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中文摘要中文摘要中文摘要中文摘要 

    

 畫面插補演算法，是經由分析輸入的視訊，插補出額外的畫面，藉以提升視

訊的顯示頻率。而多畫面插補演算法是在兩張已有的畫面之間，插補出兩張以上

的新畫面。早期這項技術是在視訊壓縮中被討論，而近幾年來則是被應用在液晶

螢幕顯示器，將畫面顯示頻率提升到 120 赫茲或甚至更高，以解決液晶螢幕的動

態模糊問題。 

 此項技術大致可分四個階段，第一階段先找出相鄰兩張畫面的移動向量，第

二階段將移動向量作分析與優化，第三階段根據新的移動向量插補出額外的畫面，

第四階段則根據已補好的畫面修正補不好的區域。由於液晶螢幕畫面的解析度越

來越高，此項技術最主要的挑戰是運算量、頻寬以及記憶體的大量需求，因此成

本相較於其他視訊處理的晶片是更為昂貴的。 

 我們發展出一套多畫面插補演算法與硬體架構，能夠符合現行液晶螢幕顯示

系統的基準。演算法先以預測方形搜尋法，利用移動向量空間相依的特性，快速

的找出畫面大致的移動向量。接著我們以馬可夫隨機場域為基礎，對已有的移動

向量作修正，以極低的運算量找出畫面中真正的移動向量。將原本的移動向量轉

移到中間的畫面主要有三種方法，但每種都不是完美的。我們綜合各種方法的優

點，以方格穿越式移動補償來出補出中間的畫面。接著我們提出一個簡單有效的

方法，保證找出補不好的區域。對於這些區域，我們將他的方格切小，用雙向的

方式幫他們找到缺失最少的移動向量，再以疊加式方格移動補償將此區域畫面給

補得更好。 

硬體架構上，由於支援的向量範圍為負一百二十八到正一百二十八，因此我

們以特殊的記憶體存取安排，使記憶體使用量小非常多。為了去除各個步驟相依

性造成的排程空缺，我們提出乒乓雙向的特殊排程將空缺給填滿。對於差異計算

的部分，我們提出以可變性加法器構成的加法樹架構，僅僅只需要八十五個加法

器。整個系統的記憶體和和加法樹是被所有的分部給共用的。對於馬可夫隨機場
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域向量修正，我們發展出一套向量群聚的演算法與硬體架構，使相似向量的所需

的資料可以共用，並且利用已計算過的差異值讓運算量可以更進一步減少，省下

大量的頻寬和運算時間。多畫面插補的部分，我們提出反向插補排程技巧，使得

這部分的頻寬和運算能達到最小值，而硬體架構也可以和方格穿越式相量轉移來

共用。最後對於小區域的修正，我們以模擬進行平行度分析，使運算速度達到要

求且不需要額外的硬體。為了要充分利用頻寬，我們也用了特殊的記憶體排列，

使得資料可以任意的被存取。 

 實驗分析上，我們挑選三篇文獻作演算法比較，主觀比較是由受測者從不同

演算法插補的畫面中，挑選他認為最好的；客觀比較則是將原始視訊的顯示頻率

減半，用不同演算法插補出新的視訊，再和原始視訊比較信噪比。結果顯示我們

的演算法無論在主觀比較和客觀比較上，都優於其他三種論文的演算法。硬體實

作以 Verilog 硬體描述語言實現，用 UMC 90nm 製程元件庫以及 SYNOPSIS Design 

Compiler 來合成。所得之全部閘數為 274K，記憶體使用量為單端口 9984 bytes。

其運算頻率為 300MHz，能提供 24 赫茲轉 120 赫茲及 60 赫茲轉 120 赫茲的多畫面

插補，並支援到下一代液晶螢幕的 3840x2160 解析度。硬體使用效率部分，比較

其它文獻的硬體實作，我們的使用效率也是最佳的。 
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Abstract 
 

Frame rate up-conversion is a technique that up-converts the frame rate of video 

sequence by analyzing it and interpolating additional frames. Multi-rate frame rate 

up-conversion interpolates two or more frames between two existing frames. This 

technique is previously discussed for video compression and applied on LCD to convert 

frame rate up to 120Hz or even higher for eliminating the LCD motion blur problem in 

recent years 

 This technique roughly consist of four steps, the first step finds the motion vectors 

between two successive frames, the second step then analyzes and optimizes the motion 

vectors, the third step interpolates additional frames according to new motion vectors, 

and the forth step corrects the region with artifact on interpolated frames. As the 

resolution of LCD getting higher and higher, the main challenges of this technique are 

the huge demands of computation, bandwidth and on-chip SRAM. Therefore the cost of 

it is more expensive than other video processing DSPs. 

We develop a multi-rate frame rate up-conversion algorithm and architecture that is 

compatible with current LCD system’s standard. The algorithm first performs predictive 

square search motion estimation which utilizes the spatial coherence of motion vector 

field. This motion estimation algorithm can roughly find the true motion of existing 

frames quickly. Then we apply motion vector processing based on Marcov random field 

with a very low-cost minimization method to find the true motion of existing frames. 

There are three general methods for mapping motion vector to inter-frames but none of 

them is perfect. We employ the advantages of each method, proposed a block-based 

through motion compensation for interpolating inter-frames. And then we bring up a 

simple and precise technique that guarantees to detect the region with artifact. For the 

region, we perform sub-block division, find new motion vector with the least artifact in 

bilateral directions and interpolate it by overlapped block motion compensation for 

better visual quality. 

As regards to hardware architecture, since the supporting search range of motion 

vector is ±128x±128, we provide a special SRAM arrangement that reduces a huge 

amount of SRAM size. For eliminating the dependencies of each step causing pipeline 
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bubbles, we propose ping-pong two-way scheduling to fill-up the bubbles. For 

distortion computation, we devise sub-trees composed of 85 flexible adders. The 

sum-trees and SRAM are shared by all modules of architecture. For Marcov random 

field motion vector correction, we develop a motion vector grouping algorithm and 

architecture for data reuse of similar motion vectors. We also employ the computed 

distortion result to further reduce the computation, saving lots of cycles and bandwidth. 

For multi-frame interpolation, an inverse motion compensation scheduling is proposed 

that reaches the minimum requirement of computation and bandwidth. The architecture 

here is also shared by block-based through motion vector mapping. For post-processing 

on the sub-blocks, we analyze the parallelism by simulations and reach the demand of 

speed without addition area overhead. For exhaustively utilizing the bandwidth, we 

bring up special SRAM interleaves such that the data can be read or written in an easy 

manner. 

As regards the experiments, we select three literatures for algorithm comparison. 

The subjective evaluation is that the subjects choose the best one from all frames 

interpolated by different algorithms. The objective evaluation is that halves the frame 

rate of original video sequence, interpolates new sequences by different algorithms and 

generates PSNR to the original video sequence. The results indicate that our algorithm 

is better than other three algorithms on both subjective and objective evaluation. We use 

Verilog-HDL for hardware implementation and synthesize it by SYNOPSIS Design 

Compiler with UMC 90nm cell library. The implementation shows that the total number 

of gate count is 274K and on-chip SRAM is single-port 9984 byte. It works at 300MHz 

frequency, providing 24Hz to 120Hz and 60Hz to 120Hz multi-rate up-conversion and 

supporting 3840x2160 resolution for next LCD generation. For the hardware efficiency, 

our architecture is also the best comparing to other previous implementations. 
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Chapter 1 Introduction 
 

1.1 Introduction to Frame Rate Up-conversion 

 

Frame rate up-conversion (FRUC) is a technique that up-converts the frame rate of 

input video sequence. Like Figure 1.1, it is mainly composed of two parts: finding the 

motion vectors presenting objects’ movement and interpolating frames according to 

motion vectors between existing frames of input video sequence. The first part is called 

motion estimation (ME), and the second part is called motion compensation (MC). 

 

Figure 1.1 The concept of FRUC. 

 

FRUC is discussed previously for video compression. Imaging if we can drop a 

half of frames at the encoder side and reconstruct them at the decoder side by FRUC, 

then the size of compressed video can also decrease almost by a half [1]. In this case, 

the interpolated frames originally exist, so it is easy for us to know how do them being 

interpolated. 

 For recent years, it is applied on liquid crystal display (LCD) for converting frame 

rate of input video stream to 120Hz or even higher. The purpose is to reduce the 

hold-type motion blur on LCD which will be introduced in next section [2]. In this case 

the converted frame rate is higher than the original and the interpolated frames do not 

exist before, so it is hard to know whether the interpolated frames looks good or bad. 
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1.2 Motion Blur on LCD  

 

Figure 1.2 shows the general structure of LCD. The backlight walks through the first 

polarizer, causing the orientation of light to become uniform. Then it passes the liquid 

crystal layer controlled by the voltage between two slices of thin film transistor (TFT). 

The voltage value influences the rotating angle of light passing the liquid crystal layer. 

In the end the light walks through the color filter (red, green and blue) and second 

polarizer with different angles. Since the second polarizer will filter the light with 

different orientation to it, controlling the voltage means adjusting the intensity of each 

color displayed. 

 

Figure 1.2 General LCD structure. 

 

 There are two types of motion blur occur on LCD with different solutions [3]. The 

first type of motion blur is caused by the slow response of liquid crystal. As in Figure 

1.3, the black solid line is the targeting brightness and the dotted line is the actually 

displayed brightness. The smooth variation of brightness looks blurred by human eyes. 

