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Abstract

This study derives asymptotic characteristics of GARCH(1,1) options price model
estimators when using stock data only (ST), using option data only (OT), and using stock
and options data with (S+O+E) or without an error term (S+0). The asymptotic variance in
large sample theory shows that the OT method results in potentially biased and inefficient
estimators, whereas S+O+E generates unbiased estimators which are substantially more
efficient than either ST (S+O) or OT: These tesults are confirmed by finite sample
simulation studies. Hence, the .difference in -:é'stimation between S+O+E and ST is
substantial and results in significantly different risk mat}ag.ement consequences. These

errors substantially impact risk managemen‘t-metrics as options deltas and gammas vary by

I
| - ,_-_1"

as much as 80%, depending on the 11n thodtused Singe the GARCH option models are
relative restrictive and cannot captulle the emplrlqal phenomena (cf. Engle and Mustafa
(1992)), we introduce an error term:to the options pr1c1ng model, lending needed slack to

the estimation process and resulting in unbiased estimates that are maximally efficient.

That is, more data is better, but only if the data set is appropriately applied.

Keywords: GARCH option model, asymptotic behavior, estimator efficiency and bias,

risk management
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Chapter 1

Introduction

A number of papers have sought to develop methods of appropriately and empirically
accurately measuring stock price volatility, a factor that is critical in numerous fields of
study including options pricing and risk managéﬁent. It 1s a value that is necessary for
calculation of hedge ratios aﬁd key risk'metrics such as the bptions delta and gamma and,
as a result, lies at the very core of tr;adi%f&nﬁ_l risk measurement, options pricing, and
hedging strategies. Early weork in thiii! ﬁel&é-_‘focu‘ses on application of stock price data
(henceforth the ST data speciﬁéétion); v;/hile more fecgnt efforts have sought to apply both
stock and options data to the estiniatibn problem under.the assumption that the more data is
applied, the more accurate are the resulting estimates. Empiricists have sought to do so in
both the GARCH and stochastic volatility (SV) settings, generally applying these data
without allowing for error in the options pricing model (henceforth the S+O method).
Ultimately, GARCH models have been shown to provide better empirical fit and
characteristics, making it an important class of models to consider. However, when it
comes to estimating these models, application of the dual dataset becomes difficult owing
to the restrictive nature of the specification, leading some to believe that the flexibility of

SV models makes it a more desirable environment for estimation. Since there are



consequences of the likelihood principle and Engle and Mustafa (1992), S+O method is
found to be similar to ST method under GARCH models. That is, more data is not always
better, and traditional methods leave estimation of this important class of models severely
handicapped.

To resolve this issue, we develop additional two data specifications, a third data
specification that applies options data only (OT) and a fourth data specification that applies
stock and options data but includes an error term (S+O+E) such that options data need not
match precisely the options pricing model.! We derive a quasi-maximum likelihood
estimator (QMLE) for volatility undérthe GARCH(I;1) specification, both through
analytical derivation of asymptotic béhavior and numerical simulation, that the OT method
generates inefficient, and mb're impoftarlltly, _e;t'imate Biaé that is economically and

statistically significant. After relaxiﬂg '.-EF._".’i.mplprtant modeling constraint, S+O+E
generates asymptotically unbiased e#tiLnatés;_%hat Iare the_m.'(')st efficient of the four data
P 1 1

specifications. Most importantly, wg._{hén apply:S&P500 stock and options daily data from
January 2007 to the end of 2007 to generéte comrﬁonly used risk and hedging metrics, i.e.
the options delta and gamma. We find that those calculated using the S+O+E method are
substantially different from those arrived at using stock data alone, indicating that the
impact of including options data is economically significant and should be taken into
account when determining hedging strategies.

Eraker (2004) offers several advantages using both stock and options data under

SV model: A primary advantage is that risk premiums relating to volatility and jumps can

"More details about price errors see Engle and Mustafa (1992), Jacquier and Jarrow (2000), Eraker (2004)
and Johannes, Polson, and Stroud (2009) and others.



be estimated. Secondly, the one-to-one correspondence of options to the conditional
returns distribution allows parameters governing the shape of this distribution to
potentially be very accurately estimated from option prices. For example, Eraker, Johannes,
and Polson (2003) suggest that estimation from stock data alone requires fairly long
samples to properly identify all parameters. Hopefully, the use of option prices can lead to
very accurate estimates, even in short samples. Moreover, the use of option prices allows,
and in fact requires, the estimation of the latent stochastic volatility process. Since
volatility determines the time variation in relative option prices, there is also a strong
potential for increased accuracyin the estimated volatility process. Finally, joint estimation
also raises an interesting and impoxtant question: ‘Are cstimates of model parameters and

volatility consistent acress both markets?, How. to get the' same results under GARCH
models? This is the essential question to bé‘éﬁ&féssed in this paper.
M |

Other papers apply both stoé:lJ, and.:ﬁ’éptions data to ‘estimate volatility, such as
o ! | |
Chernov and Ghysels (2000),. J acq_lliér and Jarrow 42000), Pan (2002), Jones (2003),
Ait-Sahalia and Kimmel (2007), and Johaﬁnes, Polsen, and Stroud (2009), each addressing
the estimation issue under different assumptions. However, all of these papers do so under
an SV or Black-Scholes (BS) rather than GARCH specification. Chernov and Ghysels
(2000), Pan (2002), Jones (2003), and Ait-Sahalia and Kimmel (2007) apply an S+O model
whereas Jacquier and Jarrow (2000), Eraker (2004) and Johannes, Polson, and Stroud
(2009) apply an S+O+E model. In addition, Chernov and Ghysels (2000) and Pan (2002)
use generalized method of moments (GMM) estimators, Jacquier and Jarrow (2000), Jones

(2003), Eraker (2004), and Johannes, Polson, and Stroud (2009) use Bayesian inference

estimators, whereas Ait-Sahalia and Kimmel (2007) uses maximum likelihood estimators

3



(MLE). Moreover, each of these papers focuses primarily on the computational aspects of
their model, leaving open the important issues of the statistical properties and empirical
implications of the models. Our paper explores these issues explicitly.

Importantly, Lehar, Scheicher, and Schittenkopf (2002) analyzes GARCH v/s SV
models and finds that GARCH models dominate in terms of fit to observed prices. Given
this attractive property, it is fruitful to develop a GARCH model that applies both data sets
in an efficient, unbiased way: the task we explore here. Unfortunately, GARCH models
that apply both stock and options data are scarce. Engle and Mustafa (1992) is among the
earliest of these efforts. We follow this early work'in that we also consider the role of error
in the options pricing model but differ in that their “work focuses on the application
nonlinear least square (NLSI) estimators, fon Iiiinimum of loss function toward the

| p—

estimation of implied volatility; that is, ithis“f’dzé's'. s0 underan S+O specification. They find
mn |
that the persistence of volatility shoq:kl implied by options is found to be similar to that

3 N\ | 1 :
estimated from historical data on the index itself; that is, S¥O method is similar to ST

method. Christoffersen and Jacobs (2604) also uses NLS estimators and the S+O
specification with both stock and options data under GARCH model. The focus of that
study is on the accuracy of options pricing models and their ability to describe observed
options prices. It does not address the estimation quality of the model nor does it seek to
differentiate its data specifications from others. In contrast, our study is the first to derive
the asymptotic characteristics of estimators then test these results using empirical data
under the different data specifications.

Our theoretical construct builds upon the GARCH(1,1) setups of Heston and Nandi

(2000), which propose a class of GARCH models that allow for a closed-form solution for
4



the price of a European call option. We apply this model to the application of different data
inclusion specifications and address asymptotic behavior using QMLE methods (cf. Lee
and Hansen (1994) and Lumsdaine (1996)). For the S+O specification, we revise
Ait-Sahalia and Kimmel’s (2007) log-likelihood function to follow a GARCH(1,1), which
has only one random source, and derive the asymptotic behavior of the QMLE. From this is
a consequence of the likelihood principle, we find that the asymptotic behavior of the
QMLE for S+0O method is equal to that for ST method under GARCH models, that is, S+O
method is similar to ST method. Thus, we don’t display S+O method in this paper.
Specifically, for the OT specification, we apply the log-likelihood function of Duffie,
Pedersen, and Singleton (2003) tosderive the asymptotic behavior of the QMLE. Our
theoretical findings show that ;[he OoT met}_lpd genéfates biased estimates and further partly
results in higher estimation variance and nié;“%l'étjuaréd error than applying stock data alone,
the ST specification. Applying data:. Lnd i\}fldnte I. Carlo simulations, we confirm these
A\ 1 { |

findings for all four variables that_welséek to estimate.

These findings alone are perhaps. not surprising. The GARCH specification is a
restrictive one under which the application of the dual dataset can tend to obtain helpless
the model. In contrast, the SV class of models introduces an error term into the volatility
measure, thereby providing considerable slack in the model and allowing for the
application of a more comprehensive dataset. The intuition behind our S+O+E method is
the same. By allowing for additional slack, this time in the options pricing formula itself,
we hope to provide the slack necessary for the dual dataset to generate unbiased,

maximally efficient estimates for the GARCH class of models.

Specifically, the S+O+E specification assumes that C =C™ +¢ . The error term e, is

5



assumed to be distributed N(0,7*) and is correlated with the error term of stock return.’

Put plainly, we allow for options price data to err from the theoretical options price. Under
this specification, we find that, for all four variables that we seek to estimate, the
asymptotic mean squared error is lower than that of ST specification. That is, inclusion of
an error term guarantees that the specification will dominate stock data only in large
sample theory, where as applying stock and options data without an error term does not.
Importantly, S+O+E also generates asymptotically unbiased estimates. These results are
confirmed by our simulations in finite sample studies. Indeed, the OT method generates
estimate bias, standard deviation, and mean squaféd error that are several times higher than
those of S+O+E. ST, while generally not substantially Biasgd, also generates estimates with

standard deviations and mean squared ef{.r(_);s;t_hat are seyeral times higher than that of

| L |

S+O+E. We conclude that the use of o i ti(-)'l,’l"l ?;cesl can lead Fo very accurate estimates not
only in short samples but also ipl_longi SImplés_ : | :

To test the implications. of: these:: differencc_es! iri:-estifnate quality, particularly in the
risk management setting, we apply 12.months of stock and options data and show
empirically that ST and S+O+E generate substantially different critical risk metrics. We
calculate options delta and gamma using both the Black-Scholes and GARCH options
pricing models. We find that estimates vary considerably depending on the data

specification used. Delta estimates differ by as much as 80% which gamma estimates may

differ by more than 60%. Although these differences are not systematically related to the

*In the information point of view, when good or bad news occur in financial market, these maybe affect the
stock price and option price simultaneously. Then, these lead to the emergence of the correlation between
stock error and price error.



moneyness of the option, they are nonetheless considerable. We conclude that the unbiased,
more efficient estimates derived from our S+O+E method have a concrete and
economically important impact, a notion managers would do well to keep in mind as they
implement risk management practices.

Finally, we apply the Duan’s (1995) options pricing formula for a robustness check.
The results again show in this study, both through analytical derivation of asymptotic
behavior and numerical simulation, that S+O+E method generates more efficient and
unbiased estimates. These errors substantially impact risk management metrics as options
deltas and gammas vary by as much as 90%. These results are consistent with our general
findings.

The remainder of this.paper is 6rganize(1--as follo{)v'sf Chapter 2 introduces price

T _ N

error. Chapter 3 presents the main resull“[s.'l(-")lﬁfffér 4 proposes a robustness check. Chapter
M || .
5 concludes. All proofs of the results iaJe relégated to Appendix.
P i ' : 1



Chapter 2

An Introduction of Pricing Error

Consider T observations of a contingent claim's market price, C,, for te{l,...,T } We
think of C, as a limited liability derivative, lik€ a call or put option. Formally, we can
assume that there exists an unobsetvable equilibrium, or arbitrage free price ¢, for each

observation. Then observed price C, sheuld be'equal to the theoretical price c,. There is a

—
-

basic model f(X,,0) for the equilibrifiurn- .-price c,. The model depends on vectors of
1| <= :

observables X, and parameters @ ."\We assume that|the parameters are constant over the

sample span. The model is an apprdXimation, even though it was theoretically derived as

being exact. There is an unobservable pricing error, e,. A quote C, may also sometimes
depart from equilibrium. The error then has a second component &, , which can be thought
of as a market error. & and e, are not identified without further assumptions. In this paper,
we merge these two errors into one common pricing error ¢,. Formally,
C=/X,0)+e,. 2.1)

This implies a multiplicative error structure on the level, which guarantees the positivity of

the call price for any error distribution.



The introduction of a non-zero error e, is justified. First, simplifying assumptions

on the structure of trading or the underlying stochastic process made to derive tractable
models. They result in errors, possibly biased and non i.i.d. For example, Renault and
Touzi (1996) and Heston (1993), show this within the context of stochastic volatility
option pricing models. Renault (1997) shows that even a small non-synchroneity error in
the recording of underlying and option prices can measurement can cause skewed
Black-Scholes implied volatility smiles. Bakshi, Cao, and Chen (1997) show that adding
jumps to a basic stochastic volatility precess further improves pricing performance.
Bossaerts and Hillion (1997) show that the assuiﬁ-ption of continuous trading also leads to
smiles while Platen and Sehweizer (1994)'s hedging fnod_el_ causes time varying skewed
smiles in the Black-Scholes mo.del. In ali Qf the ab(-).ve caseé .tfle model errors are related to

| ,,.l—.._ |

the inputs of the model. Second, 1n| 1cal]models, the ratlonal agents are unaware of
|

market or model error and know the ph ameters of 'ﬂhe model Such models could be biased
1

in the ‘larger system’ consisting of expression (2.1).



Chapter 3

Parameter Estimation under

GARCH Option Price models

3.1. Model setup and OT specification

First, we describe the g.eneral stock _aI}d option pricing models applied in this paper.
Then, we derive QMLE and asymptotic resuti;:[fé;for the ST and OT specifications, noting the
bias and estimator inefficiencies of! the OT 'method. Numerical results confirm these

characteristics.

3.1.1. GARCH(1,1) stock and option pricing models
We adopt the generalized setup used by Heston and Nandi (2000), which propose a
class of GARCH models that allow for a closed-form solution for the price of a European

call option, where the data-generating process for the stock price S is:

y,=InS —InS,_, =r+Ah +H4"z,, under P measure, (3.1)

2
h=o+a(z,,—yh}) +pBh.,. (3.2)

10



where r is the risk free rate and A is the price of risk. The variance equation (3.2) is in fact
a nonlinear asymmetric (NAGARCH) configuration (cf. Engle and Ng (1993)). The

process remains stationary with finite mean and variance if ay” + 8<1. We may consider
process (3.2) as running indefinitely or we may assume initial values y, and /4, , with the
latter drawn from the stationary distribution applied by Bollerslev (1986), Nelson (1990),
Bougerol and Picard (1992), and others. Let ¥, be the sigma-field generated by

{ Vs Vigse- } and let 6, =(®,,,, b,,7,) represent the true parameter vector. Assume that

6, e® R’ is in the interior of @, a compact,.eonvex parameter space. Specifically, for

any vector (w,a,f,7)€® , 0@, <o<w, wW0ka, fa<a, , 0<B, LS, ,

7, <y<y,,and a,(A+y, +%)2 + 3, €12-Assiime also that {z,} _ isi.i.d., drawn from
| T |

|

a symmetric, uni-modal density, bollu’xded-'l'n_ a méighborhood of 0, with mean 0, and
> L |

variance 1. In addition, assumg'that /4, is independ'&._eﬁt of {Z,,ZM,. . } .

The corresponding model under local'risk neutralization reads

y,=InS,—InS, , =r —% h +h"*z°, under Q measure (3.3)
— 0 12
h =w+ oc(z,_l —7oh5 ) +ph,_,, (3.4)
where y, = 7/+l+% and z¢ =z, +(/I+%jh,” ?. Then, the GARCH option pricing

formula is described as:

*Since oy, (A+7y, +1/2)*+ 3, <1 implies ay;+ <1, the process (3.4) under O measure also remains

stationary with finite mean and variance. These conditions easy to be arrived from our estimative parameters

11



;0)=e" "V EC[ max (S, —K,0) ]

(Tt) g g+
e >f(1)(§+ J'OR{ ¢fl(1) }dqﬁ] (3.5)

_er(rt)K[%_i_%J':Re{K_’qj;; (l¢)}v¢])

where /() =E? [ P ] — S;/’e*"“B%(e) , x, =In(S) A=B=0 ,

C"(T.K,S,,

t+1 s

(p—7,)

In(1—2¢B%,)
2(1-20B7)

AP = gil"‘(”’""'Bwlw_# . Bl =¢( Q__)__ B, +

9

Re(x) is the real part of x, T is the maturity date, and K is exercise price. From the
derivative of real part doesn’t exist, we consider é‘complex number ¢ =m+¢i, m=0,1 to

rewrite  (3.5) such that . the part&al differentiation’f_:_...Q_f C™(@) exists. Then,

Yo 2 )
A= 4,,($,0)+ 4,0 adf :Bf:sl,',,f(¢,e>+82m,(¢,e>z’ . where
I
||
ILabﬁmm @, a)]% +40°B m,+;(¢,e))

—r ZaBZrﬂ,t-*—“l (¢’ 0)
4, ($,0)= 4,,,,($,0) + Pr + @B, .,($, 6’)——t (WJ )

1n{[
A,,(8.0)=4,,,.(¢ 9)+mr+0JBlmt+1(¢ 9) i

RN 1208, G ONn =70 ~ )~ 4aBuy, (§. 0N~ 7)0
A GO0 =) =3 0 B OO 0B, G0 + 4B, .0

9

By, ($.ON(m—7p) —F' 1+ (m—yp)¢(1 -2aB,,,,.,(¢,0))

1
AN By, ($0) =070 =)+ Flinsa O+ (1-2aB,,, ($.0) +4c’ B, ($,6) - Hence,

we rewrite (3.5) as

on S&P 500 index data. Hence, the parameter space ® is enough large.

12



Xi1,(4,0)
™ o)=s, {51 e ””(¢’9))d4

2 7l ¢
Xio, (40 _: (3.6)
_er(Tt)K|:l+lJ.we o Sm(Xzo,z(¢a 0))d¢:|
2 Yo ¢ ’
where Xipi(0,0)=—1r(T-t)m+ 4, (4,0)+B,, (9,0)h,,(0) and

X5, ($,0) =9 In(S, /| K)+ 4,,,(4,0)+ B,,, ($,0)h.,(0) , m=0,1.

3.1.2. QMLE:s for ST and asymptotic results

We now turn our attention to estimating the parameters in the model. The base case

ST uses only stock data. Spe._c_iﬁcally, h is the conditional variance of y, with respect to

¥ . The estimation model utilizes (3 l) aad (3 2) applylng estimated parameter values

Yo—r—4Ahy

| | |
(v, ﬂ,y):(é’l,é?z,@,e . 7The erTo teuT’ns z,lare computed as z,= h01/2 ,
|

y-r—4Ah
e > .-

z, = ., Where {y,,' t'i 0,._.-.,T} are observed data. The process 4, is not

observed but is constructed recursively using estimated parameter values, z,, and an
appropriate startup value, /4, , to be discussed in detail later.

