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Abstract

In this paper, we research the tripod configurations. By Serge Tabachnikov, see Theorem 2 of
Appendix [1] says that for any smooth convex closed curve, there exist at least two tripod
configurations. In this paper we want to use another way to construct tripod configurations. Use a
intuitive way by a geometrical approach to construct it. We use minimax method, and do some
deformation such that the distance of the Y-shaped will decrease, but not all of the Y-shaped will
degenerate, it will converge to a critical point which will not degenerate, and we explain that this

critical point is our tripod configuration.
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TRIPOD CONFIGURATIONS

YU- LING WANG

ABSTRACT. We have already known that for any smooth convex curve, there are
at least two tripod configurations. In this paper, we want to modify the proof by a

more intuitive way to construct the tripod coufiguration and give some remarks.
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1 INTRODUCTION | (=€)
==

In geometry, the Fermat point is l‘h > so]_ﬂﬁ_‘@on ’ItdI the problem of finding a point such

that the sum of its distance from t 4 vertiges of & tyiahéle is a minimum. When the
problem first appeared, many mé‘gﬁbdsiarriye at'-,_the. ‘..;sélution have been developed, and
have many properties among them, for which the most important one is that there is
a point inside a triangle whose angles are less then 27/3, from which all sides are seen
at angles 27 /3. This point minimizes the sum of distance to the vertices.

Many people seek to find the Fermat point of n-polygon, even in polyhedron. But
in general, not only for polygon, we want to do similar things for closed plane curves.
Moreover instead of a Fermat point, we call the tripod configuration. For the definition

of the tripod configurations: given a closed plane curve r, three perpendiculars to r

dropped from one point that make angles of 27/3. See the figure below.



By Serge Tabachnikov, See Appendix [1], Theorem 2 of [1] says that for any smooth
convex closed curve, there exist at least two tripod configurations. In this paper, our
goal is to modify the proof by a more intuitive way. Besides, by Appendix [7], according
to our observation via minimax preblem, we know that this minimax method would
converge to a critical point, an_("ip_ thiS“C;itiCd};[}SOint_i_S our tripod. For example, the
Fermat’s point of a plane ac_g,te't}riangle is our spec-i-;i: case of tripod configurations.

In this paper, we are Woriﬂng on ﬁ‘i}:‘hﬁ. oﬁ‘_;'i'pdifying'fhe proof of Theorem 2 of [1]

by a geometrical approach to Constr\f thz-ﬂ;?fs-hof Iconﬁguration and give some remarks.

f |

2 SMOOTH CONVEX CLOSED PLANE SET

Given a convex closed plane set M C R?, and OM € C?, we want to find the tripod
configuration in M. By C°(I, M) we denote the space of continuous mappings ¢ of
I = [0,1] into M, with metric dy(c,c') = Oiugld(c(t),c’(t)). CY(I, M) is a complete
metric space. -

By A M, we denote the subspace of piecewise differentiable curves. The length L

is defined on Ay M: L(c) = [, |é(t)] dt.
Theorem. Given a convex closed plane set M C R?%, and OM € C?. There is the

tripod configuration in M.

i.e. Thereis p € M, f(pi), f(p;), f(pr) € OM satisty the following statment (%):



<pf(pi), f(pi) >=0,<pf(p;), f(p;) >=0,<pf(px), f(pr) >=0

To construct the tripod configuration, first we consider Y-shaped form and let

{ angle(pf(p:),pf(p;)) = angle(pf (p;), pf (px)) = angle(pf(p:), pf(pr)) = &

p1,P2,P3 be its terminal vertexes, the center is 0, let Iy = [0,p1], Io = [0, ps], and
I3 = [0, ps], with |[;] = 1,Vi = 1,2,3, and there is a continuous finction f such that
f:Y =M, f(p;) on OM, Vi =1,2,3.

Since each curve ( ¢; is f(0) to f(p;), Vi = 1,2,3 ) is piecewise differentiable curve
in AowM, Y-shaped is also piecewise differentiable curve in A, M. We define L(Y) =
L(cy) 4+ L(ca) + L(cs).

