國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering
College of Electrical Engineering \＆Computer Science
National Taiwan University
master thesis

一個在切換頻率中利用電流平均控制來減低暫態漣波的控制方法之直流降壓式轉換器
 A Current Average Control Method for Transient－Ripple Reduction in Frequency Hopping DC－DC Converters
 戴嘉南

 Tai Jia－Nan

 Tai Jia－Nan}

指導教授：陳信樹 博士
 Advisor ：Chen Hsin－Shu，Ph．D．

中華民國100年1月
January， 2011

國立臺灣大學（碩）博士學位論文
口試委員會審定書
一個在切換頻率中利用電流平均控制來減低暫態漣波的控制方法之直流降壓式轉換器
A Current Average Control Method for Transient－Ripple Reduction in Frequency Hopping DC－DC Converters

本論文係戴嘉南（r97943143）在國立臺灣大學電子所完成之碩士學位論文，於民國100年1月26日承下列考試委員審查通過及口試及格，特此證明

口試委員：

系主任，所長 \qquad張蠗 之

A Current Average Control Method for Transient-Ripple Reduction in Frequency Hopping DC-DC Converters

By
Jia-Nan Tai

THESIS

Submitted in partial fulfillment of the requirement for the degree of Master of Science in Electronics Engineering at National Taiwan University Taipei, Taiwan, R.O.C.

Jan. 2011

Approved by :

Advised by:

Approved by Director :

致謝

這本論文能順利完成，首先要感謝的是指導教授陳信樹博士這些日子來的指導和照顧，老師豊富的經驗替我解決了不少研究上所遇到的問題，也教導我正確的研究態度及獨立研究的能力，讓我的研究可以順利完成。此外，感謝陳怡然教授及陳昭宏教授在我碩士生涯中不曾間斷的給予指導，使得我在研究之路上不致偏離，同時也感謝以上三位教授㧈冗擔任我的口試委員，他們寶貴的意見使我獲益良多。

感謝實驗室的學長，同學，學弟們，宏維，菁華，裕翔，泓霖，偉賢，偉志，威廷，碩宏，依峻，宏彥，邦寧，傑帆及學弟們。另外感謝逸需，邦榮，濠瞬，立偉，凱宇，立言，后鍾，感謝你們在研究上的幫助。

感謝大學同學博煌，國瑋，運鋼，有嘉，雖然在就讀研究所後研究領域不盡相同，但是感謝你們在百忙之中抽空排解我的鬱悶

碩士生涯路途漫漫，求學之外我想特別感謝一個人：郁文，在紙醉金迷的台北，孤單地困在我編織的封閉世界中，和一隻貓味Hiro癡癡地等著我。我希望能像這本論文一樣，痛苦會過去，美會留下

最後，感謝我的父母，不肖的我延長了您們的工作年限，希望我的畢業能為家带來些微的幫助，能讓我報答養育之恩

摘要

本論文関述一個切換頻率中利用電流平均控制來減低暫態漣波控制方法的直流電壓轉換器，並以台積電 $0.35-\mu \mathrm{m} 2 \mathrm{P} 4 \mathrm{M} 3.3 \mathrm{~V} / 5 \mathrm{~V}$ Mixed Signal CMOS製程製作。當使用切換頻率技術時，由於電感的電流連續性，使得切換頻率前和切換頻率後所產生的電感電流交流值不同，在輸出電容產生出一暫態漣波電壓，此論文提出一個如何控制電感電流才能使之無此暫態漣波電壓，其方式為利用延長或縮短充電（放電）電流的時間來達到平均電感電流，此時間為切換頻率前後充電（放電）電感電流時間的平均值，實現方式是利用額外電路準確計算此時間後，以脈衝的型式插入原本的脈衝調變訊號。

依據量測的結果，本晶片的切換頻率設定在 $880 \mathrm{k}-3.4 \mathrm{MHz}$ ，暫態漣波在頻域上改進 14.1 dB ，時域上改進 88% 。跳頻技巧最多可使EMI降低 23.55 dB ，功率效率最高為 90% 。晶片總面積占 $2.126 \mathrm{~mm}^{2}$ ，而其它的量測結果也包含在本論文内。

Abstract

This thesis presents an inductor current average control method for transient-ripple reduction in frequency hopping DC-DC converters and is implemented in a standard $0.35-\mu \mathrm{m} \quad 2 \mathrm{P} 4 \mathrm{M}$ 3.3V/5V Mixed Signal CMOS process. When using the frequency-hopping technique, there is transient ripple on the output voltage due to the difference of inductor current between two different frequencies. This thesis proposes a method which predicts the average inductor current and inserts a calculated-width pulse between two frequencies to reduce the transient ripple on the output voltage.

Measurement results are performed with the switching frequency of this chip operating between 0.88 MHz and 3.4 MHz . The transient ripple on the output voltage is reduced by 88% and the undesired spur is reduced by 14.1 dB . The frequency-hopping technique achieves 23.55 dB reduction of the EMI spur magnitude. The maximum power efficiency achieved 90%. The chip occupied $2.126 \mathrm{~mm}^{2}$, and the other detailed measurements are included in this thesis.

Table of Contents

致謝 I
摘要 II
Abstract III
Table of Contents IV
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1．1 Motivation 1
1．2 Thesis Organization 2
Chapter 2 Fundamental of DC－DC Buck Converter． 3
2．1 Performance Metrics 3
2．1．1 Efficiency 3
2．1．2 Regulation 4
2．1．2．1 Line Regulation 4
2．1．2．2 Load Regulation 5
2．1．2．3 Temperature Regulation 5
2．1．3 Transient Response 6
2．2 Architecture of DC－DC Converters 8
2．2．1 DC－DC Buck Converter Operation 8
2．2．2 Estimation of Output Voltage Ripple 13
2．2．3 Feedback－Loop Stabilization 15
2．3 Variable Frequency 18
2．3．1 Random Switching 19
2．3．2 Frequency Hopping 21
Chapter 3 Proposed Architecture 23
3．1 Introduction 23
3．2 Specification of DC－DC Buck Converter 23
3．3 System Architecture 24
3．4 Inductor Current Average Control（ICAC） 25
3．4．1 Hopping in Off Duty Cycle Period 28
3．4．1．1 Hopping frequency from low to high 28
3．4．1．2 Hopping frequency from high to low 31
3．4．2 Hopping in On Duty Cycle Period 32
3．4．2．1 Hopping frequency from low to high \＆from high to low 32
Chapter 4 Circuit Implementation and Simulation Results 34
4．1 Amplifier Circuit 35
4．1．1 Error Amplifier 35
4．1．2 Operational Amplifier． 37
4．2 Comparator Circuit 40
4.3 Ramp Generator Circuit 41
4.4 Digital-to-Analog Converter (DAC) 45
4.5 Inductor Current Average Control (ICAC) 47
4.5.1 Sample and Hold Circuit (S\&H) 49
4.5.2 Calculated Pulse Circuit 51
4.5.3 Consideration of Delay Time. 55
4.6 Gate Driver with Dead Time Control 58
4.7 Power Stage Circuit 60
4.8 Simulation Results 63
4.8.1 Frequency Hopping 64
4.8.1.1 Spectrum 65
4.8.1.2 Transient Ripple on the Output Voltage 66
4.8.2 Efficiency 69
4.9 Performance Summary in simulation 70
Chapter 5 Experiment Results. 71
5.1 Measurement Setup 71
5.2 Measurement Results 78
5.2.1 Static Measurement before using the Frequency-Hopping Technique 78
5.2.2 Frequency Hopping 79
5.2.2.1 Spectrum 79
5.2.2.2 Transient Ripple on the Output Voltage 82
5.2.3 EMI Reduction 88
5.2.4 Efficiency 90
5.3 Performance Summary. 92
Chapter $6 \quad$ Conclusion and Future Work. 93
6.1 Conclusion 93
6.2 Future Work 93
Bibliography 94

List of Figures

Chapter 2

Fig. 2.1 The definition of efficiency in the switching regulator................................ 4
Fig. 2.2 Circuit diagram of the switching converter.. 7
Fig. 2.3 The transient response of output voltage when a dynamic load is applied........ 8
Fig. 2.4 Buck converter (a) the switch in 1 (b) the switch in $2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

Fig. 2.6 Output characteristic of buck converters... 10
Fig. 2.7 (a) The diagram and waveforms of continuous mode (b) The waveforms of
discontinuous mode.. 12
Fig. 2.8 Buck converter (a) circuit (b) steady-state inductor current waveform........... 13
Fig. 2.9 Output capacitor voltage and current waveforms
for the buck converter in Fig.2.6... 14
Fig. 2.10 The simply operation of the PWM converter.. 16
Fig. 2.11 The transfer function of feedback system... 16
Fig. 2.12 Type II compensator with two poles and a zero...................................... 17
Fig. 2.13 Type III compensator with three poles and two zeroes............................. 18
Fig. 2.14 Switching parameters.. 19

Fig. 2.16 Output spectrum of different switching schemes.................................. 22
Fig. 2.17 Transient waveform of different switching schemes............................. 22
Chapter 3
Fig. 3.1 Structure of a conventional PWM buck converter................................... 25
Fig. 3.2 Energy spread to multiple frequencies with the FH technique.................... 26
Fig. 3.3 Transient waveforms of output voltage, inductor current and
PWM signal in a conventional converter... 27
Fig. 3.4 Transient waveforms of output voltage, inductor current and
PWM signal in the converter with the proposed ICAC technique.......................... 28
Fig. 3.5 (a) Conventional and (b) proposed transient inductor current that hops frequency from low to high in off duty cycle.. 29
Fig. 3.6 (a) Conventional and (b) proposed transient inductor current that hops
frequency from high to low in off duty cycle period 32
Fig. 3.7 Proposed transient inductor current that hops frequency from low to high in on duty cycle period 33
Fig. 3.8 Proposed transient inductor current that hops frequency from high to low in on duty cycle period 33
Chapter 4
Fig. 4.1 Block diagram of the FH buck converter with ICAC controller 34
Fig. 4.2 Schematic of the error amplifier. 36
Fig. 4.3 Frequency response of the error amplifier 36
Fig. 4.4 Schematic of folded-cascade operational amplifier 38
Fig. 4.5 Frequency response of the OP-Amp without output buffer 39
Fig. 4.6 Frequency response of the OP-Amp with output buffer 39
Fig. 4.7 Common- drain output buffer (a) circuit. (b) small-signal equivalent circuit 40
Fig. 4.8 Schematic of the comparator 41
Fig. 4.9 Schematic of ramp generator. 43
Fig. 4.10 The circuit of SR latch 43
Fig. 4.11 The simulation result of ramp generator 44
Fig. 4.12 The simulation of frequency considering process variation 45
Fig. 4.13 Schematic of DAC 46
Fig. 4.14 INL and DNL of DAC 46
Fig. 4.15 Ramp generator without $\mathrm{S} \& \mathrm{H}$ in front end 48
Fig. 4.16 Ramp generator with S\&H in front end and calculated pulse circuit in parallel 48
Fig. 4.17 Circuit of the sample and hold 49
Fig. 4.18 Diagram of the detector of hopping 49
Fig. 4.19 Diagram of the control signal of sample time 50
Fig. 4.20 Relationship between voltage and time length in a ramp signal 51
Fig. 4.21 (a) Diagram of the additional ramp generators (b) Output of additional ramp generators 52
Fig. 4.22 Diagram of full Ramp generators 53
Fig. 4.23 Diagram of the calculated-width pulse circuit 53
Fig. 4.24 Transient waveform of ICAC 54
Fig. 4.25 Waveform of calculated pulse including delay of components 55
Fig. 4.26 Transient waveform of offset of the comparator 57
Fig. 4.27 Schematic of the gate driver with dead time control 59
Fig. 4.28 The simulation result of the gate driver with dead time control 60
Fig. 4.29 Schematic of the power stage. 61
Fig. 4.30 Simulation of on-resistance of PMOS 62
Fig. 4.31 Floor plan of the power stage on chip 63
Fig. 4.32 Output spectrums of the buck converter 65
Fig. 4.33 The undesired spur magnitude versus Δf. 66
Fig. 4.34 FH transient responses (a) Without ICAC (b) With ICAC 67
Fig. 4.35 Simulated and analytical results of the transient-ripple output voltage versus ΔT. 68
Fig. 4.36 Improvement of transient ripple on the output voltage versus ΔT. 68
Fig. 4.37 Simulated efficiency of using ICAC and without ICAC (a) with linear scale. (b) with \log scale 69
Chapter 5
Fig. 5.1 The floor plan of the DC-DC buck converter 71
Fig. 5.2 Chip microphotograph 72
Fig. 5.3 Layout for DC-DC buck converter with pin labels. 72
Fig. 5.4 The measurement environment setup 74
Fig. 5.5 (a) output stage (b) equivalent circuit of output stage. 74
Fig. 5.6 The schematic of power supplies and reference voltages on PCB 76
Fig. 5.7 The schematic of DC-DC converter side. 76
Fig. 5.8 The test board. 77
Fig. 5.9 Switching frequency relates to DFbit 78
Fig. 5.10 Output voltage relates to DVbit 79
Fig. 5.11 Frequency hopping between 0.85 MHz and 3.4 MHz 80
Fig. 5.12 Frequency hopping between 1.7 MHz and 2.4 MHz 80
Fig. 5.13 Spur magnitude sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$ 81
Fig. 5.14 Spur reduction sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$ 81
Fig. 5.15 Transient waveform of frequency hopping from 0.88 MHz to 3.415 MHz
(a) without using ICAC and (b)with ICAC83Fig. 5.16 Transient waveform of frequency hopping from 3.415 MHz to 0.88 MHz
(a) without using ICAC and (b) with ICAC 83
Fig. 5.17 Comparison between conventional and proposed methods as sweeping different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$ 85
Fig. 5.18 Transient ripple on the output voltage sweeps different frequencies with $f_{\text {center }}$ $=2 \mathrm{MHz}$ 86
Fig. 5.19 Improvement sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$ 86
Fig. 5.20 Comparison between conventional and proposed method as sweeping different supply voltage $V_{I N}$ at $v_{O U T}=1.8 \mathrm{~V}$. 87
Fig. 5.21 Transient ripple on the output voltage sweeps different supply voltage $V_{I N}$.. 88
Fig. 5.22 Transient ripple on the output voltage sweeps different load current I_{O} 88
Fig. 5.23 Transient waveform of seventeen different switching frequencies 89
Fig. 5.24 Output spectrum using the frequency-hopping technique with seventeen switching frequencies 89
Fig. 5.25 The spur magnitude of EMI with various of number of switching frequencies using the frequency-hopping technique. 90
Fig. 5.26 Efficiency at $v_{O U T}=2.5 \mathrm{~V}$ and $V_{I N}=5 \mathrm{~V}$ (a) with linear scale (b) with \log scale 91

List of Tables

Chapter 2

Table 2.1 Characteristics of different random switching schemes 20
Table 2.2 Comparison of different switching schemes 22
Chapter 3
Table 3.1 Specification of designed DC-DC buck converter 24
Chapter 4
Table 4.1 OP types used in this work 38
Table 4.2 The truth table of SR latch. 43
Table 4.3 Conclusion of control signal of sample time 50
Table 4.4 Delay time of comparators 57
Table 4.5 Delay time of logic gate circuits 58
Table 4.6 Size of power transistors 63
Table 4.7 Resistance of power stage 63
Table 4.8 Design parameters and pin connections of the simulation 64
Table 4.9 Performance summary in simulation 70
Chapter 5
Table 5.1 The function of the pin in the DC-DC buck converter 73
Table 5.2 The components on PCB for testing the DC-DC converter. 77
Table 5.3 Performance summary in measurement 92
Table 5.4 Performance comparison. 92

Chapter 1 Introduction

1.1 Motivation

The electromagnetic interference (EMI) problem of switched-mode power supplies [1] has received more and more attention with the introduction of the international electromagnetic compatibility (EMC) directive. The control of the switched-mode power supplies is generally associated with the use of the pulse-width-modulation (PWM) technique. Several variable frequency (VF) methods have been proposed for EMI-reduction such as random switching frequencies [2]-[4], frequency hopping (FH) [5]-[6], sigma-delta modulation [7]. While using these VF methods, there is a latent problem that the inductor current ripple varies with different frequencies. This variation results in an undesired spur in the frequency spectrum and a transient ripple on the output voltage.