QMLE is obtained by maximizing, conditional on /4, as follows:

ST Lo -1 —r— /1h(9))
I W Vs 3 O = IS Z[ (h(0))+ O J (3.7)

~ non P
That is, 6" =argmax L) (0) . This estimator is consistent as &' —@, and is
0O

asymptotically Normal as
13



A A
Hy o Fyro T (67 —6,)~N(O,1,), (3.8)

aZSTg aST& aSTe
where Fi, =—E[$j, Hg, =E(T LTaé b) ng(v())j’ and I, =

S o o =
S O = O
S = O O
— o O O

A full proof appears in Section 3.5 as Theorem 3.1.

In the interest of computational simplicity, assume that z, is Normal so that
Foo=Hg,, though our general intuition remains the same under the more relaxed
aforementioned specification for  z,-. *The .aSymptotic covariance matrix V. and

asymptotic mean square errors MSEg, are:

1

MSEq (6)) =Ver (6) = %TOHSTOF-J SHL (3.9)
|sz ¥ |
where Fyo=Hg,=E K jﬁh ) & (9)}.
2h2(9) h(e) 00 | 'ae' :

3.1.3. QMLEs for OT and asymptotic results
For OT, we simply have C =C™, t=1,...,T, since the pricing formula is

assumed to match the observed data exactly. Duffie, Pedersen, and Singleton (2003)
provide a treatment for the log-likelihood function when only options data is applied in this

fashion. Let S, be an unobservable stock price. Expressing the stock and options price
vector as a function of the state variable vector, we have: C, = f(S,;60) for a differentiable

function f'that is easily computed. At a given parameter vector &, we may now express the

14



state variable as a function of observed asset prices as follows: S (8)=f"(C;0)
assuming invertibility (which is not an issue in our application). Letting C=(C,,...,C;)

denote the sequence of observed vector of reference option prices, standard
change-of-variable arguments lead to the likelihood

1

S,(0) 7%

T

PC.:o)=[1P(S.(6)|S (0):60 , 3.10

where
det Df (5,(0); 0) = o010
X (¢.0)
11 =0 sin(X,,, (6 6')) U= 1,00
==+ |4 y dgx—J " cos( Xy, (4.0)) d

_e @ K l .[ p* e:XIIO,t(¢=0) cos ( X30,t (¢, 9)) d¢

f'!n_‘

! -
| -

i_.._

and | :
X, (.0)=¢In(s, (0)/K)+A2m,<ﬁl)+32m,(¢ ﬁ) +1<0> m=0,1.
Then, the log-likelihood function for discrete data of the asset price vector C sampled at

dates 0<¢ <7 has the form

T

l»?T(H):—%;{ln(J,(H))Jr ( (h(©)+ ;;g;ﬂ G.11)

where J,(6) =|det Df (S,(0);0)| and Y,(6) =InS,(6)~InS, ,(6)—r—Ah() . And, the

QMLE for 8% =argmax IS (6). Note, then, that this estimator is asymptotically biased
0O

2 yOT T
since: HTO -0 —)O where 6 =0, + 7L 4) @) | L_4.6) . Investigating the bias
oo’ TS, (6?) 00

15



2 yOT T
in particular, we have that Bias,,(6,)= oL (G) )| Z A . Full proofs can
0600' ='J,6,) 00

be found in Section 3.5 as Theorem 3.2.

Theorem 3.2 also shows that the estimator is asymptotically Normally distributed

-1/2 1/2 - nOT 4 azl'([)T (90)
as HOTO FOTOT (0T - 9] )NN(O, 14 ), Where FOTO = _E W and
oL (6,) . . . .
H,,, =Var TMTO . Again, assume that z, is Normal. The asymptotic covariance

matrix V. and asymptotic mean square errors MSE,; for the OT case are:

1
Vor( @) =——7—— (3.12)
o FOTOHO;'OEIOTO
and L
.---’_ |
MSE,(6)) = OT(@)+Bzas0L o0 | | (3.13)

™= |;' .
I L(@)@h(@)"E 1078 0Y,(6,) ond
2065 ae 00" h(@) 06 06

where H,,(6,)= {

! a%(é)o)}_E[ I ane,) v,@)

YH,, () . Then, th
J.(0) 00 J2@,) 00 89'} oro(%) o e

Foro(go) :E{

difference of asymptotic mean square errors between OT and ST dMSE,,, is:
AMSE 57 (6y) = MSE,y, (6)) ~ MSE; (6, . (3.14)
Using these results, which follow from Lemmas 3.1, 3.2, 3.5, and 3.6 in Section 3.5, we can
compare the magnitude of mean square errors in large sample theory, a lower asymptotic
mean square errors indicating better estimation. Namely, if dMSE,,(6,))<0, then
MSE,,, < MSE, and using options data only specification is more efficient than using

16



stock only. Since the covariance matrix V' is a 4x4 matrix, we estimate each of the four
parameters separately, holding the other three constants.

When ¢, f3,and y, are known and @ is unknown, we have the asymptotic bias

) BlaS then 1S non-zero in

o PL@)) 1L 1 dla
is Blasor(a)o|ao’ﬂo’70):(#] _;"]t(e) aa)o

magnitude. Investigating estimate mean square errors, we find that:
AMSE (@ | &, By, 7o) = MSE () — MSE o (3,) - (3.15)

Note that dMSEor may be positive or negative; where a positive results means that results
are less efficient than using stock data alone. Since the dMSEor depends on true parameters,
we don’t compare these values./Thus, we will caleulate. these values by numerical

simulation in Section 3.1.4. As illustrated,later, dMSE oy is in fact sometimes positive.
1] "‘-’5- -3 B
I - -

Similarly, when @, , By T Yo I«lare known and o is unknown, we have

:
Bias (o, | @y, By 7o) = [6&?(0@)) llzj(le)a](;(cf‘)) which is again non-zero in
magnitude and

AMSE 57 (0t | @y i 70) = MSE () ~ MSEgr (e, (3.16)
As demonstrated later, dMSEor is sometime positive definite and the estimator is

sometimes less efficient than that which is found using the ST method.

Similarly, when @,, ¢, , and y, are known and S is unknown, we have

. oLy (,B 1- 1 al(B) D . .
B w,, A, 0 07 which is again non-zero in
iasor (By | @y, ¢y, 7)) = [ ;J(@) Y g

magnitude and
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dMSE (S, | @y, y»Yy) = MSE (3) — MSE(f3) - (3.17)
As demonstrated later, we find that dMSEor is sometimes positive definite.

Finally, when @,, ¢, and £, are known and y is unknown, we find similar to the

, @ NON-Zero

82L5~”(70)j i A

previous case that Bias,, (y, | ®,,&,, 3,) = [
or\/7 0 0 0 0 a tz] J (9 ) a}/

entity and

dMSE (¥ | @y, &y, 3) = MSE . (7,) — MSEg.(7,) - (3.18)

Again, as for the case where £ is unknown, we show that dMSEor is sometimes positive.

3.1.4. Numerical computation for asymptotic bias and mean square errors

We now generate numerical results;'m test and illustrate these asymptotic findings.

| o

We presume that parameter true Vall es ar}: (i W, @9, Pos.y0). = (0.1746, 6.792x10° ?,
6.546x10™, 0.9914, 351.945), and thp risk- free raﬁe 1S ﬁxed at 5%. These parameters are
estimated using S&P 500 daily index data, from January 1996 to the end of 2007. We use
these parameters to run our tests.

First, we investigate and calculate analytically the aforementioned estimate bias.
Graphs in Figure 1 show the absolute value of bias divided by true value in the area
surrounding true parameter values. Since the orders of magnitude for the four parameters
are quite different, we graph the bias of @ on the left, that of ¢, that of , and that of y on the
right. True parameters are circled in each graph. Then, in each panel, one variable is varied
while the other three are treated as known. Specifically, in Panel A, w is varied, in B a, in C

S, and in D y.

18



[Insert Figure 1 here]

Note that, in all graphs, bias is decidedly non-zero and non-trivial for all four
parameters. Though not shown here, the absolute value of bias is positive for all four
parameters for the entire span of possible parameter values.” In Panel A, the bias for w is
sometimes large and sometimes small with w locally in the region around the true
parameter values but that for @ in the true parameter values is non-zero in magnitude.
There are the same results for those for a, 5, and y. The bias for w is always higher than that
of others. The order of these values is the bias for w, that for o, that for y, and that of .
Corresponding graphs Panels By C, and'D are similar to €ach other in shape, though their
x-axes differ. All in all, using OT, bias is non-zero for each yariable estimated, regardless

of the true parameter values ifnplementedl. In (contrast, neither ST nor S+O+E generate

T N

asymptotic bias in any variable. || <

T .
Shifting our attention to"the p}ﬁcwncy otlT the es_tiriiator, graphs of dMSEor are
Pk 1 1
shown in Figure 2. Remembef that.,_itﬁe more pos!itivc this ‘value, the more efficient the
estimator. . |
[Insert Figure 2 here]

Once again, in Panel A, w is varied, in B a, in C 8, and in D y. Looking at Panel A,
dMSE o7 for o is almost negative and sometimes positive for all four parameters in the area
surrounding true parameters but that for w in the true parameter values is always negative.

There are the same results for those for a, £, and y. AMSEor for a is always lower than that

of others. The order of these values is dMSE o7 for y, that for g, that for @, and that of «.

* Each the parameter for o (a, 3, y) ranges from 0 to 1 such that a(1+y+0.5)* + S <1.
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Graphs in Panels B, C, and D are again similar in shape. In three panels, dMSEor is
sometimes positive for all four parameters.

In summary, dMSEor is sometimes positive for all parameters in the area
surrounding true parameters. As such OT does not generally produce efficient estimators.
As aforementioned, it furthermore generates significant bias. We conclude that OT is not
an optimal estimation method given the restrictive nature of GARCH models. As a result,
we seek to develop a method that will allow for asymptotic unbias and efficient estimation

of this important class of models.

3.2. The S+O+E specification

We now turn our attention to @ new, specification that takes both stock and options

| p—

data into account, but which allows for an ei‘r%f ferm in the options pricing formula. Then,
m |
we derive QMLE and asymptotie res:u,ts for'the S+O+E specification. Numerical results

! |
confirm these characteristics. :

3.2.1. QMLEs and asymptotic results

For this method, we allow that C =C™(8)+e, where ¢, =nu, and t=1,...,T.

iid.
Assume that u, ~ N(0,1) and 77>0. For the purpose of calculating the QMLE, let us

assume z, and u,, with correlation(z,,u,)=p where —1<p<1, have a bi-Normally
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e .|z 0 1 p)) s /
distribution, that is, ~N o) ] .~ Let G =[S,,C,] be a vector of
Jo,

ut
observable stock and option prices, respectively. Then, the joint density is as follows:

P(G;6’)=P(S,C;9)=P(CIS;9)P(S;9)=IL[P(Q| S:OP(S,|S,,;6

T

2
L[ G @F s o 6o (667 0) 3.19
lZm/lp (@) CX] [ 2<1—pz>( AQ) 2p Jh(0) TR 7 - (3.19)

t=
The log-likelihood function for discrete data on the asset price vector G, sampled at dates
0<¢<T has the form:

J050) = In(P(G:6)

j _:I .. M ! )
(b @F ) ) 6o o) (G5O | |
=L 1)) | NAC) n 7

Z;Z{zm(zmy,h > )+1n(h(9))+l .}
1 ]

il |

| ‘ 1 || i (3.20)
| .

And, the QMLE for (9S+0+E —a'rgma)i s +O+E(6?) l

6’6@

A p
Unlike the OT case, this estimator 'is consistent as & ** —@ and is

~ A
asymptotically Normally distributed as Hy o oFs. 0.0l (7 —8)~N(0,1,), where

aL.ST‘JrOJrE (90) aLST‘+O+E (00)
06 00’

82 S+O+E 9
F:§+O+E0 =-F (LT—(O)

. A full proof
oto' ]

j and Hy, o, o :E[T

appears as Theorem 3.3 in Section 3.5. Again, assume that z, is Normal so that

>This simple idea likes Eraker (2004) to joint stock error and price error but differ in that he assumes that the
relation between stock error and price error is zero and there is the relation between price error at time 7 and
price error at time #-1.
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Fs.0.50 = Hy. 0.5 - The asymptotic covariance matrix Vs, ., and asymptotic mean square
error MSE(, . . for the S+O+E case are:

MES+O+E (00 ) = VS+0+E (90)

’ ) 1 1 (3.21)
= FylorsoHsi0000Fs om0 = = |
S+0+E0 L s+0+E0Y S+O+E0 F& OO F;,TO + M. S+O+E ('90)

where Mg, . ;(6) = F§. 0,50 — Firo and

2 1 22 \oh(6,) oh( 24 1 ac™ () on (6 1 ac™(6,) ect™ (4
Myor@)=2 5[ L AEACH @) _2p_pf @GH@], 1@ @]
1= \\477@) h@)) d0 a0 | n-p) | KG6) o0 o0 | wi-p | o0 o6

These results follow from Lemmas 3.1;:13.2, 3:13;-and 3.14 in Section 3.5. As before, we
can compare the magnitude of asymptotic mean square, errors, again a lower asymptotic
mean square errors indicating “better estimation, Here, if M, , >0 , then

MSE,,,,., < MSE,, . Namely, we novsf""{ﬁ;@ggﬁel M,

.o+ Where the more positive, the

. |
more efficient the estimator:- ‘ 1' | ¢

- T
= |

When @, f3,, and ¥, are khown ands isunknown:

_p L (e
Ms+0+E(wo|aoaﬁoa7/o)—l_p2 E|:{4h,2(90)+ht (90)j£ 0 ) :| (3 22)

2p U @@, 1 (@)Y
ni-p) | H2@) dw  dw | pa-p) |\ e )|

Note that My o+£ may be positive or negative, where a positive result means that results are
more efficient than using stock data alone. In p = 0 case, we easy to see that Ms,o.f 18
positive definite from (3.22), indicating that S+O+E generates more efficient estimates
than ST. This method makes it the most desirable data specification of the two. In p # 0

case, we don’t compare these values since the My, oz depend on true parameters. Thus, we
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will calculate these values by numerical simulation in Section 3.2.2. As illustrated later,

Ms.0+£ 1s in fact generally positive. When @,, 3, and y, are known and « is not:
2 2 2
P 1 A oh, (%))
M = E
S+O+E(a0 ‘a)oaﬂm}/o) 1_p2 |:(4ht2(90)+h1 (HO)J( 6a

C2p 1 @@, 1 l(eCM @)
n-p) | H7@) oa x| w0-p) |\ da )|

(3.23)

In p =0 case, My o+ is positive definite, and in p # 0 case, as demonstrated later, Mg oz is

positive definite. Similarly, when @, &, and y, are known and f is not:

_P Lo N ome) Y
Hoos bl an) =25 E[(%f(eo) _+hg oy }

(3.24)

2/p [ g oc” (ﬂo)ah,wo')} 1 Lac,'”(ﬂajz
o 2 E 172 + 2 E :
'7(1#-.,9) (6,) op ) op 4 1=, op
Again, as for the case where o is unkn'cx;@,';'_ﬁyq §how that Ms.o.r i1s always positive.
| <= |
Finally, when @,, &, , and .3, are knbn and y is not:
= ||
|

Ms+0+E(70|a0,ﬂ0,a)0):1_’0;2 E[E A j(@“n)”

4h(6,) @YX o7
22p E{ L OQHN(yo)ah,(%)} L1 Eﬂé@””(%)j}

(3.25)

Cn-p) | HP@) ey oy | P-pd) oy

Again, as for the case where £ is unknown, we show that Ms. o is always positive.

3.2.2. Numerical computation for asymptotic mean square errors
We now generate numerical results to test and illustrate these asymptotic findings.
As before, we use these parameters (4, wg, ag, So, y0) = (0.1746, 6.792x107, 6.546x10°%,

0.9914, 351.945) and the risk-free rate is fixed at 5% to run our tests.
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First, we investigate and calculate analytically the efficiency of the estimator,
graphs of Ms.p.g, in varied p. Remember that, the more positive this value, the more
efficient the estimator. Graphs in Figure 3 show that the value of Ms.o.r in the true
parameter values and p from -0.9 to 0.9. Then, in each panel, one variable is unknown
while the other three are treated as known. Specifically, in Panel A, w is varied, in B a, in C
f,and in D y.

[Insert Figure 3 here]

Looking at all graphs, Ms.o+£ is decidedly non-zero and non-trivial for all four
parameters. And, Ms. o+ is positive for all four parameters. Specifically, Ms.o+r is always
minimum in p = 0 and increases as the absolute valtie of p increases. In all cases, STO+E
generates more efficient estimétes than ST

Graphs of Mso+g are shown in FE:H’}?M, irl; the area surrounding true parameter

values. We only consider p. = 0 case sinle MS+0+E isls minim_urii in this case. Since the orders
> ! | { |
of magnitude for the four parar.ne_tersi are quiterdifferent, we graph the Ms.o+x of w, a, B,
and y on the left to the right. True parametérs are circled in each graph. Then, in each panel,
one variable is varied while the other three are treated as known. Specifically, in Panel A, ®
is varied,in B a,in C f,andin D y.
[Insert Figure 4 here]
Note that, in all graphs, Ms.o+f is decidedly non-zero and non-trivial for all four

parameters. Thought not shown here, Ms. £ is positive for all four parameters for the

entire span of possible parameter values.® In Panel A, Ms. o+ is always positive for all four

% Each parameter for o (o, f, ) ranges from 0 to 1 such that a(A+y+0.5)* + B <1.
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parameters in the area surrounding true parameters. While Ms. £ for w decreases with @
locally in the region around the true parameter values, those for a, f, and y are increasing.
In Panel B, Ms. o for w, a, B, and y increase with a locally in the region around the true
parameter values. Corresponding graphs Panels C and D are similar to each other in shape,
though their x-axes differ. However, Ms.o+£ 1s always positive in each case.

In summary, Ms. o+ is always positive for all parameters in the area surrounding
true parameters. We conclude that S+O+E generates more efficient estimates than ST in all
cases. This method also generates asymptotically unbiased estimates, making it the most
desirable data specification of the two."We also conclude that the use of option prices can
lead to very accurate estimates, even in long samples:

{
| p—

3.2.3. Numerical findings and direc|t thip?fiéons in finite sample studies
M |

| &

We generate parameter _estima:,tels using'a Monte/Carlo'method, comparing the bias
A 1 | ]

and variance characteristics of the: three datasspecifications in finite sample studies.