For x > 0, we denote by AXM th_'e_r§ubspnac_e of A, M, formed by the elements Y

| _:[:.

with L(Y) < x. ‘
Note 1. We do not have that.f has®= 1 conditionhypothesis to avoid the difficulty of

ik Pl
deformation. ﬁ. [~
yar—xx:
= — h'.i.'

tiondvia minimax problem, we know

Note 2. By Appendix |7, arccording}t o@oﬁge v
that this minimax method Would co[n ergea%lé a 1fti(:al p(;iﬁt, and this critical point is

Hence we know that if the sﬁ.fﬁ"(.)f»‘_(iistancq f;iforr;}:éi point in the M to its boundary

our tripod. S
is a minimum, then p can satisfy the condition of (x).
Thus how to construct the tripod configuration in M? We use the following three

steps:

Step.1. If there are at least two angles such that

angle < f(0)f(p1), f(0)f(p2) ># 2m/3 or angle < f(0)f(p2), f(0)f(ps) ># 2m/3 or
angle < f(0)f(ps), f(0)f(p1) ># 27/3,

then let f(0) be the center of a circle, 2d(f(0),0M) be the radius, and this circle will

cut f(Y) three points ¢, g2, g3 respectly. See the figure below.



f(n,)

o

f(ny)

f(p,)

If all of the interior angles of Aqig2qg3 do not exceed 27/3, then let F' be a Fermat

point of Agyq2qs and translate f(0) to F' along a straight line.
Note 1. How to find F'?7 Choose q1¢; as a hemline, and construct an equilateral triangle
A Aqyqs, for this triangle, construc’qag.ﬁ}i‘&%@.{uu}ggeh passes through all three vertices

. b EE *"'F N
of AAqiqs, then link Ags, thq ntersection of Ags and{é“ﬁs F. This is what we want to

g

find. See the figure below:h

oy jy o 1oy 2
Lemma 1.([3]) The way of ﬁndzng F sahsﬁes that the sum of the distance from the
vertices of a triangle Aqiqoqs 1S minimum.

Proof. Choose Fq, as a hemline, construct an equilateral triangle ABgF and link

AB, Fqy. See the figure below.



Since Fgy = Bqy, angle(Fqo, @aq1) = angle(Aqa, 2B) , Agy = Qiqz, = NAg@B =
AqgeF.

We get Fq; = AB, and angle(q, F, ¢oF) = angle(AB, Bgy) = 27/3.

We know that the four vertices A, q;, F, g2 have the same circle C, angle(BF, Bgy) =
7/3. ABF and AFgs is a straight line

= angle(q F, Fq3) = 27/3, angle(q F, Fqp) = 27/3,
we can conclude that angle(quF, Fqs) = 2m/3. So we have BFgs is a straight line.

Therefore ABFg3 have the same line.

=Fq+Fq+Fq=AB+BF + Fqg3 = Ags

is a minimum sum of distance from the vertlceg- of a trlangle Aq1q2q3. Furthermore by

our construction, all sidesiare seén at fngles 278 .
In particular, as angle(qz.q}, H1G3) 2% /3, phen G s ';c_L Ferimat point.
Note 2. The angles from the new U)‘-ﬁg_qi.,qlz Fq; are all 27t/3, and the sum of the

7@ i) gl (), 0(p)) + d(0), £(p3)) =
A, £(0))+d(qr, F(p >>+d<q2, h S5, [0 das, £ (p)> d(F. )+

distance is decreasing, that is topsay

d(qu, f(p1)) + d(F, q2) + d(¢as f (pzl')_fr_d,(_F, a3) f_d(qgr,,-f (Pz))-

If there is an interior angle of Aqlqzq;\;vhfch 1S langer than (or equal) 27/3, without
loss of generality, say ¢; (i.e. The Fermat point is not in the triangle), then translate
f(0) to ¢; along a straight line, and repeat the above statement.

