
國立臺灣大學電機資訊學院資訊工程學系

博士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

智慧家庭中的情境感知普及服務管理機制

Context-Aware Pervasive Service Management
in Smart Home Environments

廖峻鋒

Chun-Feng Liao

指導教授：傅立成 博士

Advisor: Li-Chen Fu, Ph.D.

 中華民國 100 年 6 月

June, 2011

誌謝

博士學位對我來說不但曾經是一個遙不可及的夢想，攻讀的過程也充滿了艱辛。

這樣一個艱鉅的任務，若沒有許多人的指導、支持與協助，是不可能完成的。首

先，要特別感謝指導老師傅立成教授在這幾年的耐心指導，讓我在研究及專業知

識上得以漸入佳境。其次是擔任博士論文口試委員，同時也是碩士班指導老師的

李蔡彥教授，在攻讀學位過程許多重要的基本功是在李老師的指導之下才得以建

立基礎，此外，從碩士班畢業後，老師也持續地給予許多鼓勵與關心。感謝林風

教授、馮明惠所長、陳良弼教授、郭耀煌教授、曾煜棋教授、蘇豐文教授與逄愛

君教授，在百忙之中抽空擔任我的博士論文口試指導委員，並給予許多建議與指

導。也感謝許永真教授、朱浩華教授、林風教授與逄愛君教授擔任論文提案審查

委員，並在撰寫過程中給予許多意見與協助。感謝台大智慧生活科技整合與創新

研究中心劉佩玲主任、陳俊杉副主任與李劍峰博士，讓我有機會將論文中的技術

實際應用到真實的智慧生活空間。此外，也要感謝政大資科系的陳恭教授，論文

在發展初期老師對於方向給予了許多建議和協助。

同時也要感謝實驗室曾給予鼓勵的許多學長與學弟妹，特別是世勳學長，在

口試前還特地抽空遠從高雄來台北幫我進行預演。此外也要感謝博士班學長與同

學們，尤其是兆麟、敬互、益銘、士恒、勇成、宇傑，在與你們互動的過程獲益

良多。亞文和觀音先後與我一同進行研究，為本論文的主要核心奠立紮實的基

礎。此外，宗翰、羽君、慧文、雨喬、茂源及學鴻在論文完成的最後階段協助分

擔、處理了許多繁重的專案與研究事務。

最後要感謝數年來始終在背後支持我的家人，尤其是爸爸、媽媽、佳虹、珮

如、俊璟及佳虹的家人們。也要謝謝小女兒翊亘，總是帶給家人和我無限的希望

與動力。

摘要

智慧家庭主要的願景為透過科技使人們的日常生活更加豐富。此一類型的智慧居

住空間具備推測居住者意向並據以提供適切智慧居家服務的能力。大部份的智慧

居家服務都由許多高異質性的元件所組成。本論文主要的研究目標即在於設計一

組服務管理機制，使得智慧居家服務能夠具備高彈性、強健性、高效能及一致性

的特色。

首先，系統的彈性與否大部份取決於其底層之架構型式 (Architectural

Style) ，在比較過相關系統與文獻之後可發現訊息導向中介軟體架構

(Message-Oriented Middleware, MOM)是最具備彈性且適合佈署於家庭網路之架

構型式。在另一方面，雖然許多文獻都指出強健性為智慧家庭系統不可或缺之一

環，但可發現在現存研究中對於加強訊息導向架構系統強健性著墨較少。因此，

本論文提出一個兼具彈性與強健性的服務管理架構。本研究以嚴謹的正規程序代

數(Process Algebra)的方式定義了一個可支援自主型組合、錯誤偵測及錯誤回復

之訊息導向服務模型與其通訊協定，並對此一服務模型與協定進行強健性的正規

驗證及實際的回復率與效能測試實驗。

其次，在智慧家庭中，無目錄式服務管理協定(如通用型隨插即用協定)被認

為是較為適合管理智慧家庭服務的機制。此類協定大都以 IP 群播加以實現，但

經常造成網路擁塞的問題。因此，基於前述之訊息導向服務模型，本研究提出一

套可有效降低冗餘封包數量，進而提昇網路效能的機制來改善無目錄式服務管理

協定所造成之網路擁塞的問題。經過分析與網路模擬實驗，可發現二者之間具有

相當高的一致性，且均具備大幅提昇網路效能的效果。

近年來，有不少研究著重於普及服務的組合議題。在組合普及服務之前，使

用者必須先行提出偏好(Preference)，但使用者之偏好不確定性高且可能彼此衝

突。由於居家環境經當變動，也很可能造成所啟動之服務之間的相互衝突。為了

解決這些問題，本研究提出一組可同時表達列舉/可數及必要/可商議概念之偏好

表示式(Preference Expression)。此一機制配合本研究所發展之一套可驗證的邏輯

結合規則(Unification Rules)，可將不一致的使用者偏好表示式整合為一致的表示

式。接下來並提出一套以模糊邏輯為基礎的方法，基於環境式情境資訊，評估已

啟動服務間相互衝突之嚴重程度。經過實驗可發現，藉由整合上述機制，可同時

維持相當高的服務組合之品質及成功率。

最後，本研究整合上述機制進行實作，並實際將多個智慧居家服務佈署於二

個不同智慧實驗屋，以驗證所提出之各項機制之可行性。

關鍵字: 普及計算、通用型隨插即用協定、簡單服務管理協定、智慧家庭、服務

模型、服務發現架構、IP 群播、服務系統、服務組合、使用者偏好。

ABSTRACT

The concept of Smart Home envisions a technology-enriched living space that is

capable of anticipating intensions of occupants and providing appropriate services ac-

cordingly. Most of the services in such space are context-aware and are realized by

an assemblage of heterogeneous components. The objective of this thesis is to design

a suite of service management mechanisms that makes such context-aware services

flexible, robust, efficient, and consistent.

