the effects of quantum statistics at finite tem-
peratures (non-degenerate case) are approximately equivalent to introducing
an interaction between particles [109]. This interaction is attractive for bosons
and repulsive for fermions and operates over distances of order of the thermal
wavelength A. Our present simulation examples seem to be able to illustrate

and explore the manifestation of the effect of quantum statistics.

5.5 Two Dimensional Natural Convection and
Rayleigh-Benard Convection Flow

In Appendix 2, a new coupled thermal LB method is given, and it should
be extended to double distribution function semiclassical LB method. In this
section, we report some numerical examples to test the coupled thermal LB
method derived in Appendix 2. For validation and comparison purposes, we
apply the numerical method to natural convection flows in a square cavity.
Before the numerical simulations, we should notice that the local temperature
9 = RT is coupled in both the equilibrium velocity distribution function £
and equilibrium total energy distribution function h(®2, since the numeri-
cal case is low speed flow, we can average the local temperature computed
from velocity distribution function and the total energy distribution function,
respectively. A boundary treatment using the non-equilibrium exploration
boundary conditions proposed in [79] and described in 4.3.3 is applied. The
D2Q9 velocity lattice listed in Table 3.2 is used. On the left and right sides
of the cavity, the isothermal boundary conditions with 0y = Op, 0,59t = 01
are applied. On the top and bottom sides of the cavity, the adiabatic bound-

ary conditions are applied. No-slip conditions w = 0 are set on the four
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sides. The convection flow induced by the temperature difference is charac-

terized by the Prandtl number Pr = £ = 7?705 and Rayleigh number

K n—0.5

Ra = %2}131%’ where AT = Ty — T}, is the temperature difference, or we

BATH3Pr __ gBAOH3Pr
Tov? - Oov?

can represent Ra number as Ra = £ , where Tj is the
reference temperature, and B = TyB. The computational domain is 129 x 129
for Ra = 10® and Ra = 10*, and 257 x 257 for Ra = 10°. We set 0y = 1.04
and 0, = 1.0. The initial temperature is set at (0g 4+ 61)/2 and initial density
is p = 1.0. Notice that there are three unknowns 7¢, 7, and [ relating to two
parameters Pr and Ra. We set % = 1.5 in all cases, then the 75, and 3 can
be determined once the Prandtl number and Rayleigh number are specified.
Here we set Pr = 0.71. The streamline patterns for several Rayleigh num-
bers are shown in Fig. 5.11. With the increase of the Rayleigh number, the
fluid motion becomes stronger because of the larger buoyancy. The heat is
transferred mainly by conduction at small Rayleigh number and by convec-
tion at large Rayleigh number. For low Rayleigh number a vortex appears
at the center. As Rayleigh number increases, the vortex tends to become
elliptic and breaks up into two vortices at Ra = 10°. Similarly, the results
for isothermal lines are shown in Fig. 5.12. The isothermal lines are nearly
vertical at small Rayleigh number, and become horizontal at large Rayleigh
number. To quantify the results, we define the average Nusselt number as

Ntgpe = 1+ < u,T > —A—— = 1+ < w0 > where <> means

H
X(Te—TL) x(0r—0r)’

the system average, and y = % is the thermal diffusivity. We also calculate
the maximum velocities along the horizontal and vertical lines through the
cavity center. The results are listed in Table I together with previous data.
Our present simulation examples are able to illustrate and explore the mani-
festation of the effect of thermal Navier-Stokes flows. All of these results are

in good agreement with those reported in [79]. Next, we also consider the
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Rayleigh-Benard convection flow which is a classical benchmark on coupled
thermal LB models. The calculation of Rayleigh-Benard convection is similar
to the natural convection case. The fluid is enclosed between two parallel sta-
tionary walls with hot (bottom) and cold (top) temperatures and subjected
to the gravitation force. Density variations induced by the temperature differ-
ence will drive the flow and the viscous force will counteract to balance it. The
calculation domain is set as 200 x 100 lattices, the top and bottom sides are
set at the isothermal boundary conditions which are 6, and 6y correspond-
ing to low temperature and high temperature accordingly. The x-direction is
set with periodic boundary conditions. The simulations are corresponding to
three different Ra number which are Ra = 4000, Ra = 1000 and Ra = 50000.
We set 0y = 1.04 and 6, = 1.0. The initial temperature is set at (0 + 01)/2
and initial density is p = 1.0. We set # = 1.5 and Pr = 0.71 in all cases,
then the 7, and 3 can be determined once the Prandtl number and Rayleigh
number are specified just as described above. Top and bottom walls are ap-
plied by isothermal boundary condition, and left and right walls are applied
by periodic boundary conditions. The streamlines and isotherms patterns for
several Rayleigh numbers are shown in Fig. 5.13 and Fig. 5.14. With the
increase of the Rayleigh number, the fluid motion becomes stronger because
of the larger buoyancy. The heat is transferred mainly by conduction at small

Rayleigh number and by convection at large Rayleigh number.