To overcome this problem, first set the voltage higher (or lower) than the targeting 

brightness, and after the brightness becomes close to the target, set the voltage to the 

ordinary value. By doing this, the slope of brightness will be sharper like red solid light 

in Figure 1.3, which reduce the smooth variation of brightness. 

 The second type is called hold-type motion blur. As shown in Figure 1.3, the 

maintenance of brightness is called the period of hold which is equal to the inverse of 

frame rate. In Figure 1.4, when human eyes track objects along their movement with 

velocity v, they integrate the intensity continuously, but the real intensity changes 
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discretely. This divergence makes the integrated signal of the object’s boundary on 

retina smoothly decrease (increase). The range of decreasing (increasing) is called blur 

width and can be directly expressed as 

 

 ���� ���	
����� � � ����� ��	�⁄  (1.1)

 

Another way for evaluating hold-type motion blur is based on the sampling and 

reconstruction theory of integrated signal on human’s retina [4]. In the case of idle 

display (without slow response), the blur width is equal to 

 

 ���� ���	
����� � 0.8 � � ����� ��	�⁄  (1.2)

 

Therefore, the blur width is inverse- proportional to the frame rate. Among the solutions 

of hold-type motion blur, FRUC is regarded as the best method since it can directly 

reduce the effect of motion blur without visual quality drop [3]. 

 

Figure 1.3 Hold-type display with slow response. 

 

Figure 1.4 Direct evaluation of blur width. 
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 The first real-time DSP appeared in ICCE1995 announced by Philips as a 

commercial product for motion blur reduction on LCD [5]. Figure 1.5 is its chip photo. 

In recent years, the FRUC topic is frequently discussed, but don’t have a generally 

accepted conclusion. There is also a lack of academic literature or announcement of 

FRUC DSP since the cost is so high that academic institution cannot burden. 

 

 

Figure 1.5 Chip photo of the first FRUC DSP. 

 

1.3 Design Motivation and Target 

 

As for hold-type motion blur reduction on LCD, we want to design a FRUC algorithm 

and architecture which fits with the current LCD system (Figure 1.6). The capability of 

the design has 24Hz to 120Hz and 60Hz to 120Hz multi-rate up-conversion, and 

supports 3840x2160 (Quad HD, 4Kx2K) resolution for next LCD generation. The 

computational cost and area cost must be low with the reasonable bandwidth 

consumption. 

 

 

Figure 1.6 Our design motivation and target. 
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 For the various types of videos, we choose many sequences for experiment 

including sport game lives and movies. Due to the deficiency of 4Kx2K sequences, we 

use 1920x1080 (Full HD, 1080p) sequences instead. Figure 1.7 shows some of the 

1080p sequences. 

 

Figure 1.7 1080p sequences for experiment, from top-left with raster order: 

ducks_take_off, pedestrian_area, Wimbledon open 2010, transformer2, 

vintagecar, titanic. 

 

1.4 Thesis Organization 

 

In this thesis, the detailed steps of up-conversion algorithm is introduced and analyzed 

in the first section of next chapter. In next section we introduce proposed FRUC 

algorithm based on Marcov random field with precise artifact detection. In each step, 

we will tell how to operate and the reasons of proposed algorithm. The third section we 

compare the proposed algorithm with three different FRUC methods and show the 

results of subjective and objective evaluation. The final section we give a short 

conclusion of the proposed algorithm design. Chapter 3 is about architecture of FRUC 

on LCD. The first section analyzes the specification of our target, and the second 

section shows the overview of our architecture. Section 3 to section 6 describes the 

problems encountered of each part and explains how we solve these problems by 

proposed architecture. Section 7 shows the implementation results of resource 

consumption and hardware specification. In the last chapter we give an overall 

conclusion of proposed design, and the possible future works. 
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Chapter 2 Marcov Random Field Based Algorithm 

with Precise Artifact Detection 
 

2.1 Introduction to Up-conversion Algorithm 

 

Figure 2.1 shows a general FRUC flow. First it gets the motion vector field (MVF) of 

existing frames from motion estimation or decoder. Then it operate on the MVF to let it 

be more reliable, called MV processing. The blocks may be divided into sub-blocks for 

presenting more detail motion and reducing block artifact (sub-block division). After 

getting new MVF, MV mapping procedure maps MVF of existing frames to 

inter-frames. Motion compensation interpolates inter-frames according mapped MVF, 

and may apply bilinear, filtering or overlap block motion compensation (OBMC) [6] for 

interpolation. After that, post-processing procedure employs initially interpolated 

inter-frames’ information to refine the artifact and make the inter-frames have better 

visual quality. 

 

 

Figure 2.1 General FRUC flow. 

 

2.1.1 Motion Estimation 

 

Unlike conventional motion estimation for encoder, the purpose of it in FRUC is finding 

true motion presenting objects’ movement [7], not just to reduce the residual energy of 

each block comparison. It is often a time and area consuming part of the design since 



 

7 

 

the number of required candidates of block matching is usually big. Recently researches 

suggest that decreasing the number of candidates is helpful to find true motion [7], [8], 

[9]. These algorithms often utilize the spatial and temporal coherence of MVF. At first it 

is hard to estimation the performance of each algorithm since no ground truth for 

comparison. By 2007, Microsoft research team provides a ground truth database 

generated by synthesis or capturing motion with photosensitive pigment [10]. 

 It is possible getting MVF from decoder without motion estimation process. Some 

of FRUC algorithms use this trick and focus on following operations [11], [12], [13]. 

We think there are two problems of this trick. The first is that we can’t not sure which 

ME algorithm is performed by encoder, and even the condition of intra-block. If the 

received MVF is untidy or the number of intra-blocks is too much, the true motion is 

hard to find by the following operations. The second is that in current LCD system, it is 

unable for DSP to get MVF information from decoder. By the reasons, we determine to 

perform ME, not getting MVF from decoder. 

 

2.1.2 MV Processing 

 

The purpose of this operation is to make MVF more reliable for presenting objects’ 

movement. Since the true motion has spatial and temporal coherence, some simple 

operations such as median filter [14] or weighted averaging have just acceptable effect. 

Dane, G. and Nguyen, T.Q. [15] provide a motion smooth method by global energy 

minimization with a matrix closed form solution. Demin Wang et al. [16] model the 

MVF as a 3D Marcov random field and minimize the energy by iterated condition mode. 

Many of the algorithms here are heuristic, without a theoretical principle. Some of 

algorithms are too complex for hardware implementation. 

 

2.1.3 Sub-block Division 

 

Many FRUC algorithms divide block into sub-blocks to reduce block artifact and get 

more detailed MVF after motion estimation [13], [17]. The problem is whether divide 

all blocks or only at sub-region. Divide all blocks will make sure all motion vectors are 

finer, but with the highest complexity. If only divide sub-region, the efficiency is an 
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important concern since only the region with artifact have to be divided. After division, 

there should be another process that determines the new motion vector of sub-blocks. 

The way of determination directly influences the motion compensation results. 

 

2.1.4 MV Mapping 

 

In general, there are three mapping methods and none is perfect. The first one is called 

tradition mapping, which performs ME on existing frame and copy the motion vectors 

to the corresponding blocks of inter-frames. The second one is called through mapping, 

performing ME on existing frames too but MC through exist MV’s direction. The third 

is called bilateral mapping, which performs ME on inter-frame with two reversely 

motion vectors [18], [19]. Figure 2.2 is the graphic illustration of the three methods. 

 

 

Figure 2.2 Three general mapping methods: tradition, through and bilateral. 

 

 The problem of tradition mapping is time domain mismatch. The corresponding 

blocks of inter-frames and existing frames may belong to different object since their 

timing is not the same. The motion vectors of these blocks are not totally equal so we 

can not directly copy. The through mapping does not have this problem, but the 

interpolated frames usually have hold and overlap because the motion vectors passing 

through them may not be aligned as shown in Figure 2.3. The hole and overlap require 

other technique to handle like in-painting [20], which is often so complex. Non-block 

interpolation is also a nightmare for hardware implementation. The bilateral mapping 

seems to be the best one without time domain, hold and overlap problem, but by many 

researches, it normally fails at flat region and need more special concerns [21]. For 

bilateral mapping, the number of ME times is also equal to the number of inter-frames, 

which is too costly for multi-rate up-conversion. 
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Figure 2.3 Hole and overlap of through mapping. 

 

2.1.5 Motion Compensation 

 

After getting the MVF of inter-frames, motion compensation interpolates the 

inter-frames according to MVF. Since the motion compensation is block-based, there 

are many ways for block artifact reduction like bilinear, filtering or OBMC. A zero 

motion preserving technique called graceful degradation [22] is devised for text 

protection in videos. Occlusion handling is proposed in [23] by applying adaptive 

weighted-interpolation for pixels only appear in one of the existing frames. These 

techniques often applied to whole frame with computation overhead, and may make 

inter-frames more blurred than directly interpolation. 

The hardware consideration here is seldom discussed since for a regular decoder, it 

only compensates one frame each time. For multi-rate up-conversion, up to four or more 

frames have to be generated so the bandwidth consumption is very huge (Ex. 120Hz 

Quad HD = 1.44GByte / sec). A well-designed architecture is very crucial for 

completely utilizing the bandwidth available. 

