國立臺灣大學理學院數學所 碩士論文 Department of Mathematics College of Science National Taiwan University Master Thesis

三角架構形之研究與探討 Tripod Configurations

王育龄 Yu-Ling Wang

指導教授: 王藹農 教授 Advisor: Ai-Nung Wang

中華民國 100 年 6 月 June, 2011

誌謝

一開始從指導教授手中接過題目後,腦筋是一片空白,完全不知道應該從何處下手,即使想 找一些相關資料來看,卻都是一些科學上的應用。正當我不知道如何是好的時候,教授引導 我思考的方向,讓我一步一步的去完成我的論文,在此非常感謝教授耐著性子解除我的疑惑, 並跟我一起思考其他證明方向的可能性。此外,特別要感謝研究室一起奮戰的同學:廖鴻仁、 劉鴻儒、呂融昇、段守正、蘇哲聖、林柏佐、白任宏、林晉宏和賴昱帆等以及學弟們,感謝 他們陪著我了解題目的意義跟所有思考的方向,並提供我許多可能會需要的書籍,而且彼此 鼓勵互相打氣,謝謝你們讓我完成了我的碩士論文,並讓我感受到數學系的溫暖。還要謝謝 我的朋友:吳哲瑋,林珈瑜,周仲屏和蔡佳穎,感謝他們在我低潮時不斷的給我支持、信心及 鼓勵。最後要感謝我的家人,謝謝他們包容我的任性,並且全力支持我,使我能夠心無旁驚 的念自己想念的書,很感謝大家。

摘要

這篇論文在探討三腳架構形,根據 Serge Tabachnikov 在附錄[1]的第二個定理:給定一個 平滑凸閉平面曲線,至少存在兩個三角架構形。我們在這篇論文中想用跟 Serge Tabachnikov 不太相同的方法去建構三腳架構形,使用另一種比較直覺的幾何去建構出來。我們採取的方 法是 minimax method,建造一些變形使 Y 形的距離和漸漸縮短,但不是所有的 Y 形均會退化, 而會收斂到一個沒有退化的臨界點,再說明臨界點即為我們要的三腳架構形。

Abstract

In this paper, we research the tripod configurations. By Serge Tabachnikov, see Theorem 2 of Appendix [1] says that for any smooth convex closed curve, there exist at least two tripod configurations. In this paper we want to use another way to construct tripod configurations. Use a intuitive way by a geometrical approach to construct it. We use minimax method, and do some deformation such that the distance of the Y-shaped will decrease, but not all of the Y-shaped will degenerate, it will converge to a critical point which will not degenerate, and we explain that this critical point is our tripod configuration.

Contents

口試委員審定書	.i
誌謝i	i
摘要ii	ii
Abstracti	v
Contents	v
圖目錄v	⁄i
Introduction	1
2 Convex Bounded Plane Set	2
2.1 Introduction	2
2.2 Main Result	2
2.3 Construct Main Result	3
2.4 Proof of the Theorem	7
References1	4

1 Introduction	1
1.1 Figure 1	2
(Definition of the tripod configurations from references [1])
2 Convex Bounded Plane Set	2
2.3 Figure 2	4
(The deformation of step 1)
2.3 Figure 3	4
(Construct a Fermat point from references [3])
2.3 Figure 4	4
(Prove the construction is a Fermat point from references [3])
2.3 Figure 5	7
(The deformation of step 2)
2.4 Figure 6	8
(Construct F topology)
2.4 Figure 7	
(Prove Lemma 3.2.1 from references [5])
2.4 Figure 8	13
(The figure about case 2)

圖目錄

TRIPOD CONFIGURATIONS

YU- LING WANG

ABSTRACT. We have already known that for any smooth convex curve, there are at least two tripod configurations. In this paper, we want to modify the proof by a more intuitive way to construct the tripod configuration and give some remarks.

1 INTRODUCTION

In geometry, the Fermat point is the solution to the problem of finding a point such that the sum of its distance from the vertices of a triangle is a minimum. When the problem first appeared, many methods arrive at the solution have been developed, and have many properties among them, for which the most important one is that there is a point inside a triangle whose angles are less then $2\pi/3$, from which all sides are seen at angles $2\pi/3$. This point minimizes the sum of distance to the vertices.