5.6 Three Dimensional Lid Driven Cavity Flow

Since all the components for simulating in real world are in three dimen-
sional spaces. It is important to extend present semiclassical LB methods to

three dimensional simulation. In this section we consider a benchmark three
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dimensional lid driven cavity filled with dilute quantum gas. We used the
N = 2 expansion equations set for this case. The computational domain is
(—0.5,0.5) x (—0.5,0.5) x (—=0.5,0.5) and set by 51 x 51 x 51 lattices. Uniform
Cartesian grid system is used. The top wall velocity is u;q = 0.02, free stream
temperature T, = 0.5 and the Reynolds number is defined as Re,, = uooD/v.
Before doing the semiclassical LB method experiments, we consider three cases
with Re,, = 100, Re,, = 400 and Re,, = 1000 to validate the D3Q19 conven-
tional LB method in three dimensional calculation. The kinematic viscosity
v of the fluid could be obtained from the given Reynolds number and the
relaxation time 7 is calculated according to 7. = % + %, which comes from
the Chapman-Enskog analysis [110] which considers the numerical viscosity
in LB scheme. The equilibrium density distribution function with the given
top wall velocity and density is used to implement the boundary conditions
at top wall. A bounce back boundary treatment which enforcing the physical
boundary condition is also adopted on all the walls except the top wall. The

D3Q19 velocity lattice used is as Table 3.3. The convergence condition is

|u(x,t)—u(e,t—At)| < 10_5

Ulid

in Fig. 5.15 and Fig. 5.15. The streamlines profiles of different Reynolds

set as maz,,, . . The convergence validation is shown
number of Re,, = 100, Re,, = 400 and Re,, = 1000 for classical gases are
shown in Fig. 5.19, Fig. 5.18 and Fig. 5.19. The results are in good agree-
ment with previous works [111], [112] and [113]. The second comparison of
this three dimensional lid driven cavity flows is the velocity profiles along the
centerlines (x,0,0) and (0,0, z) of both classical case and semiclassical case in
classical limit shown in Fig. 5.20, we found Fig. 5.20(a) is in good agreement
with [113]. Then, use the semiclassical LB method, and set the fugacity z in
small number z = 0.00001 which makes it in classical limit, the results are

shown in Fig. 5.20(b), and it can recover the classical cases Fig. 5.20(a).
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Up to now, we have shown that present semiclassical LB method in classi-
cal limit could recover the results of conventional LB method, moreover, the
present semiclassical LB method can be used to calculate lid driven cavity
filled with dilute quantum gas. The kinematic viscosity v of the fluid could
be obtained from the given Reynolds number and the relaxation time 7 is
calculated according to (2.20), rather than the classical one 7, = % + %. The
velocity vectors of dilute quantum gas of Re,, = 100 are shown in Fig. 5.21
for BE statistics and Fig. 5.21 for F'D statistics. Also the pressure contours
and streamlines are provided in different quantum statistics, Fig. 5.25, Fig.
5.22, Fig. 5.26 and Fig. 5.23.In Fig. 5.31, the velocity profiles of two different
statistics (BE and FD) with two different initialization fugacity z = 0.1 and
z = 0.2 are shown. The solid lines represent the results of BE statistics and
dashed lines represent the results of FD statistics. The differences between

these two different fugacities is tiny and hard to be delineated.
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Table 5.1: Comparisons of drag coefficient of different boundary conditions in

LB method
Re | IB method | BB method
20 | 2.383 3.626
40 | 1.819 1.433
100 | 1.428 2.621
200 | 1.339 3.108

Table 5.2: Comparisons of the average Nusselt number and the maximum
velocity components across the cavity center. The data in parentheses are the

locations of the maxima.

Ra Nu(we Umax (y) Umax (I)

103 Present | 1.1194 | 3.5519(0.8203) | 3.6091(0.1875)

( (0
129 x 129 | Ref [79] | 1.1168 | 3.6554(0.8125) | 3.6985(0.1797)
1

10* Present | 2.2015 | 15.7489(0.8203) | 19.4241(0.1328

129 x 129 | Ref [114] | 2.2442 | 16.1802(0.8265

(
( 19.6295(0.1193
(
(

(
(
(
(

) )
) )
10° Present | 4.5327 | 34.4184(0.8477) | 72.4886(0.0742)
) )

257 x 257 | Ref [114] | 4.5216 | 34.7399(0.8558) | 68.6396(0.0657
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Figure 5.7: Streamlines of uniform flow over a circular cylinder in a quantum

gas with z = 0.2 and Re,, = 20. (a) BE gas, (b) MB gas, (c) FD gas.



5.6. Three Dimensional Lid Driven Cavity Flow 87

(a)

_02M|| ] T N IS IS R S s N |
0.2 -0. 0 0.1 02 03 04 05 06 07 08 09
X

_0 ::‘F._JI!I\ L 1\i|]\\||\ll\|ll'\\ll T T |

-0.2 -0.1 0 01 02 03 04 05 06 07 08 09

X

(c)

_02MII ] I T EEEEE FEEEE e S o o s W |
0.2 -0.1 0 01 02 03 04 05 06 07 08 09
X

Figure 5.8: Streamlines of uniform flow over a circular cylinder in a quantum

gas with z = 0.2 and Re,, = 40. (a) BE gas, (b) MB gas, (c¢) FD gas.
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Figure 5.10: Different contours and streamlines of uniform flow over a circular
cylinder in a quantum gas in a classical limit with Re., = 200, steps=94200.
(a) X-direction velocity(u,), (b) y-direction velocity(u,), (c) fugacity(z), (d)
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Figure 5.11: Streamlines for different Rayleigh numbers of natural convection.

(a) Ra =103, (b) Ra = 10%, (¢) Ra = 10°.
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Figure 5.12: Isotherm lines for different Rayleigh numbers of natural convec-

tion. (a) Ra = 103, (b) Ra = 10%, (c) Ra = 10°.
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Figure 5.13: Streamlines of Rayleigh-Benard convection for different Rayleigh
numbers. (a) Ra = 4000, (b) Ra = 10000, (c¢) Ra = 50000.
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Figure 5.14: Isotherms of Rayleigh-Benard convection for different Rayleigh
numbers. (a) Ra = 4000, (b) Ra = 10000, (¢) Ra = 50000.
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Figure 5.15: Grid refinement of three dimensional lid driven simulation, Re =
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Figure 5.17: Streamlines of MB statistics in three mid-planes, Re = 100. (a)

xy planes, (b) zy planes, (¢) xz planes.

Figure 5.18: Streamlines of MB statistics in three mid-planes, Re = 400. (a)

xy planes, (b) yz planes, (¢) xz planes.

