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中中中文文文摘摘摘要要要

多輸入多輸出(MIMO)區塊傳輸循環字首(CP)系統已經被證實可以

達到高傳輸率，並可以簡化通道偵測和通道等化。為了要展現多輸入

多輸出區塊傳輸循環字首系統的好處， 我們需要準確的通道狀態資

訊。為了使通道估計有更高的頻寬利用率，基於在傳輸端使用預編碼

的盲通道偵測方法相較於先前的盲通道偵測方法有更多項的優勢，因

而成為近來的研究對象。在這篇論文，我們提出了新一類的預編碼

器，當盲通道偵測器使用我們所提出的預編碼器時，相較於使用之前

研究所提出的預編碼器，可得到更為精確的通道估計。另外，我們提

出一種新的方式，並藉由理論的推導和模擬的測試，發現可以用來做

通道估計演算法的分析。我們也介紹了跟通道估計效能很有關聯的四

個因素，其中除了雜訊因素之外，其他的因素在之前的研究裡並未被

提過。 我們還發現若降低這些因素，可得到更好的通道估計效能。

藉由模擬，可以看出當通道偵測器採用所提出的預編碼器，相較於通

道偵測器採用之前研究中所提出的預編碼器，可以得到更好的通道估

計。
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Abstract

Multiple-input-multiple-output (MIMO) block transmission systems with

a cyclic prefix (CP) has been proven to achieve high data rates and simplify

channel estimation and equalization. In order to carry out the benefits of

MIMO block transmission systems with a CP, accurate channel-state infor-

mation is needed. To realize a bandwidth-efficient scheme for the channel

estimation, the blind estimator based on precoding at transmitters has been

recently studied due to its some advantages over other methods. In this thesis,

we proposed a new class of precoders that obtains a better channel estimation

performance in such estimators than previously reported precoders. In ad-

dition, we find a new way to analyze the channel estimation algorithm by

theoretical derivations and numerical examples. We also introduce four fac-

tors that are potentially related to the channel estimation performance, which

were not discussed in previous works except for the noise factor. We also

discover that reducing the values of these factors can lead to a better channel

estimation performance. Simulation results demonstrate that channel estima-

tion using the proposed precoder indeed has a better performance than that

using previously reported precoders.
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Chapter 1

Introduction

In modern wireless communications, the high-performance transmission can be achieved

by using multiple-input-multiple-output (MIMO) communication(see, e.g., [8], and ref-

erences therein). However, accurate channel state information (CSI) is an essential con-

dition to obtain high-performance transmission. The channel state information can be

estimated by transmitting pilot symbols that are known to both transmitters and receivers

(see, e.g., [2], and references therein). However, using the pilot symbols reduces the

transmission-bandwidth efficiency. Thus, blind channel estimation has drawn consider-

able attention in the past few decades(see, e.g., [8],[9], and references therein).

In recent years, the second-order statistics (SOS)-based blind channel estimation al-

gorithm has been proposed (see, e.g., [15], [11], and references therein) for either single-

input-single-output systems (SISO) or MIMO systems. Among various blind channel

estimation techniques, the precoding-based methods are known to be one of the major

solution branches since it requires less assumption on the channel (see, e.g., [2], [5],

and references therein). Lin et al. [7] recently proposed a channel estimation technique

exploiting a periodic modulation precoding for SISO systems, and it shows better per-

formance than previous techniques based on periodic modulation precoding in [9] and

[5]. By extending the technique in [7], Wu [12] et al. proposed a blind channel estima-

tion technique based on a periodic modulation precoding for SISO SC-FDE systems, and

shows that the technique can obtain good estimation performance with a small number of

SC-FDE symbols. In addition, a blind channel estimator for space-time coded SC-FDE

systems was presented in [13]. In MIMO systems, the precoding technique has also been

used for blind channel estimation (see, e.g., [4], [6], and references therein). By extending
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the method in [12] to the case of spatial multiplexing MIMO block transmission systems

with a cyclic prefix (CP), Shin et al. [10] presented a blind channel algorithm based on

a simplified non-redundant precoding for MIMO systems. In addition, they also estab-

lished the conditions required for the simplified precoding to enable blind MIMO channel

identification. In their simulations, the channel MSE performance of the estimator in

[10] is compared with that of the cyclo-stationary statistics based estimator in [2] and the

subspace-based estimator in [1]. It shows better performance than the estimator in [2] and

[1]. Moreover, Chen et al. [3] presented a semiblind channel algorithm that is also based

on periodic precoding for MIMO SC-FDE systems. The difference is that the size of the

precoding matrix can be even or odd, thus relaxing the size requirement in [10] and [14].

In [10], an optimal simplified precoding based on the sense of minimizing the impact

of unknown additive noise is derived. Further, the channel estimation was done based

on the assumption that the autocorrelation matrix of the received signal can be exactly

estimated. However, in practice such accurate information on the autocorrelation matrix

can not be obtained unless the number of received symbol blocks is infinite. Therefore,

the optimal precoding presented in [10] may not leads to the best channel estimation

performance unless the number of received symbol blocks is infinite. This limits the

applicability of the method in [10] in practical situations.

In this thesis, we proposed a new class of precoders that further improves the perfor-

mance of the aforementioned blind channel estimation algorithm. We also introduce some

factors that potentially affect the channel estimation, including the noise. The derivation

of the optimal precoder in [10] only considered minimizing the impact of the noise, but

ignored other factors by the assumption that the number of received blocks is infinite.

Therefore, there can potentially be some precoders that can achieve a better performance

as long as the number of symbol blocks is finite. The simulation results show that the

proposed precoder results in a better channel estimation performance than that in [10].

This rest of the thesis is organized as follows. Chapter 2 presents the system model of

MIMO block transmission with a CP. Chapter 3 first reviews a blind channel estimation

technique using a systematic precoding, previously reported in [10], and then proposes a

new class of precoders that facilitates the aforementioned channel estimator to get more

accurate channel estimation performance than that in [10]. Chapter 4 analyzes the channel
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estimation performance from the theoretical point of view, and shows how some factors

other than the noise that are not previously known affect the channel estimation perfor-

mance. Chapter 5 shows and explains the simulation results. Chapter 6 concludes this

thesis.

