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Abstract

Frame rate up-conversion is a technique that upertsm the frame rate of video
sequence by analyzing it and interpolating addaioinames. Multi-rate frame rate
up-conversion interpolates two or more frames betwavo existing frames. This
technique is previously discussed for video congoesand applied on LCD to convert
frame rate up to 120Hz or even higher for elimimgtihe LCD motion blur problem in
recent years

This technique roughly consist of four steps,ftrst step finds the motion vectors
between two successive frames, the second stepttadyzes and optimizes the motion
vectors, the third step interpolates additionatea according to new motion vectors,
and the forth step corrects the region with artifan interpolated frames. As the
resolution of LCD getting higher and higher, theirmehallenges of this technique are
the huge demands of computation, bandwidth anchgn$RAM. Therefore the cost of
it is more expensive than other video processingPS

We develop a multi-rate frame rate up-conversigo@hm and architecture that is
compatible with current LCD system’s standard. @lgorithm first performs predictive
square search motion estimation which utilizesdpatial coherence of motion vector
field. This motion estimation algorithm can rougtigd the true motion of existing
frames quickly. Then we apply motion vector procegdased on Marcov random field
with a very low-cost minimization method to findettrue motion of existing frames.
There are three general methods for mapping metator to inter-frames but none of
them is perfect. We employ the advantages of eaethad, proposed a block-based
through motion compensation for interpolating ifftames. And then we bring up a
simple and precise technique that guarantees sxtdite region with artifact. For the
region, we perform sub-block division, find new motvector with the least artifact in
bilateral directions and interpolate it by overlaegpblock motion compensation for
better visual quality.

As regards to hardware architecture, since thetipg search range of motion

vector is +128x+128, we provide a special SRAM arrangement thaticesl a huge

amount of SRAM size. For eliminating the dependenaf each step causing pipeline

\Y



bubbles, we propose ping-pong two-way schedulingfiteup the bubbles. For
distortion computation, we devise sub-trees congbosk 85 flexible adders. The
sum-trees and SRAM are shared by all modules dfitacture. For Marcov random
field motion vector correction, we develop a motieector grouping algorithm and
architecture for data reuse of similar motion vextdVe also employ the computed
distortion result to further reduce the computat®aving lots of cycles and bandwidth.
For multi-frame interpolation, an inverse motionmgensation scheduling is proposed
that reaches the minimum requirement of computadiwh bandwidth. The architecture
here is also shared by block-based through motsmtov mapping. For post-processing
on the sub-blocks, we analyze the parallelism byutions and reach the demand of
speed without addition area overhead. For exhaalgtiutilizing the bandwidth, we
bring up special SRAM interleaves such that thea dan be read or written in an easy
manner.

As regards the experiments, we select three liuezatfor algorithm comparison.
The subjective evaluation is that the subjects shothe best one from all frames
interpolated by different algorithms. The objecteealuation is that halves the frame
rate of original video sequence, interpolates neguences by different algorithms and
generates PSNR to the original video sequence.rdddts indicate that our algorithm
is better than other three algorithms on both sativie and objective evaluation. We use
Verilog-HDL for hardware implementation and synilzesit by SYNOPSIS Design
Compiler with UMC 90nm cell library. The implemetitan shows that the total number
of gate count is 274K and on-chip SRAM is singlet @984 byte. It works at 300MHz
frequency, providing 24Hz to 120Hz and 60Hz to 12Gkulti-rate up-conversion and
supporting 3840x2160 resolution for nexiCD generation. For the hardware efficiency,

our architecture is also the best comparing torgtihevious implementations.
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Chapter 1 Introduction

1.1 Introduction to Frame Rate Up-conversion

Frame rate up-conversion (FRUC) is a technique tpatonverts the frame rate of
input video sequence. Like Figure 1.1, it is maiobymposed of two parts: finding the
motion vectors presenting objects’ movement andrpalating frames according to
motion vectors between existing frames of inpuewvidequence. The first part is called

motion estimation (ME), and the second part isecathotion compensation (MC).

motion Yector

LD

[]]

frame -1

frame +-0.5 (interpolated frame)

Figure 1.1 The concept of FRUC.

FRUC is discussed previously for video compressloraging if we can drop a
half of frames at the encoder side and reconstherh at the decoder side by FRUC,
then the size of compressed video can also decedamest by a half [1]. In this case,
the interpolated frames originally exist, so ieasy for us to know how do them being
interpolated.

For recent years, it is applied on liquid crysteiplay (LCD) for converting frame
rate of input video stream to 120Hz or even higfAdre purpose is to reduce the
hold-type motion blur on LCD which will be introded in next section [2]. In this case
the converted frame rate is higher than the orlgama the interpolated frames do not

exist before, so it is hard to know whether thernpblated frames looks good or bad.



1.2 Motion Blur on LCD

Figure 1.2 shows the general structure of LCD. aeklight walks through the first
polarizer, causing the orientation of light to be@uniform. Then it passes the liquid
crystal layer controlled by the voltage between shoes of thin film transistor (TFT).
The voltage value influences the rotating anglégbit passing the liquid crystal layer.
In the end the light walks through the color fili{ged, green and blue) and second
polarizer with different angles. Since the secomdbagzer will filter the light with

different orientation to it, controlling the voltagneans adjusting the intensity of each

Tttt

polarizer

color displayed.

TFT
i) [ 0
voltage ﬂ 'ﬁﬁ &
[ = = =
TFT
polarizer
backlight

Figure 1.2 General LCD structure.

There are two types of motion blur occur on LCDRhwdifferent solutions [3]. The
first type of motion blur is caused by the slowp@sse of liquid crystal. As in Figure
1.3, the black solid line is the targeting briglsmend the dotted line is the actually
displayed brightness. The smooth variation of linghs looks blurred by human eyes.
To overcome this problem, first set the voltagehbig(or lower) than the targeting
brightness, and after the brightness becomes tto#ee target, set the voltage to the
ordinary value. By doing this, the slope of brigtga will be sharper like red solid light
in Figure 1.3, which reduce the smooth variatiobraghtness.

The second type is called hold-type motion blus. ghown in Figure 1.3, the
maintenance of brightness is called the periodadd kvhich is equal to the inverse of
frame rate. In Figure 1.4, when human eyes trag&ctd along their movement with
velocity v, they integrate the intensity continuously, bué tteal intensity changes

2



discretely. This divergence makes the integratetasdi of the object’'s boundary on
retina smoothly decrease (increase). The rangeakdsing (increasing) is called blur

width and can be directly expressed as
Blur widthyirec: = v/frame rate (1.2)

Another way for evaluating hold-type motion blur limsed on the sampling and
reconstruction theory of integrated signal on humaetina [4]. In the case of idle

display (without slow response), the blur widtleggial to
Blur widthipeory = 0.8 X v/frame rate (1.2)

Therefore, the blur width is inverse- proportiotaathe frame rate. Among the solutions
of hold-type motion blur, FRUC is regarded as tlestbmethod since it can directly
reduce the effect of motion blur without visual tijtyadrop [3].

The period of Hold

A _"l “_

Brightness (

n n+l n+2 n+3

t (frame time)

Figure 1.3 Hold-type display with slow response.

AN

object’s\

maovement \
Integrated signal

\on retina
D s

N

Figure 1.4 Direct evaluation of blur width.
3



The first real-time DSP appeared in ICCE1995 anned by Philips as a
commercial product for motion blur reduction on L{H). Figure 1.5 is its chip photo.
In recent years, the FRUC topic is frequently désed, but don't have a generally
accepted conclusion. There is also a lack of acadétarature or announcement of

FRUC DSP since the cost is so high that acadersiitution cannot burden.

Figure 1.5 Chip photo of the first FRUC DSP.

1.3 Design Motivation and Tar get

As for hold-type motion blur reduction on LCD, wemt to design a FRUC algorithm
and architecture which fits with the current LCBt&ym (Figure 1.6). The capability of
the design has 24Hz to 120Hz and 60Hz to 120Hz iwai up-conversion, and
supports 3840x2160 (Quad HD, 4Kx2K) resolution f@xt LCD generation. The
computational cost and area cost must be low with teasonable bandwidth

consumption.

Figure 1.6 Our design motivation and target.



For the various types of videos, we choose marmuesgces for experiment
including sport game lives and movies. Due to tefictency of 4Kx2K sequences, we
use 1920x1080 (Full HD, 1080p) sequences insteayplird- 1.7 shows some of the
1080p sequences.

Figure 1.7 1080p sequences for experiment, from-ldfipwith raster order:
ducks_take off, pedestrian_area, Wimbledon operD,20ansformer2,

vintagecar, titanic.

1.4 ThesisOrganization

In this thesis, the detailed steps of up-conversigorithm is introduced and analyzed
in the first section of next chapter. In next sattiwe introduce proposed FRUC
algorithm based on Marcov random field with preasgfact detection. In each step,
we will tell how to operate and the reasons of pegal algorithm. The third section we
compare the proposed algorithm with three differERIUC methods and show the
results of subjective and objective evaluation. Thmal section we give a short
conclusion of the proposed algorithm design. Chraptis about architecture of FRUC
on LCD. The first section analyzes the specificatmf our target, and the second
section shows the overview of our architecture.ti8ec3 to section 6 describes the
problems encountered of each part and explains wewsolve these problems by
proposed architecture. Section 7 shows the implétien results of resource
consumption and hardware specification. In the lasapter we give an overall

conclusion of proposed design, and the possibiledutorks.