Figure 5.19: Streamlines of MB statistics in three mid-planes, Re = 1000. (a)

xy planes, (b) yz planes, (¢) xz planes.



5.6. Three Dimensional Lid Driven Cavity Flow

95

@ .04 -0.2
04 ———&—— Re=100xw
| —4&—— Re=100uy
—%—— Re=400xw
- Re=400uy
—<—— Re=1000xw /
B ——<—— Re=1000uy
02 /
| — . £
N | e ﬂ% 4
;‘ 0 1 i
0.2
L ;@ 5 4
0.4} % A 4-04
| S ,
T N BRI | | |
-0.4 -0.2 0 0.2 0.4
XU
(b) 04 -0.2 0 02 04
=i
| P B d
04 ——&—— Re=100xw, /é/ 1+ 04
| —=—— Re=100uy god i
—%—— Re=400xw
- Re=400uy % 1
—<—— Re=1000xw /]
F & Re=1000uy A 1
02f Vit o2

-

o 7&ﬁm\ . £ ‘ E
| E/—H—Efis%\ 4 ]

| é
\ ¢

0.2 /7

= /A i

o [ )y i
04} v Sk H-04

o N E

T ) T T
-0.4 -0.2 0 0.2 0.4

Figure 5.20: Centerlines velocity of classical and semiclassical model.

Classical, (b) semiclassical



96 Chapter 5. Numerical Results

(), BE100_0.2 (b) BE100_0.2 © BE100_0.2
\ N /777 IR TR T A AP T N o o e |
0'4_x\“‘l\x“‘R“‘E““f““i”‘lj/”lj”‘l/;“‘l/x s 044\:}7\’/ ’//ﬂi,fﬁm:@\mﬁ\ﬁ L 0.4,*:*\“’%’/;,/%%1:2‘: ﬁ
T T T T R T TR PR TR A UKL AN My My My T T RN Y
T T T T P TR T PO 14 N NN AN LR I, "y M, \ =3 W
°’2Iil‘1ii“11:"H:“Hil‘Hil“A:”H:”H:”Hi“ sat 1! // f/: 1:* SRS “M:MM:\‘ \\%’/}%“W
LT T T T T VR T P T gl NG M, Ny (D
LT R TR TR RO RO TR TR IR AR S My, ==
> °'“ug"N‘x"u“‘t"1‘ul“u”‘u“‘u”‘ul“” > 03““1;///’/%“‘\ 3 “ - " °'*£M B *{‘«:‘*:“K;///ad%m’
I T T T TR T ARV EAS IR h \\12, AL
T T T R T PR TR TR T = tyh e TN E h ==,
411 HH HH Hll ”11 “11 HH Hll HH Hll Mm '\:\\K«/ ﬂﬂ ¢i¢ &‘;j’ \”j,/ 7‘1, 17» i == ///////Q NN
ozpp iy, gty gty e e e A s 021h N I T e
Py gty gt T AN AT =,
T T TR TR TR R L T N A KA s SR

by 0 g, M Ty T O N NN R SR e Y
oall L 0y WO S e g ol NR R E T e
el O D ey i e o s s s == = = W

T N TR o 32 o B N T

Figure 5.21: Velocity vectors of BE statistics in three mid-planes, Re = 100,

z =0.2. (a) xy planes, (b) yz planes, (¢) xz planes.
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Figure 5.22: Pressure contours of BE statistics in three mid-planes, Re = 100,

z =0.2. (a) xy planes, (b) yz planes, (¢) xz planes.
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Figure 5.23: Streamlines patters of BE statistics in three mid-planes, Re =

100, z = 0.2. (a) xy planes, (b) yz planes, (c¢) xz planes.
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Figure 5.24: Velocity vectors of FD statistics in three mid-planes, Re = 100,

z =0.2. (a) xy planes, (b) yz planes, (¢) xz planes.
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Figure 5.25: Pressure contours of F'D statistics in three mid-planes, Re = 100,

z =0.2. (a) xy planes, (b) yz planes, (¢) xz planes.
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Figure 5.26: Streamlines patters of FD statistics in three mid-planes, Re =

100, z = 0.2. (a) xy planes, (b) yz planes, (c¢) xz planes.
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Figure 5.27: Streamlines patters of FD statistics in three mid-planes, Re =

400, z = 0.2. (a) xy planes, (b) yz planes, (c¢) xz planes.

Figure 5.28: Streamlines patters of BE statistics in three mid-planes, Re =

400, z = 0.2. (a) xy planes, (b) yz planes, (¢) xz planes.

Figure 5.29: Streamlines patters of FD statistics in three mid-planes, Re =

1000, z = 0.2. (a) xy planes, (b) yz planes, (c) xz planes.
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Figure 5.30: Streamlines patters of BE statistics in three mid-planes, Re =

1000, z = 0.2. (a) xy planes, (b) yz planes, (c) xz planes.
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6.1 Accomplishments

In this dissertation, I have derived a general LB method which is called semi-
classical LB method, and also made several contributions to the analysis of
this method. This method is suitable for analyzing dilute quantum gas hydro-
dynamics and beyond. The present work is different from Boltzmann equation
with quantum collision (Wigner distribution, density matrix), or quantum LB
method. It solves the Boltzmann equation with BGK approximation together
with BE distribution function and FD distribution function on phase space.

The following is a summary of my major accomplishments.