Specifically, we simulate 30 days of s;tock and/er option prices and then run 1,000
iterations over each period.7 We again presume that parameter true values are (4, @, ay, fo,
) = (0.1746, 6.792x10°, 6.546x10%, 0.9914, 351.945). For the S+O+E case, we
additionally assume that # = 1 and that p = 0. As a robustness check, we re-run these tests
for a variety of calibrations of p and # and find no qualitative differences.

We estimate our four parameters for out-of-the-money (Sy/K = 0.9), at-the-money

(S¢/K = 1.0), and in-the-money (S¢/K = 1.1) cases. Results for 30 days are presented in

" We have also re-run all tests using 90 and 360 simulated days with qualitatively identical results.
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Table 1 where we report the absolute value of estimate bias (estimate less true value),
standard deviation of the estimate (SD), and mean squared errors (MSE).
[Insert Table 1 here]

When o is unknown, we find that S+O+E arrives at estimates within 4.355x10” of
the true value. In contrast, estimates using ST and OT present biases on the order of
roughly 1.1 to 4.4 times higher, respectiviely. Note that OT has the stronger bias regardless
of the moneyness of the options. When options are in-the-money, standard deviations are
lowest for S+O+E, with ST and OT again about 1.3 times and 1.1 times higher,
respectively. With regard to MSE, resultsare even more staggering with S+O+E exhibiting
the lowest values and ST and OT generating errors that are about 9 times and 10 times

higher. Note that OT seems to perform particularly poorly when options are in-the-money.

| p—

When estimating @, we similaTI ﬁn‘:d?ﬁat eslf[imation bias is lower for S+O+E than
for ST and OT, with the latter of thesei aLain -ﬁ;ilingl| by the _1ar§est bias. Standard deviations
P 1 1

are also lowest for S+O+E, wifh _ST_Fahd OT again about 5 times and 3 times higher for
most variables, respectively. MSE exhi‘bits the éame behavior as before, with S+O+E
exhibiting by the lowest values, with magnitudes of difference similar to before. Note that
OT presents particularly poor results with options out-of-the-money.

When estimating f, we similarly find that estimation bias is far lower for S+O+E
than for ST and OT, with the latter of these again having by far the largest bias. Standard
deviation and MSE exhibit the same behavior as before, with S+O+E exhibiting by far the

lowest values, with magnitudes of difference similar to before. Once again, OT presents

particularly poor results with options out-of-the-money.
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Estimation results for y are consistent with those of the other three parameters.
S+O-+E exhibits the smallest bias, the lowest standard deviation, and the lowest MSE of the
three methods. Again, OT exhibits by far the worst performance along all four metrics and
again particularly poor when options are out-of-the-money. The prevalence of biased
estimates is striking for OT and is a particular strength for S+O+E.

In summary, we conclude that the use of option prices can lead to very accurate

estimates, even in short samples. This result is consistent with that of Eraker (2004).

3.3. Risk management implications

In this section we document that errors and bias in estimation may have substantial
repercussions as relates to risk management b_enéhmarks and practices. To illustrate, we
obtain daily stock and options data frolni thé’ug;:'éﬁ'fer for Research in Security Prices (CRSP)
and the Option Metrics for the period eronf:}énuall'y 2007 to'the end of 2007. For stock

P ! | ! |

prices (S;), we use the S&P 500 _inqlei, and fon.options data (C,), we use the price of a
short-maturity at-the-money call options Where the price is measured as the midpoint of the

last reported bid-ask spread. We assume that /4, =(w+a)/(1—ay® —f3), and for ease of

interpretation, let the risk-free rate equal 0%. Applying the 12 months of stock and options
data, we find key parameters to be (4, wo, g, Bo, 7o) = (0.1821, 6.847x107, 6.669x10°®,
0.9911, 342) for ST and (4, wo, &g, Bo, yo) = (0.1821, 6.029x107, 7.166x10, 0.9879, 402)
for S+O+E. We omit the OT specification as it has been demonstrated that this method
sometimes produces inefficient and, more importantly, biased estimates. As demonstrated
in the following discussion, while these parameters may not appear to differ greatly, the

resulting risk management implications are quite significant.
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We then use these parameter estimates to calculate options deltas and gammas,
measuring options stock price sensitivity and convexity, respectively. We calculate deltas

and gammas for both the Black-Scholes and GARCH options pricing models, so that we

have a total of four risk management metrics. For the former, we have that A™ =®(d))

and T _¢d) where d, = In(S,/ K)+(r +0” /)T and o° =Lf° (cf. Duan
SOO'\/T o\T I—ayyy =/
NS
(1995)). For the latter, we find that A% =¢™" EOQ[% l{ST>K}]E%e’T Z% Ls, 25,
0 i=1 0

AN (S,) AT (Sirtth) — AP (S k)
as, 2

and FGARCH —

(cf. Engle and Rosenberg

(1995)). We calculate these metrics for-a variety-of levels df.r_noneyness, ranging from 0.9
(out-of-the-money) to 1.1 (in-the-moneiy);'%afi_mes to maturity, ranging from 30 days to
180 days. ,i | m |
a=s |

Results are provided in: Tabli 2. Columns| l:apeled_ I present values for ST while
those labeled II present values for. S+O+E First, c’onsi“stent with the findings of Engle and
Rosenberg (1995) and Duan (1995), we find that GARCH and Black-Scholes deltas and
gammas may differ but not systematically so and not to a large degree. Our focus is on the
difference between these measures across the different estimation methods ST and S+O+E,
not between the models GARCH vs Black-Scholes. Hence, note that in columns labeled 111
we present the quotient of each value in I divided by the corresponding value from II, less 1.
For example, the upper right-most value in the area labeled IIl is -0.8412 =

0.0101/0.0634 — 1. That is the GARCH delta using ST is about 84% lower than the

GARCH delta calculated using S+O+E. We see that, although there does not appear to be a
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systematic relation, deltas and gammas may be significantly different depending on the
method of estimation used.
[Insert Table 2 here]

First consider delta. Black-Scholes values from range about 10% higher for ST than
for S+O+E when options are in the money to as much as 84% lower when they are out of
the money. The difference tends to be negative when options are out of the money and
positive when they are in the money. The trend is the same for GARCH deltas, although the
magnitude ranges from 8.29% higher when options are in the money to 84.12% lower
when they are out of the money. As a‘result, replicating and hedging portfolios will be
significantly different based on therestimation method used, regardless of whether the
agent applies a Black-Scholes .or GARCH thi_ons: .pricing model.,

For gammas, there does.not aﬁpé;”té"é pﬁttern in the difference related to the

M |

moneyness of the options. However, thJ magﬁifude. of the différences ranges from -66.31%

to 49.84%, indicating that gammas are meore strongly impacted by the method of estimation

used than deltas. As a result, the updating dynamies dictated to maintain hedges will be
substantially different depending on the data specification employed. The magnitude of
these differences suggests that managers and investors would do well to keep this in mind

when calculating risk management metrics for options.

3.4. Asymptotic behavior for ST, OT, and S+O+E
Proofs apply Brown (1971) results regarding Central Limit Theorem analogs for

martingale differences. All lemma proofs in this section are deferred to the Appendix A.
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3.4.1. Asymptotic behavior for ST

We seek to prove the following:

Theorem 3.1. The estimator of ST is G5 =argmax 37 (0). It is consistent such that

0<O

A A D
o i)QO and asympiotically Normal such that HgyFy T (6" —8,)—>N(0,1,), where

2 ST - o
Fgo=—E M and Hg =E TaLf (@) oL (8) '
oo 00 00"

To begin, the log-likelihood function for ST is given by (3.7) and it follows that:

@ __ x| 1 [ ti—m@F) 20 (5 n@)|ene
00 2T T | h(6) h(©) RO iz,:’{(e) 00’
o’ _ 1 ol 1 :1.+2(y,—ﬂ,(9))2 L 24 o 14(6) LA 0h(0) o (6)
o0 2T | KOS ) S O] BEOCEO) Y b (@) 00 o0

L[, - u,(a))
h(©) (9) h, (6)

/ ,(9) h(6)
h;@L—JFT } o008

IZT{ l (2 6(%, Me) ] *8’76 (y,mw)) 425'}ah,(e)ah,<9>ah,(e>
g

IO o6 20

2

) )k (6)| og o6

|_-- , | 4
1 [_Hz(y,fy,(e)) } 2 (Jﬂ--ﬂ;@)}r 212}6%(9)6@(6)
7 ©) 1)

’LYO) _
o000  2TT |k 0 h(e)l 1(6)
3 T
_ﬂ;{, h0) -
R ol B O P OV ) Y
27°F | 1(0) h, (0) nHO R (0)

where 1 (0)=r+1h(0).

Y= 1) )| I°h(9)
066006’

(3.26)

(3.27)

(3.28)

Consider the asymptotic Normality of the first derivative and the limit of the observed

information matrix in (3.26) and (3.27), using Lemmas 3.1 and 3.2, respectively:

Lemma 3.1. The form given by (3.26) evaluated at 0=6, is asymptotically Gaussian,

H- 1/2Tl/2 aL?T(a) b N(O I )
00

ST0

where Hg, =E(T oLy (&) 615,7(490)j :E[[ !
00 00"
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Lemma 3.2. The observed information matrix given by (3.27) evaluated at 0=06,

2 ST o*LT (0
converges in probability to —Fg), %ﬁﬂ 4 where Fopg =—E (W(H'O) :

Then, evaluating the third derivative of the likelihood function in (3.28), we seek to

show that it is uniformly bounded in a neighborhood around the true parameter value 6,.

The neighborhood N (6’0) around the true value 6, defined as

N(6,)={010<w, <ap<a,, 0<a,<a,<ay, 0<L, <Ly <Py, 7, <V <Vus

. (3.29)
oy (A+yy +1/2) + B, <l

Lemma 3.3. There exists N(HO),for all 1< i,j,k.£-4, f_or which

S ©0) L A~ @
— L < g(w, @, QLB Y d)—M <% as T'—>o0 where M is
v 86’1.8(9].89,{ g(o,,@y,0,,2,,5,,0, ]/[;‘ZUT)
? !_’:-__ '
constant. | ,'T__t_ |

\
In order to prove Lemma 3.3, vls'/i-thouJ loss of genetality, consider the case =60, =6,=f.

The next lemma establishes thaf the individual terms of the third derivative

(83l:;7 /op )(9) in (3.28) are uniformly bounded in the neighborhood N(4),).

Lemma 3.4. With N(HO) defined in (3.29), then for any t,

@, < sup h(0)<H, (3.30)
OeN(G))
and
sup h,(O)<H,, for i=1,2,3, (3.31)
0N (8))

where h,(0), H,, and H, are given by,
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h,(0)=

azh (9) _max{wu-i-2aU,ho} o, 5 N 5 i1 )
B T TiaGenr-a, {_”“”(“y & JZI(“U””w ) Gm)

wL i

=1 i 1 Y i
H, = ['[H‘(au(i'*'yu)z"i'ﬂu) l’ H, = Z( _OlU()/,,,-S ") Hlt—inlr—i(aU(/1+7u)2+ﬂU) L

i=1 i=1 T,

< a, - a, — i1
and H3z _32{ U(yt - H13z t+2%l{2t lHll—I +H2:-,J(au(/1+7U)2 +,BU)
i=1 L

Proof of Theorem 3.1. From Lemma 3.3, we have that

0

0|_a'@") oL (@) LOL @) g g

0 oo 00 oo’ :

0

and _

- PG ar@) | =)

07 —0, ~— , . e | |
ot o0 - |

_|‘ | S
Combining with Lemmas 3.1 and 3. 2l e cmﬁplete the proof of Theorem 3.1.
i )

" [ || |

3.4.2. Asymptotic behavior for OT

We seek to prove the following:

Theorem 3.2. The estimator of OT is 6°" =argmax L% (). It is asymptotically biased such
Z=8)

2 yor o7
0 L; (QO)J lZLM , and asymplotically
=1

that 6" -6, %0, where 0=0,+
260" 7@, 00

-1/2 12 (HOT _ i __ 82L?T(Go)
Normal such that H o Fy T (6, —6)~N(0,1,), where F,,=—FE 500" and

oot (6
H,, zVar(TV2 —L[aé O)j.

32



To begin, the log-likelihood function for OT is given by (3.11) and it follows that:

al,(0)+1( 1 Y,2<e>jah,<e>+ Y, (0) ax«»} (3.32)

az;”(e) 1 1
23 2\h©O) O h(©) 00

| J(0) 20

I YOO, 1 70, [—1 +2Y,2(9)\ah,(9)ah,(a)
62L‘T’T(9):_ii 7)) 06 o6 J(6) oee 2\ K@) 7O ) 86 a6 (3.33)
0o T\ 1 1 ¥(0)\FhO) 21, (0) h(©) ), 1 3%(O) NO) ¥, (0) ILO) |
2\h©6) KO oo K@) 06 86"  h(©O) 00 060  h(f) 066"

[ 2 yO&OO 3 P00, 1 20
0 00 06 06 J(0) o@6 06  J(0)0@6'a6
(1 3120)\on©) on©) oh (9)+3 -1, 217(0) |&h(0) ah (0)
O KO ) o0 00 00 20KO) KO ok o6
1 LX) &) |, 6Y () 3h(0) Sh(0) OY(0) (3.34)
2\ h(0) K(0) )oB6:00 K(6) =30 00 0 i )
31, (0) () OX(O).. - 3 0h(0)%,(0) OX(6) 3, (0) &Y, (0) h(0)
7 (6) 0606 36 | H(9) 06-..00" 00 i(0) 060" 06
3 &Y(0) 6Y(6’)+Y(0) oY) 1,
| 7(6) o600 h,(6) 6600'00 ) |

where

- |
0.0 [cos(2l0.0) . )
9)) %Tr |#-—_7'*Sl ( X, (¢, 0)) 00 [

06 0 @
oX ¢ 1%
) 30r( )} 5,

- _K 1j'°°exm<¢9)
S(0) 7%

|
a]l(B)il © Xi1.(¢.0) w L
_ﬂ'J. € |:[ __..__+COS(X31,1 ¢

cos( Xy (¢.0) a5, 25,60 X,y (9.9)
O 2 i (X%'“))Aﬁ— in (X, (4,0)

+e

0. 9))J[a)c{,'<¢, 0)ax,, (4. 6)"7 X0 X, (0.0) | X, (6, a))

sin(X;,, (¢, ))ms( b :
i a0 a0' 00 00" o'

J,0) _1 rex,.,w,w
O [

NSO v M)I LK, (8.0) 8K, $.0) | TX,,, (@, 9)]
[ ’ a0 a0 Jelosls

4

ove'

cos(Xun, (6.0))/ , 8, (8,0) 35,6) _,35,0) 85,0) azs,(@))_Zsin(Xy,,, (#.6)) 85,(6) X, (6,0)

50 \- o0 oo o0 oo oo 500 %0 a0
oy K 1o x| 0X,,(9,0) 0X,, (¢, 9) X, ($0) X, (4,6) Xy, (6,6)
e S @an e cos( X, (4, 9))[ 20 266" 20 40" a9,
. 0X,,($,0) 0X4,,(6,60) 0 Xy,,(4,0)
sin(Xoy, (4, 9))[2 20 20" oo J
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oX,,,(4,0) 2X,,,(4,0) oX,,,(4,0) _

LK,

1, (8,0) 3X,,,(¢,0) OX,,,(4,9)

00

Sin(Xsl./(¢59))
¢ 52 X,,(4,0) X,

+cos( Xy, (¢,0))

00"

o0
W(@.0)

S0X(0.0)8X,,($.0) 9K, (0.0)

06 00" 00

240 _1¢=
0000'00 7

feleolon
3X,,6.0)

Xi1.(4.0)

06 feloeln

JPXL0.0)K,,6.0)

6 2600'00
'X,,,(4,0) 0X,,,(¢,0)

=sin(X;,(¢.6))

000'06

felzaly

00

00"

¢

+[cos(xu,,@w))

39%:.,(4.0) 0X,,(4,0) 0X,,,(¢,0) 08X, (4,0) OX.

06

31,(8,0) 2X5,(4,0)

00 00"

7'5,0)

00
,05,(6) 85,(6) X, ($,0)

00
_,PS0)35,0)

cos( X, (4:0)| 2600'06 " 60 a6’ o0

50 | ,ES,0)3%,,$.9)

_105,0) 0Xy,(4,0) 0Ky, (¢,0)

owe' 06

00’
0 X,,(9,0) 35,(0)

06

0o’ 00

X0, (¢,0) 0X,,(4,0) 85,(0)

00" 00 06

00’

00

00 00’

0 00 00
X1, ($,0) 8S,(6) 0%, (4,6)

 cos( Xy, (.9)
)

© o0

-3

00' 00

600"
3°5,(0) 0X0,8.6) _,

4 0X,,,(¢,0) 8S,(0) 6S,(6) 44950 35(9) 35,0) _, 8°S,(0) &S, (9)]
00

0 X,,(9.0) 35,(0)

L 5in(Xa,(4,0)) =% o

o0’ 00

0o 00

00

5.6)

+e

—r(T—1) K l @ X (9.9)

3 X,,(¢.9) 85,(0) ,05,(0) 35,(9) 0X,,(4,0)
0600 o6 o6 06’ o0
_dsin(X,,(¢.6)) 35,0) X5, (4,0) 35,(6)
5(0) EY .Y -7

5,(0) 7%

o (0.0 OX,,,(0.0) K (§i6) X, ($0)

X\, (.0) 0Ky, (4.9)

00. *

+sin(X,, @.0) s I,
T X 8.0) 2%, G0

00'.c 00

0006'06 060" a0
X1, (9, 0) 0Xs,,(4,0) 0X,,,($,0)

oo’ 00
0X,,(4.0) 0Xs, (¢,6) Xy,

“ 00 a0' 20
(@0)" 0 X,0,($:6) 2X,,,($,0)

+cos(,3(;3__(; . 9)) 4

06’ 00
ﬂ;,“w)a 3016‘15_(_9) 6X10,1(¢70) Xil9.0) 0X,,,(4.0) 3 X,,,(,0)

060" 06

L 5%-—“; |
RAC I J(L <r ds,.

