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中 文 摘 要 
 

近年來金融危機的發生有越來越頻繁和嚴重的趨勢。其中有個明顯的現象，

一家金融機構的危機似乎會連帶影響到其他的金融機構。許多財務學家開始研

究如何評估來自於連帶影響造成的系統性風險。在本篇論文中，我們根據 Adrian 

and Brunnermeier (2010)提出的廣義 CoVaR，提出了一個具體的可操作定義。在

此定義下，我們以多元更新理論提出解析近似公式。根據此公式，利用常態和

雙指數跳躍過程，以數值法計算近似 CoVaR，與利用蒙地卡羅模擬法所計算的

CoVaR 做比較。此外，我們也利用常態近似 CoVaR 與 t 分配蒙地卡羅模擬的結

果作比較，因為在 t 分配下無法計算近似 CoVaR。結果顯示不同模型的確會影

響計算的準確度，而蒙地卡羅模擬法需要較長的計算時間，近似法在某些狀況

下可以提供較準確的值並更有效率。最後我們亦提供未來研究的方向。 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
關鍵字：相依風險值、風險值、溢出效果、財務相依性、多元更新理論、首度

通過時間、隨機漫步  



iii 

 

 

Abstract 

 

Financial crisis seems to come more regularly in recent years. A prominent 

phenomenon is the spillover effect shown in the time of crisis. Many researchers 

begin to find a simple measure to characterize the risk of dependence in financial 

market. In this study, we propose a special case of CoVaR, which is a measure of 

dependence risk proposed by Adrian and Brunnermeier (2010). The asymptotic 

conditional distribution is derived from multivariate renewal theory under normal 

distribution and DEJP process in discrete time setting. The CoVaR’s are computed 

numerically and are compared with the benchmarks from Monte Carlo simulation. 

We also compare the normal asymptotic CoVaR with the t distribution Monte Carlo 

simulated CoVaR since it is hard to get the asymptotic CoVaR under t distribution. 

We find that model assumption is likely to affect the CoVaR values and that the 

Monte Carlo simulation is computationally demanding. The asymptotic CoVaR’s are 

suitably accurate in some most needed situations with higher time-efficiency. 

Possibilities for further researches are also suggested in the conclusion. 

 

 

 

 

Key words：CoVaR, Value-at-Risk, Spillover Effect, Financial Interdependence, 

Multivariate Renewal Theory, First-Passage Time, Random Walk 
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1. Introduction

In the last two decades, the world has gone through several severe financial

crises, such as the Black Monday on October 19 in 1987, the market turmoil

in 1998 and the collapse of CDO (Collateral Debt Obligation) and the later

financial tsunami in 2008 and 2009. These events have urged the financial

academics as well as the practitioners to think how to appropriately measure

the market risk. There seems to be a tendency that financial system as a

whole can be brought down by the bad news of a few financial firms.

Brady (1988) provide a thorough review of 1987 crisis and it mentions

that the crisis start from the great loss of pension fund using portfolio in-

surance trading strategy, and then leads to the loss of investment banks and

stock market. Rubin et al. (1999) review the crisis in 1998 and suggests the

default of LTCM has not only results in the loss of its counterparties but

also undermines the market confidence, so that increasing the market risk.

In the most recent financial crises of 2008 to 2009, taking for an example,

the bankrupcy of Lehman Brothers and financial distress of AIG has caused

a tremendous effect on global financial market because the counterparty risk

and the fear they aroused.

There are several kinds of systemic risk which have been identified in

the literature. Bandt et al. (2009) review the related topics on systemetic

risk. They argue that the systemic risk is driven by systemic events, which is

composed by two components: shocks and propagation mechanisms. Shocks

can be idiosyncratic or systemic, if the shock is systemic, such as crash of

stock market or tightening liquidity, all assets are affected based on their
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market exposure. If the shock is idiosyncratic, the shock by definition will

not directly endanger the financial system. However, idiosyncratic shock can

be transmitted by propagation mechanism, and this creates systemic risk.

The propogation mechanism is very complicated, which may involve many

interlocking events. For example, the fail of one company may not only impair

its counterparties, but the market liquidity also tightens, thus reducing the

funding resource for its peers, and possibly leading to more default events.

There are many other phenomenon being identified and modeled in financial

literature, such as herding, can attributes to the propogation of idiosyncratic

risk.

Some authors borrow the term ”contagion” from epidemiology to refer

to the passing on of negative information in the financial market. However,

the using of this term has not achieved a concensus among researchers. The

terminology ”interdependence” is used by Forbes and Rigobon (2002) to de-

scribe the comovement of international stock market, they argue that the

concept of ”contagion” is related to the increase of correlation in financial

crisis. However, the correlation is conditioning on volatility. The increase

of correlation can be due to the heteroskedasticity. ”Interdependence” is

used to describe the transmission of market turmoil without the rise of cor-

relation. This terminology is more specific than the vague and controversial

terminology like ”contagion” in describing the approach we use in which the

correlation between assets stay constant over time. In this study, we use the

”interdependence risk” to refer to the systemic risk imposed by the fail of

one financial institution in the system without the rising of true correlation.

A simple measure of financial independence is desired by market regula-
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tors and policy makers to define a clear-cut criterion for the financial insti-

tutions to follow. The most common risk measure is the value at risk (VaR),

which bas been anacted in Basel II and III as a standard approach to measure

the market risk. Nontheless, traditional VaR measures may not be able to

reflect the spillover risk because it only looks at the individual asset price

distribution and does not consider the increase of systemic risk which arises

from the crash of financial institutions.

To properly measure the systemic risk, there are a number of researches

proposing different risk measures. This area is relatively new in financial

academics and the optimal systemic risk measure is still under debating. We

follow the line of CoVaR which has been discussed by many researchers. Fol-

lowing Adrian and Brunnermeier (2010), if C(X) is some event of X, define

CoVaR
W |X
q the q-quantile of the conditional probability distribution:

P (W ≤ CoVaRW |X
q |C(X)) = q. (1)

Many researchers of central banks have started studying this quantity.

Adrian and Brunnermeier (2010) computes a special case of weekly CoVar

where C(X) = {X = V aRX} by using linear quantile regression on a vast

data set compriced of all publicly traded commercial banks, brokerdealers,

insurance companies, and real estate companies. They estimate the asset i

VaR and the market return conditional on asset i by running linear quantile
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regression on one-week lag of state variable,

X i
t = αi + γiMt−1 + ǫit,

Xsystem
t = αsystem|i + βsystem|iX i

t + γsystem|iMt−1 + ǫ
system|i
t

where Mt is a state variable, reflecting the common risk factor. The predicted

values can be generated by

V aRi
t = αi + γiMt−1,

CoV aRi
t = αsystem|i + βsystem|iV aRi

t + γsystem|iMt−1.

With a different data set but under the same framework, Wong and Fong

(2010) estimate the CoVaR on the CDS of Asia-Pacific banks.

Adams et al. (2010) estimate the state-dependent sensitivity VaR (SDSVaR)

by using two-step estimation: first estimating VaR and then doing quantile

regression to estimate SDSVaR of i:

V aRm,t = µm,t + zασm,t;

SDSV aR{i;j,k,l},t,θ = αθ + β1,θV aRj,t + β2,θV aRk,t + β3,θV aRl,t + β4,θV aRi,t−1 + ui,t.

and SDSV aR{i;j,k,l},t,θ satisfies

P (Xi ≤ SDSV aR{i;j,k,l},t,θ|Xm,t = V aRj,t, m = j, k, l, Xi,t−1 = V aRi,t−1) = q

where m = i, j, k, l represent four financial indexes: insurance companies,

commercial banks, investment banks and hedge funds. µm,t is the mean
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of index m = i, j, k, l and σm,t follows a volatiltiy process extracting from

GARCH(1,1). They investigate how (αθ, β1,θ, β2,θ, β3,θ, β4,θ) change when sub-

stituting different regressand and θ. They argue that the VaR as dependent

variables can reflect the state or condition of financial market, so that the

estimated quantile will account for the condition of financial market.

Under similar setting as (1), Zhou (2009) proposes different methodology

to estimate CoVaR based on multivariate extreme value theory. Gauthier et al.

(2009) also compute the CoVaR satisfying

P (W < CoV aRi|Xi ∈ [V aRi(1− ǫ), V aRi(1 + ǫ)]) = 0.05

where V aRi is the value of risk of asset Xi and ǫ = 0.1.

In this study, we place the problem of CoVaR under sequential setting.

We consider two assets log return St and Wt, which are stochastic processes

varying with time t. Moreover, they are assumed to be random walks with

i.i.d. increments {(Xi, Yi)}ti=1 and (Xi, Yi) ∼ P where P is a joint probability

measure with finite third moment. In particular, Xi and Yi are linearly

correlated with correlation coefficient ρ. The goal is finding the α-quantile of

the distribution of WT given the event min0≤t≤T St ≤ a, a < 0.

The CoVaR in this study is defined by

P (WT ≤ CoV aRWT |St

q |τ < T ) = α, (2)

where τ = inf{t > 0 : St ≤ a} and a < 0 is a negative return level. For

the ease of developing method in computing (2), we consider the reverse
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probability measure P̃ = −P . Under the measure P̃ Equ. (2) is equivalent

to

P (WT ≤ −CoV aRWT |St

q |τ < T ) = 1− α, (3)

where τ = inf{t > 0 : St ≥ a} and a > 0. The correlation and variance of

St and Wt do not change. Henceforth in this study whenever the CoVaR is

mentioned, we mean the CoVaR satisfies Equ. (3).

(3) is similar to the general CoVaR definition (1) of Adrian and Brunnermeier

(2010). However, former researchers focus on the one period return distribu-

tion, in our definition, T can be any time point in the future. We do not care

about the behavior of St before time T if it does not fall below the lower level

a. However, once it hits a, it triggers market fear and information spillover

effect, and the whole system is affected. This corresponds to our observation

of the market that asset prices fluctuate all the time but it does not cause

market instability; on the other hand, large price drop imposes large negative

effect on the market. The choice of a may be arbitrary. We set a minimum of

a = 3.0 which means the actual accumulated return −St falls to e−3
+ 0.05

of its beginning value.