Chapter 2 Marcov Random Field Based Algorithm

with Precise Artifact Detection

2.1 Introduction to Up-conversion Algorithm

Figure 2.1 shows a general FRUC flow. First it gats motion vector field (MVF) of
existing frames from motion estimation or decodéen it operate on the MVF to let it
be more reliable, called MV processing. The blociesy be divided into sub-blocks for
presenting more detail motion and reducing blodKaat (sub-block division). After
getting new MVF, MV mapping procedure maps MVF afiseng frames to
inter-frames. Motion compensation interpolates rifitemes according mapped MVF,
and may apply bilinear, filtering or overlap blogiotion compensation (OBMC) [6] for
interpolation. After that, post-processing procedwmploys initially interpolated
inter-frames’ information to refine the artifactcamake the inter-frames have better

visual quality.

mofion
vector
field

{MVF)

Figure 2.1 General FRUC flow.

2.1.1 Motion Estimation

Unlike conventional motion estimation for encodbe purpose of it in FRUC is finding
true motion presenting objects’ movement [7], nt jto reduce the residual energy of

each block comparison. It is often a time and a@@suming part of the design since
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the number of required candidates of block matcisngsually big. Recently researches
suggest that decreasing the number of candidateslpul to find true motion [7], [8],
[9]. These algorithms often utilize the spatial &wohporal coherence of MVF. At first it
is hard to estimation the performance of each dlgor since no ground truth for
comparison. By 2007, Microsoft research team pmwic ground truth database
generated by synthesis or capturing motion withi@sensitive pigment [10].

It is possible getting MVF from decoder without tioo estimation process. Some
of FRUC algorithms use this trick and focus ondaling operations [11], [12], [13].
We think there are two problems of this trick. Thet is that we can’t not sure which
ME algorithm is performed by encoder, and evendbedition of intra-block. If the
received MVF is untidy or the number of intra-bledk too much, the true motion is
hard to find by the following operations. The set@that in current LCD system, it is
unable for DSP to get MVF information from decodgy.the reasons, we determine to
perform ME, not getting MVF from decoder.

2.1.2 MV Processing

The purpose of this operation is to make MVF makable for presenting objects’

movement. Since the true motion has spatial angpademh coherence, some simple
operations such as median filter [14] or weightedraging have just acceptable effect.
Dane, G. and Nguyen, T.Q. [15] provide a motion sthanethod by global energy

minimization with a matrix closed form solution. @ Wang et al. [16] model the

MVF as a 3D Marcov random field and minimize thergry by iterated condition mode.
Many of the algorithms here are heuristic, withautheoretical principle. Some of

algorithms are too complex for hardware implemeoat

2.1.3 Sub-block Division

Many FRUC algorithms divide block into sub-blocksreduce block artifact and get
more detailed MVF after motion estimation [13], [1The problem is whether divide
all blocks or only at sub-region. Divide all blockdl make sure all motion vectors are
finer, but with the highest complexity. If only dile sub-region, the efficiency is an

7



important concern since only the region with actifaave to be divided. After division,
there should be another process that determinesevemotion vector of sub-blocks.

The way of determination directly influences thetimo compensation results.
2.1.4 MV Mapping

In general, there are three mapping methods and isoperfect. The first one is called
tradition mapping, which performs ME on existingrfre and copy the motion vectors
to the corresponding blocks of inter-frames. Theosd one is called through mapping,
performing ME on existing frames too but MC througtist MV’s direction. The third
is called bilateral mapping, which performs ME oner-frame with two reversely

motion vectors [18], [19]. Figure 2.2 is the graplitiustration of the three methods.

| | I ‘ | l
n n-1 n

n-1 n n-1

Figure 2.2 Three general mapping methods: tradittmough and bilateral.

The problem of tradition mapping is time domairsmatch. The corresponding
blocks of inter-frames and existing frames may bglto different object since their
timing is not the same. The motion vectors of thaelseks are not totally equal so we
can not directly copy. The through mapping does Ima¢e this problem, but the
interpolated frames usually have hold and overlegabse the motion vectors passing
through them may not be aligned as shown in Figue The hole and overlap require
other technique to handle like in-painting [20],ig¥his often so complex. Non-block
interpolation is also a nightmare for hardware enpéntation. The bilateral mapping
seems to be the best one without time domain, antdoverlap problem, but by many
researches, it normally fails at flat region anedenore special concerns [21]. For
bilateral mapping, the number of ME times is algaa to the number of inter-frames,

which is too costly for multi-rate up-conversion.
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Figure 2.3 Hole and overlap of through mapping.

2.1.5 Motion Compensation

After getting the MVF of inter-frames, motion commgation interpolates the
inter-frames according to MVF. Since the motion pemsation is block-based, there
are many ways for block artifact reduction likeirmar, filtering or OBMC. A zero
motion preserving technique called graceful degrada[22] is devised for text
protection in videos. Occlusion handling is progbse [23] by applying adaptive
weighted-interpolation for pixels only appear ineoof the existing frames. These
techniques often applied to whole frame with corapah overhead, and may make
inter-frames more blurred than directly interpaiati

The hardware consideration here is seldom discusised for a regular decoder, it
only compensates one frame each time. For mulirptconversion, up to four or more
frames have to be generated so the bandwidth cqisms very huge (Ex. 120Hz
Quad HD = 1.44GByte / sec). A well-designed architee is very crucial for
completely utilizing the bandwidth available.

2.1.6 Post-processing

After compensating all inter-frames, this step ewgpl the interpolated frames’
information for finding new motion vectors and rgdrpolating on particular region
[17], [23]. There are various ways of this step araconclude them into three parts:
artifact region detection, motion vector refinemantd artifact-reducing interpolation.
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The first part is tough because there are no neéexe of inter-frames for comparative
artifact detection. The second and third part nbestbased on artifact reduction for

better visual quality of re-interpolated frames.
2.1.7 Summary

In this section, the steps of FRUC are introdudédtion estimation is a computation
and area costly part, and its target is finding@ tmotion of objects’ movement. Motion
vector from decoder is not reliable and not theenirLCD’s FRUC standard. There are
many methods for MV processing, from simple to ctaxp either heuristic or
theoretical. Dividing all block requires more cortgtion overhead, and dividing
sub-region must be careful of the efficiency. MVppeg has three general types, but
none of them is perfect. Motion compensation isaadwidth-consuming part for
multi-rate up-conversion seldom discussed in hardw&ome technique may applied
here for block artifact reduction or occlusion hiamgl Post-processing utilize the

interpolated frames, and take care of region witifeat for better visual quality.

2.2 Proposed Algorithm Based on Marcov Random Field

with Precise Artifact Detection

We describe the proposed algorithm in detail wétasons. The video size in this section
is regarded as 1080p, not 4Kx2K. For motion esimmatwe provide a true motion
based search algorithm whose computational contpléxivery low. The block size
starts from 32x32, and the matching criterion i8 8SEA for hardware consideration.
We perform MV processing based on Markov randord flreodeling with a low cost
but robust version of iterated conditional modeM)CGninimization. We propose a MV
mapping technique that determines inter-frames’ Myymlock-based through mapping.
After motion compensation, we divide sub-blocksyonh necessary region by precise
artifact detection. In the end for those sub-bloakth artifact, we search new motion
vectors for them and re-interpolate with occlustonsideration. The experiments show
that the proposed algorithm is better than thersthy both subjective and objective

evaluation.
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2.2.1 Predictive Square Search Motion Estimation

This motion estimation algorithm is very similar poedictive diamond search, except
we use square pattern (Figure 2.4) instead of dwanpattern. Figure 2.5 shows the
graphic illustration of predictive square searcgoathm. First we perform median

filtering on three neighboring motion vectors aretting a predictor. Then we apply
4-step square pattern on the predictor. If the mimn distortion appears at center or its
value is smaller than the threshold, we think theljztor is good and proceed to apply
2-step and 1-step square pattern for converge. \gséack to the origin and search
motion vector like normal diamond with 8-step sagugrattern. If the minimum

distortion is at the center of 8-step square pattdren we apply 4-step, 2-step and

@ @
step size
@ ®

@ e o

1-step for converge.

Figure 2.4 Square pattern with 9 candidates.

@ o0 _ @ o o
4-step on 4 predictor

medium filter predictor is good
) ) © ms) © 0 O
N N
@ (0] @ @ ® 00
predictor is ®
bad,
rea-estimate MV
from origin
O O O o
8
@ @ @
O ©c e e o
origin ° *CRAV
Q@ ON N )
o009
O @) O O o

Figure 2.5 Graphic illustration of predictive sqaigearch algorithm.
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In the following we show the pseudo code of pragosearch algorithm. Hef&P
means square pattern andmeans minimum distortion of appliesP. MV means
motion vector value as the center & andthreshold here is equal to 1024 in our

implementation.