These variable frequency techniques are widely used in mobile systems where different spectrum-sensitive circuits such as communication ICs are major application. Further, reducing the size of the passive filter in power converter design becomes an important consideration because of these mobile systems and portable devices. Unfortunately, when the inductor of the passive filter in buck converters is decreased, the inductor current ripple increases. Therefore, the undesired spur must be taken into account. Even if it is utilized in baseband applications, the transient ripple on the output voltage is still undesired in a typical DC-DC converter. This thesis presents an inductor current average control (ICAC) method for transient-ripple reduction in frequency hopping DC-DC converters. By using this method, it reduces the undesired spur without
increasing the size of the passive filter.

1.2 Thesis Organization

This thesis is organized as six chapters. In Chapter 2, the fundamental specification and requirements of the DC-DC converters are investigated such that limitations and trades-offs for designing can be understood easily. In Chapter 3, the algorithm for the proposed technique in a PWM DC-DC buck converter using variable frequency technique will be demonstrated and the detailed operations will be introduced. For simplicity, use the frequency-hopping technique to represent the variable frequency technique. In Chapter 4, the design and analysis of the circuits in each building block will be described. Furthermore, the simulation result will also be presented. In Chapter 5, the measurement results of the fabricated prototype DC-DC buck converter will be presented. Chapter 6 offers some conclusions and recommendations for future work.

Chapter 2 Fundamental of DC-DC Buck Converter

2.1 Performance Metrics

2.1.1 Efficiency

The efficiency of DC-DC converters is an important topic in electronic system. In general, the DC-DC converter converts a dirty voltage and current into a clean voltage and current. Therefore, the regulator is equal to a medium in electronic system. Since it is only a medium, the power loss is as less as it can be. The less energy the DC-DC converter requires, the more energy can be obtained by the other main electronic circuits. If the DC-DC converter has low efficiency, not only power is wasted but also unnecessary heat is generated, which will increase unnecessary cost for cooling and decrease reliability.

The efficiency of a switched-mode DC-DC converter is defined as the ratio of the output power and input power as follows:

$$
\begin{equation*}
\eta=\frac{v_{\text {OUT }} \times i_{\text {OUT }}}{\left(V_{I N} \times i_{\text {Quiescent }}\right)+\left(R_{\text {onp }} \times i_{P}^{2}+R_{\text {onn }} \times i_{N}^{2}\right)+P_{\text {others }}+\left(v_{\text {OUT }} \times i_{\text {OUT }}\right)} \times 100 \% \tag{2.1}
\end{equation*}
$$

where the definition of $V_{I N}, v_{\text {OUT }}, i_{\text {OUT }}, i_{\text {Quiescent }}, R_{\text {onp }}, R_{\text {onn }}, i_{P}$ and i_{N} are shown in Fig. 2.1. $V_{I N}$ is the unregulated voltage and $v_{O U T}$ is the regulated voltage. $i_{I N}$ is the supply current and $i_{\text {OUT }}$ is the load current. $R_{\text {onp }}, i_{P}, R_{\text {onn }}$ and i_{N} are the on-resistance and current of power transistors M_{P} and M_{N}, respectively. $i_{\text {Quiescent }}$ is the current flowing into the feedback circuit. In the denominator, the first term $V_{I N} \times i_{\text {Quiescent }}$ means quiescent power consumption which is the power consumption in the chip when there is no output
current (open circuit). The second term $R_{o n p} \times i_{P}{ }^{2}+R_{o n n} \times i_{N}{ }^{2}$ means power consumption in power transistors including conduction loss and switching loss, and the third term $P_{\text {others }}$ means power consumption such as $I-V$ overlap loss, current ripple loss and gate-driving loss. According to the above equation, the first term to the third term in denominator must be minimized to improve efficiency. Saving power consumption in feedback circuit decreases the value of the first term.

Fig. 2.1 The definition of efficiency in the switching regulator

2.1.2 Regulation

This is an index about influence of environment on the output voltage. It is the measurement of how close the output voltage stays to its nominal value over full range of operating conditions. In general, it is divided into three components: line, load, and temperature regulation [8].

2.1.2.1 Line Regulation

Line regulation is the effect the output voltage as varying the input voltage. There
are usually two methods to define line regulation. The first definition line regulation is percentage of changes in output voltage versus changes in input voltage. It is defined as

$$
\begin{equation*}
L N R=\left.\left(\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}\right)\right|_{I_{o}=\text { const }}\left(\frac{\mathrm{mV}}{\mathrm{~V}}\right) \tag{2.2}
\end{equation*}
$$

The second definition percentage line regulation includes the parameter of output nominal voltage into the first definition. So its value is highly related to output dc voltage. It is defined as

$$
\begin{equation*}
P L N R=\left.\left(\frac{\frac{\Delta V_{\text {out }}}{V_{\text {out }, \text { nom }}} \times 100 \%}{\Delta V_{\text {in }}}\right)\right|_{I_{o}=\text { const }}\left(\frac{\%}{\mathrm{~V}}\right) \tag{2.3}
\end{equation*}
$$

2.1.2.2 Load Regulation

Load regulation is the percentage change in the steady state output voltage when the load current changes. There are usually two methods to define load regulation. The first definition load regulation is as

$$
\begin{equation*}
L O R=\left.\left(\frac{\Delta V_{\text {out }}}{\Delta I_{O}}\right)\right|_{V_{\text {in }}=\text { const }}\left(\frac{\mathrm{mV}}{\mathrm{~A}}\right) \tag{2.4}
\end{equation*}
$$

The second definition percentage load regulation includes the parameter of output nominal voltage into the first definition. So its value is highly related to output dc voltage. It is defined as

$$
\begin{equation*}
P L O R=\left(\frac{V_{\text {out }(\min L)}-V_{\text {out }(F L)}}{V_{O(F L)}}\right) \times\left. 100 \%\right|_{V_{i n}=\text { const }}(\%) \tag{2.5}
\end{equation*}
$$

2.1.2.3 Temperature Regulation

Temperature Regulation is the effect of change in environmental temperature on the output voltage. The definition thermal regulation is as

$$
\begin{equation*}
\left.T H R \equiv \frac{\frac{\Delta V_{O}}{V_{\text {Onom }}} \times 100 \%}{\Delta P_{D}}\right|_{I_{o}=\text { consti } V_{i n}=\text { const }}\left(\frac{\%}{\mathrm{~W}}\right) \tag{2.6}
\end{equation*}
$$

Although many factors influence regulation of output voltage, the DC-DC converter has feedback circuit to compensate for such changes and keep the output within specified limits.

2.1.3 Transient Response

Transient Response is defined as a variation of output voltage when load current suddenly changes from one level to another level. The output voltage drops when load current steps up or increases when load current steps down since the additional or insufficient current supplied from the output capacitor. The transient response is a function of the bandwidth of DC-DC converter, output inductor, output capacitor, equivalent series resistance (ESR) of output capacitor and the load current as shown in Fig. 2.2. In past, this parameter is often ignored in industry. But in present age of high speed electronic manufactures, this parameter is more and more important because most kinds of electronic manufacture need to supply a large number of current in few microseconds even in few nanoseconds. If the DC-DC converter does not keep its output voltage which is supplied to electronic manufactures not change drastically in a big variation of load current, it will highly affect performance of electronic manufactures.

Fig. 2.2 Circuit diagram of the switching converter
Fig. 2.3 shows time characteristic of the transient response. During the time Δt_{1}, a large current is pulled from the load, the finite bandwidth of the switching converter is too slow to provide enough output current to the load. Therefore, the output capacitor must compensate the difference between switching converter current and load current. As a result, the voltage ΔV_{l} can be calculated as

$$
\begin{equation*}
\Delta V_{1}=\frac{\Delta I \times \Delta t_{1}}{C_{O}}+\Delta I \times E S R \tag{2.7}
\end{equation*}
$$

The time period Δt_{l} is mainly determined by the bandwidth of the switching converter. Besides, a large output capacitor will keep on providing charges to the load and holding output voltage without transient spur. The sum of Δt_{1} and Δt_{2} is the "Recovery Time" and it takes for the output to return within the specified regulation limits. ΔV_{l} is "Deviation of Output Voltage" between two different load current ΔI. When the load steps down suddenly, the output voltage will jump. Before the inductor current is back to steady state, the excessive current charges the output capacitor. Therefore, ΔV_{2} can be calculated as

$$
\begin{equation*}
\Delta V_{2}=\frac{\Delta I \times \Delta t_{3}}{C_{o}}+\Delta I \times E S R \tag{2.8}
\end{equation*}
$$

The length of the time period Δt_{2} and Δt_{4} is dependent on the time required for pass power transistors, M_{P} and M_{N}, in Fig. 2.1 to charge or discharge the output capacitor, and it is also dependent on the phase margin of the whole circuit loop.

Fig. 2.3 The transient response of output voltage when a dynamic load is applied

2.2 Architecture of DC-DC Converters

A DC-DC converter is composed of a power stage and a feedback network. The power stage contains power transistors and an output filter. In the switched-mode DC-DC converter, the power stage contains power PMOS and NMOS transistors and the output filter which consists of an inductor L and a filtering capacitor C. Many feedback networks have been proposed and their goal in common is to provide a stable output voltage. These architectures will be discussed in detail as following.

2.2.1 DC-DC Buck Converter Operation

The buck converter, is a well-known converter that is capable of converting a higher voltage into a lower voltage. The switch produces a rectangular waveform $V_{s}(t)$ as illustrated in Fig. 2.4. The voltage of $V_{s}(t)$ is equal to the dc input voltage $V_{I N}$ when the switch is in position 1, and is equal to zero when the switch is in position 2. In practical, the switch is realized using power semiconductor devices, such as transistors and diodes, which are controlled to turn on and turn off as required to perform the function of the ideal switch. The switching frequency $f_{\text {sw }}$, equals to the inverse of the
switching period T_{s}, generally lies in the range of 10 kHz to 10 MHz , depending on the switching speed of the semiconductor devices. The duty ratio D is the fraction of time that the switch spends in position 1, and is a number between zero and one. The complement of the duty ratio D^{\prime} is defined as (1-D).

(a)

(b)

Fig. 2.4 Buck converter (a) the switch in 1 (b) the switch in 2

Fig. 2.5 Steady-state output waveform $V_{s}(t)$
The switch reduces the dc component of the voltage: the switch output voltage $V_{s}(t)$ has a dc component that is less than the converter dc input voltage $V_{I N}$. From Fourier analysis, we know that the dc component of $V_{s}(t)$, as shown in Fig. 2.5, is given by its
average value $\left\langle V_{S}\right\rangle$

$$
\begin{equation*}
\left\langle V_{S}\right\rangle=\frac{1}{T_{S}} \int_{0}^{T_{S}} V_{S}(t) d t=D V_{I N} \tag{2.9}
\end{equation*}
$$

So the average value, or dc component, of $V_{s}(t)$ is equal to the duty cycle times the dc input voltage $V_{I N}$. The output voltage is reduced from the input voltage by a factor of D.

What remains is to insert a low-pass filter as shown in Fig. 2.4. The filter is designed to pass the average of $V_{s}(t)$ but reject the components of $V_{s}(t)$ at the switching frequency and its harmonics. The output voltage $V_{\text {out }}$ is then essentially equal to the average of $V_{s}(t)$. Fig. 2.6 depicts the control characteristic of the converter and the buck converter has a linear control characteristic. Note that the output voltage is less than or equal to the input voltage, since $0 \leq D \leq 1$, Feedback systems are constructed to adjust the duty cycle D for regulating the converter output voltage. Inverters in digital controlled or error amplifiers in analog controlled could be built, in which the duty cycle varies slowly with time depending on feedback bandwidth.

Fig. 2.6 Output characteristic of buck converters
The conventional buck converter with inductor current and voltage waveforms shows in the Fig. 2.7. The transistor M1 is usually switched at high frequency to produce a chopped output voltage V_{s}. This is then filtered by the LC filter to generate a smooth load voltage $V_{\text {out }}$. When transistor M1 turns on, $V_{s}=V_{\text {in }}$, the voltage across the inductor
is:

$$
\begin{equation*}
V_{L}=L \times \frac{d i}{d t}=V_{\text {in }}-V_{\text {out }} \tag{2.10}
\end{equation*}
$$

As a result, I_{L} increases linearly. When transistor M1 turns off, the current through the inductor cannot instantaneously fall to zero, so the diode provide a return path for the current to circulate through the load. During this period, $V_{s}=0$, so the voltage across the inductor is:

$$
\begin{equation*}
V_{L}=L \times \frac{d i}{d t}=-V_{\text {out }} \tag{2.11}
\end{equation*}
$$

So I_{L} decreases linearly. The peak-to-peak current ripple is:

$$
\begin{equation*}
\Delta I=t_{\text {on }} \times \frac{V_{\text {in }}-V_{\text {out }}}{L}=\frac{V_{\text {in }} \times T}{L} \times D \times(1-D) \tag{2.12}
\end{equation*}
$$

Therefore, the maximum current and the minimum current are defined separately as:

$$
\begin{align*}
& I_{\max }=\frac{V_{\text {out }}}{R}+\frac{\Delta I}{2} \tag{2.13}\\
& I_{\min }=\frac{V_{\text {out }}}{R}-\frac{\Delta I}{2}
\end{align*}
$$

In Fig. 2.7(a), the continuous conduction mode (CCM) means that the minimum inductor current never falls to zero. When the minimum current falls to zero, it is discontinuous conduction mode (DCM) as shown in Fig. 2.7(b). In the steady state condition, the average voltage across an inductor over a complete is zero.

