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Abstract

Multiple-input-multiple-output (MIMO) block transmission systems with
a cyclic prefix (CP) has been proven to achieve high data rates and simplify
channel estimation and equalization. In order to carry out the benefits of
MIMO block transmission systems with a CP, accurate channel-state infor-
mation is needed. To realize a bandwidth-efficient scheme for the channel
estimation, the blind estimator based on precoding at transmitters has been
recently studied due to its some advantages over other methods. In this thesis,
we proposed a new class of precoders that obtains a better channel estimation
performance in such estimators than previously reported precoders. In ad-
dition, we find a new way to analyze the channel estimation algorithm by
theoretical derivations and numerical examples. We also introduce four fac-
tors that are potentially related to the channel estimation performance, which
were not discussed in previous works except for the noise factor. We also
discover that reducing the values of these factors can lead to a better channel
estimation performance. Simulation results demonstrate that channel estima-
tion using the proposed precoder indeed has a better performance than that

using previously reported precoders.
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Chapter 1

Introduction

In modern wireless communications, the high-performance transmission can be achieved
by using multiple-input-multiple-output (MIMO) communication(see, e.g., [8], and ref-
erences therein). However, accurate channel state information (CSI) is an essential con-
dition to obtain high-performance transmission. The channel state information can be
estimated by transmitting pilot symbols that are known to both transmitters and receivers
(see, e.g., [2], and references therein). However, using the pilot symbols reduces the
transmission-bandwidth efficiency. Thus, blind channel estimation has drawn consider-
able attention in the past few decades(see, e.g., [8],[9], and references therein).

In recent years, the second-order statistics (SOS)-based blind channel estimation al-
gorithm has been proposed (see, e.g., [15], [11], and references therein) for either single-
input-single-output systems (SISO) or MIMO systems. Among various blind channel
estimation techniques, the precoding-based methods are known to be one of the major
solution branches since it requires less assumption on the channel (see, e.g., [2], [5],
and references therein). Lin et al. [7] recently proposed a channel estimation technique
exploiting a periodic modulation precoding for SISO systems, and it shows better per-
formance than previous techniques based on periodic modulation precoding in [9] and
[5]. By extending the technique in [7], Wu [12] et al. proposed a blind channel estima-
tion technique based on a periodic modulation precoding for SISO SC-FDE systems, and
shows that the technique can obtain good estimation performance with a small number of
SC-FDE symbols. In addition, a blind channel estimator for space-time coded SC-FDE
systems was presented in [13]. In MIMO systems, the precoding technique has also been

used for blind channel estimation (see, e.g., [4], [6], and references therein). By extending
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the method in [12] to the case of spatial multiplexing MIMO block transmission systems
with a cyclic prefix (CP), Shin et al. [10] presented a blind channel algorithm based on
a simplified non-redundant precoding for MIMO systems. In addition, they also estab-
lished the conditions required for the simplified precoding to enable blind MIMO channel
identification. In their simulations, the channel MSE performance of the estimator in
[10] is compared with that of the cyclo-stationary statistics based estimator in [2] and the
subspace-based estimator in [1]. It shows better performance than the estimator in [2] and
[1]. Moreover, Chen et al. [3] presented a semiblind channel algorithm that is also based
on periodic precoding for MIMO SC-FDE systems. The difference is that the size of the

precoding matrix can be even or odd, thus relaxing the size requirement in [10] and [14].

In [10], an optimal simplified precoding based on the sense of minimizing the impact
of unknown additive noise is derived. Further, the channel estimation was done based
on the assumption that the autocorrelation matrix of the received signal can be exactly
estimated. However, in practice such accurate information on the autocorrelation matrix
can not be obtained unless the number of received symbol blocks is infinite. Therefore,
the optimal precoding presented in [10] may not leads to the best channel estimation
performance unless the number of received symbol blocks is infinite. This limits the

applicability of the method in [10] in practical situations.

In this thesis, we proposed a new class of precoders that further improves the perfor-
mance of the aforementioned blind channel estimation algorithm. We also introduce some
factors that potentially affect the channel estimation, including the noise. The derivation
of the optimal precoder in [10] only considered minimizing the impact of the noise, but
ignored other factors by the assumption that the number of received blocks is infinite.
Therefore, there can potentially be some precoders that can achieve a better performance
as long as the number of symbol blocks is finite. The simulation results show that the

proposed precoder results in a better channel estimation performance than that in [10].

This rest of the thesis is organized as follows. Chapter 2 presents the system model of
MIMO block transmission with a CP. Chapter 3 first reviews a blind channel estimation
technique using a systematic precoding, previously reported in [10], and then proposes a
new class of precoders that facilitates the aforementioned channel estimator to get more

accurate channel estimation performance than that in [10]. Chapter 4 analyzes the channel
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estimation performance from the theoretical point of view, and shows how some factors
other than the noise that are not previously known affect the channel estimation perfor-
mance. Chapter 5 shows and explains the simulation results. Chapter 6 concludes this
thesis.

The following notations are used in this thesis. Bold uppercase is used for matrices,
and bold lowercase is used for vectors. Transpose, complex conjugate, Hermitian, and
inverse of matrix A are represented by A, A*, AT, and A, respectively. ® repre-
sents the Kronecker product, I, is the m x m matrix , 1,, is a m X 1 vector with all
ones, diag(x) stands for a diagonal matrix with x on its diagonal, and tr(A) denotes the
trace operation. [(.) is the statistic expectation. The M x M matrix A'/? equals to
Udiag[vA1v/ A2 ...\/W]UT, where U is a unitary matrix corresponding to eigenvectors of
A and ); is the ith eigenvalue of A. A[:, j] represents the jth column of the matrix A, and
Aliy : i9,j1 : jo] denotes a submatrix obtained by extracting rows i; to i and columns
J1 to jo from the matrix A. CN (0, 0%) represents a circular symmetric complex Gaussian

distribution with zero mean and variance o2.