Remark.1. For the above constuction, let £d(f(0), M) or £d(f(0), M) and so on be
the radius of the circle is all right, and the concentric circle will have the same Fermat
point. Let a,b,c,d,e, f be the points which the circle with radius %d(f(O),(‘?M) and
+d(f(0),0M) cuts f(Y) respectly, and F; is a Fermat point of Aabe, F» is a Fermat

point of Adef, then

angle < Fia, F1b >= angle < Fib, Fic>= angle < Fie, Fla >= 27/3,
hence

angle < Fyd, F\ f >= angle < F\ f, Fle >= angle < Fie, [1d >= 27/3,

5



= F} is also a Fermat point of Adef. 4

Remark.2. For the above constuction, let £d(f(0), M) or £d(f(0), M) and so on be
the radius of the circle is all right for the angle < G2qr, g1gs >> 27/3, the Fermat point is
the vertex of triangle, and do the step 1 again, until translate F'in the A f(p1) f(p2) f(ps)-

Without loss of generality, suppose f(0) is already in the Af(p1)f(p2)f(ps), and if

angle < f(p2)f(p1), f(ps)f(p1) >> 2m/3, do the step 1 again, then we can find:
angle < @q1, @3q1 >= %angle < @ F,qsF >,

by simple calculation.

If angle < @2q1, G3q1 >> angle < f(p2) f(p1), f(p3) f(p1) >, we have

angle < @oF, g3 F >> 2aiigle < f(?fZ),f(pl)v f(p3)f(p1) >> 4m/3,

and we get a contradiction. “

If angle < @41, 31 >> 27r/3 then anql( 3 qQF Q3F >> 47 /3. Hence we get a

i ‘?.

contradiction. b
. . el — ~ |
Conclusion. F' will be an interior T 1111:‘?.&1%

i} :
| ; T T l ‘ L

angle < f(0)f(p1), f(())f(pg)l}: 271“} and angléii 7 f((l"}.f(pg), f(0)f(ps) >= 2m/3 and

anglés FO) [Gp): FOLHpTT =23,

then we can choose suitable points ;905956 ¥, €y > 0 small enough depends on

C(i)n\ ex bounded plane set.

Step.2. If

Y, such that L(f(p171)) < ey, and we do deformation, transform f(p;71) to a new
line f(y1)mf(71) and angle < f(y)af(m), 7f(71) >= 7/2, where 7 : f(Y) — OM is
an upright projection, such that this deformation will preserve the continuous of this
Y-shaped, the angle from f(0) to ¢; is always 27/3, Vi = 1,2, 3, and this deformation
is continuous. Similarly,

angle < f(72)mf(12), wf(12) >= angle < f(ys)mf (7). 7f(13) >=7/2,

and translate f(p;) to wf(v;), Vi =1,2,3.

Note. angle < f(0)q1, f(0)gs >= angle < f(0)gs, f(0)gs >= angle < f(0)q1, f(0)q1 >=

27 /3 still not change. See the figure below.



fip,)

f(ny)

Remark. d(f(0), f(p1)) + d(f(0), f(p2)) + d(f(0), f(ps))
> d(f(0), f(m)) +d(f(q), 7 f (1)) +d(f(0), f(72)+d(f (72), 7f (2)) +d(f(0), £ (73)) +

d(f(vs), T f(73)-
Step.3. Finally we link f(0)f ( ) In HllS progess’, 1t may cut f(Opy) or f(Ops), but it

is all right, and now angle < & 0}5‘3 p1

Remark. d(f(0), f(1)) MLf( ‘
+d(f (), (1)) + d(ffO) b

s

d(f(0), f(ps))- "f'
Repeat the above con,stfuctl

exists the tripod conﬁguraut;,oﬂ'e 3 e

the following lemmas. - ,(:': ."u»

b — =i |_
Let the deformation of step 1 be denoted b‘y ba, the deformation of step 2 be denoted
by D,, the deformation of step 3 be denoted by D., and define D be the subsequent

application of the deformations D,, Dy, D..

Lemma 2. The deformation D is continuous in Y .

Proof. Let Y, be a convergent sequence in AX, with limit Y. We claim that DY,, — DY
Indeed, the partition points in Y, converge to the partition points in Y. ( Y,

is formed by three curves, Y-shaped convergence means each curve converges.) Thus
Y,, = Y, we have D,Y,, — DY, DyY,, — DY, D.Y,, — D.Y. So we conclude that
DY,, — DY, D is continuous in Y.