1. SetMV = median of three neighboring blocks’ motion vesto
2.  Apply 4-steSP onMV
If ¢ is at center ot < threshold
Apply 2-step & 1-stef®P for converge
Else
SetMV = origin, go to step 3
3.  Apply 8-ste 'SP onMV
If £is not at center
SetMV =¢’s position, repeat step 3
Else

Apply 4-step, 2-step & 1-stefP for converge

The proposed algorithm is very similar to PMVFAZR] which is frequently used
for true motion estimation [25] exploiting the sphicoherence of MVF. We abandon
temporal coherence since blocks of the same caatediat different timing may not
belong to the same object, so the temporal predids not certainly accurate. Another
reason for proposing this algorithm is the abiifyrejecting predictor and re-estimating
from origin. The algorithm is also very cost eféiot. Figure 2.6 shows the percentage
of blocks’ converging type in the worst cases afheaequence. For the most complex

sequence (vintagecar), there are near 60% blockseoge around predictor.
100%

80%

60%

40%

by predictor
20% e

by origin

0%

Figure 2.6 Percentage of blocks’ converge type\tbist cases of each sequence).
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We set block size to be 32x32 in our design (f080p) for two reasons. Like
overlapped block motion estimation (OBME [11]), timst reason is aperture problem
since the bigger size for block-matching, the nreteble motion vector generated. The
second is instead of merging smaller block for orotrector unity, dividing the blocks
on necessary region spends less computation ovefhpa

For matching criterion, we choose 8x8 MSEA [26] Iidock-matching. As shown
in Figure 2.7, it divides 32x32 blocks into 16 8x@-blocks, sums up each sub-block,
then compute 16 absolute differences (Abs.) of eashmed up sub-block pair. The
8x8 MSEA is equal to sum of 16 Abs. values as

8x8 MSEA = Z Abs. of sub — block sum pair (2.1)

Vpair

Abs. = absolute difference

Abs. 5 absolute difference

E( Abs. = absolute difference )E

Figure 2.7 lllustration of 8x8 MSEA.

8x8 MSEA can be regarded as the down-sample versfosum of absolute
difference (SAD), without down-sampled motion vectalue. The original purpose of
this criterion is fast full search, and we foundttkto co-operate with square pattern it
reduces lots of computation and bandwidth costamdivare design. The generated
MVF is almost the same if we use SAD as the matghiiterion.

By experiments, we notice that there are 24Hz eseces whose maximum motion
vector value reaches 128, so we determine thelseange of motion estimation to be
+128x+128 for hardware design.
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2.2.2 Markov Random Field Motion Vector Correction

In this step, we process in raster order to reffimeenew motion vectors for each block
for three iterations. For a block, we select eighighboring motion vectors and the
motion vector of itself as nine new motion vectandidates (Figure 2.8). For these nine

candidates, we compute the corresponding Marcalorarfield energy (MRF energy)

MRF energy anai. = 8x8 MSEA + weight X Z |MVCandi. - MVneigh_| (2.2)

Vneigh.

From nine these candidates, we select the smalhests the new motion vector of this
block.

new MV = ;;i::i MRF energy.anai. (2.3)

This process is called iterated conditional mot@W) minimization and the
weight is equal to 48 in our design. Unlike the ggahICM that selects all candidates in
search range, we only choose nine candidates adjaxeéhe block. Figure 2.9 shows
the visualization of MVF after ME and MV processinbhe color of visualization
presents the direction of motion vectors, and titenisity presents the magnitude of
motion vectors. After ME, the MVF roughly forms tlseape of objects in the frame
such as two walking people and the trunk of tragsaith some motion vector outliers.
After iteration 1, those outliers are corrected d@hd MVF looks closer to objects’
movement. The MVF of iteration 2 and iteration 8ke almost the same, but they do

remove more outliers than previous iterations.

Figure 2.8 Nine candidates of new motion vector.
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Figure 2.9 Visualization of MVF after ME and MV m®ssing.

Marcov random field (MRF) is a very theoretical adeing method based on
Bayesian’s framework, applied to computer visionrfwany years [27] such as optical
flow or true motion estimation [16], [28]. The gllbminimization is a NP-complete
problem [29] so many fast algorithms for findingdb minimum are proposed [30]. For
a well-known method called belief propagation, telated hardware design requires
633K gate count and 1.88M byte ob-chip SRAM, whiglioo expensive for us. Thus
we choose the ICM for minimization. By researchibsre is a very high probability for
a block to find its true motion from nearby block®tion vectors [31], thus choosing
neighboring nine candidates is already enough. #erdienefit of choosing neighboring
nine candidates is preventing over-smoothing, dedcomplexity is also lower than

selecting all candidates in search range.
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2.2.3 Block-based Through Motion Compensation

Though mapping has no timing problem, but with hatel overlap. Here we divide
inter-frames into inter blocks (size is also eqt@ml32x32), and project the motion
vectors to these inter blocks. Each projection otiom vectors may has overlap area
with inter blocks as illustrated in Figure 2.10.[&8], it assigns inter block’s motion
vector to be the weighted sum of motion vectorggated to it, and the weight is equal
to overlap area. In this way, the MFV of inter-fresnmay be over-smoothing by
weighted sum operation. For preventing over-smogthiwe accumulate the total
overlap area of each motion vector projected &nd find the motion vector with the
maximum overlap area. If the maximum overlap aseldigger than a half of block size
(512 pixels), we set the motion vector of this irock to be the motion vector with
the maximum overlap area. If not, we set the motieator of inter block to be the
motion vector of co-located block on existing franafter determining all inter-blocks’
motion vectors, we perform block-based motion camspéon to interpolate
inter-frames. By doing so, we prevent the timingsmmatch of tradition mapping and

still perform block-based motion compensation.

MV1
MV2

MV3 I I
7 V4

Inter frame

Figure 2.10 Inter block’s overlap area of motiotees’ projection.
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For multi-rate up-conversion of our target, wefpen motion estimation twice to
get forward and backward MVFs (green dotted arraws The first and the second
inter-blocks’ motion vectors are mapped by backwsidF, the third and the forth
inter-blocks’ motion vectors are mapped by forwM®F. For preventing blur whole
inter-frame and lower the complexity, we perform-dimectional interpolation that only
gets pixels from one of existing frames. Similathe first and the second inter-frames
are interpolated by the pixels in frame n-1, thedttand the forth inter-frames are

interpolated by the pixels in frame n.

backward forward
MVF MVF

n-1 n

Figure 2.11 ME and MC of multi-rate up-conversion.

2.2.4 Sub-block Division with Precise Artifact Detection

Typical, the sub-block division performs on exigtirames [13], [17]. But since the
artifact does not appears on existing frames, gigithlocks on existing frames may not
directly reduce the block artifact. For this reasae perform sub-block division on
inter-frames where artifact really appears. With #malysis of the appearance of block
artifact, we found that it always appears when meoging blocks’ motion vectors are
not continuous. So we simply pay attention to thexlks’ whose motion vector is not
continuous with the others. In this way, it is gqudeed to locate the block artifact on
inter-frames, so the detection method is simple@edise.

If only consider motion vector’s value, althoughis precise, two neighboring
blocks will be detect as they share the same matemtor discontinuity boundary. As

shown in Figure 2.12, these blocks’ motion vectmes discontinuous to the other, but
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only the yellow one should be divided into sub-B&d~or preventing this situation, we
must determine which one of these two blocks shbadletected. Here we apply a
block matching criterion called bilateral MSEA (MISEA) for the determination. In

Figure 2.13, the two gray solid arrows presentititer-block’s motion vector and its

opposite direction. Bilateral MSEA is 8x8 MSEA bkttwo blocks (red solid rectangles
in Figure 2.13) pointed by these two motion vectmrexisting frame. By and large, the
bi-MSEA value indicates the reliability of interduwk’s motion vector, as well as how
this inter-block being interpolated. Thus this enibn can help us to determine which

one of two blocks should be detected.

object's boundaty

s

Figure 2.12  Two blocks sharing he same motion vatiszontinuity boundary.

| bIBEAI
n-1 n

Figure 2.13  Graphic illustration of bilateral MSEA.

We devise an artifact detection condition that ¢atkhs whether this block has

artifact. The condition is satisfied if

Minnter. B MVx‘*—neigh-| >2 or |MVyinter. B MVy4—neigh. >2 (2.4)
and
bi — MSEAnter. > bi — MSEA4_peigh. (2.5)
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where equation(2.4) stands for block artifact didec(4-neighbor) and equation(2.5)
stands for determining one of the two blocks. Fegdrl4 show different detecting
results (yellow and blue region). If only considsguation(2.4), many non-essential

blocks are detected. With the help of equation(2tbpse non-essential blocks are
removed from detection.

equation (2.4)

equation (247 & (2 5)

Figure 2.14  Detected 32x32 blocks by different ctowis.
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Combining artifact detection and sub-block diwsiove regard all blocks of
inter-frames as 16x16 sub-blocks and check allatfiéact detection conditions of its
four neighbors. Among these four neighbors, onlg tf them are able to be satisfied
since the other two (gray rectangles in Figure RliE5in the same 32x32 block of the
sub-block with the same motion vector value. lieasst one of the conditions is satisfied,
we label this sub-block (dark blue rectangle inulfgg2.15) for post-processing and
assign an initial motion vector (dark blue arrowHigure 2.15) to it. If the bi-MSEA
value of this labeled sub-block is smaller than,3@ set the initial motion vector equal
to the original motion vector of it, else the ialtmotion vector equal to the weighted
sum of neighboring motion vectors whose condit®rsatisfied (pink arrow in Figure
2.15). Since the post-processing only operate beléal sub-blocks, we do not actually

divide all blocks into sub-blocks.

Figure 2.15  Sub-block division with precise arttfdetection.

The purpose of initial motion vector assignmentdsgive labeled sub-block a
predictor for searching new motion vector. With tpeedictor, we don’t have to
re-estimate the new motion vector in large searaidew. Since true motion often
comes from nearby block, the predictor is equalh weighted sum of neighboring
motion vectors if the bi-MSEA value of labeled shlbek is bigger than them. Figure
2.16 shows the effect of initial motion vector gssnent. The result of sub-block
division with artifact detection is shown in Figuzel7. It is apparent that the most of
labeled sub-blocks lie on moving objects’ boundaigce there is motion vector

discontinuity. The non-labeled region is guarantieeldave no artifact as in the figure.
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After initial MV
assignment & blending

Figure 2.16  The effect of initial motion vector @ssnent.