Chapter 2

System Model for MIMO Block

transmission with a cyclic prefix
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Figure 2.1: MIMO block transmission system with a cyclic prefix which has ), transmit

and M, receive antennas.

Consider a multiple-input-multiple-output (MIMO) block transmission system
with a cyclic prefix (CP) [10], equipped with M, transmit and M/, receive antennas as
illustrated in Fig. 2.1. As seen in the figure, d(n, k) denotes the information symbol

vector as

d(n, k) = [di(n, k) dy(n, k) ... dpg,(n, k)" 2.1)

where d;(n, k) is the information symbol loaded at the kth subcarrier of the nth symbol
block in the ith transmit antenna. By stacking d(n, k) with 0 < k£ < N — 1, we denote

the NM,; x 1 vector d(n) as



d(n) 2 [d(n,0)" d(n,1)" ...d(n, N — 1)T]" (2.2)

where N is the size of a symbol block. By applying a N x N precoding matrix T to
information symbols at each transmit antenna, the transformed signal vector s(n) at M,

transmit antennas is given as

s(n,k) 2 [si(n, k) so(n, k) ... spr, (0, k)T (2.3)

Is(n,0) s(n, )7 .. s(n, N — 1)7]T

72
—~
S
~—
I

= (T®Iy,)d(n). (2.4)

Then, we copy the last P M; components of the vector s(n), which we called CP. We insert

the CP in front of s(n) as

sep(n) 2 [s(n, N — P)T ...s(n, N — 1)Ts(n,0)" ... s(n, N — 1)7]" (2.5)

where P is the length of the CP at each transmit antenna, and is set to be equal to or larger
than a MIMO channel order to avoid inter-block interference (IBI). Let us consider an
M; x M, finite-impulse response (FIR) MIMO channel with L as the upper bound on the
channel order, and H(/) is the /th lag of the MIMO channel.

At the receiver, we remove the CP portion corrupted by IBI after the nth symbols is

received. The received signal vector r(n) is given as

r(n, k) = [ri(n, k) ro(n, k) ... o (n, k)" (2.6)

r(n,0)" r(n,1)" ... r(n, N — 1)1]"

]
—
S
~—
I

= Hs(n) +n(n) 2.7)

where 1(n) is the NM, x 1 additive white Gaussian noise (AWGN) vector, and H is
a block circulant matrix with [H(0)"H(1)” ... H(L)"0" ... 07]” being its first column

block.



In [10], a method to blindly estimate the MIMO channel matrices H(!) was developed,
using the second-order statistics of the received symbol blocks. As seen in Fig. 2.1, if we
let T be the N x N inverse discrete Fourier transform (IDFT) matrix, this system reduces
to a MIMO-OFDM system. In addition, if we set T to be equal to In;, this system turns into
a MIMO single-carrier frequency-domain equalization (SC-FDE) system. Besides, when
TT! = Q # 1, the system is a MIMO-OFDM or MIMO SC-FDE system with precoding
[10].

Since we use the second-order statistics method to do the channel estimation, the
autocorrelation matrix of the received vector r(n) is defined as R,, = E(r(n)r(n)f)
which has the term TT". Let TTT = ©, and we need to design the matrix £ appropriately
such that the estimation error of the MIMO channel matrices H() could be as small as
possible. The matrix T can be expressed as 2'/?2Ur with = Q20027 where Uy is
a unitary matrix.

In the next chapter, we will describe a blind channel estimation scheme for the MIMO-

CP systems described here.






Chapter 3

Precoding-Based Blind Channel

Estimation

In this chapter, we study a blind channel estimation scheme for MIMO-CP systems
based on precoding techniques. We will first review the method proposed in [10] and then
propose a new class of precoding matrices that further improve the channel estimation

performance.

3.1 Blind channel estimation exploiting the precoding ma-

trix

In this section, we describe the blind channel estimation algorithm based on a simplified
systematic precoding for the MIMO block system in Chapter 2. Before going into the

details of the estimation technique, we make the following assumptions.

1) The (L + 1)M, x M, matrix H is defined as [H(0)"H(1)?... H(L)T]* which has full

column rank, i.e., rank(H)= M,.

2) The information symbol d;(n, k) is spatially and temporally uncorrelated with other
information symbols, i.e., E(d;(nq, k1)d;(n2, k2)) = 036(5 — i)0(ny — n2)d(ky —
k2). The AWGN is zero mean and uncorrelated both spatially and temporally, i.e.,
E(n(m)n(n)') = o26(m — n)Iyy,. In addition, the information symbols is uncor-

related with the AWGN, i.e., E(d(n)n(n)") = 0.

9



To describe the precoding-based blind estimation technique proposed in [10], we first

define the N x N matrix IT as

n-| ! 3.1)
Iy, 0 '

and define IT° as Iy. Then, we can rewrite the N M, x N M, block circulant channel

matrix H as
L
> ' H(). 3.2)
Thus, the N M, x 1 received vector r(n) can be written as
L .
r(n) = (3 II'@ H(@)(T® Ly, )d(n) +n(n)
z .
= O _II'T®H(®i)d(n) + n(n). (3.3)
i=0

We assume the signal power o2 = 1, and denote the noise power as 0727. In addition, we

defined the SNR as £ o3 /07.. The autocorrelation matrix of r(n) is given as

Ri. = E(r(n)r(n))
= H(Q@IMt)H +o INMT

L
- ZZW Q") @ H(i)H(5)" + oo, - (3.4)

1=0 j
Based on the simplified systematic precoding, the N x N matrix {2 was developed in

[10], and it was given as

Q= D§1 Dp (3.5)
Dp D52 7 .
Dy, = diag([£(0) £(1)... £(N/2 = 1)]),
D, = diag([{(N/2) {(N/2+ 1)... {(N = 1)]),
D, = diag([p(0) p(1)... p(N/2 = 1)]), (3.6)

10



where N is assumed to be an even number with N > 4L + 2, p(m) are real numbers,
and zg;é &(m) + Zm ~_p&(m) = N + P since we need to preserve the signal power
per symbol block including the CP after the transformation by T [10]. In the following,

we present how to obtain the MIMO channel H from R, in detail.