We place our model under discrete time setting because it accomodates

the actual data collection process. The continuous time model can be taken

as an approximation of the discrete time model. The drawback of continuous

time model is that it can induces large bias from the discrete time model,

as suggested in the chapter 3 of Siegmund (1988). Therefore, a discrete

adjustment is needed to get a more solid estimation.

6



In order to compute the CoVaR of (3), we propose an asymptotic ap-

proach based on multivariate renewal theory. The simulated CoVaRs are

benchmarks. The asymptotic CoVaR can be computed for normal distribu-

tion and DEJP, even stable distribution, but not for t distribution, because

it is not stable and its characteristic function has no closed form. We set

normal, t and double exponential jump process (DEJP) for simulation. t

distribution and DEJP are possibly more realistic because they can generate

heavy tail and asymmetric jump.

In some cases the asymptotic CoVaR can be sufficiently accurate. By ”ac-

curate” we mean the asympotic values are close to the benchmarks computed

by simulation. In our study, we find that when the correlation of the system

and the conditioned asset process is positive, the values are more accurate.

In practice, our care in the positive correlated case is greater than that in the

negative correlated case. Positive correlation means the bad event from one

asset can impose negative effect on the system. This can be seen in the time

of financial crisis that all assets seem to be positively correlated.

Simulating rare event can be very computationally demanding. The rare

event here refers to the case in which a is negatively far from zero and T is

small. Sometimes it even takes a few weeks to simulate one or two values.

Table 1 shows that the simulation based approach are much more time con-

suming than asymptotic based approach. The computer we use is with CPU

Intel(R) Duo core T8100 2.10GHz and 2.09 GHz and 2.00 GB RAM. The

normal Monte Carlo simulation is more time consuming than the heavy tail t

distribution and DEJP process because normal random variable is less likely

to generate extreme values.
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Table 1: Computational time (seconds) of each panel in Section
3 and Section 4.

Monte Carlo Simulation Based Equ. (7) Based

Normal DEJP t(8) t(6) Normal DEJP

T = 90 263373.2 150862.85 29407.02 20493.18 57.64 6032.86

T = 120 57353.95 111444.36 9762.05 8070.23 83.44 7975.17

T = 150 24771.37 78314.02 5295.16 4842.25 104.39 10094.46

T = 180 14813.12 68487.09 3733.53 3960.16 123.54 11716.73

T = 210 10823.53 62083.58 3077.57 3243.49 146.75 15190.09

This study is organized as follows: Section 2 introduces the methodology

of computing the asymptotic CoVaR. Section 3 presents the CoVaRs com-

puted by asymptotic method under normal assumptions and are compared

with the benchmarks from Monte Carlo simulation. Section 4 shows the

asymptotic CoVaRs under DEJP model and simulated CoVaRs under DEJP

and t distribution. We also illustrate how to find asymptotic CoVaR under

stable distributions.

2. Asymptotic CoVaR

The goal of this section is to find the way to compute the 1− α-quantile

of the distribution

P (WT ≤ w|τ < T ),

under given fixed time T and τ is defined by

τ = inf{t : St ≥ a}.
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This quantity is compatible with our definition of CoVaR given in the Equ.

(3) in the introduction.

As suggested in the introduction, modeling the negative accumulated re-

turn of a stock from time 0 to time t by:

St = X1 + ...+Xt, S0 = 0,

where X1, X2, ... are i.i.d. random variables denoting the stock log return

innovations.

Modeling the market index (or system) accumulated log return process as

univariate random walk Wt =
∑t

j=1 Yj, Yj ∈ R are i.i.d. Notice that Wt can

be a linear combination of many log return processes from individual asset.

To keep our model simple, here we assume that the weights of these assets in

Wt do not change in time. Moreover, the mean, variance and the correlation

between assets are constant over time.

In particular, under the Black-Sholes economy in discrete version, suppose

we have m assets V = (Vi)
m
i=1, the i-th asset log return follows

V i
t =

t
∑

j=1

ǫij,

where ǫ ∼ N(µi, σ
2
i ). Suppose the shares invested π = (πi)

m
i=1 are real num-

bers, so

Yj =

m
∑

i=1

πiǫ
i
j ∼ N





m
∑

i=1

πiµi,

m
∑

i=1

π2
i σ

2
i +

m
∑

i,k

πiπkρikσiσk



 .
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If the assets do not follow normal distribution, we directly assume the stock

index follows a stochastic process itself, and we look at the relationship be-

tween this process and the stock process St.

For the validity of the renewal theory (see Appendix A), we further assume

that the third moment of Xi and Yi exist and the probability measure P̃

(X1, Y1) ∼ P̃

where P̃ is defined in the introduction and satisfies Cramer’s condition (Def-

inition A.1 in Appendix). Denoting EX1 = ν and EY1 = µ under P̃ .

By strong Markov property, decomposing the conditional probability to

get (please see Appendix B for details)

P (WT ≤ w|τ < T )

=
1

P (τ < T )

T−1
∑

t=1

P (τ = t)

∫ ∞

−∞
P (Wτ ≤ w − x|τ = t)P

(

T
∑

j=t+1

Yj = x

)

dx

(4)

The last equality follows from the fact that the random variables Yt+1, ..., YT

are independent with the event {τ = t} ∈ Ft. One thing to notice is that the

value of the last expression is between 0 and 1.

This quantity has three part to compute. The first part is

P

(

T
∑

j=t+1

Yj = x

)

= φ

(

x− (T − t)µ

σY

√
T − t

)

,

if Yi ∼ N(µ, σ2
Y ). This normal assumption is employed in Section 3. However,

10



in Section 4, other processes are applied. Notice that this is the only part

which depends on model assumption, the other parts introduced below based

on renewal theory are model free.

The tasks left are the stopping time distribution: P (τ < T ) and the joint

probability density function of Wτ and τ : P (Wτ ≤ w − x, τ = T ).

The stopping time distribution P (τ < T ) as a → ∞ can be approximated

using the result from Siegmund (1988). This formula is constructed by first

deriving the stopping time distribution of Brownian motion and then make

discrete adjustment.

Lemma 2.1. Let τ and St be defined as above. For fixed T ∈ N large,

P (τ ≤ T ) ∼= 1−Φ

[(

a

σX
+ ρ

)

T−1/2 − ν

σX
T 1/2

]

+

e2(a/σX+ρ)(ν/σX)Φ

[

−
(

a

σX
+ ρ

)

T−1/2 − ν

σX
T 1/2

]

, (5)

where

ρ = −π−1

∫ ∞

0

t−2 log{2(1− e−t2/2)/t2}dt ∼= 0.583.

up to terms of order o(T−1/2).

The probability density P (τ = t) can be easily derived by differentiating

the cumulative distribution given in the Lemma 2.1.

The final part is to estimate the probability P (Wτ ≤ w − x|τ < T ). It is

given by Corollary A.4:

P (Wτ < w) = Φ(ŵ) +
√

ν/aφ(ŵ)H1(ŵ) + o{a(−1−δ)/2
√

log a}

11



as a → ∞, uniformly in w, where ŵ = (w − γa)/(σ
√

a/ν), σ2 = var(Y1 −

γX1) = EY 2
1 +γ2EX2

1 −2γEY1X1, EZ
3
1 = σ−3(EY 3

1 −3γEY 2
1 X1+3γ2EY1X

2
1 −

γ3EX3
1) and EX1Z1 = σ−1(EY1X1 − γEX2

1)

H1(ŵ) = (ŵ2 − 1)

{

−1

6
EZ3

1 +
EX1Y1

2ν

}

− γES2
τ

2νσEτ
(6)

Finally, the conditional distribution formula is given by

P (WT ≤ w|τ < T ) ≈ 1

Fτ(T )

T−1
∑

t=1

fτ(t)

∫ ∞

−∞
(Φ(ŵx) +

√

ν/aφ(ŵx)H1(ŵx))ft(x)dx

(7)

where a > 0, ν > 0 and ft(x) is the probability density function of
∑T

j=t+1 Yj,

ŵx = (w − x− γa)/(σ
√

a/ν),

Fτ(T ) = 1− Φ(A(T )) + e2(a/σX+ρ)(ν/σX)Φ(B(T ))

A(T ) =

(

a

σX
+ ρ

)

T−1/2 − ν

σX
T 1/2

B(T ) = A− 2

(

a

σX
+ ρ

)

T−1/2

ŵ = (w − γa)/(σ
√

a/ν)

σ2 = var(Y1 − γX1) = EY 2
1 + γ2EX2

1 − 2γEY1X1

EZ3
1 = σ−3(EY 3

1 − 3γEY 2
1 X1 + 3γ2EY1X

2
1 − γ3EX3

1)

EX1Z1 = σ−1(EY1X1 − γEX2
1)

H1(ŵ) = (ŵ2 − 1)

{

−1

6
EZ3

1 +
EX1Y1

2ν

}

− γES2
τ

2νσEτ
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and

fτ (t) =
d

dt
Fτ (t)

=
t−1.5

2
φ

((

a

σX
+ ρ

)

t−1/2 − ν

σX
t1/2
)(

a

σX
+ ρ

)

− ν

2σX
t−0.5+

e2(a/σX+ρ)(ν/σX)φ

(

−
(

a

σX
+ ρ

)

σXt
−0.5 − ν

σX
t0.5
)(

a

σX
+ ρ

)

t−1.5

2
− ν

2σX
t−0.5

Equ. (7) is the weighted sum of the convolution of asymptotic distribution

(before hitting boundary) and idiosyncratic distribution (after hitting bound-

ary). It just combines the two distribution of Wt before (using asymptotic

distribution) and after (using assumed distribution) St hits a, and weighted

by the stopping time distribution of the event {mint∈[0,T ] St ≥ a}.

Given 0 ≤ α ≤ 1 and ǫ > 0 small, numerically searching for CoV aRWT |St

until
∣

∣

∣
P̂ (WT ≤ −CoV aRWT |St

q |τ < T )− (1− α)
∣

∣

∣
≤ ǫ

holds, where P̂ (WT ≤ CoV aRWT |St|τ < T ) is the asymptotic probability

of P (WT ≤ CoV aRWT |St|τ < T ) given by Equ. (7). In this study, we set

α = 0.05.