(a)

(b)

Fig. 2.7 (a) The diagram and waveforms of continuous mode (b) The waveforms of discontinuous mode

In DCM,

$$
\begin{equation*}
\left\langle V_{L}(t)\right\rangle=D_{1}\left(V_{\text {in }}-V_{\text {out }}\right)+D_{2}\left(-V_{\text {out }}\right)+D_{3}(0)=0 \tag{2.14}
\end{equation*}
$$

Solution for conversion ratio yields

$$
\begin{equation*}
\text { Conversion ratio }=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{D_{1}}{D_{1}+D_{2}} \tag{2.15}
\end{equation*}
$$

From Fig. 2.7(b), the average inductor current is calculated:

$$
\begin{gather*}
\frac{1}{T_{S}} \int_{0}^{T_{S}} i_{L}(t) d t=\frac{1}{T_{S}}\left[\frac{1}{2} i_{\text {peak }}\left(D_{1}+D_{2}\right) T_{S}\right] \tag{2.16}\\
\text { Average inductor current }=\frac{V_{\text {out }}}{R}=\left(V_{\text {in }}-V_{\text {out }}\right)\left(\frac{D_{1} T_{S}}{2 L}\right)\left(D_{1}+D_{2}\right)
\end{gather*}
$$

Elimination of D_{2} from conversion ratio equation and average inductor current equation, and solution for the conversion ratio $V_{\text {out }} / V_{\text {in }}$, yields

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{2}{1+\sqrt{1+\frac{4 K}{D_{1}^{2}}}} \text {, where } K=2 L / R T_{S} \tag{2.17}
\end{equation*}
$$

The result of conversion ratio $M(D)$:

$$
\left\{\begin{array}{cc}
D & \text { for } \mathrm{CCM} \tag{2.18}\\
1+\sqrt{1+\frac{4 K}{D_{1}^{2}}} & \text { for } \mathrm{DCM}
\end{array}\right.
$$

2.2.2 Estimation of Output Voltage Ripple

Considering the buck regulator of Fig. 2.8(a), the inductor current $i_{L}(t)$ with a dc component I_{L} and linear ripple of peak magnitude Δi_{L} are shown in Fig. 2.8(b). It is impossible to build a perfect low-pass filter that allows the dc component to pass but completely removes the components at the switching frequency and its harmonics. So the low-pass filter must allow at least some small amount of the high-frequency harmonics generated by the switch to reach the output.

The output voltage switching ripple should be small in any well-designed converter, since the object is to produce a dc output. For example, in a computer power supply having a 3.3 V output, the switching ripple is normally required to be less than a few tens of millivolts, or less than 1% of the dc output.

Fig. 2.8 Buck converter (a) circuit (b) steady-state inductor current waveform In a well designed converter, in which the capacitor provides significant filtering of
switching ripple, the capacitance is chosen large enough that its impedance at the switching frequency is much smaller than the load impedance. Hence nearly all of the inductor current ripple flows through the capacitor, and very little flows through load. As shown in Fig. 2.9, the capacitor current waveform $I_{C}(t)$ is then equal to the inductor current waveform with the de component removed. The current ripple is linear, with peak value Δi_{L}.

Fig. 2.9 Output capacitor voltage and current waveforms for the buck converter in
Fig.2.6
From Fig. 2.9, by the capacitor relation $Q=C V$, the charge q is the integral of the current waveform between its zero crossings.

$$
\begin{align*}
q & =C(2 \Delta V) \tag{2.19}\\
q & =\frac{1}{2} \Delta i_{L} \frac{T_{S}}{2} \tag{2.20}
\end{align*}
$$

Substitution of equation (2.20) into equation (2.21), and solution for the voltage ripple peak magnitude ΔV yields

$$
\begin{equation*}
\Delta V=\frac{\Delta i_{L} T_{S}}{8 C} \tag{2.21}
\end{equation*}
$$

This expression can be used to select a value for the capacitance C such that a given
voltage ripple is obtained. In practical, the additional voltage ripple caused by the capacitor equivalent series resistance (ESR) must also be included. The voltage ripple with ESR is calculated as

$$
\begin{equation*}
\Delta V=i_{C}(t) \times E S R+\frac{\Delta i_{L} T_{S}}{8 C}=\Delta i_{L} \times\left(E S R+\frac{T_{S}}{8 C}\right) \tag{2.22}
\end{equation*}
$$

In general, the ripple caused by first term "ESR" is much greater than caused by second term $\left(T_{S} / 8 C\right)$. So consideration of ESR is essential for estimation of output voltage ripple in switching converter.

2.2.3 Feedback-Loop Stabilization

The simply feedback mechanism is illustrated in Fig. 2.10. The converter is composed of power stage and feedback network. The power stage contains a pair of switching elements, which consists of the power PMOS and NMOS transistors, and an output filter, which consists of an inductor and a capacitor. In feedback network, the difference of $\beta V_{\text {out }}$ which the output voltage is scaled down by resistor series and the reference voltage $V_{r e f}$ is fed to the error amplifier. And then the output of the error amplifier and the ramp will pass through the comparator to define the duty cycle (PWM). The duty cycle controls the duration of the conducted time between the PMOS and the NMOS to achieve desired voltage such that the feedback is finished to regulate the output voltage The feedback system can be described as Fig. 2.11. The transfer function of the $L C$ filter is defined as:

$$
\begin{equation*}
H_{L C}(s)=\frac{1}{s^{2} L C+1} \tag{2.23}
\end{equation*}
$$

The transfer function of the feedback network is defined as:

$$
\begin{equation*}
H_{R R}(s)=\frac{R_{2}}{R_{1}+R_{2}} \tag{2.24}
\end{equation*}
$$

where $T 3(s)=H_{L C}(s) \times H_{R R}(s)$.

Fig. 2.10 The simply diagram of the PWM converter

Fig. 2.11 The transfer function of feedback system
It is fixed-amplitude pulse of adjustable turn-on ratio of the PWM modulator. Therefore, the transfer function of the PWM modulator is defined as:

$$
\begin{equation*}
T 2(s)=\frac{V_{P}}{V_{T}} \tag{2.25}
\end{equation*}
$$

where V_{T} is amplitude of ramp waveform and V_{P} is the amplitude of PWM signal. The $H_{R R}(s)$ and T2(s) do not effect on phase shift but they can decay the DC gain. As a result, there is only error amplifier $\mathrm{T} 1(\mathrm{~s})$ that can provide gain boost to increase the total gain and influence phase for better phase margin.

Next, two types of the error amplifier will be introduced. The first is type II shown in
Fig. 2.12 (a), and it has two poles and one zero. The transfer function is calculated as:

$$
\begin{align*}
\frac{V_{2}}{V_{1}} & =-\frac{1+s R_{2} C_{1}}{s R_{1}\left(C_{1}+C_{2}\right)\left(1+s R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \tag{2.26}\\
& \approx-\frac{1+s R_{2} C_{1}}{s R_{1}\left(C_{1}+C_{2}\right)\left(1+s R_{2} C_{2}\right)} \quad \text {, assume } C_{1} \square C_{2}
\end{align*}
$$

The poles locate at the origin and the frequency $f_{p}=\frac{1}{2 \pi R_{2} C_{2}}$, the zero locates at the frequency $f_{z}=\frac{1}{2 \pi R_{2} C_{1}}$. The frequency response is shown in Fig. 2.10(b) and (c). The gain in the middle frequency is $\frac{R_{2}}{R_{1}}$. As a result, appreciate resistors are chosen, and it can compensate the loss caused by the LC filter.

Fig. 2.12 Type II compensator with two poles and a zero
The second is type III, as shown in Fig. 2.13(a), and it has three poles and two zeros. The transfer function is calculated as:

$$
\begin{align*}
\frac{V_{1}}{V_{2}} & =-\frac{\left(1+s R_{2} C_{1}\right)\left(1+s\left(R_{1}+R_{3}\right) C_{3}\right)}{s R_{1}\left(C_{1}+C_{2}\right)\left(1+s R_{3} C_{3}\right)\left(1+s R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \tag{2.27}\\
& \approx-\frac{\left(1+s R_{2} C_{1}\right)\left(1+s R_{1} C_{3}\right)}{s R_{1}\left(C_{1}+C_{2}\right)\left(1+s R_{3} C_{3}\right)\left(1+s R_{2} C_{2}\right)} \text {,assume } C_{1} \square C_{2} \text {, and } R_{1} \square R_{3}
\end{align*}
$$

The poles locate at the origin, the frequency $f_{p 1} \approx \frac{1}{2 \pi R_{2} C_{2}}$ and the frequency $f_{p 2} \approx \frac{1}{2 \pi R_{3} C_{3}}$. The zeros locate at the frequency $f_{z 1} \approx \frac{1}{2 \pi R_{2} C_{1}}$ and the frequency $f_{z 2} \approx \frac{1}{2 \pi R_{1} C_{3}}$. The gain and phase of this compensator is shown in Fig. $2.13(\mathrm{~b})$ and (c). In summary, the maximum phase boost in type II compensator is 90 degrees, and in type III compensator is 180 degrees. According to stability and cost, the system will use the appropriate compensator to achieve desired performance.

Fig. 2.13 Type III compensator with three poles and two zeroes

2.3 Variable Frequency

In variable frequency techniques, there are four typical random switching methods discussed firstly. Then we will introduce a simplest method which is frequency hopping (FH). Since the main issue in this thesis focuses on the moment between different frequencies, the FH technique is a good choice to represent the main issue. Therefore, here uses the FH technique in following analysis,

2.3.1 Random Switching

There are four general random switching schemes for switched-mode DC-DC converters, including random-pulse-position-modulation (RPPM), random-pulse-widthmodulation (RPWM), and random-carrier-frequency-modulation with fixed-duty-cycle (RCFMFD) and with variable-duty-cycle (RCFMVD), respectively. They are categorized by the random modulation of pulse which drives power transistors. The parameters of pulse are shown in Fig. 2.14. T_{k} is the duration of the k th cycle. ε_{k} is the delay time of the pulse. α_{k} is the duration of the pulse in the k th cycle. d_{k} which equals to α_{k} / T_{k} is the duty cycle period of the switch turning on in the k th period. The amplitude of pulse is rail to rail of input voltage. Their operation will be addressed as following paragraphs.

Fig. 2.14 Switching parameters
RPPM is similar to the classical PWM scheme with constant switching frequency. However, the position of the gate pulse or delay time ε_{k} is randomized within each switching period, instead of commencing at the start of each cycle. RPWM allows the pulse width α_{k} to vary, but the average pulse width is equal to the required duty cycle. RCFMFD exhibits randomized switching period T_{k} and constant duty cycle $d=\alpha_{k} / T_{k}$, while RCFMVD exhibits randomized switching period T_{k} and constant pulse width α. With the aid of Fig. 2.15, the characteristics of the pulse $g(t)$ in each scheme are summarized in Table 2.1.

Fig. 2.15 Switching signal with randomized modulation (a)RPPM (b)RPWM (c)RCFMFD (d)RCFMVD (e)FH

Table 2.1 Characteristics of different random switching schemes

Switching schemes	T_{k}	α_{k}	$d=\alpha_{k} / T_{k}$	ε_{k}
Standard PWM	Fixed	Fixed	Fixed	Fixed
RPPM	Fixed	Fixed	Fixed	Randomized
RPWM	Fixed	Randomized	Randomized	Fixed
RCFMFD	Randomized	Randomized	Fixed	Fixed
RCFMVD	Randomized	Fixed	Randomized	Fixed
FH	Integer sets	Integer sets	Fixed	Fixed

2.3.2 Frequency Hopping

Compared to random switching schemes, the frequency-hopping (FH) technique utilizes couples of fixed switching frequencies to achieve EMI-peak reduction. Using predictable frequencies relax the complexity of the filter. Its characteristic of the pulse is shown in Fig. 2.15(e). The spectrum results of these variable frequency techniques are shown in Fig. 2.16. Table 2.2 aids to understand each reduction for peak of EMI. Another issue is the output voltage in time domain. In Fig. 2.17, these techniques have different phenomena in steady state. The reason is that the duty cycle varies in RPWM and RCFMVD.

Fig. 2.16 Output spectrum of different switching schemes

Table 2.2 Comparison of different switching schemes

Switching schemes	Peak of EMI (dB)
Standard PWM	50.77
RPPM	50.61
RPWM	50.4
RCFMFD	49.56
RCFMVD	48.56
FH	44.48

Fig. 2.17 Transient waveform of different switching schemes

Chapter 3 Proposed Architecture

3.1 Introduction

The inductor current average control (ICAC) is proposed in this paper. When using variable frequency techniques such as random switching or frequency hopping (FH), the inductor current ripple varies as the switching frequency changes. This variation of current ripple results in a transient ripple on the output voltage and undesired spur. In order to reduce this effect, this thesis discusses the best moment between different frequencies and how to implement. As aforementioned, the main issue focuses on the best moment between different frequencies and the FH technique adapts to this situation. Therefore, it discusses the hopping moment in following analysis

3.2 Specification of DC-DC Buck Converter

The preliminary specification of DC-DC buck converter of this design is shown in Table 3.1. This work is used in portable devices to drive power amplifiers of RF circuits such as power-level tracking [14]. Therefore, the off-chip components must be small ($L_{O}>4.7 \mu \mathrm{H}$ and $C_{O}>10 \mu \mathrm{~F}$ in conventional circuits) and the output current is determined by the power amplifier. Output voltage range is utilized to the standby mode and active mode in portable devices for saving power. Input voltage range is determined by the battery type. Switching frequency is usually fixed in typical PWM converters, but in spread spectrum methods such as frequency hopping (FH), it needs a particular frequency range.

Table 3.1 Specification of designed DC-DC buck converter.

Specification	Parameters
Input voltage, $V_{I N}$	$3.6-5 \mathrm{~V}$
Output voltage, $v_{O U T}$	$0.8-3.4 \mathrm{~V}$
Max. output current, I_{O}	450 mA
Output inductor, L_{O}	$1 \mu \mathrm{H}$
Output capacitor, C_{O}	$1 \mu \mathrm{~F}$
Switching frequency, $f_{\text {req }}$	$2-3 \mathrm{MHz}$

3.3 System Architecture

In this chapter, the detailed operation of the chip will be discussed. The typical architecture is illustrated in Fig. 3.1. A PWM buck converter provides a regulated output voltage $v_{\text {OUT }}$ from an unregulated input voltage $V_{I N}$. The PWM controller compares the ramp signal, $v_{\text {ramp }}$, with the output of the error amplifier to generate a square wave, $v_{P W M}$, for voltage regulation. The gate driver drives the power transistors, M_{P} and M_{N}, with dead-time control to avoid a shoot-through current. The power transistors induce current passing a low pass filter which is composed with an inductor, L_{O}, and a capacitor, C_{O} to the load, I_{O}. Note that the frequency of $v_{\text {ramp }}$ determines the operation frequency and is able to change for hopping the frequency.

Fig. 3.1 Structure of a conventional PWM buck converter.

3.4 Inductor Current Average Control (ICAC)

As shown in Fig. 3.2, the FH technique with a lower frequency, f_{1}, and a higher frequency, $f_{2}[5]$ can avoid the energy concentrated on a single frequency at $f_{\text {nohop }}$. Their magnitudes are 6 dB down as two frequencies hopping in comparison with the magnitude at only one frequency. However, the converter output suffers transient ripples for several periods after hopping and it would result in an undesired spur at $f_{\text {trans }}$.

Fig. 3.2 Energy spread to multiple frequencies with the FH technique.

As shown in Fig. 3.3, in conventional PWM DC-DC converters [3], it assumes the frequency hopping at falling edge of ${V_{P W M}}$ for simplicity and random in practically. The inductor current, i_{L}, increases during on duty cycle period, and decreases during off duty cycle period. In the example of Fig. 3.3, $T_{\text {on }, 1}$ and $T_{\text {on }, 2}$ represent the on duty cycle period of switching period at the low and high frequencies respectively. $T_{o f f, l}$ and $T_{\text {off }, 2}$ represent the off duty cycle period of switching period at the low and high frequencies respectively. It reaches its peak/valley currents at the rising edge or the falling edge of $v_{P W M}$. After the hopping moment, the average of the transient inductor current would be different from that of the steady-state inductor current, I_{L}, due to the current continuity property of inductor. But, it would gradually approach I_{L} when the inductor current is back to steady state. Therefore, the difference, $\Delta L_{L, \text { trans }}$, charges (or discharges) C_{O} and generates transient ripple, $\Delta v_{\text {trans }}$ on the output voltage. Its frequency response is the undesired spur at $f_{\text {trans }}$ is dominated by L_{O} and C_{O} [15]. The undesired spur can be reduced by a larger capacitor but it pays a longer time to settle. Or, a larger inductor can be used but it occupies a larger area in the circuit.