The N M, x N M, matrix R,, is partitioned as
R(m,n) £ Ry [mM, +1: (m +1)M,,nM, +1: (n+1)M,],0 <m,n < N. (3.7)

Let us denote A;(R,;) (A_;(Ry.)), and A;(HH') (A_;(HH')) as the matrix composed
of the M, x M, submatrices on the ith upper (lower) block diagonal of R, and HH',

which are given by

Ai(Rep) 2 Rur(0,9)T Ren(1,1 + )7 . Ryp(N — 1 — 4, N — 1)T)T

A i(Rer) 2 [Ree(i,0)T Ryp(1 +4, 1) . Ry (N — 1, N — 1 — )77

A;(HH') £ [H())"H(0)" H(i + 1)"H(1)"... H(L)"H(L —)"]"
A_;(HH") £ [H(0)*H(:)" H(1)*H(i + 1)"... H(L —i)*H(L)"]". (3.8)

To obtain the channel-product matrices HH' from the autocorrelation matrix R, in (3.4).
We can express [An/2(Rer) A n/2(Rer)TAg(Rer)”]T and
[An/24i(Rer) " A-njosi(Rer) T Ai(Rur ) T A nsi(Rue )17 as, respectively

[AnpRer)"A_np(Rer) " Ao(Re)™]" = (AT Af BJ]" @ Ly, ) Ao (HHT)
+ 072, LN, IN]T ® I, (3.9)

[AN/Q—H(Rrr)TA—N/Q—H(Rrr)TAi(Rrr)TAfNJri(Rrr)T]T
= (ATATBI)" @I, )A;(HH') for1 <i < L.

(3.10)

11



In (3.9) and (3.10), the N/2 x (L —i+1) matrix A; for0 < i < Landthe N x (L —i+1)

matrix B, for 0 < ¢ < L are defined as, respectively

p(0) p(N/2—-1) .. p(N/2 — L+ 1)
p(1) p(0) . p(N/2—=L+i+1)

A — : : : 3.11)

p(N/2—1) p(N/2—2) ... p(N/2—(L—i+1))

€(0) EN—-1) .. E(N—L+1)
£(1) £(0) e &N—-L+i+1)

B, : : : | 3.12)

E(N—1) E(N=2) .. EN—(L—i+1))

Let C; be the pseudoinverse matrix of [A] A7 B]” @ I,;,.. So, C; can be written as
C, = (2A7A;, +B'B,) AT AT Bl @1, for i=0.. L. (3.13)

If 2A7 A, + B! B, is invertible, we can obtain A;(HH) for 0 < i < L. Since both AT A,
and B! B, are positive semidefinite matrices, it is guaranteed to be nonsingular if A; or B,
has full column rank. If the matrix C; is obtained, the estimate of A;(HH') are obtained

as, respectively

Ao(HH') = Co[An/2(Rar)"A_y/2(Rue) " Ag(Rer) )"
= Ao(HH') + Co(o7[0n 15]" @ L) (3.14)

AHA) = CilAnosi(Ree) A nopi(Ree) " A (Rue) Ay (Ree) )"
= A;HH'"), fori=1..L. (3.15)

Using Ai(I:II:IT), 0 < ¢ < L, we can construct the matrix I:II:IT. When we take the

eigenvalue decomposition of ﬁI?IT, the matrix HF' can be written as

HA' = Udiag[\; Ao Az41), U (3.16)

12



where Uis a (L+ 1)M, x (L + 1) M, unitary matrix corresponding to eigenvectors and \;
is the ith eigenvalue. In (3.16), the eigenvalues are considered to be in decreasing order.
Since rank(H) = M, by assumption 1, we have \; > 0 for 1 < ¢ < M, and \; = 0 for

M, +1 <i < (L+ 1)M,. Thus, the estimated MIMO channel H is obtained as

H = U[;, 1: M,)diag[v/\ Vg .. v/ Aag ]V (3.17)

where the M, x M, matrix V' is an arbitrary unitary matrix that represents a MIMO chan-
nel ambiguity inherent in blind channel estimation techniques. If the matrix R, is only

corrupted by the additive noise, we can improve the channel estimation by subtracting

m Z;ﬁ}gff \; from \; for 1 < i < M, [10]. In other words, the adjusted
eigenvalue estimates \; are given as No= N\ — m Zgiﬂt)ﬁr Ajfor 1 <7 < M.

Thus, the estimated MIMO channel H with noise reduction is obtained as

H=U[1: Mt]diag[\/): \/)\: \/TM]VT : (3.18)

The channel ambiguity matrix V can be estimate by

~

V = arg minyy+ ]I:I—HVH?

e

= arg maxyyi_y,, t(VHH). (3.19)

When we use the singular value decomposition (SVD) to decompose H'H into RQW,
the estimated channel ambiguity matrix is given as V = RW'. Thus, the estimated

MIMO channel H is obtained as
H = HV. (3.20)

But from the simulation, we find that noise reduction can not help too much for the chan-
nel estimation performance when the SNR is at intermediate and high regimes. It means
that we can directly obtain the estimated MIMO channel H = HV without noise reduction

in mid- and high SNR regimes.
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3.2 Proposed precoding matrices for channel estimation