1. We proposed a new semiclassical LB method which is obtained by first
projecting the UUB-BGK equations onto the Hermite polynomial basis
as pioneered by Grad [5][18]. The equilibrium distribution of LB equa-
tions for simulating hydrodynamical flows is derived through expanding

BE (or FD) distribution function onto Hermite polynomial basis which is



102 Chapter 6. Conclusions and Future Work

done in a priori manner and is free of usual ad hoc parameter-matching.
Finite order expansions up to third order are considered and compared
with traditional classical LB-BGK methods. The present work can be
considered as an extension and generalization of the work of Shan and
He [17] for quantum gas and share equally many desirable properties
claimed by them, such as free of drawbacks in conventional higher-order
hydrodynamic formulations. The present work recovers the classical re-
sults in [17] when the classical limit is taken. The hydrodynamics beyond
the semiclassical Navier-Stokes equations can also be explored if higher
than third order expansion is taken. Lastly, the present development
of semiclassical LB method provides a unified framework for a parallel

treatment of gas systems of particles of arbitrary statistics.

2. The present construction provides quantum Navier-Stokes order solu-
tion and beyond. Several computational examples of both BE and FD
gases in one dimensional shock tube flow have been simulated and the
results exhibit similar flow characteristics of their corresponding clas-
sical cases. The effect of quantum statistics on the hydrodynamics is

clearly delineated.

3. Several computational examples of both BE and FD gases in two-dimensional
microchannel flows have been simulated over Kundsen numbers repre-
senting the Knudsen, slip and Poiseuille regions. The Knudsen minimum
phenomena is captured for all the gas statistics. Moreover, this semi-
classical LB method recovers the classical results when the classical limit

is taken.

4. In two dimensional flows over circular cylinder, the length of vortex after

the circular cylinder are different from different quantum statistics. The
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drag coefficient and lift coefficient are also provided, It is always shown

that the one in classical limit is within the other quantum statistics.

5. In three dimensional lid driven cavity flow, the velocity vectors and the
velocity of the centerlines of three slices are shown. The one in classical
limit matches with previous works, it validates the semiclassical LB

method in classical limit.

6.2 Future Work

Since the semiclassical LB methods have been derived, however, there exist

some works to do in the future.

1. The experimental results for quantum hydrodynamics are rare and we
only validate our results with the corresponding classical counterpart in
classical limit. There are some experiments dealing with quantum fluids
in microchannel flow. For example, in [106], first observation of the
Knudsen minimum in normal liquid 3He was reported. Also, Knudsen
minima has been found for phonons at different Knudsen numbers have
been reported, see [107|[108]. The present work should be compared
with quantum fluid experiments and also validated according to more

experiments.

2. A new coupled thermal LB method based on double distribution func-
tions with two relaxation times is derived for thermohydrodynamic Navier-
Stokes equations in Appendix 2. The method is obtained by first pro-
jecting the governing two relaxation kinetic model equations onto the
Hermite polynomial basis as pioneered by [79] and [16]. And the cou-

pled thermal LB method should be possibly used for developing double
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distribution function semiclassical LB method.

. The present work is developed based on expanding the distribution func-

tion (including equilibrium distribution function f¢?) onto Hermite poly-
nomials. Although this strategy for building LB method attracts lots
of attentions in recent years, there are still some criticisms concerning
entropy and Galilean invariance on these procedures [115][116]. One
of the disadvantages of expanding the equilibrium distribution function
onto Hermite polynomials is that the roots of Hermite polynomials are
irrational, the corresponding discrete velocities can not be fitted into a
regular space filling lattice. Such that, the resulting off-lattice models
make the exact space discretization of the advection step which is the
major advantage of the LB methods broken. Another drawback is that
the solution of projecting the equilibrium distribution function in a fi-
nite dimensional Hermite basis will lose the positivity of the distribution
function in the truncation of Hermite polynomial expansions. One of the
methods for solving these problems mentioned above is through the en-
tropic formulation [117][118] which evaluates the Boltzmann H function
at the nodes of the given quadrature instead of equilibrium distribution
function. And in recent years, this idea is extended to derive a gener-
alized Maxwell distribution function for LB method [119], in that work,
all the previously introduced equilibria for LB are found as special cases
of the generalized Maxwellian. Moreover, in [120] taking advantage of
the closed-form generalized Maxwell distribution function and splitting
the relaxation to the equilibrium in two steps, they proposed an entropic
quasiequilibrium kinetic model for the simulation of low Mach number

flows. The future development of semiclassical LB method may follow
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the new trend of LB method.






APPENDIX A

Nomenclature

number density

density, Kg/m?

viscosity, or chemical potential
lattice velocity

speed of sound

dimension of system

lattice streaming vector in i direction
kinetic energy

external force

distribution function

acceleration due to gravity

height, m

pressure

Prandt]l number

heat flux vector

position vector

Rayleigh number

maximum velocity at the inlet

top lid velocity
fluid velocity, ms™!

X, v and z components of flow velocity
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V discrete velocity space
IL;; momentum stress tensor
m mass, kg
t time, s
T temperature, K
O lattice spacing, m
0y time step, s
Subscripts
1,7,k Cartesian coordinate system Greek symbols
T,Y, 2 Cartesian coordinate system Greek symbols
a velocity component
Superscripts
eq equilibrium distribution function
(0) equilibrium distribution function after discretizing velocity space
N order of the discretized equilibrium distribution function
Q semiclassical distribution function
C classical distribution function
Abbreviations
LB Lattice Boltzmann
WKB Wentzel-Kramers-Brillouin
UuUB Uehling-Uhlenbeck-Boltzmann
BGK Bhatnagar-Gross-Krook
FD Fermi-Dirac

BE Bose-Einstein
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MB Maxwell-Boltzmann

DdQq d Dimension, q velocity






APPENDIX B
Chapman-Enskog Analysis of

semiclassical LB method

B.1 Chapman-Enskog Analysis of Single Relax-
ation Time semiclassical LB method

In this section, the generic evolution equation of single relaxation time semi-
classical LB method is inspected by means of a Chapman-Enskog analysis.
In LB method, the choice of lattice types is very important and it affects the
accuracy and stability of LB simulation. The lattice must verify some sym-
metry conditions to yield the desired asymptotic PDE. It requires appropriate
lattice velocities ¢, and weights w, in developing LB method such that the

following relations are verified:
(a) Z w, =1
(b) Z WeCq; = 0
() Z WaCaiCaj = cié,-j
(d) Z WaCqiCajCak = 0