The flexibility heavily depends on the underlying architecture style. After a thor-

ough review on existing representative pervasive systems, it is concluded that the

Message-Oriented Middleware (MOM) is one of the most flexible architecture styles

for the Smart Home. Meanwhile, robustness is one of the key challenges for the

Smart Home, but few researches have been done to improve the robustness of Message-

Oriented Smart Home systems. Hence, this research work attempts to propose a flexible

and robust service management framework by formally defining an MOM-based ser-

vice application model and protocols that facilitate autonomous composition, failure

detection and recovery of services. The proposed approach is evaluated by first proving

the reliability property and then conducting experiments on recovery rate as well as

performance.

Decentralized service management protocols such as UPnP are believed to be more

suitable for Smart Homes. These protocols are usually realized by using IP multicast,

which, if not carefully designed, often suffer from network flooding problems. This

research proposes several efficiency boosting techniques that reduce the replications

of unnecessary messages. The analytical predictions agree well with the simulated

and experimental results, which show that the traffic can be greatly reduced by the

proposed approaches.

Pervasive service composition also attracts increasing interests. When composing

services, the criteria for scoring and electing services are usually specified by users,

which tend to be vague and subjective. Moreover, the deployment of services in smart

homes is usually not as well-planned as that in traditional enterprise environments.

Hence, the criteria can be contradictory and the activated components can interfere

with one another. This thesis addresses these issues by first proposing the Preference

Expression that is capable of specifying both enumerative/numeric as well as manda-

tory/negotiable preferences. Then, a set of unification rules for unifying conflicting

preferences is presented. Finally, this thesis proposes a Fuzzy-based approach to esti-

mate the degree of interference based on available context information. By incorporat-

ing the above-mentioned mechanisms, an integrated service composition framework is

presented. Experiments that evaluate the effectiveness of the proposed framework are

also conducted and reported.

Keywords: Pervasive Computing, UPnP, SSDP, Smart Home, Services Models,

Services Discovery Architecture, IP Multicast, Service Systems, Service Composition,

Feature Interaction, User Preferences.