An Inductor Current Average Control (ICAC) technique for FH structure is
proposed in this paper. As shown in Fig. 3.4, the best hopping moment could be chosen. The best time length, T_{X}, is calculated to correspond to the best hopping state, which maintains the same I_{L} between the two frequencies. It modulates the off/on duty cycle period to be T_{X} width. The calculated value of T_{X} will be discussed in detail later. In the proposed hopping state, the output ripple voltage is improved by making the amount of charging close to the amount of discharging in the capacitor. If transient ripple on the output voltage is reduced, the undesired spur at $f_{\text {trans }}$ in Fig. 3.4 is also reduced.

The best hopping state can be derived either in the off duty cycle period or the on duty cycle period. The proposed technique for FH from low to high and from high to low in these two different duty cycle periods will be discussed separately. Note that hopping in the off duty cycle period using ICAC is implemented in this chip.

Fig. 3.3 Transient waveforms of output voltage, inductor current and PWM signal in a conventional converter.

Fig. 3.4 Transient waveforms of output voltage, inductor current and PWM signal in the converter with the proposed ICAC technique.

3.4.1 Hopping in Off Duty Cycle Period

As mentioned before, there are two choices to hop, here discusses hopping in off duty cycle period with two parts. One is the frequency hopping from low to high, and another is the frequency hopping from high to low.

3.4.1.1 Hopping frequency from low to high

To reduce the complexity of transient response analysis, the loading is supposed to be a constant current source, I_{O} as indicated in Fig. 3.1. Therefore, the load current I_{O} is equal to the average or dc current I_{L}.

Fig. 3.5 (a) Conventional and (b) proposed transient inductor current that hops frequency from low to high in off duty cycle period.

As shown in Fig. 3.5(a), the net charge on the capacitor, ΔQ, after t_{0} is

$$
\begin{align*}
& \Delta Q=Q_{\text {hop }}+Q_{1}+Q_{2}+\cdots \tag{3.1}\\
& =\left(I_{\text {Xhop }}-I_{O}\right)\left(t_{\text {hop }}-t_{0}\right)+\left(I_{X 1}-I_{O}\right) T_{2}+\left(I_{X 2}-I_{O}\right) T_{2}+\cdots
\end{align*}
$$

where $I_{\text {Xhop }}$ is the average of transient inductor current from t_{0} to $t_{\text {hop }}$ and $I_{X i}, \mathrm{i}=1,2, \ldots$ is the average of transient inductor current at the ith period of $v_{P W M}$ after t_{0}. t_{0} is the time at which the inductor current is at its peak or valley and the capacitor voltage is at its dc value, V_{O}. $t_{\text {hop }}$ is the hopping moment. $T_{2}=T_{o f f, 2}+T_{\text {on, } 2}$ is the period of $v_{P W M}$ after hopping.

The transient response can be separated into two parts, the charge in the hopping interval $Q_{\text {hop }}$ and total charge after hopping $Q_{T}=Q_{1}+Q_{2}+\ldots$. Since settling time is longer than one period, $Q_{h o p}$ is much smaller than Q_{T}.

$$
\begin{equation*}
\Delta Q=Q_{\text {hop }}+Q_{T} \cong Q_{T} \tag{3.2}
\end{equation*}
$$

As illustrated in Fig. 3.5(a), Q_{T} is approximated with a triangular area. Its height is the difference between I_{O} and $I_{X I}$. Its width, T_{T}, is the time from $t_{h o p}$ to the steady state.

$$
\begin{align*}
& Q_{T}=\frac{1}{2}\left(I_{X 1}-I_{O}\right) T_{T} \\
& =\frac{1}{2}\left(-\frac{1}{2} i_{l p-p, 1}+\frac{1}{2} i_{l p-p, 2}\right) T_{T} \tag{3.3}\\
& m_{o f f}=\frac{-i_{\iota p-p, I}}{T_{o f f, 2}}=\frac{-i_{\iota p-p, 2}}{T_{o f f, 2}}=\frac{-D V_{I N}}{L_{O}} \tag{3.4}
\end{align*}
$$

where $i_{l p-p, 1}$ and $i_{l p-p, 2}$ are the peak-to-peak values of the inductor current at low frequency and high frequency respectively. $m_{\text {off }}$ is the slope of the decreasing inductor current. D is the duty cycle.

Then, the conventional transient ripple on the output voltage can be obtained as

$$
\begin{equation*}
\Delta v_{\text {trans }} \cong \frac{Q_{T}}{C_{O}} \cong \frac{1}{4} \frac{V_{I N} D(1-D)}{L_{O} C_{O}}\left(T_{1}-T_{2}\right) T_{T} \tag{3.5}
\end{equation*}
$$

where T_{1}, T_{2} are the periods of the low and high frequencies respectively.
In order to minimize Q_{T} in (3.3), the best time T_{X} of $t_{h o p}$ is proposed as follows. In Fig. 3.5(a), $I_{X I}$ can be calculated as

$$
\begin{equation*}
I_{X 1}\left(t_{\text {hop }}\right)=I_{O}+\frac{1}{2} i_{l p-p, 1}+m_{\text {off }} \times\left(t_{\text {hop }}-t_{0}\right)+\frac{1}{2} i_{l p-p, 2} \tag{3.6}
\end{equation*}
$$

According to (3.3), if $I_{X I}$ equals $I_{O}, Q_{T}=0$, most charge during transient settling time can be eliminated.

$$
\begin{equation*}
I_{O}+\frac{1}{2} i_{\varphi p-p, l}+m_{o f f} \times\left(t_{h o p}-t_{0}\right)+\frac{1}{2} i_{\varphi p-p, 2}=I_{O} \tag{3.7}
\end{equation*}
$$

the proposed best time T_{X} can be calculated as

$$
\begin{equation*}
T_{X}=t_{\text {hop }}-t_{0}=-\frac{\frac{1}{2} i_{\varphi p-p, l}}{m_{\text {off }}}-\frac{\frac{1}{2} i_{i_{\varphi p-p, 2}}}{m_{\text {off }}}=\frac{1}{2} T_{\text {off, },}+\frac{1}{2} T_{o f f, 2} \tag{3.8}
\end{equation*}
$$

The proposed best time T_{X} is $\frac{1}{2}\left(T_{o f f, 1}+T_{\text {off }, 2}\right)$, which is the average of off duty cycle period at low and high frequencies. Its corresponding transient waveform is illustrated in Fig. 3.5(b). Since I_{X} equals I_{O}, according to (3.3), only the rest of charge, Q_{1}, would affect transient ripple of the output voltage.

$$
\begin{align*}
Q_{h o p X} & =\frac{1}{2}\left(\frac{1}{2} i_{l p-p, 1}\right)\left(\frac{1}{2} T_{o f f, 1}\right)-\frac{1}{2}\left(\frac{1}{2} i_{l p-p, 2}\right)\left(\frac{1}{2} T_{o f f, 2}\right) \\
& =\frac{1}{2}\left(\frac{1}{2} i_{l p-p, 1}-\frac{1}{2} i_{l p-p, 2}\right) T_{X} \tag{3.9}\\
\Delta v_{\text {trans }, I C A C} & =\frac{Q_{h o p X}}{C_{o}}=\frac{1}{4} \frac{V_{I N} D(1-D)}{L_{o} C_{o}}\left(T_{1}-T_{2}\right) T_{X} \tag{3.10}
\end{align*}
$$

According to (3.5) and (3.10), the conventional and proposed transient ripples on the output voltage are proportional to $\left(T_{1}-T_{2}\right) T_{T}$ and $\left(T_{1}-T_{2}\right) T_{X}$ respectively.

3.4.1.2 Hopping frequency from high to low

As shown in Fig. 3.6(a), when the frequency hops from high to low, the average of transient inductor current $I_{X I}$ is over the average inductor current I_{O}. Similarly, $I_{X I}$ can be approximated as

$$
\begin{equation*}
I_{X 1}\left(t_{h o p}\right)=I_{O}+\frac{1}{2} i_{l p-p, 2}+m_{o f f} \times\left(t_{h o p}-t_{0}\right)+\frac{1}{2} i_{l p-p, 1} \tag{3.11}
\end{equation*}
$$

Likewise, if let $I_{X I}$ in (3.11) equal to I_{O}, we obtain $T_{X}=t-t_{0}=\frac{1}{2}\left(T_{\text {off }, 1}+T_{\text {off }, 2}\right) . T_{X}$ is the same when it hops from high to low. It is the average of off duty cycle period at low and high
frequencies.

(a)

(b)

Fig. 3.6 (a) Conventional and (b) proposed transient inductor current that hops frequency from high to low in off duty cycle period

3.4.2 Hopping in On Duty Cycle Period

3.4.2.1 Hopping frequency from low to high \& from high to low

Similar to the analysis in 3.4.1, the only different part is the average of transient inductor current $I_{X I}$

$$
\begin{align*}
& I_{X 1}\left(t_{\text {hop }}\right)=I_{O}+\frac{1}{2} i_{l p-p, 1}+m_{\text {on }} \times\left(t_{\text {hop }}-t_{0}\right)+\frac{1}{2} i_{l p-p, 2} \tag{3.12}\\
& I_{X 1}\left(t_{\text {hop }}\right)=I_{O}+\frac{1}{2} i_{l p-p, 2}+m_{\text {on }} \times\left(t_{\text {hop }}-t_{0}\right)+\frac{1}{2} i_{l p-p, 1} \tag{3.13}
\end{align*}
$$

$I_{X I}$ in (3.12) is hopping from low to high and $I_{X I}$ in (3.13) is hopping from high to low.
Let $I_{X I}$ in (3.12) and (3.13) equals to I_{O} as shown in Fig. 3.7 and Fig. 3.8 respectively, we obtain the similar $T_{X}=t-t_{0}=\frac{1}{2}\left(T_{o n, 1}+T_{o n, 2}\right)$. It is the average of on duty cycle period at low and high frequencies

Fig. 3.7 Proposed transient inductor current that hops frequency from low to high in on duty cycle period.

Fig. 3.8 Proposed transient inductor current that hops frequency from high to low in on duty cycle period.

Chapter 4 Circuit Implementation and Simulation

Results

Based on above analysis, the proposed system circuit is shown as Fig. 4.1. Except for the conventional buck converter architecture, there are two DACs and an ICAC block. Two DACs change the output voltage and the switching frequency respectively. An ICAC block before the gate driver block is utilized to insert a calculated-width pulse for modulating the best time in frequency hopping.

Fig. 4.1 Block diagram of the FH buck converter with ICAC controller

4.1 Amplifier Circuit

There are two type amplifiers in this work. One is slower and only used in the error amplifier circuit. Another one is faster and provides higher DC gain in this work which needs operational amplifiers (OP).

4.1.1 Error Amplifier

There are many compensation methods such as type II and type III. But as the operation frequency changes in the FH technique, the feedback-loop stabilization is much more difficult since these methods compensate the particular frequency range. Based on the simplicity and independence from the switching frequency, a dominant-pole compensation is used in this error amplifier to compensate the stability of the system.

To avoid any second pole involving in this dominant pole, it uses a one-stage simple operational amplifier as shown in Fig. 4.2. The unit-gain frequency ω_{t} is given by

$$
\begin{equation*}
\omega_{t}=\frac{g_{m 1,2}}{C_{C}} \tag{4.1}
\end{equation*}
$$

There are two components which define the unit-gain frequency. Firstly, to make lower unit-gain frequency for dominant-pole compensation, the compensation capacitor C_{C} is chosen as large as possible and is limited by the area on chip. Secondly, another component is the transconductance of input transistors, $g_{m l, 2}$.

$$
\begin{equation*}
g_{m}=\sqrt{2 C_{O X} \frac{W}{L} I_{D}} \tag{4.2}
\end{equation*}
$$

To make smaller g_{m}, it is chose p-input, small W/L ratio and small bias current $I_{\text {tail }}=2 I_{D}$.

Fig. 4.2 Schematic of the error amplifier
Fig. 4.3 shows the AC analysis of the error amplifier. Open loop DC gain is 44 dB . Phase margin is 90 degree and the unity gain bandwidth is 113 kHz as $C_{C}=42 \mathrm{pF}$.

Fig. 4.3 Frequency response of the error amplifier

4.1.2 Operational Amplifier

In order to provide high DC gain, it chooses the folded-cascode structure as shown in Fig. 4.4 [11]. Its DC gain A_{V} and 3 dB frequency $\omega_{3 \mathrm{~dB}}$ are given by

$$
\begin{align*}
& A_{V}=g_{m} r_{O} \tag{4.3}\\
& \omega_{3 d B}=\frac{g_{m}}{C_{L}} \tag{4.4}
\end{align*}
$$

It is necessary to add an output stage when it drives resistance load. Therefore, some of these OPs have a NMOS common-drain stage as output buffer as listed in Table 4.1. Table 4.1 also shows two different tail currents. Several operational amplifiers do not need high frequency response, so they could use smaller tail current to save power. As shown in Fig. 4.5 and Fig. 4.6, their DC gain and 3dB frequencies are $69 \mathrm{~dB}, 43$ MHz and $61.5 \mathrm{~dB}, 16 \mathrm{MHz}$ respectively. The DC gain of OP with output buffer is lower due to the body effect. From Fig. 4.7, we have

$$
\begin{equation*}
A_{V}=\frac{\frac{1}{g_{m b}} / / r_{O b 1} / / r_{O b 2}}{\left(\frac{1}{g_{m b}} / / r_{O b 1} / / r_{O b 2}\right)+\frac{1}{g_{m}}} \tag{4.5}
\end{equation*}
$$

Equation (4.5) represents that body effect decreases the DC gain. Although it can by reduced by using PMOS common-drain stage, it needs a shift-down circuit rather than shift-up circuit in this work.

Fig. 4.4 Schematic of folded-cascade operational amplifier
Table 4.1 OP types used in this work

	$\mathrm{I}_{\text {tail }}=2 \mu \mathrm{~A}$	$\mathrm{I}_{\text {tail }}=5 \mu \mathrm{~A}$	With Buffer
Subtractor		O	O
Input of RampGen.		O	
Input of $\mathrm{S} \& \mathrm{H}$	O	O	
Buffer of $\mathrm{V}_{\text {ref }}$	O		
Buffer of v_{A}	O		O
Buffer of $\mathrm{v}_{\text {ramp }}$		O	O

Fig. 4.5 Frequency response of the OP-Amp without output buffer

Fig. 4.6 Frequency response of the OP-Amp with output buffer

Fig. 4.7 Common-drain output buffer (a) circuit. (b) small-signal equivalent circuit

4.2 Comparator Circuit

A comparator is a circuit that compares the instantaneous value of an analog input voltage with a reference voltage, and then generates a logic output level depending on whether the input is larger or smaller than the reference level.