In [10], the parameters £(m) and p(m) in (3.5) are selected as
E(m)=(N+P)(1—a)+a, ifm=ny,
&(m) = a, if m # ng (3.21)
p(m) = +0, itm=0,...,N/2—-1
where ny is an integer satisfying 0 < ng < N — P — 1, and § < . We know that the
matrix Q = TT' is positive semidefinite, and to guarantee the recovery of transmitted
symbols at the receiver, the matrix {2 should be positive definite [10]. This imposes the

constraint {(m) > « > 0 on &(m) , and needs § < min &(m) , where 0 = max

0<m<N
o<mensz |P(m)]. In addition, the received autocorrelation matrix R,, was assumed to be
(3.4), and the matrix R, is only corrupted by the noise. The precoder was derived based
on minimizing the impact of unknown additive noise in [10], but the reality is that we
should collect the received symbol blocks, and then, estimate the autocorrelation matrix
R, by time average. Let us define D=[d(0),d(1)...d(Q — 1)}, Rpp = DTDT, E=[7n(0),
n(l)...n(Q—1)],and R=[r(0),r(1)...r(Q — 1) 1, where () is the number of symbol
blocks for channel estimation. It can be readily shown that R = H(T ® I;,)D + E.
Further, let us denote v = Rpp — Inaz,. In [10], Rpp was assumed to be Iy, , but this is
in general not true as long as () is a finite integer. The difference between Rpp and Iy,

turns out to be critical to the selection of precoder that leads to optimal channel estimation

performance. The estimate R,, can be written as

A~

R, = QZI r(n)r(n)'/Q
_ RR//Q
= (H(T®Ly,)D+E)YH(TRIy,)D+E)/Q
= H(TRLy,)(T' @ Ly )H + H(T @ Iy, )y(T" @ Iy, ) H!
+H(T @ Ii,)DET/Q + ED'(T' @ I;,)H'/Q + EET/Q.  (3.22)

We defined I', Z, and P as

lI>

H(T @ Ly, )y (T @ Ly, )1
EE'/Q
H(T ® Ly, )DE'/Q. (3.23)

>

lI>

14



Thus, the matrix f{rr in (3.22) can be written as

TRL )T oLy )H + T+ &+ &' +Z
QL) H +T+®+ 3+ Z

L L
= > ) oM’y @ HHH(j) + T + & + &' + Z. (3.24)

i=0 =0

=
.

Note that in [10], I' and ® are assumed to be 0 and Z is assumed to be Iy,;.. If the
matrix Q = TT' is properly designed, the matrices H(i)H(5)' can be obtained from R,
but the matrices T',®,®", and Z, as will be shown later in the chapter 4 and 5, will affect
the accuracy of H(i)H(j)" when we get the matrices H(i)H(j)! from R,,. In the reality,
we think the matrix f{rr in (3.24) is more appropriate than R, in (3.4) to describe the
received autocorrelation matrix since the number of symbol blocks () is a finite value, and
we never have the chance to get the matrix R, in real situation. Since the parameter ()
has a finite value, the matrix I' in (3.24) can not be the zero matrix. Further, the matrix I
will always affects the channel MSE performance no matter the SNR how large is.

In this thesis, we proposed a new class of precoders, and it can be obtained by setting

the parameters £(m) and p(m) in (3.5) as

Em)=((N+P)1—a)+a)/2+a/2, ifm=ny,
Em)=(N+P)(1—a)+a)/2+ /2, %fm:n0+N/2, (3.25)
&(m) = a, if m # ng,m # ng + N/2,

p(m) =4, ifm=0,..,N/2—-1

where ng is an integer satisfying 0 < nyp < N/2 — 1, and § < «. As will be shown
numerically in chapter 5, the channel estimator using the proposed precoder can reduce
the channel estimation error, compared with the channel estimator using the precoder
in [10]. In addition, the simulation results show that the channel estimator using the
proposed precoder can get better channel estimation than the channel estimator using the
precoder in [10]. In the next chapter, we will study how the matrices I',®, and Z would

impact on the channel estimation performance.

15



16



Chapter 4

Analysis of the channel estimation

performance

In this chapter, we analyze the channel estimation algorithm and study the relation-
ship between the approximated autocorrelation matrix and the channel estimation perfor-
mance. In the analysis, we will use a metric namely the channel-product mean square
error (CPMSE), that is closely related to the channel estimation performance. Then we
introduce some factors, involving data and noise statistics, that directly affect CPMSE.

The impact of these factors on the channel estimation performance is finally described.

4.1 The channel estimation algorithm analysis based on

approximated autocorrelation matrix

In this section, we will discuss the blind channel estimation algorithm when the
autocorrelation matrix R, in (3.24) is used. In addition, we define the following op-
eration that will be used in the derivation. For any NM, x NM, matrix A = [A;]
for 0 < k,1 < N — 1, where Ay, is a block matrix of dimension M, x M, , define
Aj(A) = [AS; ATy o AN__jy_q|T for 0 < j < N — 1, ie, Aj(A) is the matrix
formed from the jth block superdiagonal of A.

To obtain the channel-product matrices HH' from the autocorrelation matrix R, in
(3.24). We can express [AN/2(f{rr)TA,N/g(f{rr)TAo(f{rr)T]T and

A~ A~ A~ A~

[An/2i(Rer) A njoi(Ree) T Ay (Rue ) TA_ v (Ree) 7T as, respectively
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[Ans2(Rer) " Ao (Ree) " Ag(Rue) "] = (AT AT BJ]" @ Ly, ) Ao (HH)
AN (D) AN 2 (D) Ao (D)7 4 [Anj2 (@) Ao (@) Ag(@)"]"

A2 (RN A N2 (@ Ao (@) + [Anp2(Z) " A_np2(Z) Ao(Z)]" (4.1)

