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Abstract 

This study derives asymptotic characteristics of GARCH(1,1) options price model 

estimators when using stock data only (ST), using option data only (OT), and using stock 

and options data with (S+O+E) or without an error term (S+O). The asymptotic variance in 

large sample theory shows that the OT method results in potentially biased and inefficient 

estimators, whereas S+O+E generates unbiased estimators which are substantially more 

efficient than either ST (S+O) or OT. These results are confirmed by finite sample 

simulation studies. Hence, the difference in estimation between S+O+E and ST is 

substantial and results in significantly different risk management consequences. These 

errors substantially impact risk management metrics as options deltas and gammas vary by 

as much as 80%, depending on the method used. Since the GARCH option models are 

relative restrictive and cannot capture the empirical phenomena (cf. Engle and Mustafa 

(1992)), we introduce an error term to the options pricing model, lending needed slack to 

the estimation process and resulting in unbiased estimates that are maximally efficient. 

That is, more data is better, but only if the data set is appropriately applied. 

Keywords: GARCH option model, asymptotic behavior, estimator efficiency and bias, 

risk management 
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Chapter 1  

Introduction 

A number of papers have sought to develop methods of appropriately and empirically 

accurately measuring stock price volatility, a factor that is critical in numerous fields of 

study including options pricing and risk management. It is a value that is necessary for 

calculation of hedge ratios and key risk metrics such as the options delta and gamma and, 

as a result, lies at the very core of traditional risk measurement, options pricing, and 

hedging strategies. Early work in this field focuses on application of stock price data 

(henceforth the ST data specification) while more recent efforts have sought to apply both 

stock and options data to the estimation problem under the assumption that the more data is 

applied, the more accurate are the resulting estimates. Empiricists have sought to do so in 

both the GARCH and stochastic volatility (SV) settings, generally applying these data 

without allowing for error in the options pricing model (henceforth the S+O method). 

Ultimately, GARCH models have been shown to provide better empirical fit and 

characteristics, making it an important class of models to consider. However, when it 

comes to estimating these models, application of the dual dataset becomes difficult owing 

to the restrictive nature of the specification, leading some to believe that the flexibility of 

SV models makes it a more desirable environment for estimation. Since there are 
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consequences of the likelihood principle and Engle and Mustafa (1992), S+O method is 

found to be similar to ST method under GARCH models. That is, more data is not always 

better, and traditional methods leave estimation of this important class of models severely 

handicapped. 

To resolve this issue, we develop additional two data specifications, a third data 

specification that applies options data only (OT) and a fourth data specification that applies 

stock and options data but includes an error term (S+O+E) such that options data need not 

match precisely the options pricing model. 1  We derive a quasi-maximum likelihood 

estimator (QMLE) for volatility under the GARCH(1,1) specification, both through 

analytical derivation of asymptotic behavior and numerical simulation, that the OT method 

generates inefficient, and more importantly, estimate bias that is economically and 

statistically significant. After relaxing this important modeling constraint, S+O+E 

generates asymptotically unbiased estimates that are the most efficient of the four data 

specifications. Most importantly, we then apply S&P500 stock and options daily data from 

January 2007 to the end of 2007 to generate commonly used risk and hedging metrics, i.e. 

the options delta and gamma. We find that those calculated using the S+O+E method are 

substantially different from those arrived at using stock data alone, indicating that the 

impact of including options data is economically significant and should be taken into 

account when determining hedging strategies.

Eraker (2004) offers several advantages using both stock and options data under 

SV model: A primary advantage is that risk premiums relating to volatility and jumps can 

                                                
1More details about price errors see Engle and Mustafa (1992), Jacquier and Jarrow (2000), Eraker (2004) 
and Johannes, Polson, and Stroud (2009) and others. 
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be estimated. Secondly, the one-to-one correspondence of options to the conditional 

returns distribution allows parameters governing the shape of this distribution to 

potentially be very accurately estimated from option prices. For example, Eraker, Johannes, 

and Polson (2003) suggest that estimation from stock data alone requires fairly long 

samples to properly identify all parameters. Hopefully, the use of option prices can lead to 

very accurate estimates, even in short samples. Moreover, the use of option prices allows, 

and in fact requires, the estimation of the latent stochastic volatility process. Since 

volatility determines the time variation in relative option prices, there is also a strong 

potential for increased accuracy in the estimated volatility process. Finally, joint estimation 

also raises an interesting and important question: Are estimates of model parameters and 

volatility consistent across both markets? How to get the same results under GARCH 

models? This is the essential question to be addressed in this paper. 

Other papers apply both stock and options data to estimate volatility, such as 

Chernov and Ghysels (2000), Jacquier and Jarrow (2000), Pan (2002), Jones (2003), 

Aїt-Sahalia and Kimmel (2007), and Johannes, Polson, and Stroud (2009), each addressing 

the estimation issue under different assumptions. However, all of these papers do so under 

an SV or Black-Scholes (BS) rather than GARCH specification. Chernov and Ghysels 

(2000), Pan (2002), Jones (2003), and Aїt-Sahalia and Kimmel (2007) apply an S+O model 

whereas Jacquier and Jarrow (2000), Eraker (2004) and Johannes, Polson, and Stroud 

(2009) apply an S+O+E model. In addition, Chernov and Ghysels (2000) and Pan (2002) 

use generalized method of moments (GMM) estimators, Jacquier and Jarrow (2000), Jones 

(2003), Eraker (2004), and Johannes, Polson, and Stroud (2009) use Bayesian inference 

estimators, whereas Aїt-Sahalia and Kimmel (2007) uses maximum likelihood estimators 
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(MLE). Moreover, each of these papers focuses primarily on the computational aspects of 

their model, leaving open the important issues of the statistical properties and empirical 

implications of the models. Our paper explores these issues explicitly.  

Importantly, Lehar, Scheicher, and Schittenkopf  (2002) analyzes GARCH v/s SV 

models and finds that GARCH models dominate in terms of fit to observed prices. Given 

this attractive property, it is fruitful to develop a GARCH model that applies both data sets 

in an efficient, unbiased way: the task we explore here. Unfortunately, GARCH models 

that apply both stock and options data are scarce. Engle and Mustafa (1992) is among the 

earliest of these efforts. We follow this early work in that we also consider the role of error 

in the options pricing model but differ in that their work focuses on the application 

nonlinear least square (NLS) estimators for minimum of loss function toward the 

estimation of implied volatility, that is, this does so under an S+O specification. They find 

that the persistence of volatility shocks implied by options is found to be similar to that 

estimated from historical data on the index itself, that is, S+O method is similar to ST 

method. Christoffersen and Jacobs (2004) also uses NLS estimators and the S+O 

specification with both stock and options data under GARCH model. The focus of that 

study is on the accuracy of options pricing models and their ability to describe observed 

options prices. It does not address the estimation quality of the model nor does it seek to 

differentiate its data specifications from others. In contrast, our study is the first to derive 

the asymptotic characteristics of estimators then test these results using empirical data 

under the different data specifications. 

Our theoretical construct builds upon the GARCH(1,1) setups of Heston and Nandi 

(2000), which propose a class of GARCH models that allow for a closed-form solution for 
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the price of a European call option. We apply this model to the application of different data 

inclusion specifications and address asymptotic behavior using QMLE methods (cf. Lee 

and Hansen (1994) and Lumsdaine (1996)). For the S+O specification, we revise 

Aїt-Sahalia and Kimmel’s (2007) log-likelihood function to follow a GARCH(1,1), which 

has only one random source, and derive the asymptotic behavior of the QMLE. From this is 

a consequence of the likelihood principle, we find that the asymptotic behavior of the 

QMLE for S+O method is equal to that for ST method under GARCH models, that is, S+O 

method is similar to ST method. Thus, we don’t display S+O method in this paper.

Specifically, for the OT specification, we apply the log-likelihood function of Duffie, 

Pedersen, and Singleton (2003) to derive the asymptotic behavior of the QMLE. Our 

theoretical findings show that the OT method generates biased estimates and further partly 

results in higher estimation variance and mean squared error than applying stock data alone, 

the ST specification. Applying data and Monte Carlo simulations, we confirm these 

findings for all four variables that we seek to estimate. 

These findings alone are perhaps not surprising. The GARCH specification is a 

restrictive one under which the application of the dual dataset can tend to obtain helpless 

the model. In contrast, the SV class of models introduces an error term into the volatility 

measure, thereby providing considerable slack in the model and allowing for the 

application of a more comprehensive dataset. The intuition behind our S+O+E method is 

the same. By allowing for additional slack, this time in the options pricing formula itself, 

we hope to provide the slack necessary for the dual dataset to generate unbiased, 

maximally efficient estimates for the GARCH class of models. 

Specifically, the S+O+E specification assumes that HN
t t tC C e� � . The error term et is 
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assumed to be distributed 2(0, )N �  and is correlated with the error term of stock return.2

Put plainly, we allow for options price data to err from the theoretical options price. Under 

this specification, we find that, for all four variables that we seek to estimate, the 

asymptotic mean squared error is lower than that of ST specification. That is, inclusion of 

an error term guarantees that the specification will dominate stock data only in large 

sample theory, where as applying stock and options data without an error term does not. 

Importantly, S+O+E also generates asymptotically unbiased estimates. These results are 

confirmed by our simulations in finite sample studies. Indeed, the OT method generates 

estimate bias, standard deviation, and mean squared error that are several times higher than 

those of S+O+E. ST, while generally not substantially biased, also generates estimates with 

standard deviations and mean squared errors that are several times higher than that of 

S+O+E. We conclude that the use of option prices can lead to very accurate estimates not

only in short samples but also in long samples.

To test the implications of these differences in estimate quality, particularly in the 

risk management setting, we apply 12 months of stock and options data and show 

empirically that ST and S+O+E generate substantially different critical risk metrics. We 

calculate options delta and gamma using both the Black-Scholes and GARCH options 

pricing models. We find that estimates vary considerably depending on the data 

specification used. Delta estimates differ by as much as 80% which gamma estimates may 

differ by more than 60%. Although these differences are not systematically related to the 

                                                
2In the information point of view, when good or bad news occur in financial market, these maybe affect the 
stock price and option price simultaneously. Then, these lead to the emergence of the correlation between 
stock error and price error. 
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moneyness of the option, they are nonetheless considerable. We conclude that the unbiased, 

more efficient estimates derived from our S+O+E method have a concrete and 

economically important impact, a notion managers would do well to keep in mind as they 

implement risk management practices. 

Finally, we apply the Duan’s (1995) options pricing formula for a robustness check. 

The results again show in this study, both through analytical derivation of asymptotic 

behavior and numerical simulation, that S+O+E method generates more efficient and 

unbiased estimates. These errors substantially impact risk management metrics as options 

deltas and gammas vary by as much as 90%. These results are consistent with our general 

findings.

The remainder of this paper is organized as follows: Chapter 2 introduces price 

error. Chapter 3 presents the main results. Chapter 4 proposes a robustness check. Chapter 

5 concludes. All proofs of the results are relegated to Appendix. 
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Chapter 2  

An Introduction of Pricing Error 

Consider T observations of a contingent claim's market price, tC , for � �1, ,t T� � .We 

think of tC as a limited liability derivative, like a call or put option. Formally, we can 

assume that there exists an unobservable equilibrium or arbitrage free price tc for each 

observation. Then observed price tC  should be equal to the theoretical price tc . There is a 

basic model ( , )tf X �  for the equilibrium price tc . The model depends on vectors of 

observables tX  and parameters � . We assume that the parameters are constant over the 

sample span. The model is an approximation, even though it was theoretically derived as 

being exact. There is an unobservable pricing error, te . A quote tC may also sometimes 

depart from equilibrium. The error then has a second component t	 , which can be thought 

of as a market error. t	 and te are not identified without further assumptions. In this paper, 

we merge these two errors into one common pricing error te . Formally, 

( , )t t tC f X e�� � .         (2.1) 

This implies a multiplicative error structure on the level, which guarantees the positivity of 

the call price for any error distribution. 
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The introduction of a non-zero error te is justified. First, simplifying assumptions 

on the structure of trading or the underlying stochastic process made to derive tractable 

models. They result in errors, possibly biased and non i.i.d. For example, Renault and 

Touzi (1996) and Heston (1993), show this within the context of stochastic volatility 

option pricing models. Renault (1997) shows that even a small non-synchroneity error in 

the recording of underlying and option prices can measurement can cause skewed 

Black-Scholes implied volatility smiles. Bakshi, Cao, and Chen (1997) show that adding 

jumps to a basic stochastic volatility process further improves pricing performance. 