 

2.1.6 Post-processing 

 

After compensating all inter-frames, this step employs the interpolated frames’ 

information for finding new motion vectors and re-interpolating on particular region 

[17], [23]. There are various ways of this step and we conclude them into three parts: 

artifact region detection, motion vector refinement and artifact-reducing interpolation. 
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The first part is tough because there are no references of inter-frames for comparative 

artifact detection. The second and third part must be based on artifact reduction for 

better visual quality of re-interpolated frames. 

 

2.1.7 Summary 

 

In this section, the steps of FRUC are introduced. Motion estimation is a computation 

and area costly part, and its target is finding true motion of objects’ movement. Motion 

vector from decoder is not reliable and not the current LCD’s FRUC standard. There are 

many methods for MV processing, from simple to complex, either heuristic or 

theoretical. Dividing all block requires more computation overhead, and dividing 

sub-region must be careful of the efficiency. MV mapping has three general types, but 

none of them is perfect. Motion compensation is a bandwidth-consuming part for 

multi-rate up-conversion seldom discussed in hardware. Some technique may applied 

here for block artifact reduction or occlusion handling. Post-processing utilize the 

interpolated frames, and take care of region with artifact for better visual quality. 

 

2.2 Proposed Algorithm Based on Marcov Random Field 

with Precise Artifact Detection 

 

We describe the proposed algorithm in detail with reasons. The video size in this section 

is regarded as 1080p, not 4Kx2K. For motion estimation, we provide a true motion 

based search algorithm whose computational complexity is very low. The block size 

starts from 32x32, and the matching criterion is 8x8 MSEA for hardware consideration. 

We perform MV processing based on Markov random field modeling with a low cost 

but robust version of iterated conditional mode (ICM) minimization. We propose a MV 

mapping technique that determines inter-frames’ MVF by block-based through mapping. 

After motion compensation, we divide sub-blocks only on necessary region by precise 

artifact detection. In the end for those sub-blocks with artifact, we search new motion 

vectors for them and re-interpolate with occlusion consideration. The experiments show 

that the proposed algorithm is better than the others by both subjective and objective 

evaluation. 
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2.2.1 Predictive Square Search Motion Estimation 

 

This motion estimation algorithm is very similar to predictive diamond search, except 

we use square pattern (Figure 2.4) instead of diamond pattern. Figure 2.5 shows the 

graphic illustration of predictive square search algorithm. First we perform median 

filtering on three neighboring motion vectors and getting a predictor. Then we apply 

4-step square pattern on the predictor. If the minimum distortion appears at center or its 

value is smaller than the threshold, we think the predictor is good and proceed to apply 

2-step and 1-step square pattern for converge. Else we back to the origin and search 

motion vector like normal diamond with 8-step square pattern. If the minimum 

distortion is at the center of 8-step square pattern, then we apply 4-step, 2-step and 

1-step for converge. 

 

Figure 2.4 Square pattern with 9 candidates. 

 

 

Figure 2.5 Graphic illustration of predictive square search algorithm. 
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 In the following we show the pseudo code of proposed search algorithm. Here SP 

means square pattern and ε means minimum distortion of applied SP. MV means 

motion vector value as the center of SP and threshold here is equal to 1024 in our 

implementation. 

 

1. Set MV = median of three neighboring blocks’ motion vectors 

2. Apply 4-step SP on MV 

If ε is at center or ε < threshold 

Apply 2-step & 1-step SP for converge 

Else 

Set MV = origin, go to step 3 

3. Apply 8-step SP on MV 

If ε is not at center  

Set MV = ε’s position, repeat step 3 

Else 

Apply 4-step, 2-step & 1-step SP for converge 

 

The proposed algorithm is very similar to PMVFAST [24] which is frequently used 

for true motion estimation [25] exploiting the spatial coherence of MVF. We abandon 

temporal coherence since blocks of the same coordinate at different timing may not 

belong to the same object, so the temporal prediction is not certainly accurate. Another 

reason for proposing this algorithm is the ability of rejecting predictor and re-estimating 

from origin. The algorithm is also very cost efficient. Figure 2.6 shows the percentage 

of blocks’ converging type in the worst cases of each sequence. For the most complex 

sequence (vintagecar), there are near 60% blocks converge around predictor. 

 

Figure 2.6 Percentage of blocks’ converge type (the worst cases of each sequence). 
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 We set block size to be 32x32 in our design (for 1080p) for two reasons. Like 

overlapped block motion estimation (OBME [11]), the first reason is aperture problem 

since the bigger size for block-matching, the more reliable motion vector generated. The 

second is instead of merging smaller block for motion vector unity, dividing the blocks 

on necessary region spends less computation overhead [1]. 

 For matching criterion, we choose 8x8 MSEA [26] for block-matching. As shown 

in Figure 2.7, it divides 32x32 blocks into 16 8x8 sub-blocks, sums up each sub-block, 

then compute 16 absolute differences (Abs.) of each summed up sub-block pair. The 

8x8 MSEA is equal to sum of 16 Abs. values as 

 

 8�8  !"# � $ #%&.
'()�

 *� &�% + %�*,- &�� .��� (2.1)

 

 

Figure 2.7 Illustration of 8x8 MSEA. 

 

 8x8 MSEA can be regarded as the down-sample version of sum of absolute 

difference (SAD), without down-sampled motion vector value. The original purpose of 

this criterion is fast full search, and we found that to co-operate with square pattern it 

reduces lots of computation and bandwidth cost in hardware design. The generated 

MVF is almost the same if we use SAD as the matching criterion. 

 By experiments, we notice that there are 24Hz sequences whose maximum motion 

vector value reaches 128, so we determine the search range of motion estimation to be 

±128x±128 for hardware design. 
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2.2.2 Markov Random Field Motion Vector Correction 

 

In this step, we process in raster order to refine the new motion vectors for each block 

for three iterations. For a block, we select eight neighboring motion vectors and the 

motion vector of itself as nine new motion vector candidates (Figure 2.8). For these nine 

candidates, we compute the corresponding Marcov random field energy (MRF energy) 

 

  /0 �1��23�)4��. � 8�8  !"# 5 ���2
	 � $ 6 7�)4��. +  74��8�.6
'4��8�.

 (2.2) 

 

From nine these candidates, we select the smallest one as the new motion vector of this 

block. 

 

 1��  7 �    /0 �1��23�)4��.9:;<=>?.
@AB CDE.  (2.3)

 

 This process is called iterated conditional mode (ICM) minimization and the 

weight is equal to 48 in our design. Unlike the general ICM that selects all candidates in 

search range, we only choose nine candidates adjacent to the block. Figure 2.9 shows 

the visualization of MVF after ME and MV processing. The color of visualization 

presents the direction of motion vectors, and the intensity presents the magnitude of 

motion vectors. After ME, the MVF roughly forms the shape of objects in the frame 

such as two walking people and the trunk of trees but with some motion vector outliers. 

After iteration 1, those outliers are corrected and the MVF looks closer to objects’ 

movement. The MVF of iteration 2 and iteration 3 looks almost the same, but they do 

remove more outliers than previous iterations. 

 

 

Figure 2.8 Nine candidates of new motion vector. 
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Figure 2.9 Visualization of MVF after ME and MV processing. 

 

 Marcov random field (MRF) is a very theoretical modeling method based on 

Bayesian’s framework, applied to computer vision for many years [27] such as optical 

flow or true motion estimation [16], [28]. The global minimization is a NP-complete 

problem [29] so many fast algorithms for finding local minimum are proposed [30]. For 

a well-known method called belief propagation, the related hardware design requires 

633K gate count and 1.88M byte ob-chip SRAM, which is too expensive for us. Thus 

we choose the ICM for minimization. By researches, there is a very high probability for 

a block to find its true motion from nearby block’s motion vectors [31], thus choosing 

neighboring nine candidates is already enough. Another benefit of choosing neighboring 

nine candidates is preventing over-smoothing, and the complexity is also lower than 

selecting all candidates in search range. 
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2.2.3 Block-based Through Motion Compensation 

 

Though mapping has no timing problem, but with hole and overlap. Here we divide 

inter-frames into inter blocks (size is also equal to 32x32), and project the motion 

vectors to these inter blocks. Each projection of motion vectors may has overlap area 

with inter blocks as illustrated in Figure 2.10. In [23], it assigns inter block’s motion 

vector to be the weighted sum of motion vectors projected to it, and the weight is equal 

to overlap area. In this way, the MFV of inter-frames may be over-smoothing by 

weighted sum operation. For preventing over-smoothing, we accumulate the total 

overlap area of each motion vector projected to it and find the motion vector with the 

maximum overlap area. If the maximum overlap area is bigger than a half of block size 

(512 pixels), we set the motion vector of this inter block to be the motion vector with 

the maximum overlap area. If not, we set the motion vector of inter block to be the 

motion vector of co-located block on existing frames. After determining all inter-blocks’ 

motion vectors, we perform block-based motion compensation to interpolate 

inter-frames. By doing so, we prevent the timing mismatch of tradition mapping and 

still perform block-based motion compensation. 

 

 

Figure 2.10 Inter block’s overlap area of motion vectors’ projection. 
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 For multi-rate up-conversion of our target, we perform motion estimation twice to 

get forward and backward MVFs (green dotted arrows in). The first and the second 

inter-blocks’ motion vectors are mapped by backward MVF, the third and the forth 

inter-blocks’ motion vectors are mapped by forward MVF. For preventing blur whole 

inter-frame and lower the complexity, we perform uni-directional interpolation that only 

gets pixels from one of existing frames. Similarly, the first and the second inter-frames 

are interpolated by the pixels in frame n-1, the third and the forth inter-frames are 

interpolated by the pixels in frame n. 