Many people seek to find the Fermat point of n-polygon, even in polyhedron. But in general, not only for polygon, we want to do similar things for closed plane curves. Moreover instead of a Fermat point, we call the tripod configuration. For the definition of the tripod configurations: given a closed plane curve r, three perpendiculars to rdropped from one point that make angles of $2\pi/3$. See the figure below.

By Serge Tabachnikov, See Appendix [1], Theorem 2 of [1] says that for any smooth convex closed curve, there exist at least two tripod configurations. In this paper, our goal is to modify the proof by a more intuitive way. Besides, by Appendix [7], according to our observation via minimax problem, we know that this minimax method would converge to a critical point, and this critical point is our tripod. For example, the Fermat's point of a plane acute triangle is our special case of tripod configurations.

In this paper, we are working on finding out modifying the proof of Theorem 2 of [1] by a geometrical approach to construct the tripod configuration and give some remarks.

2 SMOOTH CONVEX CLOSED PLANE SET

Given a convex closed plane set $M \subset \mathbb{R}^2$, and $\partial M \in C^2$, we want to find the tripod configuration in M. By $C^0(I, M)$ we denote the space of continuous mappings c of I = [0, 1] into M, with metric $d_{\infty}(c, c') = \sup_{0 \le t \le 1} d(c(t), c'(t))$. $C^0(I, M)$ is a complete metric space.

By $\Lambda_{\infty}M$, we denote the subspace of piecewise differentiable curves. The length L is defined on $\Lambda_{\infty}M$: $L(c) = \int_{I} |\dot{c}(t)| dt$.

Theorem. Given a convex closed plane set $M \subset \mathbb{R}^2$, and $\partial M \in C^2$. There is the tripod configuration in M.

i.e. There is $p \in M, f(p_i), f(p_j), f(p_k) \in \partial M$ satisfy the following statement (\star) :

$$\begin{aligned} &\text{angle}(\overline{pf(p_i)}, \overline{pf(p_j)}) = \text{angle}(\overline{pf(p_j)}, \overline{pf(p_k)}) = \text{angle}(\overline{pf(p_i)}, \overline{pf(p_k)}) = \frac{2\pi}{3} \\ &< \overline{pf(p_i)}, \dot{f}(p_i) >= 0, < \overline{pf(p_j)}, \dot{f}(p_j) >= 0, < \overline{pf(p_k)}, \dot{f}(p_k) >= 0 \end{aligned}$$

To construct the tripod configuration, first we consider Y-shaped form and let p_1, p_2, p_3 be its terminal vertexes, the center is 0, let $I_1 = [0, p_1]$, $I_2 = [0, p_2]$, and $I_3 = [0, p_3]$, with $|I_i| = 1, \forall i = 1, 2, 3$, and there is a continuous function f such that $f: Y \to M, f(p_i)$ on $\partial M, \forall i = 1, 2, 3$.

Since each curve (c_i is f(0) to $f(p_i)$, $\forall i = 1, 2, 3$) is piecewise differentiable curve in $\Lambda_{\infty}M$, Y-shaped is also piecewise differentiable curve in $\Lambda_{\infty}M$. We define $L(Y) = L(c_1) + L(c_2) + L(c_3)$.

For $\chi \geq 0$, we denote by $\Lambda_{\infty}^{\chi} M$ the subspace of $\Lambda_{\infty} M$, formed by the elements Y with $L(Y) \leq \chi$.

Note 1. We do not have that f has 1 - 1 condition hypothesis to avoid the difficulty of deformation.

Note 2. By Appendix [7], according to our observation via minimax problem, we know that this minimax method would converge to a critical point, and this critical point is our tripod.

Hence we know that if the sum of distance from a point in the M to its boundary is a minimum, then p can satisfy the condition of (\star) .

Thus how to construct the tripod configuration in M? We use the following three steps:

Step.1. If there are at least two angles such that

$$angle < \overline{f(0)f(p_1)}, \overline{f(0)f(p_2)} > \neq 2\pi/3 \text{ or } angle < \overline{f(0)f(p_2)}, \overline{f(0)f(p_3)} > \neq 2\pi/3 \text{ or}$$
$$angle < \overline{f(0)f(p_3)}, \overline{f(0)f(p_1)} > \neq 2\pi/3,$$

then let f(0) be the center of a circle, $\frac{1}{2}d(f(0), \partial M)$ be the radius, and this circle will cut f(Y) three points q_1, q_2, q_3 respectly. See the figure below.