We construct F'={f 1 f:Y — M} topology by :



fol=tA =M f(=1)=0, f(1)=0+¢
g:10,1] =M  g(0)=f(0), g(1) =0+

See the figure below.

B+
A+
al Jio
p'- g =5 .1-*- -,;—
i,

r ’_'_‘F"_J_
Lemma 3. Show that F . t.opolog

G,
er o foll ng questlons

To prove Lemma 3, &ve nee he
Definition.(p323,James R (Mu

44 ar contmuous map of the space

X into the space Y, We e say 1f there is a continuous map

?’
F: X xI — Y such t'hat ‘21) —""'f( ) for each z. (Here

I =10,1]). The map F is ca']:l¢d ay’hmh*w” @q W andn f If f is homotopic to f,

we write f~ f . If f~ f and f s 3 constant ﬁlapﬂvx}e say that f is nulhomotopic.

WS
We conclude the following questions: G

Question 1. 3f : [-1,1] — M,g : [0,1] — M, such that f(—1) = 0, f(1) = 0 +

©,9(0) = f(0),9(1) =0+ ¥.
Question 2. F topology is homotopic to S* x S x S x D,.

Question 3. S! x S! x S!is not contractible.

For the question 1:

Proof. Since M is a convex closed plane set, it is path connected. For 0,¢ € M
O+ ¢ e M, 3f) : [-1,0] such that fi(—=1) =6, f1(0) = ¢. Moreover 3f, : [0,1] — M
such that f5(0) =g, fo(1) =0 +

fl(t) te [_1’0] . .
Let h:[-1,1] = M, h(t) = is continuous.

fa(t) te]0,1]



h(0) = f1(0) = f2(0) = ¢,h(=1) = fi(=1) = 0,h(1) = f2(1) = 0 + .

For ¢,0 +1 € M, 3¢ : [0,1] — M such that g(0) =<, g(1) =0+ . ¢
For the question 2:
Lemma 3.1. Show that F topology = S* x S' x S! x D,.
Proof. Since M is a convex plane set, we can find the homotopy represents a continuous
deforming of M to S'. We can consult the method in the Appendix [4] for page 361
and page 325. On the orther way, imitating the method in the Appendix [4] for page
339, we have F topology » S* x S* x S x D,.

For the question 3:

We introduce lemmas.

=i

Lemma 3.2. A contractible space 18 $zmpl1/ cm‘mected

Definition 1.(p333, James R Munkres[4]) space is.simply connected if it is
path-connected and its fundamontal gighp is hlV al. 1.8." 71'1 (z,20) = 0,20 € X.
Definition 2.(p155,James R. M | k@ﬁ ven points & and y of the space X, a
path in X from z to y is & eontinuous may  '&: L] -+ X such that f(a) ==, f(b) =

A space X is said to be path. GODH( d if ev.u\ #u of(i_)_'oints of X can be joined by a
path in X. L :

Definition 3.(p331,James R. Munkres[4]) Let X be a space, let =y be a point of
X. A path in X that begins and ends at z is called a loop based at zy. The set of path
homotopy classes of loops based at xy, with the operation 3, is called the fundamental
group of X relative to base point xg. It is denoted by (X, o).

Proof. Although every loop ¢ at a point z( is homotopic as a map with a constant loop,
we do not know they are homotopic relative to (0,1). (Since if o is a loop at xg, 7 is a
constant loop, 7(s) = zo Vs, if 0 ~ 77rel(0,1) = o is homotopically trivial). Hence we
need the following Lemma.

Lemma 3.2.1.(Lemma 3.3,Marvin Greenberg|5]) Given F' : I x I — X, set
a(t) = F(0,t),8(t) = F(1,t),~(s) = F(s,0),d(s) = F(s,1), then § ~ a 'y rel(0,1).

Proof. See the figure below.