As suggested by the multirenewal theory, this approximation is accurate

for a far from zero. a also defines the event in CoVaR. In section 3 we will

show CoVaR for different levels of a. In practice, the choice of a depends on

the purpose of user.

The CoVaR estimation for large a is troublesome if the Monte Carlo

simulation is applied. As shown in Table 1 that the computational time in-

creases when a gets smaller. By contract, the proposed method of computing
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CoVaR by inverting (7) gives accurate value in some cases and the compu-

tational time is much shorter than the Monte Carlo simulation. Therefore,

this method can be more favorable than Monte Carlo simulation in CoVaR

computation.

3. Numerical Computation of CoVaR

3.1. Choice of Parameters

In this section, the quantiles of the conditional marginal probability

P (WT ≤ w|τ < T )

are computed by the normal Monte Carlo simulation and by inverting (7).

The model is as described in Section 2. The purpose of this study is to see how

well the asymptotic conditional quantiles approximate the exact simulated

conditional quantiles.

The time step in this study is daily. Suppose the observation dates are

T = 30, 60, 90, 120, 150, 180 and 210 days. We consider stock log return

threshold a = 0.2, 0.5, 1.5, 3.0. The largest threshold is 3.0 because e−3 =

0.04979. That is, as log return St hits a = 3.0, the asset price has plunged

over 95%.

To get practical parameters, a daily log returns data set of Citigroup and

S&P500 from 1986Q1 to 2010Q1 is obtained.

Let St be the log return process of a financial institution and Wt be the

log return process of the stock market under the reverse probabiltiy measure

14



P̃ . The Citigroup is chosen as the representative of St. Citigroup Inc. under-

went severe financial distress in the financial tsunami of 2008 and 2009. As

Citigroup is once the largest commercial bank in the U.S. by market value,

how the stock market responds to its crash is worth exploring.

Be noted that our purpose is to acquire parameters with reasonable scale

to carry out the simulation, a complete empirical study is not our goal. The

parameter estimations may not be the most accurate ones. Estimating the

first and second moment of the increment Xi of St by taking simple mean

and standard deviation daily returns of Citigroup Inc. from June 2008 to

June 2009. During this period Citigroup Inc. drop 64.65% in market value

(from our data set). We get Xi mean ν = 0.004 and second moment 0.008.

The first and second moment of W are estimated from the weekly log return

of S&P500. We set Yi mean µ = −0.0006 and second moment EY 2
1 = 0.0014.

3.2. Normal Monte Carlo Simulation

For computing the conditional quantiles, our benchmark is the simula-

tion value. In this section, the exact CoVaRs are based on great amount of

simulations using normal distribution. The simulation is very computational

demanding. All parameters are daily as described in Section 3.1. We run the

program on freeware R (version 2.12.1), and the computer we use is equipped

with Intel(R) Duo core T8100 2.10GHz and 2.09 GHz and 2.00 GB RAM.

First the Monte Carlo simulation procedure is as follows:

Algorithm 3.1. Monte Carlo Simulation of the Conditional Quantiles Using

Normal Distribution.
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1. Generating T 2-dimensional {(Xt, Yt)}Tt=1 from bivariate normal distri-

bution

N









ν

µ



 ,





σ2
X ρσXσW

ρσXσW σ2
W









with the command ”rmvnorm” from the multivariate statistical package

”mvtnorm”.

2. Computing the marginal log return at time t: St = X1 + ... +Xt, and

recording St for each t = 0, 1, 2, ..., T .

3. If St ≥ a for some t ,(in other words, max1≤t≤T St ≥ a) then computing

WT = Y1 + ...YT and recording WT . If St < a for all t, going back to

step 1.

4. Repeating step 1 to 3 until N = 10, 000 values of WT are collected.

Therefore, we obtain a distribution of WT conditional on the event

St ≥ a for some t based on these N samples.

5. Computing the 1 − α-th quantile out of this empirical distribution,

where α = 0.05.

The simulation can be very time-consuming, because P (τ < T ) is small.

As shown in Table 3.2.1, the probablities are very small in scale when a = 3.0

and T small. This shows that it need to take great amount of computation

in order to get one trajectory of St which max0≤t≤T ≥ 3.0.
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Table 3.2.1: The probability P (τ ≤ T ) for different a by using Lemma 2.1.

a T = 30 T = 60 T = 90 T = 120 T = 150 T = 180 T = 210

1.5 0.00325 0.05199 0.1372 0.2268 0.3091 0.3816 0.4447

3.0 2.0829× 10−9 4.5975× 10−5 1.3676× 10−3 7.633× 10−3 0.02165 0.04365 0.07224

Table 3.2.2: Normal Monte Carlo simulation of the CoVaR.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.1876 -0.2580 -0.3276 -0.3552 -0.3550

T = 30 days 0.5 -0.0445 -0.1868 -0.3176 -0.3926 -0.4157

1.5 0.3801 0.0179 -0.3146 -0.5851 -0.7141

0.2 -0.3122 -0.3796 -0.4359 -0.4697 -0.4668

T = 60 days 0.5 -0.1687 -0.3167 -0.4372 -0.5185 -0.5181

1.5 0.2598 -0.1085 -0.4478 -0.6744 -0.7636

0.2 -0.4070 -0.4722 -0.5293 -0.5551 -0.5572

T = 90 days 0.5 -0.2636 -0.4155 -0.5292 -0.5976 -0.5873

1.5 0.1690 -0.2130 -0.5212 -0.7541 -0.8351

3.0 0.7696 0.1109 -0.5368 -1.0335 -1.2883

0.2 -0.4797 -0.5535 -0.6164 -0.6116 -0.6285

T = 120 days 0.5 -0.3364 -0.4913 -0.5953 -0.6407 -0.6678

1.5 0.0872 -0.2766 -0.6163 -0.7926 -0.8524

3.0 0.7069 0.0353 -0.5998 -1.0788 -1.3008

0.2 -0.5569 -0.5966 -0.6546 -0.6729 -0.6980

T = 150 days 0.5 -0.4163 -0.5553 -0.6625 -0.6999 -0.7099

1.5 0.0137 -0.3530 -0.6801 -0.8446 -0.9138

3.0 0.6145 -0.0521 -0.6524 -1.1200 -1.3143

0.2 -0.6201 -0.6736 -0.7017 -0.7222 -0.7344

T = 180 days 0.5 -0.4638 -0.6189 -0.7222 -0.7707 -0.7684

1.5 -0.0406 -0.4253 -0.7186 -0.8985 -0.9168

3.0 0.5790 -0.1033 -0.7226 -1.1392 -1.3067

0.2 -0.6454 -0.6876 -0.7692 -0.7875 -0.8051

T = 210 days 0.5 -0.5096 -0.6765 -0.7508 -0.7980 -0.8335

1.5 -0.1044 -0.4904 -0.7805 -0.9289 -0.9503

3.0 0.4906 -0.1732 -0.7639 -1.1864 -1.3261

Table 3.2.2 presents the exact conditional quantiles from simulated distri-

bution. In each panel, the quantiles are decreasing with rising correlations.
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This is intuitive because Wt is more likely to be dragged down as St hits a

lower boundary when their correlation is high. In particular, the aforemen-

tioned correlation effect is more significant when a is large, for example, in

the panel T = 150 days, at the line a = 0.2, the quantiles decrease from

−0.5569 of ρ = −0.9 to −0.6980 of ρ = 0.9, but at the line a = 3.0, the

quantiles decrease from a positive 0.6145 of ρ = −0.9 to −1.3143 of ρ = 0.9.

This shows that the behavior of WT is closely linked to the behavior of St.

Another interesting feature is that the quantiles are increasing in a for neg-

ative correlation but decreasing for positive correlation. The quantiles does

not change much in a for zero correlation. For negative correlation, St and

Wt tend to go opposite way. If St goes lower, Wt tends to go higher. The

quantiles are even positive at a = 3.0 when ρ = −0.9 for all T . For positive

correlation, the pattern reverses. St and Wt go lower together.

If we turn our attention to changes between panels, we can see that the

quantiles are decreasing as T getting longer. The reason is that WT is the

sum of T i.i.d. random variables Yt. When T is large, the variance of WT is

also large because varWT = Tσ2
Y , so that the left α quantile is smaller.

3.3. Asymptotic Conditional Quantiles

Recall from (7) that the conditional distribution decomposition is

P (WT ≤ w|τ < T ) =

1

P (τ < T )

T−1
∑

t=1

P (τ = t)

∫ ∞

−∞
P (Wτ ≤ w − x|τ = t)P

(

T
∑

j=t+1

Yj = x

)

dx.
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This probability is approximated by

P (τ ≤ T ) ∼= 1−Φ

[(

a

σX
+ ρ

)

T−1/2 − ν

σX
T 1/2

]

+

e2(a/σX+ρ)(ν/σX)Φ

[

−
(

a

σX
+ ρ

)

T−1/2 − ν

σX
T 1/2

]

,

up to terms of order o(T−1/2), where ρ = 0.583, and

P (Wτ < w|τ < T ) ∼= Φ(ŵ) +
√

ν/aφ(ŵ)H1(ŵ)

H1(ŵ) = (ŵ2 − 1)

{

−1

6
EZ3 +

EXZ

2ν

}

− γES2
τ

2νσEτ

up to terms of order o{a(−1−δ)/2
√
log a}.

Given 0 ≤ α ≤ 1 and ǫ > 0 small, numerically searching for CoV aRWT |St

until
∣

∣

∣
P̂ (WT ≤ −CoV aRWT |St

q |τ < T )− (1− α)
∣

∣

∣
≤ ǫ

holds, where P̂ (WT ≤ CoV aRWT |St|τ < T ) is the asymptotic probability

of P (WT ≤ CoV aRWT |St|τ < T ) given by Equ. (7). In this study, we set

α = 0.05. The indefinite integration involved in (7) is computed by the

”integrate” command in R.

Table 3.3.1 shows the asymtotic conditional quantiles by inverting (7)

using numerical method. 1 The daily parameters are ν = 0.004, µ = −0.0006,

EX2 = 0.008, EW 2 = 0.0014 as described in Section 3.1. These quantiles

represent the conditional log returns of asset WT , for different cases of T .