 

 

Figure 2.11 ME and MC of multi-rate up-conversion. 

 

2.2.4 Sub-block Division with Precise Artifact Detection 

 

Typical, the sub-block division performs on existing frames [13], [17]. But since the 

artifact does not appears on existing frames, dividing blocks on existing frames may not 

directly reduce the block artifact. For this reason, we perform sub-block division on 

inter-frames where artifact really appears. With the analysis of the appearance of block 

artifact, we found that it always appears when neighboring blocks’ motion vectors are 

not continuous. So we simply pay attention to the blocks’ whose motion vector is not 

continuous with the others. In this way, it is guaranteed to locate the block artifact on 

inter-frames, so the detection method is simple and precise. 

 If only consider motion vector’s value, although it is precise, two neighboring 

blocks will be detect as they share the same motion vector discontinuity boundary. As 

shown in Figure 2.12, these blocks’ motion vectors are discontinuous to the other, but 
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only the yellow one should be divided into sub-blocks. For preventing this situation, we 

must determine which one of these two blocks should be detected. Here we apply a 

block matching criterion called bilateral MSEA (bi-MSEA) for the determination. In 

Figure 2.13, the two gray solid arrows present the inter-block’s motion vector and its 

opposite direction. Bilateral MSEA is 8x8 MSEA of the two blocks (red solid rectangles 

in Figure 2.13) pointed by these two motion vectors on existing frame. By and large, the 

bi-MSEA value indicates the reliability of inter-block’s motion vector, as well as how 

this inter-block being interpolated. Thus this criterion can help us to determine which 

one of two blocks should be detected. 

 

 

Figure 2.12 Two blocks sharing he same motion vector discontinuity boundary. 

 

 

Figure 2.13 Graphic illustration of bilateral MSEA. 

 

We devise an artifact detection condition that indicates whether this block has 

artifact. The condition is satisfied if 

 F 7G�4��. +  7GHI4��8�.F J 2   *�  F 7��4��. +  7�HI4��8�.F J 2 (2.4) 

and 

 %� +  !"#�4��. J %� +  !"#HI4��8�. (2.5)
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where equation(2.4) stands for block artifact detection (4-neighbor) and equation(2.5) 

stands for determining one of the two blocks. Figure 2.14 show different detecting 

results (yellow and blue region). If only consider equation(2.4), many non-essential 

blocks are detected. With the help of equation(2.5), those non-essential blocks are 

removed from detection. 

 

 

Figure 2.14 Detected 32x32 blocks by different conditions. 
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 Combining artifact detection and sub-block division, we regard all blocks of 

inter-frames as 16x16 sub-blocks and check all the artifact detection conditions of its 

four neighbors. Among these four neighbors, only two of them are able to be satisfied 

since the other two (gray rectangles in Figure 2.15) lie in the same 32x32 block of the 

sub-block with the same motion vector value. If at least one of the conditions is satisfied, 

we label this sub-block (dark blue rectangle in Figure 2.15) for post-processing and 

assign an initial motion vector (dark blue arrow in Figure 2.15) to it. If the bi-MSEA 

value of this labeled sub-block is smaller than 512, we set the initial motion vector equal 

to the original motion vector of it, else the initial motion vector equal to the weighted 

sum of neighboring motion vectors whose condition is satisfied (pink arrow in Figure 

2.15). Since the post-processing only operate on labeled sub-blocks, we do not actually 

divide all blocks into sub-blocks. 

 

 

Figure 2.15 Sub-block division with precise artifact detection. 

 

The purpose of initial motion vector assignment is to give labeled sub-block a 

predictor for searching new motion vector. With the predictor, we don’t have to 

re-estimate the new motion vector in large search window. Since true motion often 

comes from nearby block, the predictor is equal to the weighted sum of neighboring 

motion vectors if the bi-MSEA value of labeled sub-block is bigger than them. Figure 

2.16 shows the effect of initial motion vector assignment. The result of sub-block 

division with artifact detection is shown in Figure 2.17. It is apparent that the most of 

labeled sub-blocks lie on moving objects’ boundary since there is motion vector 

discontinuity. The non-labeled region is guaranteed to have no artifact as in the figure. 
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Figure 2.16 The effect of initial motion vector assignment. 

 

Figure 2.17 Labeled 16x16 sub-blocks on inter-frame. 

 

Table 2.1 Total # of labeled sub-blocks in the worst cases of each sequence. 

sequences total # of sub-blocks percentage 

pedestrian_area 2787 8.54% 

Titanic-2 1820 5.58% 

Vintagecar 3074 9.42% 

ducks_take_off 1340 4.11% 

park_joy 2474 7.58% 

Tractor 1969 6.03% 

transformer 7-3 3947 12.09% 
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We count the number of labeled sub-blocks and list the results of the worst cases in 

Table 2.1. For the most complex sequence (transformer 7-3), there are only about 12% 

sub-blocks with block artifact labeled for the following post-processing. 

 

2.2.5 Sub-block Refinement with Bilateral Motion Vector Search and 

Overlapped Block Motion Compensation 

 

The last step is post-processing which consist of three parts: artifact region detection, 

motion vector refinement and artifact-reducing interpolation. Since we divide the 

sub-blocks only on artifact region, we don’t have to perform artifact region detection in 

this step. 

For motion vector refinement, we want to find the motion vector with the least 

block artifact. Similar to [23], we employ side match technique [32] as our matching 

criterion for motion vector refinement. For a labeled sub-block, around its initial motion 

vector and the opposite direction we open two search windows with range ±8x±8 as in 

Figure 2.18. The search window of opposite direction stands for occlusion handling. 

There are outside pixels around labeled sub-block’s boundary (dark blue hollow 

rectangles in Figure 2.19) on inter-frames. Go along with the motion vector in search 

windows, there are inside pixels around corresponding sub-block’s boundary (dark 

green hollow rectangles in Figure 2.19) on existing frames. The boundary error is 

defined as the sum of absolute different of each outside and inside pixel pairs as shown 

in right graph of Figure 2.19. Among all motion vectors in search windows, we choose 

the one with the least BE. as the new motion vector of labeled sub-block. After finding 

new motion vector of labeled sub-block, we temporarily interpolate the inside boundary 

pixels of this sub-block for next labeled sub-block’s boundary error computing. 

 

Figure 2.18 Search window for motion vector refinement. 
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Figure 2.19 Boundary error computation. 

 

 After finding new motion vectors of all the labeled sub-blocks, we perform OBMC 

on these sub-blocks like [11], [19]. First we get five motion vectors from the original, 

up, right, down, left neighboring sub-blocks (Figure 2.20). Then we apply each motion 

vector to this sub-block to get pixels from existing frames, multiply them by the 

weighting map show in Figure 2.21. The original motion vector is applied to whole 

sub-block with diamond-shape weighting map. The up neighboring motion vector is 

applied to top-half of the sub-block with descending weighting map and other 

neighboring motion vectors work as well. After multiplying all weighting map, we sum 

up those weighted pixels and divide them by 16 to generate normalized weighted sum 

pixels of interpolated sub-block. 

 

 

Figure 2.20 Five different motion vectors for OBMC. 
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Figure 2.21 Weighting map of each motion vector for OBMC. 

 

Since the weighting map of neighboring motion vectors are descending from 

outside and the origin weighting map is descending from inside, the pixel values are 

partially continuous to each side. This technique only blurs the boundary with motion 

vector discontinuity, thus further reduces the block artifact only on necessary region. 

Figure 2.22 shows the sub-region of inter-frames before and after post-processing. 

Many labeled sub-blocks are corrected with less block artifact by proposed motion 

vector refinement and OBMC technique. 
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Figure 2.22 Artifact reduction after post-processing. 



 

26 

 

2.3 Performance Evaluation 

 

We select three papers for performance evaluation. Yang’s algorithm [11] extracts MVF 

from JM reference software 15.1, performs OBME and OBMC; Percept’s algorithm [12] 

also extracts MVF from JM, and ignores motion vectors that are perceptually 

unapparent; GME’s algorithm [17] performs global motion estimation and sub-block 

division. 

 

2.3.1 Subjective Evaluation 

 

There are thirty eight subjects for subjective evaluation. Twenty two of them come from 

National Taiwan University electronic engineering students. Other sixteen come from 

internet. The experimental method is letting them watch twice up-converted 1080p 

sequences (Figure 2.23) of 4 algorithms frame by frame at the same time. In the end 

each subject votes the best one among four algorithms of all the sequences. Figure 2.24 

shows the final experiment results. At least 79% of subjects choose our algorithm as the 

best one among all sequences. 

 

 

Figure 2.23 Four 1080p 24Hz sequences for evaluation: 

pedestrian_area, transformer 7-4, Titanic-2, vintagecar. 
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Figure 2.24 Experiment results of subjective evaluation. 

 

2.3.2 Objective Evaluation 

 

By twice up-converting the odd frames of original sequences, we compute the PSNR 

values of interpolated frames to even frames of the original as ground truth (Figure 

2.25). The PSNR values frame by frame are showed in also with average and PSNR 

gain. Figure 2.26 shows the results of each sequence. It indicates that the PSNR values 

of our algorithm are the best in the most of frames. The averaging value is also the best 

with 0.63 to 5.47 PSNR gain. 