L

where zo = §(0), z1 = 6(1),

T s <t Bt+s) 1—s>t
E(s,t) = ’ (s, 1) = (t+5) t
all+t—s) s>t 1 1—s5<t
Complete the proof of Lemma 3.2: Now X is contractible, we can obtain F' with

0 =0,7=x9, = 3, then o is homotoplcally trivial, i

Lemma 3.3.(Theorem 54.4 James . Munkres[4]) The fundamental group of S*
18 2. | '

Definition 1.(p336, James R M]ﬁlnk:res[éﬂ) T_,et p: E 2 B be a continuous surjec-
tive map. The open set U of B is sai @;ivr:lﬂ} covered by p if the inverse image
p ' (U) can be written as the-union dis; ‘gﬁlt ()I‘DLH sets Vo in E such that for each a,
the restriction of p to V, is a: home Iri(nphmn 0{ k/ on;éd‘ U 1f every point b of B has
a neighborhood U that is evenly covered by Dy then p 1s called a covering map .
Definition 2.(p342, James R. Munkres[4]) Let p: E — B beamap. If fisa
continuous mapping of some space X into B, a lifting of f is a map f : X — E such
that po f = f.

Definition 3.(p326, James R. Munkres[4]) If f is a path in X from zy to 21, and
if g is a path in X from z; to =5, we define the product f % g of f and g to be the path

h given by the equations

2s scfo,2
P R
9(2s—1) seld1]

Lemma 3.3.1.(p337, James R. Munkres[4]) The map p : R — S given by the

equation p(x) = (cos2mx, sin2wx) is a covering map.

10



Proof. Let U of S'consisting of those points having positive first coordinate. The set
p 1(U) consist of those points = for which cos2rz is positive. i.e. It is the union of
intervals V,, = (n — iv n + i)v for all n € Z. Now restricted to any closed interval V,,
the map p is injective because sin2mx is stricty monotonic on such interval. Besides p

carries V), surjectively onto U, and V}, to U (by the intermediate value theorem). Since

V,, is compact, p 1 V,, is a homeomorphism of V,, with U. In particular, p 1 V,, is a
homeomorphism of V,, with U.

Similar arguments can be applied to the intersection of S' with the upper and lower
open half-planes. These open planes cover S!, and each of them is evenly covered by

p. Hence p: R — S is a coveringimap. f ..
Complete the proof of Lefnma-3.3:° : = e
Proof. Let p : R — S be the Cofiélng map D) = (cos2rr, sin2mx), eg = 0,by =

.n'—{,

l
1

pleg) = p~1(by) is the set 740
Since R is simply eonnected Ru i’%&ae‘tlbl( the liffing correspondence ¢ :

71 (S, by) — Z is bijctive. '

Claim that ¢ is homomorphism. .

™

1 |
|

|

Given [f] and [g] in m (Bybo)s et f and g De- t‘he1rKrespectlve lifting to paths on
R beginning at 0. Let n = f(1), 1= g( ) = d)([f]) =n,¢([g]) = m, and let §(s) =
n + §(s) on R, since p(n + x) = p(z)Vz € R (" pog(s) = g(s) = po (§(s)) =
po(n+g(s)) =pG(s)) = g(s)). = g is a lifting of g and begins at n.

Then f % g is defined at it is the lifting of f % ¢ begins at 0 (po (f xg)=fxg).

The end point of §(1) = n+m (f%xg(1) = g(1) = n+m). = o([f]+[g]) =n+m =
o(LfD) + o(lg])- 4

Moreover use the following lemma.

Lemma 3.4.(Theorem 60.1, James R. Munkres[4]) m (X XY, zoxyy) = m1 (X, 29) X

(Y, yo)-
Definition.(p333, James R. Munkres[4]) Let i : (X, z0) — (Y, o) be a continuous

map. Define hy : 11 (X, 29) = m1(Y, o) by the equation hy([f]) = [ho f]. The map hy

11



is called the homomorphism induced by h, relative to the base point xg.
Proof. Let p: X xY — X and ¢ : X XY — Y be the projection mappings. Induced
homomorphisms

Py - (X XY, 20 X yo) = m (X, 20)

gz : M (X X Y, 29 X yo) = m1(Y, y0)

define a homomorphism ¢ : m (X X Y, 29 X y9) — 71 (X, zg) X (Y, y0) by

O([f1) = p=([f]) ¥ = ([f]) = [po /] x [g < f].

Show that ¢ is an isomorphism.