As shown in Fig. 4.8, it is implemented by a source-coupled differential pair with positive feedback to provide a high gain. The gain of the positive feedback gain stage is given by

$$
\begin{equation*}
A_{V}=\sqrt{\frac{\mu_{p}\left(\frac{W}{L}\right)_{1}}{\mu_{n}\left(\frac{W}{L}\right)_{3}}} \times \frac{1}{1-\alpha} \tag{4.6}
\end{equation*}
$$

where $\alpha=(\mathrm{W} / \mathrm{L})_{5} /(\mathrm{W} / \mathrm{L})_{3}$ is the positive feedback factor.
The inverter chains are used to increase the response of the output signal and pull the output to digital level. The inverter stage acts as a driver stage such that the size of M_{7} and M_{8} can be made smaller. With the smaller size of M_{7} and M_{8}, the effect of the parasitic capacitance at the gates of M_{7} and M_{8} is decreased for a faster response.

Fig. 4.8 Schematic of the comparator
The comparators are needed one for the PWM controller, two for the ramp generator circuit (RampGen.0), two for the detector and two for the calculated pulse circuit (RampGen. 1 and RampGen.2) in the ICAC block.

4.3 Ramp Generator Circuit

The ramp generator is the circuit which generates a ramp signal for PWM controller as shown in Fig. 4.9. To clamp the upper band $V_{\text {High }}$ and lower band $V_{\text {Low }}$, there are two comparators and one SR latch in the right side of Fig. 4.9. The reference voltage $V_{\text {ref_ramp }}$ provides a current i_{t} through a resistor R_{t} and i_{t} is given by

$$
\begin{equation*}
i_{t}=\frac{V_{\text {ref_ramp }}}{R_{t}} \tag{4.7}
\end{equation*}
$$

Then the current mirror copies i_{t} to charge the capacitor C_{t} to generate the ramp signal $v_{\text {ramp }}$. The comparators compare the amplitude of the ramp signal with $V_{H i g h}$ and $V_{L o w}$ to
turn on or turn off the transistor $\mathrm{M}_{\text {disc }}$ which is paralleled with C_{t}. When $\mathrm{M}_{\text {disc }}$ cuts off, current i_{t} charges the voltage of $v_{\text {ramp }}$ up linearly to $V_{\text {High }}$, and then $\mathrm{M}_{\text {disc }}$ will turn on to discharge the voltage of $v_{\text {ramp }}$ sharply back to $V_{\text {Low }}$. The charge stored in C_{t} is given by

$$
\begin{equation*}
Q=\frac{i_{t}}{f_{\text {req }}}=C_{t} \times\left(V_{\text {High }}-V_{\text {Low }}\right) \tag{4.8}
\end{equation*}
$$

where $f_{\text {req }}$ is the switching frequency of the buck converter, and hence

$$
\begin{equation*}
\frac{V_{\text {ref_ramp }}}{\left(f_{\text {req }} \times R_{t}\right)}=C_{t} \times\left(V_{\text {High }}-V_{\text {Low }}\right) \tag{4.9}
\end{equation*}
$$

to give the relationship of switching frequency of

$$
\begin{equation*}
f_{\text {req }}=\frac{1}{R_{t} C_{t}} \frac{V_{\text {ref }} \text { ramp }}{V_{\text {High }}-V_{\text {Low }}} \tag{4.10}
\end{equation*}
$$

According to above equation (4.10), there are five choices to change the switching frequency in the buck converter. The passive components, R_{t} and C_{t}, are on-chip to shrink the area on PCB in this work so that they should be small. Here chooses changing the $V_{\text {ref_ramp }}$ to vary the slope of ramp since there is a feedback OP at $V_{\text {ref_ramp }}$ node for stability rather than $V_{H i g h}$ and $V_{\text {Low }}$.

The circuit and the truth table of SR latch used in this circuit are shown in Fig. 4.10 and Table 4.2.

Fig. 4.9 Schematic of ramp generator

Fig. 4.10 The circuit of SR latch
Table 4.2 The truth table of SR latch

S	R	$\mathrm{Q}(\mathrm{n}+1)$	$\operatorname{Qbar}(\mathrm{n}+1)$
0	0	$\mathrm{Q}(\mathrm{n})$	$\operatorname{Qbar}(\mathrm{n})$
0	1	0	1
1	0	1	0
1	1	Forbidden	

Fig. 4.11 shows the ramp signal $v_{\text {ramp }}$ and the control signal of $\mathrm{M}_{\text {disc, }}$, $C l k . V_{\text {Low }}$ is 0.1 V and $V_{\text {High }}$ is 1 V . According to equation (4.10), the switching frequency is determined by the passive component values which are dependent on the process variation. Therefore, Fig. 4.12 shows the switching frequency considering FF, SS, and TT corners and 10% variation on the resistor R_{t} and capacitor C_{t}. The frequencies in these corners fit the specification of frequency $(2-3 \mathrm{MHz})$

Fig. 4.11 The simulation result of ramp generator

Fig. 4.12 The simulation of frequency considering process variation

4.4 Digital-to-Analog Converter (DAC)

There are two group 5-bit digital inputs in this work to control the output voltage and switching frequency respectively. To convert the digital inputs into an analog voltage used in Ramp generator and error amplifier, it uses DACs. As shown in Fig. 4.13, a current-steering array is utilized. The left side transfer the sum of current from branches through a current mirror circuit to the right side. Finally, the current transfers into an analog voltage by a resistor $R_{f i x 2}$. There are two identical DAC in this design, one is $V_{\text {refea }}$ for error amplifier (EA) and another is $V_{\text {ref_ramp }}$ for Ramp generator (RampGen.O). Its output voltage is given by

$$
\begin{equation*}
V_{r e f_{-} a}\left(o r V_{r e f _r a m p}\right)=V_{r e f}\left(\frac{D_{b i t 4}}{R_{d 4}}+\cdots+\frac{D_{b i t 0}}{R_{d 0}}+\frac{1}{R_{f i x 1}}\right) R_{f i x 2} \tag{4.11}
\end{equation*}
$$

The INL and DNL are shown in Fig. 4.14. It could be observed that ± 0.17 LSB for DNL and ± 0.14 LSB for INL.

Fig. 4.13 Schematic of DAC

Fig. 4.14 INL and DNL of DAC

4.5 Inductor Current Average Control (ICAC)

This circuit is the key to complete the inductor current average control method. According to the analysis in Chapter 3, it needs an additional pulse which pulse width equals T_{X}. To implement this pulse, there are two parts, sample and hold (S\&H) circuit and calculated pulse circuit. If there is no $\mathrm{S} \& H$, the signal of hopping triggers the $v_{\text {ramp }}$ changing slope synchronously as shown in Fig. 4.15. It causes a random shape ramp with two different slopes and an unpredicted period when hopping signal arrives. The unpredicted period of off cycle $T_{\text {off }, \text { unknown }}$ perhaps equals $T_{o f f, 2}$ when the "Hopping Signal" arrives before $v_{\text {ramp }}$ over v_{A}, but the unpredicted period of on cycle $T_{\text {on,unknown }}$ becomes a random interval depending on the ratio between two different slope of $v_{\text {ramp }}$ as depicted in Fig. 4.15. On the other hand, the $T_{\text {on, inknown }}$ perhaps equals $T_{\text {on,l }}$ when the "Hopping Signal" arrives after $v_{\text {ramp }}$ over v_{A}, but $T_{\text {offi, unknown }}$ becomes a random interval depending on the ratio between two different slope of $v_{\text {ramp }}$. As it uses a S\&H circuit in frond end of $V_{\text {ref_ramp }}$, we can choose the time we want to hop the frequency of $v_{\text {ramp }}$ without two slope in one period of $v_{\text {ramp. }}$. All we have to do is turn off the $v_{\text {ramp }}$ during the arrival of "Hopping Signal" and insert a calculated-width pulse $D_{T x}$ to be a pseudo period in $v_{P W M}$ as shown in Fig. 4.16. It also relaxes the settling time of $V_{\text {ref_ramp }} . V_{\text {ref_ramp }}$ needs a few nanoseconds without $\mathrm{S} \& \mathrm{H}$, but $D_{T x}$ around hundred nanoseconds with $\mathrm{S} \& \mathrm{H}$ giving $V_{\text {ref_ramp }}$ more time to settle.

Fig. 4.15 Ramp generator without $\mathrm{S} \& H$ in front end

Fig. 4.16 Ramp generator with $\mathrm{S} \& H$ in front end and calculated pulse circuit in parallel

4.5.1 Sample and Hold Circuit (S\&H)

It utilizes a simple RC circuit to complete sample and hold (S\&H) circuit where $V_{\text {ref_ramp }}$ is the input of $\mathrm{S} \& \mathrm{H}, V_{\text {ref_rampQ }}$ is the output of $\mathrm{S} \& \mathrm{H}$ and $V_{\text {pass }}$ is the control signal of sample phase as shown in Fig. 4.17. In Fig. 4.18, a detector circuit which detects if the $V_{\text {ref ramp }}$ changes is implemented with dual comparators and one XOR logic gate. Its output signal Change represents that a "Hopping Signal" arrives to trigger DAC of $V_{\text {ref_ramp }}$ to change $V_{\text {ref_ramp }}$ larger or smaller synchronously. Note that larger $V_{\text {ref_ramp }}$ means higher frequency of $v_{\text {ramp. }}$. We give attention to the $V_{\text {pass }}$ of $\mathrm{S} \& \mathrm{H}$ in this paragraph.

Fig. 4.17 Circuit of the sample and hold

Fig. 4.18 Diagram of the detector of hopping
As illustrate in Fig. 4.19, there are three paths, Best Case Path, Worst Case Path and Normal Case Path. (1) In Normal Case Path, it turns on $V_{\text {pass }}$ fully by $S W_{\text {Best }}=0$ and $S W_{\text {Worst }}=0$. It causes that $V_{\text {ref_ramp } Q}$ changes whenever $V_{\text {ref_ramp }}$ changes like shown in Fig. 4.15. (2) In Worst Case Path, $V_{\text {pass }}$ turns on at the rising edge of $v_{P W M}$. It represents the
frequency hops at the moment where the inductor current reaches peak value. By this way, the transient ripple gets the worst and largest voltage. (3) In Best Case Path, $V_{\text {pass }}$ turns on as the same as $C l k$ when Change $=0(\overline{\text { Change }}=1)$. Clk is the gate of $\mathrm{M}_{\text {disc }}$ in the Ramp generator circuit in Fig. 4.9 and is the discharging phase of $v_{\text {ramp }}$. While the Change detects the difference between $V_{\text {ref_ramp }}$ and $V_{\text {ref_ramp } Q}$, it masks $C l k$ by AND logic gate. During Change $=1, V_{\text {pass }}$ is triggered by $D_{\text {Rampcompl }} . D_{\text {Rampcompl }}$ is the rising edge of $D_{T_{x}}$ and the width of $D_{T x}$ will be discussed later.

Fig. 4.19 Diagram of the control signal of sample time
Table 4.3 Conclusion of control signal of sample time

Case	SW $_{\text {Best }}$	SW $_{\text {Worst }}$	$\mathrm{V}_{\text {pass }}$
Normal	0	0	Always high
Best	1	0	$=$ Clk as not hopping $=D_{\text {Rampcomp } 1}$ as hopping
Worst	0	1	$=$ Clk as not hopping $=V_{P W M}$ as hopping
X	1	1	X

4.5.2 Calculated Pulse Circuit

A calculate-width pulse $D_{T x}$ is analyzed in this paragraph. The width (or time length) of this pulse must equal to $T_{X}=0.5\left(T_{o f f, l}+T_{\text {off }, 2}\right)$ in Equation (3.8). It is composed by two parts, half of off duty cycle period of the previous frequency $0.5 T_{\text {off }, 1}$ and half of off duty cycle period of the following frequency $0.5 T_{\text {off }, 2}$. From Fig. 4.20, we have

$$
\begin{align*}
& \frac{d v_{\text {ramp }}}{d t}=\frac{i_{t}}{C_{t}}=\frac{V_{\text {ref }} \text { ramp }}{R_{t} C_{t}} \tag{4.12}\\
& T_{\text {off }}=\frac{R_{t} C_{t}}{V_{\text {ref_ramp }}} \times\left(V_{\text {High }}-v_{A}\right) \tag{4.13}\\
& \frac{1}{2} T_{\text {off }}=\frac{R_{t} C_{t}}{V_{\text {ref_ramp }}} \times \frac{1}{2}\left(V_{\text {High }}-v_{A}\right) \tag{4.14}
\end{align*}
$$

Fig. 4.20 Relationship between voltage and time length in a ramp signal
According to Equation (4.14), as long as we have the half of difference between $V_{\text {High }}$ and v_{A}, we obtain $0.5 T_{\text {off }, 1}$ and $0.5 T_{\text {off }, 2}$ by given $V_{\text {ref } f \text { ramp } Q}$ and $V_{\text {ref } f \text { ramp }}$. Therefore it needs two additional ramp generators to implement as shown in Fig. 4.21(a). In these three ramp generators, it utilizes the same value of resistors $R_{t}, R_{t 2}$ and capacitors $C_{t}, C_{t l}, C_{t 2}$ to keep the only vary factor $V_{\text {ref_ramp }}$ of $v_{\text {ramp }}$. By careful layout such as common centroid, we expect it should have good matching between these passive components. $v_{\text {ramp } 1}$ is the output of the first additional ramp generator (RampGen.1), and it has the same slope as original $v_{\text {ramp }}$ due to the held input $V_{\text {ref_rampQ. }} v_{\text {ramp } 2}$ is the output of the second additional
ramp generator (RampGen.2), and it has the slope of following ramp signal due to the unheld input $V_{\text {ref_ramp. }}$. In Fig. $4.21(\mathrm{~b}), D_{\text {Rampcompl }}$ is triggered at the time $0.5 T_{\text {off }, 1}$ and $D_{\text {Rampcomp } 2}$ is triggered at the time $0.5 T_{\text {off }, 2}$.

Fig. 4.21 (a) Diagram of the additional ramp generators (b) Output of additional ramp generators

The complete circuit of ICAC is separated into analog part and digital part. The analog part is shown in Fig. 4.22 and the digital part is shown in Fig. 4.23. It shows more detail of Fig. 4.21 such as reset signal and the used passive components. The transient waveform is shown in Fig. 4.24. The discharging transistor $\mathrm{M}_{\text {disc }}$ in RampGen. 0 is triggered by Clk in steady state or $D_{T x}$ in frequency hopping state. When $\mathrm{M}_{\text {disc }}$ is triggered by $D_{T x}$, it means that $v_{\text {ramp }}$ resets when the calculated pulse is inserted in the circuit. By this operation, $v_{P W M}$ is only determined by the calculated pulse in frequency hopping state. The discharging transistor $\mathrm{M}_{\mathrm{disc} 1}$ in RampGen. 1 is triggered by $\overline{D_{T x}}$ and then $v_{\text {rampl }}$ starts. $D_{\text {Rampcompl }}$ calculates $0.5 T_{\text {off }, l}$ by comparing $v_{\text {rampl }}$ with $0.5\left(V_{\text {High }}-v_{A}\right)$ and then it triggers the discharging transistor $\mathrm{M}_{\mathrm{disc} 2}$ in RampGen.2. $D_{\text {Rampcomp2 }}$ calculates $0.5 T_{\text {off }, 2}$ by comparing $V_{\text {ramp } 2}$ with $0.5\left(V_{\text {High }}-v_{A}\right)$. Finally, $D_{\text {Rampcomp } 2}$ ends the $D_{T x}$ and completes the ICAC as shown in Fig. 4.23.