00 00" 00 0"

O h©

00 8 (e) 61 ,,-{(49)1|

oY) __

L) s (el ok (9);'.""1

\89 o 00

S,.(0) 35,.,(0)

oMo' S*0) 00 . 00"
1 0'S.,00) lazht(e)

S_(0) oo~ o600

YO 2 35(0)350)a5,0) 3

S (0) 80"

2.0 o0 o0

&S0 350), 1 S0

0600'00 S (0) 90 00" 00
2 35,,(0)35.,(0) 35,.,(0) |

5/ (©)

060 00 ' 5,(0) 0600'30
3 0°S,,(9)25,.,(0)

SO o0 80 o6
L3S0 _, Fh©)
S,_.(0)0600'00 ~ 0606'00°

ale,t (¢9 0) — aAlm,t (¢9 0) + 8Blm,t (¢= 0)
00 00 00 '
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B,,,(#,0) oh,,(0)

82)(lm t(¢a 0) _ 82"41m,1 (¢5 0) + 82Blm,z (¢5 0)

- ht+1(0) +2
0o’ o000’ o000’ 00 00
&h ()
B ’0 t+1 ,
+ lm,t(¢ ) 6%0'
0'X,,,($.0) _04,,($,0) +53 B,.,(¢:9) , O)+ 35231,”;((15 0) oh,.,(6)
0600'00 000'00 0600'00 i o000’ 00
2 3
+391O) B 90) g (4 ) ChrO)
o0to' 00 ’ 0600'00
a)(mt( 79) aSt 0 a14mt( 39) aBmt( 59) t+ H
w0 0 5O @0, (0P80 p 0 PO,
00 S(0) o0 00 06
X, ($0) __ ¢ 35085, @), ¢2e°50), 04y, (¢,0)
0600" S2(0) 06 5 06" S.(9).0006". - 060"
_ 2
Lip GOIM) ), (o 6T 5 (500 a(O)
GOr] a0\ YN odgEs o 560"
' .i'-__:-_l- |
and | - | |
83X3m51(¢,(9)_ 2¢ aS,(0) a8, (ﬂ) S(@)-T 30 a°S,(0) 85,((9)+ ¢ 0°S,(0)

oBo' S(O) 00+ ae'l\ o0 Szté) omd' 00 S, (0) 0600'60
+63A2m,(¢,«9) 36282,,”(415 0).oh,.,(6) 13 0°h.(0) 9B,,,(9,0)

o06o0'00 ol7.ol7A 06 o06oo' 00
O’B 0 ¥
+h 02 O g 90) a0
o06o0'00 ’ 0600'00

Consider the asymptotic Normality of the first derivative and the limit of the observed
information matrix in (3.32) and (3.33), using Lemmas 3.5 and 3.6, respectively:

Lemma 3.5. The form given by (3.32) evaluated at 0=6, is asymptotically Gaussian,

e[ 0 G) 15 1 A(6)
HOTOT( += ;JI(Q) 66’] N(O[)

where H, =Var (T aL?T(@)j E[ A0 ah[w)}+ E{ 1 aY,w)ax(e)}
o0 21(0) 06 06 h(©) 060 06
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Lemma 3.6. The observed information matrix given by (3.33) evaluated at 0=06,

2 yOT
converges in probability to -F % i)I 4 where

IO (@
Foroz_E[ %;'O)J

:E{ 1 av,@)}_E{ 1 aJ,wo)aJ,(eo)}E{ 1 ah,wo)ah,(eo)}E{ ! aY,wo)aY,(eo)}
J(6,) oo’ JXE) 06 86 212(6,) 00 86 h(o,) 00 o0

Then, evaluating the third derivative of the likelihood function in (3.34), we seek to

show that it is uniformly bounded in a neighborhood around the true parameter value 6,.

Lemma 3.7. There exists N(6,), forall 1<i, j,k<4; for which

63L?T(t9) B~ _
Sup |—————— Sg(a)Laa)U:aL7aUaﬂL’IBU77L77/U9T)_)M<OO as T —oo where M is
0eN(8)) 89189_1.8@ e
constant. _ : 3 |
! P

In order to prove Lemma 3.7, again, V\Le only‘!’:_pnsiqlér the case. 6, =0, =6, = . We want to
= | =

show that the individual terfis of ithe third detivative (9’2" /98°)(6) in (3.34) are

uniformly bounded in the neighborhood~ N (90). It has to apply these results of Lemmas

3.8-3.13. First, we prove that these lemmas.

Lemma 3.8. With N (00) defined in (3.29), then for any t, m=0,1,

B, (9.0) =—%2b1m,f(¢, 0) (3.35)
and
B, 6:0)=2b,,,6,0), 6.3
where
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U+ afby,, (BN 1= (1275 =1) = 73 )b, ($.0) |+ 0 (17 =120 = D) B, (.0)+ 20(m =70y 1 ($,6)
blmr > = blmr+1 79 : 21 2 24272 : - ’
<60 =Pinsa§,8) A+ by, GOV + P, (0)

- 21 )+l 1)~ P, )
Pl GO P GO T G a0

blm,T (¢’ H) = b2m,T (¢, 0) =0.

Lemma 3.9. With N(@O) defined in (3.29), then for anyt, m=0,1, i=1,2, and k=1,2,3,

0< sup b, (4,0 <bh,,. (3.37)
0eN (@)
by, < sup b, (4,0)<b,,,. sIolET, (3.38)
0eN(&) L4
A0F v F  Br e
& 1= A B
and A ,-I—f, ”“\«:E’: Y
SUp By, (6,0) <byyi W\ (3.39)
OeN(G) & /\_ \¥ .
= T . B
0" by (#,6) <= = .
where b,, (§,0)=—"——— the constants, b, 550,55, b0, are functions of
= | h ':"ﬁ
Wy Oy Oy s B By V10 75 m’/f {51* &) i\\
Lemma 3.10. With N(6,) definediny3.29), then for any , m=0,1, and k=1,2,3,
LOF sy oy o) ik
2
b < sup B, (46)<0, (3.40)
2 0eN(G)
¢2
sup Blmk,t (#,0) <D0 (3.41)
0eN(Gy) 2
Qb < B 0 <Qb 3.42
mr, = SUP 2m,t(¢9 V<=byus (3.42)
2 0N (Gy) 2
and
sup B, (4,0) SQberch‘ (3.43)
0eN(Gy) 2
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Lemma 3.11. With N( ) defined in (3.29), then for any t, i =1,2, and m=0,1

sup A, (,0)<mr(T 1)~

¢ (3.44)
OeN(6y)
sup 4,,,(4,0) <{¢[r+—%%’”UJ+2c7r}(T—t), (3.45)
OeN(6y)
and
¢3 i
up 4,,,(0.0)< %4, (3.46)
OeN (6
oA oL ﬁ--rk':ﬁl'-‘l-g: i
sup 4., 05 (4,,,21, wﬂ%m By 5.47)
0N () = 9
sup Ay, (6,00 <P (A5 o\ (3.48)
NS 25 =
9 B
where c is a positive m;gger, m
= o IS
o, &
A, = (“)UblmlU +an1m1U'+ ) I:"

L N ._ . N
B, Y |
Alm21t (a)UblmZU bl = +anlm2U+aU mszsz*'aU{’zn)in(T 1),
2mL ) ‘,r /, 7 j

Ay = 2(an1m1U + 0 by, )(anlmlU + 0D Dy )(T —1),

3b,mubimau 2 2
Alm31,t = (a)[]blm3U + mbz 22+ 0B,y 30005100000 + OG0y Ds sy (T 1),
L.
2
U 2 2 2
(=5t b,y + by, by + Ay Dy + By, By )
y _ ol
im3s =

B2
by 2 2

+2(ay by + anZmlU X b;n + by + &by b0y T OGDy)
L

(T-1),
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‘Alm3,t =3y + alszZmlU Neybyy + aébszmelU)z(T —1),

b
A = (a)UbbnlU +ayb,,. +a121 b]mw j(T_t),

2mL

b
A2m21,t = (a)[]b2m2U +ayby,ou t+ [;mZU j(T_Z) )

2mL

b
Ay, =204 (anZmIU + %j (blmlU +0y, b0 ) (T-n,

2mL

b b . +b b b
_ 2m2U~1mlU 2ml ~1m2U ,t+i 1m3U
A2m3l,t =| @by, + by, + 77 +— (T -1),
o 2mL = 2mL
¥ ey

b .
4ot (anzsz + [;sz J(blmlU i anZmUmelU)
Ay, = aJ facn.. ) {2 (T—-1), and

b11 :""2"'-'-'.
u _.:-QJQLU. 2
+2a, [anZmlU e Byby b > 4'(O‘szmlU +@by,005,00
L 2ml, ‘ 12l | | i

I 1

< 7o | "
Ay, = e (anZmlU Pl j(blmlU L‘P B gbs ich )T (T t)

ZmL

Assume that the state Variable as a function of observed asset price,

&'S,(0)

S (@)=f"(C;0), satisfies S, <S,(0)<S,, and S,(0)<S,,, where S, (0)=—L" B

i=1,2,3,and S,,, S,,,and S, don’t depend on these parameters.

Lemma 3.12. With N( ) defined in (3.29), then for any t and m=0,1,

Sup ‘Xrlmt(¢ 9) - ¢2’ (349)
OeN(6y) 2

sup ‘lemlt(¢ 0)<— ¢ X (3.50)
OeN (&)
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A

Sup ‘Xv1m2,t (¢9 9) <

0eN(8y)

? (‘lemZ,t + ¢2Alm22,t ) ’

2
D X0, (.00 < (X, +F s, + )

0eN(8y)

sup X, (9,0) <X sms T 2cn(T —1),
()

OeN(6y

up X, $.0)<0 X,

0eN(Gy)

sup X3m2,t(¢’ e)SQ(XSmZ,t+¢2I4‘Zm22,_tl)_’_ —
0N (8y) 2 e ol BIeEETe
ol P i Tk

OeN *!.:J
=
. .y . .
where c is a positive integer,
—_— = I
‘leml,t - 14'1m1,t +b1mlUI{t+1 ‘l-.'{)l Ul?

1m2 = A‘lm21,t + blmzuH mt 22'6»1'9

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

e TSI ‘j G
Ale3,t = AlmSl,t +by,50H, 4 +3b,00H, 4 :"A-;Bmw#{zm +b,0Hs,,,
b 1
X3m,t = (r +%J(T_t) + ln(SUt /K) + EmeUHHl ,
28
X 3mlyt — % + A2m1,t + bzme m Tt meUIJIHI ,
Lt
282 28
X, 3m2p SéUt + % + A2m21,t + meZUH m T 2b2mlUH T b2mUH 21> and
Lt U
483 6S,.S 28,
X3m3,t = S;Ut + fgtz 1+ S3U + A2m31,t +by,50H, 43Dy, H, o + 30,00 Hoy o + 0, H, -
Lt Lt Lt
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Lemma 3.13. With N(@O) defined in (3.29), then for any t and k>0,

sin(X;,,,(4,0))d¢< X,,,,, (3.57)

sup ["gte" " sin(X,,,(4.0))dp<c,, (3.58)

0eN(G) 0

and

sup J‘oo¢ke)(1m,r(¢a9) COS(XM,, (o, 9))d¢ <c, (3.59)

0eN(g) 7"

© > S sin(@.X;,,,
where b=%, C, :IO ¢'e™ dg<i0, and X =.J‘1Md¢+co.

_0.¢

The next lemma' shows .that the individual terms of the third derivative

(831,?7 / 6ﬂ3)(6?) in (3.34) are uniformlly..bcl)_l%p_(_i_e'l_d'ilﬂ' the neigﬁborhood N(G,).
[ =
Lemma 3.14. With N(HO) defined in‘ f’ﬁ.ZQ}]__ltlhenfo!r anyt and i=1,2,3,
= |

1
sup —— <—

> 3.60
voxion J (@) T (3.60)

sup ¥ ()<Y, (3.61)

sup J,(0)<J,, (3.62)

0eN (&)

and

sup ¥, (0)<Y,, (3.63)

0eN(§)
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30y 5O h{S }Hw
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S, S,

S, S S2 S
Y, = 2wy 2wy gy, =20y Oy Dy Dot 4 aFy
o Su Su Sy Sua

where J,(0)=
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Proof of Theorem 3.2. From Lemma ?f 7,,;\}{{6 ha\/e that

‘ |

0 > | |

0|_ar @) ot @), PO, jor gf) I8 £
0 o0 o0 R }‘ r ¥ H
O ki .

and

éOT_gz_(aZL?T(eoj (al?(e)+1i aJ(Q)J
T oo T4J6,) 06 )

Combining with Lemmas 3.5 and 3.6, we complete the proof of Theorem 3.2.

3.4.3. Asymptotic behavior for S+O+E

We seek to prove the following:
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Theorem 3.3. The estimator of S+O+E is 85°F =argmax I3*°**(0). It is consistent such

0O
n »
that 0" -0, and asymptotically Normal such that
n A 2 7 S+O+E
Hyo 0Py 0000 (070 =)~ N(0,1,), where Fs0ip0=—E L) and
oo’
S+O+E S+O+E
HS+0+E0 — E Talﬂ‘ (90) al’[ (00)
00 00"
The log-likelihood function for S+O+E is given by (3.20) and it follows that:
L) :—ii[ [ 0=s@) | _p _y-u() GeCM@ | F2k. ( C-C"6) y,—u,(ﬂ)ﬂéh(ﬂ)
a0 A RO -9 KO 1-p #%Ne) ) a=prO\" . n H(0) (3.64)
iy (20 _¢-Gl@\ec @4 e
Twz(lp)k 6 n ) % " =5

v

L) 1 2
o®e 2T

U, 20-uO) 3 neu® G-CPO) 2 N-uO  G=€O)), 2 |oh©) 3o
=5 ey SO ) -PRR@E O T ) (-] 0 o8
() 1 b o s-dBCr @), TN (,c-C80, --y,.'-éy,w)] 1) (3.65)
2 1 172 N 12 y .
WO\ =g h@ [ 1-p ARO )'. ) q 2 1€>k n H(0))| o606

lz’: P (n=m©, 221\oc@ o) [ 15 SE _a@%‘git 1) _ 1 1 VO C-CMO)\FCO)
T n-pH\ RO H@)) o0 o [T -6.9 F 71 70— p)k” 72(6) n ) s
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Once again, consider the asymptotic Normality of the score and observed information
matrix in (3.64) and (3.65), using Lemmas 3.15 and 3.16, respectively.

Lemma 3.15. The score given by (3.64) evaluated at 6=6, is asymptotically

. a S+O+E 9 D
Gaussian, (ST A LT(%’( ) —N(0,1,) , where
Hopoo = E(Tali*"*f @) oLy (%)J
si0er 20 20"
(2= 2 aw@a@) [ e act@ya@], 1 Jech @@
Pl T om@y) 0 oo | taspommey 0 o0 |Twd-p,t| a0 oo |
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Lemma 3.16. The observed information matrix given by (3.65) evaluated at 0=6,

converges in probability to —F;,. .

82 S+O+E 9 P 82 S+O+E 9
—15669'( ) 1,, where Fg g, po = E(—Ig@ 0? b) )

Then, as before, we have that the third derivative is uniformly bounded as follows:

Lemma 3.17. There exists N(6,) defined in (3.29), for all 1<i,j,k<4, for which

3 yS+O+E
wp |25 O)

agjaejae]{ Sg(a)L,a)U,aL,aU,,BL,ﬁU,;/L,yU,n;;M<Oo as T —>oo Where M is

0eN(6y)

constant.

Without loss of generality, consider the'case 6, ';_"_9]. =6, =p. To show that the individual
terms of the third derivative (__6__315*0“? Lop’ )(49) in (3.66) are.uniformly bounded in the

neighborhood N(6,). First, it must proife’.ﬁ}lt‘tém{na 3.18.
F—

Lemma 3.18. With N ( ) def ned i zrw 29)1ihen for any t and m=0,1,

| | e

0eN(6y)

sup X2m1,(¢ )< ¢X2 (3.68)

OeN(6y)

ml,t’

Sup X2m2t(¢ 0) < ¢( 2m2t+¢2A2m22,t)’ (3.69)

OeN(6,y)

and

sup X2m3t(¢ 0) < ¢( 2m3t +¢2A2m32,t +¢4A2m33,t)’ (3.70)

0eN(8y)

where c is a positive integer,

X

2m,t

:(r+%}(71—1)+1n(5z /K)"'%bszHHl
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X, 2mly — A2ml,t + b2mlU[{t+l + bszH

1r+1>

X, 2m2p A2m21,t + b2m2U[_It+l + 2b2m1UI{1t+l + bszH

21, and

X, 23t A2m3l,t + b2m3UH + 3b2m2UH + 3b2m1UH 2t bszH

1+1 12+1 3t+1
The next lemma shows that the individual terms of the third derivative

(63[:;*0*5 /o )(0) in (3.66) are uniformly bounded in the neighborhood N(6),).

Lemma 3.19. With N(6,) defined in (3.29), for all t and i=1,2,3,

sup C™N(O)<S, (14—1)_(21,)+e"(r")1((l+l)_(20,j (3.71)
0eN(6y) 2 2 T
and
sup CIM(O)<S,CIN +&T Ik, o~ N (3.72)
0N (6) B W oY
28— |
i . VHN R = - |
where CJV (9)=6C’—@ and | rl'l | |
18 A |

o |3

|
for m=0,1, )_(M, = _[; %ﬂa%"‘co Rl :% (CI)(lmlt +C()X2m1,t)’

c C C C C
v _ G oy 1 v2 1 2 0
G = Z ‘lel,t + Z szl,z + 5 )(lm21,t + C3Ale22,t + 5 )(lml,tXZml,t + E X2m21,t + Czszzz,z )
and
c 3c 3c 3¢
5 3 3 2 3 5
§ lel,t + 8 lel,tXZml,t + 4 )(lml,t‘lemﬂ,t + 2 ‘leml,tleZZ,t
3¢ 3c c
1 3 1
- + T X 2m1,tX et 2 X 2m1,tX omy T E X i3y T 03X1m32,t +¢5X, 1m33,1
c? =
3mt

]

8

3c 3c C
) 4 0
+ T KXot i Ximars + 7 Xomt i Ximazg T E Ko O Xm0, +C4 X5,

X23m1,t +3&X X2 +3&X X2m21,t +3%X X2m22,t
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2ml,t
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Proof of Theorem 3.3. From Lemma 3.17, we have that

0
0| _aLyor @) oot @)  FLE ) o
_ ~ + — (677 -4)
0 20 26 0600
0
and

-1
9S+O+E B 0 o 821§+0+E (60) al;;+0+E (90) .
! ’ o606’ 00

Combining with Lemmas 3.15 and 3.16, we complete the proof of Theorem 3.3.
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Chapter 4

Robustness Checking

In this chapter, we consider an option pricing in Duan (1995) for a robustness check.

4.1. Model setup and ST specification
First, we describe the general stock and options pricing:models applied in this paper.