Bossaerts and Hillion (1997) show that the assumption of continuous trading also leads to 

smiles while Platen and Schweizer (1994)'s hedging model causes time varying skewed 

smiles in the Black-Scholes model. In all of the above cases, the model errors are related to 

the inputs of the model. Second, in typical models, the rational agents are unaware of 

market or model error and know the parameters of the model. Such models could be biased 

in the ‘larger system’ consisting of expression (2.1). 
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Chapter 3  

Parameter Estimation under 

GARCH Option Price models 

3.1. Model setup and OT specification 

First, we describe the general stock and option pricing models applied in this paper. 

Then, we derive QMLE and asymptotic results for the ST and OT specifications, noting the 

bias and estimator inefficiencies of the OT method. Numerical results confirm these 

characteristics. 

3.1.1. GARCH(1,1) stock and option pricing models 

We adopt the generalized setup used by Heston and Nandi (2000), which propose a 

class of GARCH models that allow for a closed-form solution for the price of a European 

call option, where the data-generating process for the stock price S is:  

1/2
1ln ln ,t t t t t ty S S r h h z
�� � � � �  under P measure,    (3.1) 

� 
21/2
1 1 1t t t th z h h� � � �� � �� � � � ,     (3.2)
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where r  is the risk free rate and 
  is the price of risk. The variance equation (3.2) is in fact 

a nonlinear asymmetric (NAGARCH) configuration (cf. Engle and Ng (1993)). The 

process remains stationary with finite mean and variance if 2 1�� �� � . We may consider 

process (3.2) as running indefinitely or we may assume initial values 0y  and 0h , with the 

latter drawn from the stationary distribution applied by Bollerslev (1986), Nelson (1990), 

Bougerol and Picard (1992), and others. Let t�  be the sigma-field generated by 

� �1, ,t ty y � �  and let 0 0 0 0 0( , )� � � � � �� � � represent the true parameter vector. Assume that 

4
0� ���� is in the interior of � , a compact, convex parameter space. Specifically, for 

any vector ( , )� � � �� � �� , 0 L U� � �� � � , 0< L U� � �� � , 0< L U� � �� � ,

L U� � �� � , and 21( ) 1
2U U U� 
 � �� � � � .3 Assume also that � �t tz

��
 is i.i.d., drawn from 

a symmetric, uni-modal density, bounded in a neighborhood of 0, with mean 0, and 

variance 1. In addition, assume that th  is independent of � �1, ,t tz z � � .

The corresponding model under local risk neutralization reads 

1/2
1

1ln ln ,
2

Q
t t t t t ty S S r h h z�� � � � �  under Q measure    (3.3) 

� 
21/2
1 1 1

Q
t t Q t th z h h� � � �� � �� � � � ,      (3.4) 

where 1
2Q� � 
� � � and 1/21

2
Q
t t tz z h
� �� � �� ��  

. Then, the GARCH option pricing 

formula is described as: 

                                                
3 Since 2( 1/ 2) 1U U U� 
 � �� � � �  implies 2 1Q�� �� � , the process (3.4) under Q measure also remains 
stationary with finite mean and variance. These conditions easy to be arrived from our estimative parameters 
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on S&P 500 index data. Hence, the parameter space � is enough large.  
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where 1 , 1 , 1 , 1( , ) ( ) ( , ) ( , ) ( )m t m t m t tX r T t m A B h! � ! � ! � ��� � � � �  and 

2 , 2 , 2 , 1( , ) ln( / ) ( , ) ( , ) ( )m t t m t m t tX S K A B h! � ! ! � ! � ��� � � , 0,1m � .

3.1.2. QMLEs for ST and asymptotic results 

We now turn our attention to estimating the parameters in the model. The base case 

ST uses only stock data. Specifically, th  is the conditional variance of ty  with respect to 

1t�� . The estimation model utilizes (3.1) and (3.2), applying estimated parameter values 

� 
1 2 3 4( , ) , , ,� � � � � � � �� � � . The error terms tz  are computed as 0 0
0 1/2

0

y r hz
h


� �� ,

1 1
1 1/2

1

y r hz
h


� �� , �, where � �,  0, ,ty t T� �  are observed data. The process th  is not 

observed but is constructed recursively using estimated parameter values, 0z , and an 

appropriate startup value, 0h , to be discussed in detail later.  

QMLE is obtained by maximizing, conditional on 0h , as follows: 

� 
 � 
2

0 0
1

( )1( , , , ; ) ( ) ln ( ) .
2 ( )

T
t tST ST

T T T t
t t

y r h
L y y h L h
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 �
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-�  (3.7)

That is, ˆ argmax ( )ST ST
T TL

�
� �

��
� . This estimator is consistent as 0

ˆ p
ST
T� �. and is

asymptotically Normal as  
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A full proof appears in Section 3.5 as Theorem 3.1. 

In the interest of computational simplicity, assume that tz  is Normal so that 

0 0ST STF H� , though our general intuition remains the same under the more relaxed 

aforementioned specification for tz . The asymptotic covariance matrix STV and 

asymptotic mean square errors STMSE are: 

1 1
0 0 0 0 0

0

1( ) ( )ST ST ST ST ST
ST

MSE V F H F
F

� � � �� � � ,     (3.9) 

where
2
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h h

� �

� � � �
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.

3.1.3. QMLEs for OT and asymptotic results 

For OT, we simply have ,  1 ,HN
t tC C t T� � � �� since the pricing formula is 

assumed to match the observed data exactly. Duffie, Pedersen, and Singleton (2003) 

provide a treatment for the log-likelihood function when only options data is applied in this 

fashion. Let tS  be an unobservable stock price. Expressing the stock and options price 

vector as a function of the state variable vector, we have: ( )t tC f S �� 0  for a differentiable 

function f that is easily computed. At a given parameter vector � , we may now express the 
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state variable as a function of observed asset prices as follows: 1( ) ( )t tS f C� ��� 0

assuming invertibility (which is not an issue in our application). Letting 1( , , )TC C C� �

denote the sequence of observed vector of reference option prices, standard 

change-of-variable arguments lead to the likelihood 

� 
 � 
1
1

1( ) ( ) ( )
det ( )

T

t t
t t

P C P S S
Df S

� � � �
� ��

�

0 � 1 0
02 ,    (3.10) 

where  
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and  

� 
3 , 2 , 2 , 1( , ) ln ( ) / ( , ) ( , ) ( )m t t m t m t tX S K A B h! � ! � ! � ! � ��� � � , 0,1m � .

Then, the log-likelihood function for discrete data of the asset price vector C  sampled at 

dates 0 t T� �  has the form  

� 
 � 

2

1

( )1 1( ) ln ( ) ln ( )
2 ( )

T
OT t
T t t

t t

YL J h
T h

�� � �
��

$ %� �
� � � �( )� �

�  & '
- .    (3.11) 

where ( ) det ( ( ) )t tJ Df S� � �� 0  and 1( ) ln ( ) ln ( ) ( )t t t tY S S r h� � � 
 ��� � � � . And, the 

QMLE for ˆ argmax ( )OT OT
T TL

�
� �

��
� . Note, then, that this estimator is asymptotically biased 

since: 1
ˆ 0

p
OT
T� �� . , where 

12
0 0

1 0
1 0

( ) ( )1 1
' ( )

OT T
T t

t t

L J
T J

� �� �
� � � �

�

�

� �/ /, �� �/ / /�  
- . Investigating the bias 
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in particular, we have that 
12

0 0
0

1 0

( ) ( )1 1( )
' ( )

OT T
T t

OT
t t

L JBias
T J

� ��
� � � �

�

�

� �/ /� � �/ / /�  
- . Full proofs can 

be found in Section 3.5 as Theorem 3.2. 

Theorem 3.2 also shows that the estimator is asymptotically Normally distributed 

as 1/2 1/2
0 0 1 4

ˆ( )~ (0, ),
A

OT
OT OT TH F T N I� �� �  where 

2
0

0
( )

'

OT
T

OT
LF E �
� �

� �/�� � �/ /�  
 and 

1/2 0
0

( )OT
T

OT
LH Var T �

�
� �/� � �/�  

. Again, assume that tz  is Normal. The asymptotic covariance 

matrix OTV  and asymptotic mean square errors OTMSE  for the OT case are: 

0 1
0 0 0

1( )OT
OT OT OT

V
F H F

� ��        (3.12) 

and 

2
0 0 0( ) ( ) ( )OT OT OTMSE V Bias� � �� � ,       (3.13) 

where 0 0 0 0
0 0 2

0 0

( ) ( ) ( ) ( )1 1( )
2 ( ) ' ( ) '

t t t t
OT

t t

h h Y YH E E
h h

� � � ��
� � � � � �

$ % $ %/ / / /� �( ) ( )/ / / /& ' & '
 and 

2
0 0 0

0 0 0 02
0 0

( ) ( ) ( )1 1( ) ( )
( ) ' ( ) '

t t t
OT OT

t t

J J JF E E H
J J

� � �� �
� � � � � �

$ % $ %/ / /� � �( ) ( )/ / / /& ' & '
. Then, the 

difference of asymptotic mean square errors between OT and ST OTdMSE is: 

0 0 0( ) ( ) ( )OT OT STdMSE MSE MSE� � �� � .      (3.14)

Using these results, which follow from Lemmas 3.1, 3.2, 3.5, and 3.6 in Section 3.5, we can 

compare the magnitude of mean square errors in large sample theory, a lower asymptotic 

mean square errors indicating better estimation. Namely, if 0( ) 0OTdMSE � � , then 

OT STMSE MSE�  and using options data only specification is more efficient than using 
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stock only. Since the covariance matrix V  is a 4 43  matrix, we estimate each of the four 

parameters separately, holding the other three constants.  

When 0� , 0� , and 0�  are known and �  is unknown, we have the asymptotic bias 

is
12

0 0
0 0 0 0 2

1 0

( ) ( )1 1( | , , )
( )

OT T
T t

OT
t t

L JBias
T J

� �� � � �
� � �

�

�

� �/ /� � �/ /�  
- . Bias, then, is non-zero in 

magnitude. Investigating estimate mean square errors, we find that: 

0 0 0 0 0 0( | , , ) ( ) ( )OT OT STdMSE MSE MSE� � � � � �� � .    (3.15) 

Note that dMSEOT may be positive or negative, where a positive results means that results 

are less efficient than using stock data alone. Since the dMSEOT depends on true parameters,

we don’t compare these values. Thus, we will calculate these values by numerical 

simulation in Section 3.1.4. As illustrated later, dMSEOT is in fact sometimes positive. 

Similarly, when 0� , 0� , and 0�  are known and �  is unknown, we have 

12
0 0

0 0 0 0 2
1 0

( ) ( )1 1( | , , )
( )

OT T
T t

OT
t t

L JBias
T J

� �� � � �
� � �

�

�

� �/ /� � �/ /�  
- which is again non-zero in 

magnitude and 

0 0 0 0 0 0( | , , ) ( ) ( )OT OT STdMSE MSE MSE� � � � � �� � .    (3.16) 

As demonstrated later, dMSEOT is sometime positive definite and the estimator is 

sometimes less efficient than that which is found using the ST method. 

Similarly, when 0� , 0� , and 0�  are known and �  is unknown, we have 

12
0 0

0 0 0 0 2
1 0

( ) ( )1 1( | , , )
( )

OT T
T t

OT
t t

L JBias
T J

� �� � � �
� � �

�

�

� �/ /� � �/ /�  
- which is again non-zero in 

magnitude and 
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0 0 0 0 0 0( | , , ) ( ) ( )OT OT STdMSE MSE MSE� � � � � �� � .    (3.17) 

As demonstrated later, we find that dMSEOT is sometimes positive definite. 

Finally, when 0� , 0� , and 0�  are known and �  is unknown, we find similar to the 

previous case that 
12

0 0
0 0 0 0 2

1 0

( ) ( )1 1( | , , )
( )

OT T
T t

OT
t t

L JBias
T J

� �� � � �
� � �

�

�

� �/ /� � �/ /�  
- , a non-zero 

entity and 

0 0 0 0 0 0( | , , ) ( ) ( )OT OT STdMSE MSE MSE� � � � � �� � .    (3.18) 

Again, as for the case where �  is unknown, we show that dMSEOT is sometimes positive. 