 

 

Figure 2.25 PSNR comparison for objective evaluation. 
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Yang Percept. GME ours 

avg. 26.41 25.72 27.07 28.39 

PSNR gain 1.97 2.67 1.32 0.00 

 

 

 
Yang Percept. GME ours 

avg. 25.79 26.94 25.82 27.57 

PSNR gain 1.78 0.63 1.75 0.00 
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Yang Percept. GME ours 

avg. 23.80 22.17 24.87 26.78 

PSNR gain 2.98 4.62 1.91 0.00 

 

 

 
Yang Percept. GME ours 

avg. 23.57 21.02 21.44 26.50 

PSNR gain 2.93 5.47 5.06 0.00 

 

Figure 2.26 PSNR values of each sequence for objective evaluation. 
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2.4 Summary of Algorithm Design 

 

In this chapter, we introduce the steps of FRUC algorithm and describe the proposed 

algorithm in detail with reasons. 

For motion estimation, we propose a predictive square search based on true motion 

estimation. Experiment shows that at least 60% of blocks converge at predictor with 

only 25 distortion computation. The block size is equal to 32x32 and the matching 

criterion is 8x8 MSEA for complexity concern, and the search range is determined to be 

±128x±128. 

We use Marcov random field modeling for motion vector processing, which is also 

based on true motion estimation. Among the minimization method, we choose the 

simplest ICM with selected candidates. Research shows that using nine candidates is 

already enough with the benefit of preventing over smoothing and low computation 

cost. 

Although none of three general motion vector mapping methods is perfect, we 

perform a block-based through motion compensation which has no timing mismatch 

and interpolates inter-frames block by block. 

We introduce a precise detecting technique for locating the block artifact on 

inter-frames. With the help of bi-MSEA, we only label necessary sub-blocks for 

post-processing and assign them an initial motion vector. Experiment shows that there 

are at most 12% of sub-blocks have to be labeled. 

In post-processing, we adopt the boundary error criterion to find the new motion 

vector of labeled sub-block with the least block artifact. We open a search window in 

opposite direction for occlusion consideration. In the end the OBMC technique is 

applied to further reduce the block artifact. 

By the results of performance evaluation, the proposed algorithm is better than the 

other algorithms both in subjective and objective evaluation. 
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Chapter 3 Architecture Design of Multi-rate Frame 

Rate Up-conversion on LCD 
 

In this chapter, we first analyze the specification of our design target, including DRAM 

selection and compute the resource available. Since the proposed algorithm consists of 

variety of steps, the hardware and on-chip SRAM reusing becomes an important topic. 

In the algorithm, there are many dependencies between blocks causing data pre-fetching 

and pipeline bubble reduction to be tough. And since we interpolate multi-frames, how 

to efficiently utilize the available bandwidth is also a significant matter. After 

specification analysis, we give an overview of the architecture. The procedures of 

proposed FRUC algorithm are performed one by one, frame by frame. And then we 

explain proposed hardware architecture of each part for resolving the architecture 

design problems in detail. Later we show the cycles and bandwidth consumption by 

simulations, and the final hardware specification with efficiency comparison. In the end 

we give a summary of proposed architecture design. 

 

3.1 Specification Analysis 

 

3.1.1 Introduction 

 

Figure 3.1 is the general LCD system. Beside the modules for I/O and display, there are 

many DSPs for video processing connected by a system bus. The ARM CPU handles 

the AMBA protocol to let them share the DDR SRAM (DRAM). Since FRUC DSP 

consuming larger bandwidth than the others, it often has its own DRAM without sharing 

by the others for up-conversion. The path between FRUC and DRAM is showed in 

Figure 3.2 and we assume there is fifty cycle latency with uncertainty. The clock 

frequency is assumed 300M Hz and the I/O width of system bus is 16 bytes per cycle. 

Pixels in DRAM are arranged as four successive pixels per address in two banks, raster 

scan order (Figure 3.3), thus it is possible to get 16x1 or 8x2 pixels at a time. 
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Figure 3.1 General LCD system [33]. 

 

 

Figure 3.2 The path between FRUC and DRAM. 

 

 

Figure 3.3 Pixel arrangement in DRAM. 

 

3.1.2 DRAM Selection 

 

With the reference to NXP 5100 FRUC solution [34], it generates 1080p 120Hz video 

sequence with 2pcs 16bit x 512Mb DDR2-667 DRAM. Since our target is 4Kx2K 

120Hz video sequence which is four times of NXP 5100, we choose 4pcs 16bit x 1Gb 
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DDR3- 1333 (MT41J64M16JT-15E in [35]), each bank with 2pcs as our DRAM for 

FRUC whose data rate and storage are four times than NXP 5100. By the spot price of 

[36] we found that the price gap between DDR2 and DDR3 becomes smaller, so we 

think for next generation of LCD DDR3 will replace DDR2 as the DRAM on the 

system. 

 

3.1.3 Resource Available 

 

For the selected DDR3 DRAM, the declared maximum is equal to 1333M Hz x 4pcs x 

16bits / 8bits = 10666MB per second. But since there is a huge DRAM random access 

penalty, we assume 65% probability of request failure. The real bandwidth available is 

10666MB x (100% - 65%) = 3733.3 MB per second. For 24Hz to 120Hz up-conversion, 

there is 3733.3MB / 24fps = 155.6MB for all the FRUC operations, and for 60Hz to 

120Hz up-conversion, there is 3733.3Mb / 60fps = 62.2MB. The maximum cycles 

available for 24Hz to 120Hz is 300M Hz / 24 fps = 12.5M cycles, and for 60Hz to 

120Hz is 5.0M cycles. 

 

3.1.4 Summary 

 

By the above analysis, we found that the resource is critical. Bandwidth is the most 

important issue since FRUC performs motion estimation like encoder and motion 

compensation like decoder, which are the most consuming parts of them, not to mention 

multi-frame up-conversion. The available bandwidth only support reading or writing up 

to 13.0 frames for 24Hz and 5.2 frames for 60Hz. The cycles available are also tight if 

we do not handle data pre-fetching and pipeline bubble reduction problems well. The 

dependencies between blocks of each operation make this task to be harder. For the 

variety of each step in the algorithm, how to employ hardware re-use is important for 

decreasing area overhead. The on-chip SRAM arrangement is also significant for 

supporting ±128x±128 search range and shared by all of the modules. As for limited 

resource, all pixel comparisons operate at 1080p’s scale, such as 8x8 MSEA, MRF 

energy, bi-MSEA and boundary error. 
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3.2 Architecture Overview 

 

Figure 3.4 shows the overview of proposed architecture. The FRUC control is 

composed of controls of each procedure. For post-processing we fetch job queue 

beforehand to tighten the schedule, so its control consists of two parts for data 

requesting control and data computation control. The Write request module handles the 

task of writing pixels or motion vector information to DRAM. Read request is in charge 

of requesting data from DRAM, and Read receive delivers the received data to each 

module. For the uncertainty of bus latency, there is a Job queue for request pushing and 

popping. SRAM of out design is shared by all of the modules and Write SRAM unit 

provide address generators for writing pixels into SRAM with interleaves of different 

procedures. The pixels read from SRAM are mostly sent to Sum-trees and 

Accumulators for distortion computation. These two modules are the main computation 

unit with small area cost. Predictor control and Origin control stand for generating 

address to SRAM for ME control and MRF control. MV grouping unit computes the 

motion vector discontinuity for motion estimation and motion vector processing and 

IMC unit manages the block-based through motion compensation. 

 

Figure 3.4 The overview of proposed architecture. 
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 The flowchart is showed in Figure 3.5 and each procedure is done frame by frame. 

Down-sample cuts down the frame scale from 4Kx2K to 1080p for pixel comparison. 

8x8 sum computes the sum-up of 8x8 sub-blocks of 1080p frames every eight pixels for 

8x8 MSEA computing of re-estimation step in motion estimation. ME performs 

predictive square search motion estimation and MRF refines MVF for three iterations. 

MV mapping maps motion vectors to inter-blocks, and MC performs uni-directional 

motion compensation according to mapped MVF. Bi-MSEA computing computes the 

bi-MSEA value of all the sub-blocks that are possible to be labeled. MV search finds 

new motion vectors of labeled sub-blocks in two search windows then OBMC performs 

overlap block motion compensation of these sub-blocks. 

 

 

Figure 3.5 Flowchart of each procedure. 

 

3.3 Motion Estimation Architecture 

 

3.3.1 On-chip SRAM Issue 

 

The first challenge encountered is on-chip SRAM issue. For supporting ±128x±128 

search range, if scheme C data re-use is adopted, the SRAM size is (128 + 128 + 32)^2 

= 82944 byte. For fetching data to next block, the bandwidth consumption is 2MB x 

(128 + 128 + 32) / 32 = 18MB per motion estimation. The cycles for fetching are (128 + 

128 + 32) x 32 / 16 = 576 cycles per block. All of the resource depleted above is too 

much for the limited resource available. 