Then, we derive QMLE and,asymptotic re::'s:l_;rfl;ts_for the ST specification.
|| |
4.1.1. GARCH(1,1) stock and Optiolns pricing models
We adopt the generalized setup used by Duan (1995), which propose a class of GARCH

models for the price of a European call option, where the data-generating process for the

stock price S is:

y,=InS, —-InS,  =r+Ah" —%ht +¢&, & =h"z, under P measure, (4.1)

_ 2
h =w+as_ + ph,_,, 4.2)
where ¢, has mean zero and conditional variance /4, under P measure, 7 is the constant

one-period risk-free rate of return, and A the constant unit risk premium. In words, the

conditional variance is a linear function of the past squared disturbances and the past
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conditional variances. The process (4.2) remains stationary if a+ f<1. The GARCH
process specified in (4.1) and (4.2) reduces to the standard homoskedastic lognormal
process in the Black-Scholes model if =0 and =0 . This ensures that the
Black-Scholes model is a special case. We may consider process (4.2) as running
indefinitely or we may assume initial values y, and /,, with the latter drawn from the
stationary distribution applied by Bollerslev (1986), Nelson (1990), Bougerol and Picard

(1992), and others. Let ¥, be the information set ( o -field) generated by { VisVits-- } and

let 6y = (9,2, %)’ represent the true parameter vector. Assume that §, e®@c R’ is in

the interior of ®, a compact,”¢onvex parametes, space. Specifically, for any vector

(@.0, )0, 0<w, <@<a) 0<ayLo<a 0<f, < fZ B, and o, (1+12)+ 3, <l.

is 1.1.dy drawn ffcirrﬁ"éymmetric, uni-modal density, bounded in

|]I |

1R

Assume also that {zt}tez

a neighborhood of 0, with mean q), and'-:;/_ériarilce I. In addition, assume that A, is
independent of {z, 22y } .

The corresponding model under the locally risk-neutral valuation relationship, which

is defined by Duan (1995), reads

y,=InS,—InS, :r—%h, +&2, &2 =h"*z2, under Q measure 4.3)

2
h=w+a(el —AR) +ph,,., (4.4)
where &° =/1ht” >+¢& and z2=A+z . The conditional variance process under the

risk-neutralized pricing measure, is an EGARCH process, was proposed by Nelson (1991).
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The process (4.4) under Q measure remains stationary if a(1+A*)+B<1. The

GARCH(1,1) European call price is described as:

C’(T,K,S,,h,,;;0)= e_’(T_’)EQ[maX S, KO)] (4.5)
1 T T

$, =S| -1 S+ a0, @9
s=t+1 s=t+1

where 7' is the maturity date and K is exercise price.

4.1.2. QMLEs and asymptotic results

We now turn our attention to estimating the parameters in the model. The base case

ST uses only stock data. Specifically, 7, is the conditional variance of y, with respect to

Y., . The estimation model utilizes (44 l) g;',[d (4 2), applying estimated parameter values
I
' 'T' | =1 — AR +0.5k,
(w,a,p) = ((91,492,6’3) . The /error tetms z -are cqrnputed as z, = " ,
N | 1 :

v, —r—Ah"* +0.5h

zZ, = P ., where { 3, t=0,".T }'are observed data. The process 4,

is not observed but is constructed recursively using estimated parameter values, z,, and an
appropriate startup value, #,, to be discussed in detail later.

QMLE is obtained by maximizing, conditional on /4, as follows:

o -1 (v, —u©O)
LT (yoa »yTaho 9) Z[ h(@) W] (4-7)
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where 1,(0)=r+Ah"*(0) —% h(6) . That is, é}gr =argmax L (6). This estimator is

0O

A P
consistent as @' —@,. It is also asymptotically Normal as

. 4
Hagg FroT" (O =6)~N(O, 1), (48)
Ly (6) oLy (6) oLy (&) CO
where Fy =-FE| —-=—-|, Hg,=E|T——> 021, and L={0 1 0. A
006" 00 00" 00 1

full proof can be found in the Appendix B as Theorem B.1.

In the interest of computational simplicity, assume that z, is Normal so that
Fio=Hg,, though our general dntuition remains the same under the more relaxed

aforementioned specification for z, /= The'/asymptotic covariance matrix Vg, and

i '.‘,!--_l’_”_a-'Z
asymptotic mean square errors MSE; are: ff; | |
L T 117
N | £ 1!
MSEgr(6)) =Vsr €)= FersHigoBiom s (4.9)

STO

2+(A-h"(6)) ah(6,) oh(6,)
47(6,) 00 a0 |

where Fy =Hg,=E {
4.2. The S+O+E specification

We now turn our attention to a new specification that takes both stock and options
data into account, but which allows for an error term in the options pricing formula. Then,
we derive QMLE and asymptotic results for the S+O+E specification. Numerical results

confirm these characteristics.
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4.2.1. QMLEs and asymptotic results

For this method, we allow that C :QD +e, where e =nu, and r=1..,T.

iid.
Assume that u, ~ N(0,1) and 77>0. For the purpose of calculating the QMLE, let us

assume z, and u,, with correlation(z,,u)=p where —1<p<1, have a bi-Normally

0 1
distribution, that is, [Z’] ~N [(O)’ ( q)D Let G, =[S,,C,] be a vector of observable
4, P

stock and options prices, respectively. Then, the joint density is as follows:

P(G;0) = P(S,C,0) = P(C|S;0)P(S,0) = lL:I_P(Q IS0 P(S, [ S,1:6)

. (4.10)
s (i—14,(0))° N (0).C—CP (0) (C,—C,D(H))2
=H L & xp - T et
22\[1-p* (O 2(17.:0___) (6) E| M,_.(a). n ,]

t=1

The log-likelihood function.for discrete dali'aiogihe asset price vector G, sampled at dates
o
0<?<T has the form: 'I < T || ;,

, :
-2 J1-p° Gi=u O yu® 6P |, (G- o)f

And, the QMLE for 65*°** = argmax I3 (0).

[Z=C)

~ r
This estimator is also consistent as & —@),, and is asymptotically Normally

A A
distributed as H2 coFeonneT (0 —0)~N(0, 1) , where
62 S+O+E 0 a S+O+E 0 a S+O+E 0
Fyiporo :—E(LQTHSO)J and Hg, .. 50 =E(T Lr 86’( b) Lfagv( O)j A full proof

appears as Theorem B.2 in the Appendix B. Again, assume that z, is Normal so that
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Fs.0.50 = Hy. 0.5 - The asymptotic covariance matrix Vs, ., and asymptotic mean square
error MSE(, . . for the S+O+E case are:

mES+O+E (00 ) = VS+0+E (90)

’ ) 1 1 (4.12)
= FylorsoHsi0000Fs om0 = = |
S+0+E0 L s+0+E0Y S+O+E0 F& OO F;,TO + M. S+O+E ('90)

where

MS+0+E (00) = E§+0+E0 - FSTO
P E[l +(A=h"(6)) (&) ahtwo)}_ p E{ﬂ—h}”(@)) aCP (6 6@@)}

T4-pY @) 00 a8 | nl-pH | hG) o8 of
1 aCc? () oC” Gy
+— —E .
n-(1-p°) 00 06"

These results follow from Lemimas'B.1,.B.2, B.5,.and B:6 ift the Appendix B. We can now

investigate Mj,,,, where again the mcﬁep’h’mtwd, the mote efficient the estimator.

P

P o |
When ¢, and f; are knownT a)-j%l-unkfllqi)wn:

| l | '! 2-':" J X
Mgy (@ | ctos ) =—L- Elil‘?'(ﬂv_h:/z(go))z(aht(wo)) }r 1 EK@C{)(@O)) }
(4.13)

A1-p ) | ) o0 )| (1= p) ow

P [ rEsenaci@) o)
o) | h@) oo oo |

Note that Ms.o+r may be positive or negative. In p = 0 case, we easy to see that Mg,oz is
positive definite from (4.13). In p # 0 case, we don’t compare these values since the Mg +£

depend on true parameters. Thus, we will calculate these values by numerical simulation in
Section 4.2.2. As illustrated later, Ms. o+ is in fact generally positive. When @, and £, are

known and ¢ is not:

53



Ve alafy P E1+m—h,”2(60)>2(ahxao)jz L Jfeca)y
+O+ 4(1_p2) htZ(eo) da 772(1_102) oa (414)

P E ﬂ_h}/z @) 5C,D(O{O) oh(a,)
- | h@) da  oa |

In p =0 case, My o+ is positive definite, and in p # 0 case, as demonstrated later, Mg oz is

positive definite. Similarly, when @,and ¢, are known and f is not:

0l @00) =47 76 op 7=p) |\ ) |45
o E{ﬂ_h;ﬂ(eoac,i’(ﬂo)ahxﬂo)}
n-p) | k(@) 1B B

Again, as for the case where @ is unknown, we _Show that Ms. o £ is always positive.

4.2.2. Numerical computation for asyrhp&ntic-‘me‘fm square errors

- " |

We now generate numerical rés Its tq test ?.Ild 111ustrate these asymptotic findings.
We presume that parameter true VahTLq‘s are (i a);, o5 ﬁo) = (0.0116, 9.228x1077, 0.068,
0.9248) and the risk-free rate is ﬁx"e‘d at:5%. These parameters are estimated using S&P
500 daily index data from January 1996 to the end of 2007. We use these parameters to run
our tests.

First, we investigate and calculate analytically the efficiency of the estimator,
graphs of Ms.p+p, in varied p. Remember that, the more positive this value, the more
efficient the estimator. Graphs in Figure 5 show that the value of Ms.p+£ in the true
parameter values and p from -0.9 to 0.9. Then, in each panel, one variable is unknown

while the other two are treated as known. Specifically, in Panel A, w is varied, in B a, and

in C p.
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[Insert Figure 5 here]

Looking at all graphs, Ms.o+£ is positive for all three parameters. Specifically,
Ms. 0+ 1s always minimum in p = 0 and increases as the absolute value of p increases.

Graphs of Ms;o+r are shown in Figure 6, in the area surrounding true parameter
values. We only consider p = 0 case since Mso+x is minimum in this case. Since the orders
of magnitude for the three parameters are quite different, we graph the Ms. oz of @ on the
left and that of a and f on the right. True parameters are circled in each graph. Then, in
each panel, one variable is varied while the other two are treated as known. Specifically, in
Panel A, w is varied, in B a, and in C p.

[Insert Figure 6 hete]

Looking at Panel A, M§+0+E 18 élWays _p_o-sitive for..a'll" three parameters in the area
surrounding true parameters. While Mgmg]%rw cliecreases with o locally in the region
around the true parameter Values, tlioLe fora anld p are iﬁéreasing, with Msyo+g for S

P 1 1
always higher than that of a. Iﬁ Pangf B, M+ oip-for @, o, and [ increase with o locally in
the region around the true parameter Valﬁes. Corrésponding graphs Panel C are similar to
each other in shape, though their x-axes differ. However, My o is always positive in each
case.

In summary, Ms.o-+is always positive for all parameters in the area surrounding
true parameters. We conclude that S+O+E generates more efficient estimates than ST in all
cases. This method generates asymptotically unbiased estimates, making it the most

desirable data specification of the two. We also conclude that the use of option prices can

lead to very accurate estimates, even in long samples.
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4.2.3. Numerical findings and direct comparisons in finite sample studies

We generate parameter estimates using a Monte Carlo method, comparing the bias
and variance characteristics of the two data specifications in finite sample studies.
Specifically, we simulate 30 days of stock and/or options prices and then run 1,000
iterations over each period. We again presume that parameter true values are (4, wg, ay, fo)
=(0.0116, 9.228x107, 0.068, 0.9248). For the S+O+E case, we additionally assume that 7
=1 and that p = 0. As a robustness check, we re-run these tests for a variety of calibrations
of p and # and find no qualitative differences.

We estimate our four patameters for out-of-the-money (Sy/K = 0.9), at-the-money
(S/K = 1.0), and in-the-money (Sp/K = 1.1) cases. Results for 30 days are presented in
Table 3 where we report the .absolute value of ésﬁmate bias (estimate less true value),

| p—

standard deviation of the estimate (SD)i, aﬁ;?n;eén sduared errors (MSE).
 [Insert Ta0R 3 Rdfe]
X 1 1

When o is unknown, Wé ﬁnd |tﬁat S+O+E-arriyes at estimates within 2.816x107 of
the true value. In contrast, estimates using ST present biases on the order of 1.21 to 2.03
times higher. Note that ST has the stronger bias regardless of the moneyness of the options.
Standard deviations for S+O+E are lower than those for ST. With regard to MSE, results
are even more staggering with S+O+E exhibiting the lower values and ST generating
errors that are about 3 times higher. Note that ST seems to perform particularly poorly
when options are out-of-the-money.

When estimating a, we similarly find that estimation bias is lower for S+O+E, with

ST again about 6 times higher for most variables. Standard deviations are also lower for

S+O-+E than for ST. MSE exhibits the same behavior as before, with S+O+E exhibiting by
56



the lower values and ST generating errors that are about 8 times higher. Once again, ST
presents particularly poor results with options out-of-the-money.

Estimation results for f are consistent with those of the other two parameters.
S+O-+E exhibits the smaller bias, the lower standard deviation, and the lower MSE of the
two methods. Again, ST exhibits by far the worst performance along all three metrics and
again particularly poor when options are out-of-the-money. The prevalence of biased
estimates is striking for ST and is a particular strength for S+O+E.

In summary, we conclude that the use of option prices can lead to very accurate

estimates, even in short samples: This résult is consistent with that of Eraker (2004).

4.3. Risk management implications

| p—
i

In this section we document that ert'éi?hnd Bias in‘estimation may have substantial

repercussions as relates to risk manaigimeﬁtﬁ’i)“enclhmarks and practices. To illustrate, we
P ! | 1

obtain daily stock and options .da‘_ca If_(|>r; theperiod-front January 2007 to the end of 2007.

For stock prices (5;), we use the S&P 500 .index, and. for options data (C;), we use the price

of a short-maturity at-the-money call options where the price is measured as the midpoint
of the last reported bid-ask spread. We assume that 4, =@/(1—a—f), and for ease of

interpretation, let the risk-free rate equal 0%. Applying the 12 months of stock and options
data, we find key parameters to be (4, wy, ay, fo) = (0.0002, 8.248x 10'7, 0.07275, 0.92305)
for ST and (A, wy, ag, fo) = (0.00012, 8.1633x107, 0.07379, 0.92321) for S+O+E. As
demonstrated in the following discussion, while these parameters may not appear to differ
greatly, the resulting risk management implications are quite significant.

We then use these parameter estimates to calculate options deltas and gammas,
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measuring options stock price sensitivity and convexity, respectively. We calculate deltas

and gammas for both the Black-Scholes and GARCH options pricing models for a variety

of levels of moneyness, ranging from 0.8 (out-of-the-money) to 1.2 (in-the-money), and

times to maturity, ranging from 30 days to 180 days. Results are provided in Table 4.
[Insert Table 4 here]

First consider delta. Black-Scholes values from range about 4% higher for ST than
for S+O+E when options are in the money to as much as 73% lower when they are out of
the money. The difference tends to be negative when options are out of the money and
positive when they are in the money. The trend is the same for GARCH deltas, although the
magnitude ranges from 3.63% higher when optionsiare in the money to 55.82% lower
when they are out of the moﬁey. Asla re_sult,_rel;).l'icating and hedging portfolios will be

-

significantly different based on.the estlmﬁtlon ‘method used, regardless of whether the

agent applies a Black-Scholes or GAR H optlons prlcmg model.

For gammas, there does. not |appear be a pattern in'the difference related to the
moneyness of the options. However, the ﬁagnitude of the differences ranges from -91.94%
to 43.85%, indicating that gammas are more strongly impacted by the method of estimation
used than deltas. As a result, the updating dynamics dictated to maintain hedges will be
substantially different depending on the data specification employed. The magnitude of

these differences suggests that managers and investors would do well to keep this in mind

when calculating risk management metrics for options.
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Chapter 5

Conclusion

The GARCH class of models has been shown to be empirically superior to other models
but is a restrictive model which can be oyerloaded when applying options data only. We
demonstrate the overload of the OT speciﬁca{:i.on both theoretically and numerically,
shedding new light on the ‘effectiveness of different ‘methods of estimation and the
corresponding asymptotic behayior of Qsti@r_s. For all reasonable true parameter values,
application of options data only geneiraites a_é%{mpt()tically biased and relatively inefficient
estimates. However, applicatioh"of s{o,lck and optilons” datarwithout an error term doesn’t
also generate more efficient e.sti'I.nates since S+O specification is similar to ST
specification. As a result, we develop here a method of estimation that applies an error term
to the options pricing formula, thereby delivering the additional slack GARCH models
require when applying the dual dataset. We show that under this new specification,
estimates as unbiased and maximally efficient, i.e., more data is in fact better.

In addition, we demonstrate that different estimation methods will result in
significantly different risk metrics of options, regardless of whether a GARCH or
Black-Scholes model is used. While these effects do not appear to be systematically related

to maturity or moneyness, they can be substantial in magnitude, especially as regards risk
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management dynamics. This highlights the economic importance of developing an
unbiased and efficient estimation method, and financial managers would do well to
consider these effects when implementing hedging practices and trades.

The GARCH class of models is conditionally deterministic and, as a result,
restrictive. Applying too much data to this specification induces helpless if sufficient slack
is not introduced. SV models do not have this quality and have a natural mechanism for
slack. Unlike SV model, in order to develop a better method under GARCH models, it
seems to be necessary for allowing an error term in the options pricing formula for

additional slack.
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Appendix A

Proof of Lemma 3.1. Evaluated at =6, the form is given by

oLy (6 1 2\ 22z, |Oh(O) 13
Ly (6) _ z{hw)( _2)- z} O)_1%,

00 TS ) TS

such that E(v,|F,_)=0, where F,=0(z,,z,_,,...). Applying the central limit theorem for

martingale differences in Brown (1971), consider first

liE(VﬂF,l):lZ{ ! 2 }ah,(e)aht(e)_)EK Iy e Jah,(a)ah,(e)}
T4 TS| 270 ) @508 o0 27(0) _h(0)) 00 o0

imply that H_,— ZE ( )—)I in prd,'bﬁblhty as T'—o0, using the ergodic theorem.

f 1

| 1 |
Hence we complete the proof of’ Lemfn 3.1 || '.

| I
Proof of Lemma 3.2. For 8= «9 the observed 1nformat10n 18 given by

FEO)_ 1y g, oh,(60) o, (0)
0600 _TZ{ (1227 ) e }

1(0) “)TWR0) b ) o0

1 1 N 24z |&h(0)
_ﬁZ [%(I_Z’ )_h,“(e)} o600

The first term on the right-hand side converges by the ergodic theorem

2
to—FE 21 + A |9 0) oh, (?) ; second term on the right-hand side converges in
2h(60) h(O)) 060 o086

probability to zero. Hence we can complete the proof of Lemma 3.2.

Proof of Lemma 3.4. Since 4, (60) > ® and |x| <x”+1, we have
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h (0)<w+2a +(3 +20(A+ y)zj(y,_l =) +(a(A+y)* +B)h_(0).
w
By simple recursion,

h, (0) < max {w+2a, ho}zt:(a(lﬂ/)z +p)

i—0

+(%+2a(ﬂ+7)2j2 a(i+y) +B) " 5 —r)

1

which implies (3.30).