TABLE OF CONTENTS

Acknowledgements (In Chinese) i

Abstract (In Chinese) iii

Abstract v

Contents vii

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Research Challenges and Objectives . 3
1.2 Contributions . 5
1.3 Research Scope . 7
1.4 Research Process . 8
1.5 Organization . 10

2 Background and Related Work 11
2.1 Pervasive Systems . 13

2.1.1 The Context Toolkits (CTK) 14
2.1.2 Universal Plug and Play (UPnP) 16
2.1.3 The Gaia Meta-Operating System (Gaia OS) 19
2.1.4 The Aura Platform . 21
2.1.5 CoBra (Context Broker Architecture) 23
2.1.6 SOCAM (Service-Oriented Context-Aware Middleware) 24
2.1.7 Tuple Spaces . 25
2.1.8 Message-Oriented Middleware (MOM) 26

2.2 Pervasive Service Discovery . 29
2.2.1 Service Discovery in CTK . 31
2.2.2 Service Discovery in GaiaOS . 33
2.2.3 CoBra/JADE Service Discovery 36
2.2.4 Aura/Jini . 39
2.2.5 Service Discovery in One.world 41
2.2.6 Bluetooth SDP (Bluetooth’s Service Discovery Protocol) 42
2.2.7 Simple Service Discovery Protocol (SSDP) 43

2.3 Pervasive Service Composition . 46
2.3.1 Unifying Inconsistent User Preferences 47
2.3.2 Dealing with Inconsistent Service Effects 49

2.4 Summary . 50

vii

3 Flexible and Robust Service Management in a Smart Home 56
3.1 Pervasive Service Application Model (PerSAM) 58

3.1.1 The Pervasive Communities . 61
3.1.2 The Pervasive Managers . 66

3.2 Pervasive Service Management Protocol (PSMP) 68
3.2.1 Presence Announcement, Leave Announcement, and Life-cycle

Management . 70
3.2.2 Service Composition and Activation 71
3.2.3 Failure Detection and Recovery 76
3.2.4 Security . 82

3.3 Evaluation . 86
3.3.1 Robustness . 87
3.3.2 Recovery Rate . 89
3.3.3 Performance . 93
3.3.4 Discussion . 95

3.4 Summary: A Running Scenario . 96

4 Efficiency Boosting Schemes for UPnP-based Smart Home Networks 98
4.1 Assumptions and Term Definitions . 100
4.2 Decomposing the Multicast Traffic . 104
4.3 Service-based Node Searching . 108
4.4 Reducing the Heartbeat Traffic . 110
4.5 Evaluation . 113

4.5.1 Communication Complexity . 114
4.5.2 NS-2 Simulations . 117
4.5.3 Experiments . 125
4.5.4 Discussion . 128

4.6 Summary . 130

5 Consistent Service Composition in a Smart Home 132
5.1 Overall Architecture . 134

5.1.1 Capabilities and Preferences for Service Composition 135
5.1.2 The Enhanced Architecture for Pervasive Service Composition . 140
5.1.3 Dynamic Contextual Node Re-binding 141

5.2 Specifying and Unifying User Preferences 142
5.2.1 Enumerative Preference Expressions 143
5.2.2 Numeric Preference Expressions 154

5.3 Type-based Node Searching . 166
5.4 Candidate Scoring and Selection . 168

5.4.1 Estimating the Degree of Interference 169
5.4.2 Scoring Candidate Worker Nodes 175

5.5 Evaluation . 179
5.5.1 Application Scenario . 179
5.5.2 Quality Metrics . 181
5.5.3 Performance . 189

5.6 Summary . 190

viii

6 Implementation 191

7 Conclusion and Future Work 199
7.1 Summary of Contribution . 199
7.2 Future Work . 202

Bibliography 205

ix

LIST OF FIGURES

1.1 Providing a context-aware service in the Smart Home 2
1.2 The vertical architecture of a smart home and the scope of proposed

research . 8

2.1 The layered architecture of Context Toolkits 15
2.2 The layered architecture of Context Toolkits 17
2.3 The MPACC Service operation architecture in Gaia 20
2.4 Aura’s overall architecture (source: [125]) 22
2.5 A typical message-oriented pervasive system 27
2.6 Overall structure of OWL-S . 30
2.7 CTK service discovery architecture . 31
2.8 The hierarchical structure of CTK Discoverers 32
2.9 Discovering and invoking service components in Gaia 34
2.10 Presence management in Gaia . 35
2.11 Overall architecture of CoBra/JADE 38
2.12 JADE service discovery architecture 39
2.13 Jini service discovery architecture . 40
2.14 The protocol stack of UPnP . 44