[An/oi(Rer) " A vz (Ree) " Ai(Ree) " Ay i(Rer) )"
= (AT A7 B{]" @ L, )A;(HH')
A2 (D) A nyo () AG(D)T Ay (D) ]F
HAN/21i(P) Ao () AY(R) Ay (@)T]"
A2 (BN A_ N2 (PN A(PT) Ay (7))
HAN21i (L) A_Nj2i(Z) " AAZ) Ay i (Z)T]) for 1 <i < L. (4.2)
In (4.1) and (4.2), the N/2 x (L —i+ 1) matrix A; for0 <7 < Landthe N x (L —i+1)
matrix B; for 0 < ¢ < L are defined in (3.11) and (3.12), respectively. In addition,

the matrices I', Z, ® are defined in (3.23). Let C; be the pseudoinverse matrix of
A7 AT BY]" ® 1. So, C; can be given as (3.13). In addition, let us denote

Lo = [Anya(T)" Aoy (T) Ag(T) ]
Do = [An/2(P)" Anj2(®) Ag(@)']
= [An2 (@) AN (@) Ao (@)
Zy = [Anp(Z) Aonpa(Z) Ao(Z)"]" (4.3)
Besides, for 1 < ¢ < [, define

i = [Anjo+i(T) " Ao yjoni (D) AG(T) " Aoy i(T) 7
P; = [Anj24i(®)" Aonjori( ) Ai( @) A_n1i(@)']"
U = [Anjori (@) ANy (@1 TA(@) T Ay (21)T]T

Zi = [Anpri(Z)"A_njppi(Z) A(Z)" Ay i (Z)]" (4.4)
Then, the estimate of A;(HH') are obtained as, respectively
Ao(HH') = ColAn)o(Ree) Ao (Rew)” Ao (Ree) )"

18



= Ao(HH') + Co(Ty + ®¢ + Vg + Z). (4.5)

A~ A~

AZ<I:II:IT> = Ci[AN/2+i(Rrr)TA—N/Q-H(Rrr)TAi<Rrr)TA—N+i(f{rr)T]T
= AHH) + Cy(T; + @, + U, + Z;),fori =1 ... L. (4.6)

If the second term of (4.5) and (4.6) are equal to the zero matrix, Ai(HHT) for 1 =
0,1, ..., L are precisely obtained. However, since Cy and C; must not be the zero matrix,
we need the second term of (4.5) and (4.6) as close to a zero matrix as possible. Using
Ai(I:II:IT), 0 < ¢ < L, we can construct the matrix I:II:IT. Then, we can decompose
aa’ by the eigenvalue decomposition, and the MIMO channel estimation are obtained
by removing the effect of ambiguity matrix as given in (3.20). As will be shown later
in Section 4.3, the accuracy of the channel-product matrices aH' (estimated from R, )
has a strong effect on the channel estimation MSE. In the next section, we first study the

factors that affect CPMSE.

4.2 The factors that affect CPMSE

In this section, we want to analyze the factors which are correlated to channel-product
mean square error (CPMSE). Since A_;(HH') — A_,(HH') = (A;(HH') — A,(HH")),

we can get

i i
|A;(HH') — A;(HH')[|% = [|A_;(HH') — A_;(HH")||% . 4.7)
Then, the channel-product mean square error is given by

Ty £ E(||(HA') — (HH)|[%) 4.8)
= E(||Ao(HH") — Ao(HH")|% + Y ||A,(HA') — A,(HH')| 3

i=1

+ 5 [JAL(HA') — A_,(HH)|[2)

=1

= E(||Ao(HH") — Ao(HH')|[% +2 3 ||A,(HA') — A,(HH)|[2)

= E(||Co(To + ®0 + Wy + Zy) |7 + QZ ICi(T; + @i + U, + Z,) || 7).

i=1
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Since the matrices I', ®, and Z in (3.24) affect the channel-product mean square error, and

we want to analyze the term that dominates the channel-product MSE. Thus, we denote

L
Tp = E(|CoTol} +2) _[|CTi][3) 4.9)
=1
L
B = E(|[Cool[3 +2 ) [|C:ii[) (4.10)
=1
L
Up = E(||CoWoll} +2>||Ci¥[3) (4.11)
=1
L
Zp = E(||CoZol[} + 2 [|C:iZi|[3). (4.12)
=1

We define Gp £ Ty + &p + U + Zp, and it can be shown that
.
E(/|(HH') — (HH)|[%) = G (4.13)

The steps of the proof is given in the appendix. Moreover, we called I'p, @, ¥, and Zp,
the error caused by the difference between Rpp(i.e., DD'/Q) and the identity matrix,
the error caused by the difference between Rpg(i.e., DET/Q) and the zero matrix, the
error caused by the difference between Rgp (i.e., ED'/Q) and the zero matrix, and the
error caused by the noise term (i.e., EE' /Q), respectively. In this section, we know that
the CPMSE equals to the sum of the error factors. In addition, as will be shown later in
Chapter 5, instead of the error factor Z, the error factor I'r play an important role for
channel estimation performance when the SNR is larger than 0 dB. In next section, we

will show that the CPMSE is highly related to the channel estimation MSE.

4.3 The relationship between the CPMSE and the chan-
nel MSE

In this section, we want to learn the relation between the CPMSE and the channel

MSE. The CPMSE is defined in (4.9), and the channel MSE is given by
E(|[H — H)[)7. (4.14)
If welet H=H + AH, the CPMSE can be expressed as
B(||(HA' - HH'||)}
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E(|[HH' — HH||)
— E(|(AH)H + H(AH) + (AH)(AH)'||)2.