The following notations are used in this thesis. Bold uppercase is used for matrices,

and bold lowercase is used for vectors. Transpose, complex conjugate, Hermitian, and

inverse of matrix A are represented by AT , A∗, A†, and A−1, respectively. ⊗ repre-

sents the Kronecker product, Im is the m × m matrix , 1m is a m × 1 vector with all

ones, diag(x) stands for a diagonal matrix with x on its diagonal, and tr(A) denotes the

trace operation. E(.) is the statistic expectation. The M × M matrix A1/2 equals to

Udiag[
√
λ1
√
λ2...
√
λM ]U†, where U is a unitary matrix corresponding to eigenvectors of

A and λi is the ith eigenvalue of A. A[:, j] represents the jth column of the matrix A, and

A[i1 : i2, j1 : j2] denotes a submatrix obtained by extracting rows i1 to i2 and columns

j1 to j2 from the matrix A. CN (0, σ2) represents a circular symmetric complex Gaussian

distribution with zero mean and variance σ2.
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Chapter 2

System Model for MIMO Block
transmission with a cyclic prefix

Figure 2.1: MIMO block transmission system with a cyclic prefix which has Mt transmit

and Mr receive antennas.

Consider a multiple-input-multiple-output (MIMO) block transmission system

with a cyclic prefix (CP) [10], equipped with Mt transmit and Mr receive antennas as

illustrated in Fig. 2.1. As seen in the figure, d(n, k) denotes the information symbol

vector as

d(n, k) , [d1(n, k) d2(n, k) ... dMt(n, k)]T (2.1)

where di(n, k) is the information symbol loaded at the kth subcarrier of the nth symbol

block in the ith transmit antenna. By stacking d(n, k) with 0 6 k 6 N − 1, we denote

the NMt × 1 vector d(n) as
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d(n) , [d(n, 0)T d(n, 1)T ... d(n,N − 1)T ]T (2.2)

where N is the size of a symbol block. By applying a N × N precoding matrix T to

information symbols at each transmit antenna, the transformed signal vector s(n) at Mt

transmit antennas is given as

s(n, k) , [s1(n, k) s2(n, k) ... sMt(n, k)]T (2.3)

s(n) , [s(n, 0)T s(n, 1)T ... s(n,N − 1)T ]T

= (T⊗ IMt)d(n). (2.4)

Then, we copy the last PMt components of the vector s(n), which we called CP. We insert

the CP in front of s(n) as

scp(n) , [s(n,N − P )T ... s(n,N − 1)T s(n, 0)T ... s(n,N − 1)T ]T (2.5)

where P is the length of the CP at each transmit antenna, and is set to be equal to or larger

than a MIMO channel order to avoid inter-block interference (IBI). Let us consider an

Mt×Mr finite-impulse response (FIR) MIMO channel with L as the upper bound on the

channel order, and H(l) is the lth lag of the MIMO channel.

At the receiver, we remove the CP portion corrupted by IBI after the nth symbols is

received. The received signal vector r(n) is given as

r(n, k) , [r1(n, k) r2(n, k) ... rMr(n, k)]T (2.6)

r(n) , [r(n, 0)T r(n, 1)T ... r(n,N − 1)T ]T

= Hs(n) + η(n) (2.7)

where η(n) is the NMr × 1 additive white Gaussian noise (AWGN) vector, and H is

a block circulant matrix with [H(0)TH(1)T ... H(L)T0T ... 0T ]T being its first column

block.
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In [10], a method to blindly estimate the MIMO channel matrices H(l) was developed,

using the second-order statistics of the received symbol blocks. As seen in Fig. 2.1, if we

let T be the N ×N inverse discrete Fourier transform (IDFT) matrix, this system reduces

to a MIMO-OFDM system. In addition, if we set T to be equal to IN, this system turns into

a MIMO single-carrier frequency-domain equalization (SC-FDE) system. Besides, when

TT† = Ω 6= I, the system is a MIMO-OFDM or MIMO SC-FDE system with precoding

[10].

Since we use the second-order statistics method to do the channel estimation, the

autocorrelation matrix of the received vector r(n) is defined as Rrr , E(r(n)r(n)†)

which has the term TT†. Let TT† = Ω , and we need to design the matrix Ω appropriately

such that the estimation error of the MIMO channel matrices H(l) could be as small as

possible. The matrix T can be expressed as Ω1/2UT with Ω = Ω1/2Ω(1/2)†, where UT is

a unitary matrix.

In the next chapter, we will describe a blind channel estimation scheme for the MIMO-

CP systems described here.
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Chapter 3

Precoding-Based Blind Channel
Estimation

In this chapter, we study a blind channel estimation scheme for MIMO-CP systems

based on precoding techniques. We will first review the method proposed in [10] and then

propose a new class of precoding matrices that further improve the channel estimation

performance.

3.1 Blind channel estimation exploiting the precoding ma-

trix

In this section, we describe the blind channel estimation algorithm based on a simplified

systematic precoding for the MIMO block system in Chapter 2. Before going into the

details of the estimation technique, we make the following assumptions.

1) The (L + 1)Mr ×Mt matrix H is defined as [H(0)TH(1)T ... H(L)T ]T which has full

column rank, i.e., rank(H)= Mt.

2) The information symbol dj(n, k) is spatially and temporally uncorrelated with other

information symbols, i.e., E(dj(n1, k1)d
∗
i (n2, k2)) = σ2

dδ(j − i)δ(n1 − n2)δ(k1 −

k2). The AWGN is zero mean and uncorrelated both spatially and temporally, i.e.,

E(η(m)η(n)†) = σ2
ηδ(m−n)INMr . In addition, the information symbols is uncor-

related with the AWGN, i.e., E(d(n)η(n)†) = 0.
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To describe the precoding-based blind estimation technique proposed in [10], we first

define the N ×N matrix Π as

Π =

[
0 1

IN−1 0

]
(3.1)

and define Π0 as IN . Then, we can rewrite the NMr × NMt block circulant channel

matrixH as

H =
L∑
i=0

Πi ⊗ H(i). (3.2)

Thus, the NMr × 1 received vector r(n) can be written as

r(n) = (
L∑
i=0

Πi ⊗ H(i))(T⊗ IMt)d(n) + η(n)

= (
L∑
i=0

ΠiT⊗H(i))d(n) + η(n). (3.3)

We assume the signal power σ2
d = 1, and denote the noise power as σ2

η. In addition, we

defined the SNR as , σ2
d/σ

2
η. The autocorrelation matrix of r(n) is given as

Rrr , E(r(n)r(n)†)

= H(Ω⊗ IMt)H† + σ2
ηINMr

=
L∑
i=0

L∑
j=0

ΠiΩ(ΠT )j ⊗H(i)H(j)† + σ2
ηINMr . (3.4)

Based on the simplified systematic precoding, the N ×N matrix Ω was developed in

[10], and it was given as

Ω =

[
Dξ1 Dρ

Dρ Dξ2

]
, (3.5)

Dξ1 = diag([ξ(0) ξ(1)... ξ(N/2− 1)]),

Dξ2 = diag([ξ(N/2) ξ(N/2 + 1)... ξ(N − 1)]),

Dρ = diag([ρ(0) ρ(1)... ρ(N/2− 1)]), (3.6)
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where N is assumed to be an even number with N ≥ 4L + 2 , ρ(m) are real numbers,

and
∑N−1

m=0 ξ(m) +
∑N−1

m=N−P ξ(m) = N + P since we need to preserve the signal power

per symbol block including the CP after the transformation by T [10]. In the following,

we present how to obtain the MIMO channel H from Rrr in detail.