3.1 A taxonomy of PerNode . 58
3.2 The message-oriented pervasive system 59
3.3 The states of a PerNode . 60
3.4 The structure of a PerNode and a Worker Node 61
3.5 The Pervasive Service communities . 64
3.6 The Pervasive Host communities . 64
3.7 The structures of PSM and PHM . 66
3.8 The projection of PerSAM to UPnP Device Architecture 69
3.9 PSMP service composition . 72
3.10 PSMP failure detection . 77
3.11 Registering the public key and acquiring the secret key in PSMP . . . 84
3.12 Sending and receiving data in PSMP 85
3.13 The PS recovery rates of Aura PIP and PSMP under various failure

rate (NT=25) . 90
3.14 The PS recovery rates of Aura PIP and PSMP under various failure

rate (NT=50) . 91
3.15 Performance of PSMP service composition 93
3.16 Performance of PSMP failure detection and recovery 94

4.1 Packet loss rate with various number of nodes in a typical UPnP-based
local area network . 99

4.2 Sequence diagrams of PA/LA and node searching protocols: (a) Orig-
inal PA; (b) PA after applying DMT; (c) Original node searching; (d)
Node searching after applying SNS . 107

4.3 Sequence diagrams of heartbeat protocols:(a) Original heartbeat proto-
col; (b) After applying DMTH; (c) After applying ODH. 110

x

4.4 Traffic generated by presence announcement, before and after applying
DMT (λ̄ = 1 and ℓ̄ = 4) . 118

4.5 Traffic reductions of presence announcement after applying DMT . . . 118
4.6 Traffic generated by the node discovery protocol, before and after ap-

plying SNS and DMT (λ̄ = 1 and ℓ̄ = 4) 119
4.7 Traffic reductions of node discovery after applying SNS and DMT . . . 119
4.8 Heartbeat traffic in a light-loaded system, before and after applying

ODH (λ̄ = 1 and ℓ̄ = 4) . 120
4.9 Heartbeat traffic in a light-loaded system, before and after applying

DMTH (λ̄ = 1 and ℓ̄ = 4) . 121
4.10 Heartbeat traffic in a heavy-loaded system, before and after applying

ODH (λ̄ = n(S) and ℓ̄ = 4) . 122
4.11 Heartbeat traffic in a heavy-loaded system, before and after applying

DMTH (λ̄ = ℓ̄ = n(S) = n(W)) . 123
4.12 Traffic reductions of heartbeat after applying ODH when ℓ̄ = 4 and λ̄ = 1123
4.13 Traffic reductions of heartbeat after applying DMTH when λ̄ = ℓ̄ =

n(S) = n(W) . 124
4.14 Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, when only PA and LA are enabled. 125
4.15 Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, after enabling PA, LA and node searching. 126
4.16 Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, after enabling all protocol capabilities. 127

5.1 A general service composition architecture 134
5.2 Modifying Worker Node structure to facilitate more sophisticated Per-

vasive service composition: (a) Original Worker Node structure, (b)
Enhanced Worker Node structure . 136

5.3 Modifying PSM structure to facilitate more sophisticated Pervasive
service composition: (a) Original PSM structure, (b) Enhanced PSM
structure . 138

5.4 Refined service composition architecture for Pervasive environments . . 140
5.5 Dynamic contextual node re-binding 141
5.6 Reducing < x∨ < y when (a) x > y, (b) x < y, and (c) x = y. 159
5.7 Reducing > x∨ < y when (a) x > y, (b) x < y, and (c) x = y. 160
5.8 Reducing > x∨ > y when (a) x > y, (b) x < y, and (c) x = y. 160
5.9 Reducing == x∨ < y when (a) x > y, (b) x < y, and (c) x = y. 160
5.10 Reducing == x∨ > y when (a) x > y, (b) x < y, and (c) x = y. 160
5.11 Reducing == x∨ == y when (a) x > y, (b) x < y, and (c) x = y. . . . 160
5.12 Reducing ! = x∨ < y when (a) x > y, (b) x < y, and (c) x = y. 161
5.13 Reducing ! = x∨ > y when (a) x > y, (b) x < y, and (c) x = y. 161
5.14 Reducing ! = x∨ == y when (a) x > y, (b) x < y, and (c) x = y. . . . 161
5.15 Reducing ! = x∨! = y when (a) x > y, (b) x < y, and (c) x = y. 161
5.16 Reducing the first term of (5.15): ! = s ∧ (> a∨ < b). 165
5.17 The Effect ontology in a Smart Home 170
5.18 Fuzzy sets of ”distance” . 173