We note the channel MSE in (4.14) can be written as F(||AH||)%. The smaller the
CPMSE we have, the smaller AH we obtain. The smaller AH we get, the smaller channel
MSE we have. In summary, we showed that the matrices I, ®, and Z in (3.24) affect the
CPMSE. Besides, we revealed four error factors (I'p, &, ¥, Zr) that can be indicators
for the channel estimation performance. In the next chapter, We will give some simulation
examples to demonstrate the importance of the error factor I'p. Further, we will use the
error factors and the CPMSE to explain why the proposed precoder has a better channel

estimation performance.
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Chapter 5

Simulation Results

This chapter presents six simulation examples to analyze the channel estimation MSE
of the channel estimation algorithm, using the proposed precoder and the precoder in
[10], which is marked with “Shin,” and the channel estimator in [3] which is marked with
“Chen.” In the following simulations, we consider an MIMO blocks transmission system
with a CP, equipped with two transmit(}M; = 2) and two receive antennas(M, = 2). The
number of subcarriers is N = 16, the MIMO channel order is L = 3, and the length of
the CP is P = 3. The precoding matrix is T = 2'/2,

We use 16-QAM to generate the information symbols d;(n, k)’s, and let the sig-
nal power 05 = 1. The perturbed noise at each receive antenna is an additive com-
plex white Gaussian noise with zero mean and variance a%. The SNR is defined as
03/0o; = 1/o}. In other words, o7 can be obtained as 1/SNR. Entries of each channel
tap H(/) are independent and identically distributed(i.i.d), and are randomly generated
from a CN(0,1/(L 4 1)) with a uniform power delay profile. One thousand independent
realizations of the channel matrix H (/V,, = 1000) are used for channel estimation. The

channel-product mean square error (CPMSE) and the channel mean square error (MSE)

are given as

N,
5 At
CPMSE £ — "||(HyH;,)) — (HyH},)||7
m k=1
1 Jm
MSE £ H, —H.|?2%. 5.1
NthMT(LH),;H ) — Hull7 (3.1
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Simulation Example 1: In this example, we consider the channel estimate MSE of
the channel estimator with and without noise reduction which was mentioned in Section
3.1. The coefficients of the proposed precoder are chosen based on (3.25) with o = 0.1
and 0 = 0. The coefficients of Shin’s and Chen’s precoders are chosen based on (3.21)
with @ = 0.1 and 6 = 0. The simulation result is shown in Fig. 5.1. We can see that

Nm =1000 ; Mt =2; Mr=2; N=16; P=3;L =3;0=0.1;3=0
10 : : : : :
Proposed : with noise reduction

'+ Shin : with noise reduction

'+ Chen : with noise reduction
Proposed : without noise reduction
'+ Shin : without noise reduction

'+ Chen : without noise reduction

[

101;0 o

coovvv

MSE

103 I»D vvvvvvvv ¥ I I “SXRRTIIY
B g
107 .
-10 -5 0 5 10 15 20
SNR (dB)
(a)

Figure 5.1: Comparison of MSE performance when the channel estimator with the noise

reduction and without noise reduction.

the channel estimation performance of the channel estimator using the proposed precoder
with those of the channel estimator using the precoders of “Shin” and “Chen” are very
close in mid- and high SNR regimes. It suggests noise reduction does not help too much
in mid- and high SNR regimes. Thus, in mid- and high SNR regimes, we can reduce
the complexity of the channel estimation algorithm by estimating the channel coefficients
without noise reduction.

Simulation Example 2: We want to learn the channel estimation MSE performance
according to different values of SNR. The coefficients of the proposed precoder are chosen
based on (3.25) with « = 0.1 and § = 0. The coefficients of Shin’s and Chen’s precoders
are chosen based on (3.21) with « = 0.1 and § = 0.

The simulation result is shown in Fig. 5.2. In this example, we found that even when
the noise is absent, the MSE performance is nonzero since the matrix I' defined in (3.23)
is nonzero. In addition, significant improvement of MSE performance is seen only when
the SNR increases from a low SNR regime to an intermediate one. In [10], they proposed

the procoder that is optimized in the sense of minimizing the impact of unknown additive
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Figure 5.2: Comparison of MSE performances according to different value of SNR.

noise. However, we observed that the noise is not a crucial role for channel estimation
MSE in mid- and high SNR regimes. We therefore presume that some factor other than
the noise plays a more important role for channel estimation MSE in mid- and high SNR
regimes, as will be shown in details in the next simulation example.

Simulation Example 3: In this example, we compared the channel estimation perfor-
mance of the channel estimator using the proposed precoder with those of the channel
estimator using the precoders of “Shin” and “Chen”. We consider the situation when
SNR = 20 dB. The coefficients of the proposed precoder are chosen based on (3.25) with
a = 0.1,0.3,0.7, and 0.9 and with 6 = 0, respectively. The coefficients of Shin’s and
Chen’s precoders are chosen based on (3.21) with a = 0.1,0.3,0.7, and 0.9 and with
0 = 0, respectively. The channel estimation MSE, the channel-product MSE(CPMSE),
and the error factors (P, ¥V p,Zp,['r) defined in Chapter 4 versus the number of symbol
blocks are shown in Fig. 5.3. The CPMSE equals to the sum of the error factors. We ex-
pect that the CPMSE is highly related to the MSE, and the smaller CPMSE we have, the
smaller MSE. As seen in Fig. 5.3, we can find that I'z is much larger than other error fac-
tors. Thus, we think I' is the most crucial factor for the CPMSE performance when SNR
= 20 dB. This can be seen in Fig. 5.3(e) and Fig. 5.3(f), the CPMSE is very close to the
error factor ['r. In Fig. 5.3(e), we can see that the error factor 'z of the channel estimator
using the proposed precoder is much smaller than those of the channel estimator using

the precoders of “Shin” and “Chen” for a < 0.7. In Fig. 5.3(c), we find that the MSE
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performance of the channel estimator using the proposed precoder is also much smaller
than those of the channel estimator using the precoders of “Shin” and “Chen” for o < 0.7.
In addition, Fig. 5.3(c) shows that the channel estimation performs better for smaller
which is consistent with the 'z values we observe in Fig. 5.3(e). Moreover, the MSE
performance is consistently improved as the number of symbol blocks increases. This
reflects the fact that the more reliable the autocorrelation matrix estimate of the received

signal, the more accurate the channel estimate by the channel estimator [10].