The CoVaR’s in Table 3.3.1 are all negative and the quantiles are in-

1Since P (WT ≤ w|τ < T ) is conditional distribution function, it is an increasing function of w. We
recursively search the value of w, until the difference of P (WT ≤ w|τ < T ) and α is less than 10−6.
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creasing with correlations at a = 0.2, 0.5, 1.5 and decreasing at a = 3.0. By

contrary, Table 3.2.2 has both positive and negative values and its value are

all decreasing with rising correlation. In essence, the asymptotic value is ac-

curate for a larger. Therefore, it is reasonable that at a = 3.0 the asymptotic

quantiles have similar pattern to the exact quantiles at a = 3.0. Another

feature is that the asymptotic conditional quantiles are decreasing with T at

a = 0.2, 0.5, 1.5 but increasing at a = 3.0, but this feature is not very obvious.

Lastly, The change of CoVaR’s in T is not so obvious as that in a.
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Table 3.3.1: The asymptotic CoVaR computed by inverting
the decomposition (7) under normal distribution.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.5854 -0.5028 -0.3916 -0.3941 -0.4091

T = 30 days 0.5 -0.7468 -0.6350 -0.5212 -0.5494 -0.5831

1.5 -0.9924 -0.8074 -0.7755 -0.8548 -0.9246

0.2 -0.6142 -0.5554 -0.4692 -0.4547 -0.4603

T = 60 days 0.5 -0.7661 -0.6606 -0.5624 -0.5803 -0.6087

1.5 -0.9933 -0.8147 -0.7851 -0.8617 -0.9301

0.2 -0.6428 -0.6095 -0.5393 -0.5129 -0.5103

T = 90 days 0.5 -0.7770 -0.6910 -0.6043 -0.6125 -0.6356

1.5 -0.9929 -0.8244 -0.7971 -0.8704 -0.9370

3.0 -1.0585 -0.8459 -0.9393 -1.0805 -1.1905

0.2 -0.6784 -0.6604 -0.6021 -0.5682 -0.5585

T = 120 days 0.5 -0.7867 -0.7230 -0.6453 -0.6449 -0.6627

1.5 -0.9910 -0.8357 -0.8105 -0.8803 -0.9448

3.0 -1.0531 -0.8500 -0.9429 -1.0829 -1.1922

0.2 -0.7166 -0.7074 -0.6584 -0.6203 -0.6050

T = 150 days 0.5 -0.7994 -0.7550 -0.6848 -0.6770 -0.6898

1.5 -0.9880 -0.8482 -0.8248 -0.8909 -0.9532

3.0 -1.0469 -0.8547 -0.9470 -1.0857 -1.1941

0.2 -0.7545 -0.7507 -0.7091 -0.6692 -0.6495

T = 180 days 0.5 -0.8156 -0.7863 -0.7227 -0.7085 -0.7166

1.5 -0.9845 -0.8614 -0.8397 -0.9019 -0.9620

3.0 -1.0398 -0.8599 -0.9516 -1.0887 -1.1963

0.2 -0.7910 -0.7907 -0.7551 -0.7150 -0.6920

T = 210 days 0.5 -0.8345 -0.8166 -0.7588 -0.7393 -0.7431

1.5 -0.9811 -0.8751 -0.8548 -0.9133 -0.9711

3.0 -1.0321 -0.8656 -0.9566 -1.0921 -1.1987

Table 3.3.2 shows the absolute errors between the asymptotic conditional

quantile and normal simulation quantiles. Each number in the table is com-

puted by substracting normal Monte Carlo simulated value (Table 3.2.2) from

theoretical value (Table 3.3.1) and then taking absolute value.
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In general, the asymptotic conditional quantiles perform better for posi-

tive and zero correlation. Most of the absolute difference value are less than 2

digits under the decimal point. The worst performance happens for negative

correlations. However, except a little anomaly 2, the absolute errors reduce

as T is getting larger.

2For a = 0.2, there are some disorder that the absolute errors increase form T = 120 to T = 150. This
may be due to the fact that a = 0.2 is not negative enough to get a good asymptotic result.
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Table 3.3.2: The absolute errors between conditional
marginal quantiles and normal Monte Carlo simulated quan-
tiles.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 0.3978 0.2448 0.0640 0.0389 0.0541

T = 30 days 0.5 0.7023 0.4482 0.2036 0.1568 0.1674

1.5 1.3725 0.8253 0.4609 0.2697 0.2105

0.2 0.3020 0.1758 0.0333 0.0150 0.0065

T = 60 days 0.5 0.5974 0.3439 0.1252 0.0618 0.0906

1.5 1.2531 0.7062 0.3373 0.1873 0.1665

0.2 0.2358 0.1373 0.0100 0.0422 0.0469

T = 90 days 0.5 0.5134 0.2755 0.0751 0.0149 0.0483

1.5 1.1619 0.6114 0.2759 0.1163 0.1019

3.0 1.8281 0.9568 0.4025 0.0470 0.0978

0.2 0.1987 0.1069 0.0143 0.0434 0.0700

T = 120 days 0.5 0.4503 0.2317 0.0500 0.0042 0.0051

1.5 1.0782 0.5591 0.1942 0.0877 0.0924

3.0 1.7600 0.8853 0.3431 0.0041 0.1086

0.2 0.1597 0.1108 0.0038 0.0526 0.0930

T = 150 days 0.5 0.3831 0.1997 0.0223 0.0229 0.0201

1.5 1.0017 0.4952 0.1447 0.0463 0.0394

3.0 1.6614 0.8026 0.2946 0.0343 0.1202

0.2 0.1344 0.0771 0.0074 0.0530 0.0849

T = 180 days 0.5 0.3518 0.1674 0.0005 0.0622 0.0518

1.5 0.9439 0.4361 0.1211 0.0034 0.0452

3.0 1.6188 0.7566 0.2290 0.0505 0.1104

0.2 0.1456 0.1031 0.0141 0.0725 0.1131

T = 210 days 0.5 0.3249 0.1401 0.0080 0.0587 0.0904

1.5 0.8767 0.3847 0.0743 0.0156 0.0208

3.0 1.5227 0.6924 0.1927 0.0943 0.1274
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4. CoVaR: Other Stock Return Models

The results in Section 3.1 is based on the assumption that the increments

Yi follow normal distribution. In fact, our model can be applied to any

stochastic process for which the probability density function

P

(

T
∑

j=t+1

Yj = x

)

exists in (7). By the Fourier inversion theorem (see Durret (2005)), this is

equivalent to the condition that its characteristic exists. Therefore, we can

in fact extend our result into Lévy process. In this section, we discuss DEJP

porcess and stable distribution whose characteristic functions are known in

closed form.

The characteristic function of t is in generally not known in closed form

(Cont and Tankov (2004)), the asymptotic conditional quantiles by (7) is

hard to compute by the Fourier inversion formula. Hurst (1995) derive a

general formula for the characteristic function of univariate t distribution

with positive degree of freedom by the subordinate method introduced in

Feller (1966). If V ∼ t(ν), its characteristic function is given by

E(eiθX) =
K 1

2
ν(
√
ν|θ|)(√ν|θ|) 1

2
ν

Γ(1
2
ν)2

1

2
ν−1

θ ∈ R,

where ν is the degree of freedom, Kλ(·) is the modified Bessel function of the

third kind with index λ and Γ(·) is the Gamma function. Dreier and Kotz

(2002) obtains another expression of the characteristic function of t-distribution
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involving an indefinite integral by the theory of positive definite densities,

which is

E(eiθX) =
2ννν/2

Γ(ν)

∫ ∞

0

e−
√
ν(2x+|θ|)(x(x+ |θ|))(ν−1)/2dx, θ ∈ R.

where ν is the degree of freedom and Γ(·) is the Gamma function. As can

be seen from the above discussion, Fourier inversion for the characteristic

function of t distribution is generally not feasible.

4.1. Double Exponential Jump Process (DEJP)

If the stock log return St follows DEJP, the dynamics is given by the

stochastic differential equation

dSt = µdt+ σdBt + d

(

Nt
∑

i=1

(Vi − 1)

)

.

Where Bt is a standard Brownian motion, Nt a Poisson process with rate λ.

{Vi} is i.i.d. nonnegative random variables so that log(V ) has an asymmetric

double exponential distribution:

f(z) = p · η1e−η1z1{z≥0} + q · η2eη2z1{z<0}, η1 > 1, η2 > 0,

where p, q ≥ 0, p+ q = 1. DEJP seperately models the positive and negative

jumps, which gives more freedom in modeling the jump dynamics of asset

returns.

Double Exponential Jump Process is a special case of Lévy process, which
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admits the unique Lévy-Khinchin representation, see Kou and Wang (2004).

By Kou and Wang (2003), the characteristic function of the double exponen-

tial jump process Z(t) is E[eiθZ(t)] = exp{G(iθ)t}, where

G(x) = xµ+
1

2
x2σ2 + λ

(

pη1
η1 − x

+
qη2

η2 + x
− 1

)

. (8)

Under the assumption that the increments Yi follow DEJP, in order to use (7),

we need to find the probability density function P
(

∑T
j=t+1 Yj = x

)

. Fourier

inversion theorem can be applied. The pdf is given by (please see Appendix

C for details)

f(x) =
1

π

∫ ∞

0

Re[exp(iθx)exp(G(iθ)t)]dθ (9)

=
1

π

∫ ∞

0

exp(A(θ, t; σ, λ, p, q, η1, η2)) cos(B(θ, t; σ, λ, p, q, η1, η2))dθ

where

A(θ, t; σ, λ, p, q, η1, η2) = −θ2σ2t

2
− λt+ λ

(

p
η21t

η21 + θ2
+ q

η22t

η22 + θ2

)

;

B(θ, t; σ, λ, p, q, η1, η2) = θ

(

−x+ tµ + p
λη1t

η21 + θ2
− q

λη2t

η22 + θ2

)

.