If all of the interior angles of $\triangle q_1 q_2 q_3$ do not exceed $2\pi/3$, then let F be a Fermat point of $\triangle q_1 q_2 q_3$ and translate f(0) to F along a straight line.

Note 1. How to find F? Choose $\overline{q_1q_2}$ as a hemline, and construct an equilateral triangle $\triangle Aq_1q_2$, for this triangle, construct a circle C which passes through all three vertices of $\triangle Aq_1q_2$, then link $\overline{Aq_3}$, the intersection of $\overline{Aq_3}$ and C is F. This is what we want to find. See the figure below.

Lemma 1.([3]) The way of finding F satisfies that the sum of the distance from the vertices of a triangle $\triangle q_1 q_2 q_3$ is minimum.

Proof. Choose $\overline{Fq_2}$ as a hemline, construct an equilateral triangle $\triangle Bq_2F$ and link $\overline{AB}, \overline{Fq_1}$. See the figure below.

Since $\overline{Fq_2} = \overline{Bq_2}$, $angle(\overline{Fq_2}, \overline{q_2q_1}) = angle(\overline{Aq_2}, \overline{q_2B})$, $\overline{Aq_2} = \overline{q_1q_2}$, $\Rightarrow \triangle Aq_2B \cong \triangle q_1q_2F$.

We get $\overline{Fq_1} = \overline{AB}$, and $angle(\overline{q_1F}, \overline{q_2F}) = angle(\overline{AB}, \overline{Bq_2}) = 2\pi/3$.

We know that the four vertices A, q_1, F, q_2 have the same circle C, $angle(\overline{BF}, \overline{Bq_2}) = \pi/3$. ABF and AFq_3 is a straight line

 $\Rightarrow angle(\overline{q_1F}, \overline{Fq_3}) = 2\pi/3, angle(\overline{q_1F}, \overline{Fq_2}) = 2\pi/3,$

we can conclude that $angle(\overline{q_2F}, \overline{Fq_3}) = 2\pi/3$. So we have BFq_3 is a straight line. Therefore $ABFq_3$ have the same line.

$$\Rightarrow \overline{Fq_1} + \overline{Fq_2} + \overline{Fq_3} = \overline{AB} + \overline{BF} + \overline{Fq_3} = \overline{Aq_3}$$

is a minimum sum of distance from the vertices of a triangle $\Delta q_1 q_2 q_3$. Furthermore by our construction, all sides are seen at angles $2\pi/3$. \sharp

In particular, as $angle(\overline{q_2q_1}, \overline{q_1q_3}) \ge 2\pi/3$, then q_1 is a Fermat point. Note 2. The angles from the new f(0) to q_1, q_2, q_3 are all $2\pi/3$, and the sum of the distance is decreasing, that is to say: $d(f(0), f(p_1)) + d(f(0), f(p_2)) + d(f(0), f(p_3)) = d(q_1, f(0)) + d(q_1, f(p_1)) + d(q_2, f(0)) + d(q_2, f(p_2)) + d(q_3, f(0)) + d(q_3, f(p_3)) > d(F, q_1) + d(q_1, f(p_1)) + d(F, q_2) + d(q_2, f(p_2)) + d(F, q_3) + d(q_3, f(p_3)).$

If there is an interior angle of $\Delta q_1 q_2 q_3$ which is langer than (or equal) $2\pi/3$, without loss of generality, say q_1 (i.e. The Fermat point is not in the triangle), then translate f(0) to q_1 along a straight line, and repeat the above statement.

Remark.1. For the above constuction, let $\frac{1}{2}d(f(0), \partial M)$ or $\frac{1}{3}d(f(0), \partial M)$ and so on be the radius of the circle is all right, and the concentric circle will have the same Fermat point. Let a, b, c, d, e, f be the points which the circle with radius $\frac{1}{3}d(f(0), \partial M)$ and $\frac{1}{2}d(f(0), \partial M)$ cuts f(Y) respectly, and F_1 is a Fermat point of $\triangle abc$, F_2 is a Fermat point of $\triangle def$, then

$$angle < \overline{F_1a}, \overline{F_1b} >= angle < \overline{F_1b}, \overline{F_1c} >= angle < \overline{F_1c}, \overline{F_1a} >= 2\pi/3,$$

hence

$$angle < \overline{F_1d}, \overline{F_1f} >= angle < \overline{F_1f}, \overline{F_1e} >= angle < \overline{F_1e}, \overline{F_1d} >= 2\pi/3,$$