Here, the first-, second-, and third-order derivatives of /4 (6) are

h(&)=h,,(0) {a(ﬂ s ﬂ—'%j@_{(m ,

o (0) = 2[1+ W | o .-iz],;,ce)_%[&(z+y)3¥/3— A1) jhz o).
ht~1(9) ;5____" { | h,,l(é?)

il i
and ‘ 1' 1
a= 1)

AV
() =620 =yt >+é“(y’-“”)' g (O (6)+3h,, (6)

7,(0) 1 (0)
+[a(/1+ 7))+ ﬂ—%j I, 1(6).
From % >0, A, is constant such that 4, =0, i=1,2,3, and applying simple
-1
recursions,

WO Sh O)atiery+p)

7, (0) < 22(““(” ’(0; iy ,<0)jfa,_,(e>(a<z+y) +5) ",

and
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hj,(mssﬂ LA ’(9)” i (0222 '(9)”) (O, ,<0>+hz,_,(0>j(au+y> +p) "

Then, (3.31) follows by applying (3.30).

Proof of Lemma 3.3. Without loss of generality, consider the case 6, =60, =6, =5. We
show that the individual terms of the third derivative (83L§T /8,83)(9) in (3.28) are
uniformly bounded in the neighborhood N(6,) . Noting that by definition

¥, =r+A4h(6,)+H"”(8,)z, , the expression for (83 L' /op’ )(6’) implies that

oL (9) O ¢ Zw (@), where

aﬂ3 tl
w,(0) )
| +3[/1(ht(90)+h,(9))+h;'/2(90)z " 41]:/&1(0_)+h(9))+h”2(9)z] 2 |50
1 (0) @) I i 'hf(e) "0
| 3[ A(h(6,)+h () +H" (@ ‘34 h,(6,) b, (D)) + h2E,)z. 2
N w EKUGE 3()) @)z, ] M__( )Tz()) @)= ] 31 O ©)
©) AC) I | ‘ }i(a) AT
- l .
N +1[1 h(0)+h(2¢9)) + (6’)2:] +/1_[,1 h(e).+h(¢9)) +1 (0)2]}%’(9).
2h, (9) 2 7 (0) ._ h, (0)

Lemma 3.4 suffices to show that there exists a neighborhood N (6’0) for which

sup
0eN(G)

831;?(0) 1 T
T2

o . 1L e
where w, is stationary and has finite moment £w, = M <oo such that ?Zw, —M by the
t=l1

ergodic theorem, which ends the proof of Lemma 3.3.

Proof of Lemma 3.5. Evaluated at =6, the form is given by
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aL?T(9)+1i ar,6) _ 1T[

1 O .z m©]_13
T&J0) 00 T4 (1-27)=2,7+ }— S,

00 K@) 06 | TS
such that E(v,|F,_)=0, where F,=0(z,,z,_,,...). Applying the central limit theorem for

martingale differences in Brown (1971), consider first

1& 14 1 on@)on@) 1 oY (0)dY(0
S B2 F)- Z{ (0) 3O , ©) ()}

- F -
T\ ST L 56y 00 06" h(8) 06 06

E{ 1 ah,w)ah,(e)},{ 1 aw)aY,(e)}
20(6) 00 06 h(0) 06 06

imply that H,— ZE ( )—)] in probability as 7 — 0, using the ergodic theorem.

Hence we complete the proof of [émma:3.5.

Proof of Lemma 3.6. For 6:=0,/the observed information_:ié_._given by
|

PO 1 1 a®a (ep ;:ivﬁzJ'(e) 1 1\ h(0) oh (0)
|- " ( 1422 )——

o0 TS| JNO) 00 wed'| )5@9' 2h2(9) 00 80"
1 ov@er®| = |
h(é’) a8 00| i

23 AZhOy: O 0O,z )
2h ((9) 0o hm(@) o6 00’ h,l/z(e) o0&o'

The first term on the right-hand side converge by the ergodic theorem to

_E{ 1L &) 1 @O, 1 h@)ar@ 1 Y0 oxe©)

5 > ; second
J(0) obe'" J(6) 06 06" 2h(O) 08 060 h(@) 068 06

term on the right-hand side converges in probability to zero. Hence we can complete the

proof of Lemma 3.6.
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Proof of Lemma 3.8. If k=T, then B, (¢,0)=0=B,, (¢,0) holds. If k=T -1, then

2
B,,7.(4,0)= % m(m—1) —% and B,, ;. (4,0)= %5 (2m—1) hold since m=0,1 such that

m(m—1)=0. Suppose k=¢+1 holds. When k=¢,

(1+0°by, (BN (m—7,) = F* 1= 204" (m—7)by,..1 (.6)
A(+ad’,, .. ($.0)) +a’¢°b;,,..(4,0)]

B (8.0 =y —3) =575 i G by .0)+

_ &
- 2 blm,t (¢7 0)

and

(m= 79)¢(l+a¢ blmt+1(¢,9))+a¢bzm,+1(¢ O(m—y,)" —¢’]
7 bk (¢ 0))’ +062¢2 i1 (950

Bun, (8.0 =070 —3)+5 P, (@10) -

~25,,,6.0)

By induction, we can complete the proof. ::‘ 4 |

==
‘ IQ—'. | il j X
Proof of Lemma 3.9. Since (3.2%) and*0< (1 q/;/z b2¢2 <1, for all >0 and
8, |+|Cl oF

0<j<4, we can complete the proof by induction;

Proof of Lemma 3.10. By Lemmas 3.8 and 3.9, (3.40)-(3.43) follow.

Proof of Lemma 3.11. From simple recursion, we have

1mt(¢ 9)
=mr(T - r)—%walm (8.0 ——Zln[(m#blm,ﬂ @.0)) +d*F8,,..(4. 0)],
A1, (9,0)
RS (+a’h,,,.($,0)ab,,,.(3.0)+’b,,,.($.0)b,,,.($.0)
:__ @b, A+ .0 ’ 2 : 2 272 ’ >
Z @0 ((+agh,,.(.0)) + B3, .($.0)) ]
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Almz,x (¢’ 0)

LPb,i($:0) + 1+ af’b,, .. ($.0)ab, i ($.0) + b, (8Os, (,0) + Dy, (8.0)

+i 79
g MO (e cfh, . 0.00 + 09, (9.0
24 ((1+a¢2b1,,,,,+,»<¢, 0)ab,,,.($,0)+a’b,,,,.(#,0)) (204’ (1 +ag’b,,., @ 0Ny, ($,0)+22°F’b,,, . ($,0)b,,,,.(,0)) [
2
[(+aph,, . (8.0) +a ¢2b§m (8.0)]
A3 (4,0)
by (B0)+ 3810 (8O, ($,0) + L+ FD, ., (8,00)0D,5,. ($,0) +32 b1, (80D, ($,0) + 07D, (8,0)Ds, 5, (8,6)
et (+ad’h,,..(4.0) +d*#b,,..($,0)
4 (a2¢2bﬁm. GO +(1+afb,,,. ($.0)ab,;,..($.0) + &by, ($,00s,,.,(8,0) + 7B, (8 9))(a(1 0D, ( DOy, ($,0) + 0D, (8,0)s,,, (8, 9))
Py [(+afh,, @00 +EF8,,. @.0)]
=77; oy ((1+a¢zbm_m(¢,0))abl,,,1.,+,(¢,9)+azbm.,+,(¢,9))( BB, (BO) + L+ B, ($.ODy, (8.0) + B, ($.0) + b, (8.0)bs,,.,(4.0))
[A+ah,, @00 +EF8,,.@.0)]
5 (Uragh,, p0)ab,,. #.0)+ab,,, . .0)al+afb,, B.0)b,., @.0)+ &b, BO)b,, . $.0))
| [A+afh,, @00 +2F8,,.3.0)]

4,,,,(9,

Azml,t (¢9 9)

4r2,(6,6)

U R —agb, . (4,0
9)=¢I”(T—l‘)+lz ¢?2mm(¢€) ml-_ a¢ 2mt+z(¢ )

2 i=] |4 e ¢.rb1m 1+i ¢ 9) ’
p

ab,,,,.($.0)(1+afh,;..($.0))~

b,,,,,..(4,0)+
e (1+ag 6. e))r*ww H8.0) 0
25 ¢( b, 8.0+ 0D, (0.0))- W(ﬁ O)b,1..(9, e))( T],ﬂwé) (1+ag,,,.$.0)+ab,,,.6.00b,,.(.0) |
[(1+ et @O+ s, 0.0)]
Azmz.,(afzﬂ)

—dag

' 2a¢

wb,,;,..($,0)+

by O (140D, (O))+ D (.1, ($.O) = F D (. OB, (B.0) ~ Dy (B, 5, (6)
(1+ab,,,. #0) +&Fb,,.($.60)

(@b, .00 (15 BB, 8.0) ~ CF by GO (DO B 00 (14 @by, ($:0)) + @iy (8., ,(8,60))

[(1+afb,,.6.0) + @b, 60|

(@11, 8.0 (140D, 8,0)) = P F b B OB, (D) (B B O 1+ Qb (B.0)) + QP B () + B ($.0) + X (B,0r,,,(8.0)) |

+8a’¢*

[(1+aph,.0.0) +abi,, 00|
(b, PO (14 By (0) =B (DO, B0 (B, (O (1 @D (8.0)) 4 iy (.0, (80))
[(1+ab,,.0.0) + @b, 0.0]
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Tt
From b, (4,0)20 for all 1<i<T—¢ such that Zblm’, (2.0 =h,,(4,0)=1,

i=1

1+a b? 1

tan” x| <crr, <1, ——<I, .
(1+a) +b a +b (1+a) +b

> <1, (3.29), and Lemma 3.9, we

can complete these proofs of (3.44)-(3.48).

Proof of Lemma 3.12. By Lemmas 3.4, 3.10, and 3.11, (3.49)-(3.56) follow.

Proof of Lemma 3.13. From sm(x+2c7r(T t)) sin(x), sin(x) <1, _[ wdx<oo and

Lemma 3.12, we have

le,r (¢’6)

J‘:e ; 51n(X3m,(¢ 49) d¢<j —sm ¢X3mz)d¢ J‘

1 Sin ¢ s

d¢+ [“eap

which implies (3.57). Slmllarly, (3.58)-(3 59) follow

Proof of Lemma 3.14. Here, the ﬁrj secbnd— and thigd-order derivatives of J, (68) and
'T. |
(6 are AU \

5,(0) _S$,,(0)
S (0) 5.0

Y,(6) = — k()

5:0) , 54(0) , Sia(0) S5, ()

th (6) == St2 (&) St (9) Sil (9) Stfl (9)

- ﬂ’hm (6) >

25,(0) 35,(0)S,(0) , S.(0) _25,.,(0)  35,,(0)S,1(0) _S,.,(6)

Y, (0)= ;
V(0= 5/ (©) SO 50 5.0 SLO Si1(0) 0

¢ ¢

oo K 1 x60 COS(Xzo,t@"g)) as5,(0)
S,(0) S,(6) 80

Lo=1[ ex“'/“"‘”Hsm(X“M+cos(X31,(¢ 9))] X, $0)+ [""S(X“"W))—sin(Xﬂ,,(qﬁ,e))]Xm_mﬁ)}qﬁ

cos( Xy, (6,0)) X,o1,(,0) +sin( Xy, ,(6,0)) Xy, (4, «9)}@
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J,,(0)

[Wms(&,m 0))](Xfll,(¢ )= X160+ X,1.,($.0))
* Xi(9.0)

1 ,
7;‘[0 ‘ cos(X,,,(4.0) v
+ + —sm (X3l,r (4, ‘9)) (2X3ll,r (4, G)X”u(¢, o)+ lez,z (4, ‘9))
COS(X30,1 (¢’ 9)) _ 2 _ ZSin(XZO,t (¢’ H))
K 1 75,! (0) (2)(101,1 (¢s H)Slz(g) 2S|r(0) +S2r(9)) Sti(g) Slt(e)Xml,x (¢, 0)
Ay e —cos( Xy, (,0))( Xioy, (8,0)+ X, (8,0) — X, (6,0)) dg,

’ +5in (X, (6,0))(2X 01, (6, 0) X1, (4,0) + X, (6,0))
and
5, (6)

[sm(me ) s cox X, 6.0) (Xfu,(qﬁ \0) =300 ;,(4.0) j
o ¢ TR (80X, (BOD=3X 5 ($:0) X, (4.0 + X,15,(4.0)

:7J. e
70 COS(X3|,(¢,9)) . 3131(¢9)+3X3121(%'9)X111,x(4.}_:-9)+3X112.z(¢"9)X311,1(¢59)
—\ M X. [2) I
+[ 9 sin( X )}][mew O)X;,, (PO 1i(5.6)

cos (X, (@h0)) (81 (D2} O)X,0, ($.0) -4, (08, O KXoy (1)S, (0)+35,,(0)X,0,(6.0)
0) 35,,(9)&%{ X)) 9“\ 3X, (¢ 05,0\
COS( Xaoy (4, )) -— l h‘
s el Mm,@1 O | 125,05,0)
-y K1 e v, Sm( RENC 9)) 06X (4,0)5,, (0) X1} (4, '9) 3k2:(0)X301z(¢ 0)-2X,,,(4,0)5,(0)
e 77.[ e —_— 7
5,(@) 7% 50, 7 |~ (. j ],(9)+asf(9)x301 oy
4S1n( 301(¢ 6)) 30[!(¢ 9)+ 3031(¢ 9)+3X1021(¢’0)X301,I(¢’ 9)
S20) 3"“("’ k(g)”m(X”"@’P [+3sz,(¢ )X, (6,0) 43X, ($,0) Xy, (6,6) J
reos(Ka, 6:0) B, e)Xfm,w 6)=3Xi 4.0 X,0, (0)
M B3 X (O X, (8.0) - X3, (.05 X, (4.6)

By Lemmas 3.4 and 3.8-3.13, (3.60)-(3.63) follow.

Proof of Lemma 3.7. Without loss of generality, consider the case 6 =6, =6, = 8. Noting
that the expression for (63 L /op )((9) in (3.34) implies that

63 L?T

7 zw (0), where

t 1
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w,(0)

_2J3(©) , 34,(00,(0) , J,(0) [ _1 370 3(_1 272
J3(6') JX(6) J(0)+(h3(9) 7 (0) jhv() [hz(e) 7 (0) )hzt(@)hn(ﬁ)

1( 1 YO 6Y, (0) ,, 3Y (6)
e (h(é’) hZ(@)th,() e OO+ S OO+ hz(e)hl,(e) 52(6)
Oy o 0)+——1, 07,0+ Dy (9)

m@) h (9) h(©) "

Lemmas 3.4 and 3.14 suffice to show that there exists a neighborhood N («90) for which

sup
0N (&)

a}L?T(Q) 1 T
72

where w, is stationary and has finite moment EW,'z M <o such that Zw Sm by the

t 1

ergodic theorem, which ends thie proof.of Lemma-3.7.
Proof of Lemma 3.15. Evaluated at «9*1= Q%form is given by
aore 1y 20 PIZ;J‘ rt/i(pu,. 2 ) L|ond@)  pz,—u, o™ (©0)
o0 17| 2n (9) l—p 1J|r4'; (1-p ){11'2(9) 500 - n(-p*) 90
£ |

1 T
T2V

suchthat E(v,|F_ )=0, where F, =o(z,,u,,z,,,4,,,...). Applying the central limit theorem

for martingale differences in Brown (1971), consider first
1 T
Ea ZE(VIZ | F ) —>Hg 5,50

T
imply that HSlmEO;ZE( )—>I4 in probability as 7—oco, using the ergodic

t=1
theorem. Hence we complete the proof of Lemma 3.15.

Proof of Lemma 3.16. For 6 =6, the observed information is given by
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62 L.;+O+E ( 0)
oo

e T{ 1 [—1+ 222 3pzu, j+ 2z, —pu) 20 }ah,(e)ah,(e)

Y d=d VAT)) 1-p* 20-p)) (- 2)h”(a) (1-p>Hh ()| 36 o6
s p (L 2 ) cMOmo 1y 1 ag"0)ac" ©)
TS -\ WO 60 00 TTipA-p) 06 00

T
1 { 1 (1_ 2 +pztu,j_ ZA(Zt—pu,)}azh,(H) 1N pz,—u, 3*C™(0)

AT T RO\ 1-p 1-p2) (1-pHH2O) | 0600 TT n(-p°) oeo

The first term on the right-hand side converges by the ergodic theorem to

; second term on the right-hand side

(2= 1 22 6h,(6) 6h,(6) |
M=) 1O) A=p)h (@) 00 06 |

23p AeC™@yon )]
n(l—pz)h,”z(e) 00, od' ]

5, third term on the right-hand side

converges to E[

last two, ferms on the right-hand side
|
|

-'I

HN H
converges to —E{ 1 6C (©) éC, (6')}

n(1=p*) 00 l‘aﬁf

converges in probability. to zero. Hen& we ﬂln complete the proof of Lemma 3.16.

> | |

Proof of Lemma 3.18. Slmllar to thelprroof of Lenin!la 3. 10 (3:67)-(3.70) follow.

Proof of Lemma 3.19. Here, the ﬁrst- sécond-, and thlrd-order derivatives of C'™(6) are

G (0)
1 Xi1,(4,0)

:ﬂSr jo [Sln(X21;(¢ 0)) X, (9, ‘9)+COS( X,,(9, 9)) Xoi1,(# 9)] d¢

1 X0, (£,60)

_e_r(T_t)K.[: : @ [Sin(Xm,t (¢, 9))X101,z(¢’ 0)+COS( X (9, 0)) KXoor, (0, 9):| a9,

T

C(6)

g e sin( X, (6.0)) X3, (6.0) - X0, .0+ X (9] |

g |Heos( Xy, (8.0))[ 2X,,,,(4.0)X,,,,(4.0)+ Xy, (6,0) ]

o Krexlow sin (Yoo, (.6)) | X, (6.0) = X, (6.0)+ X, (9] |

7 " b | Heos(Xa, (6:0))] 2X 01, (8,0) Xagy, (8,0) + Xos, (6,6) |
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and

G (0)

X1311,z (¢, ‘9) _3Xlll,t (¢, 9)X2211,t (¢, 9)
sin( X, (4,0))| +3X,1,,(4,0)X,,,,(¢,0)-3X,,,,(4,0) X,,,(4,0)

g (e +X113,(4,0)
! J-o ¢

d¢
_X2311,t (¢9 9) + 3X211,t (¢’ Q)Xlzllt (¢9 9)

+cos (le,r (¢ 9)) +3X,,,,(4,0) X, . (4,0)
+3X,1,(0,0) X1, (4,0) + X5, (4,0)

X0, (8.0)=3X,0,,($,0)X3,,(4.0)
) BXy0, (8.0 X, (6,6)
3 _3X"2‘(j_1,_t (¢, H)X 202, (¢> 0)
X 105,; (¢.0) ] de.
[0 #0)+3 Xy, (4,0)X3,,(8,0)
+008( X (4.0))| +3K,01,(4.0)X,15,(4.0)

| ' _ ;;r'-Xllzokt (0,0) X0, (9, 0) + X35, (4,0)

- |
Similar to the proof of Lemma 3114, q3 71)-%1."72) |f(illow. __ iy

3 | ! | _
o | ;
Proof of Lemma 3.17. Withou‘_[-lo_ss| of general'ity-,;__con'sider the case 6,=0,=6,=p.