3.1.4. Numerical computation for asymptotic bias and mean square errors 

We now generate numerical results to test and illustrate these asymptotic findings. 

We presume that parameter true values are (λ, ω0, α0, β0, γ0) = (0.1746, 6.792×10-9,

6.546×10-8, 0.9914, 351.945), and the risk-free rate is fixed at 5%. These parameters are 

estimated using S&P 500 daily index data from January 1996 to the end of 2007. We use 

these parameters to run our tests.

First, we investigate and calculate analytically the aforementioned estimate bias. 

Graphs in Figure 1 show the absolute value of bias divided by true value in the area 

surrounding true parameter values. Since the orders of magnitude for the four parameters 

are quite different, we graph the bias of ω on the left, that of α, that of β, and that of γ on the 

right. True parameters are circled in each graph. Then, in each panel, one variable is varied 

while the other three are treated as known. Specifically, in Panel A, ω is varied, in B α, in C

β, and in D γ.
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[Insert Figure 1 here] 

Note that, in all graphs, bias is decidedly non-zero and non-trivial for all four 

parameters. Though not shown here, the absolute value of bias is positive for all four

parameters for the entire span of possible parameter values.4 In Panel A, the bias for ω is 

sometimes large and sometimes small with ω locally in the region around the true 

parameter values but that for ω in the true parameter values is non-zero in magnitude.

There are the same results for those for α, β, and γ. The bias for ω is always higher than that 

of others. The order of these values is the bias for ω, that for α, that for γ, and that of β.

Corresponding graphs Panels B, C, and D are similar to each other in shape, though their 

x-axes differ. All in all, using OT, bias is non-zero for each variable estimated, regardless 

of the true parameter values implemented. In contrast, neither ST nor S+O+E generate 

asymptotic bias in any variable. 

Shifting our attention to the efficiency of the estimator, graphs of dMSEOT are 

shown in Figure 2. Remember that, the more positive this value, the more efficient the 

estimator. 

[Insert Figure 2 here]

Once again, in Panel A, ω is varied, in B α , in C β, and in D γ. Looking at Panel A, 

dMSEOT for ω is almost negative and sometimes positive for all four parameters in the area 

surrounding true parameters but that for ω in the true parameter values is always negative.

There are the same results for those for α, β, and γ. dMSEOT for α is always lower than that 

of others. The order of these values is dMSEOT for γ, that for β, that for ω, and that of α.

                                                
4 Each the parameter for ω (α, β, γ) ranges from 0 to 1 such that 2( 0.5) 1� 
 � �� � � � .
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Graphs in Panels B, C, and D are again similar in shape. In three panels, dMSEOT is

sometimes positive for all four parameters.

In summary, dMSEOT is sometimes positive for all parameters in the area 

surrounding true parameters. As such OT does not generally produce efficient estimators. 

As aforementioned, it furthermore generates significant bias. We conclude that OT is not 

an optimal estimation method given the restrictive nature of GARCH models. As a result, 

we seek to develop a method that will allow for asymptotic unbias and efficient estimation 

of this important class of models.

3.2. The S+O+E specification 

 We now turn our attention to a new specification that takes both stock and options 

data into account, but which allows for an error term in the options pricing formula. Then, 

we derive QMLE and asymptotic results for the S+O+E specification. Numerical results 

confirm these characteristics. 

3.2.1. QMLEs and asymptotic results 

For this method, we allow that ( )HN
t t tC C e�� �  where t te u��  and  1, ,t T� � .

Assume that 
. . .
~ (0,1)

i i d

tu N  and 0� 4 . For the purpose of calculating the QMLE, let us 

assume tz and tu , with ( )t tcorrelation z u 5� � where 1 15� � � , have a bi-Normally 
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distribution, that is, 
0 1

~ ,
0 1

t

t

z
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u
5

5

� �
� �
� �
� �� ��  

� �� � � �
� �� � � �
�  �  �  

. 5  Let [ ]t t tG S C �� �  be a vector of 

observable stock and option prices, respectively. Then, the joint density is as follows: 
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2 .   (3.19) 

The log-likelihood function for discrete data on the asset price vector tG  sampled at dates 

0 t T� �  has the form: 
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(3.20) 

And, the QMLE for ˆ argmax ( )S O E S O E
T TL

�
� �� � � �

��
� .

Unlike the OT case, this estimator is consistent as 0
ˆ p

S O E
T� �� � .  and is 

asymptotically Normally distributed as 1/2 1/2
0 0 0 4

ˆ( )~ (0, )
A

S O E
S O E S O E TH F T N I� �� � �
� � � � � , where 

2
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'

S O E
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S O E
LF E �

� �

� �

� �
� �/� � � �/ /�  

 and 0 0
0
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'

S O E S O E
T T

S O E
L LH E T � �

� �

� � � �

� �
� �/ /� � �/ /�  

. A full proof 

appears as Theorem 3.3 in Section 3.5. Again, assume that tz  is Normal so that 

                                                
5This simple idea likes Eraker (2004) to joint stock error and price error but differ in that he assumes that the 
relation between stock error and price error is zero and there is the relation between price error at time t and 
price error at time t-1. 
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0 0S O E S O EF H� � � �� . The asymptotic covariance matrix S O EV � �  and asymptotic mean square 

error S O EMSE � �  for the S+O+E case are: 

0 0

1 1
0 0 0

0 0 0

( ) ( )
1 1                      

( )

S O E S O E

S O E S O E S O E
S O E ST S O E

MSE V

F H F
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� �

�

� � � �

� �
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� � � �

�

� � �
�

, (3.21) 

where 0 0 0( )S O E S O E STM F F�� � � �� � and 

2 2
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0 2 2 2 1/2 2 2
0 0 0
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$ %� � $ % $ %/ / / / / /� � � �( )� � ( ) ( )�� / / � / / � / /( ) & '�  & '& '

These results follow from Lemmas 3.1, 3.2, 3.13, and 3.14 in Section 3.5. As before, we

can compare the magnitude of asymptotic mean square errors, again a lower asymptotic 

mean square errors indicating better estimation. Here, if 0S O EM � � 4 , then 

S O E STMSE MSE� � � . Namely, we now investigate S O EM � �  where the more positive, the 

more efficient the estimator. 

When 0� , 0� , and 0�  are known and �  is unknown: 
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(3.22) 

Note that MS+O+E may be positive or negative, where a positive result means that results are 

more efficient than using stock data alone. In ρ = 0 case, we easy to see that MS+O+E is 

positive definite from (3.22), indicating that S+O+E generates more efficient estimates 

than ST. This method makes it the most desirable data specification of the two. In ρ ≠ 0

case, we don’t compare these values since the MS+O+E depend on true parameters. Thus, we
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will calculate these values by numerical simulation in Section 3.2.2. As illustrated later, 

MS+O+E is in fact generally positive. When 0� , 0� , and 0�  are known and �  is not: 
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 (3.23) 

In ρ = 0 case, MS+O+E is positive definite, and in ρ ≠ 0 case, as demonstrated later, MS+O+E is 

positive definite. Similarly, when 0� , 0� , and 0�  are known and �  is not: 
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 (3.24) 

Again, as for the case where �  is unknown, we show that MS+O+E is always positive. 

Finally, when 0� , 0� , and 0�  are known and �  is not: 
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 (3.25) 

Again, as for the case where �  is unknown, we show that MS+O+E is always positive.  

3.2.2. Numerical computation for asymptotic mean square errors 

We now generate numerical results to test and illustrate these asymptotic findings. 

As before, we use these parameters (λ, ω0, α0, β0, γ0) = (0.1746, 6.792×10-9, 6.546×10-8,

0.9914, 351.945) and the risk-free rate is fixed at 5% to run our tests.
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First, we investigate and calculate analytically the efficiency of the estimator, 

graphs of MS+O+E, in varied ρ. Remember that, the more positive this value, the more 

efficient the estimator. Graphs in Figure 3 show that the value of MS+O+E in the true 

parameter values and ρ from -0.9 to 0.9. Then, in each panel, one variable is unknown

while the other three are treated as known. Specifically, in Panel A, ω is varied, in B α, in C

β, and in D γ. 

[Insert Figure 3 here]

Looking at all graphs, MS+O+E is decidedly non-zero and non-trivial for all four

parameters. And, MS+O+E is positive for all four parameters. Specifically, MS+O+E is always

minimum in ρ = 0 and increases as the absolute value of ρ increases. In all cases, S+O+E 

generates more efficient estimates than ST.

Graphs of MS+O+E are shown in Figure 4, in the area surrounding true parameter 

values. We only consider ρ = 0 case since MS+O+E is minimum in this case. Since the orders 

of magnitude for the four parameters are quite different, we graph the MS+O+E of ω, α, β,

and γ on the left to the right. True parameters are circled in each graph. Then, in each panel, 

one variable is varied while the other three are treated as known. Specifically, in Panel A, ω

is varied, in B α, in C β, and in D γ.

[Insert Figure 4 here]

Note that, in all graphs, MS+O+E is decidedly non-zero and non-trivial for all four 

parameters. Thought not shown here, MS+O+E is positive for all four parameters for the 

entire span of possible parameter values.6 In Panel A, MS+O+E is always positive for all four 

                                                
6 Each parameter for ω (α, β, γ) ranges from 0 to 1 such that 2( 0.5) 1� 
 � �� � � � .
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parameters in the area surrounding true parameters. While MS+O+E for ω decreases with ω 

locally in the region around the true parameter values, those for α, β, and γ are increasing. 

In Panel B, MS+O+E for ω, α, β, and γ increase with α locally in the region around the true 

parameter values. Corresponding graphs Panels C and D are similar to each other in shape, 

though their x-axes differ. However, MS+O+E is always positive in each case.

In summary, MS+O+E is always positive for all parameters in the area surrounding 

true parameters. We conclude that S+O+E generates more efficient estimates than ST in all 

cases. This method also generates asymptotically unbiased estimates, making it the most 

desirable data specification of the two. We also conclude that the use of option prices can 

lead to very accurate estimates, even in long samples.

3.2.3. Numerical findings and direct comparisons in finite sample studies 

We generate parameter estimates using a Monte Carlo method, comparing the bias 

and variance characteristics of the three data specifications in finite sample studies. 

Specifically, we simulate 30 days of stock and/or option prices and then run 1,000 

iterations over each period.7 We again presume that parameter true values are (λ, ω0, α0, β0,

γ0) = (0.1746, 6.792×10-9, 6.546×10-8, 0.9914, 351.945). For the S+O+E case, we 

additionally assume that η = 1 and that ρ = 0. As a  robustness check, we re-run these tests 

for a variety of calibrations of ρ and η and find no qualitative differences. 

We estimate our four parameters for out-of-the-money (S0/K = 0.9), at-the-money 

(S0/K = 1.0), and in-the-money (S0/K = 1.1) cases. Results for 30 days are presented in 

                                                
7 We have also re-run all tests using 90 and 360 simulated days with qualitatively identical results.
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Table 1 where we report the absolute value of estimate bias (estimate less true value), 

standard deviation of the estimate (SD), and mean squared errors (MSE). 

[Insert Table 1 here] 

When ω is unknown, we find that S+O+E arrives at estimates within 4.355x10-9 of 

the true value. In contrast, estimates using ST and OT present biases on the order of 

roughly 1.1 to 4.4 times higher, respectiviely. Note that OT has the stronger bias regardless 

of the moneyness of the options. When options are in-the-money, standard deviations are 

lowest for S+O+E, with ST and OT again about 1.3 times and 1.1 times higher, 

respectively. With regard to MSE, results are even more staggering with S+O+E exhibiting 

the lowest values and ST and OT generating errors that are about 9 times and 10 times 

higher. Note that OT seems to perform particularly poorly when options are in-the-money. 

When estimating α, we similarly find that estimation bias is lower for S+O+E than 

for ST and OT, with the latter of these again having by the largest bias. Standard deviations 

are also lowest for S+O+E, with ST and OT again about 5 times and 3 times higher for 

most variables, respectively. MSE exhibits the same behavior as before, with S+O+E 

exhibiting by the lowest values, with magnitudes of difference similar to before. Note that 

OT presents particularly poor results with options out-of-the-money. 

When estimating β, we similarly find that estimation bias is far lower for S+O+E 

than for ST and OT, with the latter of these again having by far the largest bias. Standard 

deviation and MSE exhibit the same behavior as before, with S+O+E exhibiting by far the 

lowest values, with magnitudes of difference similar to before. Once again, OT presents 

particularly poor results with options out-of-the-money.  
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Estimation results for γ are consistent with those of the other three parameters. 