The NMr ×NMr matrix Rrr is partitioned as

R(m,n) , Rrr[mMr + 1 : (m+ 1)Mr, nMr + 1 : (n+ 1)Mr], 0 6 m,n < N. (3.7)

Let us denote Λi(Rrr) (Λ−i(Rrr)), and Λi(HH†) (Λ−i(HH†)) as the matrix composed

of the Mr ×Mr submatrices on the ith upper (lower) block diagonal of Rrr and HH†,

which are given by

Λi(Rrr) , [Rrr(0, i)
T Rrr(1, 1 + i)T ... Rrr(N − 1− i, N − 1)T ]T

Λ−i(Rrr) , [Rrr(i, 0)T Rrr(1 + i, 1)T ... Rrr(N − 1, N − 1− i)T ]T

Λi(HH†) , [H(i)∗H(0)T H(i+ 1)∗H(1)T ... H(L)∗H(L− i)T ]T

Λ−i(HH†) , [H(0)∗H(i)T H(1)∗H(i+ 1)T ... H(L− i)∗H(L)T ]T . (3.8)

To obtain the channel-product matrices HH† from the autocorrelation matrix Rrr in (3.4).

We can express [ΛN/2(Rrr)
TΛ−N/2(Rrr)

TΛ0(Rrr)
T ]T and

[ΛN/2+i(Rrr)
TΛ−N/2+i(Rrr)

TΛi(Rrr)
TΛ−N+i(Rrr)

T ]T as, respectively

[ΛN/2(Rrr)
TΛ−N/2(Rrr)

TΛ0(Rrr)
T ]T = ([AT

0 AT
0 BT

0 ]T ⊗ IMr)Λ0(HH†)

+ σ2
η[0N 1N ]T ⊗ IMr (3.9)

[ΛN/2+i(Rrr)
TΛ−N/2+i(Rrr)

TΛi(Rrr)
TΛ−N+i(Rrr)

T ]T

= ([AT
i AT

i BT
i ]T ⊗ IMr)Λi(HH†) for 1 ≤ i ≤ L.

(3.10)
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In (3.9) and (3.10), the N/2× (L− i+1) matrix Ai for 0 ≤ i ≤ L and theN× (L− i+1)

matrix Bi for 0 ≤ i ≤ L are defined as, respectively

Ai =



ρ(0) ρ(N/2− 1) ... ρ(N/2− L+ i)

ρ(1) ρ(0) ... ρ(N/2− L+ i+ 1)

. . ... .

. . ... .

. . ... .

ρ(N/2− 1) ρ(N/2− 2) ... ρ(N/2− (L− i+ 1))


(3.11)

Bi =



ξ(0) ξ(N − 1) ... ξ(N − L+ i)

ξ(1) ξ(0) ... ξ(N − L+ i+ 1)

. . ... .

. . ... .

. . ... .

ξ(N − 1) ξ(N − 2) ... ξ(N − (L− i+ 1))


. (3.12)

Let Ci be the pseudoinverse matrix of [AT
i AT

i BT
i ]T ⊗ IMr . So, Ci can be written as

Ci = (2AT
i Ai + BT

i Bi)
−1[AT

i AT
i BT

i ]⊗ IMr , for i = 0 ... L. (3.13)

If 2AT
i Ai + BT

i Bi is invertible, we can obtain Λi(HH†) for 0 ≤ i ≤ L. Since both AT
i Ai

and BT
i Bi are positive semidefinite matrices, it is guaranteed to be nonsingular if Ai or Bi

has full column rank. If the matrix Ci is obtained, the estimate of Λi(HH†) are obtained

as, respectively

Λ0(H̃H̃†) = C0[ΛN/2(Rrr)
TΛ−N/2(Rrr)

TΛ0(Rrr)
T ]T

= Λ0(HH†) + C0(σ
2
η[0N 1N ]T ⊗ IMr) (3.14)

Λi(H̃H̃†) = Ci[ΛN/2+i(Rrr)
TΛ−N/2+i(Rrr)

TΛi(Rrr)
TΛ−N+i(Rrr)

T ]T

= Λi(HH†), for i = 1 ... L. (3.15)

Using Λi(H̃H̃†), 0 6 i 6 L, we can construct the matrix H̃H̃
†
. When we take the

eigenvalue decomposition of H̃H̃
†
, the matrix H̃H̃

†
can be written as

H̃H̃
†

= Udiag[λ1 λ2... λ(L+1)Mr ]U
† (3.16)
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where U is a (L+1)Mr× (L+1)Mr unitary matrix corresponding to eigenvectors and λi

is the ith eigenvalue. In (3.16), the eigenvalues are considered to be in decreasing order.

Since rank(H) = Mt by assumption 1, we have λi > 0 for 1 ≤ i ≤ Mt and λi = 0 for

Mt + 1 ≤ i ≤ (L+ 1)Mr. Thus, the estimated MIMO channel Ȟ is obtained as

Ȟ = U[:, 1 : Mt]diag[
√
λ1

√
λ2 ...

√
λMt ]V† (3.17)

where the Mt×Mt matrix V† is an arbitrary unitary matrix that represents a MIMO chan-

nel ambiguity inherent in blind channel estimation techniques. If the matrix Rrr is only

corrupted by the additive noise, we can improve the channel estimation by subtracting
1

Mr(L+1)−Mt

∑(L+1)Mr

j=Mt+1 λj from λi for 1 6 i 6 Mt [10]. In other words, the adjusted

eigenvalue estimates λ̂i are given as λ̂i = λi − 1
Mr(L+1)−Mt

∑(L+1)Mr

j=Mt+1 λj for 1 6 i 6Mt.

Thus, the estimated MIMO channel H̃ with noise reduction is obtained as

H̃ = U[:, 1 : Mt]diag[

√
λ̂1

√
λ̂2 ...