1
7

sin (X, (¢6)

Xio, (¢,0)

¢

| ©e
——e r(T I)KIO

T

Noting that by definition y, =r#Ah(@)+h"*(9)z, , the expression for

(83LSF+O+E /0B’ )(9) in (3.66) implies that

3 7S+O+E T
oL . ©) Slzm/}(e)’ where
op T

71



()] (1+ 3 2[l(h,(eo)+h,(¢9))+h,”2(90)2,]2+ 15p_ A(h,(eo)+h,”(29))+h,”2(00)z, GG+ O | )
RO\ 1-p 1) 8(1-p) (@) "
. [QPCHN(H)+CHN(0)+””' PEICIARID ))+h'l/2(60)2tjlni<e>+ L RO)
Ta=i ) Z #>©) (=P (O)
L1 (3,3 [MB@O+hO@RO:T | 9p  AB@I+AO)+H G C0)+CH O+ o O 6)
7O)2 17 1) 41-p") RO 7 o
34 (ﬂ (h(6)+h(0))+h"*(8)z, q””(00)+C,”N(0)+77uj N (0 N (O
(1 P )h3/z(9)k hl/Z(g) +p n hzz( )h1( )+ Z)h (g)hzf( )hn( )
[ @@ h @] | o Ah@)+h@) K Gz @)+ @)+ h©)
210) T 1-p° 1 (6) 1-p ' (6) n '
L[ ,GMe)+C @) m ﬂ(h,(eo)+h,(e>)+h,‘”(eo)z,) ;
REVETROI n " o) O
o [ 2/1(h,(¢90)+h,(9))+h}’2(90)z 34 J HC @ 3p [ /1(11,(60)+h1(9))+h,”2(00)z 2 ] 0C @
-4 0 @) OO | 10) )OO
3p (MA@ +h©@)+h )z 22 1 IO\ (@
277(1_P )k hz/z(g) h1/z(91 zlf Wh(ﬁ‘*m o (O)C,(0)
L ﬂh(9)+h(9))+h”z(9)z\ & 05 0 By B,
72 4—'% -3t (9)7 -
n1-p")\ wo) /{! ~_ @
< -
From Lemmas 3.4 and _é’_. 1.9,,‘_: neighborhood N(6,) for which
l-q.il'ln '.I :‘_'J o
.u._. " : '
63L§~+0+E
Sup |————|= w,, s finite moment Ew, =M <o
0N (8)) op .
-
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Appendix B

Proofs apply Brown (1971) results regarding Central Limit Theorem analogs for

martingale differences.

B.1. Asymptotic behavior for ST

We seek to prove the following:

Theorem B.1. The estimator of-ST is 65" =a‘:‘r_g.maXL§T((9). It is consistent such that
0<6, ™

&7 —>8 and asymptotlcally Normal such that HS;QZFSTOT 2@ - 9)—>N(OI ), where

82 ST 0 ST a STu
Fsro:_E( 61213(9')) and HSTO_E(T 20 '“!21 aé )
| !

To begin, the log- llkehhood furictlon for ST 1s g1ven by (4.7) and it follows that:

e __1y (1 ®) s ey, = 1O [0k (9)
B 2T; h(0 { h (6) ( =h (0))[ 12 (6) j:] 5 (Bl)

FLO)_ 1 Z{ [ 25=O) |5, hm(g))(y, u,w)]( h,“(@))z} 1 [y,—y,(wﬂaht(e)ah,(a)
oo 2T ‘3 2 06

h(0) 1" (6) 2 22O\ 1O o0
BRI =1 O) (o o v u0)) |[Fh6)
ZTZ‘ h,(b?){ h (6) (-4 (9))[ h">() ﬂ o®e

(B.2)
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oL (0)
066000

! { ! [2 6(y,~1(0)) 343( hm(e))(y #(@j 9(/1—5”(‘9))} 3 (3n-u®, h‘z(a)ﬂ‘”’r(‘%wa’h@

=) h(6) R 4 IR C) 00 90 66
3yt 20 -n0) (-0 24O LON ) 1 (n-ue oo e
=) h(6) "2 R 2 2/1‘”(9)L 7> (6) Jaeaa 00

R B R 1 C) RPN SR A A ()
; ik 7 (A-H (9))( T Haé@eae

(B.3)

1 u(0) _ A=h"(0) 3h(0)
where #,(19):7’+/1h,”2(9)—§hr(9) and 20 = 2h,”2(9) 0

Consider the asymptotic Normality of the;first derivative and the limit of the observed
information matrix in (B.1) and (B.2), ﬁsiﬁg Lemmas B.1'and B.2, respectively:

Lemma B.1. The form given byAB.1) evaluated at\6 = G,.is asymptotically Gaussian,

"i_?ﬁ?,‘f .L

‘ \
where Hg, :E(T oLy (6) aLS;T(HO) 2"‘(}4*}11/2(9 )) 6h,(6,) oh,(6, ):|

00" 00" i 4ﬁ2(0 Yo 06 00
Proof of Lemma B.1. Evaluated at 0= 6, the form is given by

T

oLy __ 1 G nge) [ 1
SRS ZT;{W)( 7 ~(—h (90»,)} 72,

such that E(v, |F,_)=0, where F, =0(z,,z,_,,...). Applying the central limit theorem for

t><t-1>"

martingale differences in Brown (1971), consider first

liE(sz IF, ) Z 2+(A-H"(0)) oh(0) oh,(0) _)E{ZJr(/I —211,”2(6?))2 Oh,(6) ah,(H)}
4h(0) 08 00’

TS = 412(6) 00 06"
imply that Hy,— ZE ( )—)I in probability as 7'— o0, using the ergodic theorem.

Hence we complete the proof of Lemma B.1.
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Lemma B.2. The observed information matrix given by (B.2) evaluated at =06,

o 52157 (O
converges in probability to —Fg}, alge(; b) —1,, where Fgro =—E (%(9.0))

Proof of Lemma B.2. For 8 =6, the observed information is given by

&L (6)
os
1y S L AHROR 2 |on©) an©)
- TZ[ (1+2’+2M B Oz = j%hf%ﬁ)} 20 00
1y v o \ O BE)

T; m ( ~(A-H"(O))z )6660,.

The first term on the right—hand side converges™ by the ergodic theorem to

second term on the rlght hand side converges in

_g| 2+ =R"©O) ni6) o (0) ],
472(0) 00 o0 |

= ||
probability to zero. Hence we.can corlm;*ﬂete -'lll'e prodf of Lemma B.2.
P | \
Then, evaluating the third derlvlhtive of the -:likelihood function in (B.3), we seek to

show that it is uniformly bounded in a n_e‘ighborhbod around the true parameter value 6,.

The neighborhood N (6’0) around the true value 6, defined as
N(6)={010<0, <@ <@,,0<a, <o, <a,,0<f, < f < B,.0,(1+ 1)+ B, <1}.

(B.4)

Lemma B.3. There exists N(90), for all 1<i, j,k <3, for which

3 ST a.s.
sup LT ©) <glw,,w,,0,,0,,5,,5,,T)>M<w as T—o where M is constant.
0= (4,)|06,00,00,
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In order to prove Lemma B.3, without loss of generality, consider the case 6 =60, =6, =f.
The next lemma shows that the individual terms of the third derivative (83L§T / 8ﬂ3)(9) in
(B.3) are uniformly bounded in the neighborhood N(6),).

Lemma B.4. With N ((90) defined in (B.4), then for any t and i=1,2,3,

@, < sup h(0)<H, (B.5)
6eN(8)
and
sup h,(0)<H,, : (B.6)
0N (6)) T
where 0= 0, Hy =, ol _r_/w;fz +1'ho)%+ﬁu%,
il r [
(- \.4/]
=@y, +a, (v, — 1)+ ap (Vi — r) a@ﬁﬂ'ﬂy] L+ 20| A (v, 1) +1]H,
ta (1+12)H3/2 th lU r[i | |l
U t—-1U 4 I { . e |

le :Hz U +Zl—lf—2—iU X

i oy (A, =) Bay (442
H[aU(ytlj_r)2+ U( ra;l/é )+ U(2 )Hr”? ]U+7UHt1]U+aU(1+22)+ﬂU s

J=0 L

=2H,  +—=
171 11
SR) 2a)‘L/ 2 wz/ 2 "~

-1 2 2 2
. { - aU(1+3(l D), A0 =) +1]Hﬁ2}

1/2 3/2
= 20, ),

ay {H 34D AW, 1) +1}H2

: oy (P2 =1 +1) 3g, (1422 1e7
{aU(ytlj _}")2"1‘ U( ta)ll/jz )+ U(2 )Hrl/? U 2UHr 1-;U +aU(1+ﬂ’2)+ﬂU i
L

Jj=0

and
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3a, | A2 +1 Ay, —1) +1 3¢, 3P+ Ay, —r)+1
Hsz :3H21 1 4U |:2 3/2 + t;)z/z le; it 2U 1+ 20)]/2 + ’;)z/z HZHHIH
L& P+l P, 1) +1 Q, 3(A*+1) }f(yr =)+l
+3Z|: 20-2~i :(20)2/2 + 'sz/z H13[724+70 1+ 20 1/2 sz/z HthZfiHl'*Z*i x

J=0

i /12 o 2 l

H{%(y,l,—r)ﬂ“”( D ) 3 ey ,U+au(1+f>+ﬁb}

Proof of Lemma B.4. Applying (B4), #(0)>w , and |x|<x’+1, if =1, then
h(O)<a, +a,(y,—r— K’ +%ho)2 +f3,h, holds. Suppose that =k holds. When

t=k+1,

e (0) = 0+a(y, —r)’ +a(y, —r)h(0) - 204y, — 1)k ”2(6’)+2h;f (0)—alh;*(0)+(aA’ + B)h(0)

<o+a(y,—r) +a () - —r)’ +1]h (9)+2ah“2(0)[,12(yk —r)2+1]+ W(6)
+ah* (@) X +1]+(a/17 +B)h, (9) [ :

a, H,

<a)U+aU(yk I’) +0!U[(yk—r)2+1 Hﬂ,-!—'ZaU i/z[ﬂ,z(yk +1:|+ U4kU
+ay Hy P‘z +1]+(%/12 +4) 1{ || ii
=H - 2 l ‘ | '!

By induction, (B.5) follows.

Here, the first-, second-, and third-order derivatives of £ () are
1 _
h,(0)=h,_,(0) +[0€ (ytl —r=Ah"(0) 5 (9))(1 — A5 (0) +ﬁ} h(0),

A

],Et (9) 2hlt 1(0) +—= |:ht3/12 (0)

[y,_l IO, (9)}(1 W (9))2}15,_1 )
ol r- a0 L@ - oy hy 0

and
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hjt(e)::;hm—l(e) 3a/1|:2h3/12(9) ;:g/é(e):|hlt 1()

Saf 4
2 | B3O
+ [a (ytl —-r— /Ih}f @)+ % h, (e)j (- ﬂh:l/z @)+ ﬁ} I, 1(0).

(y,, =3O+ 1O (1= 2 0)) }hz,,(e)hq,l(e)

From /, is a constant such that 4, =0, i=1,2,3, and applying simple recursions,

WO<h O+ 2<9>H{a<y”, L SE O ) 362 s g ”,<9>+a<1+w+/”1

[0} 2

L3+ /12();,_1 r) +1
2 1/2

o

302 £1) /12(y, . S
zwl/z 2603/2 2,:—241'(9)__ A

hz,w)szhl,,l(e)%{

—1

+ {2%2,(9%“[

i

{a(y, Y. s £\ E S h,“%_,@%%h,_l_j(6)+a(1+12)+ﬂ},

j=0 @

and

2 2"; 2 | 2
@(9)<3@,1(9)+3—“V D "“}h,,l(el 3"‘[nm *“)L? OF “}hz,,l(em,,,me)

2 3/2 2 1/2 0)3/2
+3Z[ O [/21 ;21 2y, zwmr) +1]h1 19 ( 3(21 ;ZD l(y,zw r)? HJI’?‘Z Oh (9)}
f[{a(y,,,-r)%“( o ’*;;ifr) ), 3“(““11,”%,(0>+jh,,,-(9)+a(1+ﬂ)+ﬁ}

Then, (B.6) follows by applying (B.5).

Proof of Lemma B.3. Without loss of generality, consider the case 6 =6, =6, = 8. Noting
that by definition y, =r+Ah"*(6,) —% h(6,)+h"(8,)z, , the expression for

(0L 164°)(6) in (B.3) implies that

SLTO)_ 13
7 ?Z:l: w, (), where
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w,(0)
L 3w @)+p @)+ B2z T L334+ B (O),(0) + 14,(8) + 1 (6))z,]

_|#®) () 81 (0) 2O
LA+ O) + 1O+ (@) + B G)z] , A+ K (O)] ’
87;(0) 817 (0)
3 HuO@+u @)+ G)=T | 15CA+HOD10) +14(8) +h(G,)z]

NEAQ () 41 () b O O)

A+ BOD +1,(0) +1(6) +1(8)z] S

i 417 (6)

o1 +[u,w)+u,(002)+h,“<eo)z,]2+(A+h}“(@)[m(e)}zu,(eo)+h,‘“(eo)z,]}%(9).

2, (0) 21 (0) 217 (6)

Lemma B.4 suffices to show that there exists a neighborhood N (6’0) for which

T ] - j.'

3 7 ST
Sup 817—3(0) < l Z‘/Vf’
OeN(6,) 8ﬂ T t=1

Ll -i h |'I- | A=y T a.s.
where w, is stationary and has finite ﬁl@ﬁaé&t_EM |=|M < such that %ZW, —M by the
| T ; t=1
|

i|3|13

ergodic theorem, which ends;the pr0(1f f Lé}éma
Proof of Theorem B.1. From Eemm. b.3, we haVL? khat “

0 ST ¢ NST ST 2 7 ST )
0 :al'r (GT )zal’r ((90)+5 lﬂ' (00)(9’}37_00)

0 00 00 ol

and

e z_(@ﬁfﬂe@)] A7 (@)
ole ol 4 00

Combining with Lemmas B.1 and B.2, we complete the proof of Theorem B.1.

B.2. Asymptotic behavior for S+O+E
We seek to prove the following:
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Theorem B.2. The estimator of S+O+E is 05*°*% =argmax [3*°*£(0). It is consistent such
0O

that G0t i)HO and asymptotically Normal such that

—1/2 12 ( NS+O+E __ i —_ azl;vr+0+5(90)
Hg. 5 v0Fs 00T (ezb: 0,)~N(0,1), where Fsioip0="E 000" and

S+O+E S+O+E
HS+O+E0 =E Tal’l" (90) al’]" (90) .
06 06"

The log-likelihood function for S+O+E is given by (4.11) and it follows that:

w1y 1|1 (-s0) L pl B uO =GO AH O GOy, -u©)]| O
00 T RO)| 1-p h,(()2_:‘!__,.f;‘g?ﬁ_h,”z(e)_-. 1P n nre) )| o6

IZT : (y,—u,@—"é+c,”(0b'

2 pLHAD)
T n(l-p%) h{f@)
&
&« (B.7)
-
1 Y= 1,(6) V2
-1 -5 ~A+HO
FPLYOE@O) 1 z’ hz(e){ " e ()H oh,(6) oh,(0)
oo 2T 1 B o I 0 o0
'2(1—;72)&’2(9)( = 7f uly
BRI S T O T ) —u(0)\|7h.0)
AThO| 1-7 hO) - ) nR0) )| owd

" oci@yac @ 'i\i L y-u0) C-CP0)FCO)

ZT: P (y,—ﬂ,(ghf_'alf

#2(6) T asp) oo aﬁﬁr'?,:. -\’ i e) n ) owo
e ail”
ST (B.8)
! 6 (-m®) 15 y,—/4,(‘9)CI—QD(9)+3(/1—}’;”2(9))(5'0Q—CJD('g)illJ/;—/-l,(9)73(iihuz(9))j
PEOEO)_ 1y RO -7 kO 41-p%) H*O) n 41-p n *(6) ' oh,(6) oh,(8) oh,(6)
066000 2T = D 00 00" 00
, 3 (, G=CO) _3=#O) _,
e e (9))
L, 2 0i-u@F  3p 5 -uOC-C'O) _i-hO), C-C'O y-uO , i )
T 2 2 2 1/2 2 P 1/2 +h: (9)
3 3 I (0) 1-p*  h(0) 21-p) B*(O) n 2(1-p°) | n ] 0*h,(0) Oh,(6)
2T = 1 (pC,—C,DW)_y,—H,(H)] o060 00
2= O\ n>(6)
3y _p [ 3 (n-uO,, 1 |oh@em@ec’@, 35 p  (5-mO) 0, TR O
4T; n(l—pz)[hf(ﬂ)( o) TA=h (6))+h,“(9)j %0 o0 o0 ara (- @O\ H20) *A-h7O) oo 80
Ay L maO) | p ymu@C-CO)  A-HO( C-CO) ARG
AERO)| 1-p KO 1-p KO 7 [ G H2(0) )| owoa0
By e (naO e\ FCORO 3y 1 _FCOCO 1y 1 [ n-u® GO0
2T (- pHh O\ 77 (0) ) ewe 00 TE P(-pY) 0o 00 T n-pH\T HR0) n )omoee

(B.9)
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Once again, consider the asymptotic Normality of the score and observed information
matrix in (B.7) and (B.8), using Lemmas B.5 and B.6, respectively.

Lemma B.5. The score given by (B.7) evaluated at 60=6, is asymptotically

5 aLS+0+E (9) 2

N (0 I ) , where
00

; —1/2 1/
Gaussian, Hg/5poT

BISTOE () BISHOHE ()
Hy p.r0 :E(T L - ) %Ly .( O)J
00 00

1 (2= ra-nr@y @ e | p  Ja-ntepec@yane], 1 [ack@)ac’@)
G -0y Joo o0 | aa-p | k@) o0 o0 |Tpa-p) | a0 a0 |

Proof of Lemma B.5. Evaluated at =6, the form is given by

oL (0) _lZT (&, ps O h“w))(m =z))|0h(0) pz,—u, 3CP(©)
00 T | 2m0)| A-p? 1 p -0’ 00  n(l-p*) 06
=—> v, —
T t=l1 f - I' .'I . I|
such that E(v,|F_)=0,where K, 1 1’z’r A 1| ). Applying the central limit theorem
1]
for martingale differences in Brown (ll | 715 con51det ﬁrst
|

| |
1 &
_ZE(V/Z |F;—1)_)HS+0+EO

imply that Hl, ., — ZE( )—)] in probability as 7—>oo , using the ergodic

theorem. Hence we complete the proof of Lemma B.5.

Lemma B.6. The observed information matrix given by (B.8) evaluated at 6=6,

converges in probability to —F;,.