In the following numerical experiments, the parameters are retrieved from

the empirical study of DEJP by Ramezani and Zeng (2006). They use max-

imum likelihood mathod to estimate the parameters (λu, λd, p, η1, η2) in the

Pareto-Beta Jump-Diffusion (PBJD) model. This model is proposed by

Ramezani and Zeng (1998). In this model the positive and negative jumps are

generated by two independent Poisson processes with rates λ1 and λ2. They
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argued that the connection between DEJP and PBJD is that λ = λ1+λ2 and

p = λ1/λ. They estimate the parameters for PBJD, and in our study we use

the relation they argued to compute the DEJP parameters. The data is daily

returns for 100 firms in CRSP, starting from October 31st 1996 through De-

cember 31st, 1998, 547 observations in sum. Their resulting daily parameters

are λ1 = 0.49, λ2 = 0.3, η1 = 53.82, and η2 = 48.98.

In order to make this setting comparable with the results under normal

distribution, we need to adjust the first and second moment of DEJP so that

they have the same standpoint. If W (t) follows DEJP, the first and second

moments of DEJP given elapsed time t are:

E[Wt] = t

(

µ+ λ

(

p

η1
− q

η2

))

= −0.0006; (10)

E[W 2
t ] = t

(

(

µ+ λ

(

p

η1
− q

η2

))2

+

(

σ2 + 2λ

(

p

η21
+

q

η22

))

)

= 0.0014.

(11)

Taking (µ, λ) as variables and σ2, η1, η2, p as given,
3 solving the two equations

above gives µ = −0.006477 and λ = 1.87647. To summarize, all parameters

for process Wt used in this section are µ = 0.006477, σY = 0.0014, λY =

1.87647, pY = 0.3/0.79 = 0.3797, ηY2 = 53.82 and ηY1 = 48.98.

In the Monte Carlo simulation study, as in the case of normal distribution

in section 3.2, two correlated double exponential jump diffusion processes are

simulated simultaneously. In order to simplify the procedure, we assume that

the correlation exists only in the Brownian motion part, and the jump part

3We tried setting η1, η2 as variables and solve for (10) and (11). However, the solutions are not reasonable.
Setting (µ, λ) as variables gives more reasonable result. The setting of σ is somewhat arbitrary, but it does
not hurt a lot.
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of the two processes are independent. Similar to what we do in Section 3, the

daily return of Citigroup is taken as our representative for process St. Again

from the paper of Ramezani and Zeng (1998), using the daily return of the

Citigroup from October, 1996 through December, 1998, MLE gives the log

double exponential diffusion parameters λ1 = 0.2, λ2 = 0.41, η1 = 40.91 and

η2 = 63.42. To keep the first and second moment of the DEJP increments to

be the same as the normal increments in section 3, we also change the values

of (ν, λX) just like what we do for Wt. In sum, the parameters for St are

ν = 0.0404, σX = 0.008, λX = 9.4554, pX = 0.41/0.61 = 0.6721, ηX2 = 40.91

and ηX1 = 63.42.

First we do a Monte Carlo simulation study of the conditional quan-

tiles. The algorithm for the simulation of jump part is from Cont and Tankov

(2004). The algorithm used here is very similar to Algorithm 3.1. Given the

parameters for the increments of St and Wt, the whole trajectory of St is

generated in each iteration, and we check if St ever hit the lower boundary

a. If it does, we compute and record WT . Note that for Wt we only need

to know its realization at time T . Repeating this process until N samples of

WT are collected. The precise algorithm is described as follows.

Algorithm 4.1. Monte Carlo Simulation of the Conditional Qantiles Using

DEJP.

1. Drawing T pairs of (Xi, Yi) from normal distribution

(Xi, Yi) ∼ N









ν

µ



 ,





σ2
X ρσXσW

ρσXσW σ2
W







 ,
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with R command ”rmvnorm” in the multivariate statistical package

”mvtnorm”.

2. Generating the total number of jumps of St in [0, T ] using Poisson

distribution with rate TλX (R command: ”rpois”). Denote the total

number of jumps of St as MX .

3. Generating the jump times by simulating MX uniformly distributed

random variables in range [0, T ]. (R command: ”runif”)

4. Generating MX bernoulli random numbers Bi, 1 ≤ i ≤ MX , taking

value in {0, 1} with probability pX . This tells us whether the jump is

positive or negative. The jump size Ji, 1 ≤ i ≤ MX , is randomly drawn

from an exponential distribution with rate ηX1 if the jump is positive

(Bi = 1), or from an exponential distribution with rate ηX2 if the jump

is negative (Bi = 0). (R command: ”rexp”)

5. The trajectory of St is given by

St =

t
∑

i=1

(Xi + eJi − 1).

6. If St does not hit the boundary a for all t ∈ [0, T ], going back to Step

1.

7. If St hits the boundary a for t ∈ [0, T ], then computing WT as follows:

Generating the total number of jumps of Wt in [0, T ] using Poisson

distribution with rate TλY . Denote the total number of jumps of Wt as

MY . GeneratingMY bernoulli random numbers Ci, 1 ≤ i ≤ MY , taking
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value in {0, 1} with probability pY . The jump size Li is randomly drawn

from an exponential distribution with rate ηY1 if the jump is positive

(Ci = 1), or from an exponential distribution with rate ηY2 if the jump

is negative (Ci = 0). Then

WT =

T
∑

i=1

(Yi + eLi − 1).

8. Repeat Step 1-7 until N = 10000 samples of WT are collected, where

N is a positive integer. Computing the 1− α = 0.95 quantile from the

empirical distribution generated by these N samples.

Table 4.1.1 shows the exact conditional quantiles by the Monte Carlo

simulation using DEJP. Comparing to the exact conditional quantiles by

normal simultion of Table 3.2.2, the quantiles are much smaller, regardless

we have rendered the first and second moment of the two process to be equal

to that of the normal simulation. This may be due to the fact that DEJP

generates leptokurtic effect. DEJP has heavier tail than Black-Scholes model

which is basically sum of normal random variables; therefore, the distribution

generated from DEJP process is more disperse and leads to smaller quantiles.

Table 4.1.2 shows the conditional quantiles under DEJP model using (7).

The patterns is very similar to that under normal distribution in Table 3.3.1.

In the case of a = 0.2, 0.5, 1.5 the values are increasing with rising correlation,

while in the case of a = 3.0, the values are decreasing.

However, the values in Table 4.1.2 seem to be smaller (more negative)

than those in Table 3.3.1. This may be due to the fact that DEJP shows

asymmetrically leptokurtic (Kou and Wang (2004)) effect, so extreme nega-
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tive returns are more likely to appear in case of DEJP than in the case of

normal distribution. This results in the smaller quantile values.

Table 4.1.3 presents the errors computed by substracting Table 4.1.1

DEJP exact conditional quantiles from asymptotic conditional quantiles Ta-

ble 4.1.2 and then taking absolute value.

Comparing Table 4.1.3 to Table 3.3.2, the errors in both tables are likely

to be smaller for a close to zero and larger for a far from zero. Generally

speaking, the largest errors occur at a = 3.0. The errors seems to be smaller

for zero and positive correlation, and larger for negative correlation. The

errors tend to reduce as T increase.

Table 4.1.4 shows the absolute difference between DEJP exact quantiles

and the normal asymptotic quantiles. We see that the differences are greater

than in Table 4.1.3. This suggests that the choice of model may be important

when computing the CoVaR. If using normal distribution to approximate

non-normal models may lead to large bias.
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Table 4.1.1: DEJP Monte Carlo simulation of CoVaR.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.3701 -0.3990 -0.4430 -0.4548 -0.4784

T = 30 days 0.5 -0.3084 -0.3628 -0.4280 -0.4810 -0.5191

1.5 -0.1005 -0.2555 -0.4403 -0.5870 -0.6953

0.2 -0.5319 -0.5448 -0.5884 -0.6192 -0.6388

T = 60 days 0.5 -0.4657 -0.5525 -0.5993 -0.6245 -0.6816

1.5 -0.2566 -0.4008 -0.6026 -0.7460 -0.8318

0.2 -0.6418 -0.6446 -0.7104 -0.7206 -0.7500

T = 90 days 0.5 -0.5649 -0.6384 -0.6983 -0.7416 -0.7892

1.5 -0.3820 -0.5333 -0.7098 -0.8561 -0.9335

3.0 -0.0461 -0.3584 -0.6971 -0.9979 -1.2137

0.2 -0.7075 -0.7521 -0.7789 -0.7975 -0.8300

T = 120 days 0.5 -0.6569 -0.7240 -0.7868 -0.8255 -0.8680

1.5 -0.4531 -0.6260 -0.7744 -0.9266 -1.0248

3.0 -0.1546 -0.4602 -0.7947 -1.0719 -1.2907

0.2 -0.7867 -0.8054 -0.8847 -0.8847 -0.9005

T = 150 days 0.5 -0.7258 -0.8051 -0.8652 -0.9084 -0.9517

1.5 -0.5416 -0.6871 -0.8805 -1.0138 -1.1268

3.0 -0.1171 -0.5340 -0.8599 -1.1613 -1.3504

0.2 -0.8751 -0.9153 -0.9590 -0.9385 -0.9651

T = 180 days 0.5 -0.7963 -0.8594 -0.9374 -0.9704 -0.9851

1.5 -0.5817 -0.7418 -0.9042 -1.0434 -1.1720

3.0 -0.2698 -0.5798 -0.9226 -1.1906 -1.4171

0.2 -0.8925 -0.9663 -0.9520 -0.9975 -1.0081

T = 210 days 0.5 -0.8486 -0.8798 -0.9821 -1.0272 -1.0517

1.5 -0.6384 -0.8007 -0.9697 -1.1241 -1.2035

3.0 -0.3277 -0.6542 -0.9875 -1.2619 -1.4351
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Table 4.1.2: The CoVaR computed by inverting the decom-
position (7) under DEJP model.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.6242 -0.5634 -0.4728 -0.4600 -0.4670