√
ˆλMt ]V† . (3.18)

The channel ambiguity matrix V can be estimate by

V̂ = arg minVV†=IMt
||H̃−HV||2F

= arg maxVV†=IMt
tr(V†H†H̃) . (3.19)

When we use the singular value decomposition (SVD) to decompose H†H̃ into RQW†,

the estimated channel ambiguity matrix is given as V̂ = RW†. Thus, the estimated

MIMO channel H is obtained as

Ĥ = H̃V̂ . (3.20)

But from the simulation, we find that noise reduction can not help too much for the chan-

nel estimation performance when the SNR is at intermediate and high regimes. It means

that we can directly obtain the estimated MIMO channel Ĥ = ȞV̂ without noise reduction

in mid- and high SNR regimes.
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3.2 Proposed precoding matrices for channel estimation

In [10], the parameters ξ(m) and ρ(m) in (3.5) are selected as
ξ(m) = (N + P )(1− α) + α, if m = n0,

ξ(m) = α, if m 6= n0

ρ(m) = ±δ, if m = 0, ..., N/2− 1

(3.21)

where n0 is an integer satisfying 0 ≤ n0 ≤ N − P − 1, and δ < α. We know that the

matrix Ω = TT† is positive semidefinite, and to guarantee the recovery of transmitted

symbols at the receiver, the matrix Ω should be positive definite [10]. This imposes the

constraint ξ(m) ≥ α > 0 on ξ(m) , and needs δ < min
0≤m<N

ξ(m) , where δ = max

0≤m<N/2
|ρ(m)|. In addition, the received autocorrelation matrix Rrr was assumed to be

(3.4), and the matrix Rrr is only corrupted by the noise. The precoder was derived based

on minimizing the impact of unknown additive noise in [10], but the reality is that we

should collect the received symbol blocks, and then, estimate the autocorrelation matrix

Rrr by time average. Let us define D=[d(0),d(1) . . . d(Q− 1)], RDD = DD†
Q

, E=[η(0) ,

η(1) . . .η(Q− 1) ], and R = [r(0) , r(1) . . . r(Q− 1) ], where Q is the number of symbol

blocks for channel estimation. It can be readily shown that R = H(T ⊗ IMt)D + E.

Further, let us denote γ = RDD− INMt . In [10], RDD was assumed to be INMt , but this is

in general not true as long as Q is a finite integer. The difference between RDD and INMt

turns out to be critical to the selection of precoder that leads to optimal channel estimation

performance. The estimate Rrr can be written as

R̂rr =

Q−1∑
n=0

r(n)r(n)†/Q

= RR†/Q

= (H(T⊗ IMt)D + E)(H(T⊗ IMt)D + E)†/Q

= H(T⊗ IMt)(T† ⊗ IMt)H† +H(T⊗ IMt)γ(T† ⊗ IMt)H†

+H(T⊗ IMt)DE†/Q+ ED†(T† ⊗ IMt)H†/Q+ EE†/Q. (3.22)

We defined Γ, Z, and Φ as

Γ , H(T⊗ IMt)γ(T† ⊗ IMt)H†

Z , EE†/Q

Φ , H(T⊗ IMt)DE†/Q. (3.23)
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Thus, the matrix R̂rr in (3.22) can be written as

R̂rr = H(T⊗ IMt)(T† ⊗ IMt)H† + Γ + Φ + Φ† + Z

= H(Ω⊗ IMt)H† + Γ + Φ + Φ† + Z

=
L∑
i=0

L∑
j=0

ΠiΩ(ΠT )j ⊗H(i)H(j)† + Γ + Φ + Φ† + Z. (3.24)

Note that in [10], Γ and Φ are assumed to be 0 and Z is assumed to be INMr . If the

matrix Ω = TT† is properly designed, the matrices H(i)H(j)† can be obtained from R̂rr,

but the matrices Γ,Φ,Φ†, and Z, as will be shown later in the chapter 4 and 5, will affect

the accuracy of H(i)H(j)† when we get the matrices H(i)H(j)† from R̂rr. In the reality,

we think the matrix R̂rr in (3.24) is more appropriate than Rrr in (3.4) to describe the

received autocorrelation matrix since the number of symbol blocksQ is a finite value, and

we never have the chance to get the matrix Rrr in real situation. Since the parameter Q

has a finite value, the matrix Γ in (3.24) can not be the zero matrix. Further, the matrix Γ

will always affects the channel MSE performance no matter the SNR how large is.

In this thesis, we proposed a new class of precoders, and it can be obtained by setting

the parameters ξ(m) and ρ(m) in (3.5) as
ξ(m) = ((N + P )(1− α) + α)/2 + α/2, if m = n0,

ξ(m) = ((N + P )(1− α) + α)/2 + α/2, if m = n0 +N/2,

ξ(m) = α, if m 6= n0,m 6= n0 +N/2,

ρ(m) = δ, if m = 0, ..., N/2− 1

(3.25)

where n0 is an integer satisfying 0 ≤ n0 ≤ N/2 − 1, and δ < α. As will be shown

numerically in chapter 5, the channel estimator using the proposed precoder can reduce

the channel estimation error, compared with the channel estimator using the precoder

in [10]. In addition, the simulation results show that the channel estimator using the

proposed precoder can get better channel estimation than the channel estimator using the

precoder in [10]. In the next chapter, we will study how the matrices Γ,Φ, and Z would

impact on the channel estimation performance.
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Chapter 4

Analysis of the channel estimation
performance

In this chapter, we analyze the channel estimation algorithm and study the relation-

ship between the approximated autocorrelation matrix and the channel estimation perfor-

mance. In the analysis, we will use a metric namely the channel-product mean square

error (CPMSE), that is closely related to the channel estimation performance. Then we

introduce some factors, involving data and noise statistics, that directly affect CPMSE.

The impact of these factors on the channel estimation performance is finally described.

4.1 The channel estimation algorithm analysis based on

approximated autocorrelation matrix

In this section, we will discuss the blind channel estimation algorithm when the

autocorrelation matrix R̂rr in (3.24) is used. In addition, we define the following op-

eration that will be used in the derivation. For any NMr × NMr matrix A = [Ak,l]

for 0 ≤ k, l ≤ N − 1, where Ak,l is a block matrix of dimension Mr × Mr , define

Λj(A) = [AT
0,j AT

1,j+1 ... AT
N−1−j,N−1]

T for 0 ≤ j ≤ N − 1, i.e., Λj(A) is the matrix

formed from the jth block superdiagonal of A.