Simulation Example 4: In this example, we compared the channel estimation perfor-
mance of the channel estimator using the proposed precoder with those of the channel
estimator using the precoders of “Shin” and “Chen”. The coefficients of the proposed
precoder are chosen based on (3.25) with = 0.1,0.3,0.7, and 0.9 and with § = 0, re-
spectively. The coefficients of Shin’s and Chen’s precoders are chosen based on (3.21)
with o = 0.1,0.3,0.7, and 0.9 and with 6 = 0, respectively. The channel estimation
MSE, the channel-product MSE(CPMSE), and the error factors (®p,V r,Zp,['r) defined
in Chapter 4 versus SNR are shown in Fig. 5.4. The number of symbol blocks is set to
100. In Fig. 5.4(e), we observe that although the estimation performance is improved
when the SNR increases from a low value to an intermediate one, the rate of the perfor-
mance improvement becomes insignificant at intermediate and high SNR regimes. This
can be seen in Fig. 5.4(a) with Fig. 5.4(d), where we observe that in negative SNR regime
the values of Z is larger than that of ['x; the error factor Zr become an important role
for the MSE performance in this regime. In mid- and high SNR regimes, the values of Zp
is much smaller than that of I'p; the error factor I'r become important role for channel
estimation in mid- and high SNR regimes. This is consistent with our claim that the error
factor I'p, instead of the noise, is the crucial factor of channel estimation performance
especially when the SNR is at mid- and high regimes. In addition, the channel estimator
using the proposed precoder decreases the I compared with the channel estimator using
the precoders of “Shin” and “Chen” for v < 0.7. From Fig. 5.4(e), we can see that the
channel estimator using the proposed precoder has a better MSE performance than the
channel estimator using the precoders of “Shin” and “Chen” when SNR is larger than O
dB and o < 0.7. This simulation example shows that reducing the error factor I' is more

important than reducing Zr when SNR is larger than 0 dB.
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Simulation Example 5: In this example, we will explore how the ¢ parameter defined
in Section 3.1 will affect the channel estimation performance. We compare the channel
estimation performance of the channel estimator using the proposed precoder with that
of the channel estimator using the precoder of “Shin”. The coefficients of the proposed
precoder are chosen based on (3.25) with 6 = 0,0.3, and 0.6 and with o = 0.7, respec-
tively. The coefficients of Shin’s precoder are chosen based on (3.21) with 6 = 0,0.3,
and 0.6 and with v = 0.7, respectively. We consider the situation when SNR = 20 dB.
The channel estimation MSE, the channel-product MSE(CPMSE), and the error factors
(Pp,Vp,Zp,I'r) defined in Chapter 4 versus the number of symbol blocks are shown in
Fig. 5.5. In previous examples, we show that the error factors @,V p, and Zp are not
important role for channel estimation performance when SNR = 20dB, so we will discuss
the error factor I' especially. Fig. 5.5(e) presents the MSE performance as a function of
the number of symbol blocks. The figure shows that regardless of the value of ¢, the MSE
performance is almost identical with the fixed a when the precoder of “Shin” is used.
When the proposed precoders are used, however, the MSE performance will decreases as
0 decreases from 0.6 to 0. As seen in Fig. 5.5(a), we find that regardless of the value of
0, the error factor I'> almost identical with the fixed o when the channel estimator using
the precoder of “Shin”, but the error factor I'r is decreased as J decreased with « fixed
when the channel estimator using the proposed precoder. Thus the choice of ¢ appears to
play a less important role in channel estimation when the precoder of “Shin” is used, but
a choice of a small value of 4 leads to a better channel estimation performance when the

proposed precoder is used.

Simulation Example 6: In this example, we want to learn how the different modulation
schemes would impact on the channel estimation performance. We use three modulation
schemes, namely, QPSK, 16-QAM, and 64-QAM to generate the information symbols
d;(n,k)’s. The coefficients of the proposed precoder are chosen based on (3.25) with
0 = 0 and o = 0.1. The coefficients of Shin’s precoder are chosen based on (3.21) with
0 = 0and o = 0.1. We consider the situation when SNR =20 dB. The channel estimation
MSE, the channel-product MSE(CPMSE), and the error factors (P, ¥ r,Zr,['r) defined
in Chapter 4 versus the number of symbol blocks are shown in Fig. 5.6. In Fig. 5.6(a)-

(c), we observe that the error factors @,V p, and Zp are most identical regardless of the
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modulation schemes used. In Fig. 5.6(d), we can see that the error factor [ with QPSK
modulation scheme used is much smaller than that with 16-QAM used, but we can also
see that the error factors ' with 64-QAM used is close to that with 16-QAM used. It
suggests that using a small modulation scheme (e.g. QPSK) can result in small the error
factor I'r . In addition, the error factor I'r is the dominant error factor for the CPMSE,
and the MSE is highly related to the CPMSE. The result of Fig. 5.6(e) agrees with our

expectation.
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blocks when SNR =20 dB. All legends are as same as Fig. 5.3(a).
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Figure 5.6: Comparison of MSE performance, the CPMSE, and the error factors accord-
ing to QPSK,16-QAM, and 64-QAM when SNR = 20 dB.
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Chapter 6

Conclusions

In this thesis, we studied the blind channel estimation problem in MIMO CP sys-
tems based on precoding at the transmitters. A new class of precoders is proposed that
improves the channel estimation performance. We also introduced four error factors that
are strongly related to the channel estimation performance. Simulation results show that
our proposed precoders possess smaller error factors and hence justifies its performance
improvement.