Neunhauser Sir

Figure 2.17  Labeled 16x16 sub-blocks on inter-frame

Table 2.1 Total # of labeled sub-blocks in the woeses of each sequence.

sequences total # of sub-blocks percentage
pedestrian_area 2787 8.54%
Titanic-2 1820 5.58%
Vintagecar 3074 9.42%
ducks_take_off 1340 4.11%
park_joy 2474 7.58%
Tractor 1969 6.03%
transformer 7-3 3947 12.09%
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We count the number of labeled sub-blocks andhistresults of the worst cases in
Table 2.1. For the most complex sequence (tran€fioii¥8), there are only about 12%

sub-blocks with block artifact labeled for the @lling post-processing.

2.2.5 Sub-block Refinement with Bilateral Motion Vectoea&ch and
Overlapped Block Motion Compensation

The last step is post-processing which consistiadet parts: artifact region detection,
motion vector refinement and artifact-reducing liptgation. Since we divide the
sub-blocks only on artifact region, we don’t haweperform artifact region detection in
this step.

For motion vector refinement, we want to find thetimn vector with the least
block artifact. Similar to [23], we employ side mlattechnique [32] as our matching
criterion for motion vector refinement. For a ladxsub-block, around its initial motion

vector and the opposite direction we open two $eafadows with ranget8x+8 as in

Figure 2.18. The search window of opposite directtands for occlusion handling.
There are outside pixels around labeled sub-blotidsndary (dark blue hollow
rectangles in Figure 2.19) on inter-frames. Go @lasth the motion vector in search
windows, there are inside pixels around correspundiub-block’s boundary (dark
green hollow rectangles in Figure 2.19) on existirgmes. The boundary error is
defined as the sum of absolute different of eadkide and inside pixel pairs as shown
in right graph of Figure 2.19. Among all motion t@s in search windows, we choose
the one with the least BE. as the new motion veatdabeled sub-block. After finding
new motion vector of labeled sub-block, we tempbramterpolate the inside boundary

pixels of this sub-block for next labeled sub-blsdkoundary error computing.

+8x+8
Initial MV search
. window
4818 opposite
search direction
window
n-1 n

Figure 2.18 Search window for motion vector refirertn
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Abs.

MV in the
windows Abs.

mter-frame existing frame Abs.

* Abs. = absolute difference
*BE. = boundary error = ¥ Abs.

Figure 2.19 Boundary error computation.

After finding new motion vectors of all the labelsub-blocks, we perform OBMC
on these sub-blocks like [11], [19]. First we geefmotion vectors from the original,
up, right, down, left neighboring sub-blocks (Figw.20). Then we apply each motion
vector to this sub-block to get pixels from exigtiframes, multiply them by the
weighting map show in Figure 2.21. The original imotvector is applied to whole
sub-block with diamond-shape weighting map. Thenemhboring motion vector is
applied to top-half of the sub-block with descewgdiweighting map and other
neighboring motion vectors work as well. After nipllging all weighting map, we sum
up those weighted pixels and divide them by 16dbegate normalized weighted sum

pixels of interpolated sub-block.

Figure 2.20  Five different motion vectors for OBMC.
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Figure 2.21  Weighting map of each motion vector@@&MC.

Since the weighting map of neighboring motion vextare descending from
outside and the origin weighting map is descendiog inside, the pixel values are
partially continuous to each side. This technigaé dlurs the boundary with motion
vector discontinuity, thus further reduces the klactifact only on necessary region.
Figure 2.22 shows the sub-region of inter-frameforeeand after post-processing.
Many labeled sub-blocks are corrected with lesslblartifact by proposed motion

vector refinement and OBMC technique.
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before post-processing after post-processing

Figure 2.22  Artifact reduction after post-procegsin
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2.3 Performance Evaluation

We select three papers for performance evalua¥iang’s algorithm [11] extracts MVF
from JM reference software 15.1, performs OBME @BMC; Percept’s algorithm [12]
also extracts MVF from JM, and ignores motion vextadhat are perceptually
unapparent; GME’s algorithm [17] performs globaltrmo estimation and sub-block

division.

2.3.1 Subjective Evaluation

There are thirty eight subjects for subjective eatibn. Twenty two of them come from
National Taiwan University electronic engineeririgdents. Other sixteen come from
internet. The experimental method is letting themtol twice up-converted 1080p
sequences (Figure 2.23) of 4 algorithms frame bhyné& at the same time. In the end
each subject votes the best one among four algasitif all the sequences. Figure 2.24
shows the final experiment results. At least 79%uddjects choose our algorithm as the

best one among all sequences.

Figure 2.23  Four 1080p 24Hz sequences for evaluatio

pedestrian_area, transformer 7-4, Titanic-2, viatag
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Subjective evaluation

35 33 33
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g M Yang
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- W Percept.
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* GME
Hours

pedestrian_area transformer 7-4 Titanic-2 vintagecar

Figure 2.24  Experiment results of subjective evaduma

2.3.2 Objective Evaluation

By twice up-converting the odd frames of originafjgences, we compute the PSNR
values of interpolated frames to even frames ofahginal as ground truth (Figure
2.25). The PSNR values frame by frame are showealsim with average and PSNR
gain. Figure 2.26 shows the results of each seguénmdicates that the PSNR values
of our algorithm are the best in the most of framidse averaging value is also the best

with 0.63 to 5.47 PSNR gain.

compute PSNR

"'\ /r’ "\ /Ewp-convelsion
original 24z sequence [ || N 1N H | N

Figure 2.25 PSNR comparison for objective evalumatio
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Figure 2.26  PSNR values of each sequence for algeevaluation.
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24  Summary of Algorithm Design

In this chapter, we introduce the steps of FRU®rdlgm and describe the proposed
algorithm in detail with reasons.

For motion estimation, we propose a predictive sgigaarch based on true motion
estimation. Experiment shows that at least 60%Ilotks converge at predictor with
only 25 distortion computation. The block size gual to 32x32 and the matching
criterion is 8x8 MSEA for complexity concern, artsearch range is determined to be
+128x+128.

We use Marcov random field modeling for motion wegqirocessing, which is also
based on true motion estimation. Among the minitiora method, we choose the
simplest ICM with selected candidates. Researchvshbat using nine candidates is
already enough with the benefit of preventing oseroothing and low computation
cost.

Although none of three general motion vector magpimmethods is perfect, we
perform a block-based through motion compensatibichvhas no timing mismatch
and interpolates inter-frames block by block.

We introduce a precise detecting technique for tiogathe block artifact on
inter-frames. With the help of bi-MSEA, we only &bnecessary sub-blocks for
post-processing and assign them an initial motiector. Experiment shows that there
are at most 12% of sub-blocks have to be labeled.

In post-processing, we adopt the boundary erraeresn to find the new motion
vector of labeled sub-block with the least blockfact. We open a search window in
opposite direction for occlusion consideration.the end the OBMC technique is
applied to further reduce the block artifact.

By the results of performance evaluation, the psepoalgorithm is better than the

other algorithms both in subjective and objectivaleation.
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Chapter 3 Architecture Design of Multi-rate Frame

Rate Up-conversion on LCD

In this chapter, we first analyze the specificatodrour design target, including DRAM
selection and compute the resource available. She@roposed algorithm consists of
variety of steps, the hardware and on-chip SRAMiregtbecomes an important topic.
In the algorithm, there are many dependencies legtwcks causing data pre-fetching
and pipeline bubble reduction to be tough. And esiwe interpolate multi-frames, how
to efficiently utilize the available bandwidth idsa a significant matter. After
specification analysis, we give an overview of #@nehitecture. The procedures of
proposed FRUC algorithm are performed one by orsmé by frame. And then we
explain proposed hardware architecture of each fmartresolving the architecture
design problems in detail. Later we show the cyeed bandwidth consumption by
simulations, and the final hardware specificatiathvefficiency comparison. In the end

we give a summary of proposed architecture design.

3.1 Specification Analysis

3.1.1 Introduction

Figure 3.1 is the general LCD system. Beside thduites for 1/0O and display, there are
many DSPs for video processing connected by amybtess. The ARM CPU handles
the AMBA protocol to let them share the DDR SRAMRAM). Since FRUC DSP
consuming larger bandwidth than the others, itroftas its own DRAM without sharing
by the others for up-conversion. The path betweBWE& and DRAM is showed in
Figure 3.2 and we assume there is fifty cycle lkyewith uncertainty. The clock
frequency is assumed 300M Hz and the I/0O widthystesn bus is 16 bytes per cycle.
Pixels in DRAM are arranged as four successivelpiger address in two banks, raster

scan order (Figure 3.3), thus it is possible tolgetl or 8x2 pixels at a time.

31



cru osP owA et [ T
lﬂ | I I I |
KL

IRAM
”‘”“E:EI *’ T HFAST]IHH;
T
v 1
DDR SDRAM

Figure 3.1 General LCD system [33].
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Figure 3.2 The path between FRUC and DRAM.
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Figure 3.3 Pixel arrangement in DRAM.

3.1.2 DRAM Selection

With the reference to NXP 5100 FRUC solution [3¢jgenerates 1080p 120Hz video
sequence with 2pcs 16bit x 512Mb DDR2-667 DRAM.c8irour target is 4Kx2K
120Hz video sequence which is four times of NXPGMe choose 4pcs 16bit x 1Gb
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DDR3- 1333 (MT41J64M16JT-15E in [35]), each bankhw2pcs as our DRAM for
FRUC whose data rate and storage are four timesNx& 5100. By the spot price of
[36] we found that the price gap between DDR2 amRB becomes smaller, so we
think for next generation of LCD DDR3 will replad@DR2 as the DRAM on the

system.