 \Rightarrow F_1 is also a Fermat point of $\triangle def$. \ddagger

Remark.2. For the above constuction, let $\frac{1}{2}d(f(0), \partial M)$ or $\frac{1}{3}d(f(0), \partial M)$ and so on be the radius of the circle is all right for the $angle < \overline{q_2q_1}, \overline{q_1q_3} > \geq 2\pi/3$, the Fermat point is the vertex of triangle, and do the step 1 again, until translate F in the $\Delta f(p_1)f(p_2)f(p_3)$. Without loss of generality, suppose f(0) is already in the $\Delta f(p_1)f(p_2)f(p_3)$, and if $angle < \overline{f(p_2)f(p_1)}, \overline{f(p_3)f(p_1)} > \geq 2\pi/3$, do the step 1 again, then we can find:

$$angle < \overline{q_2q_1}, \overline{q_3q_1} > = \frac{1}{2}angle < \overline{q_2F}, \overline{q_3F} >,$$

by simple calculation.

If
$$angle < \overline{q_2q_1}, \overline{q_3q_1} >> angle < f(p_2)f(p_1), f(p_3)f(p_1) >$$
, we have
 $angle < \overline{q_2F}, \overline{q_3F} >> 2angle < \overline{f(p_2)f(p_1)}, \overline{f(p_3)f(p_1)} >\geq 4\pi/3,$

and we get a contradiction.

If $angle < \overline{q_2q_1}, \overline{q_3q_1} > \geq 2\pi/3$, then $angle < \overline{q_2F}, \overline{q_3F} > \geq 4\pi/3$. Hence we get a contradiction.

Conclusion. F will be an interior point in the convex bounded plane set.

Step.2. If

$$angle < \overline{f(0)f(p_1)}, \overline{f(0)f(p_2)} >= 2\pi/3 \text{ and } angle < \overline{f(0)f(p_2)}, \overline{f(0)f(p_3)} >= 2\pi/3 \text{ and}$$

 $angle < \overline{f(0)f(p_3)}, \overline{f(0)f(p_1)} >= 2\pi/3,$

then we can choose suitable points $\gamma_1, \gamma_2, \gamma_3 \in Y$, $\varepsilon_Y > 0$ small enough depends on Y, such that $L(f(\overline{p_1\gamma_1})) < \varepsilon_Y$, and we do deformation, transform $f(\overline{p_1\gamma_1})$ to a new line $\overline{f(\gamma_1)\pi f(\gamma_1)}$ and $angle < \overline{f(\gamma_1)\pi f(\gamma_1)}, \pi f(\gamma_1) >= \pi/2$, where $\pi : f(Y) \to \partial M$ is an upright projection, such that this deformation will preserve the continuous of this Y-shaped, the angle from f(0) to q_i is always $2\pi/3$, $\forall i = 1, 2, 3$, and this deformation is continuous. Similarly,

$$angle < f(\gamma_2)\pi f(\gamma_2), \pi f(\gamma_2) >= angle < f(\gamma_3)\pi f(\gamma_3), \pi f(\gamma_3) >= \pi/2,$$

and translate $f(p_i)$ to $\pi f(\gamma_i), \forall i = 1, 2, 3.$
Note. $angle < \overline{f(0)q_1}, \overline{f(0)q_2} >= angle < \overline{f(0)q_2}, \overline{f(0)q_3} >= angle < \overline{f(0)q_1}, \overline{f(0)q_1} >= 2\pi/3$ still not change. See the figure below.

Remark. $d(f(0), f(p_1)) + d(f(0), f(p_2)) + d(f(0), f(p_3))$ > $d(f(0), f(\gamma_1)) + d(f(\gamma_1), \pi f(\gamma_1)) + d(f(0), f(\gamma_2)) + d(f(\gamma_2), \pi f(\gamma_2)) + d(f(0), f(\gamma_3)) + d(f(\gamma_3), \pi f(\gamma_3)).$

Step.3. Finally we link $f(0)f(p_1)$. In this process, it may cut $f(\overline{0p_2})$ or $f(\overline{0p_3})$, but it is all right, and now $angle < \overline{f(0)f(p_1)}, \overline{f(0)f(p_2)} > \neq 2\pi/3$, hence return to the step 1. **Remark.** $d(f(0), f(\gamma_1)) + d(f(\gamma_1), \pi f(\gamma_1)) + d(f(0), f(\gamma_2)) + d(f(\gamma_2), \pi f(\gamma_2)) + d(f(0), f(\gamma_3)) + d(f(\gamma_3), \pi f(\gamma_3)) > d(f(0), f(p_1)) + d(f(0), f(p_2)) + d(f(0), f(p_3)).$

Repeat the above construction, after many times deformation, we claim that there exists the tripod configuration. i.e. Not for all Y-shaped degenerate. We first consider the following lemmas.