(€) )  WaCaiCajCancar = €3(0ij0k + 6ixdi; + Gudkj) (B.1)

a
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Now, the LB-BGK equation (3.4) and semiclassical equilibria (3.38) up to

third order are used and listed below.

fa(w + Ca5t7t+ 5t) - fa(w’t) = _(JCG'%JCG’(O)) (B2)
A9 = {1+ Gt Sl G — a4 (P22 )¢z py)y
93/2(2)
C_ . ug g5/2(2) N 2 _
+ [(w-¢)? =3 +3(Tg3/2(2> D¢, —D—=2)} (B.3)

First, computing all the following summations by the semiclassical equi-

libria with the aids of (B.1) as

> F=n (B.4)
Z Cai [0 = mu; (B.5)
© _ 3
Z CazCajf n[ g 5@] s Uzu]] (B6)
Z CazCa] Cakf(O) = nTg [5ljuk 2 5k]uz + 514:1“]] (B7)
Introducing the following expansions
<" 0 1, 242
fa(@ + Calyy t + 01) :ZE Oh+Ca - Vfa fo4efi+efi+... (BS8)
n=0
ty =te (B.9)
ty = te? (B.10)
(iaj7 k)l - (Z.aja ]{7)6 (Bll)
@t = 8@t1 + 528,52 (B12)

The above expressions of the derivatives are substituted into (B.2), and
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terms involving different orders of € are separated as:

0= 15— 1) (B.13)
002 + i SO = = 1! (B.11)
01+ ()0 o+ Gl f) =~ f2 (B.15)

After summation with respect to a, the three different order mass conser-

vation equations are recovered below:
1 0 (0)
=D - f"=0 (B.16)
1
On Y f+05 ) fy=—2> fs  (BIT)
2r —1

0.3 0+ (0L Y A+ 0, Y i) = - S (B18)

After multiplying with m¢,; and summing with respect to a, the three

different order momentum conservation equations are recovered below:
/ 0 _ (0
Nl — =0 B.19
. Z mlfg — ] (B.19)
1
ah mea?cm = aj1 mecgcaicaj - _; Z mf;Cai (BQO)

) Yl + 05 i)

Oy Y mfCai + (
1 2
=== f¥a (B.21)
T a
The local number density n and the local velocity w are
n= Z fa = Z féO)

w="3"fit= 30k
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From zeroth-order mass and momentum equations (B.16) and (B.19), we

get
d fhi=0 (B.22)

> fita=0,(1>1) (B.23)

For deriving the Navier-Stokes equation, we add the first and second order

momentum equations (B.20) and (B.21).

where the momentum flux density tensor Pz-jl) is given by

21 —1
Pj =Py +el——)P; (B.25)
Pig' = Z CaiCajfg = D5 A0l (B.26)
i - aiSajJa g% i Uj i1 Ui

The Pi(jl) is calculated as:

Pé = mz Caij'(_Tatl féo) - TCakﬁklfS) = —Tm0y,

9s »
[Tg—Znéij + puiug] — Tng—z[dijE)kl (nug) + 85, (nuy) + 9, (nu;)] = —rmd,,

gs 5
[Tg—inéij + puju;| — Tng—j[(Sij (ukOg, 1 + N0k, ur) + (u;0;,n + no; uj) + (u;05,n + noj u;)]
2 2

(B.28)
Then, we use (B.17) and (B.20) to get
gs gs
Oy, (NT—=2) = =T 20k, (nuy) (B.29)
9s gs

5

5

Oy (puiuj) = =T —2[u;0,n + w;0,n| — Ok, (wsujuy)
gs

2
gs
gs

2
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After putting (B.29) and (B.30) into (B.28), we can get (B.27). Finally,
put (B.25),(B.26) and (B.27) into (B.24), we can get the final form of the

momentum equation as
O(pu;) + 0;(pusu;) = —0;p + v0;[pdyu; + pdjus) (B.31)
In symbolic notation the equation is
Oi(pu) + V - (puu) = —Vp + vV - [pVu + p(Vu)?’] (B.32)

The Navier-Stokes equation is recovered from this equation in the incom-

pressible limit(9;u; = 0) or (V-u = 0)

1
Opu; + ujOyu; = —=0ip + vV, (B.33)
p
1, g3
v (r - HT= (B.34)

3
2

In symbolic notation the equation is
1 2
du+u-Vu=—-Vp+rV-u (B.35)
p

Notice that V - (V)T = V(V - u)






APPENDIX C
Derivations of Double

Distribution Function LB method

In this chapter, we provides another possible way to solve the defects of single
relaxation time semiclassical LB method from the ideas of developing thermal
LB methods. Historically, the existing thermal LB methods can be classified
into three categories. The first category is the passive-scalar approach [121]
and the basic approach of this method is assuming that the viscous heat dis-
sipation and the compression work done by the pressure can be neglected. As
a consequence, the temperature can be simulated by a scalar density distri-
bution function. The other two categories include the multi-speed distribu-
tion function approach [122][123][124] and the double distribution functions
(DDF) approach [125][126][127]|79]. The multi-speed approach is achieved by
increasing the numbers of discrete velocities, then, the compressible Navier-
Stokes equations could be recovered by those increasing degrees of freedom.
Although the multi-speed approach can reach a thermal LB method, but it
suffers from severe numerical instability and a narrow range of temperature
variation. Moreover, the Prandtl number is usually fixed at constant. On the
other hand, the DDF approach utilizes two distribution functions, one is for
describing the velocity field, the other is for describing the internal energy
or total energy. The DDF approach can achieve a better numerical stability