S+O+E exhibits the smallest bias, the lowest standard deviation, and the lowest MSE of the 

three methods. Again, OT exhibits by far the worst performance along all four metrics and 

again particularly poor when options are out-of-the-money. The prevalence of biased 

estimates is striking for OT and is a particular strength for S+O+E. 

In summary, we conclude that the use of option prices can lead to very accurate 

estimates, even in short samples. This result is consistent with that of Eraker (2004).

3.3. Risk management implications 

In this section we document that errors and bias in estimation may have substantial 

repercussions as relates to risk management benchmarks and practices. To illustrate, we 

obtain daily stock and options data from the Center for Research in Security Prices (CRSP) 

and the Option Metrics for the period from January 2007 to the end of 2007.  For stock 

prices (St), we use the S&P 500 index, and for options data (Ct), we use the price of a 

short-maturity at-the-money call options where the price is measured as the midpoint of the 

last reported bid-ask spread. We assume that 2
0 ( ) / (1 )h � � �� �� � � � , and for ease of 

interpretation, let the risk-free rate equal 0%. Applying the 12 months of stock and options 

data, we find key parameters to be (λ, ω0, α0, β0, γ0) = (0.1821, 6.847×10-9, 6.669×10-8,

0.9911, 342) for ST and (λ, ω0, α0, β0, γ0) = (0.1821, 6.029×10-9, 7.166×10-8, 0.9879, 402)

for S+O+E. We omit the OT specification as it has been demonstrated that this method 

sometimes produces inefficient and, more importantly, biased estimates. As demonstrated 

in the following discussion, while these parameters may not appear to differ greatly, the 

resulting risk management implications are quite significant.
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We then use these parameter estimates to calculate options deltas and gammas, 

measuring options stock price sensitivity and convexity, respectively. We calculate deltas 

and gammas for both the Black-Scholes and GARCH options pricing models, so that we 

have a total of four risk management metrics. For the former, we have that 1( )BS d6 �7

and 1

0

( )BS d
S T
+
8

9 �  where 
2

0
1

ln( / ) ( / 2)S K r Td
T

8
8
� ��  and 2 0 0

2
0 0 01

� �8
� � �

��
� �

 (cf. Duan 

(1995)). For the latter, we find that 
,

,
0 { } { }

10 0

1e [ 1 ] e 1
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N
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ˆ ˆ( ) ( )( )

2

GARCH GARCHGARCH
GARCH T

T

S k S kS
S k

6 � �6 �/69 � <
/

 (cf. Engle and Rosenberg 

(1995)). We calculate these metrics for a variety of levels of moneyness, ranging from 0.9 

(out-of-the-money) to 1.1 (in-the-money), and times to maturity, ranging from 30 days to 

180 days. 

Results are provided in Table 2. Columns labeled I present values for ST while 

those labeled II present values for S+O+E. First, consistent with the findings of Engle and 

Rosenberg (1995) and Duan (1995), we find that GARCH and Black-Scholes deltas and 

gammas may differ but not systematically so and not to a large degree. Our focus is on the 

difference between these measures across the different estimation methods ST and S+O+E, 

not between the models GARCH vs Black-Scholes. Hence, note that in columns labeled III 

we present the quotient of each value in I divided by the corresponding value from II, less 1. 

For example, the upper right-most value in the area labeled III is -0.8412 = 

0.0101/0.0634 – 1. That is the GARCH delta using ST is about 84% lower than the 

GARCH delta calculated using S+O+E. We see that, although there does not appear to be a 
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systematic relation, deltas and gammas may be significantly different depending on the 

method of estimation used.  

[Insert Table 2 here] 

First consider delta. Black-Scholes values from range about 10% higher for ST than 

for S+O+E when options are in the money to as much as 84% lower when they are out of 

the money. The difference tends to be negative when options are out of the money and 

positive when they are in the money. The trend is the same for GARCH deltas, although the 

magnitude ranges from 8.29% higher when options are in the money to 84.12% lower 

when they are out of the money. As a result, replicating and hedging portfolios will be 

significantly different based on the estimation method used, regardless of whether the 

agent applies a Black-Scholes or GARCH options pricing model. 

For gammas, there does not appear be a pattern in the difference related to the 

moneyness of the options. However, the magnitude of the differences ranges from -66.31% 

to 49.84%, indicating that gammas are more strongly impacted by the method of estimation 

used than deltas. As a result, the updating dynamics dictated to maintain hedges will be 

substantially different depending on the data specification employed. The magnitude of 

these differences suggests that managers and investors would do well to keep this in mind 

when calculating risk management metrics for options.  

3.4. Asymptotic behavior for ST, OT, and S+O+E 

Proofs apply Brown (1971) results regarding Central Limit Theorem analogs for 

martingale differences. All lemma proofs in this section are deferred to the Appendix A. 
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3.4.1. Asymptotic behavior for ST 

We seek to prove the following: 

Theorem 3.1. The estimator of ST is ˆ argmax ( )ST ST
T TL

�
� �

��
� . It is consistent such that 

0
ˆ p

ST
T� �.  and asymptotically Normal such that 

D
1/2 1/2

0 0 0 4
ˆ( ) (0, ),ST

ST ST TH F T N I� �� � .  where 

2
0

0
( )

'

ST
T

ST
LF E �
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� �/�� � �/ /�  
 and 0 0

0
( ) ( )

'

ST ST
T T

ST
L LH E T � �

� �
� �/ /� � �/ /�  

.

To begin, the log-likelihood function for ST is given by (3.7) and it follows that: 
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where ( ) ( )t tr h= � 
 �� � .

Consider the asymptotic Normality of the first derivative and the limit of the observed 

information matrix in (3.26) and (3.27), using Lemmas 3.1 and 3.2, respectively: 

Lemma 3.1. The form given by (3.26) evaluated at 0� ��  is asymptotically Gaussian,

� 
1/2 1/2 0
0 4
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Lemma 3.2. The observed information matrix given by (3.27) evaluated at 0� ��

converges in probability to 
2

1 0
0 4
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� /� .
/ /

, where 
2

0
0

( )
'

ST
T

ST
LF E �
� �

� �/� � � �/ /�  
.

Then, evaluating the third derivative of the likelihood function in (3.28), we seek to 

show that it is uniformly bounded in a neighborhood around the true parameter value 0� .

The neighborhood  � 
0N �  around the true value 0�  defined as 
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�

0 0 0 0 0

2

| 0 ,  0 ,  0 , ,

                   ( 1/ 2) 1 .
L U L U L U L U

U U U

N � � � � � � � � � � � � � �

� 
 � �

� � � � � � � � � � � �

� � � �
 (3.29) 

Lemma 3.3. There exists � 
0N � , for all 1 , , 4i j k� � , for which 
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 as T .#  where M  is 

constant. 

In order to prove Lemma 3.3, without loss of generality, consider the case i j k� � � �� � � .

The next lemma establishes that the individual terms of the third derivative 

� 
� 
3 3/ST
TL � �/ /  in (3.28) are uniformly bounded in the neighborhood � 
0N � .

Lemma 3.4. With � 
0N �  defined in (3.29), then for any t,   
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where ( )ith � , tH , and itH  are given by, 
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Proof of Theorem 3.1. From Lemma 3.3, we have that  
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Combining with Lemmas 3.1 and 3.2, we complete the proof of Theorem 3.1.

3.4.2. Asymptotic behavior for OT 

We seek to prove the following: 

Theorem 3.2. The estimator of OT is ˆ argmax ( )OT OT
T TL

�
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� . It is asymptotically biased such 
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To begin, the log-likelihood function for OT is given by (3.11) and it follows that: 
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Consider the asymptotic Normality of the first derivative and the limit of the observed 

information matrix in (3.32) and (3.33), using Lemmas 3.5 and 3.6, respectively: 

Lemma 3.5. The form given by (3.32) evaluated at 0� ��  is asymptotically Gaussian,

� 
1/2 1/2 0 0
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Lemma 3.6. The observed information matrix given by (3.33) evaluated at 0� ��
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Then, evaluating the third derivative of the likelihood function in (3.34), we seek to 

show that it is uniformly bounded in a neighborhood around the true parameter value 0� .

Lemma 3.7. There exists � 
0N � , for all 1 , , 4i j k� � , for which 

0

3 . .
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 as T .#  where M  is 

constant. 

In order to prove Lemma 3.7, again, we only consider the case i j k� � � �� � � . We want to 

show that the individual terms of the third derivative � 
� 
3 3/OT
TL � �/ /  in (3.34) are 

uniformly bounded in the neighborhood � 
0N � . It has to apply these results of Lemmas 

3.8-3.13. First, we prove that these lemmas. 

Lemma 3.8. With � 
0N �  defined in (3.29), then for any t, 0,1,m �

2

1 , 1 ,( , ) ( , )
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where  
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Lemma 3.11. With � 
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Assume that the state variable as a function of observed asset price, 
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Lemma 3.13. With � 
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The next lemma shows that the individual terms of the third derivative 
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Proof of Theorem 3.2. From Lemma 3.7, we have that  
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Combining with Lemmas 3.5 and 3.6, we complete the proof of Theorem 3.2.

3.4.3. Asymptotic behavior for S+O+E 

We seek to prove the following: 
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The log-likelihood function for S+O+E is given by (3.20) and it follows that: 
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(3.66)

Once again, consider the asymptotic Normality of the score and observed information 

matrix in (3.64) and (3.65), using Lemmas 3.15 and 3.16, respectively. 
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Lemma 3.16. The observed information matrix given by (3.65) evaluated at 0� ��
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Then, as before, we have that the third derivative is uniformly bounded as follows:
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Without loss of generality, consider the case i j k� � � �� � � . To show that the individual 
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The next lemma shows that the individual terms of the third derivative 
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Proof of Theorem 3.3. From Lemma 3.17, we have that 
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Combining with Lemmas 3.15 and 3.16, we complete the proof of Theorem 3.3. 
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Chapter 4  

Robustness Checking  

In this chapter, we consider an option pricing in Duan (1995) for a robustness check. 

4.1. Model setup and ST specification 

First, we describe the general stock and options pricing models applied in this paper. 

Then, we derive QMLE and asymptotic results for the ST specification.  

4.1.1. GARCH(1,1) stock and options pricing models 

We adopt the generalized setup used by Duan (1995), which propose a class of GARCH 

models for the price of a European call option, where the data-generating process for the 

stock price S is: 

1/2 1/2
1

1ln ln ,  ,
2t t t t t t t t ty S S r h h h z
 > >�� � � � � � �  under P measure,  (4.1) 

2
1 1t t th h� �> �� �� � � ,     (4.2)

where t>  has mean zero and conditional variance th  under P measure, r  is the constant 

one-period risk-free rate of return, and 
  the constant unit risk premium. In words, the 

conditional variance is a linear function of the past squared disturbances and the past 
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conditional variances. The process (4.2) remains stationary if 1� �� � . The GARCH 

process specified in (4.1) and (4.2) reduces to the standard homoskedastic lognormal 

process in the Black-Scholes model if 0� �  and 0� � . This ensures that the 

Black-Scholes model is a special case. We may consider process (4.2) as running 

indefinitely or we may assume initial values 0y  and 0h , with the latter drawn from the 

stationary distribution applied by Bollerslev (1986), Nelson (1990), Bougerol and Picard 

(1992), and others. Let t�  be the information set (8 -field) generated by � �1, ,t ty y � �  and 

let 0 0 0 0( )� � � � �� � � represent the true parameter vector. Assume that 3
0� ���� is in 

the interior of � , a compact, convex parameter space. Specifically, for any vector 

( )� � �� � ��, 0 L U� � �� � � , 0< L U� � �� � , 0 L U� � �� � �  and 2(1 ) 1U U� 
 �� � � .

Assume also that � �t tz
��

 is i.i.d., drawn from a symmetric, uni-modal density, bounded in 

a neighborhood of 0, with mean 0, and variance 1. In addition, assume that th  is 

independent of � �1, ,t tz z � � .