T = 30 days 0.5 -0.7697 -0.6625 -0.5595 -0.5803 -0.6103

1.5 -0.9957 -0.8139 -0.7833 -0.8613 -0.9304

0.2 -0.7024 -0.6826 -0.6207 -0.5864 -0.5777

T = 60 days 0.5 -0.8025 -0.7319 -0.6478 -0.6509 -0.6712

1.5 -1.0011 -0.8353 -0.8079 -0.8807 -0.9470

0.2 -0.7943 -0.7896 -0.7453 -0.7037 -0.6840

T = 90 days 0.5 -0.8417 -0.8062 -0.7354 -0.7235 -0.7343

1.5 -1.0043 -0.8632 -0.8383 -0.9050 -0.9678

3.0 -1.0565 -0.8593 -0.9518 -1.0912 -1.2001

0.2 -0.8828 -0.8842 -0.8516 -0.8102 -0.7841

T = 120 days 0.5 -0.8926 -0.8788 -0.8189 -0.7958 -0.7979

1.5 -1.0072 -0.8950 -0.8720 -0.9323 -0.9912

3.0 -1.0502 -0.8717 -0.9631 -1.1001 -1.2077

0.2 -0.9646 -0.9691 -0.9443 -0.9060 -0.8771

T = 150 days 0.5 -0.9494 -0.9480 -0.8976 -0.8667 -0.8611

1.5 -1.0128 -0.9293 -0.9076 -0.9612 -1.0162

3.0 -1.0431 -0.8864 -0.9762 -1.1105 -1.2165

0.2 -1.0400 -1.0462 -1.0270 -0.9923 -0.9630

T = 180 days 0.5 -1.0075 -1.0136 -0.9713 -0.9356 -0.9235

1.5 -1.0228 -0.9650 -0.9443 -0.9915 -1.0425

3.0 -1.0363 -0.9025 -0.9906 -1.1220 -1.2263

0.2 -1.1098 -1.1168 -1.1018 -1.0708 -1.0422

T = 210 days 0.5 -1.0647 -1.0754 -1.0403 -1.0021 -0.9846

1.5 -1.0377 -1.0014 -0.9817 -1.0225 -1.0695

3.0 -1.0304 -0.9198 -1.0061 -1.1345 -1.2369
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Table 4.1.3: The absolute errors between DEJP asymptotic
conditional marginal quantiles and DEJP Monte Carlo sim-
ulated quantiles.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 0.2541 0.1644 0.0298 0.0052 0.0114

T = 30 days 0.5 0.4613 0.2997 0.1315 0.0993 0.0912

1.5 0.8952 0.5584 0.3430 0.2743 0.2351

0.2 0.1705 0.1378 0.0323 0.0328 0.0611

T = 60 days 0.5 0.3368 0.1794 0.0485 0.0264 0.0104

1.5 0.7445 0.4345 0.2053 0.1347 0.1152

0.2 0.1525 0.1450 0.0349 0.0169 0.0660

T = 90 days 0.5 0.2768 0.1678 0.0371 0.0181 0.0549

1.5 0.6223 0.3299 0.1285 0.0489 0.0343

3.0 1.0104 0.5009 0.2547 0.0933 0.0136

0.2 0.1753 0.1321 0.0727 0.0127 0.0459

T = 120 days 0.5 0.2357 0.1548 0.0321 0.0297 0.0701

1.5 0.5541 0.2690 0.0976 0.0057 0.0336

3.0 0.8956 0.4115 0.1684 0.0282 0.0830

0.2 0.1779 0.1637 0.0596 0.0213 0.0234

T = 150 days 0.5 0.2236 0.1429 0.0324 0.0417 0.0906

1.5 0.4712 0.2422 0.0271 0.0526 0.1106

3.0 0.9260 0.3524 0.1163 0.0508 0.1339

0.2 0.1649 0.1309 0.0680 0.0538 0.0021

T = 180 days 0.5 0.2112 0.1542 0.0339 0.0348 0.0616

1.5 0.4411 0.2232 0.0401 0.0519 0.1295

3.0 0.7665 0.3227 0.0680 0.0686 0.1908

0.2 0.2173 0.1505 0.1498 0.0733 0.0341

T = 210 days 0.5 0.2161 0.1956 0.0582 0.0251 0.0671

1.5 0.3993 0.2007 0.0120 0.1016 0.1340

3.0 0.7027 0.2656 0.0186 0.1274 0.1982
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Table 4.1.4: The absolute errors between normal asymptotic
conditional marginal quantiles and DEJP Monte Carlo sim-
ulated quantiles.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 0.2153 0.1038 0.0514 0.0607 0.0693

T = 30 days 0.5 0.4384 0.2722 0.0932 0.0684 0.0640

1.5 0.8919 0.5519 0.3352 0.2678 0.2293

0.2 0.0823 0.0106 0.1192 0.1645 0.1785

T = 60 days 0.5 0.3004 0.1081 0.0369 0.0442 0.0729

1.5 0.7367 0.4139 0.1825 0.1157 0.0983

0.2 0.0010 0.0351 0.1711 0.2077 0.2397

T = 90 days 0.5 0.2121 0.0526 0.0940 0.1291 0.1536

1.5 0.6109 0.2911 0.0873 0.0143 0.0035

3.0 1.0124 0.4875 0.2422 0.0826 0.0232

0.2 0.0291 0.0917 0.1768 0.2293 0.2715

T = 120 days 0.5 0.1298 0.0010 0.1415 0.1806 0.2053

1.5 0.5379 0.2097 0.0361 0.0463 0.0800

3.0 0.8985 0.3898 0.1482 0.0110 0.0985

0.2 0.0701 0.0980 0.2263 0.2644 0.2955

T = 150 days 0.5 0.0736 0.0501 0.1804 0.2314 0.2619

1.5 0.4464 0.1611 0.0557 0.1229 0.1736

3.0 0.9298 0.3207 0.0871 0.0756 0.1563

0.2 0.1206 0.1646 0.2499 0.2693 0.3156

T = 180 days 0.5 0.0193 0.0731 0.2147 0.2619 0.2685

1.5 0.4028 0.1196 0.0645 0.1415 0.2100

3.0 0.7700 0.2801 0.0290 0.1019 0.2208

0.2 0.1015 0.1756 0.1969 0.2825 0.3161

T = 210 days 0.5 0.0141 0.0632 0.2233 0.2879 0.3086

1.5 0.3427 0.0744 0.1149 0.2108 0.2324

3.0 0.7044 0.2114 0.0309 0.1698 0.2364

4.2. Monte Carlo Simulation with t distribution

There is an increasing belief that the joint asset returns do not follow

normal distribution. Kan and Zhou (2006) run a multivariate kurtosis test
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on the Fama and French (1993) 25 assets returns and from January 1963 to

December 2002 and rejected the null hypothesis of multivariate normality

with a p-value less than 0.01. However, the multivariate kurtosis tests do not

reject the null that the data are from t-distribution with degree of freedom 6

and 8, neither do the multivariate skewness tests. They further estimate the

degree of freedom by the maximum likelihood method and obtain the point

estimate value 8.66. Nevertheless, for robustness, they report most of their

result based on degree of freedom 6,8 and 10.

In our simulation study, we follow Kan and Zhou (2006) and use degree

of freedom 6 and 8 to reflect possible thick tail phenomenon in assets returns

during the period of financial crisis. The Simulation again run on R. The

computer we use quipped with Intel(R) Duo core T8100 2.10GHz and 2.09

GHz and 2.00 GB RAM. The simulation procedure is similar to Algorithm

3.1:

Algorithm 4.2. Monte Carlo Simulation of the Conditional Qantiles Using

t Distribution.

1. Generating T 2-dimensional {(Xt, Yt)}Tt=1 from bivariate t distribution

t









ν

µ



 ,





σ2
X ρσXσW

ρσXσW σ2
W



 , df



 ,

where df=6,8. The command ”rmvt” from the multivariate statistical

package ”mvtnorm” is used.

2. Computing the marginal log return at time t: St = X1 + ... +Xt, and

recording St for each t = 0, 1, 2, ..., T .
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3. If St ≥ a for some t ,(in other words, max1≤t≤T St ≥ a) then computing

WT = Y1 + ...YT and recording WT . If St < a for all t, going back to

step 1.

4. Repeating step 1 to 3 until N = 10, 000 values of WT are collected.

Therefore, we obtain a distribution of WT conditional on the event

St ≥ a for some t based on these N samples.

5. Computing the 1 − α-th quantile out of this empirical distribution,

where α = 0.05.

The results are shown in table 4.2.1 for df=8 and table 4.2.2 for df=6.

They show similar pattern to table 3.2.2, but here the quantiles are smaller,

because the leptokurtic property of t distribution makes the simulated dis-

tribution more disperse. If we compare table 4.2.1 to table 4.2.2, we can

also find that the quantiles simulated from t(6) is smaller than that simu-

lated from t(8). Therefore, we conclude that the log return distribution with

heavier tail leads to smaller exact conditional quantiles.

Table 4.2.3 and table 4.2.4 presents the numbers which are computed by

substracting table 4.2.1 and table 4.2.2 DEJP exact conditional quantiles

from asymptotic conditional quantiles table 3.3.1 and then taking absolute

value. Since the characteristic function of t distribution has no closed form

as explained in the beginning of this section, it is difficult to compute the

asymptotic CoVaR. Therefore, we compare the t simulation results with the

normal asymptotic CoVaR.