xi

5.19 Fuzzy sets of ”intensity” . 174
5.20 Fuzzy sets of ”similarity” . 174
5.21 Fuzzy sets of ”interference” . 176
5.22 Success Rate of Composition (SRC) 183
5.23 Success Rate of Matching (SRM) with different number of Worker Nodes184
5.24 Precision of Composition (PoC) with different number of Worker Nodes 186
5.25 Precision of Composition (PoC) with different ratio of constrained at-

tributes . 186
5.26 F1 Score with different number of Worker Nodes 188
5.27 F2 Score with different number of Worker Nodes 188
5.28 Turnaround time of service composition 189

6.1 The drag-and-drop code generating service 192
6.2 The code template generating wizard 192
6.3 The toolchain for constructing PerNode 194
6.4 PerNode Code/Project generator configuration file 195
6.5 The NTU Attentive Home . 196
6.6 The NTU INSIGHT Living Lab . 197

xii

LIST OF TABLES

2.1 Sources for state of the art survey of the representative Pervasive systems 12
2.2 Architectural styles and service management functionalities of Pervasive

systems . 53
2.3 Detailed comparisons among Service Discovery mechanisms of Pervasive

systems . 54
2.4 Detailed comparisons among Service Composition mechanisms of Per-

vasive systems . 55

3.1 Summary of acronyms . 61
3.2 Summary of notations . 62
3.3 The Operations of a Pervasive Service Manager 67
3.4 The Operations of a Pervasive Host Manager 68
3.5 Summary of CSP notations used in PerSAM/PSMP 71

4.1 Notations for communication complexity analysis 105
4.2 Additional acronyms used in this chapter 105
4.3 Traffic Reductions after applying the Decomposing Multicast Traffic . 115
4.4 Traffic Reductions after applying Service-based Node Searching 115
4.5 Traffic Reductions after applying On-Demand Heartbeat 117
4.6 Traffic Reductions after applying the Heartbeat by Decomposing Mul-

ticast Traffic . 117

5.1 Possible pairwise combinations between two numeric p-terms 158
5.2 Reduction rules for deriving compact forms 158
5.3 General forms for disjunctive clauses 161
5.4 Compact forms for disjunctive clauses 163
5.5 Compact forms derived form > a∨ < b ∨

∨
i

(== xi) 164

5.6 Unification rules for NegotiationExpr 166
5.7 Membership functions for Fuzzy sets of ”distance” and default param-

eter values . 172
5.8 Membership functions for Fuzzy sets of ”intensity” and default param-

eter values . 172
5.9 Membership functions for Fuzzy sets of ”similarity” and default param-

eter values . 173
5.10 Membership functions for Fuzzy sets of ”interference” and default pa-

rameter values . 175

6.1 Implemented Pervasive Services . 196
6.2 Implemented PerNodes . 198

7.1 Enhancements of service model and service management 201

xiii

Chapter 1

Introduction

In recent years, the rapid emerging of Pervasive and Ubiquitous Computing [138],

Context-Aware Computing [104], and Service Computing [147], and Machine Learning

[30] have brought the concept of a ”Smart Home” into reality. The concept of a ”Smart

Home” was first proposed officially in 1984 by the American Association of House

Builders, which envisions a technology-enriched living environment that anticipates

the needs and intensions of occupants and provides services accordingly to promote

comfort, convenience, security, entertainment, and therefore an improved quality of

life for them [21, 68]. Most of the services in the Smart Home have to be ”context-

aware” since ”contexts” are essential information used to infer needs and intensions of

inhabitants. A service is context-aware if it uses contexts, or it adapts to contexts [46],

where a ”context” is any information that can be used to characterize the situation

of an entity which can be a person, place, or objet that is considered relevant to the

provision of service [47].