The corresponding model under the locally risk-neutral valuation relationship, which 

is defined by Duan (1995), reads  

1/2
1

1ln ln ,  ,
2

Q Q Q
t t t t t t t ty S S r h h z> >�� � � � � �  under Q measure   (4.3) 

� 
21/2
1 1 1

Q
t t t th h h� � > 
 �� � �� � � � ,      (4.4) 

where 1/2Q
t t th> 
 >� � and Q

t tz z
� � . The conditional variance process under the

risk-neutralized pricing measure, is an EGARCH process, was proposed by Nelson (1991). 
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The process (4.4) under Q measure remains stationary if 2(1 ) 1� 
 �� � � . The 

GARCH(1,1) European call price is described as: 

� 
( )
1( , , , ; ) max ,0D r T t Q

t t t t TC T K S h e E S K� � �
� � �$ %& ' ,    (4.5) 

1 1

1exp ( )
2

T T
Q

T t s s
s t s t

S S T t r h >
� � � �

$ %� � � �( )& '
- - ,     (4.6)

where T is the maturity date and K is exercise price. 

4.1.2. QMLEs and asymptotic results 

We now turn our attention to estimating the parameters in the model. The base case 

ST uses only stock data. Specifically, th  is the conditional variance of ty  with respect to 

1t�� . The estimation model utilizes (4.1) and (4.2), applying estimated parameter values 

� 
1 2 3( ) , ,� � � � � �� � � . The error terms tz  are computed as 
1/2

0 0 0
0 1/2

0

0.5y r h hz
h

� � �� ,

1/2
1 1 1

1 1/2
1

0.5y r h hz
h

� � �� , �, where � �,  0, ,ty t T� �  are observed data. The process th

is not observed but is constructed recursively using estimated parameter values, 0z , and an 

appropriate startup value, 0h , to be discussed in detail later.  

QMLE is obtained by maximizing, conditional on 0h , as follows: 

� 
 � 
2

0 0
1

( )1( , , , ; ) ( ) ln ( ) .
2 ( )

T
t tST ST

T T T t
t t

y
L y y h L h

T h
= �

� � �
��

� ���� � �� �� ��  
-�    (4.7) 
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where 1/2 1( ) ( ) ( )
2t t tr h h= � 
 � �� � � . That is, ˆ argmax ( ).ST ST

T TL
�

� �
��

� This estimator is 

consistent as 0
ˆ p

ST
T� �. . It is also asymptotically Normal as  

1/2 1/2
0 0 0 3

ˆ( )~ (0, ),
A

ST
ST ST TH F T N I� �� �       (4.8) 

where 
2

0
0

( )
'

ST
T

ST
LF E �
� �

� �/� � � �/ /�  
, 0 0

0
( ) ( )

'

ST ST
T T

ST
L LH E T � �

� �
� �/ /� � �/ /�  

, and 3

1 0 0
0 1 0
0 0 1

I
� �
� �� � �
� ��  

. A

full proof can be found in the Appendix B as Theorem B.1. 

In the interest of computational simplicity, assume that tz  is Normal so that 

0 0ST STF H� , though our general intuition remains the same under the more relaxed 

aforementioned specification for tz . The asymptotic covariance matrix STV and 

asymptotic mean square errors STMSE  are: 

1 1
0 0 0 0 0

0

1( ) ( )ST ST ST ST ST
ST

MSE V F H F
F

� � � �� � � ,     (4.9) 

where
1/2 2

0 0 0
0 0 2

0

2 ( ( )) ( ) ( )
4 ( )

t t t
ST ST

t

h h hF H E
h


 � � �
� � �

$ %� � / /� � ( )�/ /& '
.

4.2. The S+O+E specification 

 We now turn our attention to a new specification that takes both stock and options 

data into account, but which allows for an error term in the options pricing formula. Then, 

we derive QMLE and asymptotic results for the S+O+E specification. Numerical results 

confirm these characteristics. 
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4.2.1. QMLEs and asymptotic results 

For this method, we allow that D
t t tC C e� �  where t te u��  and  1, ,t T� � .

Assume that 
. . .
~ (0,1)

i i d

tu N  and 0� 4 . For the purpose of calculating the QMLE, let us 

assume tz and tu , with ( )t tcorrelation z u 5� � where 1 15� � � , have a bi-Normally 

distribution, that is, 
0 1

~ ,
0 1

t

t

z
N

u
5

5

� �
� �
� �
� �� ��  

� �� � � �
� �� � � �
�  �  �  

. Let [ ]t t tG S C �� �  be a vector of observable 

stock and options prices, respectively. Then, the joint density is as follows: 

� 
 � 
22

2 22

1
1

( )( ) ( ) ( )1 1
( ) ( )2(1 )2 1 ( )

1

( ; ) ( , ; ) ( | ; ) ( ; ) ( | ; ) ( | ; )

            exp 2
DD t tt t t t t t

t tt

T

t t t t
t

T C Cy y C C
h hh

t

P G P S C P C S P S P C S P S S

�= � = � �
� ��5 �" 5 � �

� � � � � �

5

�
�

�� � �
��

�

� � �

$ %� �� � � �( )� �
�  & '

2

2
.  (4.10) 

The log-likelihood function for discrete data on the asset price vector tG  sampled at dates 

0 t T� �  has the form: 

� 
( ) ln ( )S O E
TL P G� �� � � 0

� 
 � 
 � 
22

2 2

( )( ) ( ) ( )2 1
( ) ( )(1 )1

1 2ln 2 1 ln( ( )) 2
2

DD t tt t t t t t

t t

T
C Cy y C C

t h ht
h

T
�= � = � �

� ��5 �
"� 5 � 5 �� � �

��

$ %� � �� � � � � �( )� �
�  & '

- . (4.11) 

And, the QMLE for ˆ argmax ( )S O E S O E
T TL

�
� �� � � �

��
� .

This estimator is also consistent as 0
ˆ p

S O E
T� �� � . , and is asymptotically Normally 

distributed as 1/2 1/2
0 0 0 3

ˆ( )~ (0, )
A

S O E
S O E S O E TH F T N I� �� � �
� � � � � , where 

2
0

0
( )
'

S O E
T

S O E
LF E �

� �

� �

� �
� �/� � � �/ /�  

 and 0 0
0

( ) ( )
'

S O E S O E
T T

S O E
L LH E T � �

� �

� � � �

� �
� �/ /� � �/ /�  

. A full proof 

appears as Theorem B.2 in the Appendix B. Again, assume that tz  is Normal so that 
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0 0S O E S O EF H� � � �� . The asymptotic covariance matrix S O EV � �  and asymptotic mean square 

error S O EMSE � �  for the S+O+E case are: 

0 0

1 1
0 0 0

0 0 0

( ) ( )
1 1                      

( )

S O E S O E

S O E S O E S O E
S O E ST S O E

MSE V

F H F
F F M

� �

�

� � � �

� �
� � � � � �

� � � �

�

� � �
�

, (4.12) 

where  

0 0 0

1/2 2 1/22
0 0 0 0 0 0

2 2 2
0 0

0 0
2 2

( )
1 ( ( )) ( ) ( ) ( ) ( ) ( )

4(1 ) ( ) ' (1 ) ( )

( ) ( )1  .
(1 ) '

S O E S O E ST

D
t t t t t t

t t

D D
t t

M F F
h h h h C hE E

h h

C CE

�


 � � � 
 � � �5 5
5 � � � � 5 � � �

� �
� 5 � �

� � � �� �

$ % $ %� � / / � / /� �( ) ( )�� / / � / /& ' & '
$ %/ /� ( )� / /& '

These results follow from Lemmas B.1, B.2, B.5, and B.6 in the Appendix B. We can now 

investigate S O EM � �  where again the more positive, the more efficient the estimator.  

When 0�  and 0�  are known and �  is unknown: 

221/2 22
0 0 0

0 0 0 2 2 2 2
0

1/2
0 0 0

2
0

1 ( ( )) ( ) ( )1( | , )
4(1 ) ( ) (1 )

( ) ( ) ( )                                   .
(1 ) ( )

D
t t t

S O E
t

D
t t t

t

h h CM E E
h

h C hE
h


 � � �5� � �
5 � � � 5 �


 � � �5
� 5 � � �

� �

$ %$ % � �� � / /� � ( )� �( ) � �� �� / � /�  ( )( ) �  & ' & '
$ %� / /� ( )� / /& '

(4.13) 

Note that MS+O+E may be positive or negative. In ρ = 0 case, we easy to see that MS+O+E is 

positive definite from (4.13). In ρ ≠ 0 case, we don’t compare these values since the MS+O+E

depend on true parameters. Thus, we will calculate these values by numerical simulation in 

Section 4.2.2. As illustrated later, MS+O+E is in fact generally positive. When 0� and 0�  are 

known and �   is not: 
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221/2 22
0 0 0

0 0 0 2 2 2 2
0

1/2
0 0 0

2
0

1 ( ( )) ( ) ( )1( | , )
4(1 ) ( ) (1 )

( ) ( ) ( )                                    .
(1 ) ( )

D
t t t

S O E
t

D
t t t

t

h h CM E E
h

h C hE
h


 � � �5� � �
5 � � � 5 �


 � � �5
� 5 � � �

� �

$ %$ % � �� � / /� � ( )� �( ) � �� �� / � /�  ( )( ) �  & ' & '
$ %� / /� ( )� / /& '

(4.14) 

In ρ = 0 case, MS+O+E is positive definite, and in ρ ≠ 0 case, as demonstrated later, MS+O+E is 

positive definite. Similarly, when 0� and 0� are known and �   is not: 

221/2 22
0 0 0

0 0 0 2 2 2 2
0

1/2
0 0 0

2
0

1 ( ( )) ( ) ( )1( | , )
4(1 ) ( ) (1 )

( ) ( ) ( )                                   .
(1 ) ( )

D
t t t

S O E
t

D
t t t

t

h h CM E E
h

h C hE
h
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 � � �5
� 5 � � �

� �

$ %$ % � �� � / /� � ( )� �( ) � �� �� / � /( )( )�  �  & ' & '
$ %� / /� ( )� / /& '

(4.15) 

Again, as for the case where �  is unknown, we show that MS+O+E is always positive. 

4.2.2. Numerical computation for asymptotic mean square errors 

We now generate numerical results to test and illustrate these asymptotic findings. 

We presume that parameter true values are (λ, ω0, α0, β0) = (0.0116, 9.228×10-7, 0.068,

0.9248) and the risk-free rate is fixed at 5%. These parameters are estimated using S&P 

500 daily index data from January 1996 to the end of 2007. We use these parameters to run 

our tests.

First, we investigate and calculate analytically the efficiency of the estimator, 

graphs of MS+O+E, in varied ρ. Remember that, the more positive this value, the more 

efficient the estimator. Graphs in Figure 5 show that the value of MS+O+E in the true 

parameter values and ρ from -0.9 to 0.9. Then, in each panel, one variable is unknown

while the other two are treated as known. Specifically, in Panel A, ω is varied, in B α, and 

in C β.
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[Insert Figure 5 here] 

Looking at all graphs, MS+O+E is positive for all three parameters. Specifically,

MS+O+E is always minimum in ρ = 0 and increases as the absolute value of ρ increases.

Graphs of MS+O+E are shown in Figure 6, in the area surrounding true parameter 

values. We only consider ρ = 0 case since MS+O+E is minimum in this case. Since the orders 

of magnitude for the three parameters are quite different, we graph the MS+O+E of ω on the 

left and that of α and β on the right. True parameters are circled in each graph. Then, in 

each panel, one variable is varied while the other two are treated as known. Specifically, in

Panel A, ω is varied, in B α, and in C β.

[Insert Figure 6 here] 

Looking at Panel A, MS+O+E is always positive for all three parameters in the area 

surrounding true parameters. While MS+O+E for ω decreases with ω locally in the region 

around the true parameter values, those for α and β are increasing, with MS+O+E for β 

always higher than that of α. In Panel B, MS+O+E for ω, α, and β increase with α locally in 

the region around the true parameter values. Corresponding graphs Panel C are similar to 

each other in shape, though their x-axes differ. However, MS+O+E is always positive in each 

case.

In summary, MS+O+E is always positive for all parameters in the area surrounding 

true parameters. We conclude that S+O+E generates more efficient estimates than ST in all 

cases. This method generates asymptotically unbiased estimates, making it the most 

desirable data specification of the two. We also conclude that the use of option prices can 

lead to very accurate estimates, even in long samples.
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4.2.3. Numerical findings and direct comparisons in finite sample studies 

We generate parameter estimates using a Monte Carlo method, comparing the bias 

and variance characteristics of the two data specifications in finite sample studies. 