3.1.3 Resource Available

For the selected DDR3 DRAM, the declared maximumgsal to 1333M Hz x 4pcs X
16bits / 8bits = 10666MB per second. But sincedhsra huge DRAM random access
penalty, we assume 65% probability of request faillhe real bandwidth available is
10666MB x (100% - 65%) = 3733.3 MB per second. Ziiz to 120Hz up-conversion,
there is 3733.3MB / 24fps = 155.6MB for all the FRWperations, and for 60Hz to
120Hz up-conversion, there is 3733.3Mb / 60fps 2BMB. The maximum cycles
available for 24Hz to 120Hz is 300M Hz / 24 fps 2.8M cycles, and for 60Hz to
120Hz is 5.0M cycles.

3.1.4 Summary

By the above analysis, we found that the resouwsceritical. Bandwidth is the most
important issue since FRUC performs motion estiomatike encoder and motion
compensation like decoder, which are the most aqoisyparts of them, not to mention
multi-frame up-conversion. The available bandwidlity support reading or writing up
to 13.0 frames for 24Hz and 5.2 frames for 60Hz Ticles available are also tight if
we do not handle data pre-fetching and pipelineblibeduction problems well. The
dependencies between blocks of each operation mhékdask to be harder. For the
variety of each step in the algorithm, how to emphardware re-use is important for
decreasing area overhead. The on-chip SRAM arraegens also significant for

supporting+128x+128 search range and shared by all of the modakedor limited

resource, all pixel comparisons operate at 1088pa&e, such as 8x8 MSEA, MRF
energy, bi-MSEA and boundary error.
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3.2 Architecture Overview

Figure 3.4 shows the overview of proposed architect The FRUC control is
composed of controls of each procedure. For pastgmsing we fetch job queue
beforehand to tighten the schedule, so its contmisists of two parts for data
requesting control and data computation controk Write request module handles the
task of writing pixels or motion vector informatiem DRAM. Read request is in charge
of requesting data from DRAM, and Read receiveveed the received data to each
module. For the uncertainty of bus latency, thera dob queue for request pushing and
popping. SRAM of out design is shared by all of thedules and Write SRAM unit
provide address generators for writing pixels iBRAM with interleaves of different
procedures. The pixels read from SRAM are mostint s Sum-trees and
Accumulators for distortion computation. These twodules are the main computation
unit with small area cost. Predictor control andg@r control stand for generating
address to SRAM for ME control and MRF control. Mybuping unit computes the
motion vector discontinuity for motion estimationdamotion vector processing and

IMC unit manages the block-based through motionmemsation.

Read Job _| Read
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]
]
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]
.
1
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]
]
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Figure 3.4 The overview of proposed architecture.
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The flowchart is showed in Figure 3.5 and eacltgdare is done frame by frame.
Down-sample cuts down the frame scale from 4Kx2KL@80p for pixel comparison.
8x8 sum computes the sum-up of 8x8 sub-blocks 80fpGrames every eight pixels for
8x8 MSEA computing of re-estimation step in motiestimation. ME performs
predictive square search motion estimation and M&ires MVF for three iterations.
MV mapping maps motion vectors to inter-blocks, &M@ performs uni-directional
motion compensation according to mapped MVF. Bi-MStomputing computes the
bi-MSEA value of all the sub-blocks that are poksifo be labeled. MV search finds
new motion vectors of labeled sub-blocks in twaceavindows then OBMC performs
overlap block motion compensation of these subXsoc

| wmRF
3 — x3 :>

Bi-MSEA
computing

Figure 3.5 Flowchart of each procedure.

3.3 Motion Estimation Architecture

3.3.1 On-chip SRAM Issue

The first challenge encountered is on-chip SRAMiéssFor supporting:128x+128

search range, if scheme C data re-use is adopie&RAM size is (128 + 128 + 32)"2
= 82944 byte. For fetching data to next block, laadwidth consumption is 2MB x
(128 + 128 + 32) / 32 = 18MB per motion estimati®he cycles for fetching are (128 +
128 + 32) x 32 / 16 = 576 cycles per block. Alltbé resource depleted above is too
much for the limited resource available.

By employing the characteristics of proposed mmo#stimation algorithm, we can
greatly reduce the depleted resource mentionedealdar 4, 2 and 1-step convergence
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in the algorithm, we prepare a set of SRAM call With range +8x+8 for saving all the
possible required pixels (M1 in Figure 3.6). Altlghusetting the range of M1 to he&'x
+7 is already enough for motion estimation, we Betdize to bet8x+8 for sharing by
other modules. For 8-step re-estimation from origith 8x8 MSEA criterion, we can
directly apply scheme C on 8x8 sum generated befate much less resource
consumption (O1 in Figure 3.6). The bandwidth diplehere is reduced to (2304 x
60% + 2304 x 2 X 40% + 36 X 4 x 2) x 2040(totalf#blmcks) = 7.2MB per motion

estimation.

Save all pixels in convergence’s range Save all 8x8 sum in search range

Search range
+128/8 x+128/8
=116x+16

Search range
+8x+8

Required size
(8+8+32)"2

= 2304 Byte

Required size
(16 + 16 + 4)*2 x 2 Byte

= 2592 Byte

Figure 3.6 SRAM usage for motion estimation.

3.3.2 Ping-pong Two-way Scheduling

There are dependencies between blocks for motibmatton. One block must waits
until the motion vector of previous block is detarad for applying median filter. If we
directly implement the scheduling, there will beslof pipeline bubbles as shown in
Figure 3.7. For eliminating the dependencies, waead an additional SRAM pair of
M2 and O2 like original M1 and O1. Two pairs operatccording to the proposed
ping-pong two-way scheduling. The ping-pong means of the pair is computing
while the other is pre-fetching data, as two playeit ping-pong ball in turns. The
two-way means one of the pair is raster scan aadther is inverse raster scan. By
doing so, the pipeline bubbles are eliminated itig-pong data pre-fetching (Figure
3.8). For the best balance between data fetchimg MS8EA computing, the cycles
consumed for 4, 2 and 1-step convergence shoutee@el1l8 + 144 = 162 cycles which

is explained in next sub-section.
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Figure 3.7 Directly scheduling. (a) raster scarear(b) pipeline bubbles.

A4
|1
Y

(a)

M

Ml 0l M2 0z Ml 0l
144 cycles 18 cycles 144 eveles 18 eveles 144 cycles 18 eveles

Data request | | | | | l |

(b) . latency I MSEA
Data receive " I | | | I I .
L:l\l'l'l|ili|ﬂll0ll

MSEA MSEA
computation computation

Figure 3.8 Ping-pong two-way scheduling.

(a) two-way scan order. (b) ping-pong usage witlpioeline bubbles.

3.3.3 Flexible Adders

The 8x8 sums of blocks on current frame are alregaeherated after down-sampling
step, so we have to generate 8x8 sums of nine datedi of square pattern for 8x8
MSEA computing on reference frame. First we reaé kome of pixels in M1 (M2). As

shown in Figure 3.9, this pixel line is composedanir 8x1 lines of 8x8 sub-blocks of 9
candidates for 8x8 MSEA computing. As the resule send this pixel line into

sum-tress with flexible adders to generate 8x1 sah@&«8 sub-blocks simultaneously.
Figure 3.10 showed the different arrangements eitile adders for 4, 2 and 1-step.

Black adders (with four hollow black line at thepyogenerate four 8x1 sums for 3
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candidates at left side. Green adders are for @idares in the middle and blur adders
are for 3 candidates at the right side. Figure 3Hdws that different 8x1 sums belong

to different 8x8 sub-blocks of 9 candidates. Thenber of adders required is 49 for
sum-trees.

Figure 3.9 One line of pixels in M1 consist of f@x1 lines of 9 candidates.

.

| -step cise

.

Figure 3.10 Sum-trees with flexible adders for gatieg 8x1 sum of 9 candidates.
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Figure 3.11  8x1sums generated by sum-trees fon8idates.

After generating all the 8x1 sums of all the cdatits, we use accumulators to
sum-up 8x1 sums for 16 8x8 sums of each candidapmiallel. Since one candidate
receive four 8x1 sums at a time, we needs 9x4 adters for accumulation (Figure
3.12). The total bits of shift registers are 14bit6 x 9 = 2016 bits. After all of the 8x8
sums are accumulated, we send them to a 16-to-1 t&%&Dcandidate by candidate for
8x8 MSEA computing. The SAD tree is a part of suee$ with 16 ABS units for
outputting sum or absolute difference (Figure 3.Xdjer 9 cycles for sending all the
8x8 sums and 4 cycle latency, all the 8x8 MSEA afa@didates are generated. For
4-step square pattern, it needs 40 cycles to rkédes in M1 (M2). For 2 and 1-step it
needs 36 and 34 cycles. Thus for 4, 2 and 1-steypecgence, it takes (40 + 9 + 4) + (36
+ 9+ 4)+ (34 + 9 + 4) = 149 cycles, which arerntiee targeting cycles for data
fetching balance. For re-estimation from origin, dveectly send the existing 8x8 sums
from O1 (0O2) of 16 banks to SAD tree. The cyclesuneed for 8-step is (5 + 4) or (3 +
4) = 9 or 7 cycles since each 8-step needs to ctarguditional 5 or 3 candidates. So
for the worst of sequences, it needs 149 x 609#9 (1128 / 8 x 9 + 149) x 40% = 266
cycles per block. The sum-trees proposed herelsmeuaed for down-sample, 8x8 sum

on whole frame, MRF energy, bi-MSEA and boundargrecomputing.
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Figure 3.12  Accumulators for 8x8 sums generation.
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Figure 3.13  SAD tree with ABS unit. (a) SAD trele) ABS unit.