than the multi-speed approach. We derive a thermal LB method which is
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based on DDF method and should be suitable for developing DDF semiclas-
sical LB method, in which both the Maxwell equilibrium velocity distribution
function and a total energy equilibrium distribution function are expanded
on tensor Hermite polynomials according to [79][16]. By choosing a proper
reference velocity, the coupling of lattice velocities and the local temperature
is avoided and the uncoupling process between velocity field and temperature
field as done in [79] is not necessary, thus, some of limitations mentioned such
as valid only to small temperature variation and transport coefficients are
independent of temperature can be overcome. We also apply the Chapman-
Enskog method to the present coupled thermal LB-BGK equations to obtain
the relations between the relaxation time and viscosity and thermal conduc-
tivity. Hydrodynamics based on moments up to third order expansions are
presented. Computational examples to illustrate the methods are given, and
the results are carefully studied with the published result [114]. This new
scheme provides a possible way for extending the current semiclassical LB

method to double distribution functions semiclassical LB method.

C.1 Two Relaxation Times Kinetic Model

In this section we briefly describe the coupled kinetic model equations based on
double distribution functions for the later development of thermal LB method.
We adopt the two relaxation times kinetic model equations proposed by Guo

et al [79]. The double distribution functions in terms of two relaxation times
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can be expressed as follow:

Of +€-Vaf +a-Vef =~ [f - ], (1)
Oh+&-Vah+a- Veh= —Tl[h— hed)
h
Z
+—lf = fI+ fEa, (C.2)
hf
where f© and h(® are given by
eq __ P (€ — ’l,l,)2
[ = WeXp[_W]’ (C.3)
eq __ p€2 (£ - U)Q
M = SarrmypE P "5gr | (C-4)

Here, f(&,x,t) and h(€, @, t) = €2f /2 are respectively the velocity distribution
function and total energy distribution function, £ is the particle velocity, x
the physical space position, a the acceleration due to external force and ¢ is
time. In (C.1) and (C.2), 77 and 7, are the relaxation times characterizing,
respectively, the momentum change and internal energy change during particle
collisions and Th_fl =7 47 Z =€ u—u?/2 where u(x,t) is the mean
velocity. In (C.3) and (C.4), p(z,t) is the density, T the local temperature,
R is the gas constant and D is the space dimension.

Once the distribution functions f and h are known, the macroscopic quan-
tities, e.g., the density p, mean velocity u, and energy density F are defined,

respectively, by

pla ) = / fde, (C.5)

pulz, 1) = / ¢fde. (C.6)
pE(x,t) = pe + u;) = /hd§ (C.7)

Through the Chapman-Enskog expansion of the two relaxation time kinetic

model equations, the thermal-hydrodynamic equations at the compressible
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Navier-Stokes level can be obtained:

o+ V - (pu) =0, (C.8)
Oi(pu) + V - (puu) = —Vp+ V - 7 + pa, (C.9)
H(pE)+V - [(p+pE)u] =V - (kVT) + V - (T -u)

+pu - a, (C.10)

where p = pRT is the pressure and 7 = p[[Vu + (Vu)] = (2/D)(V - u)I] is
the viscous stress tensor. The transport coefficients viscosity p and thermal

conductivity x are given, respectively, by

D+2)R
p="T, K= %Thp = CyThD (C.11)

where ¢, = (D + 2)R/2 is the specific heat ratio at constant pressure. Using
the momentum equation, we can also deduce the temperature equation from

the the total energy equation as
[0y (pT) +V - (puT) =V - (kVT) —pV -u) + 7 - Vu), (C.12)

where ¢, = DR/2 is the specific heat at constant volume. The Prandtl number
of the kinetic system is Pr = pc,/k = 7¢/7, and can be made arbitrary by
tuning the two relaxation times.

Introduce the characteristic (or reference) length L, time to and velocity
co = v RTy scales, where Tj is a reference temperature and with tg = L/co,

we have the dimensionless quantities as follows:

A_w AN _(g,u,(:) s t . R _(TfaTh)
$—Z,(€,U,C)— o at—(L 60)7(7_f77_h)_ L/Co )

s A0y (f,f(O)) N (h,h(O))

(f)f ) - pO/C(l)) ,(h,h ) - —pO/COD_z. (013)

Substituting the above dimensionless variables into the (C.1) and (C.2), it is

straightforward to find that the resulting governing kinetic equations become
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dimensionless and remain unchanged in form and the equilibrium distribution
functions, f© and A© are given by

A2

fea P —L—exp[-— C.14

f 26)P7 p| 29]7 (C.14)
R ) )

he = Lexp[—c—A], (C.15)
2(270)D/2 20

where = RT and 6 = RT/c2.

C.2 Expansion of the Equilibrium Distribution
Functions

In this section, following the approach in [16], we adopt the Grad’s moment ex-
pansion approach and seek solutions to (C.1) and (C.2) by expanding f(x, &, 1)

and h(x, €, t) in terms of Hermite polynomials,

f@60 =w(@) Y —a® @ HHe(E) (.16
h(z, €, ) Z b(” (z, yH™ (&) (C.17)

where w(€) = We‘éﬂ is the weighting function, a™, b(™ and H™ (&) are

(2m

rank-n tensors and the product on the right-hand side denotes full contraction.
Here and throughout the manuscript, the shorthand notations of [18] for fully
symmetric tensors have been adopted. The equilibrium distribution functions

f© and A are also similarly expanded. Here the expansion to finite N-th

order can be expressed as follow:

FON(x € 1) Z—l H™ (€) (C.18)
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hON (2 € 1) ﬁ;%b (z, )H™ (&) (C.19)

and.,
a(e,t) = [ 1O, &M (€)de (C:20)
by .t) = [ W&, OH (€)dg (c21)