 By employing the characteristics of proposed motion estimation algorithm, we can 

greatly reduce the depleted resource mentioned above. For 4, 2 and 1-step convergence 
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in the algorithm, we prepare a set of SRAM call M1 with range ±8x±8 for saving all the 

possible required pixels (M1 in Figure 3.6). Although setting the range of M1 to be ±7x

±7 is already enough for motion estimation, we set the size to be ±8x±8 for sharing by 

other modules. For 8-step re-estimation from origin with 8x8 MSEA criterion, we can 

directly apply scheme C on 8x8 sum generated before with much less resource 

consumption (O1 in Figure 3.6). The bandwidth depleted here is reduced to (2304 x 

60% + 2304 x 2 x 40% + 36 x 4 x 2) x 2040(total # of blocks) = 7.2MB per motion 

estimation. 

 

 

Figure 3.6 SRAM usage for motion estimation. 

 

3.3.2 Ping-pong Two-way Scheduling 

 

There are dependencies between blocks for motion estimation. One block must waits 

until the motion vector of previous block is determined for applying median filter. If we 

directly implement the scheduling, there will be lots of pipeline bubbles as shown in 

Figure 3.7. For eliminating the dependencies, we append an additional SRAM pair of 

M2 and O2 like original M1 and O1. Two pairs operate according to the proposed 

ping-pong two-way scheduling. The ping-pong means one of the pair is computing 

while the other is pre-fetching data, as two players hit ping-pong ball in turns. The 

two-way means one of the pair is raster scan and the other is inverse raster scan. By 

doing so, the pipeline bubbles are eliminated with ping-pong data pre-fetching (Figure 

3.8). For the best balance between data fetching and MSEA computing, the cycles 

consumed for 4, 2 and 1-step convergence should be near 18 + 144 = 162 cycles which 

is explained in next sub-section. 
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Figure 3.7 Directly scheduling. (a) raster scan order. (b) pipeline bubbles. 

 

 

Figure 3.8 Ping-pong two-way scheduling. 

(a) two-way scan order. (b) ping-pong usage without pipeline bubbles. 

 

3.3.3 Flexible Adders 

 

The 8x8 sums of blocks on current frame are already generated after down-sampling 

step, so we have to generate 8x8 sums of nine candidates of square pattern for 8x8 

MSEA computing on reference frame. First we read one line of pixels in M1 (M2). As 

shown in Figure 3.9, this pixel line is composed of four 8x1 lines of 8x8 sub-blocks of 9 

candidates for 8x8 MSEA computing. As the result, we send this pixel line into 

sum-tress with flexible adders to generate 8x1 sums of 8x8 sub-blocks simultaneously. 

Figure 3.10 showed the different arrangements of flexible adders for 4, 2 and 1-step. 

Black adders (with four hollow black line at the top) generate four 8x1 sums for 3 
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candidates at left side. Green adders are for 3 candidates in the middle and blur adders 

are for 3 candidates at the right side. Figure 3.11 shows that different 8x1 sums belong 

to different 8x8 sub-blocks of 9 candidates. The number of adders required is 49 for 

sum-trees. 

 

Figure 3.9 One line of pixels in M1 consist of four 8x1 lines of 9 candidates. 

 

Figure 3.10 Sum-trees with flexible adders for generating 8x1 sum of 9 candidates. 
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Figure 3.11 8x1sums generated by sum-trees for 9 candidates. 

 

 After generating all the 8x1 sums of all the candidates, we use accumulators to 

sum-up 8x1 sums for 16 8x8 sums of each candidate in parallel. Since one candidate 

receive four 8x1 sums at a time, we needs 9x4 = 36 adders for accumulation (Figure 

3.12). The total bits of shift registers are 14bit x 16 x 9 = 2016 bits. After all of the 8x8 

sums are accumulated, we send them to a 16-to-1 SAD tree candidate by candidate for 

8x8 MSEA computing. The SAD tree is a part of sum-trees with 16 ABS units for 

outputting sum or absolute difference (Figure 3.13). After 9 cycles for sending all the 

8x8 sums and 4 cycle latency, all the 8x8 MSEA of 9 candidates are generated. For 

4-step square pattern, it needs 40 cycles to read all lines in M1 (M2). For 2 and 1-step it 

needs 36 and 34 cycles. Thus for 4, 2 and 1-step convergence, it takes (40 + 9 + 4) + (36 

+ 9 + 4) + (34 + 9 + 4) = 149 cycles, which are near the targeting cycles for data 

fetching balance. For re-estimation from origin, we directly send the existing 8x8 sums 

from O1 (O2) of 16 banks to SAD tree. The cycles required for 8-step is (5 + 4) or (3 + 

4) = 9 or 7 cycles since each 8-step needs to compute additional 5 or 3 candidates. So 

for the worst of sequences, it needs 149 x 60% + (149 + 128 / 8 x 9 + 149) x 40% = 266 

cycles per block. The sum-trees proposed here are also used for down-sample, 8x8 sum 

on whole frame, MRF energy, bi-MSEA and boundary error computing. 
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Figure 3.12 Accumulators for 8x8 sums generation. 

 

Figure 3.13 SAD tree with ABS unit. (a) SAD tree. (b) ABS unit. 

 

3.3.4 Summary 

 

In this section we propose a ping-pong two-way scheduling for eliminating the 

dependencies of blocks and pipeline bubbles. We only read the pixels needed for 4, 2, 

1-step convergence and 8x8 sum for 8-step, with a huge amount of bandwidth and 

SRAM size reduction. The sum-trees of flexible adders and accumulators only consume 

49 + 36 = 85 adders and balanced with data fetching. The number of cycles for 

computing a block is reduced from 576 to 266 cycles. The throughput of 4, 2, 1-step 

convergence is 149 cycles / 25 candidates ~= 6 cycles per candidate. With the same 

throughput by SAD criterion and 2D SAD trees, it needs (32x32x2) / 6 ~= 341 adders 

and more SRAM banks. The final synthesized SRAM size is 48 address x 128 bits x 3 

banks x 2 = 4608 bytes for M1 and M2, and 84 address x 16 bits x 16 banks x 2 = 5376 

bytes for O1 and O2. The SRAM size reduction is from 82944 bytes to 4608 + 5376 = 



 

41 

 

9984 bytes, and the bandwidth reduction is from 18MB to 7.2MB per motion estimation. 

By the way, sum-trees, accumulators and SRAM proposed in the section are all shared 

by other modules. 

 

3.4 Markov Random Field Correction Architecture 

 

3.4.1 Motion Vector Grouping Algorithm 

 

After motion estimation, the 8x8 MSEA value of block itself will be written out to 

DRAM for MRF energy computing. But there are still neighboring 8 candidates with 

unknown 8x8 MSEA value. The motion vectors of these 8 candidates may not be the 

same. If we fetch pixels candidates by candidates for 8x8 MSEA computing, it will 

consume 2MB x 8 = 16MB per iteration and 64 x 8 = 512 cycles per block. The 

resource depleted is also too much by this directly implementation. 

 By employing the characteristics of MVF generated by our motion estimation 

algorithm, neighboring motion vectors are similar with many pixels required are 

overlapped. As shown in Figure 3.14, if we can determine the center motion vector of a 

group, by fetching all pixels around this center motion vector into M1 (M2), all the 

motion vectors whose discontinuity with center motion vector is smaller or equal to 8 

(search range of M1 and M2) are able to get the pixels in M1 (M2). Thus we have to 

perform grouping algorithm to 8 candidates for bandwidth reduction. The group size 

must be bigger than 2 for bandwidth gain, so there are at most 2 groups. 

 

Figure 3.14 Overlapped pixels of different motion vectors in M1 or M2. 
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 As shows in Figure 3.15, we regard 8 candidates as 8 nodes with 28 edges 

presenting motion vector discontinuity of nodes it connect. The discontinuities 

generation consumes no computation overhead since they are a part of MRF energy. 

The edges with discontinuity smaller or equal to 8 are labeled as dark blue is the figure, 

and we count the total number of labeled edges connecting to the nodes. The node with 

maximum number is the center motion vector of group, and the nodes with labeled 

edges connecting to center motion vector are the members of this group (blue nodes in 

the figure). After generating group 1, we must remove the nodes and edge of this group 

and generate group 2. The nodes that are not grouped called non-group. 

 

 

Figure 3.15 Motion vector grouping algorithm. (a) 8 nodes with 28 edges. (b) result 

of group 1. (c) result of group 2. (d) non-group node. 
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3.4.2 Grouping Architecture 

 

Figure 3.16 show the proposed grouping architecture. We generate motion vector 

discontinuities one by one, and accumulate them into Total MV dis. registers for MRF 

energy computing. In the meanwhile, we judge whether the discontinuities are smaller 

or equal to 8, and label the corresponding edge registers. After the generation of all the 

discontinuities, we perform proposed grouping algorithm by Logic control, push the 

center and member motion vectors into three types of queue. The architecture is also 

used for median filter computing for motion estimation 

 

Figure 3.16 Proposed grouping architecture. 

 

3.4.3 MRF energy computing 

 

The discontinuity energy is already computed during grouping, so we only have to 

compute 8x8 MSEA value of each candidate. Table 3.1 shows the grouping results of 

MRF iteration 1. As we can see, there are many blocks with group 1 size 8 or size 7, and 

the total number of non-group candidates is at most 2338, 14% of total candidates. For 

MRF iteration 1, the 8x8 MSEA is computed by sum-trees and accumulators according 

to the three types of queue one by one. The scheduling is also ping-pong two-way like 

motion estimation, since there are dependencies between blocks. After getting 9 



 

44 

 

candidates’ 8x8 MSEA values, we write them out to DRAM for further re-use. Take 

transformer 7-3 in Table 3.1 as the worst case, the cycles for a block = (32 + 4) x (16320 

- 2338) + 64 x (2338) / 2040 = 320 cycles per block. And the bandwidth = 48 x 48 x (# 

of group 1 + # of group 2) + 32 x 32 x (# of non-group) = 4.8 MB + 2.4 MB = 7.2 MB 

for MRF iteration 1. 