3.3.4 Summary

In this section we propose a ping-pong two-way dahieg for eliminating the

dependencies of blocks and pipeline bubbles. Wi @dd the pixels needed for 4, 2,
1-step convergence and 8x8 sum for 8-step, withuge ramount of bandwidth and
SRAM size reduction. The sum-trees of flexible addend accumulators only consume
49 + 36 = 85 adders and balanced with data fetchiingg number of cycles for

computing a block is reduced from 576 to 266 cycldse throughput of 4, 2, 1-step
convergence is 149 cycles / 25 candidates ~= Gesyper candidate. With the same
throughput by SAD criterion and 2D SAD trees, iede (32x32x2) / 6 ~= 341 adders
and more SRAM banks. The final synthesized SRAM 748 address x 128 bits x 3
banks x 2 = 4608 bytes for M1 and M2, and 84 addxek6 bits x 16 banks x 2 = 5376

bytes for O1 and O2. The SRAM size reduction isnfl@2944 bytes to 4608 + 5376 =
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9984 bytes, and the bandwidth reduction is from B&b! 7.2MB per motion estimation.
By the way, sum-trees, accumulators and SRAM pregas the section are all shared

by other modules.

3.4 Markov Random Field Correction Architecture

3.4.1 Motion Vector Grouping Algorithm

After motion estimation, the 8x8 MSEA value of btoitself will be written out to
DRAM for MRF energy computing. But there are stifighboring 8 candidates with
unknown 8x8 MSEA value. The motion vectors of th8seandidates may not be the
same. If we fetch pixels candidates by candidabes8k8 MSEA computing, it will
consume 2MB x 8 = 16MB per iteration and 64 x 8 B2 kycles per block. The
resource depleted is also too much by this direotjylementation.

By employing the characteristics of MVF generatgd our motion estimation
algorithm, neighboring motion vectors are similaithwmany pixels required are
overlapped. As shown in Figure 3.14, if we can ueiiee the center motion vector of a
group, by fetching all pixels around this centertiom vector into M1 (M2), all the
motion vectors whose discontinuity with center raotvector is smaller or equal to 8
(search range of M1 and M2) are able to get thelpiln M1 (M2). Thus we have to
perform grouping algorithm to 8 candidates for haiddh reduction. The group size

must be bigger than 2 for bandwidth gain, so tlaeeeat most 2 groups.

M1 or M2 overlapped pixels in M1 or M2

Search range
+8x+8

different motion vectors
Figure 3.14  Overlapped pixels of different moti@tiors in M1 or M2.
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As shows in Figure 3.15, we regard 8 candidates amdes with 28 edges
presenting motion vector discontinuity of nodes ciinnect. The discontinuities
generation consumes no computation overhead siedre a part of MRF energy.
The edges with discontinuity smaller or equal t&r® labeled as dark blue is the figure,
and we count the total number of labeled edgeseximg to the nodes. The node with
maximum number is the center motion vector of groapd the nodes with labeled
edges connecting to center motion vector are thmlmes of this group (blue nodes in
the figure). After generating group 1, we must rgemthe nodes and edge of this group

and generate group 2. The nodes that are not gilargdked non-group.

o 29 3
(a)

(b)

2

9 11

(c) (d)

edges are labeled if discontinuity <= 8

Figure 3.15 Motion vector grouping algorithm. (ap&des with 28 edges. (b) result

of group 1. (c) result of group 2. (d) non-groupeo
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3.4.2 Grouping Architecture

Figure 3.16 show the proposed grouping architectWe generate motion vector
discontinuities one by one, and accumulate them Tiotal MV dis. registers for MRF
energy computing. In the meanwhile, we judge whethe discontinuities are smaller
or equal to 8, and label the corresponding edgesterg. After the generation of all the
discontinuities, we perform proposed grouping atgar by Logic control, push the
center and member motion vectors into three tygegueue. The architecture is also

used for median filter computing for motion estiraat

[~
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registers

mux
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ABS. MV _y

1 !
99 [
!
|

v

j) Total MV H:

dis. registers

XTap

N
edge ? j Group | queue I
control registers
Group 2 queuc |
T Non-group queue |

Figure 3.16  Proposed grouping architecture.

3.4.3 MRF energy computing

The discontinuity energy is already computed dummnguping, so we only have to
compute 8x8 MSEA value of each candidate. TablesBdws the grouping results of
MREF iteration 1. As we can see, there are manykislegth group 1 size 8 or size 7, and
the total number of non-group candidates is at rA888, 14% of total candidates. For
MRF iteration 1, the 8x8 MSEA is computed by suget and accumulators according
to the three types of queue one by one. The scimgdigl also ping-pong two-way like
motion estimation, since there are dependencieweleet blocks. After getting 9
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candidates’ 8x8 MSEA values, we write them out &AM for further re-use. Take
transformer 7-3 in Table 3.1 as the worst case¢ybtes for a block = (32 + 4) x (16320
- 2338) + 64 x (2338) / 2040 = 320 cycles per blg®kd the bandwidth = 48 x 48 x (#
of group 1 + # of group 2) + 32 x 32 x (# of nomgp) = 4.8 MB + 2.4 MB = 7.2 MB
for MRF iteration 1.

Table 3.1 Grouping results of MRF iteration 1.

Average# of blocks Average# of candidates

(total 2040) (total 2040 x 8 = 16320)
Group1 Groupl Groupl Group! Groupl Groupl Group2 Group2 non-
sizeB size? sizeB sizeh sized sized sized sizeld group
park_joy 1291 113 108 242 135 112 17 160 1912
ducks_take_off| 1771 130 66 35 21 12 1 8 521
vintagecar 998 237 208 274 191 112 20 202 2267
tractor, 1314 196 140 198 135 53 32 172 1269
pedestrian_area 1328 174 147 151 127 74 13 98 1761
transformer 7-3 1283 132 98 194 108 118 6 148 2338
Titanic-2 945 312 213 286 152 95 13 222 2268

As in Figure 2.9, the MVF changes a little after MReration 2 and iteration 3.
Thus for these two iteration, we load previousattien's 9 computed 8x8 MSEA results.
If the candidates whose motion vector is equaln® of the 9 computed results, we can
directly use this result without 8x8 MSEA computifg@r the candidates whose motion
vector is not equal to all the 9 computed resuits, fetch the pixels needed for 8x8
MSEA computing. By simulations, in these two iteyas the worst case is Titanic-2.
The cycles per block and bandwidth are 82 cycleslahMB for iteration 2, 57 cycles
and 0.3MB for iteration 3.

3.4.4 Summary

In this section, we propose a motion vector grogpahgorithm and corresponding
architecture also used for discontinuity energyegation and median filter. For 8x8
MSEA computing, we reuse sum-trees and accumulgtoesiously proposed for

motion estimation. We also employ the computedltesa further reduce the resource
consumption. The cycle reduction is from 512 x B536 to 320 + 82 + 57 = 450 cycles
per block for 3 MRF iterations. The bandwidth retituc is from 16MB x 3 = 48MB to

7.2+ 1.1+ 0.3 = 8.6MB for 3 MRF iterations. ThRAM and address generators for

8x8 MSEA computing are also shared with motionnestion.
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3.5 Motion Compensation Architecture

3.5.1 Inverse Motion Compensation Scheduling

For tradition motion compensation, it processesloloy block on inter-frames, read the
required pixels of the block and write out to DRAMNKh proper address. For 60Hz to
120Hz up-conversion there is no problem in this wengce it consumes the minimum
requirement for motion compensation. But for 2461420Hz up-conversion, it needs to
read pixels of four frames and write out fours iifitames. The bandwidth = (3840 x
2160 x 1.5) x (4 + 4) = 99.5MB, and the cycles =588/ 16 = 6.5M cycles. The
consumption is too large since there should beyatheat exhaustively utilizes the pixels
read and consumes the minimum requirement for ffralthe up-conversion.

For reaching the minimum requirement, we procdeskbby block on middle
existing frame, interpolate the inter-frames neait {blue frames in Figure 3.17). First
we read on block’s pixels of existing frame (redtamgle in Figure 3.17). Then for all
the possible inter-blocks that may use these pixets derive the overlapped region
along their motion vectors, and write out pixelghe overlapped region (Figure 3.18).
By doing this, the resource consumed is the minimmequirement since we read only
one frame and write out four frames. It is calladerse motion compensation since it

operates from the view of existing frame, not fritva view of inter-frames.

n-2 n-1 n

Figure 3.17 Interpolated frames of inverse MC salirg.
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Write out pixels
in this region

Inter-block

/

existing block’s pixels

Figure 3.18 lllustration of overlapped region.

The procedure of deriving the overlapped regiosingilar to block-based through
motion vector mapping. The only difference is tfatinverse motion compensation it
derive overlapped region from inter-blocks to erigtblock, while block-based through
motion vector mapping derive overlapped region frexisting blocks to inter-block
(Figure 3.19). Thus we propose inverse motion corsgeon architecture which is

responsible for both motion vector mapping and isgenotion compensation.

n-2 n-1 n n-2 n-1 n

(a) (b)
Figure 3.19  Overlapped region derivation. (a) fmeirse MC. (b) for MV mapping.