The simulation results show that compared with some existing precoding approaches
for MIMO block transmission systems with CP, our proposed precoder obtains an accurate
MIMO channel estimate as long as the number of symbol blocks is finite. In addition, we
analyze the channel estimation performance according to the error factors. Furthermore,
we learned how the different modulation schemes would impact on the channel estimation
performance. It suggests that using a small modulation scheme can result in small the
channel estimate MSE.

In the future, it is a challenging work to find an optimal precoder that considers all
error factors introduced in this thesis. Another challenging work is to develop the chan-
nel estimation algorithm that has an even better performance under the same number of

symbol blocks.
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Appendix A

Appendix

In this appendix, we will show that the CPMSE equals to the sum of the error factors,
and it is given in (4.13).

Proof:

L

Tp = E(||Co(To + ®o + o + Zo) |3 + 2> [|Ci(T + ®; + ¥, + Z,)[|})
= tr(LCoE[(FO + & + Uy + Zo) (T + D} —Z{—Zillg +74)]Ch)
+2 (G E[(T; + ®; + W, + Z,)((T] + ®f + ¥! + z))c)
= EZ[:&(CD(FOFI) + ®®) + U 0!+ Z,2))C))]
+tr(Co( E[To@{] + E[T0 ] + E[TZ)] + B[] + E[®Z{] + E[W,Z{])C])
QZL:U (DT 4+ @80 + 0, 0! + Z,2))C))]

=1

+tr(C,(E[;®]] + E[T,¥!] + E[T,Z!] + E[®,%]] + E[®,Z]] + E[¥,Z]])C]).

When we take the expectation operation to the cross terms, the outputs are zero matrices,

and it will be shown later. We thus get

Ty = E[tr(co(rorg + ®®) + U 0! + Z,21)Cl)]

Ztr (O + @8 + 9,91 +7,2))Cl)
:FF—i-(I)F—i-‘I’F-i—ZF
— Gy (A.1)

Now, we first prove £/ [I‘Z-‘IJH = 0 for 0 < i < L. The (a, b)th of I'; are uncorrelated with
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the noise (1;(n, k)), and the (a, b)th entry of I';®! can be expressed as

Z fa,b(hjS(l)a dZ(n7 k))n;(nv k)?

l7s7i7j7n’k:

fOI‘OSlSL,OSS,ZSMt,OSJSMT,OSkSN_l,OS'nSQ_l

where f,(his(1),d;(n, k)) is a function of h;s(!) and d;(n, k), and its output is related to
the channel coefficients and the information symbols. Both of them are uncorrelated with

the noise, so we get

E[ Y fas(hys().di(n, ) (k)] =Y Blfap(hys(D), di(n, k) E[; (n, k)]

l7s7i7j7n7k lis7/l‘?j)n7k

= 0. (A.2)

Since E[n;(n, k)] = 0, we can obtain that each entry of E(I;®!) is zero; In other words,
it means £(I';®!) = 0 . By the similarly reason, we can get E[I'; ®!] = 0. Secondly , we
prove E[T;Z!] = 0. The (a, b)th of T'; can be expressed as

> fap(hjs (D)) dir (n1, kr)d, (n2, k2)

l,s5,5,n1#n2,k1,k2,i1,i2

+ >, Jap(hjs(D))dia (1, k1)di, (na, k2)

l,s5,3,m1,n2,k17#k2,11,i2

+ >, Jap(hjs(1))dir (na, ky)dg, (na, ko)

l,s,5,n1,n2,k1,k2 51712

+ > falhyeD)(di (s k)5 (n, k) = 1),

l,s,j,n1,k1,il
fOI‘OSlSL,OSS,il,iQ SMtaongMTaOSklakQ SN_170§n1an2§Q_]—

The (a, b)th of E[T;Z!] can be expressed as

> Elfap(hjs (1), n;(n, k) E[di, (n1, k1)d;, (na, ko))

l,5,7,n1#n2,k1,k2,i1,i2

+ > Elfap(hjs(l); 1 (n, k) Edi, (n1, k1) dj, (2, k)]

l7$7j7n1 n2,k1 #kQ 181,12

+ > Bl fap(hys(1),n;(n, k) Elds, (01, k1 )d (n2, k)]

l737j7n17n27k17k21i17£i2

+ > Elfaslhys(0),n;(n, E)IE((ds, (n, k1 )d5, (na, ky) — 1)]
l,5,3,m1,k1,i1

=0 (A.3)

where E[d“ (nl, k:l)d;;(ng, k’g)] = 0 and E[(dzl (’fbl, kl)d;kl (711, ]{?1) — 1)] =0. ThllS, we
can obtain E[I';Z!] = 0. Thirdly, we prove £(®;®) = 0. The (a, b)th of E(®,¥) can
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be expressed as

> Elfap(hys(l), nj(n, k) E[dir (1, k1)diz(na, k2)]

l,5,3,n1#n2,k1,k2,i1,i2

+ > Efap(hjs(D),ni(n, k) Eldi (n1, k1)dia(na, k2)]

1,s,5,n1,n2,k14£k2,i1,i2

+ Z E[fa,b(hj8<l)7nj(n7 k))]E[dil(nlvkl)diQ(n%kZ)]

1,s,j,nln2 k1,k2,i1#£i2

+ > Elfas(hys(D), (0, k) E[(di (ny, Kr)?)]

l,s,7,n1,k1,il
=0 (A4)
where E[d;(ny, ki)diz(na, ko)] = 0 and E[d;;(n1,k1)%] = 0. Thus, we can obtain
E(®,¥) = 0. Lastly, we prove E[®;Z!] = 0, since the (a, b)th entry of E[®;Z] can be
expressed as

> Elfashys(1),m;(n, k) E[ds(n, k)]

l7i7s7j7n’k:

=0 (AS)

where E[d;(n, k)] = 0. Thus, we can obtain E[®;Z!] = 0. By the similarly reason, we
can get E[W,Z!] = 0.
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