The two tables present that the errors do occur when using normal as-

sumption in asymptotic CoVaR computation. This corresponds to the results
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of Table 4.1.4 where we compare the normal asymptotic CoVaR with the

DEJP exact CoVaR. The asymptotic CoVaR underestimate the risk of heavy

tail by overestimating the values of CoVaR. We can see that in table 3.3.1 the

CoVaR’s in positive correlation group are often higher than the correspond-

ing CoVaR in Table 4.2.1 and Table 4.2.2. On the other hand, the CoVaR’s

in negative correlation group are often underestimated. This overestimates

the risk if the stock log return follows t distribution.
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Table 4.2.1: t(8) Monte Carlo simulation of the CoVaR.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.2402 -0.2999 -0.3683 -0.4046 -0.4088

T = 30 days 0.5 -0.0826 -0.2389 -0.3767 -0.4594 -0.4723

1.5 0.3459 -0.0249 -0.3815 -0.6445 -0.7638

0.2 -0.3676 -0.4580 -0.5068 -0.5306 -0.5441

T = 60 days 0.5 -0.2404 -0.3901 -0.5278 -0.5771 -0.5960

1.5 0.2160 -0.1770 -0.5217 -0.7619 -0.8421

0.2 -0.4750 -0.5535 -0.6231 -0.6420 -0.6511

T = 90 days 0.5 -0.3399 -0.4820 -0.6191 -0.6780 -0.7041

1.5 0.1062 -0.2875 -0.6298 -0.8332 -0.8994

3.0 0.7120 0.0302 -0.6130 -1.1137 -1.3732

0.2 -0.5894 -0.6549 -0.7262 -0.7444 -0.7332

T = 120 days 0.5 -0.4362 -0.5876 -0.7058 -0.7745 -0.7604

1.5 0.0125 -0.3788 -0.7001 -0.8957 -0.9791

3.0 0.6389 -0.0683 -0.7046 -1.1854 -1.3803

0.2 -0.6568 -0.7318 -0.7898 -0.7928 -0.8110

T = 150 days 0.5 -0.5292 -0.6505 -0.7796 -0.8545 -0.8553

1.5 -0.0585 -0.4714 -0.7733 -0.9815 -1.0135

3.0 0.5585 -0.1674 -0.7623 -1.2471 -1.4231

0.2 -0.7343 -0.7851 -0.8743 -0.8678 -0.8611

T = 180 days 0.5 -0.5832 -0.7128 -0.8399 -0.8997 -0.8943

1.5 -0.1490 -0.5372 -0.8450 -1.0366 -1.0671

3.0 0.4817 -0.2289 -0.8411 -1.2732 -1.4383

0.2 -0.7921 -0.8449 -0.9244 -0.9399 -0.9122

T = 210 days 0.5 -0.6345 -0.7971 -0.8768 -0.9628 -0.9402

1.5 -0.2054 -0.6061 -0.9170 -1.0779 -1.0758

3.0 0.4174 -0.2896 -0.8939 -1.2997 -1.4622
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Table 4.2.2: t(6) Monte Carlo simulation of the CoVaR.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 -0.2513 -0.3291 -0.3848 -0.4258 -0.4288

T = 30 days 0.5 -0.1069 -0.2630 -0.4011 -0.4808 -0.5135

1.5 0.3262 -0.0575 -0.4233 -0.6802 -0.7900

0.2 -0.4129 -0.4708 -0.5549 -0.5714 -0.5841

T = 60 days 0.5 -0.2583 -0.4157 -0.5574 -0.6253 -0.6259

1.5 0.1856 -0.1981 -0.5592 -0.7921 -0.8818

0.2 -0.5313 -0.6124 -0.6554 -0.6864 -0.6879

T = 90 days 0.5 -0.3896 -0.5437 -0.6560 -0.7160 -0.7228

1.5 0.0768 -0.3307 -0.6702 -0.8706 -0.9563

3.0 0.6908 -0.0154 -0.6716 -1.1802 -1.4030

0.2 -0.6069 -0.6885 -0.7384 -0.7763 -0.7798

T = 120 days 0.5 -0.4826 -0.6332 -0.7525 -0.8178 -0.8308

1.5 -0.0254 -0.4279 -0.7604 -0.9693 -1.0337

3.0 0.6060 -0.1113 -0.7632 -1.2397 -1.4331

0.2 -0.7002 -0.7705 -0.8328 -0.8369 -0.8553

T = 150 days 0.5 -0.5576 -0.6951 -0.8336 -0.8826 -0.8868

1.5 -0.1196 -0.5147 -0.8444 -1.0335 -1.0759

3.0 0.5020 -0.2088 -0.8273 -1.2934 -1.4687

0.2 -0.7890 -0.8514 -0.9042 -0.9325 -0.9390

T = 180 days 0.5 -0.6332 -0.7717 -0.8996 -0.9404 -0.9614

1.5 -0.1925 -0.5721 -0.9062 -1.0750 -1.1165

3.0 0.4503 -0.2736 -0.8915 -1.3491 -1.4924

0.2 -0.8598 -0.9154 -0.9717 -1.0089 -0.9949

T = 210 days 0.5 -0.7040 -0.8431 -0.9777 -1.0093 -1.0174

1.5 -0.2681 -0.6431 -0.9770 -1.1400 -1.1855

3.0 0.3663 -0.3399 -0.9758 -1.3907 -1.5345
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Table 4.2.3: The absolute errors between asymptotic condi-
tional quantiles and t(8) Monte Carlo simulated exact con-
ditional quantiles.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 0.3452 0.2029 0.0233 0.0105 0.0003

T = 30 days 0.5 0.6642 0.3961 0.1445 0.0900 0.1108

1.5 1.3383 0.7825 0.3940 0.2103 0.1608

0.2 0.2466 0.0974 0.0376 0.0759 0.0838

T = 60 days 0.5 0.5257 0.2705 0.0346 0.0032 0.0127

1.5 1.2093 0.6377 0.2634 0.0998 0.0880

0.2 0.1678 0.0560 0.0838 0.1291 0.1408

T = 90 days 0.5 0.4371 0.2090 0.0148 0.0655 0.0685

1.5 1.0991 0.5369 0.1673 0.0372 0.0376

3.0 1.7705 0.8761 0.3263 0.0332 0.1827

0.2 0.0890 0.0055 0.1241 0.1762 0.1747

T = 120 days 0.5 0.3505 0.1354 0.0605 0.1296 0.0977

1.5 1.0035 0.4569 0.1104 0.0154 0.0343

3.0 1.6920 0.7817 0.2383 0.1025 0.1881

0.2 0.0598 0.0244 0.1314 0.1725 0.2060

T = 150 days 0.5 0.2702 0.1045 0.0948 0.1775 0.1655

1.5 0.9295 0.3768 0.0515 0.0906 0.0603

3.0 1.6054 0.6873 0.1847 0.1614 0.2290

0.2 0.0202 0.0344 0.1652 0.1986 0.2116

T = 180 days 0.5 0.2324 0.0735 0.1172 0.1912 0.1777

1.5 0.8355 0.3242 0.0053 0.1347 0.1051

3.0 1.5215 0.6310 0.1105 0.1845 0.2420

0.2 0.0011 0.0542 0.1693 0.2249 0.2202

T = 210 days 0.5 0.2000 0.0195 0.1180 0.2235 0.1971

1.5 0.7757 0.2690 0.0622 0.1646 0.1047

3.0 1.4495 0.5760 0.0627 0.2076 0.2635
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Table 4.2.4: The absolute errors between asymptotic condi-
tional quantiles and t(6) Monte Carlo simulated exact con-
ditional quantiles.

a ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

0.2 0.3341 0.1737 0.0068 0.0317 0.0197

T = 30 days 0.5 0.6399 0.3720 0.1201 0.0686 0.0696

1.5 1.3186 0.7499 0.3522 0.1746 0.1346

0.2 0.2013 0.0846 0.0857 0.1167 0.1238

T = 60 days 0.5 0.5078 0.2449 0.0050 0.0450 0.0172

1.5 1.1789 0.6166 0.2259 0.0696 0.0483

0.2 0.1115 0.0029 0.1161 0.1735 0.1776

T = 90 days 0.5 0.3874 0.1473 0.0517 0.1035 0.0872

1.5 1.0697 0.4937 0.1269 0.0002 0.0193

3.0 1.7493 0.8305 0.2677 0.0997 0.2125

0.2 0.0715 0.0281 0.1363 0.2081 0.2213

T = 120 days 0.5 0.3041 0.0898 0.1072 0.1729 0.1681

1.5 0.9656 0.4078 0.0501 0.0890 0.0889

3.0 1.6591 0.7387 0.1797 0.1568 0.2409

0.2 0.0164 0.0631 0.1744 0.2166 0.2503

T = 150 days 0.5 0.2418 0.0599 0.1488 0.2056 0.1970

1.5 0.8684 0.3335 0.0196 0.1426 0.1227

3.0 1.5489 0.6459 0.1197 0.2077 0.2746

0.2 0.0345 0.1007 0.1951 0.2633 0.2895

T = 180 days 0.5 0.1824 0.0146 0.1769 0.2319 0.2448

1.5 0.7920 0.2893 0.0665 0.1731 0.1545

3.0 1.4901 0.5863 0.0601 0.2604 0.2961

0.2 0.0688 0.1247 0.2166 0.2939 0.3029

T = 210 days 0.5 0.1305 0.0265 0.2189 0.2700 0.2743

1.5 0.7130 0.2320 0.1222 0.2267 0.2144

3.0 1.3984 0.5257 0.0192 0.2986 0.3358

4.3. Stable Distributions

Stable distributions can also generate heavy tail log returns, which is more

close to the stylized facts of stock returns. The use of stable distributions
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to model the asset return can be trace back to Mandelbrot (1960) and Fama

(1963). Mandelbrot (1960) suggests that the Gaussian distribution is inca-

pable of capturing the extreme tails of the empirical distribution of asset

returns. Fama (1963) empirically and theoretically examine Mandelbrot’s

stable distribution suggestion. Since then, tons of researches have been ded-

icated to the application of stable distribution in finance. For a thorough

discussion and references about the stable distribution, Nolan (2011) is a

good source.

We can use stable distribution to compute the asymptotic conditional

quantiles. The stable distributions are defined by the characteristic function

of the form

ϕ(θ;µ, α, β, c) = exp[iθµ− |cθ|α(1− iβsgn(θ)Φ)], (12)

where

Φ =







tan πα
2 , α 6= 1,

− 2
π log |θ|, α = 1.

By the Fourier inversion formula, the pdf of stable distribution is (Appendix

D)

f(x) =
1

π

∫ ∞

0

exp(−|cθ|α) cos(θµ− θx+ |cθ|αβΦ)dθ, (13)

where Φ is given as above. From this formula we are able to numerically

compute the asymptotic conditional quantiles.
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5. Conclusion

In this study we show how to compute the CoVaR in (3) in sequential set-

ting. We provide an asymptotic method to compute the CoVaR and compare

with the Monte Carlo simulation. We do it under normal, t distribution and

double exponential jump process. We can get sufficient accurate result to the

CoVaR in positively correlated case. It is also shown that there is a difference

in the computational time. The asymptotic method is more time-efficient.

Some topics are worth further research. First, in this study except for

the normal case, we only do univariate CoVaR rather than portfolio CoVaR.