Table 3.1 Grouping results of MRF iteration 1. 

 

  

As in Figure 2.9, the MVF changes a little after MRF iteration 2 and iteration 3. 

Thus for these two iteration, we load previous iteration’s 9 computed 8x8 MSEA results. 

If the candidates whose motion vector is equal to one of the 9 computed results, we can 

directly use this result without 8x8 MSEA computing. For the candidates whose motion 

vector is not equal to all the 9 computed results, we fetch the pixels needed for 8x8 

MSEA computing. By simulations, in these two iterations the worst case is Titanic-2. 

The cycles per block and bandwidth are 82 cycles and 1.1MB for iteration 2, 57 cycles 

and 0.3MB for iteration 3. 

 

3.4.4 Summary 

 

In this section, we propose a motion vector grouping algorithm and corresponding 

architecture also used for discontinuity energy generation and median filter. For 8x8 

MSEA computing, we reuse sum-trees and accumulators previously proposed for 

motion estimation. We also employ the computed results to further reduce the resource 

consumption. The cycle reduction is from 512 x 3 = 1536 to 320 + 82 + 57 = 450 cycles 

per block for 3 MRF iterations. The bandwidth reduction is from 16MB x 3 = 48MB to 

7.2 + 1.1 + 0.3 = 8.6MB for 3 MRF iterations. The SRAM and address generators for 

8x8 MSEA computing are also shared with motion estimation. 
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3.5 Motion Compensation Architecture 

 

3.5.1 Inverse Motion Compensation Scheduling 

 

For tradition motion compensation, it processes block by block on inter-frames, read the 

required pixels of the block and write out to DRAM with proper address. For 60Hz to 

120Hz up-conversion there is no problem in this way since it consumes the minimum 

requirement for motion compensation. But for 24Hz to 120Hz up-conversion, it needs to 

read pixels of four frames and write out fours inter-frames. The bandwidth = (3840 x 

2160 x 1.5) x (4 + 4) = 99.5MB, and the cycles = 99.5M / 16 = 6.5M cycles. The 

consumption is too large since there should be a way that exhaustively utilizes the pixels 

read and consumes the minimum requirement for multi-frame up-conversion. 

 For reaching the minimum requirement, we process block by block on middle 

existing frame, interpolate the inter-frames near to it (blue frames in Figure 3.17). First 

we read on block’s pixels of existing frame (red rectangle in Figure 3.17). Then for all 

the possible inter-blocks that may use these pixels, we derive the overlapped region 

along their motion vectors, and write out pixels in the overlapped region (Figure 3.18). 

By doing this, the resource consumed is the minimum requirement since we read only 

one frame and write out four frames. It is called inverse motion compensation since it 

operates from the view of existing frame, not from the view of inter-frames. 

 

Figure 3.17 Interpolated frames of inverse MC scheduling. 
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Figure 3.18 Illustration of overlapped region. 

 

The procedure of deriving the overlapped region is similar to block-based through 

motion vector mapping. The only difference is that for inverse motion compensation it 

derive overlapped region from inter-blocks to existing block, while block-based through 

motion vector mapping derive overlapped region from existing blocks to inter-block 

(Figure 3.19). Thus we propose inverse motion compensation architecture which is 

responsible for both motion vector mapping and inverse motion compensation. 

 

 

Figure 3.19 Overlapped region derivation. (a) for inverse MC. (b) for MV mapping. 

 

3.5.2 Inverse Motion Compensation unit 

 

Figure 3.20 shows the proposed architecture for block-based through motion vector 

mapping and inverse motion compensation. For motion vector mapping, the first part is 
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deriving overlapped region’s corner coordinates. Then we compute the width and length 

of overlapped region, multiply them to generate area of the region. At last we 

accumulate the area of each motion vector, select one with the biggest area as the 

inter-block’s motion vector. For inverse motion compensation, the corner coordinates 

are sent to SRAM address generator and SRAM rotate unit, generating 8x2 pixels per 

cycles in the overlapped region for motion compensation. The SRAM here are also used 

in ping-pong manner, and we process Y value first then process U and V value for 

interpolation. 

 

 

Figure 3.20 Proposed inverse MC unit. 

 

3.5.3 On-chip SRAM interleave for Motion Compensation 

 

For writing out 8x2 pixels per cycle, we need to random access 8x2 pixels arranged in 

SRAM of existing block at a time. We save the Y value of existing 64x64 blocks with 

additional 8 pixel columns at the right side of the block for overlapped region striding 

across the right boundary of the existing block (thus we save 72x64 pixels for Y value 

and 40x32 for U and V value). The odd lines of pixels are saved in M1 (M2) and the 

even lines of pixels are saved in O1 (O2). So we have to random access 8x1 pixels in 

M1 and O1 (M2 and O2) at a time. Figure 3.21 shows the SRAM interleaves. Different 

colors mean different banks, and the numbers present the corresponding addresses. 
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Figure 3.21 Pixel interleaves for random access. (a) interleave of M1 and M2. 

(b) interleave of O1 and O2. 

 

3.5.4 Summary 

 

For reaching the minimum requirement of multi-frame up-conversion, we propose an 

inverse motion compensation technique. The derivation of overlapped region is similar 

to block-based through motion vector mapping, thus we propose an architecture that is 

responsible for these two procedures. The bandwidth reduction is from 99.5MB to (72 x 

64 + 40 x 32 x 2 + 64 x 64 x 1.5 x 4) x 2040 = 64.8MB. The cycle reduction is from 

6.2M cycles to 64.8M/16 = 4.0M cycles. Both of them are very close to the minimum 

requirement. The SRAM is also shared, operating in ping-pong usage with pixel 

interleaves. 

 

3.6 Post-processing architecture 

 

Since bi-MSEA computing operates only on partial sub-blocks with motion vector 

discontinuity, and bilateral motion vector search and overlapped block motion 

compensation operates only on labeled sub-blocks, we create queues in DRAM for 

pushing and popping sub-blocks’ information for operating. The queue of bi-MSEA 

computing is pushed during inverse motion compensation since there are inter-blocks’ 

motion vectors at the moment. The queue of labeled sub-blocks is pushed right after the 

bi-MSEA computing. 
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3.6.1 Bi-MSEA computing 

 

The computation of bi-MSEA also shares the sum-trees and accumulators proposed for 

motion estimation. At the beginning we pop sub-block’s information from queue. And 

then we fetch pixels of two directions into M1 and M2 (Figure 3.22 (a)) in ping-pong 

manner. We generate 8x8 sums of M1 first and save them into block registers of current 

frame used for motion estimation. After that we generate 8x8 sums of M2 then the 8x8 

sums and block registers’ value (M1’s 8x8 sums) to SAD tree for bi-MSEA computing. 

For pipeline bubble reduction, we pre-pop next queue’s information for data 

pre-fetching of next sub-block (Figure 3.22 (b)). 

 

 

Figure 3.22 Bi-MSEA computing. (a) SRAM usage. (b) scheduling. 

 

3.6.2 Parallelism determination 

 

Since bilateral motion vector search performs like full search with lot of computation, 

we have to determine the parallelism of this procedure. After all of the above operations, 

the cycles left for labeled sub-blocks are show in Table 3.2 by simulations. In the worst 

case, there are 1064 cycles left for bilateral motion vector search and overlapped block 

motion compensation on one labeled sub-block. In the end we decide the throughput of 

bilateral search to be 16 absolute differences per cycle. And the search range changes 

from ±8x±8 to even point in ±8x±8. By this parallelism, the number of cycle consumed 

for bilateral search = ((8 + 8) / 2 + 1)^2 x (64 / 16) x 2 = 648 cycles per sub-block. 

Since the least cycles for overlapped block motion compensation are 32 x 32 x 1.5 x (3 

+ 1) / 16 = 384 cycles, 384 + 648 = 1032 cycles which is close to our target. By the way, 

we can reach the throughput by the existing SAD tree, without additional hardware cost. 
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Table 3.2 Cycles left for labeled sub-blocks. 

 

 

3.6.3 On-chip SRAM interleave for Bilateral Motion Vector Search 

 

We save boundary pixels in SRAM for boundary error computing. The horizontal pixel 

lines are saved in M1 (M2) and vertical pixel lines are saved in O1 (O2). Figure 3.23 

illustrate the specified pixel interleaves for boundary pixel windows of original motion 

vector direction (the opposite direction is in similar manner). By the interleaves, we can 

save 8x2 pixels into SRAM of different banks (red hollow rectangles in Figure 3.23) 

and access any line of boundary (yellow hollow rectangles in Figure 3.23) in a cycle. 

The data pre-fetching of SRAM is also in ping-pong manner. 

 

 

Figure 3.23 The pixel interleaves for boundary error computing. (a) horizontal lines 

in M1 and M2. (b) vertical lines in O1 and O2. 
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3.6.4 On-chip SRAM interleave for Overlapped Block Motion 

Compensation 

 

For this operation, we save pixels of center weighting map in M1 (M2) and of other four 

weighting map in O1 (O2). When performing compensation, we read 16x1 pixel lines 

(blue hollow rectangles in Figure 3.24) of weighting maps at a time; multiply them by 

corresponding weight, and fuse multiplied 16x1 pixels lines then write out. The 16x1 

weights of center, up and down map change by time, so we need multipliers for them. 