Fig. 4.22 Diagram of full Ramp generators

Fig. 4.23 Diagram of the calculated-width pulse circuit

Fig. 4.24 Transient waveform of ICAC

4.5.3 Consideration of Delay Time

Fig. 4.25 Waveform of calculated pulse including delay of components
Since the technique is used in time domain, the delay time must design carefully. The comparators are the main delay time of the calculated pulse. Fig. 4.25 depicts the more detailed information for calculated pulse from Fig. 4.24. According to aforementioned analysis in Fig. 4.24, the rising edge of $D_{T x}$ passes through one PWM controller and two DFF. During the $D_{T x}=1$, there is one comparator between RampGen. 1 and RampGen.2. The falling edge of $D_{T x}$ passes through one comparator of RampGen. 2 and one DFF. The total width of $D_{T x}$ including delay time is

$$
\begin{equation*}
\frac{1}{2} T_{o f f, 1}+T_{d t, R 1}+\frac{1}{2} T_{o f f, 2}+T_{d t, R 2}+T_{D F F} \tag{4.15}
\end{equation*}
$$

where $T_{d t, R I}$ is the delay time of comparator in RampGen.1, $T_{d t, R 2}$ is the delay time of comparator in RampGen.2, and $T_{D F F}$ is the delay time of DFF. The concept of $D_{T x}$ is in
order to complete the average of the off duty cycle period before hopping and after hopping. The off duty cycle period before hopping including delay time is $T_{\text {off }, 1}+T_{d t, R 0}+T_{S R}$. The off duty cycle period after hopping including delay time is $T_{o f f, 2}+T_{d t, R 0}+T_{S R} . T_{d t, R O}$ is the delay time of the upper band comparator in front of the SR-Latch and $T_{S R}$ is the delay time of the SR-Latch both in RampGen.0. The average of the off duty cycle period before hopping and after hopping is

$$
\begin{equation*}
\frac{1}{2}\left[\left(T_{o f f, 1}+T_{d t, R 0}+T_{S R}\right)+\left(T_{o f f, 2}+T_{d t, R 0}+T_{S R}\right)\right]=\frac{1}{2} T_{o f, 1}+\frac{1}{2} T_{o f f, 2}+T_{d t, R 0}+T_{S R} \tag{4.16}
\end{equation*}
$$

Compare (4.15) with (4.16) and ignore the delay time of SR-Latch $T_{S R}$ which is about a few picoseconds.

$$
\begin{equation*}
T_{d t, R 1}+T_{d t, R 2}+T_{D F F}=T_{d t, R 0} \tag{4.17}
\end{equation*}
$$

Use the same comparators in RampGen. 1 and RampGen.2.

$$
\begin{align*}
& T_{d t, R 1}=T_{d t, R 2}=T_{d t, R 1,2} \tag{4.18}\\
& 2 T_{d t, R 1,2}+T_{D F F}=T_{d t, R 0} \tag{4.19}
\end{align*}
$$

These comparators all compare a ramp signal with a dc voltage except for the detector. Due to the linearity of ramp signal, we can design the offset voltage of the comparators $V_{\text {offset }}$ to determine the delay time easily. We have the offset voltage from [13]

$$
\begin{gather*}
V_{o f f s e t}=\left(V_{T H, 1}-V_{T H, 2}\right)+\left(\sqrt{\frac{2 I_{D 1}}{k^{\prime}\left(\frac{W}{L}\right)_{1}}}-\sqrt{\frac{2 I_{D 2}}{k^{\prime}\left(\frac{W}{L}\right)_{2}}}\right) \tag{4.20}\\
\left\{\begin{array}{l}
I_{D 1}=I_{D}+\Delta I_{D} \\
I_{D 2}=I_{D}-\Delta I_{D}
\end{array}\right. \tag{4.21}
\end{gather*}
$$

Substituting (4.21) into (4.20) gives

$$
\begin{equation*}
=\Delta V_{T H}+\sqrt{I_{D}}\left(\sqrt{\frac{2\left(1+\Delta I_{D} / I_{D}\right)}{k^{\prime}(W / L)_{1}}}-\sqrt{\frac{2\left(1-\Delta I_{D} / I_{D}\right)}{k^{\prime}(W / L)_{2}}}\right) \tag{4.22}
\end{equation*}
$$

The offset voltage is proportional to the square root of I_{D}. Thus, we only have to change the tail current to set the delay time.

The delay time and offset voltage of comparators are listed in Table 4.4 and shown in Fig. 4.26. In this work, $T_{d t, R I, 2}$ is the delay time of Comp $_{\text {fast }}$ which is used in RampGen. 1 and RampGen. 2 and $T_{d t, R O}$ is the delay time of Comp $_{\text {slow }}$ which is used in the upper band comparator in RampGen.0. Comp $_{\text {mid }}$ is used in PWM controller and Comp $_{\text {withoffset }}$ is used in detector circuit to avoid noise. The delay time of logic gates are listed in Table 4.5.

Fig. 4.26 Transient waveform of offset of the comparator
Table 4.4 Delay time of comparators

	Delay Time	Offset
Comp $_{\text {withoffset }}$	50.3 ns	180 mV
Comp $_{\text {fast }}$	12.5 ns	45 mV
Comp $_{\text {mid }}$	18.2 ns	66 mV
Comp $_{\text {slow }}$	29.5 ns	107 mV

Table 4.5 Delay time of logic gate circuits

	Delay Time
Inverter	$\sim \mathrm{ps}$
NAND	$\sim \mathrm{ps}$
NOR	$\sim \mathrm{ps}$
SR-Latch	$\sim \mathrm{ps}$
DFF	4.5 ns

4.6 Gate Driver with Dead Time Control

The width over length of the two power transistors of DC-DC buck converters must be large in order to reduce conduction loss. Due to the large size of these two transistors, the capacitive load of PWM controller has become very large. Therefore, a driver with the enough driving capability is required between PWM controller and power transistors. Conventional tapered CMOS buffer consumes the short-circuit power due to simultaneous turn on of the two power transistors. Short-circuit power consumption can be eliminated by a driver with dead time control as shown in Fig. 4.27.

The basic operation principle of this buffer is to confirm that one power transistor turns on after the other power transistor turns off by using the feedback signal at $V_{\text {pin }}$, $V_{\text {nin }}$ and the delay line of inverter chain. The delay line increases width by stage since $\mathrm{M}_{1}-\mathrm{M}_{6}$ is still large. Therefore, the power transistors do not turn on simultaneously, and then the short circuit is not caused in any condition.

When the input signal $v_{P W M}$ falls from $V_{D D}$ to $G_{N D}$, the internal node N_{l} rises from $G_{N D}$ to $V_{D D}$ and turning on M_{6} causing node $V_{\text {nin }}$ falls from $V_{D D}$ to $G_{N D}$ firstly. $V_{\text {nin }}$ is the gate voltage of power transistor M_{N} and M_{N} is turned off. Then the node N_{2} triggered by $V_{\text {nin }}$ after some delay. $V_{\text {pin }}$ falls to $G_{N D}$ at last. This flow guarantees the power transistor M_{P} turns on after the power transistor M_{N} turns off.

When the input signal $v_{P W M}$ rises from $G_{N D}$ to V_{DD}, the internal node N_{l} falls from
$\overline{V_{D D}}$ to $G_{N D}$ and turning on M_{1} causing node $V_{\text {pin }}$ rises from $G_{N D}$ to $\mathrm{V}_{\mathrm{DD}} . V_{\text {pin }}$ is the gate voltage of power transistor M_{P} and M_{P} is turned off firstly. By similar above analysis, the power transistor M_{N} turns on after the power transistor M_{P} turns off.

Fig. 4.28 shows the simulation result of the gate driver with dead time control. I_{P} and I_{N} are the current of M_{P} and M_{N} respectively. The dead-time control works since there is no short current in M_{P} or M_{N}.

Fig. 4.27 Schematic of the gate driver with dead time control

Fig. 4.28 The simulation result of the gate driver with dead time control

4.7 Power Stage Circuit

The power stage is formed by two power transistors (M_{P} and M_{N}), an inductor L_{O} and a filtering capacitor C_{O} as shown in Fig. 4.29. These components are flowed with large current by the loading such as power amplifiers. The inductor and the capacitor are off-chip. Therefore, the power transistors are the only circuit flowed a large current in the chip. It passes current from $V_{i n}$ and $G_{N D}$ to L_{X} which is determined by $V_{p i n}$ and $V_{n i n}$. The control signal $V_{p i n}$ and $V_{\text {nin }}$ are non-overlapped from the gate driver with dead time control as above mention. We must design and layout it carefully to avoid burning the chip for reliability.

Fig. 4.29 Schematic of the power stage
Firstly, the transistors operate in triode region for switched-mode DC-DC converter. The width W over length L of the transistors determines the on-resistance (4.23) and the current capability (4.24).

$$
\begin{align*}
& R_{o n}=\frac{1}{\mu C_{O X} \frac{W}{L}\left(V_{G S}-V_{T H}\right)} \tag{4.23}\\
& I_{D}=\mu C_{O X} \frac{W}{L}\left[\left(V_{G S}-V_{T H}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right] \tag{4.24}
\end{align*}
$$

The width and length mean the gate capacitance of the transistor. To reduce the switching loss, the length is chosen the minimum length of the process and the width is tuned the minimum enough to provide the load current. There is an intelligent method to tune the width. Turn on the PMOS or NMOS fully, and then sweep the width to measure the on-resistance of the PMOS or NMOS. Fig. 4.30 shows the simulation result. In this simulation, it fixes the width and sweeps the number of finger due to the convenience of layout. The chosen width and length of power transistors in this work are shown in Table 4.6.

Fig. 4.30 Simulation of on-resistance of PMOS
Secondly, the layout of the power transistors must consider the current path and maximum current density of metal. The floor plan of power transistor in this work is shown in Fig. 4.31. Since the power stage is a 3-port circuit, the T-shape layout is the best solution. The PMOS passes the current from $V_{I N}$ to L_{X} and the NMOS passes the same current from $G_{N D}$ to L_{X}. The resistance on the current path must be calculated totally including the resistance of metal to obtain the voltage of L_{X} (4.25) and (4.26). They are listed in Table 4.7.

$$
\begin{gather*}
V_{L x}=V_{I N}-R_{P, \text { total }} \times I_{D, P} \text { as PMOS on } \tag{4.25}\\
V_{L x}=R_{N, \text { total }} \times I_{D, N} \quad \text { as NMOS on } \tag{4.26}
\end{gather*}
$$

Fig. 4.31 Floor plan of the power stage on chip
Table 4.6 Size of power transistors

	Width $(\mu \mathrm{m})$	Length $(\mu \mathrm{m})$
Power PMOS	56,000	0.5
Power NMOS	24,000	0.5

Table 4.7 Resistance of power stage

Resistance	
node $\left(\mathrm{V}_{\text {in }}\right)$-node(Source of $\left.\mathrm{M}_{\mathrm{P}}\right)$ of Metal	Value $(\mathrm{m} \Omega)$
Ron of M_{P}	18.5
Metal on M_{P}	160
node(Drain of $\left.\mathrm{M}_{\mathrm{P}}\right)$-node $\left(\mathrm{L}_{\mathrm{X}}\right)$ of Metal	43
node $\left(\mathrm{L}_{\mathrm{X}}\right)$-node(Drain of $\left.\mathrm{M}_{\mathrm{N}}\right)$ of Metal	29
Ron of M_{N}	29
Metal on M_{N}	100
node $\left(\mathrm{L}_{\mathrm{X}}\right)$-node(Source of $\left.\mathrm{M}_{\mathrm{N}}\right)$ of Metal	14
Total resistance node $\left(\mathrm{V}_{\text {in }}\right)$-node $\left(\mathrm{L}_{\mathrm{X}}\right)$	7
Total resistance node $\left(\mathrm{L}_{\mathrm{X}}\right)$-node $\left(\mathrm{G}_{\mathrm{ND}}\right)$	250

4.8 Simulation Results

This section describes simulation results of the designed DC-DC buck converter. The parasitic components are also included to make the simulation more believable. The design parameters and the pin connections of the simulation are given in Table 4.8, and the voltages such as threshold voltages, reference voltages are input by outside control.

Table 4.8 Design parameters and pin connections of the simulation

Supply and Bias	Value
$\mathrm{V}_{\text {IN }}$	5 V
GND	0 V
$\mathrm{V}_{\text {DD A }}$	5 V
$\mathrm{V}_{\text {SS A }}$	0 V
V ${ }_{\text {DD }}$	5 V
$\mathrm{V}_{\text {SS }}$ D	0 V
$\mathrm{V}_{\text {High }}$	1 V
$\mathrm{V}_{\text {Low }}$	0.1 V
$\mathrm{V}_{\text {ref }}$	0.4 V
$\mathrm{I}_{\text {ea }}$	$0.4 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{OP} \text { (slow/ } /} / \mathrm{I}_{\mathrm{OP} \text { (fast) }}$	$2 \mu \mathrm{~A} / 5 \mu \mathrm{~A}$
Passive Components	Value
R_{fl}	$80 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{f} 2}$	$20 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{t}} \& \mathrm{R}_{\mathrm{t} 1} \& \mathrm{R}_{\mathrm{t} 2}$	$35 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{t}} \& \mathrm{C}_{\mathrm{t} 1} \& \mathrm{C}_{\mathrm{t} 2}$	6 pF
$\mathrm{R}_{\mathrm{d} 0 \mathrm{f}} \& \mathrm{R}_{\mathrm{d} 0} \mathrm{v}$	$80 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{d} 1} \& \mathrm{R}_{\mathrm{d} 1} \mathrm{v}$	$40 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{d} 2 \mathrm{f}} \& \mathrm{R}_{\mathrm{d} 2 \mathrm{v}} \mathrm{m}$	$20 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{d} 3} \mathrm{f}_{\&} \mathrm{R}_{\mathrm{d} 3} \mathrm{v}$	$10 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{d} 4} \mathrm{f}$ \& $\mathrm{R}_{\mathrm{d} 4} \mathrm{v}$	$5 \mathrm{k} \Omega$
	$5 \mathrm{k} \Omega$
$\mathrm{R}_{\text {fix } 2}$	$4 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{s} 1}$	$20 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{s} 2}$	$40 \mathrm{k} \Omega$
C_{C}	42 pF
Off-Chip Components	Value
Output Inductor, L_{O}	$1 \mu \mathrm{H}$
Output Capacitor, C_{O}	$1 \mu \mathrm{~F}$
Max. output current, I_{O}	450 mA
Other Spec.	Value
Switching frequency, f_{s}	$0.8-3.4 \mathrm{MHz}$

4.8.1 Frequency Hopping

There are two parts to represent the simulation results of frequency hopping. Firstly, using fast Fourier transform (FFT) with Hamming window prove the reduced spur on spectrum. Secondly, the transient ripple on the output voltage could be observed from the transient waveform.

4.8.1.1 Spectrum

As aforementioned operation, the ICAC controller is triggered when the frequency of the ramp generator hops. Then, it modulates the time length of the on/off cycle period between two hopping frequencies, f_{1} and f_{2}, to be T_{X}. All the following simulation results are based on the case of hopping in the off duty cycle period.