3.5.2 Inverse Motion Compensation unit

Figure 3.20 shows the proposed architecture focksbmsed through motion vector

mapping and inverse motion compensation. For motemtor mapping, the first part is
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deriving overlapped region’s corner coordinateemtve compute the width and length
of overlapped region, multiply them to generateaam the region. At last we

accumulate the area of each motion vector, seleetwith the biggest area as the
inter-block’s motion vector. For inverse motion qmensation, the corner coordinates
are sent to SRAM address generator and SRAM roitate generating 8x2 pixels per
cycles in the overlapped region for motion compgaosaThe SRAM here are also used
in ping-pong manner, and we process Y value finshtprocess U and V value for

interpolation.

overlapped region’s
width, length & area

x2/5
i -128.-64,
x1 0,64,128 -64
‘ l pipeline l pipeline
= T -
(G0 " overlapped area

il

o |—,35 mapping accumulation
registers  |—/|E i accumulate
L [t unit
R N T Yt S S L
-128.-64, 64
0,64,128
? C SRAM address gencrator \
I T < >
— = pipeline )
8x2 pixels
overlapped region's SRAM —) generation
comercoordinates for MC
___Iﬁ_ —_ pipeline
( SRAM rotate unit )
L

Figure 3.20 Proposed inverse MC unit.

3.5.3 On-chip SRAM interleave for Motion Compensation

For writing out 8x2 pixels per cycle, we need tadem access 8x2 pixels arranged in
SRAM of existing block at a time. We save the Yueabf existing 64x64 blocks with
additional 8 pixel columns at the right side of tileck for overlapped region striding
across the right boundary of the existing blockigtive save 72x64 pixels for Y value
and 40x32 for U and V value). The odd lines of [gxa&re saved in M1 (M2) and the
even lines of pixels are saved in O1 (0O2). So weshia random access 8x1 pixels in
M1 and O1 (M2 and O2) at a time. Figure 3.21 shthesSRAM interleaves. Different

colors mean different banks, and the numbers préisercorresponding addresses.
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Figure 3.21  Pixel interleaves for random accegsdnfarleave of M1 and M2.
(b) interleave of O1 and O2.

3.5.4 Summary

For reaching the minimum requirement of multi-frao@conversion, we propose an
inverse motion compensation technique. The deawadif overlapped region is similar
to block-based through motion vector mapping, tivespropose an architecture that is
responsible for these two procedures. The bandwedthction is from 99.5MB to (72 x
64 + 40 x 32 x 2 + 64 x 64 x 1.5 x 4) x 2040 = 648 The cycle reduction is from
6.2M cycles to 64.8M/16 = 4.0M cycles. Both of thane very close to the minimum
requirement. The SRAM is also shared, operatingpimg-pong usage with pixel

interleaves.

3.6  Post-processing architecture

Since bi-MSEA computing operates only on partiab-blocks with motion vector

discontinuity, and bilateral motion vector searchd aoverlapped block motion

compensation operates only on labeled sub-blockscmate queues in DRAM for
pushing and popping sub-blocks’ information for igemg. The queue of bi-MSEA
computing is pushed during inverse motion compémsatince there are inter-blocks’
motion vectors at the moment. The queue of labglddblocks is pushed right after the
bi-MSEA computing.
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3.6.1 BI-MSEA computing

The computation of bi-MSEA also shares the sumstee®l accumulators proposed for
motion estimation. At the beginning we pop sub-kl®information from queue. And
then we fetch pixels of two directions into M1 aM@ (Figure 3.22 (a)) in ping-pong
manner. We generate 8x8 sums of M1 first and dasm tinto block registers of current
frame used for motion estimation. After that we grate 8x8 sums of M2 then the 8x8
sums and block registers’ value (M1's 8x8 sums$Ad tree for bi-MSEA computing.
For pipeline bubble reduction, we pre-pop next @guinformation for data

pre-fetching of next sub-block (Figure 3.22 (b)).

pop next Mi M2 pop next M1
queue 64 cycles 64 cycles queue 64 cycles

M2 Data request | | | |

4 5 | —
M1 biEMSEA Data receive ae

n-1 i 8x8 sum 8x8 sum & bi-MSEA
computation computation

(a) (b)

Figure 3.22  Bi-MSEA computing. (a) SRAM usage. gbheduling.

3.6.2 Parallelism determination

Since bilateral motion vector search performs fiké search with lot of computation,
we have to determine the parallelism of this procedAfter all of the above operations,
the cycles left for labeled sub-blocks are showahble 3.2 by simulations. In the worst
case, there are 1064 cycles left for bilateral amtiector search and overlapped block
motion compensation on one labeled sub-block. énetid we decide the throughput of
bilateral search to be 16 absolute differencescpele. And the search range changes
from +8x+£8 to even point in £8x+8. By this paralh, the number of cycle consumed
for bilateral search = ((8 + 8) / 2 + 1)"2 x (648) x 2 = 648 cycles per sub-block.
Since the least cycles for overlapped block motiompensation are 32 x 32 x 1.5 x (3
+1) /16 = 384 cycles, 384 + 648 = 1032 cyclesciis close to our target. By the way,

we can reach the throughput by the existing SAB, tnethout additional hardware cost.
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Table 3.2 Cycles left for labeled sub-blocks.

(all of the worst | cycleleft cycleleft # of sub-block o?écel*z:)e-gl?crk
cases) (60Hz) (24Hz) (24 Hz) (24 Hz)

park_joy| 1126796 4462482 2474 1804
ducks_take_offf 1219792 4718998 1340 3522
vintagecar, 1049260 4258462 3074 1385
tractor; 1191664 4641346 1969 2357
pedestrian_area| 1115964 4410934 2787 1583
transformer 7-3) 1048000 4199558 3047 1064
Titanic-2| 1039672 4246090 1820 2333

3.6.3 On-chip SRAM interleave for Bilateral Motion Vect8earch

We save boundary pixels in SRAM for boundary eommputing. The horizontal pixel
lines are saved in M1 (M2) and vertical pixel lirme saved in O1 (O2). Figure 3.23
illustrate the specified pixel interleaves for bdary pixel windows of original motion
vector direction (the opposite direction is in danimanner). By the interleaves, we can
save 8x2 pixels into SRAM of different banks (reallbw rectangles in Figure 3.23)
and access any line of boundary (yellow hollowaagtes in Figure 3.23) in a cycle.
The data pre-fetching of SRAM is also in ping-ponanner.

bank 0 + bank 1

address
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Figure 3.23  The pixel interleaves for boundary eoemputing. (a) horizontal lines

in M1 and M2. (b) vertical lines in O1 and O2.
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3.6.4 On-chip SRAM interleave for Overlapped Block Motion

Compensation

For this operation, we save pixels of center wanghtap in M1 (M2) and of other four
weighting map in O1 (02). When performing compeiosatwe read 16x1 pixel lines
(blue hollow rectangles in Figure 3.24) of weightimaps at a time; multiply them by
corresponding weight, and fuse multiplied 16x1 [@Xees then write out. The 16x1
weights of center, up and down map change by tsneye need multipliers for them.
The 16x1 weights of left and right map are constamtwe just use constant multipliers

for them. The data pre-fetching of SRAM is alsging-pong manner.

Address Address
0~31 32~63

Address
0~31

O
bank

constant
multipliers

multipliers multipliers

Figure 3.24 lllustration of OBMC.

3.6.5 Summary

For post-processing, we create queues in DRAM tmhmg and popping sub-blocks’
information. By parallelism analysis, we can copéhvat least 4069 sub-blocks and
1015 sub-blocks for 24Hz to 120Hz and 60Hz to 12Qieconversion without
additional hardware cost for computation. With specified pixel interleaves in SRAM,
we only read and write the required pixels for mmnom amount of bandwidth

consumption. The schedules are tight by SRAM pioggp usage and next queue

pre-popping.
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3.7 Implementation Results

3.7.1 Cycles and Bandwidth Consumption

Figure 3.25 shows the simulation results of cyaastmption. All of the sequences’
consumptions are lower the resource available ésivec apply parallelism analysis). For
24Hz to 120Hz up-conversion, the cycles are deglatainly by MC and MV search.
For 60Hz to 120Hz up-conversion, the cycles ardedeg mainly by MC and MRFx3.

24 Hz cycles 60 Hz cycles
14000000 1550 6000000
cycles 5.0M
cycles
12000000 5000000 v
10000000 — — —+—— — —— OBMC oBMC
4000000 +—~ — —pr—o — — —
MV search MV search
8000000 = —— — | | |~ — FbiMSEA BLMSEA
MC 3000000 +~ — — — — — — — MG
sl B B BB EEE map_MV map_MV
" MRF3 2000000 __._-_-_-_-_._-_ B \RF3
4000000 +— — — — — — — -
B MRF2 B MRF2
EmmE E R
2000000 - — — BB B FMRA 1000000 41— — 1 L B EMRFT
ME | B B O O ME
oM B B B B B H  eewm 0 . . . . . . , Mexgsum
& -({b‘\ & & 42 & (}o‘ down-sample & (@0 & & A2 o 0\0\ down-sample
G U ¢ &7 o
@ e > & @ & o & FE
& ¢ e T 0 S A - S
3§ & & R & &
@/bo « q,/&) &
b& bp[,\
(a) (b)

Figure 3.25 Total cycles. (a) 24Hz to 120Hz. (biH8Q@0 120 Hz.