Figure 1.1 depicts the relationship among occupants, the environment, contexts and

the context-aware services in a Smart Home. In such environment, contexts are usually

inferred from the environmental data gathered by sensors. According to the contexts,

applications infer the user situations and then perform appropriate actions, such as to

turn on a light or to play a media file. We can observe that the data flow discussed

above forms a feedback loop between the environment and the context aware service

(see Figure 1.1). In summary, Figure 1.1 reveals that providing a context-aware service

in a Smart Home is a four-step procedure: 1) gathering context data from sensors, 2)

inferring users’ situations based on gathered context data, 3) anticipating users’ needs

or intensions based on their situations, and 4) determining and performing the most

1

Figure 1.1: Providing a context-aware service in the Smart Home

appropriate actions such as manipulating appliances or displaying information to fulfill

user’s needs. It is important to observe that, a context-aware service is reactive (event-

driven) by nature, since these services react to contexts or situations by performing

desired actions.

In addition, heterogeneity is also a key feature of Smart Home services since a service

in the Smart Home is realized by an assemblage of heterogeneous service components

such as wireless sensors, networked appliances, and intelligent agent software that

collaboratively offer context-aware habitual supports to residents. Moreover, these

service components are usually interconnected by different wired or wireless protocols.

Because of the context-awareness and heterogeneity of Smart Home services, a set

of service management mechanisms are obviously required which composes services

by discovering and selecting service components as well as makes the services work

consistent and durable. It is worthy to point out that Bedrouni et al. [26] also reported

the same observation that among all emerging issues associated with building services

in ambient systems, none is more fundamental, challenging, and complex than the need

to dynamically ensure adequate management of activities attributed to a large number

of heterogeneous entities.

It can be concluded from the above discussions that service management is a core

2

issue in the Smart Home. However, managing services in such a complicated envi-

ronment is not a trivial task. The objective of this thesis is therefore to investigate

effective and efficient approaches for dealing with challenges of service management in

the Smart Home. In Section 1.1, the challenges and users’ expectations identified by

related literatures are first discussed. Based on these challenges and expectations, this

section also motivates the desired qualities, that is, flexibility, robustness, consistency,

and efficiency. After that, Section 1.2 presents the contributions of this work and then

in Section 1.3 the research scope is identified. Section 1.4 explains the research process

of this work. Finally, Section 1.5 introduces the organization of this thesis.

1.1 Research Challenges and Objectives

This section examines challenges of service management in Smart Homes. Based on

these challenges, several desired technical qualities of Smart Home service management

that serve as the objectives of this research are then discussed.

Contrary to other smart environments such as Smart Offices or Smart Campuses

where there are significant efforts in planning in advance, the deployments of services

in Smart Homes are usually not well-planned and are upgraded incrementally. Hence,

the design of a smart home is not benefited from holistic, ground-up approaches [53].

As a result, a context-aware service management platform is apparently required [17],

that is, 1) flexible enough to be modified without affecting other interacting parts, and

2) is able to detect/resolve the service inconsistency arising from conflicting effects of

appliances or conflicting user preferences. Moreover, due to the heterogeneous nature

of Smart Homes, the platform must be interoperable so that heterogeneous hardware

and software, incompatible wiring protocols are able to interoperate with one another

[72, 62]. As a result, flexibility, consistency, and interoperability are essential qualities

of the Smart Home.

3

In addition, Edwards et al. also observe that robustness is a paramount concern

of Smart Home users [53, 62], since most of the domestic technologies are expected to

work 24-7. Unlike in other types of smart environments, the Smart Home is in lack of

professional system administrator [53]. What is more, the occupants of Smart Homes

are usually non-technical users. The persons setting up and maintaining the home

services are everyday consumers, with little or no knowledge of networking technologies.

Since the consumers would be unable to pinpoint the source of failures [50], the service

management platform must be highly reliable and be able to detect and to recover

from failures autonomously. Note that the detection and recovery procedures have to

be carried out in a minimal amount of time. Otherwise, the failures can lead to a

very frustrating user experience and bad marketing perception for the vendors of home

services. Consequently, a robust service management platform in the Smart Home has

to be self-diagnosable, self-recoverable, and efficient.