C.3 Discretization of Velocity Space

It is essential to realize that as a partial sum of Hermite series with finite
terms, the truncated distribution functions can be completely and uniquely
determined by its values at a set of discrete abscissae. This is true because
with f (or h) truncated to order N, the integrand on the right-hand side of

(C.20) can be written as:

where p(x,&,t) (or g(x,&,t)) is a polynomial in & of a degree not greater
than 2N. Using the Gauss-Hermite quadrature, a™ (or b™ ) can be precisely

expressed as a weighted sum of the functional values of p(x, &, t) (or q(x, &, 1)):

a™ :/ p(x, &, 1) Zwap x,&,,t)

d
=Y s/ @), (C.23)

a=1
where w, and &,, a = 1,2, ....d, are, respectively, the weights and abscissae
of a Gauss-Hermite quadrature of a degree > 2/N. Similar expressions can be
given for b™ and A (z, &,,t). Hence, the set of discrete distribution function

values fV(&,) and h™¥(€,) now serve as a new set of fundamental variables for
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defining the fluid system in place of the conventional thermohydrodynamic
variables. For further details, see Shan et al. [16].

Notice that with the weighting function, we have:

©__P
10 = el ) (€20

the " will be taken off hereinafter, and all the velocities should be considered

as nondimensional variables. After a change of variable n = ¢/ V0, we have
a") = p/w(n)H("’(\/@n +u)dn (C.25)

and some of the first few tensor Hermite polynomials are given here, H% (z) =
1,7—[§1)(w) = :cz,’Hg)(zc) =2 ;. ~0;;, and Hg’,l(w) = X;TjTE — ;05 — Tj0; —
xkéij; etc.

The Hermite expansion coefficients agn) can be calculated as

0
<

al") = pu,
@ 4
2 _ plun + (6 1)3),

a(()?’) = pluuu + (6 — 1)dul. (C.26)

Similarly, the expansion coefficients b(()") can be obtained as:

béo) = pkL,
b = (p+ pE)u,

b\? = (2p + pE)uu + (p + pE(0 — 1))6.

After obtaining a” and b{", we can calculate f{” and A" from

E(C.16) and (C.17). For N = 3 in velocity distribution function and N = 2

in total energy distribution function, we get the explicit Hermite expansion of
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these two distribution functions at the discrete velocities &, as:

f£0)73:wap{1+€a.u+w_u_2+(9_1)w
2 2 2
fa

1€ - w)? — 3u? + 3(€, — 1)(€2 — D - 2)]} (C.27)

f&ﬂ=ww&au;+Emfu+§+§M@muf—ﬁ]

+oo (6= D)+ BO-1)(€ - D)}

= wapl€a - u+ (€, - u)” —u® + = (62 D) + Ef02 (C.28)

where D = §;; and f(2 is the expansion of f© to N = 2 order.

The governing equations for the coupled LB-BGK method are

atfa o éa ' V:cfa - _Tlf[fa BE féO)’g] + Fa? (029)

1
Otha + &0 Voha = =—[ha — hP?]
Th

p

+ = fo H - g (C.30)
Thf

where F}, and g, are given respectively, by

Fo=w,p& -a+ (& -a)& - -u)—a-u), (C.31)

da = wapEga -a+ fzzﬁa - a. (032)

come from the similar procedures expanding the forcing terms onto Hermite
polynomials.

At this stage, some notes are in order. First, we note that the above de-
velopment follows closely the works presented in [16]. The model presented
here is a coupled LB model, that is, the local temperature § = RT appears
in both equilibrium velocity distribution function féo) and equilibrium total
energy distribution function 2, as also mentioned in [16] and [47], by choos-

ing a proper reference velocity ¢y = /6y, the particle velocity & depends on
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a constant cy, but not local temperature 6 and the resultant discrete velocity
model is consistent with the original kinetic model where the particle velocity,
&, x and t are independent variables. Second, in contrast to [79], where all
the local temperatures appearing in their truncated equilibrium distribution
functions are replaced by a constant reference temperature 7j. Although the
zeroth- and first-order moments of their f(©2 and the zeroth order moment of
h(9:2 are the same as those of the EDFs with local temperature, however, the
higher-order moments required in the derivation of the Navier-Stokes equa-
tions are different when one replaces the local temperature 7" by Ty. Third,
with our formulation, the conventional LB scheme still can be used, and we

do not need to uncouple (C.27) and (C.28) as described in [79].

C.4 Time Discretization

The detailed descriptions of the time discretization of thermal LB method
based DDF can be found in |79]. First, by integrating the (C.29) along the

characteristic line can leads to

fo(x + codp, t + ;) — falx,t)

Ot
:/ [Q(z + cat  t+1)+ Fu(z + cot ,t +1)]dt (C.33)
0
where 6, is the time step and Qf = (féo)’3 — fa)/7f. Then, by applying

trapezoidal rule leads to the following equation.

fa(x + Caat;t + 57&) - fa(xa t)

0
[Qf(ZE =+ Caét, t + 5,5) + Fa(x + Ca(st,t + (St)]

b
+ %[Qf(:z:, t)+ Fu(x,t)] (C.34)
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Introducing the following distribution function:

0

Jao=ta— 5 Qs+ Fo) (C.35)
Then, one can get
fom fO? 4 2R,
fa - féO) 1+ or_ (036)
27y

- 0.

fo—fa= —l(Qf +F,). (C.37)

From above equations, one can get the governing equation of distribution

function with time discretization,

falT + caby, t +0;) — fo(z,t) = —wf[fa(x,t) — f(o)’?’(:p,t)]

+ 5, (I

)F, (C.38)

where wy = 7 The macroscopic density p and velocity w are determined by

o= T (C.39)

U = Z Colll + %pa. (C.40)

a

By the similar procedures, the governing equation of total energy distribution
function with time discretization is shown as following, together with the

determination of the total energy.