62 S+O+E o) r 82 S+O+E 9
lng'() L,, where FS+O+E°:_E(%THSO) )

Proof of Lemma B.6. For =6, the observed information is given by
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aZL?+O+E (6)

000
1 ZT: U2 e CG=RPO)Bpu =5z, -2+ K O))  (pu-z)  |on(0) 0
TS|\ Re)| T 1, 20-p) 21— %) -0 | 00 o¢

r D T D D
Y b (i pr)LORO 1 1 0K
T= n(-p%)h(0) o0 o0 Trean(d-p°) 060 00

AN (2 e GO e =2)\|FRO) 13 pr-u, FCOO)
T | h(O) 1

0000 T n(l-p*) 0600

2

-p 1=p 1-p?

The first term on the right-hand side converges by the ergodic theorem to

L (2=p+CG="0) () h(O)
12(0) 41— p?) 00 00’

} ; second term on the right-hand side

p_ A=h2(0) oCL(®) on(O)
n(-p*) B (OF- 06~ 00

converges to E{ } third term on the right-hand side

;_-'_lasﬁ two \tefms on the right-hand side

P20 aczgwg

converges to —F| — 5 ,
7(=p’) 06 | ao!
| 1

ur"'r-" |
converges in probability to zero. Hen&% we ¢an coqn'plete the:proof of Lemma B.6.

e
|

Lemma B.7. There exists ]}[(90) d]éﬁned in (JlBJ4) fb_r-- all 1<i,j,k<3, for which

63 Li+()+E ( 9)

06.00.00, Sg(wL’a)U’aL’aU’ﬂL’ﬂwngM<°0 as T —oo where M is constant.
i J k

OeN(6y)

Without loss of generality, consider the case 6 =6, =6, = 8. The next lemma shows that
the individual terms of the third derivative (83Lf.+0+E /o )(9) in (B.9) are uniformly

bounded in the neighborhood N (90) :

Lemma B.8. With N(6,) defined in (B.4), for all t and i=1,2,3,

sup ¥,,(0)<Y,;, (B.10)
0eN(6,)

sup ¥, (O)<Y,,, (B.11)
6eN(Gy) ’
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sup C°(0)<C?, (B.12)

0N (6h)
and
sup CL()<C?, (B.13)
0N ()
iY i D
where Y”(H):6 ”Tfe), CP(0 )_M
’ op op'

=(T—-f)r+= Z +iﬁjg[(z§)2+1],

5 1+1 s=t+1

NE T 5 Z(Q)2H2s+

37
L s=t+1 L s=tl 7 4 L s=t+1

[(ZQ) +1]

2a)L S;(ZQ) H3S+4 3/2 Z[(Z_Q) +1}H H o P Z[(ZQ) +1]

s=t+1 s=t+1
=4 |
—"l' —f)EQ[S etT YltT IS >K:|

l N

l

CP=e"TEL| S, " K|S, 3K |

.:m H

| |
and| | &

I__I'.‘ -

D _ _—rT-0po[ ¢ Yr (v2
Cyy=e"TE?| S, (Vg ) T\>K

€2 =& 02 [ 5, (1 + 3 Wilhg #7,,)1 S, >K]

Proof of Lemma B.8. Here, the first-, second-, and third-order derivatives of ¥, (9) and

CP(0) are

Q
1tT( )_ ;(l’lm(@) jhl( )

Q
2,T( )_2;1(}11/2(9) jhz( ) ;1h3/2(¢9)

h,(0),

79
3,T<>—2Z[hm(9) ]@() Zh3/2(9)@(>me) 3Y R,

=t+1 =t+1 s=t+1 h5/2 (‘9)
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ClO=¢" T E[ S, Y, (0)]S, > K]

CzD, (0) — efr(Tft)E'IQ _St eY,,T(g) (YIIZ,T (0) + Y;t’T(ﬁ)) | ST > K:| R and

Co(O)=¢""EL[ S, " (Y21(0)+ 3%, 1(0)Y, 1 (0)+ Y, ,(0)) S, > K |

By |x|<x’+1, (B.4), and Lemma B.4, (B.10)-(B.13) follow.

Proof of Lemma B.7. Without loss of generality, consider the case 6 =6, =6, = 8. Noting
that by definition y, =r+A1h"*(6,) —% h(6,)+h"(8,)z, , the expression for

(83Li+O+E /8,83)(49) in (B.7) implies that 5 . -_".-:"

3 7 S+O+E T b,
617—3(9) SLZW; (6), where F 7\
op T3 .f—*::... ‘II.,—-"-| '
. e |

6 (1(0)+m(6)+h"(@s,) ) +H2(0,)z, C”(@y)+CP(0)+mu,

2+

1 - 1(0) 12 p2-1 3N f[ ©) n
20)| 3a+n20) (. C26,)+C7@) +rL 1O)+ 1, (0) ")z, ,
0)= A « \Oy ' A0 A A , &)z, 12 (0
i (6) * 41-p*) [5 . I l' 1 h’vz@i '.+.3(j’+hr (9))] 1, (6)

a3 (2 C(6)+ CPO il OO ER0)% ) h}/zw)j
8(1—-p )= (6) ' ooh(0) B
L2 (O @) @)L Bp @0 + h (), CO)+CO)
3| 1-p 7(6) 20-p") R 7
2h6) +A+h}'2<29>(3 O+ COO i O+ @)K O, ) s (9)] I (O, (0)
20-p") 1> (6)
3 CO)+CP O +m, | m(O)+1(6) +h )z,
41-p)7(O) n 1" (6)
. 12(;1,(9)+u,(¢90)+h}/2(€o)z,)2+ pzﬂ,(€)+/1,(g))+h,”2(6’0)2, CP(G)+CPO) +my,
+ 1 1_/7 h](g) l_p hx (9) n }13,(9)
2O a+hO) @)+ O+, 1O+ u(O)+h Gz,
L= n 2 (0)

3p 3 (A (O)+1,(6)+H"*(8)z, 12 1 2 D
477(1—/32)[”3(9)( e (9)};172(9)}“(‘9)@ ©

3p H (0)+:”x(g0)+h/l 2(90)21 12 D
+217(1—p2)h,(6’)[ e w)}hz,(e)c,, )

3p 14O+ 1,0)+1(6))z, A+ H2(0 qu Nh (0 3 CPOCP (O
+2n(l_pz)h(9)[ 0 HA+RO) [CLOO) = CIOCO)
L1 [ #1('9)+ﬂ,(]%)+h}2(90)2,+C,D(90)+QD(9)+77HIJC£(Q).

n=p7) h=(0) n
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From Lemmas B.4 and B.8, we have there exists a neighborhood N(6,) for which

83 l;S‘[+O+E
sup 7 Z ,where w, is stationary and has finite moment Ew, =M <o
0eN(6y)

T a.s.
such that %ZW, —M by the ergodic theorem, which ends the proof of Lemma B.7.
t=1

Proof of Theorem B.2. From Lemma B.7, we have that

0
ol al:;+0+E ( 9S+O+E) aL?+O+E @) . PLSOE () ( 9s+o+E 6,
0 00 ole) ol

and

= i,
A L
2 7S+O+E Lo S L
éS+O+E _0 - 8 11[7L * (9@; a '{::
T 0~ . ; ™,
oo - i o \‘;;
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Figure 3: M ¢, o.r Graphs with Different p

Presented are graphs of My, ,.p for w, a, f, and y with p from -0.9 to 0.9. True parameters

are (A, wy, g, Bo, o) = (0.1746, 6.792x107, 6.546x10°°, 0.9914, 351.945). In panel a, ay, B,
and y, are given and  is unknown; in panel b, w,, f,, and y, are given and « is unknown; in
panel ¢, w,, o, and 7y, are given and f is unknown; and in panel d, w,, @, and S, are given
and y is unknown.
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Figure 6: M 5,0,z Graphs withp = 0

Presented are graphs of Mg, . for o, a, and f with p = 0. True parameters are (4, @, o

0> Po) =(0.0116, 9.228x107, 0.068, 0.9248). In panel a, a, and S, are given and w is varied,
in panel b, w, and S, are given and «a is varied; and in panel ¢, o, and «, are given and f is
varied. Graphs on the left of each panel show M., for ® while those on the right show
M. o.p for a and B. True parameters calibrations are circled.

Panel A: v, Unknown

25

MSro'E

MS*O*E

@ x")‘“ @ x 10

Panel B: o, Unknown

]
1 x10 : . : 24X10 . .

22
2
1.8

216
=

MSOD*E

1.4

1.2

.

1 1 n 1 L 1
o067 0.0675 0.068 0.0685 0.069 067 0.0675 0.068 00685 0.069
a [+3
Panel C: f, Unknown
11 4
10.2%10 . . . . 18%10 : . \ .
10f ] 1.7
0gl ] 1.6 e
1.5+ e - -]

- [ “;v
w wi4r e e’
& g4 8 e
w w ot -

= = 13} o
9.2 d ‘_',.u"' "f’
120 e P
"'
o 11 -
—’
8.8 b
-4 1 1 1 1 1 L 1 L
%24 09242 09244 09246 09248 0.925 bh24 00242 09244 009246 09248 0925
B 14

97



Table 1: Simulated Parameter Estimates and Errors

This table shows the bias, standard deviations (SD), and mean square errors (MSE) of the parameter
estimates for different exercise prices and estimation methods. 1,000 Monto Carlo iterations of 30

daily observations are run where true parameters values are (4, @, o, Bo, yo) = (0.1746, 6.792x10°
9, 6.546 x 10'8, 0.9914, 351.945). ST uses stock data only, OT uses options data only, and S+O+E
uses both stock and options data includes an error term and assumes that # = 1, p = 0. The riskless
rate is fixed at 5%. Values shown for  are adjusted by 10” for Bias and SD, and 10" for MSE.
Values for o are adjusted by 10" for Bias and SD, and 10" for MSE. Values for p are adjusted by
10* for Bias and SD, and 10® for MSE. Values for y are adjusted by 1 for Bias, SD, and MSE

ST oT S+O+E
Sy /K 0.9 1.0 1.1 0.9 1.0 1.1
@ unknown
Bias 4.955 4.700 4.930 5.355 4.355 2.175 1.230
SD 1.628 1.810 1.813 1.366 2.134 2.103 1.258
MSE 2.718 2.534 2.756 3052/~ 2.347 0911 0.308
o unknown : _
Bias 3.744 5.528 556\ . 316 2.360 1.120 0.604
SD 2.919 3.629 35105 ~1.885 1.153 1.097 0.600
MSE 2.245 4.360 3982 1425 0.689 0.244 0.072
S unknown
Bias 0.570 1.380 - = “11030 0.840 70.440 0.081 0.030
SD 6.237 7.886 Lok 028 6:470 4.989 2.815 1.714
MSE 0.710 2.520 1.550 1.120 0.440 0.086 0.030
y unknown
Bias 1.164 1.620 1.300 1.328 0.828 0.276 0.124
SD 0.722 0.589 0.671 0.694 0.654 0.424 0.218
MSE 1.870 2.968 2.136 2.240 1.109 0.254 0.062
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Table 2: Risk Management Metrics under Different Data Specifications

Using 10,000 simulation iterations and 12 months of stock and options data, we calculate Black-
Scholes (B-S) and GARCH options risk metrics. Presented first are deltas (first partial with respect
to stock price), then gammas (the second partial). Each is calculated using stock data only in
columns (I) ST and both stock and options data including an error term in columns (II) S+O+E.
Difference columns (III) calculate quotients I / Il - 1 for respective entries. For GARCH

specifications, 7= (0 +a)/(1-ay’-p).

(D ST (IT) S+O+E dnI/1m-1
Sy/K B-S GARCH B-S GARCH B-S GARCH
Delta
0.90 0.0099 0.0101 0.0618 0.0634 -0.8398 -0.8412
0.95 0.1308 0.1371 0.2320 0.2455 -0.4364 -0.4415
T=30 1.00 0.5089 0.5305 0.5134 0.5413 -0.0086 -0.0200
1.05 0.8669 0.8749 0.7769 0.7909 0.1158 0.1062
1.10 0.9842 0.9867 0.9274 0.9345 0.0613 0.0559
0.90 0.0935 0.1000 0.1976 0.2247 -0.5267 -0.5549
0.95 0.2668 0.2871 0.3505 0.3911 -0.2386 -0.2660
T=90 1.00 0.5155 0.5449 0.5231< " 0.5657 -0.0146 -0.0367
1.05 0.7478. 0.7752 0.6839 0:7244 0.0935 0.0701
1.10 0.8975 0.9092 0.8104 0.8396 0.1074 0.0829
0.90 0.1826 0.2083: L. 02877 0.3392 -0.3653 -0.3858
0.95 0.3399 0.3749°" = 0:4088 0.4676 -0.1685 -0.1982
T=180 1.00 0.5219 0.5580 . 0.5327 0.5884 -0.0203 -0.0517
1.05 0.6913 0.7218 ~%.0.6478 0.7002 0.0672 0.0308
1.10 0.8221 .. 0.8480 0.7463 0.7932 0.1016 0.0691
Gamma L7
0.90 0.0011 0.0012 0.0034 0.0036 -0.6760 -0.6631
0.95 0.0083 0.0086 0.0080 0.0082 0.0410 0.0455
T=30 1.00 0.0148 0.0149 0.0099 0.0099 0.4960 0.4968
1.05 0.0076 0.0074 0.0071 0.0069 0.0776 0.0780
1.10 0.0013 0.0012 0.0031 0.0030 -0.5721 -0.5814
0.90 0.0040 0.0042 0.0044 0.0047 -0.1010 -0.1127
0.95 0.0074 0.0076 0.0056 0.0058 0.3265 0.3241
T=90 1.00 0.0086 0.0086 0.0057 0.0057 0.4969 0.4955
1.05 0.0065 0.0064 0.0049 0.0047 0.3418 0.3422
1.10 0.0035 0.0034 0.0035 0.0034 -0.0138 0.0057
0.90 0.0045 0.0047 0.0038 0.0040 0.1611 0.1714
0.95 0.0059 0.0061 0.0042 0.0043 0.4104 0.4081
T=180 1.00 0.0061 0.0060 0.0040 0.0040 0.4983 0.4984
1.05 0.0051 0.0049 0.0036 0.0035 0.4186 0.4144
1.10 0.0036 0.0034 0.0030 0.0028 0.2162 0.2236
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Table 3: Simulated Parameter Estimates and Errors

This table shows the bias, standard deviations (SD), and mean square errors (MSE) of the
parameter estimates for different exercise prices and estimation methods. 1,000 Monto Carlo
iterations of 30 daily observations are run where true parameters values are (4, wg, ag, [ =

(0.0116, 9.228x 10'7, 0.068, 0.9248). ST uses stock data only, S+O+E uses both stock and options
data includes an error term and assumes that # =1, p = 0. The riskless rate is fixed at 5%. Values
shown for @ are adjusted by 10" for Bias and SD, and 10" for MSE. Values for a and p are
adjusted by 10’ for Bias and SD, and 10’ for MSE.

ST S+O+E
Sq/K 0.9 1.0 1.1
w unknown
Bias 3.398 2.816 2.181 1.673
SD 2.832 2.753.. 2.485 2.038
MSE 1.956 1.550 1.093 0.695
o. unknown _ _
Bias 2.651. 2.019~ ~1.087 0.430
SD 2.532 R.510~ ' 1.985 1.209
MSE 1.343 l£_l41 0.512 0.164
S unknown _
Bias 2,634 2:183 1.108 0.314
SD 2358 o 2.363 7 1.865 0.987
MSE 1.239 ) R < 0.470 0.107
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Table 4: Risk Management Metrics under Different Data Specifications

Using 10,000 simulation iterations and 12 months of stock and options data, we calculate Black-
Scholes (B-S) and GARCH options risk metrics. Presented first are deltas (first partial with respect
to stock price), then gammas (the second partial). Each is calculated using stock data only in
columns (I) ST and both stock and options data including an error term in columns (II) S+O+E.
Difference columns (III) calculate quotients I / II - 1 for respective entries. For GARCH
specifications, ho=w /(1 -a-f).

(D ST (IT) S+O+E dnI/1m-1
Sy/K B-S GARCH B-S GARCH B-S GARCH
Delta
0.80 0.0021 0.0060 0.0077 0.0135 -0.7312 -0.5582
0.90 0.0911 0.0839 0.1312 0.1211 -0.3058 -0.3067
T=30 1.00 0.5153 0.5106 0.5180 0.5191 -0.0052 -0.0164
1.10 0.8997 0.9127 0.8643 0.8741 0.0410 0.0443
1.20 0.9921 0.9909 0.9804 0.9787 0.0119 0.0125
0.80 0.0535 0.0533 0.0889 0.0823 -0.3983 -0.3521
0.90 0.2339 0.2179 0.2759 0.2470 -0.1523 -0.1177
T=90 1.00 0.5265 0.5352 0.5312< 0.5354 -0.0088 -0.0004
1.10 0.7833. 0.8000 0.7540 0:7780 0.0388 0.0284
1.20 0.9248 0.9280 0.8931 0.9072 0.0354 0.0230
0.80 0.1372 0.1186; .. .0.1847 0.1649 -0.2570 -0.2809
0.90 0.3205 0.2971°° = 0:3574 0.3226 -0.1033 -0.0790
T=180 1.00 0.5374 0.5383 .. 0.5441 0.5451 -0.0121 -0.0124
1.10 0.7261 0.7500 ~%.0.7059 0.7300 0.0286 0.0274
1.20 0.8563 .. 0.8764 0.8250 0.8457 0.0379 0.0363
Gamma L7
0.80 0.0002 0.0001 0.0005 0.0008 -0.6368 -0.9194
0.90 0.0040 0.0036 0.0044 0.0046 -0.0941 -0.2179
T=30 1.00 0.0087 0.0097 0.0074 0.0084 0.1775 0.1644
1.10 0.0035 0.0034 0.0037 0.0035 -0.0499 -0.0110
1.20 0.0004 0.0004 0.0007 0.0009 -0.4630 -0.5846
0.80 0.0017 0.0020 0.0021 0.0025 -0.2040 -0.2050
0.90 0.0043 0.0047 0.0040 0.0041 0.0795 0.1471
T=90 1.00 0.0050 0.0061 0.0042 0.0046 0.1781 0.3423
1.10 0.0033 0.0035 0.0031 0.0032 0.0968 0.0850
1.20 0.0015 0.0015 0.0016 0.0012 -0.0932 0.1771
0.80 0.0024 0.0027 0.0025 0.0028 -0.0308 -0.0358
0.90 0.0035 0.0034 0.0031 0.0033 0.1287 0.0394
T=180 1.00 0.0035 0.0050 0.0030 0.0045 0.1791 0.1153
1.10 0.0027 0.0024 0.0024 0.0028 0.1377 -0.1293
1.20 0.0017 0.0015 0.0016 0.0011 0.0345 0.4385
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