Figure 3.26 shows the simulation results of bantlwicbnsumption. All of the
sequences’ consumptions are lower the resourcdablaiexcept 60Hz to 120Hz
up-conversion of transformer 7-3. It is acceptahee all the sequences for simulation
are 24Hz with stronger motions than 60Hz, whichetakore resource for many
operations. If the sequences are really 60Hz, littake less bandwidth (and cycles) for
60Hz to 120Hz up-conversion than our simulatiorultess Near a half of bandwidth is
depleted by MC where OBMC consumes the second anoflbandwidth for 24Hz to
120Hz and down-sample consumes the second amausfiz to 120Hz

52



24 Hz bandwidth 60 Hz bandwidth

155.6MB

160000000 70000000
62.2MB
140000000 -— 60000000 -— —— |
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OBMC 50000000 +—- — — — — — — — OBMC
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Figure 3.26  Total bandwidth. (a) 24Hz to 120Hz.G0Hz to 120 Hz.

3.7.2 Hardware Specification and Efficiency

Table 3.3 shows the final implementation result® W¢e \Verilog-HDL for hardware
implementation, synthesize it by SYNOPSIS Designmm@iter with UMC 90nm cell
library. The total number of gate count is 274K;abiip SRAM is single-port 9984 byte,
working at 300MHz frequency on 128 bits bus. Ityides 24Hz to 120Hz and 60Hz to
120Hz multi-rate up-conversion with128x+128 search range and supports 3840x2160
resolution for next LCD generation. The differences between proposgdri#thm and

architecture are two-way scan order at(kt8 on even points for motion vector

refinement
Table 3.3 Specification of implementation.
Technology UMC 90nm FRUC mode 24 Hz -> 120 Hz
Clock rate 300MHz . 60 Hz -> 120 Hz
Bus width 128 bits/cycle Frame size 3840x2160
DRAM DDR3-1333 Search range +128 x £128

Gate count with SRAM 537652
Gate count without SRAM 273845

SRAM size 9984 Bytes
single port
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For hardware efficiency evaluation, we also compgar®ercept. [12] and GME
[17]. The specifications are listed in Table 3.4l ame normalize the gate count by
regard all SRAM as single port with 3.3 gate copet bit. We provide four times of
resolution and additional 24Hz to 120Hz up-conwersimode to other two
implementations. The hardware efficiency comparisoshown in Figure 3.27. As the
slope of our design is the smallest, the propogseditacture has the best hardware

efficiency of all.

Table 3.4 Normalized specifications of the refeemnc

Technology UMC 90nm UMC 90nm UMC 90nm
Clock rate 200MHz 133MHz 300MHz
*Assume single port SRAM  Gatecount  292732" 1627900~ 537652
with 3.3 gate count / bit with SRAM
Gate count 212582 1301464 273845
without
SRAM
SRAM size 3036* 12365" 9984
(Byte)
FRUC 60Hz -> 120Hz 60Hz -> 120Hz 24Hz -> 120Hz
mode 60Hz ->= 120Hz
Frame size 19201080 1920x1080 3840x2160

2000000 7
J GME
1500000 +
g i -
S 1000000 £ —es
E Fl
© J >
[=)] /
/ Percept. -~ "
500000 : = —
/ ¢ T Ours
° ““Hog0p 3840x2160
spec
Figure 3.27 Hardware efficiency comparison.

Spec.v.sgate count
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3.8 Summary of Architecture Design

In this chapter, the system of LCD, specificatidroor design target, DRAM selection
and resource available are introduced at first.aBglysis, there are many issues for
architecture design to be concerned.

We propose a ping-pong two-way scheduling for mo&stimation to eliminate
the dependencies of blocks and pipeline bubblesorBy reading the pixels needed for
4, 2, 1-step convergence and 8x8 sum for 8-step,radeice a huge amount of
bandwidth and SRAM size. The sum-trees of flexdaeders and accumulators consume
small amount of adders and shared by other modules.

For Marcov random field correction, a motion vecgrouping algorithm is
proposed for bandwidth and cycles reduction. Theesponding architecture is also
used for discontinuity energy generation and mediiéer. For MRF iteration 1 and
iteration 2, we employ the computed results tohertreduce the resource consumption.
The SRAM and computation unit are shared here mithion estimation.

Multi-frame motion compensation is seldom discdsgehardware. For reaching
the minimum resource requirement, we propose arrgg/ motion compensation
scheduling. The proposed architecture is also resple for block-based through
motion vector mapping. For writing 8x2 pixels dirae, we provide a pixel interleaves
on SRAM.

We create queues in DRAM saving sub-blocks’ infation for post-processing.
By parallelism analysis, we can deal with the worase of sub-blocks without
additional hardware cost for computation. There specified pixel interleaves of
bilateral motion vector search and overlapped blockion compensation for minimum
amount of bandwidth consumption.

The simulation results show that the cycles antib@dth consumed are under the
upper bound of resource available. The final imgetation results indicate that our
design only consumes 274K gate count and 10K hgtesport SRAM and supports
24Hz to 120Hz and 60Hz to 120Hz up-conversion Kx2K resolution. Comparison to

other design, the proposed architecture has thehbedware efficiency.
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Table 3.5 shows the overall resource saving ararackeristics of proposed
architecture. Lots of cycles and bandwidth are ddwe our hardware design of each
part. With the help of ping-pong two-way scheduliadl of the schedules are tight.
Sum-trees and accumulators are shared by ME and (dR& shared by down-sample,
8x8 sum, bi-MSEA and boundary error). MC sharesattohitecture with MV mapping,
and Post-processing consumes no additional areaeac by parallelism analysis. The
SRAM is also shared by all of the modules, withfedtént pixel arrangements for

applications.

Table 3.5 Overall resource saving and charactesisti the architecture.

ME MRFx3

Direct Proposed Direct proposed Direct proposed

576 cycles 266 cycles 1536 cycles 459 cycles 6.2Mcycles 4.0Mcycles 4069 sub-block 1015 sub-blocks

/block /block /block /block -24Hz -24Hz -24Hz -60Hz
Cycles
all of the schedules are tight
Area sum-trees & accumulators are shared shared with MV mapping parallelism analysis
Bandwidthy 18MB 7.2MB 48MB 8.6MB 99.5MB 64.8MB Only read & write the required data
Shared by all modules
SRAM Pixel arrangement

82944 Byte 9984 Byte
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Chapter 4 Conclusion and Future Work

In this thesis, we introduce the motion blur prablen LCD, and the general steps of
frame rate up-conversion technique. For our desigtivation and target, we develop
an algorithm and architecture implementation foH240 120Hz and 60Hz to 120Hz
up-conversion with resolution 3840x2160.

For the FRUC algorithm design, we propose a troéan based predictive square
search algorithm for motion estimation with 32x3@d size, 8x8 MSEA criterion and

+128x128 search range. The experiments show that thereataleast 60% blocks

converge at predictor, thus the algorithm is vesy-tost. For motion vector processing,
we apply Marcov random field modeling and minimibe energy by low-cost ICM.
The low-cost ICM is true motion based, reducingrgpeomputation from 65536 to 9
and preventing over-smoothing. The general typelsl\éfmapping are not perfect, so
we use block-based through motion compensatioehigtan the three general types. A
precise artifact detection technique is providethwinly 12% of sub-blocks labeled. In
post-processing, bilateral search considers oariydboundary error criterion finds
motion vectors with the least block artifact, anBNDC blur the necessary region with
block artifact.

For the proposed architecture, ping-pong two-wakieduling eliminates the
dependencies of blocks for data pre-fetching. Thmelipe bubbles are therefore
dissolved. The careful arrangement of SRAM redubessize from 90K byte to 10K
byte. The sum-trees with flexible adder and accabous consume only 85 adders and
shared by lot of modules. MV grouping for MRF catien reduces cycles from 1536
to 459 cycles per block and bandwidth from 48MB3t6MB for three iterations. Its
architecture is shared for MRF energy computing aradlian filter. The inverse-MC
scheduling requires near minimum amount of resqQue@uces cycles from 6.2M to
4.0M cycles and bandwidth from 99.5MB to 64.8MB eTdrchitecture is also shared by
MV mapping. In post-processing, parallelism analyisi performed for minimum cost
of bilateral search. There are specified pixelrieteve for boundary error computing
and OBMC.

By subjective evaluation, above 79% subjects pot@osed algorithm as the best

choice. By objective evaluation, there is 0.63 #75PSNR gain to other algorithms.
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Simulation results indicate that the proposed &chire consumes reasonable amount
of cycles and bandwidth. The final implementatiesults show that our design only
consumes 274K gate count and 10K byte single peANS. By supporting 24Hz to
120Hz and 60Hz to 120Hz up-conversion for 4Kx2Koheson, our implementation

has the best hardware efficiency comparing to pres/ivorks.

For the possible future works, we list in the daling:

® There may be a criterion for scene change detectmnexample: threshold of
MRF energy. The scene change detection is impodente we don’t want to
interpolate frames between two non- successivedsam

® The block size can be smaller by repeating sinoifgaration of proposed sub-block
division on labeled sub-blocks.

® Taking the perceptual criterion into account fortimo vector refinement in
post-processing may be a good way for enhancingisiual quality.

® Among all the FRUC discussions, the FRUC algorittamesoperating step by step.
There is no modeling-based FRUC framework. If we o@del the inter-frames
well, then finding the motions, occlusion labeld grxels value of inter-frames
such that the modeling energy is minimized is etpahterpolate the inter-frames.
The modeling-based FRUC is more theoretical andbeapixel-based, and surely

have more complexity.
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