Let the deformation of step 1 be denoted by D_a , the deformation of step 2 be denoted by D_b , the deformation of step 3 be denoted by D_c , and define D be the subsequent application of the deformations D_a, D_b, D_c .

Lemma 2. The deformation D is continuous in Y.

Proof. Let Y_m be a convergent sequence in Λ^{χ}_{∞} with limit Y. We claim that $DY_m \to DY$.

Indeed, the partition points in Y_m converge to the partition points in Y. (Y_m is formed by three curves, Y-shaped convergence means each curve converges.) Thus $Y_m \to Y$, we have $D_a Y_m \to D_a Y$, $D_b Y_m \to D_b Y$, $D_c Y_m \to D_c Y$. So we conclude that $DY_m \to DY$, D is continuous in Y. \sharp

We construct $F = \{f : f : Y \to M\}$ topology by :

$$\left\{\begin{array}{ccc} f:[-1,1] \to M & f(-1) = \theta, \quad f(1) = \theta + \varphi \\ & | \\ g:[0,1] \to M & g(0) = f(0), \quad g(1) = \theta + \psi \end{array}\right\}, \ \theta \in S^1, \ \psi \in S^1, \ \varphi \in S^1.$$

See the figure below.

Lemma 3. Show that F topology is not contractible

To prove Lemma 3, we need the answer of the following questions.

Definition.(p323,James R. Munkres[4]) If f, f' are continuous map of the space X into the space Y, we say that f is homotopic to f' if there is a continuous map $F : X \times I \to Y$ such that F(x,0) = f(x) and F(x,1) = f'(x) for each x. (Here I = [0,1]). The map F is called a homotopy between f and f'. If f is homotopic to f', we write $f \simeq f'$. If $f \simeq f'$ and f' is a constant map, we say that f is nulhomotopic. We conclude the following questions:

Question 1. $\exists f : [-1,1] \to M, g : [0,1] \to M$, such that $f(-1) = \theta, f(1) = \theta + \varphi, g(0) = f(0), g(1) = \theta + \psi.$

Question 2. F topology is homotopic to $S^1 \times S^1 \times S^1 \times D_2$.

Question 3. $S^1 \times S^1 \times S^1$ is not contractible.

For the question 1:

Proof. Since M is a convex closed plane set, it is path connected. For $\theta, \varsigma \in M$ $, \theta + \varphi \in M, \exists f_1 : [-1, 0]$ such that $f_1(-1) = \theta, f_1(0) = \varsigma$. Moreover $\exists f_2 : [0, 1] \to M$ such that $f_2(0) = \varsigma, f_2(1) = \theta + \varphi$.

Let
$$h: [-1,1] \to M, \ h(t) = \begin{cases} f_1(t) & t \in [-1,0] \\ f_2(t) & t \in [0,1] \end{cases}$$
 is continuous

$$\Rightarrow h(0) = f_1(0) = f_2(0) = \varsigma, h(-1) = f_1(-1) = \theta, h(1) = f_2(1) = \theta + \varphi.$$

For $\varsigma, \theta + \psi \in M$, $\exists g : [0,1] \to M$ such that $g(0) = \varsigma, g(1) = \theta + \psi$. \sharp For the question 2:

Lemma 3.1. Show that F topology $\simeq S^1 \times S^1 \times S^1 \times D_2$.

Proof. Since M is a convex plane set, we can find the homotopy represents a continuous deforming of ∂M to S^1 . We can consult the method in the Appendix [4] for page 361 and page 325. On the orther way, imitating the method in the Appendix [4] for page 339, we have F topology $\simeq S^1 \times S^1 \times S^1 \times D_2$.

For the question 3:

We introduce lemmas.