To obtain the channel-product matrices HH† from the autocorrelation matrix R̂rr in

(3.24). We can express [ΛN/2(R̂rr)
TΛ−N/2(R̂rr)

TΛ0(R̂rr)
T ]T and

[ΛN/2+i(R̂rr)
TΛ−N/2+i(R̂rr)

TΛi(R̂rr)
TΛ−N+i(R̂rr)

T ]T as, respectively
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[ΛN/2(R̂rr)
TΛ−N/2(R̂rr)

TΛ0(R̂rr)
T ]T = ([AT

0 AT
0 BT

0 ]T ⊗ IMr)Λ0(HH†)

+[ΛN/2(Γ)TΛ−N/2(Γ)TΛ0(Γ)T ]T + [ΛN/2(Φ)TΛ−N/2(Φ)TΛ0(Φ)T ]T

+[ΛN/2(Φ
†)TΛ−N/2(Φ

†)TΛ0(Φ
†)T ]T + [ΛN/2(Z)TΛ−N/2(Z)TΛ0(Z)T ]T (4.1)

[ΛN/2+i(R̂rr)
TΛ−N/2+i(R̂rr)

TΛi(R̂rr)
TΛ−N+i(R̂rr)

T ]T

= ([AT
i AT

i BT
i ]T ⊗ IMr)Λi(HH†)

+[ΛN/2+i(Γ)TΛ−N/2+i(Γ)TΛi(Γ)TΛ−N+i(Γ)T ]T

+[ΛN/2+i(Φ)TΛ−N/2+i(Φ)TΛi(Φ)TΛ−N+i(Φ)T ]T

+[ΛN/2+i(Φ
†)TΛ−N/2+i(Φ

†)TΛi(Φ
†)TΛ−N+i(Φ

†)T ]T

+[ΛN/2+i(Z)TΛ−N/2+i(Z)TΛi(Z)TΛ−N+i(Z)T ]T , for 1 ≤ i ≤ L. (4.2)

In (4.1) and (4.2), the N/2× (L− i+ 1) matrix Ai for 0 ≤ i ≤ L and the N × (L− i+ 1)

matrix Bi for 0 ≤ i ≤ L are defined in (3.11) and (3.12), respectively. In addition,

the matrices Γ, Z, Φ are defined in (3.23). Let Ci be the pseudoinverse matrix of

[AT
i AT

i BT
i ]T ⊗ IMr . So, Ci can be given as (3.13). In addition, let us denote

Γ0 = [ΛN/2(Γ)TΛ−N/2(Γ)TΛ0(Γ)T ]T

Φ0 = [ΛN/2(Φ)TΛ−N/2(Φ)TΛ0(Φ)T ]T

Ψ0 = [ΛN/2(Φ
†)TΛ−N/2(Φ

†)TΛ0(Φ
†)T ]T

Z0 = [ΛN/2(Z)TΛ−N/2(Z)TΛ0(Z)T ]T . (4.3)

Besides, for 1 ≤ i ≤ L, define

Γi = [ΛN/2+i(Γ)TΛ−N/2+i(Γ)TΛi(Γ)TΛ−N+i(Γ)T ]T

Φi = [ΛN/2+i(Φ)TΛ−N/2+i(Φ)TΛi(Φ)TΛ−N+i(Φ)T ]T

Ψi = [ΛN/2+i(Φ
†)TΛ−N/2+i(Φ

†)TΛi(Φ
†)TΛ−N+i(Φ

†)T ]T

Zi = [ΛN/2+i(Z)TΛ−N/2+i(Z)TΛi(Z)TΛ−N+i(Z)T ]T . (4.4)

Then, the estimate of Λi(HH†) are obtained as, respectively

Λ0(H̃H̃†) = C0[ΛN/2(R̂rr)
TΛ−N/2(R̂rr)

TΛ0(R̂rr)
T ]T
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= Λ0(HH†) + C0(Γ0 + Φ0 + Ψ0 + Z0). (4.5)

Λi(H̃H̃†) = Ci[ΛN/2+i(R̂rr)
TΛ−N/2+i(R̂rr)

TΛi(R̂rr)
TΛ−N+i(R̂rr)

T ]T

= Λi(HH†) + Ci(Γi + Φi + Ψi + Zi), for i = 1 ... L. (4.6)

If the second term of (4.5) and (4.6) are equal to the zero matrix, Λi(HH†) for i =

0, 1, ..., L are precisely obtained. However, since C0 and Ci must not be the zero matrix,

we need the second term of (4.5) and (4.6) as close to a zero matrix as possible. Using

Λi(H̃H̃†), 0 6 i 6 L, we can construct the matrix H̃H̃
†
. Then, we can decompose

H̃H̃
†

by the eigenvalue decomposition, and the MIMO channel estimation are obtained

by removing the effect of ambiguity matrix as given in (3.20). As will be shown later

in Section 4.3, the accuracy of the channel-product matrices H̃H̃† (estimated from R̂rr )

has a strong effect on the channel estimation MSE. In the next section, we first study the

factors that affect CPMSE.

4.2 The factors that affect CPMSE

In this section, we want to analyze the factors which are correlated to channel-product

mean square error (CPMSE). Since Λ−i(H̃H̃†)−Λ−i(HH†) = (Λi(H̃H̃†)−Λi(HH†))†,

we can get

||Λi(H̃H̃†)−Λi(HH†)||2F = ||Λ−i(H̃H̃†)−Λ−i(HH†)||2F . (4.7)

Then, the channel-product mean square error is given by

TF , E(||(H̃H̃†)− (HH†)||2F ) (4.8)

= E(||Λ0(H̃H̃†)−Λ0(HH†)||2F +
L∑
i=1

||Λi(H̃H̃†)−Λi(HH†)||2F

+
L∑
i=1

||Λ−i(H̃H̃†)−Λ−i(HH†)||2F )

= E(||Λ0(H̃H̃†)−Λ0(HH†)||2F + 2
L∑
i=1

||Λi(H̃H̃†)−Λi(HH†)||2F )

= E(||C0(Γ0 + Φ0 + Ψ0 + Z0)||2F + 2
L∑
i=1

||Ci(Γi + Φi + Ψi + Zi)||2F ).

19



Since the matrices Γ,Φ, and Z in (3.24) affect the channel-product mean square error, and

we want to analyze the term that dominates the channel-product MSE. Thus, we denote

ΓF = E(||C0Γ0||2F + 2
L∑
i=1

||CiΓi||2F ) (4.9)

ΦF = E(||C0Φ0||2F + 2
L∑
i=1

||CiΦi||2F ) (4.10)

ΨF = E(||C0Ψ0||2F + 2
L∑
i=1

||CiΨi||2F ) (4.11)

ZF = E(||C0Z0||2F + 2
L∑
i=1

||CiZi||2F ). (4.12)

We define GF , ΓF + ΦF + ΨF + ZF , and it can be shown that

E(||(H̃H̃†)− (HH†)||2F ) = GF . (4.13)

The steps of the proof is given in the appendix. Moreover, we called ΓF ,ΦF ,ΨF , and ZF ,

the error caused by the difference between RDD(i.e., DD†/Q) and the identity matrix,

the error caused by the difference between RDE(i.e., DE†/Q) and the zero matrix, the

error caused by the difference between RED(i.e., ED†/Q) and the zero matrix, and the

error caused by the noise term (i.e., EE†/Q), respectively. In this section, we know that

the CPMSE equals to the sum of the error factors. In addition, as will be shown later in

Chapter 5, instead of the error factor ZF , the error factor ΓF play an important role for

channel estimation performance when the SNR is larger than 0 dB. In next section, we

will show that the CPMSE is highly related to the channel estimation MSE.