A comparison of output spectrums between conventional and proposed FH converters is shown in Fig. 4.32. The undesired spur at $f_{\text {trans }}=159 \mathrm{kHz}$ of the conventional converter is almost higher than the magnitudes at the hopping tones, $f_{1}=2.1$ MHz and $f_{2}=2.9 \mathrm{MHz}$. The proposed ICAC controller can effectively reduce the spur and the maximum reduction is 18.9 dB . Fig. 4.33 depicts that the magnitude of undesired spur at $f_{\text {trans }}$ increase as Δf, the difference between f_{1} and f_{2}, increases. The spur is suppressed $15-19 \mathrm{~dB}$ with ICAC within the range of 400 kHz to 3.2 MHz .

Fig. 4.32 Output spectrums of the buck converter

Fig. 4.33 The undesired spur magnitude versus Δf.

4.8.1.2 Transient Ripple on the Output Voltage

Fig. 4.34 shows the transient ripple reduction with the proposed ICAC technique. In Fig. 4.34(a), the conventional inductor current, i_{L}, returns to steady state from the peak current. $\mathrm{t}_{\text {hopa }}$ and $\mathrm{t}_{\text {hopB }}$ are the hopping moments from $f_{1}=1.1 \mathrm{MHz}$ to $f_{2}=3.9 \mathrm{MHz}$ and from f_{2} to f_{1} respectively. It causes huge transient-ripple voltage, $\Delta v_{\text {trans }}$, that is 652 mV at $\mathrm{t}_{\text {hopA }}$, on the output voltage, $v_{\text {OUT }}$. The proposed ICAC keeps i_{L} to have the same dc component I_{L} as shown in Fig. 4.34(b). The transient-ripple voltage is reduced from 652 mV to 96 mV . The settling time, which limits the number of the switching frequencies, is also decreased from 44.6μ s to 23.9μ sor 1% settling.
$\Delta v_{\text {trans,ICAC }}$ is much smaller than $\Delta v_{\text {trans }}$ and both of them increases as the difference between T_{l} and $T_{2}, \Delta T$, increases as illustrated in Fig. 4.35. The simulation results match with the analysis results in the equations (3.5) and (3.10). Furthermore, the simulated T_{T} is generally 8 times longer than T_{X}. This result verifies the assumption in the above
analysis that $Q_{\text {hop } X}$ in (3.9) is much smaller than Q_{T} in (3.3).

Fig. 4.34 FH transient responses (a) Without ICAC. (b) With ICAC.

Fig. 4.35 Simulated and analytical results of the transient-ripple output voltage versus

$$
\Delta T .
$$

Fig. 4.36 shows the improvement of $\Delta v_{\text {trans }}$ versus ΔT. It is defined by

$$
\begin{equation*}
\eta_{V}=\frac{\Delta v_{\text {trans }}-\Delta v_{\text {trans }, \text { CAC }}}{\Delta v_{\text {trans }}} \tag{4.27}
\end{equation*}
$$

η_{V} can achieve up to 85.3%. It proves the effectiveness of the proposed ICAC technique to reduce transient ripple on the output voltage.

Fig. 4.36 Improvement of transient ripple on the output voltage versus ΔT.

4.8.2 Efficiency

Fig. 4.37 shows the simulated efficiency of the PWM DC-DC converter using ICAC. The maximum is 95% when load current is 200 mA . The efficiency decreases as smaller load current due to switching loss. Comparing to conventional architectures, the ICAC method needs two ramp generators, one subtractor and some logic gates. However, these additional circuits turn off at steady state besides except for three operational amplifiers. And these operational amplifiers use little current $(\sim 56 \mu \mathrm{~A})$ since they do not need fast response.

Fig. 4.37 Simulated efficiency of using ICAC and without ICAC (a) with linear scale. (b) with \log scale

4.9 Performance Summary in simulation

The performance summary of this work is shown in Table 4.9.
Table 4.9 Performance summary in simulation

Specification	Simulation
Input Voltage, $V_{I N}$	$3.6-5 \mathrm{~V}$
Output Voltage, $v_{O U T}$	$0.8-3.4 \mathrm{~V}$
Max. Output Current, I_{O}	450 mA
Switching Frequency, $\mathrm{f}_{\text {req }}$	$0.8-3.4 \mathrm{MHz}$
Transient Ripple on the Output Voltage	96 mV
Settling time	$23.9 \mu \mathrm{~s}$
Max. Improvement	85.3%
Max Spur Reduction	18.9 dB
Max. Efficiency	95%
Chip Size	$1.397 \times 1.522 \mathrm{~mm}^{2}$

Chapter 5 Experiment Results

5.1 Measurement Setup

Fig. 5.1 shows the floor plan of the DC-DC buck converter in this thesis. The power transistors are located at the upper side to close the pads so that reduces the resistance on the current path and the voltage drop. The power transistors and the driver are high noise components because a large amount of current flows through them and it could generate high temperature and serious noise disturbance. In order to alleviate the effect upon the feedback circuits, the power transistors must be surrounded by a wide guard ring. The metal which flows through a large amount of current must be wide enough to endure the current density. Every node of power transistors has three pads to reduce the inductance and the resistance of bonding wires. The analog parts are located at the lower side away from the noisy power transistors and separated from the power transistors by digital parts such as the logic gates and the driver.

Fig. 5.1 The floor plan of the DC-DC buck converter

Fig. 5.2 Chip microphotograph
Fig. 5.2 shows the microphotograph of the core chip. The chip is fabricated in $0.35 \mu \mathrm{~m} 2 \mathrm{P} 4 \mathrm{M}$ CMOS technology. The active area is about $1.050 \times 0.75 \mathrm{~mm}^{2}$ and the total chip area including pads is $1.397 \times 1.522 \mathrm{~mm}^{2}$. The layout of the DC-DC buck converter is illustrated in Fig. 5.3. Table 5.1 shows the pin function of the prototype converter.

Fig. 5.3 Layout for DC-DC buck converter with pin labels

Table 5.1 The function of the pin in the DC-DC buck converter

Pin	description
V ${ }_{\text {SS Power }}$	The ground of power transistors
$\mathrm{V}_{\text {IN }}$	Input voltage
$\mathrm{V}_{\text {DD A }}$	Analog supply
$\mathrm{V}_{\text {SS A }}$	Analog ground
$\mathrm{V}_{\text {DD D }}$	Digital supply
$\mathrm{V}_{\text {SS }}$ D	Digital ground
$\mathrm{V}_{\text {DD PAD }}$	supply for PAD
L_{X}	Output point of power transistors
$\mathrm{V}_{\text {Ramp }}$	Ramp voltage
$\mathrm{V}_{\text {out }}$	Output voltage
$\mathrm{V}_{\text {High }}$	The maximum voltage of Ramp voltage
$\mathrm{V}_{\text {Low }}$	The minimum voltage of Ramp voltage
$\mathrm{V}_{\text {ref }}$	Reference voltage for DAC
SwitchBest	Selection of proposed circuit
SwitchWorst	Selection of conventional circuit
Dv4	The MSB of the input of DAC which controls the output voltage
Dv3	The $4^{\text {th }}$ bit of the input of DAC which controls the output voltage
Dv2	The $3^{\text {rd }}$ bit of the input of DAC which controls the output voltage
Dv1	The ${ }^{\text {nd }}$ bit of the input of DAC which controls the output voltage
Dv0	The LSB of the input of DAC which controls the output voltage
Df4	The MSB of the input of DAC which controls frequency
Df3	The $4^{\text {th }}$ bit of the input of DAC which controls frequency
Df2	The $3{ }^{\text {rd }}$ bit of the input of DAC which controls frequency
Df1	The $2^{\text {nd }}$ bit of the input of DAC which controls frequency
Df0	The LSB of the input of DAC which controls frequency
$\mathrm{I}_{\text {SS } 1}$	Bias point of bias circuit which is fast
$\mathrm{I}_{\text {SS2 }}$	Bias point of bias circuit which is slow
$\mathrm{I}_{\text {R EA }}$	Bias point of bias circuit which controls the error amplifier

As shown in Fig. 5.4, the measurement environment setup is introduced as following. The LM317 is used to stabilize the power supply and reference voltage of the chip and the Chroma 6300 electronic load is the loading of the DC-DC buck converter. Chroma 6300 is used at constant current (CC) mode as a stable loading in this work. The main function focuses on the hopping frequency moment. Firstly, adjust the output voltage by turning on or off the switches of $\mathrm{Dv}<0: 4>$. Secondly, choose the expected frequency by turning on or off the corresponding switches of $\mathrm{Df}<0: 4>$ or feeding in the
digital code by FPGA. Finally, the Oscilloscope Tektronix MSO 4034 is used to measure the voltages and the currents. It is also obtained the transient data and fast Fourier transform (FFT). Some extra passive components are configured according to the requirement shown in Fig. 5.4.

Fig. 5.4 The measurement environment setup

Fig. 5.5 (a) output stage (b) equivalent circuit of output stage
Due to the second-order response of the output stage affecting the improvement directly, it needs to discuss the component of time constant and damping period [18]. The output stage is organized by an inductor L_{O}, a capacitor C_{O}, and a loading such as a current source I_{O} or a resistor R. Fig. 5.5 shows the equivalent circuit of output stage including the equivalent series resistance (ESR), R_{L} and R_{C}, of the inductor and
capacitor respectively. The transfer function is given by

$$
\begin{align*}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\left(R_{C}+\frac{1}{s C_{O}}\right)}{\left(R_{o n}+R_{L}+s L_{O}\right)+\left(R_{C}+\frac{1}{s C_{O}}\right)} \tag{5.1}\\
& \left\{\begin{array}{l}
\alpha=\frac{R_{o n}+R_{L}}{2 L_{O}} \\
\omega_{0}=\frac{1}{\sqrt{L_{O} C_{o}}}, \omega_{d}=\sqrt{\omega_{0}-\alpha^{2}} \\
\left\{\begin{array}{l}
\text { damping period } T_{d}=\frac{2 \pi}{\omega_{d}} \\
\text { time constant } \frac{1}{\alpha}=\frac{2 L_{O}}{R_{o n}+R_{L}}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}\right. \tag{5.2}\\
& \tag{5.3}
\end{align*}
$$

The pole frequency ω_{0} and time constant are obtained from equation (5.1). In this measurement, the ESR of capacitor R_{C} and inductor R_{L} are $20 \mathrm{~m} \Omega$ and $450 \mathrm{~m} \Omega$ respecitively. The ESR of inductor is main different between simulation and measurement. In simulation, it estimates $45 \mathrm{~m} \Omega$ for ESR of inductor from data sheet and the corresponding time constant is longer. However, the practical ESR of inductor at 2 MHz is $450 \mathrm{~m} \Omega$ and the corresponding time constant is shorter in measurement. Since the ESR of inductor R_{L} is too large to neglect, the improvement of measurement is shrinked than simulation. Fig. 5.6 and Fig. 5.7 are the schematic of the test board. The following Table 5.2 lists the components used in PCB and Fig. 5.8 is the picture of the real test board.

Fig. 5.6 The schematic of power supplies and reference voltages on PCB

Fig. 5.7 The schematic of DC-DC converter side

Table 5.2 The components on PCB for testing the DC-DC converter

Component Designator	QTY	Description
Uvref, Uvdda, Uvin	3	LM317
Avref, Avhigh, Avlow	3	OP 8031
Lload	1	1μ H inductor
Cload	1	$1 \mu \mathrm{~F}, 0805$ Ceramic Capacitor
Lvref,Lvdda,Lvin	3	Ferrite Bead
JPvref,JPvdda,JPvin	3	Jumper
Sv, Sf	2	Switch(5dip)
sbw	1	Switch(2dip)
Rout	3	$5 \Omega, 0402$ Chip
R_rf	6	$240 \Omega, 0805$ Chip
R_sw	5	$100 \mathrm{k} \Omega, 0805$ Chip
R_v	7	$390 \mathrm{k} \Omega, 0805$ Chip
Riss1	1	$680 \mathrm{k} \Omega, 0805$ Chip
Riss2	1	$1.8 \mathrm{M} \Omega, 0805$ Chip
Rirea	2	$3.6 \mathrm{M} \Omega, 0805$ Chip
VRvref, VRvlow	2	50Ω, Top Adjust
VRvref, VRvhigh	2	500Ω, Top Adjust
VRvdda, VRvin	1	$1 \mathrm{k} \Omega$, Top Adjust
VRiss1	1	$100 \mathrm{k} \Omega$, Top Adjust
VRiss2	1	$200 \mathrm{k} \Omega$, Top Adjust
VRirea	3	$500 \mathrm{k} \Omega$, Top Adjust
C10n1-3		$10 \mathrm{nF}, 0805$ Chip Cap
C100n1-9		9
Clu1-3	3	$1 \mu \mathrm{nF}, 0805$ Chip Cap
C10u1-18	18	$10 \mu \mathrm{~F}, 0805$ Chip Cap Chip Cap

Fig. 5.8 The test board

5.2 Measurement Results

5.2.1 Static Measurement before using the Frequency-Hopping

Technique

Before using the frequency-hopping technique, it needs to confirm the control signal of switching frequency DFbit works appropriately. The control signal DFbit relates to the corresponding switching frequency as shown in Fig. 5.9. The switching frequency has the capability of varying from 0.88 MHz to 3.415 MHz . This environment is under input voltage $V_{I N}=5 \mathrm{~V}$, output voltage $v_{O U T}=2.5 \mathrm{~V}$ and load current $I_{O}=450 \mathrm{~mA}$. The switching frequency is given by

$$
\begin{equation*}
f_{\text {req }}=\frac{V_{\text {REF }} D F b i t}{R_{t} C_{t}\left(V_{\text {High }}-V_{\text {Low }}\right)} \tag{5.4}
\end{equation*}
$$

Another static measurement is the output voltage vout. In this work, the output voltage has the capability of varying from 0.8 V to 3.4 V as shown in Fig. 5.10. It is controlled by the DVbit. This is environment is under $V_{I N}=5 \mathrm{~V}$, switching frequency $f_{\text {req }}=2 \mathrm{MHz}$ and load current $I_{O}=450 \mathrm{~mA}$.

Fig. 5.9 Switching frequency relates to DFbit.

Fig. 5.10 Output voltage relates to DVbit.

5.2.2 Frequency Hopping

There are three parts to show the measurement results. Firstly, using fast Fourier transform (FFT) with Hamming window proves the reduced spur on spectrum. Secondly, the transient ripple on the output voltage could be observed from the transient waveform. Thirdly, the EMI reduction by using frequency-hopping technique is also provided.

5.2.2.1 Spectrum

The spectrum plots are shown as Fig. 5.11 and Fig. 5.12. In Fig. 5.11 there are two tones of switching frequencies at 0.88 MHz and 3.415 MHz which are the lowest and highest frequencies in this work, two harmonic tones of f_{1} between 0.88 MHz and 3.415 MHz , and a spur at around 130 kHz . The spur is dominated by the output inductor $1 \mu \mathrm{H}$ and the output capacitor $1 \mu \mathrm{~F}$. The magnitude of this spur is reduced 12.4 dB by proposed method. It suggests that the proposed method is needed when the application have to hop larger difference of frequency. Fig. 5.12 shows the condition without harmonic tones when choosing there is no integer multiple between the hopping frequencies. There are two tones of switching frequencies at 1.7 MHz and 2.4 MHz , and a spur at around 130 kHz . The magnitude of this spur is reduced 12.2 dB .