Lemma 3.2. A contractible space is simply connected.

Definition 1.(p333,James R. Munkres[4]) A space is simply connected if it is path-connected and its fundamental group is trivial. i.e. $\pi_1(x, x_0) = 0, x_0 \in X$.

Definition 2.(p155,James R. Munkres[4]) Given points x and y of the space X, a path in X from x to y is a continuous map $f : [a, b] \to X$ such that f(a) = x, f(b) = y. A space X is said to be path connected if every pair of points of X can be joined by a path in X.

Definition 3.(p331,James R. Munkres[4]) Let X be a space, let x_0 be a point of X. A path in X that begins and ends at x_0 is called a loop based at x_0 . The set of path homotopy classes of loops based at x_0 , with the operation *, is called the fundamental group of X relative to base point x_0 . It is denoted by $\pi_1(X, x_0)$.

Proof. Although every loop σ at a point x_0 is homotopic as a map with a constant loop, we do not know they are homotopic relative to (0, 1). (Since if σ is a loop at x_0, τ is a constant loop, $\tau(s) = x_0 \forall s$, if $\sigma \simeq \tau rel(0, 1) \Rightarrow \sigma$ is homotopically trivial). Hence we need the following Lemma.

Lemma 3.2.1.(Lemma 3.3,Marvin Greenberg[5]) Given $F : I \times I \to X$, set $\alpha(t) = F(0,t), \beta(t) = F(1,t), \gamma(s) = F(s,0), \delta(s) = F(s,1), \text{ then } \delta \simeq \alpha^{-1} \gamma \beta \operatorname{rel}(0,1).$ Proof. See the figure below.

where $x_0 = \delta(0), x_1 = \delta(1),$

$$E(s,t) = \left\{ \begin{array}{cc} x_0 & s \le t \\ \alpha(1+t-s) & s \ge t \end{array} \right\}, G(s,t) = \left\{ \begin{array}{cc} \beta(t+s) & 1-s \ge t \\ x_1 & 1-s \le t \end{array} \right\}. \ \sharp$$

Complete the proof of Lemma 3.2: Now X is contractible, we can obtain F with $\delta = \sigma, \gamma = x_0, \alpha = \beta$, then σ is homotopically trivial. \sharp Lemma 3.3.(Theorem 54.4, James R. Munkres[4]) The fundamental group of S^1 is \mathbb{Z} .

Definition 1.(p336, James R. Munkres[4]) Let $p: E \to B$ be a continuous surjective map. The open set U of B is said to be evenly covered by p if the inverse image $p^{-1}(U)$ can be written as the union of disjoint open sets V_{α} in E such that for each α , the restriction of p to V_{α} is a homeomorphism of V_{α} onto U. If every point b of B has a neighborhood U that is evenly covered by p, then p is called a covering map.

Definition 2.(p342, James R. Munkres[4]) Let $p : E \to B$ be a map. If f is a continuous mapping of some space X into B, a lifting of f is a map $\tilde{f} : X \to E$ such that $p \circ \tilde{f} = f$.

Definition 3.(p326, James R. Munkres[4]) If f is a path in X from x_0 to x_1 , and if g is a path in X from x_1 to x_2 , we define the product f * g of f and g to be the path h given by the equations

$$h(s) = \left\{ \begin{array}{cc} f(2s) & s \in [0, \frac{1}{2}] \\ g(2s-1) & s \in [\frac{1}{2}, 1] \end{array} \right\}.$$

Lemma 3.3.1.(p337, James R. Munkres[4]) The map $p : \mathbb{R} \to S^1$ given by the equation $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

Proof. Let U of S^1 consisting of those points having positive first coordinate. The set $p^{-1}(U)$ consist of those points x for which $cos 2\pi x$ is positive. i.e. It is the union of intervals $V_n = (n - \frac{1}{4}, n + \frac{1}{4})$, for all $n \in \mathbb{Z}$. Now restricted to any closed interval $\overline{V_n}$, the map p is injective because $sin 2\pi x$ is strictly monotonic on such interval. Besides p carries $\overline{V_n}$ surjectively onto \overline{U} , and V_n to U (by the intermediate value theorem). Since $\overline{V_n}$ is compact, $p + \overline{V_n}$ is a homeomorphism of $\overline{V_n}$ with \overline{U} . In particular, $p + V_n$ is a homeomorphism of V_n with U.