However, in practice portfolio CoVaR may be of more concerns. The portfolio

CoVaR may need higher dimensional renewal theory. Second, correlation

may not be a sufficient tool to describe the dependence between assets. It is

suggested that copula allow a more general and flexible framework in dealing

with dependence. Third, we see that simulation is very time-consuming.

This is due to the fact that rare event has very low probability of occuring.

Multivariate efficient simulation theory can possibly provide a solution to

this problem. For the Monte Carlo simulation with multivariate normal and

t distribution, Glasserman et al. (2000) and Glasserman et al. (2002) discuss

the importance sampling under large deviation theory. Fuh and Hu (2004)

and Fuh et al. (2011) show how to do efficient simulation under moderate

deviation. For general Markov process such as stochastic volatility model,

Fuh and Hu (2007) also provide a efficient simulation method under moderate

deviation. Finally, empirical study can be done based on our study.
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Appendices

A. Multivariate Renewal Theory

The theoretical background of this study is the multivariate renewal the-

ory developed by Keener (2006). The theory is developed in a general mul-

tivariate framework. Suppose X1, X2, ... i.i.d. random variables, the sum

St = X1 + ...+Xt, S0 = 0,

is an univariate random walk. Define

τ = inf{t : St ≥ a}.

Suppose P is a probability measure and

(X1,Y1) ∼ P,

and the sum of {Yi}∞i=1, Yi ∈ R
m forms multivariate random walk Wt =

∑t
i=1Yi. There is possibly nonzero correlation between the two increments

X1 and Y1. {(Xi,Yi)}i is i.i.d. (St,Wt) forms a multivariate dimensional

random walk. Suppose EXi = ν and EYi = µ, ν > 0, µ ∈ R
m.

In our study, we assume that ν < 0 and a < 0, so that the stopping time

τ is well-defined. Keener’s theory can still applied.

Keener (1990) and Keener (2006) derive the second order expansion with

respect to the Lebesque measure for the multivariate renewal measure, which

45



is defined by

R =
∞
∑

n=0

P ∗n.

Where P is defined above and ∗ is the convolution operator. This prob-

lem is crucial in sequential analysis where the distribution of τ is of great

concern. Sequential statistical inference application calls for the need for

the asymptotic distribution of the likelihood process when the process hits a

given threshold. More details can be found in Siegmund (1988).

Keener’s technique is based on the Edgewarth expansion introduced in

Feller (1966), which is different from Carlsson (1983) and Carlsson and Wainger

(1983) who use distribution theory. Keener gets a more explicit result and

its error term converge to zero with a faster rate than Carlsson and Wainger

(1983). However, the price he pays is that the algebra involved is more diffi-

cult.

Before introducing Keener’s theory, some conditions and notations must

be introduced first.

Definition A.1 (Cramer’s Condition). The random vector (X1,Y1) ∈ R
1+m,

m ∈ N satisfies Cramer’s condition if

lim sup
|(ξ1,ξ2)|→∞

|Eeξ1X1+ξ2·Y1| < 1.

An immediate consequence of this definition is

inf
Rm+1−N0

|Eeξ1X1+ξ2·Y1| < 1.

where N0 is any neighborhood of 0.
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Definition A.2 (Oscillation Function). For any function f defined on R
n,

the oscillation function ωf is given by

ωf(x; ǫ) = sup{|f(x)− f(y)| : ‖x− y‖ ≤ ǫ}

Some notations:

φ : The standard normal pdf

W∗
t =





Wt

t





γ =
EY1

EX1
=

µ

ν
(14)

γ∗ =
1

ν





µ

1





σ2 = E(Y1 − γX1)
2 (15)

Σ∗ = E





Y1 − µ
νX1

1− 1
νX









Y1 − µ
νX1

1− 1
νX





′

Zn = Σ−1/2(Wn − γSn) (16)
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Z∗ = Z∗
1 = Σ−1/2

∗









Y1

1



− γ∗a





√

ν

a

q̃ = Σ−1/2((w − γa)
√

ν/a

q̃∗(w, t) =





q̃1

q̃2



 = Σ−1/2
∗









w

t



− γ∗a





√

ν/a

H0(q̃) =
1

6
E(q̃ ·Z1)

3− 1

2
EZ2

1q̃ ·Z1+
(m+ 2− |q̃|2)EX1q̃ · Z1

2ν
+
q̃ · Σ−1/2γ

2νEτ
ES2

τ

H∗
0(q̃

∗) =
1

6
E(q̃∗·Z∗

1)
3−1

2
EZ∗2

1 q̃
∗
1·Z∗

1+
(m+ 3− |q̃∗|2)EX1q̃

∗ · Z∗
1

2ν
+
q̃∗ · Σ−1/2

∗ γ∗

2νEτ
ES2

τ

dQ0

dλ0
=

φ(q̃)
√

|Σ|(a/ν)m/2

{

1 +

√

ν

a
H0(q̃)

}

dQ∗
0

dλ∗
0

=
φ(q̃∗)

√

|Σ∗|(a/ν)(m+1)/2

{

1 +

√

ν

a
H∗

0(q̃
∗)

}

Where λ0 is the Lebesque measure on R
m and λ∗

0 is the product measure of

Lebesque measure on R
m and counting measure on Z. It is obvious that Zn

is also a random walk with i.i.d. increments. One of the main results in this

paper is given in the next theorem.

Theorem A.3 (Keener (2006), Lemma 5.1). Suppose for m ∈ N, (X1,Y1) ∈

R
1+m satisfies Cramer’s condition, ν > 0, E|X1|2+δ < ∞ and E|Z1|3+δ < ∞,

where δ ∈ (0, 1). Then for some η > 0,

Ef(Wτ) =

∫

fdQ̂0 + O(1)

∫

ωf(·; e−ηa)dQ̂0 + o{a(−1−δ)/2(log a)m/2}

as a → ∞, uniformly for nonnegative measurable f bounded above by one. If
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the moment condition for X is strengthened to EX3+δ, then for some η > 0,

Ef(W∗
τ) =

∫

fdQ̂∗
0 + O(1)

∫

ωf(·; e−ηa)dQ̂∗
0 + o{a(−1−δ)/2(log a)(m+1)/2}

as a → ∞, uniformly for nonnegative measurable f bounded above by 1.

By the theorem above, the following corollary can be derived from com-

putation.

Corollary A.4. [Keener (2006), Corollary 5.2] Suppose dim(Wt) = 1, 0 <

δ < 1, (X1, Y1) satisfies Cramér’s condition, EX1 = ν > 0, EY1 = µ ∈ R,

E|X1|2+δ < ∞ and E|Z1|3+δ < ∞, γ = EY1/ν = µ/ν, then

P (Wτ < w) = Φ(ŵ) +
√

ν/aφ(ŵ)H1(ŵ) + o{a(−1−δ)/2
√

log a} (17)

as a → ∞, uniformly in w, where ŵ = (w − γa)/(σ
√

a/ν), σ2 = var(Y1 −

γX1) = EY 2
1 +γ2EX2

1 −2γEY1X1, EZ
3
1 = σ−3(EY 3

1 −3γEY 2
1 X1+3γ2EY1X

2
1 −

γ3EX3
1) and EX1Z1 = σ−1(EY1X1 − γEX2

1)

H1(ŵ) = (ŵ2 − 1)

{

−1

6
EZ3

1 +
EX1Z1

2ν

}

− γES2
τ

2νσEτ
(18)
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B. Derivation of (7)

By strong Markov property, decomposing the conditional probability

P (WT ≤ w|τ < T )

=
P (WT ≤ w, τ < T )

P (τ < T )

=
1

P (τ < T )

T−1
∑

t=1

P (WT ≤ w, τ = t)

=
1

P (τ < T )

T−1
∑

t=1

P (WT ≤ w|τ = t)P (τ = t)

=
1

P (τ < T )

T−1
∑

t=1

P (τ = t)

∫

∞

−∞

P

(

Wτ ≤ w − x,

T
∑

j=t+1

Yj = x|τ = t

)

dx

=
1

P (τ < T )

T−1
∑

t=1

P (τ = t)

∫

∞

−∞

P (Wτ ≤ w − x|τ = t)P

(

T
∑

j=t+1

Yj = x|τ = t

)

dx

=
1

P (τ < T )

T−1
∑

t=1

P (τ = t)

∫

∞

−∞

P (Wτ ≤ w − x|τ = t)P

(

T
∑

j=t+1

Yj = x

)

dx

C. Probability Density Function of DEJP

Using (8), since sin is odd function, the Fourier inversion formula gives
that

f(x) =
1

π

∫

∞

0

Re[exp(iθx)exp(G(iθ)t)]dθ

=
1

π

∫

∞

0

Re

[

exp

(

−iθx+ itθµ − 1

2
θ2σ2 + λ

(

pη1
η1 − iθ

+
qη2

η2 + iθ
− 1

))]

dθ

=
1

π

∫

∞

0

exp

(

−θ2σ2t

2
− λt

)

Re

[

exp

(

−iθx + itθµ+ λ

(

pη1t(η1 + iθ)

η21 + θ2
+

qη2t(η2 − iθ)

η22 + θ2

))]

dθ

=
1

π

∫

∞

0

exp(A(θ, t; σ, λ, p, q, η1, η2)) cos(B(θ, t; σ, λ, p, q, η1, η2))dθ,
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where

A(θ, t; σ, λ, p, q, η1, η2) = −θ2σ2t

2
− λt+ λ

(

p
η21t

η21 + θ2
+ q

η22t

η22 + θ2

)

;

B(θ, t; σ, λ, p, q, η1, η2) = θ

(

−x + tµ+ p
λη1t

η21 + θ2
− q

λη2t

η22 + θ2

)

.

D. Probability Density Function of Stable Dis-

tribution

By (12), since sin is odd function, the Fourier inversion formula gives that

f(x) =
1

π

∫

∞

0

Re[exp(−iθx+ iθµ− |cθ|α(1− iβsgn(t)Φ))]dθ

=
1

π

∫

∞

0

exp(−|cθ|α)Re[exp(i(−θx+ θµ− |cθ|αβΦ))]dθ

=
1

π

∫

∞

0

exp(−|cθ|α) cos(−θx+ θµ− |cθ|αβΦ)dθ
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