Specifically, we simulate 30 days of stock and/or options prices and then run 1,000 

iterations over each period. We again presume that parameter true values are (λ, ω0, α0, β0)

= (0.0116, 9.228×10-7, 0.068, 0.9248). For the S+O+E case, we additionally assume that η

= 1 and that ρ = 0. As a  robustness check, we re-run these tests for a variety of calibrations 

of ρ and η and find no qualitative differences. 

We estimate our four parameters for out-of-the-money (S0/K = 0.9), at-the-money 

(S0/K = 1.0), and in-the-money (S0/K = 1.1) cases. Results for 30 days are presented in 

Table 3 where we report the absolute value of estimate bias (estimate less true value), 

standard deviation of the estimate (SD), and mean squared errors (MSE). 

[Insert Table 3 here] 

When ω is unknown, we find that S+O+E arrives at estimates within 2.816x10-7 of 

the true value. In contrast, estimates using ST present biases on the order of 1.21 to 2.03 

times higher. Note that ST has the stronger bias regardless of the moneyness of the options. 

Standard deviations for S+O+E are lower than those for ST. With regard to MSE, results 

are even more staggering with S+O+E exhibiting the lower values and ST generating 

errors that are about 3 times higher. Note that ST seems to perform particularly poorly 

when options are out-of-the-money.

When estimating α, we similarly find that estimation bias is lower for S+O+E, with 

ST again about 6 times higher for most variables. Standard deviations are also lower for 

S+O+E than for ST. MSE exhibits the same behavior as before, with S+O+E exhibiting by 
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the lower values and ST generating errors that are about 8 times higher. Once again, ST 

presents particularly poor results with options out-of-the-money.

Estimation results for β are consistent with those of the other two parameters. 

S+O+E exhibits the smaller bias, the lower standard deviation, and the lower MSE of the 

two methods. Again, ST exhibits by far the worst performance along all three metrics and 

again particularly poor when options are out-of-the-money. The prevalence of biased 

estimates is striking for ST and is a particular strength for S+O+E.

In summary, we conclude that the use of option prices can lead to very accurate 

estimates, even in short samples. This result is consistent with that of Eraker (2004).

4.3. Risk management implications 

In this section we document that errors and bias in estimation may have substantial 

repercussions as relates to risk management benchmarks and practices. To illustrate, we 

obtain daily stock and options data for the period from January 2007 to the end of 2007.  

For stock prices (St), we use the S&P 500 index, and for options data (Ct), we use the price 

of a short-maturity at-the-money call options where the price is measured as the midpoint 

of the last reported bid-ask spread. We assume that 0 / (1 )h � � �� � � , and for ease of 

interpretation, let the risk-free rate equal 0%. Applying the 12 months of stock and options 

data, we find key parameters to be (λ, ω0, α0, β0) = (0.0002, 8.248×10-7, 0.07275, 0.92305)

for ST and (λ, ω0, α0, β0) = (0.00012, 8.1633×10-7, 0.07379, 0.92321) for S+O+E. As

demonstrated in the following discussion, while these parameters may not appear to differ 

greatly, the resulting risk management implications are quite significant.

We then use these parameter estimates to calculate options deltas and gammas, 
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measuring options stock price sensitivity and convexity, respectively. We calculate deltas 

and gammas for both the Black-Scholes and GARCH options pricing models for a variety 

of levels of moneyness, ranging from 0.8 (out-of-the-money) to 1.2 (in-the-money), and 

times to maturity, ranging from 30 days to 180 days. Results are provided in Table 4. 

[Insert Table 4 here] 

First consider delta. Black-Scholes values from range about 4% higher for ST than 

for S+O+E when options are in the money to as much as 73% lower when they are out of 

the money. The difference tends to be negative when options are out of the money and 

positive when they are in the money. The trend is the same for GARCH deltas, although the 

magnitude ranges from 3.63% higher when options are in the money to 55.82% lower 

when they are out of the money. As a result, replicating and hedging portfolios will be 

significantly different based on the estimation method used, regardless of whether the 

agent applies a Black-Scholes or GARCH options pricing model. 

For gammas, there does not appear be a pattern in the difference related to the 

moneyness of the options. However, the magnitude of the differences ranges from -91.94%

to 43.85%, indicating that gammas are more strongly impacted by the method of estimation 

used than deltas. As a result, the updating dynamics dictated to maintain hedges will be 

substantially different depending on the data specification employed. The magnitude of 

these differences suggests that managers and investors would do well to keep this in mind 

when calculating risk management metrics for options.  
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Chapter 5  

Conclusion 

The GARCH class of models has been shown to be empirically superior to other models 

but is a restrictive model which can be overloaded when applying options data only. We 

demonstrate the overload of the OT specification both theoretically and numerically, 

shedding new light on the effectiveness of different methods of estimation and the 

corresponding asymptotic behavior of estimators. For all reasonable true parameter values, 

application of options data only generates asymptotically biased and relatively inefficient 

estimates. However, application of stock and options data without an error term doesn’t 

also generate more efficient estimates since S+O specification is similar to ST 

specification. As a result, we develop here a method of estimation that applies an error term 

to the options pricing formula, thereby delivering the additional slack GARCH models 

require when applying the dual dataset. We show that under this new specification, 

estimates as unbiased and maximally efficient, i.e., more data is in fact better.  

In addition, we demonstrate that different estimation methods will result in 

significantly different risk metrics of options, regardless of whether a GARCH or 

Black-Scholes model is used. While these effects do not appear to be systematically related 

to maturity or moneyness, they can be substantial in magnitude, especially as regards risk 
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management dynamics. This highlights the economic importance of developing an 

unbiased and efficient estimation method, and financial managers would do well to 

consider these effects when implementing hedging practices and trades.  

The GARCH class of models is conditionally deterministic and, as a result, 

restrictive. Applying too much data to this specification induces helpless if sufficient slack 

is not introduced. SV models do not have this quality and have a natural mechanism for 

slack. Unlike SV model, in order to develop a better method under GARCH models, it 

seems to be necessary for allowing an error term in the options pricing formula for 

additional slack. 
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Appendix A 

Proof of Lemma 3.1. Evaluated at 0� ��  the form is given by 
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such that � 
1| 0t tE F? � � , where � 
1, ,t t tF z z8 �� @ . Applying the central limit theorem for 

martingale differences in Brown (1971), consider first 
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.-  in probability as T .# , using the ergodic theorem. 

Hence we complete the proof of Lemma 3.1. 

Proof of Lemma 3.2. For 0� ��  the observed information is given by 
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The first term on the right-hand side converges by the ergodic theorem 

to
2

2
( ) ( )1

2 ( ) ( )
t t

t t

h hE
h h

� �

� � � �

$ %� � / /� �( )� � �/ /�  & '
; second term on the right-hand side converges in 

probability to zero. Hence we can complete the proof of Lemma 3.2. 

Proof of Lemma 3.4. Since ( )th � �:  and 2 1x x� � , we have   
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Then, (3.31) follows by applying (3.30).

Proof of Lemma 3.3. Without loss of generality, consider the case i j k� � � �� � � . We 
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Lemma 3.4 suffices to show that there exists a neighborhood � 
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where tw  is stationary and has finite moment tEw M� �#  such that 
. .

1

1 T a s

t
t

w M
T �

.-  by the 

ergodic theorem, which ends the proof of Lemma 3.3. 

Proof of Lemma 3.5. Evaluated at 0� ��  the form is given by 
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Hence we complete the proof of Lemma 3.5. 

Proof of Lemma 3.6. For 0� ��  the observed information is given by 
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The first term on the right-hand side converge by the ergodic theorem to 
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proof of Lemma 3.6. 
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By induction, we can complete the proof. 

Proof of Lemma 3.9. Since (3.29) and 2 2 2 20 1
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0 4j� � , we can complete the proof by induction.  

Proof of Lemma 3.10. By Lemmas 3.8 and 3.9, (3.40)-(3.43) follow.

Proof of Lemma 3.11. From simple recursion, we have 
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Proof of Lemma 3.12. By Lemmas 3.4, 3.10, and 3.11, (3.49)-(3.56) follow.  

Proof of Lemma 3.13. From � 
sin 2 ( ) sin( )x c T t x"� � � , sin( ) 1x � ,
1

0

sin x dx
x

�#* , and 

Lemma 3.12, we have 

� 
 � 
 � 
2
1 ,

2
( , ) 1 3 ,

3 , 3 ,0 0 0 1

sin
sin ( , ) sin

m tX b
m t b

m t m t

Xe eX d X d d e d
! � !

!!
! � ! ! ! ! !

! ! !

�# # # �� � �* * * *

which implies (3.57). Similarly, (3.58)-(3.59) follow. 

Proof of Lemma 3.14. Here, the first-, second-, and third-order derivatives of ( )tJ �  and 

( )tY �  are 

1 1 1
1 1

1

( ) ( )( ) ( )
( ) ( )

t t
t t

t t

S SY h
S S

� �� 
 �
� �

�

�

� � � ,

2 2
1 2 1 1 2 1

2 22 2
1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

t t t t
t t

t t t t

S S S SY h
S S S S

� � � �� 
 �
� � � �

� �

� �

� � � � � � ,

3 3
1 2 1 3 1 1 2 1 1 1 3 1

3 33 2 3 2
1 1 1

2 ( ) 3 ( ) ( ) ( ) 2 ( ) 3 ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
t t t t t t t t

t t
t t t t t t

S S S S S S S SY h
S S S S S S

� � � � � � � �� 
 �
� � � � � �

� � � �

� � �

� � � � � � � ,

� 
 � 
 � 
 � 


� 


11,

10,

31, 31,( , )
1 31, 111, 31, 311,0

30,( , )( )

sin ( , ) cos ( , )1( ) cos ( , ) ( , ) sin ( , ) ( , )

cos ( , )1 ( )             cos
( ) ( )

t

t

t tX
t t t t t

tXr T t t

t t

X X
J e X X X X d

XK Se e X
S S

! �

! �

! � ! �
� ! � ! � ! � ! � !

" ! !

! � �
� " � �

#

� �

$ %� � � �
( )� � � �� � � �� � � �( )�  �  & '

/� �
/

*

� 
 � 
30, 101, 30, 301,0
( , ) ( , ) sin ( , ) ( , ) ,t t t tX X X d! � ! � ! � ! � !

# $ %
�( )

( )& '
*

67



� 
 � 
 � 


� 
 � 
 � 

11,

2

31, 2 2
31, 111, 311, 112,

( , )

0
31,

31, 311, 111, 312,

( )

( )

sin ( , )
cos ( , ) ( , ) ( , ) ( , )

1
cos ( , )

sin ( , ) 2 ( , ) ( , ) ( , )

  

t

t

t
t t t t

X

t
t t t t

r T t

t

J

X
X X X X

e d
X

X X X X

Ke
S

! �

�

! �
! � ! � ! � ! �

!
!

" ! �
! � ! � ! � ! �

!

#

� �

$ %� �
( )� �� � �� �( )�  � ( )

� �( )
� �� � �( )� �( )�  & '

�

*

� 
 � 
 � 


� 
� 

� 


10,

30, 30,2
101, 1 1 2 1 301,

( , ) 2
30, 101, 102, 301,

30, 101, 301, 302,

cos ( , ) 2sin ( , )
2 ( , ) ( ) 2 ( ) ( ) ( ) ( , )

( ) ( )
1 cos ( , ) ( , ) ( , ) ( , )

( )
sin ( , ) 2 ( , ) ( , ) (

t

t t
t t t t t t

t t
X

t t t t

t t t t

X X
X S S S S X

S S
e X X X X

X X X X

! �

! � ! �
! � � � � � ! �

� �

! � ! � ! � ! �
� "

! � ! � ! �

� � �

� � �

� �� 

0

,

, )

d!

! �

#

$ %
( )
( )
( )
( )
( )
( )
( )& '

*

and 

� 
 � 


� 
 � 

11,

3

3 2
31, 111, 311, 111,

31,
112, 111, 312, 311, 113,( , )

331,
31,

( )

sin ( , ) ( , ) 3 ( , ) ( , )
cos ( , )

3 ( , ) ( , ) 3 ( , ) ( , ) ( , )1
cos ( , )

sin ( , )

t

t

t t t t
t

t t t t tX

t
t

J

X X X X
X

X X X X X
e

XX
X

! �

�

! � ! � ! � ! �
! �

! ! � ! � ! � ! � ! �

" ! �
! �

!