ha( + cab,t + 0¢) — ho(x,t)

= —wnlha(,t) = RO (@, 0)] + (1 = g,
0.
+ (wn —wp) Zafulo, t) = FO a,8) + S Fa) (C.41)
where wy, = % can be calculated from Prandtl number as Pr = 72:8:2 once

7t has been determined as described in Appendix. And also notice that

ha = ha —Q(Qﬁp) (C.42)



C.5. Chapman-Enskog Analysis of Double Distribution Functions
LB method 127

The determination of energy F can be found by

S
pE =Y h,+ Etpu -a. (C.43)

C.5 Chapman-Enskog Analysis of Double Dis-

tribution Functions LB method

In this section, detail derivations of the Chapman-Enskog analysis of double
distribution functions LB method are given. Following summations are com-
puted by the MB equilibrium distribution function (C.27) and total energy

distribution function (C.28).

¥ W= o (C.44)

> &t = pu, (C.45)
Z;ﬁaféo)’g = pd + puw, (C.46)
> €abalafV? = ploul, + puuu (C.47)
“ > &hD? = (p+ pE)u, (C.48)
Zzaiah?)’Q — p(1+ E)é + (2p + pE)uw, (C.49)

where ¢ is the Kronecker delta with two indices. Herein after, f(© is used

to represent f(©3 and h( is used to represent h(?2. Introduce the following
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expansions:

fo fidtefotefit ..
he = h) +ehl +&®h2 + ...
F,=¢F}, qu=ceq +*¢ +...

ty =te, to=te?, 1 =re

such that the time and space derivative are expressed as

at = 6(9t1 + 62(9752

V=€V1

The above expressions of the derivatives are substituted into (C.29) and

(C.30), and terms involving different orders of € are separated as:

e : £ =V (C.50)

i
51 : atlfa(,) + €aV1f(§0) = _T_fogl) + F(EI) (051)

f

1
e?: athcEO) + atlftg,l) + €aV1f(§1) = _T_ffj (C.52)
and
00 = hft]) (C.53)
L. g 0 (0) Lowy , Za oy o

IS azf1hzz + Eavlha - __ha + _fa + 4, (054)

Th Thf

1 Za,
e Y + 0u 0 + € ViR = ——h® + =11+ g (C.55)
h hf
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From the above equations, we have

1o = f(eq), ho — plea)

a a a

Y Fa=0, Y &F.=pa Zsasa = plau],

a

anzpu'a, Zﬁaga:(pEI_’_P)'a
Y 1P =o, Zfé”ﬁa =0,(1>1),
> nd =o, Zh(l 0,(1>1)

where P =) £.8qfa
From (C.51) and (C.54), we obtain the following first order thermal hy-

drodynamic equations:

Bp+ Vi - (pu) =0 (C.56)
O (pu) + V1 - (puu + pI) = pay (C.57)
O, (pE) + V1 - ((p+ pE)u) = pu - ay (C.58)

From (C.52) and (C.55), we get the following second order thermal hydro-

dynamic equations:

Opp =0 (C.59)
O, (pu) + V1 - PY =0 (C.60)
D, (pE) + V1 -qM =0 (C.61)

wherein, P =" Saﬁafa ,and gV =3 Sa . For calculating P", and

q"V we use (C.51) to get

?fP =0,PY + V.- Zsasasa Zsasa

(C.62)
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With the aids of (C.44) and notice that from (C.56), (C.57) and (C.58) we

have
Oy, (puu) = =V, (pu) — Vi (puuu) + pau (C.63)
O,p=—-Vi(pu) — %le ‘u (C.64)
such that,
PY =p(S, — %(V1 -u)I) (C.65)

And, use (C.54), we can get
1

1
g = POy 1 5, q© (C.66)
Th Thf

+ Vl : Z Saéah(go) + va " ZgaQ;

= Oy [(p+ pE)u] + Vi[p(1 + E)d + (2p + pE)uu]

_ %fp(l)u —[(p+ pE)a + p(ua)u] = [0, (pu)

+ Vi(pd + pun)| + {0 (pEu) + Vi[pES + (p + pE)uu|}

+ :—fpS(”u — [(p+ pE)a + p(u - ar)u]
hf

= pa; + p(u - a;)u + Epa + puViu + pVE + EVip

+ —LpSVu—[(p+ pE)a+ plu - ar)u]
hf

=p(uVu+ VE) + :—fpS(l)u = pc, VO + pSW
hf

+ lpS(l)u =pc, VO + E10,5’(1)u
Thf Th

Then, we can get ¢/V. In deriving above equation we need the following
equations derived from (C.56), (C.57) and (C.58)
O (pEu) = =Vi(p + pE)uu] + pu(u - a1)
+pEa, — EVp+pu-Vu (C.67)

2
Oy, (pu) = =Vy(puu) — 0V 1p + pa; — 5<V1 Su)pu (C.68)
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Finally, based on equations from (C.56) to (C.61), together with (C.65))
and (C.66), we obtain the following thermal-hydrodynamic equations at the

Navier-Stokes level:

Op+ V- (pu) =0, (C.69)
O(pu) + V - (puu) = —-Vp+ V -7 + pa, (C.70)

h(pE)+V - [(p+ pE)u] =V - (kVO)+V - (T -u) + pu - a, (C.71)

where 7 = p[[Vu + (Vu)?] — (2/D)(V - w)I] and thermal conductivity x =
%Thp = ¢,7p. Here, the viscosity is given by pu = 7¢p. Notice that the
discrete effect should be considered in LB model, that is, p = (77 — 1/2)p
and k = ¢, (7, — 1/2)p. Then, the Prandtl number will be Pr = c,u/k =

y(rp —1/2)/(mn, — 1/2), where v = ¢, /c, is the heat capacity ratio.
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