Similar arguments can be applied to the intersection of S^1 with the upper and lower open half-planes. These open planes cover S^1 , and each of them is evenly covered by p. Hence $p : \mathbb{R} \to S^1$ is a covering map. \ddagger

Complete the proof of Lemma 3.3: *Proof.* Let $p : \mathbb{R} \to S^1$ be the covering map $p(x) = (\cos 2\pi x, \sin 2\pi x), e_0 = 0, b_0 = p(e_0) \Rightarrow p^{-1}(b_0)$ is the set \mathbb{Z} .

Since \mathbb{R} is simply connected (\mathbb{R} is contractible), the lifting correspondence ϕ : $\pi_1(S^1, b_0) \to \mathbb{Z}$ is bijctive.

Claim that ϕ is homomorphism.

Given [f] and [g] in $\pi_1(B, b_0)$, let \tilde{f} and \tilde{g} be their respective lifting to paths on \mathbb{R} beginning at 0. Let $n = \tilde{f}(1), m = \tilde{g}(1) \Rightarrow \phi([f]) = n, \phi([g]) = m$, and let $\tilde{\tilde{g}}(s) = n + \tilde{g}(s)$ on \mathbb{R} , since $p(n + x) = p(x) \forall x \in \mathbb{R}$ ($\because p \circ \tilde{g}(s) = g(s) \Rightarrow p \circ (\tilde{\tilde{g}}(s)) = p \circ (n + \tilde{g}(s)) = p(\tilde{g}(s)) = g(s)$). $\Rightarrow \tilde{\tilde{g}}$ is a lifting of g and begins at n.

Then $\tilde{f} * \tilde{\tilde{g}}$ is defined at it is the lifting of f * g begins at $0 \ (p \circ (\tilde{f} * \tilde{\tilde{g}}) = f * g)$. The end point of $\tilde{\tilde{g}}(1) = n + m \ (\tilde{f} * \tilde{\tilde{g}}(1) = \tilde{\tilde{g}}(1) = n + m)$. $\Rightarrow \phi([f] + [g]) = n + m = \phi([f]) + \phi([g])$. \sharp

Moreover use the following lemma.

Lemma 3.4. (Theorem 60.1, James R. Munkres[4]) $\pi_1(X \times Y, x_0 \times y_0) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Definition.(p333, James R. Munkres[4]) Let $h : (X, x_0) \to (Y, y_0)$ be a continuous map. Define $h_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ by the equation $h_*([f]) = [h \circ f]$. The map h_* is called the homomorphism induced by h, relative to the base point x_0 .

Proof. Let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the projection mappings. Induced homomorphisms

$$\left\{\begin{array}{l} p_*: \pi_1(X \times Y, x_0 \times y_0) \to \pi_1(X, x_0) \\ q_*: \pi_1(X \times Y, x_0 \times y_0) \to \pi_1(Y, y_0) \end{array}\right\}$$

define a homomorphism $\phi: \pi_1(X \times Y, x_0 \times y_0) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$ by

$$\phi([f]) = p_*([f]) \times q_*([f]) = [p \circ f] \times [q \times f].$$

Show that ϕ is an isomorphism.

1. ϕ is surjective: Let $g : I \to X$ be a loop based at $x_0, h : I \to X$ be a loop based at y_0 . Want to show $[g] \times [h]$ lies in the image of ϕ . Define $f: I \to X \times Y$ by $f(s) = g(s) \times h(s) \Rightarrow f$ is a loop based at $x_0 \times y_0$, and $\phi([f]) = [p \circ f] \times [q \circ f] = [g] \times [h]$. 2. The kernel of ϕ vanishes. Suppose that $f: I \to X \times Y$ is a loop in $X \times Y$ at $x_0 \times y_0$, and $\phi([f]) = [p \circ f] \times [q \circ f]$ is the identity element. i.e. $p \circ f \simeq e_{x_0}$ by G and $q \circ f \simeq e_{y_0}$ by H, where G, H are the respective path homotopics. Then $F: I \times I \to X \times Y$ defined by $F(s,t) = G(s,t) \times H(s,t)$ is a path homotopy between f and the constant A B loop based at $x_0 \times y_0$. \sharp 。腥

For the question 3:

 $Proof. \ \pi_1(S^1 \times S^1 \times S^1, x_0 \times y_0 \times z_0) \cong \pi_1(S^1, x_0) \times \pi_1(S^1, y_0) \times \pi_1(S^1, z_0) \cong \mathbb{Z} \times \mathbb$ not a trivial group. Hence F topology is not contractible. \sharp

Return to our original problem, the following three cases will happen after many times deformation:

Let Y be a non-null homotopic Y-shaped. Consider the sequence $\{D_mY\}$ of Yshaped, all of which are homotopic to Y. The decreasing sequence $\{L(D_mY)\}$ has a limit $\chi_0 \ge 0$.