4.3 The relationship between the CPMSE and the chan-

nel MSE

In this section, we want to learn the relation between the CPMSE and the channel

MSE. The CPMSE is defined in (4.9), and the channel MSE is given by

E(||Ĥ−H)||)2F . (4.14)

If we let Ĥ = H + ∆H, the CPMSE can be expressed as

E(||(H̃H̃† −HH†||)2F
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= E(||ĤĤ
† −HH†||)2F

= E(||(∆H)H† + H(∆H)† + (∆H)(∆H)†||)2F .

We note the channel MSE in (4.14) can be written as E(||∆H||)2F . The smaller the

CPMSE we have, the smaller ∆H we obtain. The smaller ∆H we get, the smaller channel

MSE we have. In summary, we showed that the matrices Γ,Φ, and Z in (3.24) affect the

CPMSE. Besides, we revealed four error factors (ΓF ,ΦF ,ΨF , ZF ) that can be indicators

for the channel estimation performance. In the next chapter, We will give some simulation

examples to demonstrate the importance of the error factor ΓF . Further, we will use the

error factors and the CPMSE to explain why the proposed precoder has a better channel

estimation performance.
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Chapter 5

Simulation Results

This chapter presents six simulation examples to analyze the channel estimation MSE

of the channel estimation algorithm, using the proposed precoder and the precoder in

[10], which is marked with “Shin,” and the channel estimator in [3] which is marked with

“Chen.” In the following simulations, we consider an MIMO blocks transmission system

with a CP, equipped with two transmit(Mt = 2) and two receive antennas(Mr = 2). The

number of subcarriers is N = 16, the MIMO channel order is L = 3, and the length of

the CP is P = 3. The precoding matrix is T = Ω1/2.

We use 16-QAM to generate the information symbols di(n, k)’s, and let the sig-

nal power σ2
d = 1. The perturbed noise at each receive antenna is an additive com-

plex white Gaussian noise with zero mean and variance σ2
η . The SNR is defined as

σ2
d/σ

2
η = 1/σ2

η . In other words, σ2
η can be obtained as 1/SNR. Entries of each channel

tap H(l) are independent and identically distributed(i.i.d), and are randomly generated

from a CN (0, 1/(L+ 1)) with a uniform power delay profile. One thousand independent

realizations of the channel matrix H (Nm = 1000) are used for channel estimation. The

channel-product mean square error (CPMSE) and the channel mean square error (MSE)

are given as

CPMSE ,
1

Nm

Nm∑
k=1

||(H̃(k)H̃
†
(k))− (H(k)H†(k))||

2
F

MSE ,
1

NmMtMr(L+ 1)

Nm∑
k=1

||H(k) − Ĥ(k)||2F . (5.1)
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Simulation Example 1: In this example, we consider the channel estimate MSE of

the channel estimator with and without noise reduction which was mentioned in Section

3.1. The coefficients of the proposed precoder are chosen based on (3.25) with α = 0.1

and δ = 0. The coefficients of Shin’s and Chen’s precoders are chosen based on (3.21)

with α = 0.1 and δ = 0. The simulation result is shown in Fig. 5.1. We can see that
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 Shin : with noise reduction
 Chen : with noise reduction
 Proposed : without  noise reduction
 Shin : without noise reduction
 Chen : without noise reduction

(a)

Figure 5.1: Comparison of MSE performance when the channel estimator with the noise

reduction and without noise reduction.

the channel estimation performance of the channel estimator using the proposed precoder

with those of the channel estimator using the precoders of “Shin” and “Chen” are very

close in mid- and high SNR regimes. It suggests noise reduction does not help too much

in mid- and high SNR regimes. Thus, in mid- and high SNR regimes, we can reduce

the complexity of the channel estimation algorithm by estimating the channel coefficients

without noise reduction.

Simulation Example 2: We want to learn the channel estimation MSE performance

according to different values of SNR. The coefficients of the proposed precoder are chosen

based on (3.25) with α = 0.1 and δ = 0. The coefficients of Shin’s and Chen’s precoders

are chosen based on (3.21) with α = 0.1 and δ = 0.

The simulation result is shown in Fig. 5.2. In this example, we found that even when

the noise is absent, the MSE performance is nonzero since the matrix Γ defined in (3.23)

is nonzero. In addition, significant improvement of MSE performance is seen only when

the SNR increases from a low SNR regime to an intermediate one. In [10], they proposed

the procoder that is optimized in the sense of minimizing the impact of unknown additive
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Figure 5.2: Comparison of MSE performances according to different value of SNR.

noise. However, we observed that the noise is not a crucial role for channel estimation

MSE in mid- and high SNR regimes. We therefore presume that some factor other than

the noise plays a more important role for channel estimation MSE in mid- and high SNR

regimes, as will be shown in details in the next simulation example.

Simulation Example 3: In this example, we compared the channel estimation perfor-

mance of the channel estimator using the proposed precoder with those of the channel

estimator using the precoders of “Shin” and “Chen”. We consider the situation when

SNR = 20 dB. The coefficients of the proposed precoder are chosen based on (3.25) with

α = 0.1, 0.3, 0.7, and 0.9 and with δ = 0, respectively. The coefficients of Shin’s and

Chen’s precoders are chosen based on (3.21) with α = 0.1, 0.3, 0.7, and 0.9 and with

δ = 0, respectively. The channel estimation MSE, the channel-product MSE(CPMSE),

and the error factors (ΦF ,ΨF ,ZF ,ΓF ) defined in Chapter 4 versus the number of symbol

blocks are shown in Fig. 5.3. The CPMSE equals to the sum of the error factors. We ex-

pect that the CPMSE is highly related to the MSE, and the smaller CPMSE we have, the

smaller MSE. As seen in Fig. 5.3, we can find that ΓF is much larger than other error fac-

tors. Thus, we think ΓF is the most crucial factor for the CPMSE performance when SNR

= 20 dB. This can be seen in Fig. 5.3(e) and Fig. 5.3(f), the CPMSE is very close to the

error factor ΓF . In Fig. 5.3(e), we can see that the error factor ΓF of the channel estimator

using the proposed precoder is much smaller than those of the channel estimator using

the precoders of “Shin” and “Chen” for α < 0.7. In Fig. 5.3(c), we find that the MSE
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performance of the channel estimator using the proposed precoder is also much smaller

than those of the channel estimator using the precoders of “Shin” and “Chen” for α < 0.7.