1. ¢ is surjective: Let g : I — X be a loop based at zo, h : I — X be a loop
based at yo. Want to show[g] x [#] lies in the image of ¢. Define f: I — X xV by
f(s) =g(s) xh(s)= fisaloop based s ><7:y‘([,:,rand-¢([f]) = [po f] x [go f] = [g] x [h].
2. The kernel of ¢ vanishes. Suppose that f: ] - o) Y is'a loop in X x Y at xg X yp,

[ FL}

and 6((f]) = [po f] x [aBf] is the ld«;nw_s;emﬁm ie. %o f A, by G and go f =~ ey,
by H, where G, H are the respoct% p H51+ topigs. Then F' : [ x I — X xY
defined by F(s,t) = G(syt)x H(s, 1) s agpath h'[( 1otopy between f and the constant
loop based at x¢ X yo. f %5 o~ I h G

For the question 3: N 3

Proof. m1(S* x S x S xg x yo X 20) 7S, 20) X (St yo) x m (St 20) XZ X L X7

not a trivial group. Hence F' topology is not contractible.

Return to our original problem, the following three cases will happen after many
times deformation:

Let Y be a non-null homotopic Y-shaped. Consider the sequence {D,,Y'} of Y-
shaped, all of which are homotopic to Y. The decreasing sequence {L(D,,Y)} has a
limit xo > 0.

Case 1. We claim that xo = 0 would not happen. Ve > 0, since a Y-shaped Y *with
L(Y*) < ¢ lies entirely in the domain of normal coordinates based at f*(0). Such a
Y* then is contractible, we have a contradiction. (i.e. All of the Y-shaped retract to a

point would not happen. )

12



For yo > 0,
Case 2. If all of the Y-shaped will retract to a curve connected the boundary of M,

and this curve will perpendicular to the boundary of M. See the figure below.

Similar to the above statemient, this'fY—shéif)ed topology at most v S*. Maybe ho-
e, I s -
motopic to some points or ever homidtopic to dmSince a point on the boundary, it is

hard to find a straight line perpendl( ,rr?"n\to thf‘ houndary between two points. But the

i I,i A ‘
original Y-shaped topolegy is &' x T y '%;DL |aft er the continuous deformation we
get Y-shaped topology = S ' or Bomo Joplm_o same pointe,_ even ¢, this contradicts to

S1 can not contract to a pomt . hu his'-ca,eo Wﬁ ldMmat: happen Furthemore, if some

Y-shaped degenerate to a po;ef Some. Y—shaped &egenerate to a line, both of them
combine to this case. -

Case 3. There exists the Y-shaped form is our tripod. Now consider the decreasing
sequence {L(D,,Y)} with a limit xo > 0. Let {Y,,} be a sequence with Y,,, € D,,Y,
L(DY,,) = L(Dp11Y) > xo. Since M is compact, {Y;,} has a convergent subsequence,
which we again denote by {Y;,}. Its limit Y-shaped is Y;. We then have L(Yp) =
limL(Y,,) = limL(DY,,) = xo > 0, and since D is continuous, we have L(DYp) = L(Yy),
so we find a tripod Y, with L-value yo. Indeed, according to the Appendix [7], we have
Yy is a critical point for our yo = minmaxL(Y'), xo is a critical value, we examine the
critical condition of L, using the Lagrange multiplier we have the following things:

1. Fixed f(0) € M, the extreme value of L occurs when the shortest distance lines

which connect f(0) and f(p;), Vi = 1,2,3 are perpendicular to the boundary of M.
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2. Fixed f(p;) € OM, Vi = 1,2, 3 the extreme value of L occurs when unit tangent
vector of three lines at f(0) have zero sum.

Combining these two critical conditions, we know this critical point is our tripod.
Remark. The tripod is not unique. We can see a particular case to a circle.

By Appendix [1]. We have for any smooth convex closed curve, there exist at least
two tripod configurations. Besides, by Appendix |7], Lien-Yung Kao and Ai-Nung Wang

give another way to prove this theorem.
Conclusion. There exist at least two tripod configurations in M.

We conclude with another question: can we generate this case to a convex Rie-
mannian that there exists the tripod configuration by imitating the above method or
Appendix [8] for chapter 37 Given three digjeint €onvex plane curve, can we find a

=
tripod in the complement of themmn?
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