� �� ��
� �� � �� �� � � � ��  �  �
� �
� �� �� ��  

� 


10,

0
13, 312, 111, 112, 311,

2 3
311, 111, 311,

2
3 1 101, 230,

( , )( )

( , ) 3 ( , ) ( , ) 3 ( , ) ( , )
3 ( , ) ( , ) ( , )

( ) 2 ( ) ( , ) 4cos ( , )
( )

1
( )

t

t t t t t

t t t

t t tt

t

Xr T t

t

d
X X X X

X X X

S S X SX
S

Ke e
S

! �

!
! � ! � ! � ! � ! �

! � ! � ! �

� � ! �! �
�

� "

#

� �

$ %
( )
( )
( )

� �� �( )
� �( )� �� �( )�  & '

� �

�

*

� 
 � 

� 


1 102, 1 2 101,

2 2
1 301, 101, 1

30, 2 3
101, 1 1 2 12

101, 1 3030,

( ) ( ) 3 ( , ) ( ) 3 ( ) ( , )
3 ( ) ( , ) 3 ( , ) ( )

cos ( , )
4 ( , ) ( ) 4 ( ) 2 ( ) ( )

( )
6 ( , ) ( )sin ( , )

( )

t t t t t t

t t t t

t
t t t t t

t

t tt

t

S X S S X
S X X S

X
X S S S S

S
X S XX

S

� � ! � � � ! �

� ! � ! � �

! �
! � � � � �

�

! � �! �
�

� �� �
� �� �� ��  

� � � �

�
�

� 
 � 


1, 2 301, 102, 1

2
302, 1 1 301,

3
301, 303, 102, 301,30, 2

301, 1 30,2
302

( , ) 3 ( ) ( , ) 2 ( , ) ( )
( , ) ( ) 2 ( ) ( , )

( , ) ( , ) 3 ( , ) ( , )4sin ( , )
( , ) ( ) sin ( , )

( ) 3

t t t t t

t t t t

t t t tt
t t t

t

S X X S
X S S X

X X X XX
X S X

S X

! � � ! � ! � �

! � � � ! �

! � ! � ! � ! �! �
! � � ! �

�

� �� �
� �� �� ��  

� � �
� �

�

� 


2
, 101, 101, 301,

2
101, 301, 102, 101,

30, 3
302, 301, 101, 103,

( , ) ( , ) 3 ( , ) ( , )

3 ( , ) ( , ) 3 ( , ) ( , )
cos ( , )

3 ( , ) ( , ) ( , ) ( , )

t t t t

t t t t
t

t t t t

X X X

X X X X
X

X X X X

! � ! � ! � ! �

! � ! � ! � ! �
! �

! � ! � ! � ! �

$ %
( )
( )
( )
( )
( )
( )
( )
( )
(
(
(

� �( � �( � ��( �  
( � ��( � ��( � �� � �( �  & '

0
.d!

#
)
)
)
)
)
)
)
)
)
)

*
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Proof of Lemma 3.16. For 0� ��  the observed information is given by 
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Proof of Lemma 3.17. Without loss of generality, consider the case i j k� � � �� � � .

Noting that by definition 1/2
0 0( ) ( )t t t ty r h h z
 � �� � � , the expression for 

� 
� 
3 3/S O E
TL � �� �/ /  in (3.66) implies that  

3

3
1

( ) 1 ( )
S O E T
T

t
t

L w
T

� �
�

� �

�

/ �
/ - , where 

71



� 
 � 

21/2 1/2

0 0 0 0 30
13 2 2 1/2

00
2 5/2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 15( ) 1 ( )
( ) 1 ( ) 8(1 ) ( )

( )( ) ( )1 9            4
(1 ) ( ) 4

HN HN
t t t t t t t t t t t

t t
t t t

HN HN
t tt t t

t

h h h z h h h z C C uw h
h h h

h hC C u
h


 � � � 
 � � � � � �5� �
� 5 � 5 � �


 �� � �5 

5 � �

� �$ %� � � � � �& '� �� � �
� �� �
�  

�� �� �
�

� 


� 
 � 


1/2 2
0 3 3

1 11/2 2 2

21/2 1/2
0 0 0 0 0

22 2 2 1/2

( ) ( ) 2( ) ( )
( ) (1 ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 3 9            (
( ) 2 1 ( ) 4(1 ) ( )

t t
t t

t t

HN HN
t t t t t t t t t t t

t
t t t

h z
h h

h h

h h h z h h h z C C u h
h h h

� � 
� �
� 5 �


 � � � 
 � � � � � �5
� 5 � 5 � �

� ��
�� �� � ��  

� �$ %� � � � � �& '� �� � �
� �� �
�  

� 


� 


1

1/2 2
0 0 0

2 1 2 12 3/2 1/2 2

21/2
0 0

2

) ( )

( ) ( ) ( ) ( ) ( )3 3            ( ) ( ) ( ) ( )
(1 ) ( ) ( ) (1 ) ( )

( ) ( ) ( )1 1            1
2 ( ) 1 (

t

HN HN
t t t t t t t

t t t t
t t t

t t t t

t t

h

h h h z C C u h h h h
h h h

h h h z
h h

� �


 � � � � � �
 
5 � � � �
5 � � � 5 �


 � � �
� 5

� �� � � �
� � �� �� �� ��  

$ %� �& '� �
�

� 


� 


1/2
0 0 0

32 1/2

1/2
0 00

32 1/2 1/2

2

( ) ( ) ( ) ( ) ( ) ( )
) 1 ( )

( ) ( ) ( )( ) ( )            ( )
(1 ) ( ) ( )

9            
(1 ) 4

HN HN
t t t t t t t

t
t

HN HN
t t t tt t t

t
t t

t

h h h z C C u h
h

h h h zC C u h
h h

h


 � � � � � �5 �
� 5 � �


 � � �� � �
 5 �
5 � � �


5
� 5

� �� � � �� ��
� ��
�  

� �� �� �� �� �� �� �  

�
�

� 
 � 


� 


1/2 1/2
0 0 0 02

1 1 2 15/2 3/2 2 3/2 1/2

1/2
0 0

2 3/2

( ) ( ) ( ) ( ) ( ) ( )3 3( ) ( ) ( ) ( )
( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) ( )3 2            
2 (1 ) ( )

t t t t t t tHN HN
t t t t

t t t t

t t t t

t

h h z h h h z
h C h C

h h h h

h h h z
h h

� � � 
 � � �
 5 
� � � �
� � � 5 � �


 � � �5 

� 5 �

� � � �� � � �
� � �� � � �� � � ���  �  

� �
� �

�

� 


2 1 2 11/2 2 2

1/2
0 0 0

32 1/2

3( ) ( ) ( ) ( )
( ) 2 (1 )

( ) ( ) ( ) ( ) ( )1            ( ),
(1 ) ( )

HN HN HN
t t t t

t

HN HN
t t t t HNt t t

t
t

C h C C

h h h z C C u C
h

� � � �
� � 5


 � � � � � �5 �
� 5 � �

� �
�� �� � ��  

� �� � � �� �� �� �� �  

From Lemmas 3.4 and 3.19, we have there exists a neighborhood � 
0N �  for which 

0

3

3
( ) 1

( ) 1sup ,
S O E T
T

t
N t

L w
T� �

�
�

� �

� �

/ �
/ - where tw  is stationary and has finite moment tEw M� �#

such that 
. .

1

1 T a s

t
t

w M
T �

.-  by the ergodic theorem, which ends the proof of Lemma 3.17. 

72



Appendix B 

Proofs apply Brown (1971) results regarding Central Limit Theorem analogs for 

martingale differences. 

B.1. Asymptotic behavior for ST 

We seek to prove the following: 

Theorem B.1. The estimator of ST is ˆ argmax ( )ST ST
T TL

�
� �

��
� . It is consistent such that 

0
ˆ p

ST
T� �.  and asymptotically Normal such that 

D
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0 0 0 3
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To begin, the log-likelihood function for ST is given by (4.7) and it follows that: 
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Consider the asymptotic Normality of the first derivative and the limit of the observed 

information matrix in (B.1) and (B.2), using Lemmas B.1 and B.2, respectively: 

Lemma B.1. The form given by (B.1) evaluated at 0� ��  is asymptotically Gaussian,
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Hence we complete the proof of Lemma B.1.
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Lemma B.2. The observed information matrix given by (B.2) evaluated at 0� ��

converges in probability to 
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The first term on the right-hand side converges by the ergodic theorem to  
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; second term on the right-hand side converges in 

probability to zero. Hence we can complete the proof of Lemma B.2. 

Then, evaluating the third derivative of the likelihood function in (B.3), we seek to 

show that it is uniformly bounded in a neighborhood around the true parameter value 0� .
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0N �  around the true value 0�  defined as 
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 as T .#  where M  is constant. 
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In order to prove Lemma B.3, without loss of generality, consider the case i j k� � � �� � � .

The next lemma shows that the individual terms of the third derivative � 
� 
3 3/ST
TL � �/ /  in 

(B.3) are uniformly bounded in the neighborhood � 
0N � .
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Then, (B.6) follows by applying (B.5). 

Proof of Lemma B.3. Without loss of generality, consider the case i j k� � � �� � � . Noting 
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Proof of Theorem B.1. From Lemma B.3, we have that  
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Combining with Lemmas B.1 and B.2, we complete the proof of Theorem B.1.

B.2. Asymptotic behavior for S+O+E 

We seek to prove the following: 
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The log-likelihood function for S+O+E is given by (4.11) and it follows that: 
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Once again, consider the asymptotic Normality of the score and observed information 

matrix in (B.7) and (B.8), using Lemmas B.5 and B.6, respectively. 
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Proof of Lemma B.5. Evaluated at 0� ��  the form is given by 
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Lemma B.6. The observed information matrix given by (B.8) evaluated at 0� ��
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Proof of Lemma B.6. For 0� ��  the observed information is given by 
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converges in probability to zero. Hence we can complete the proof of Lemma B.6.
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By 2 1x x� � , (B.4), and Lemma B.4, (B.10)-(B.13) follow. 
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From Lemmas B.4 and B.8, we have there exists a neighborhood � 
0N �  for which 

0

3

3
( ) 1

( ) 1sup ,
S O E T
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t
N t

L w
T� �

�
�

� �

� �

/ �
/ - where tw  is stationary and has finite moment tEw M� �#

such that 
. .

1

1 T a s

t
t

w M
T �

.-  by the ergodic theorem, which ends the proof of Lemma B.7. 

Proof of Theorem B.2. From Lemma B.7, we have that 
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and  
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L L� �� �
� � �

�� � � �
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.

Combining with Lemmas B.5 and B.6, we complete the proof of Theorem B.2.
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Figure 3: M S+O+E Graphs with Different �

Presented are graphs of MS+O+E for �, �, �, and � with � from -0.9 to 0.9. True parameters
are (� , �0, �0, �0, �0) = (0.1746, 6.792×10-9, 6.546×10-8, 0.9914, 351.945). In panel a, �0, � 0,
and �0 are given and � is unknown; in panel b, �0, �0, and �0 are given and � is unknown; in
panel c, �0, �0, and �0 are given and � is unknown; and in panel d, �0, �0, and �0 are given
and �  is unknown.

Panel A: � 0  Unknown Panel B: � 0  Unknown

Panel C: � 0  Unknown Panel D: � 0  Unknown

93



Pr
es

en
te

d
ar

e
gr

ap
hs

of
M

S+
O

+
E

fo
r

�
,

�,
�,

an
d

�w
ith

�
=

0.
Tr

ue
pa

ra
m

et
er

sa
re

(�
,

�
0,

� 0
,

� 0
,�

0)
=

(0
.1

74
6,

6.
79

2×
10

-9
,6

.5
46

×1
0-8

,
0.

99
14

,3
51

.9
45

).
In

pa
ne

la
,

� 0
,

� 0
,a

nd
� 0

ar
e

gi
ve

n
an

d
�

is
va

rie
d;

in
pa

ne
lb

,
�

0,
� 0

,a
nd

� 0
ar

e
gi

ve
n

an
d

�
is

va
rie

d;
in

pa
ne

lc
,

�
0,

�
0,

an
d

� 0
ar

e
gi

ve
n

an
d

�
is

va
rie

d;
an

d
in

pa
ne

ld
,

�
0,

� 0
,a

nd
� 0

ar
e

gi
ve

n
an

d
�i

sv
ar

ie
d.