In addition, Fig. 5.3(c) shows that the channel estimation performs better for smaller α,

which is consistent with the ΓF values we observe in Fig. 5.3(e). Moreover, the MSE

performance is consistently improved as the number of symbol blocks increases. This

reflects the fact that the more reliable the autocorrelation matrix estimate of the received

signal, the more accurate the channel estimate by the channel estimator [10].

Simulation Example 4: In this example, we compared the channel estimation perfor-

mance of the channel estimator using the proposed precoder with those of the channel

estimator using the precoders of “Shin” and “Chen”. The coefficients of the proposed

precoder are chosen based on (3.25) with α = 0.1, 0.3, 0.7, and 0.9 and with δ = 0, re-

spectively. The coefficients of Shin’s and Chen’s precoders are chosen based on (3.21)

with α = 0.1, 0.3, 0.7, and 0.9 and with δ = 0, respectively. The channel estimation

MSE, the channel-product MSE(CPMSE), and the error factors (ΦF ,ΨF ,ZF ,ΓF ) defined

in Chapter 4 versus SNR are shown in Fig. 5.4. The number of symbol blocks is set to

100. In Fig. 5.4(e), we observe that although the estimation performance is improved

when the SNR increases from a low value to an intermediate one, the rate of the perfor-

mance improvement becomes insignificant at intermediate and high SNR regimes. This

can be seen in Fig. 5.4(a) with Fig. 5.4(d), where we observe that in negative SNR regime

the values of ZF is larger than that of ΓF ; the error factor ZF become an important role

for the MSE performance in this regime. In mid- and high SNR regimes, the values of ZF

is much smaller than that of ΓF ; the error factor ΓF become important role for channel

estimation in mid- and high SNR regimes. This is consistent with our claim that the error

factor ΓF , instead of the noise, is the crucial factor of channel estimation performance

especially when the SNR is at mid- and high regimes. In addition, the channel estimator

using the proposed precoder decreases the ΓF compared with the channel estimator using

the precoders of “Shin” and “Chen” for α < 0.7. From Fig. 5.4(e), we can see that the

channel estimator using the proposed precoder has a better MSE performance than the

channel estimator using the precoders of “Shin” and “Chen” when SNR is larger than 0

dB and α < 0.7. This simulation example shows that reducing the error factor ΓF is more

important than reducing ZF when SNR is larger than 0 dB.
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Simulation Example 5: In this example, we will explore how the δ parameter defined

in Section 3.1 will affect the channel estimation performance. We compare the channel

estimation performance of the channel estimator using the proposed precoder with that

of the channel estimator using the precoder of “Shin”. The coefficients of the proposed

precoder are chosen based on (3.25) with δ = 0, 0.3, and 0.6 and with α = 0.7, respec-

tively. The coefficients of Shin’s precoder are chosen based on (3.21) with δ = 0, 0.3,

and 0.6 and with α = 0.7, respectively. We consider the situation when SNR = 20 dB.

The channel estimation MSE, the channel-product MSE(CPMSE), and the error factors

(ΦF ,ΨF ,ZF ,ΓF ) defined in Chapter 4 versus the number of symbol blocks are shown in

Fig. 5.5. In previous examples, we show that the error factors ΦF ,ΨF , and ZF are not

important role for channel estimation performance when SNR = 20dB, so we will discuss

the error factor ΓF especially. Fig. 5.5(e) presents the MSE performance as a function of

the number of symbol blocks. The figure shows that regardless of the value of δ, the MSE

performance is almost identical with the fixed α when the precoder of “Shin” is used.

When the proposed precoders are used, however, the MSE performance will decreases as

δ decreases from 0.6 to 0. As seen in Fig. 5.5(a), we find that regardless of the value of

δ, the error factor ΓF almost identical with the fixed α when the channel estimator using

the precoder of “Shin”, but the error factor ΓF is decreased as δ decreased with α fixed

when the channel estimator using the proposed precoder. Thus the choice of δ appears to

play a less important role in channel estimation when the precoder of “Shin” is used, but

a choice of a small value of δ leads to a better channel estimation performance when the

proposed precoder is used.

Simulation Example 6: In this example, we want to learn how the different modulation

schemes would impact on the channel estimation performance. We use three modulation

schemes, namely, QPSK, 16-QAM, and 64-QAM to generate the information symbols

di(n, k)’s. The coefficients of the proposed precoder are chosen based on (3.25) with

δ = 0 and α = 0.1. The coefficients of Shin’s precoder are chosen based on (3.21) with

δ = 0 and α = 0.1. We consider the situation when SNR = 20 dB. The channel estimation

MSE, the channel-product MSE(CPMSE), and the error factors (ΦF ,ΨF ,ZF ,ΓF ) defined

in Chapter 4 versus the number of symbol blocks are shown in Fig. 5.6. In Fig. 5.6(a)-

(c), we observe that the error factors ΦF ,ΨF , and ZF are most identical regardless of the
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modulation schemes used. In Fig. 5.6(d), we can see that the error factor ΓF with QPSK

modulation scheme used is much smaller than that with 16-QAM used, but we can also

see that the error factors ΓF with 64-QAM used is close to that with 16-QAM used. It

suggests that using a small modulation scheme (e.g. QPSK) can result in small the error

factor ΓF . In addition, the error factor ΓF is the dominant error factor for the CPMSE,

and the MSE is highly related to the CPMSE. The result of Fig. 5.6(e) agrees with our

expectation.
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Figure 5.3: Shows the error factors, MSE, and CPMSE versus the number of symbol

blocks when SNR = 20 dB. All legends are as same as Fig. 5.3(a).
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Figure 5.4: Shows the error factors, the MSE, and CPMSE versus SNR when the number

of symbol blocks is equal to 100. All legends are as same as Fig. 5.4(a).
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Figure 5.5: Comparison of MSE performance and the error factors according to different

value of δ when α is fixed at 0.7 and SNR = 20 dB.
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Figure 5.6: Comparison of MSE performance, the CPMSE, and the error factors accord-

ing to QPSK,16-QAM, and 64-QAM when SNR = 20 dB.

32



Chapter 6

Conclusions

In this thesis, we studied the blind channel estimation problem in MIMO CP sys-

tems based on precoding at the transmitters. A new class of precoders is proposed that

improves the channel estimation performance. We also introduced four error factors that

are strongly related to the channel estimation performance. Simulation results show that

our proposed precoders possess smaller error factors and hence justifies its performance

improvement.

The simulation results show that compared with some existing precoding approaches

for MIMO block transmission systems with CP, our proposed precoder obtains an accurate

MIMO channel estimate as long as the number of symbol blocks is finite. In addition, we

analyze the channel estimation performance according to the error factors. Furthermore,

we learned how the different modulation schemes would impact on the channel estimation

performance. It suggests that using a small modulation scheme can result in small the

channel estimate MSE.