The 16x1 weights of left and right map are constant, so we just use constant multipliers 

for them. The data pre-fetching of SRAM is also in ping-pong manner. 

 

 

Figure 3.24 Illustration of OBMC. 

3.6.5 Summary 

 

For post-processing, we create queues in DRAM for pushing and popping sub-blocks’ 

information. By parallelism analysis, we can cope with at least 4069 sub-blocks and 

1015 sub-blocks for 24Hz to 120Hz and 60Hz to 120Hz up-conversion without 

additional hardware cost for computation. With the specified pixel interleaves in SRAM, 

we only read and write the required pixels for minimum amount of bandwidth 

consumption. The schedules are tight by SRAM ping-pong usage and next queue 

pre-popping. 
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3.7 Implementation Results  

 

3.7.1 Cycles and Bandwidth Consumption 

 

Figure 3.25 shows the simulation results of cycle consumption. All of the sequences’ 

consumptions are lower the resource available (since we apply parallelism analysis). For 

24Hz to 120Hz up-conversion, the cycles are depleted mainly by MC and MV search. 

For 60Hz to 120Hz up-conversion, the cycles are depleted mainly by MC and MRFx3. 

 

 

Figure 3.25 Total cycles. (a) 24Hz to 120Hz. (b) 60Hz to 120 Hz. 

 

Figure 3.26 shows the simulation results of bandwidth consumption. All of the 

sequences’ consumptions are lower the resource available except 60Hz to 120Hz 

up-conversion of transformer 7-3. It is acceptable since all the sequences for simulation 

are 24Hz with stronger motions than 60Hz, which take more resource for many 

operations. If the sequences are really 60Hz, it will take less bandwidth (and cycles) for 

60Hz to 120Hz up-conversion than our simulation results. Near a half of bandwidth is 

depleted by MC where OBMC consumes the second amount of bandwidth for 24Hz to 

120Hz and down-sample consumes the second amount for 60Hz to 120Hz 
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Figure 3.26 Total bandwidth. (a) 24Hz to 120Hz. (b) 60Hz to 120 Hz. 

 

3.7.2 Hardware Specification and Efficiency 

 

Table 3.3 shows the final implementation results. We use Verilog-HDL for hardware 

implementation, synthesize it by SYNOPSIS Design Compiler with UMC 90nm cell 

library. The total number of gate count is 274K, on-chip SRAM is single-port 9984 byte, 

working at 300MHz frequency on 128 bits bus. It provides 24Hz to 120Hz and 60Hz to 

120Hz multi-rate up-conversion with ±128x±128 search range and supports 3840x2160 

resolution for next LCD generation. The differences between proposed algorithm and 

architecture are two-way scan order and ±8x±8 on even points for motion vector 

refinement 

Table 3.3 Specification of implementation. 
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For hardware efficiency evaluation, we also compare to Percept. [12] and GME 

[17]. The specifications are listed in Table 3.4 and we normalize the gate count by 

regard all SRAM as single port with 3.3 gate count per bit. We provide four times of 

resolution and additional 24Hz to 120Hz up-conversion mode to other two 

implementations. The hardware efficiency comparison is shown in Figure 3.27. As the 

slope of our design is the smallest, the proposed architecture has the best hardware 

efficiency of all. 

 

Table 3.4 Normalized specifications of the references. 

 

 

 

Figure 3.27 Hardware efficiency comparison. 
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3.8 Summary of Architecture Design 

 

In this chapter, the system of LCD, specification of our design target, DRAM selection 

and resource available are introduced at first. By analysis, there are many issues for 

architecture design to be concerned. 

We propose a ping-pong two-way scheduling for motion estimation to eliminate 

the dependencies of blocks and pipeline bubbles. By only reading the pixels needed for 

4, 2, 1-step convergence and 8x8 sum for 8-step, we reduce a huge amount of 

bandwidth and SRAM size. The sum-trees of flexible adders and accumulators consume 

small amount of adders and shared by other modules. 

 For Marcov random field correction, a motion vector grouping algorithm is 

proposed for bandwidth and cycles reduction. The corresponding architecture is also 

used for discontinuity energy generation and median filter. For MRF iteration 1 and 

iteration 2, we employ the computed results to further reduce the resource consumption. 

The SRAM and computation unit are shared here with motion estimation. 

 Multi-frame motion compensation is seldom discussed in hardware. For reaching 

the minimum resource requirement, we propose an inverse motion compensation 

scheduling. The proposed architecture is also responsible for block-based through 

motion vector mapping. For writing 8x2 pixels at a time, we provide a pixel interleaves 

on SRAM. 

 We create queues in DRAM saving sub-blocks’ information for post-processing. 

By parallelism analysis, we can deal with the worst case of sub-blocks without 

additional hardware cost for computation. There are specified pixel interleaves of 

bilateral motion vector search and overlapped block motion compensation for minimum 

amount of bandwidth consumption. 

 The simulation results show that the cycles and bandwidth consumed are under the 

upper bound of resource available. The final implementation results indicate that our 

design only consumes 274K gate count and 10K byte single port SRAM and supports 

24Hz to 120Hz and 60Hz to 120Hz up-conversion for 4Kx2K resolution. Comparison to 

other design, the proposed architecture has the best hardware efficiency. 
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 Table 3.5 shows the overall resource saving and characteristics of proposed 

architecture. Lots of cycles and bandwidth are saved by our hardware design of each 

part. With the help of ping-pong two-way scheduling, all of the schedules are tight. 

Sum-trees and accumulators are shared by ME and MRF (also shared by down-sample, 

8x8 sum, bi-MSEA and boundary error). MC shares the architecture with MV mapping, 

and Post-processing consumes no additional area overhead by parallelism analysis. The 

SRAM is also shared by all of the modules, with different pixel arrangements for 

applications. 

 

Table 3.5 Overall resource saving and characteristics of the architecture. 
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Chapter 4 Conclusion and Future Work 
 

In this thesis, we introduce the motion blur problem on LCD, and the general steps of 

frame rate up-conversion technique. For our design motivation and target, we develop 

an algorithm and architecture implementation for 24Hz to 120Hz and 60Hz to 120Hz 

up-conversion with resolution 3840x2160. 

 For the FRUC algorithm design, we propose a true motion based predictive square 

search algorithm for motion estimation with 32x32 block size, 8x8 MSEA criterion and 

±128x±128 search range. The experiments show that there are at least 60% blocks 

converge at predictor, thus the algorithm is very low-cost. For motion vector processing, 

we apply Marcov random field modeling and minimize the energy by low-cost ICM. 

The low-cost ICM is true motion based, reducing energy computation from 65536 to 9 

and preventing over-smoothing. The general types of MV mapping are not perfect, so 

we use block-based through motion compensation better than the three general types. A 

precise artifact detection technique is provided with only 12% of sub-blocks labeled. In 

post-processing, bilateral search considers occlusion, boundary error criterion finds 

motion vectors with the least block artifact, and OBMC blur the necessary region with 

block artifact. 

 For the proposed architecture, ping-pong two-way scheduling eliminates the 

dependencies of blocks for data pre-fetching. The pipeline bubbles are therefore 

dissolved. The careful arrangement of SRAM reduces the size from 90K byte to 10K 

byte. The sum-trees with flexible adder and accumulators consume only 85 adders and 

shared by lot of modules. MV grouping for MRF correction reduces cycles from 1536 

to 459 cycles per block and bandwidth from 48MB to 8.6MB for three iterations. Its 

architecture is shared for MRF energy computing and median filter. The inverse-MC 

scheduling requires near minimum amount of resource, reduces cycles from 6.2M to 

4.0M cycles and bandwidth from 99.5MB to 64.8MB. The architecture is also shared by 

MV mapping. In post-processing, parallelism analysis is performed for minimum cost 

of bilateral search. There are specified pixel interleave for boundary error computing 

and OBMC. 

 By subjective evaluation, above 79% subjects vote proposed algorithm as the best 

choice. By objective evaluation, there is 0.63 to 5.47 PSNR gain to other algorithms. 
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Simulation results indicate that the proposed architecture consumes reasonable amount 

of cycles and bandwidth. The final implementation results show that our design only 

consumes 274K gate count and 10K byte single port SRAM. By supporting 24Hz to 

120Hz and 60Hz to 120Hz up-conversion for 4Kx2K resolution, our implementation 

has the best hardware efficiency comparing to previous works. 

 

 For the possible future works, we list in the following:  

� There may be a criterion for scene change detection, for example: threshold of 

MRF energy. The scene change detection is important since we don’t want to 

interpolate frames between two non- successive frames. 

� The block size can be smaller by repeating similar operation of proposed sub-block 

division on labeled sub-blocks. 

� Taking the perceptual criterion into account for motion vector refinement in 

post-processing may be a good way for enhancing the visual quality.  

� Among all the FRUC discussions, the FRUC algorithms are operating step by step. 

There is no modeling-based FRUC framework. If we can model the inter-frames 

well, then finding the motions, occlusion labels and pixels value of inter-frames 

such that the modeling energy is minimized is equal to interpolate the inter-frames. 

The modeling-based FRUC is more theoretical and can be pixel-based, and surely 

have more complexity. 
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