G
ra

ph
s

on
th

e
le

ft
to

rig
ht

of
ea

ch
pa

ne
ls

ho
w

M
S+

O
+

E
 fo

r �
, �

, �
, a

nd
 �

. T
ru

e 
pa

ra
m

et
er

s c
al

ib
ra

tio
ns

 a
re

 c
irc

le
d.

Fi
gu

re
 4

: M
S+

O
+E

 G
ra

ph
s w

ith
 �

 =
 0

Pa
ne

l A
: �

0
 U

nk
no

w
n

Pa
ne

l B
: �

0
 U

nk
no

w
n

94



Pa
ne

l C
: �

0
 U

nk
no

w
n

Pa
ne

l D
: �

0
 U

nk
no

w
n

95



Fi
gu

re
 5

: M
S+

O
+E

 G
ra

ph
s w

ith
 D

iff
er

en
t �

Pr
es

en
te

d
ar

e
gr

ap
hs

of
M

S+
O

+
E

fo
r

�
,

�,
an

d
�

w
ith

�
fr

om
-0

.9
to

0.
9.

Tr
ue

pa
ra

m
et

er
sa

re
(�

,
�

0,
� 0

,
� 0

)=
(0

.0
11

6,
9.

22
8×

10
-7

,0
.0

68
,

0.
92

48
).

In
pa

ne
la

,
� 0

an
d

� 0
ar

e
gi

ve
n

an
d

�
is

un
kn

ow
n;

in
pa

ne
lb

,
�

0
an

d
� 0

ar
e

gi
ve

n
an

d
�

is
un

kn
ow

n;
in

pa
ne

lc
,

�
0

an
d

� 0
ar

e
gi

ve
n 

an
d 

�
 is

 u
nk

no
w

n.

Pa
ne

l A
: �

0
 U

nk
no

w
n

Pa
ne

l C
: �

0
 U

nk
no

w
n

Pa
ne

l B
: �

0
 U

nk
no

w
n

96



Figure 6: M S+O+E  Graphs with � =  0

Presented are graphs of MS+O+E for �, �, and � with � = 0. True parameters are (� , �0, �

0, �0) = (0.0116, 9.228×10-7, 0.068, 0.9248). In panel a, �0 and �0 are given and � is varied;
in panel b, �0 and �0 are given and � is varied; and in panel c, �0 and �0 are given and �  is
varied. Graphs on the left of each panel show MS+O+E for � while those on the right show
M S+O+E  for � and �. True parameters calibrations are circled.

Panel B: � 0  Unknown

Panel A: � 0  Unknown

Panel C: � 0  Unknown
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ST
S0 / K 0.9 1.0 1.1 0.9 1.0 1.1

Bias 4.955 4.700 4.930 5.355 4.355 2.175 1.230
SD 1.628 1.810 1.813 1.366 2.134 2.103 1.258
MSE 2.718 2.534 2.756 3.052 2.347 0.911 0.308

Table 1: Simulated Parameter Estimates and Errors

This table shows the bias, standard deviations (SD), and mean square errors (MSE) of the parameter
estimates for different exercise prices and estimation methods. 1,000 Monto Carlo iterations of 30
daily observations are run where true parameters values are (� , �0, �0, �0, �0) = (0.1746, 6.792×10-

9, 6.546×10-8, 0.9914, 351.945). ST uses stock data only, OT uses options data only, and S+O+E
uses both stock and options data includes an error term and assumes that � = 1, � = 0. The riskless
rate is fixed at 5%. Values shown for � are adjusted by 109 for Bias and SD, and 1017 for MSE.
Values for � are adjusted by 1010 for Bias and SD, and 1019 for MSE. Values for � are adjusted by
104 for Bias and SD, and 108 for MSE. Values for �  are adjusted by 1 for Bias, SD, and MSE

OT S+O+E

� unknown

Bias 3.744 5.528 5.256 3.276 2.360 1.120 0.604
SD 2.919 3.629 3.510 1.885 1.153 1.097 0.600
MSE 2.245 4.360 3.982 1.425 0.689 0.244 0.072

Bias 0.570 1.380 1.030 0.840 0.440 0.081 0.030
SD 6.237 7.886 7.029 6.470 4.989 2.815 1.714
MSE 0.710 2.520 1.550 1.120 0.440 0.086 0.030

Bias 1.164 1.620 1.300 1.328 0.828 0.276 0.124
SD 0.722 0.589 0.671 0.694 0.654 0.424 0.218
MSE 1.870 2.968 2.136 2.240 1.109 0.254 0.062

� unknown

� unknown

� unknown
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S0/K B-S GARCH B-S GARCH B-S GARCH
Delta

0.90 0.0099 0.0101 0.0618 0.0634 -0.8398 -0.8412
0.95 0.1308 0.1371 0.2320 0.2455 -0.4364 -0.4415
1.00 0.5089 0.5305 0.5134 0.5413 -0.0086 -0.0200
1.05 0.8669 0.8749 0.7769 0.7909 0.1158 0.1062
1.10 0.9842 0.9867 0.9274 0.9345 0.0613 0.0559
0.90 0.0935 0.1000 0.1976 0.2247 -0.5267 -0.5549
0.95 0.2668 0.2871 0.3505 0.3911 -0.2386 -0.2660
1.00 0.5155 0.5449 0.5231 0.5657 -0.0146 -0.0367
1.05 0.7478 0.7752 0.6839 0.7244 0.0935 0.0701

T = 30

T = 90

Table 2: Risk Management Metrics under Different Data Specifications

Using 10,000 simulation iterations and 12 months of stock and options data, we calculate Black-
Scholes (B-S) and GARCH options risk metrics. Presented first are deltas (first partial with respect
to stock price), then gammas (the second partial). Each is calculated using stock data only in
columns (I) ST and both stock and options data including an error term in columns (II) S+O+E.
Difference columns (III) calculate quotients I / II - 1 for respective entries. For GARCH
specifications, h 0 = (�  + � ) / (1 - �� 2 - � ).

(I) ST (II) S+O+E (III) I / II - 1

1.05 0.7478 0.7752 0.6839 0.7244 0.0935 0.0701
1.10 0.8975 0.9092 0.8104 0.8396 0.1074 0.0829
0.90 0.1826 0.2083 0.2877 0.3392 -0.3653 -0.3858
0.95 0.3399 0.3749 0.4088 0.4676 -0.1685 -0.1982
1.00 0.5219 0.5580 0.5327 0.5884 -0.0203 -0.0517
1.05 0.6913 0.7218 0.6478 0.7002 0.0672 0.0308
1.10 0.8221 0.8480 0.7463 0.7932 0.1016 0.0691

Gamma
0.90 0.0011 0.0012 0.0034 0.0036 -0.6760 -0.6631
0.95 0.0083 0.0086 0.0080 0.0082 0.0410 0.0455
1.00 0.0148 0.0149 0.0099 0.0099 0.4960 0.4968
1.05 0.0076 0.0074 0.0071 0.0069 0.0776 0.0780
1.10 0.0013 0.0012 0.0031 0.0030 -0.5721 -0.5814
0.90 0.0040 0.0042 0.0044 0.0047 -0.1010 -0.1127
0.95 0.0074 0.0076 0.0056 0.0058 0.3265 0.3241
1.00 0.0086 0.0086 0.0057 0.0057 0.4969 0.4955
1.05 0.0065 0.0064 0.0049 0.0047 0.3418 0.3422
1.10 0.0035 0.0034 0.0035 0.0034 -0.0138 0.0057
0.90 0.0045 0.0047 0.0038 0.0040 0.1611 0.1714
0.95 0.0059 0.0061 0.0042 0.0043 0.4104 0.4081
1.00 0.0061 0.0060 0.0040 0.0040 0.4983 0.4984
1.05 0.0051 0.0049 0.0036 0.0035 0.4186 0.4144
1.10 0.0036 0.0034 0.0030 0.0028 0.2162 0.2236

T = 180

T = 30

T = 90

T = 180
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ST
S0 / K 0.9 1.0 1.1

Bias 3.398 2.816 2.181 1.673
SD 2.832 2.753 2.485 2.038
MSE 1.956 1.550 1.093 0.695

Table 3: Simulated Parameter Estimates and Errors

This table shows the bias, standard deviations (SD), and mean square errors (MSE) of the
parameter estimates for different exercise prices and estimation methods. 1,000 Monto Carlo
iterations of 30 daily observations are run where true parameters values are (� , � 0, � 0, � 0) =
(0.0116, 9.228×10-7, 0.068, 0.9248). ST uses stock data only, S+O+E uses both stock and options
data includes an error term and assumes that � = 1, � = 0. The riskless rate is fixed at 5%. Values
shown for � are adjusted by 107 for Bias and SD, and 1013 for MSE. Values for � and � are
adjusted by 103 for Bias and SD, and 105 for MSE.

S+O+E

� unknown

� unknown
Bias 2.651 2.019 1.087 0.430
SD 2.532 2.517 1.985 1.209
MSE 1.343 1.041 0.512 0.164

Bias 2.634 2.183 1.108 0.314
SD 2.337 2.363 1.865 0.987
MSE 1.239 1.034 0.470 0.107

� unknown
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S0/K B-S GARCH B-S GARCH B-S GARCH
Delta

0.80 0.0021 0.0060 0.0077 0.0135 -0.7312 -0.5582
0.90 0.0911 0.0839 0.1312 0.1211 -0.3058 -0.3067
1.00 0.5153 0.5106 0.5180 0.5191 -0.0052 -0.0164
1.10 0.8997 0.9127 0.8643 0.8741 0.0410 0.0443
1.20 0.9921 0.9909 0.9804 0.9787 0.0119 0.0125
0.80 0.0535 0.0533 0.0889 0.0823 -0.3983 -0.3521
0.90 0.2339 0.2179 0.2759 0.2470 -0.1523 -0.1177
1.00 0.5265 0.5352 0.5312 0.5354 -0.0088 -0.0004
1.10 0.7833 0.8000 0.7540 0.7780 0.0388 0.0284

T = 30

T = 90

Table 4: Risk Management Metrics under Different Data Specifications

Using 10,000 simulation iterations and 12 months of stock and options data, we calculate Black-
Scholes (B-S) and GARCH options risk metrics. Presented first are deltas (first partial with respect
to stock price), then gammas (the second partial). Each is calculated using stock data only in
columns (I) ST and both stock and options data including an error term in columns (II) S+O+E.
Difference columns (III) calculate quotients I / II - 1 for respective entries. For GARCH
specifications, h 0 = � / (1 - � - � ).

(I) ST (II) S+O+E (III) I / II - 1

1.10 0.7833 0.8000 0.7540 0.7780 0.0388 0.0284
1.20 0.9248 0.9280 0.8931 0.9072 0.0354 0.0230
0.80 0.1372 0.1186 0.1847 0.1649 -0.2570 -0.2809
0.90 0.3205 0.2971 0.3574 0.3226 -0.1033 -0.0790
1.00 0.5374 0.5383 0.5441 0.5451 -0.0121 -0.0124
1.10 0.7261 0.7500 0.7059 0.7300 0.0286 0.0274
1.20 0.8563 0.8764 0.8250 0.8457 0.0379 0.0363

Gamma
0.80 0.0002 0.0001 0.0005 0.0008 -0.6368 -0.9194
0.90 0.0040 0.0036 0.0044 0.0046 -0.0941 -0.2179
1.00 0.0087 0.0097 0.0074 0.0084 0.1775 0.1644
1.10 0.0035 0.0034 0.0037 0.0035 -0.0499 -0.0110
1.20 0.0004 0.0004 0.0007 0.0009 -0.4630 -0.5846
0.80 0.0017 0.0020 0.0021 0.0025 -0.2040 -0.2050
0.90 0.0043 0.0047 0.0040 0.0041 0.0795 0.1471
1.00 0.0050 0.0061 0.0042 0.0046 0.1781 0.3423
1.10 0.0033 0.0035 0.0031 0.0032 0.0968 0.0850
1.20 0.0015 0.0015 0.0016 0.0012 -0.0932 0.1771
0.80 0.0024 0.0027 0.0025 0.0028 -0.0308 -0.0358
0.90 0.0035 0.0034 0.0031 0.0033 0.1287 0.0394
1.00 0.0035 0.0050 0.0030 0.0045 0.1791 0.1153
1.10 0.0027 0.0024 0.0024 0.0028 0.1377 -0.1293
1.20 0.0017 0.0015 0.0016 0.0011 0.0345 0.4385

T = 180

T = 30

T = 90

T = 180
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