In the future, it is a challenging work to find an optimal precoder that considers all

error factors introduced in this thesis. Another challenging work is to develop the chan-

nel estimation algorithm that has an even better performance under the same number of

symbol blocks.
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Appendix A

Appendix

In this appendix, we will show that the CPMSE equals to the sum of the error factors,

and it is given in (4.13).

Proof:

TF = E(||C0(Γ0 + Φ0 + Ψ0 + Z0)||2F + 2
L∑
i=1

||Ci(Γi + Φi + Ψi + Zi)||2F )

= tr(C0E[(Γ0 + Φ0 + Ψ0 + Z0)(Γ
†
0 + Φ†0 + Ψ†0 + Z†0)]C

†
0)

+2
L∑
i=1

tr(CiE[(Γi + Φi + Ψi + Zi)((Γ
†
i + Φ†i + Ψ†i + Z†i )]C

†
i )

= E[tr(C0(Γ0Γ
†
0 + Φ0Φ

†
0 + Ψ0Ψ

†
0 + Z0Z†0)C†0)]

+tr(C0(E[Γ0Φ
†
0] + E[Γ0Ψ

†
0] + E[Γ0Z†0] + E[Φ0Ψ

†
0] + E[Φ0Z†0] + E[Ψ0Z†0])C†0)

+E[2
L∑
i=1

tr(Ci(ΓiΓ
†
i + ΦiΦ

†
i + ΨiΨ

†
i + ZiZ†i )C†i )]

+tr(Ci(E[ΓiΦ
†
i ] + E[ΓiΨ

†
i ] + E[ΓiZ†i ] + E[ΦiΨ

†
i ] + E[ΦiZ†i ] + E[ΨiZ†i ])C†i ).

When we take the expectation operation to the cross terms, the outputs are zero matrices,

and it will be shown later. We thus get

TF = E[tr(C0(Γ0Γ
†
0 + Φ0Φ

†
0 + Ψ0Ψ

†
0 + Z0Z†0)C†0)]

+E[2
L∑
i=1

tr(Ci(ΓiΓ
†
i + ΦiΦ

†
i + ΨiΨ

†
i + ZiZ†i )C†i )]

= ΓF + ΦF + ΨF + ZF

= GF . (A.1)

Now, we first prove E[ΓiΦ
†
i ] = 0 for 0 ≤ i ≤ L. The (a, b)th of Γi are uncorrelated with

35



the noise (ηj(n, k)), and the (a, b)th entry of ΓiΦ
†
i can be expressed as

∑
l,s,i,j,n,k

fa,b(hjs(l), di(n, k))η∗j (n, k),

for 0 ≤ l ≤ L, 0 ≤ s, i ≤Mt, 0 ≤ j ≤Mr, 0 ≤ k ≤ N − 1, 0 ≤ n ≤ Q− 1

where fa,b(hjs(l), di(n, k)) is a function of hjs(l) and di(n, k), and its output is related to

the channel coefficients and the information symbols. Both of them are uncorrelated with

the noise, so we get

E[
∑

l,s,i,j,n,k

fa,b(hjs(l), di(n, k))η∗j (n, k)] =
∑

l,s,i,j,n,k

E[fa,b(hjs(l), di(n, k))]E[η∗j (n, k)]

= 0 . (A.2)

Since E[η∗j (n, k)] = 0, we can obtain that each entry of E(ΓiΦ
†
i ) is zero; In other words,

it means E(ΓiΦ
†
i ) = 0 . By the similarly reason, we can get E[ΓiΨ

†
i ] = 0. Secondly , we

prove E[ΓiZ†i ] = 0. The (a, b)th of Γi can be expressed as

∑
l,s,j,n1 6=n2,k1,k2,i1,i2

fa,b(hjs(l))di1(n1, k1)d
∗
i2

(n2, k2)

+
∑

l,s,j,n1,n2,k1 6=k2,i1,i2

fa,b(hjs(l))di1(n1, k1)d
∗
i2

(n2, k2)

+
∑

l,s,j,n1,n2,k1,k2,i1 6=i2

fa,b(hjs(l))di1(n1, k1)d
∗
i2

(n2, k2)

+
∑

l,s,j,n1,k1,i1

fa,b(hjs(l))(di1(n1, k1)d
∗
i1(n1, k1)− 1),

for 0 ≤ l ≤ L, 0 ≤ s, i1, i2 ≤Mt, 0 ≤ j ≤Mr, 0 ≤ k1, k2 ≤ N − 1, 0 ≤ n1, n2 ≤ Q− 1.

The (a, b)th of E[ΓiZ†i ] can be expressed as

∑
l,s,j,n1 6=n2,k1,k2,i1,i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)d
∗
i2

(n2, k2)]

+
∑

l,s,j,n1,n2,k1 6=k2,i1,i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)d
∗
i2

(n2, k2)]

+
∑

l,s,j,n1,n2,k1,k2,i1 6=i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)d
∗
i2

(n2, k2)]

+
∑

l,s,j,n1,k1,i1

E[fa,b(hjs(l), ηj(n, k))]E[(di1(n1, k1)d
∗
i1

(n1, k1)− 1)]

= 0 (A.3)

where E[di1(n1, k1)d
∗
i2

(n2, k2)] = 0 and E[(di1(n1, k1)d
∗
i1

(n1, k1) − 1)] = 0 . Thus, we

can obtain E[ΓiZ†i ] = 0. Thirdly, we prove E(ΦiΨ
†
i ) = 0. The (a, b)th of E(ΦiΨ

†
i ) can
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be expressed as

∑
l,s,j,n1 6=n2,k1,k2,i1,i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)di2(n2, k2)]

+
∑

l,s,j,n1,n2,k1 6=k2,i1,i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)di2(n2, k2)]

+
∑

l,s,j,n1,n2,k1,k2,i1 6=i2

E[fa,b(hjs(l), ηj(n, k))]E[di1(n1, k1)di2(n2, k2)]

+
∑

l,s,j,n1,k1,i1

E[fa,b(hjs(l), ηj(n, k))]E[(di1(n1, k1)
2)]

= 0 (A.4)

where E[di1(n1, k1)di2(n2, k2)] = 0 and E[di1(n1, k1)
2] = 0 . Thus, we can obtain

E(ΦiΨ
†
i ) = 0. Lastly, we prove E[ΦiZ†i ] = 0, since the (a, b)th entry of E[ΦiZ†i ] can be

expressed as

∑
l,i,s,j,n,k

E[fa,b(hjs(l), ηj(n, k))]E[di(n, k)]

= 0 (A.5)

where E[di(n, k)] = 0. Thus, we can obtain E[ΦiZ†i ] = 0. By the similarly reason, we

can get E[ΨiZ†i ] = 0.
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