Fig. 5.11 Frequency hopping between 0.88 MHz and 3.415 MHz

Fig. 5.12 Frequency hopping between 1.7 MHz and 2.4 MHz

Spur magnitude at $f_{\text {trans }}$ as sweeping different $\Delta f_{\text {req }}$ is shown in Fig. 5.13. Comparison of spur magnitude from Fig. 5.13 is shown in following Fig. 5.14. The maximum reduction is 14.1 dB at $\Delta f_{\text {req }}=1.652 \mathrm{MHz}$ which hopping frequencies are 1.173 MHz and 2.825 MHz .

The maximum of $\Delta v_{\text {trans }}$ and spur reduction are perhaps not at the same $\Delta f_{\text {req }}$ since the spur has the others effect issue such as settling time and damping times.

Fig. 5.13 Spur magnitude sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$

Fig. 5.14 Spur reduction sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$

5.2.2.2 Transient Ripple on the Output Voltage

Fig. 5.15 shows the transient waveform of frequency hopping from 0.88 MHz to 3.415 MHz which are the lowest and highest frequencies in this work. When the Hop signal equals to logic 1 , the switching frequency of the DC-DC converter changes to higher frequency. In Fig. 5.15(a), the inductor current i_{L} comes steady state from the peak current and it leads a difference of current. This difference of current flows into the output capacitor and induces a transient ripple on the output voltage $\Delta v_{\text {trans }}$. In Fig. 5.15(b), the inductor current is modulated by the ICAC technique. It changes the switching frequency at the average of the inductor current moment and reduces the difference of current. Therefore, there is almost no transient ripple on the output voltage. The transient ripple on the output voltage reduced from 360 mV to 56 mV and the settling time reduced from $15 \mu \mathrm{~s}$ to $9 \mu \mathrm{~s}$.

In Fig. 5.16, it is the transient waveform of frequency hopping from 3.415 MHz to 0.88 MHz and the ICAC also works. Since the difference of the inductor current at high frequency is smaller and centralizes around the average of inductor current, the transient ripple voltage improves unapparent. For the transient ripple on the output voltage, there is more efficient improvement when frequency hops from low to high compares to frequency hops from low to high.

(a)

(b)

Fig. 5.15 Transient waveform of frequency hopping from 0.88 MHz to 3.415 MHz (a) without using ICAC and (b)with ICAC

(a)

(b)

Fig. 5.16 Transient waveform of frequency hopping from 3.415 MHz to 0.88 MHz (a) without using ICAC and (b) with ICAC

Fig. 5.17 depicts that the frequency-hopping technique without ICAC induces the larger transient ripple on the output voltage as the larger difference between two hopping frequencies. The transient ripples on the output voltage without ICAC method are reduced from 0.114 V to 0.36 V as difference of frequency from 0.325 MHz to 2.528 MHz . Comparatively; the transient ripples on the output voltage with ICAC method are reduced from 0.03 V to 0.056 V as difference of frequency from 0.325 MHz to 2.528 MHz . The transient ripple on the output voltage $\Delta v_{\text {trans }}$ is positive related to the period of the switching frequency due to the charging and discharging interval on the output capacitor. To show $\Delta v_{\text {trans }}$ corresponding the period of switching frequency, it uses the difference between two periods of switching frequency ΔT as a variable in Fig. 5.18.

Finally, define the improvement η_{v} to quantify the measurement results

$$
\begin{equation*}
\eta_{V}=\frac{\Delta v_{\text {trans }}-\Delta v_{\text {trans }, I C A C}}{\Delta v_{\text {trans }}} \tag{5.5}
\end{equation*}
$$

It obtains the improvement shown in Fig. 5.19. From Fig. 5.19, the maximum improvement is 88% at $\Delta T=676 \mathrm{~ns}$ and the hopping frequencies are 0.988 MHz and 2.98 $\mathrm{MHz}\left(\Delta f_{\text {req }}=1.992 \mathrm{MHz}\right)$.

Fig. 5.17 Comparison between conventional and proposed methods as sweeping different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$

Fig. 5.18 Transient ripple on the output voltage sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$

Fig. 5.19 Improvement sweeps different frequencies with $f_{\text {center }}=2 \mathrm{MHz}$

Fig. 5.20 and Fig. 5.21 are the measurements of changing the supply voltage $V_{I N}$. This is environment is under switching frequency hopping from 0.88 MHz to 3.415 MHz and load current $I_{O}=450 \mathrm{~mA}$. In Fig. 5.20, it shows the transient waveform of the supply voltage from $V_{I N}=5.0 \mathrm{~V}$ to $V_{I N}=3.6 \mathrm{~V}$. In Fig. 5.21, the comparison of the transient ripple on the output voltage between conventional and proposed methods is shown. There are
two different output voltages, $v_{O U T}=1.2 \mathrm{~V}$ and $v_{O U T}=1.8 \mathrm{~V}$. Due to the transient ripple without ICAC is proportional to the difference of the inductor current Δi_{L}, we should know the component of Δi_{L} is

$$
\begin{align*}
\Delta i_{L} & =\frac{V_{I N} D(1-D) T}{L_{O}} \tag{5.6}\\
& =\left(v_{\text {OUT }}-\frac{v_{O U T}^{2}}{V_{I N}}\right) \frac{T}{L_{O}} \tag{5.7}
\end{align*}
$$

where T is the period of switching frequency. By the equation (5.7), we obtain that Δi_{L} increases as $v_{O U T}$ increases or $V_{I N}$ increases. Therefore, $\Delta v_{\text {trans }}$ without ICAC increases as shown in Fig. 5.21.

Fig. 5.22 is the measurement of changing the load current I_{O}. This is environment is under the switching frequency hopping from 0.88 MHz to $3.415 \mathrm{MHz}, V_{I N}=5 \mathrm{~V}$ and $v_{\text {OUT }}=2.5 \mathrm{~V}$. Due to the improvement is independent to the dc current of inductor if the converter works in CCM, the load current does not affect the improvement. Fig. 5.22 depicts the improvement is almost the identical.

Fig. 5.20 Comparison between conventional and proposed methods as sweeping different supply voltage $V_{I N}$ at $v_{O U T}=1.8 \mathrm{~V}$

Fig. 5.21 Transient ripple on the output voltage sweeps different supply voltage $V_{I N}$

Fig. 5.22 Transient ripple on the output voltage sweeps different load current I_{O}

5.2.3 EMI Reduction

This thesis also provides the advantage of using the frequency-hopping technique. Fig. 5.23 shows the transient waveform of the output voltage and the inductor current with varying control signal of switching frequency DFbit. In this figure, DFbit changes seventeen levels at a rate of every $40 \mu \mathrm{~s}$ (clk) to generate seventeen switching
frequencies. Note that this clk is the period of the FPGA. The comparison of output spectrum between the one with only one switching frequency and the one hopping seventeen frequencies is shown in Fig. 5.24. It reduced the EMI by 23.55 dB . In Fig. 5.25 , these spur magnitude are normalized by the one with only single switching frequency. The maximum reduction is 23.55 dB at seventeen different switching frequencies from 2 MHz to 3 MHz . These frequencies start from 2 MHz and hop increasing monotonically and then decreasing monotonically.

Fig. 5.23 Transient waveform of seventeen different switching frequencies

Fig. 5.24 Output spectrum using the frequency-hopping technique with seventeen switching frequencies

Fig. 5.25 The spur magnitude of EMI with various of number of switching frequencies using the frequency-hopping technique

5.2.4 Efficiency

Fig. 5.23 shows the measured efficiency of the DC-DC buck converter with respect to load current. This environment is under $V_{I N}=5 \mathrm{~V}$, vOUT $^{=}=2.5 \mathrm{~V}$ and switching frequency $f_{\text {req }}=2 \mathrm{MHz}$. It can be represented by linear scale in Fig. 5.23(a) and by log scale in Fig. 5.23(b) respectively. The peak efficiency is 90% at load current $=180 \mathrm{~mA}$. The efficiency decreases as smaller load current due to switching loss.

(a)

Fig. 5.26 Efficiency at $v_{O U T}=2.5 \mathrm{~V}$ and $V_{I N}=5 \mathrm{~V}$ (a) with linear scale
(b) with \log scale

5.3 Performance Summary

The performance summary of this work is shown in Table 5.3 and the performance comparison is shown in Table 5.4.

Table 5.3 Performance summary in measurement

	Conventional	Measurement
Input Voltage, $V_{I N}$	$3.6-5 \mathrm{~V}$	$3.6-5 \mathrm{~V}$
Output Voltage, $v_{O U T}$	$0.75-3.88 \mathrm{~V}$	$0.75-3.88 \mathrm{~V}$
Max. Output Current, I_{O}	450 mA	450 mA
Switching Frequency, $f_{\text {req }}$	$0.88-3.4 \mathrm{MHz}$	$0.88-3.4 \mathrm{MHz}$
Transient Ripple on the Output Voltage	360 mV	56 m V
Settling Time	$15 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$
Max. Improvement	88%	
Spur Reduction	14.1 dB	
Max. Efficiency	90%	90%
Chip Size	1.397×1.522	1.397×1.522 $\mathrm{~mm}^{2}$

Table 5.4 Performance comparison

	PESC06[19]	ASSCC09[20]	CICC10[21]	This work
Technology	FPGA	FPGA	CMOS 0.35 $\mu \mathrm{m}$	CMOS $0.35 \mu \mathrm{~m}$
Input Voltage Range	$2.7-3.6$	1.8 V	$2-3.3 \mathrm{~V}$	$3.6-5 \mathrm{~V}$
Output Voltage Range	1.8 V	$0.6-1.2 \mathrm{~V}$	$0.5-3 \mathrm{~V}$	$0.8-3.4 \mathrm{~V}$
Inductor	$2 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$	$2.2 \mu \mathrm{H}$	$1 \mu \mathrm{H}$
Capacitor	$4.7 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
Output Current Maximum	500 mA	400 mA	500 mA	450 mA
$1.74-2.84$ MHz	1 MHz	$0.8-1.2 \mathrm{MHz}$	$0.8-3.4$ MHz	
Variable Frequency Method	DPWM+ RCFMFD	DPWM+ RPPM	PWM+ RCFMFD	PWM + FH
Improvement of Transient Ripple Voltage	Not improved	Not improved	88.5%	88%
Spur Reduction	Not improved	Not improved	N/A	14.1 dB $@ 159 \mathrm{kHz}$
Reduction in Conducted EMI Peak	23.4 dB	18 dB	15.6 dB	23.55 dB $@ .2-3 \mathrm{MHz}$

Chapter 6 Conclusion and Future Work

6.1 Conclusion

The proposed ICAC technique used in a DC-DC converter for frequency hopping is introduced in this thesis. It effectively reduces the undesired spur while hopping frequency, transient settling time, which limits the hopping times, and the transient ripple on the output voltage. The measurement results show that the undesired spur and the transient-ripple voltage could be decreased around 14.1 dB and 88% between two hopping frequencies. The frequency-hopping technique reduces the EMI spur magnitude by 23.55 dB . By combining the above two techniques, the spectrum from the natural frequency of the filter to the switching frequency of the buck converter can be suppressed. It is important in a mobile wireless device.

6.2 Future Work

The loading of this DC-DC converter is supposed as a constant current and the best hopping time is based on this assumption. In the future work, it can include the situation that the load current varies. Although there are many methods to improve the transient response as the load current varies. Both the load current and switching frequency vary at the same time is a brand-new topic.

Bibliography

[1] F. Lin and D. Y. Chen, "Reduction of power supply EMI emission by switching frequency modulation," IEEE Trans. Power Electron., vol. 9, no. 1, pp. 132-137, Jan. 1994
[2] M. Kuisma, "Variable frequency switching in power supply EMI control: An overview," IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 12, pp. 18-22, Dec. 2003. no. 1, pp. 132-137, Jan. 1994
[3] K. Tse, H. Chung, S. Hui, and H. So, "A comparative study of using random switching schemes for DC-DC converters," in Proc. IEEE Appl. Power Electron. Conf., vol. 1, pp. 160-166, 1999.
[4] Victor Adrian, Joseph S. Chang, and Bah-Hwee Gwee, "A Randomized Wrapped-Around Pulse Position Modulation Scheme for DC-DC Converters," IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 57, no. 9,pp. 2320-2333, Sep. 2010.
[5] Jau-Horng Chen, Pang-Jung Liu, and Yi-Jan Emery Chen, "A Spurious Emission Reduction Technique for Power Amplifiers Using Frequency Hopping DC-DC Converters," in IEEE Radio Frequency Integrated Circuits Symposium., pp. 145-148, 2009.
[6] Jau-Horng Chen, Pang-Jung Liu, Yu-Ling Hung, Hao-Shun Yang, and Yi-Jan Emery Chen, "A Spur-Reduced Multimode Power-Level Tracking Power Amplifier Using a Frequency-Hopping DC-DC Converter," IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, May 2010.
[7] J. Paramesh and A. Jouanne, "Use of sigma-delta modulation to control EMI from
switch-mode power supplies," IEEE Transactions on Industrial Electronics, vol. 48, pp. 111-117, Feb 2001.
[8] Marian K. Kazimierczuk, "Pulse-width Modulated DC-DC Power Converters," John Wiley \& Sons, 2008.
[9] H. W. Whittington, B. W. Flynn and D.E. Macpherson, "Switched Mode Power Supplies: Design and Construction," John Wiley \& Sons, 1992.
[10] Robert W. Erickson ; Dragan Maksimovic", "Fundamentals of Power Electronics , Second Edition" 2001 by Kluwer Academic Publishers
[11] B. Razavi, "Design of Analog CMOS Integrated Circuits." New York: McGraw-Hill, 2001
[12] C. F. Lee, P.K.T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342-2342, Dec. 2004.
[13] Paul R. Gray, Paul J. Hurst, Stepen H. Lewis, and Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits." John Wiley \& Sons, 2001
[14] J. Staudinger, T. Quach, and R. Sherman, "Gate and drain power tracking methods enhance efficiency in reverse link CDMA amplifiers," Appl. Microw. Wireless Mag., pp. 28-38, Mar. 2002.
[15] P. Wong, F. C. Lee, X. Zhou, and J. Chen, "VRM transient study and output filter design for future processors," in Proc. IEEE IECON, pp. 410-415, 1998.
[16] K. K. Tse, H. S.-H. Chung, S. Y. R. Hui, and H. C. So, "Spectral characteristics of randomly switched PWM dc/dc converters operating in discontinuous conduction mode," IEEE Trans. Ind. Electron., vol. 47, no. 4,pp. 759-769, Aug. 2000.
[17] Edward N. Y. Ho and Philip K. T. Mok, "Ramp Signal Generation in Voltage Mode CCM Random Switching Frequency Buck Converter for Conductive EMI

Reduction," in Proc. IEEE Custom Integr. Circuits Conf., 2010
[18] Charles K. Alexander, Matthew N. O. Sadiku "Fundamentals of Electric Circuits, $3^{\text {rd }}$ Edition." McGraw-Hill, 2005.
[19] O. Trescases, G. Wei, and W. T. Ng, "A Low-Power DC-DC Converter with Digital Spread Spectrum for Reduced EMI," in IEEE Power Electronics Specialists Conference, pp.1-7, June 2006.
[20] J.-C. Wu, C.-W. Mu, C.-H. Yang, and C.-H. Tsai, "Digitally controlled low-EMI switching converter with random pulse position modulation," in IEEE Asian Solid-State Circuits Conf., pp.341-344, Nov. 2009.
[21] Edward N. Y. Ho and Philip K. T. Mok, "Ramp Signal Generation in Voltage Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction," in Proc. IEEE Custom Integr. Circuits Conf., 2010