Case 1. We claim that $\chi_0 = 0$ would not happen. $\forall \varepsilon > 0$, since a Y-shaped Y*with $L(Y^*) < \varepsilon$ lies entirely in the domain of normal coordinates based at $f^*(0)$. Such a Y^* then is contractible, we have a contradiction. (i.e. All of the Y-shaped retract to a point would not happen.)

For $\chi_0 > 0$,

Case 2. If all of the Y-shaped will retract to a curve connected the boundary of M, and this curve will perpendicular to the boundary of M. See the figure below.

Similar to the above statement, this Y-shaped topology at most $\simeq S^1$. Maybe homotopic to some points or even homotopic to ϕ . Since a point on the boundary, it is hard to find a straight line perpendicular to the boundary between two points. But the original Y-shaped topology is $S^1 \times S^1 \times S^1 \times D_2$, after the continuous deformation we get Y-shaped topology $\simeq S^1$ or homotopic to some points, even ϕ , this contradicts to S^1 can not contract to a point. Thus this case would not happen. Furthemore, if some Y-shaped degenerate to a point, some Y-shaped degenerate to a line, both of them combine to this case.

Case 3. There exists the Y-shaped form is our tripod. Now consider the decreasing sequence $\{L(D_mY)\}$ with a limit $\chi_0 > 0$. Let $\{Y_m\}$ be a sequence with $Y_m \in D_mY$, $L(DY_m) = L(D_{m+1}Y) \ge \chi_0$. Since M is compact, $\{Y_m\}$ has a convergent subsequence, which we again denote by $\{Y_m\}$. Its limit Y-shaped is Y_0 . We then have $L(Y_0) =$ $limL(Y_m) = limL(DY_m) = \chi_0 > 0$, and since D is continuous, we have $L(DY_0) = L(Y_0)$, so we find a tripod Y_0 with L-value χ_0 . Indeed, according to the Appendix [7], we have Y_0 is a critical point for our $\chi_0 = minmaxL(Y)$, χ_0 is a critical value, we examine the critical condition of L, using the Lagrange multiplier we have the following things:

1. Fixed $f(0) \in M$, the extreme value of L occurs when the shortest distance lines which connect f(0) and $f(p_i)$, $\forall i = 1, 2, 3$ are perpendicular to the boundary of M. 2. Fixed $f(p_i) \in \partial M$, $\forall i = 1, 2, 3$ the extreme value of L occurs when unit tangent vector of three lines at f(0) have zero sum.

Combining these two critical conditions, we know this critical point is our tripod. **Remark.** The tripod is not unique. We can see a particular case to a circle.

By Appendix [1]. We have for any smooth convex closed curve, there exist at least two tripod configurations. Besides, by Appendix [7], Lien-Yung Kao and Ai-Nung Wang give another way to prove this theorem.

Conclusion. There exist at least two tripod configurations in M.

We conclude with another question: can we generate this case to a convex Riemannian that there exists the tripod configuration by imitating the above method or Appendix [8] for chapter 3? Given three disjoint convex plane curve, can we find a tripod in the complement of them?

References

[1] Serge Tabachnikov, The Four-Vertex Theorem Revisited-Two Variations on the Old

Theme, American Mathematical Monthly, Volume 102, Issue 10 (Dec., 1995), 912-916.

[2] National Primary And High School Science Fair, The 48 session, 030422.

[3] National Primary And High School Science Fair, The 43 session, 040407.

[4] James R. Munkres, *Topology*, Second Edition.

[5] Marvin Greenberg, Lectures on Algebraic Topology, p9-p16.

[6] Wu-Hsiung U. Huang, Differential Geometry and Moving Frames, p1-21-p2-39.

[7] Lien-Yung Kao, Ai-Nung Wang, The Tripod Configurations of curves.

[8] Wilhelm Klingenberg, Riemannian Geometry.