It should be concluded, from what has been mentioned above, that a service man-

agement platform for a Smart Home with the following qualities is apparently required.

1. Flexible: The service management platform must be designed carefully by fol-

lowing an appropriate architectural style so that the platform is flexible enough

for incremental deployment and is able to support impromptu interoperability.

2. Robust: The Smart Home services have to be available durably. The failures

should be detected and recovered as soon as possible.

3. Consistent: The service management platform must be able to detect and to

resolve conflicts arising from effects of appliances and user preferences.

4. Efficient: The proposed mechanisms that realize the qualities mentioned above

have to be completed in a minimal amount of time.

4

1.2 Contributions

As discussed in the previous sub-section, the overall objective is to design a man-

agement platform for Smart Home services that are flexible, robust, and consistent.

In addition, the proposed platform has to carry out service management mechanism

efficiently. In order to meet the objective, this sub-section reports several technical

contributions that have been achieved so far which serve as important milestones of

this research. The contributions of this work are listed below.

1. Message-oriented architecture for the Smart Home: This work suggests

that the message-orient architecture, or so-called publish-subscribe architecture,

is one of the most appropriate architecture for the service management platform

in Smart Homes among existing ones. The rationales behind this suggestion are

reported and its superiority over comparable alternatives is also presented.

2. Verifiable service application model for the Smart Home: This work pro-

poses a service application model, namely, Pervasive Service Application Model

(PerSAM), that specifies the overall logical organization of the Smart Home from

the point of view of its use or design. The proposed model is formally presented

by using process algebra so that it is verifiable by mathematical proofs. This ap-

proach facilitates the analysis of communication complexity (see Item 4 below).

3. Robust service management protocol for the Smart Home: Based on

PerSAM , this work proposes Pervasive Service Management Protocol (PSMP)

which is a service management protocol that realizes autonomous failure diction

and recovery by utilizing Universal Plug and Play (UPnP), a well-known home

service network standard [15]. PSMP inherits the rigorous nature of PerSAM so

that it can be mathematically validated to guarantee the service robustness.

5

4. Boosting the efficiency of home service network: Although the approach

mentioned in Item 3 makes Smart Home services more robust, the UPnP-based

service management protocol is usually realized by using IP multicast, which,

if not carefully designed, often suffers from network flooding problems due to

replications of too many unnecessary messages. Hence, boosting techniques that

avoid replications of unnecessary messages are proposed here. The analytical

predictions agree well with the simulated results, which show great improvements

on efficiency.

5. Service composition algorithms that ensure consistency: Smart Home

services usually have to allow user-in-the-loop service composition which is ab-

sent in most of the traditional enterprise service composition mechanisms. More

specifically, the criteria for selecting and ranking services are usually specified

by users, which tend to be vague and subjective. The criteria can be contra-

dictory and the activated services can interfere with one another. This research

addresses these issues by defining the Preference Expression (PE) that is capable

of specifying both enumerative/numeric as well as mandatory/negotiable user

preferences. A set of unification rules for possible conflicting preferences is also

presented. Finally, it is suggested that the degree of interference be modeled

and estimated by using a Fuzzy reasoner. A preference-guided and interference-

aware service composition framework can therefore be obtained by incorporating

the above-mentioned mechanisms. Experiments that evaluate the effectiveness

of the proposed approaches are conducted and reported as well.

6. Development support and rapid prototyping: To enable the rapid and

correct development of home services, a Java-based object-oriented application

framework that provides design time supports is devised, which is composed of

a set of reusable libraries, interfaces, and default implementations. One of the

6

salient features of this application framework is that it supports attribute-based

programming [36], which implies that the resulting code becomes intuitive and

more comprehensible. In addition, this framework provides template-based as

well as drag-and-drop code generation services by a set of interactive wizards,

which are realized as plug-in modules of the Eclipse IDE.

1.3 Research Scope

To date, Smart Home is still an emerging research field which requires technologies from

several related fields such as communications, artificial intelligence, human-computer

interfaces, service computing, and pervasive computing. The definition of a Smart

Home, or more concretely, the smartness of a Smart Home is still a controversial

concept. Inspired by Mann et al. [97] and Aldrich et al. [19], this thesis suggests a

vertical architecture that tries to reflect the smartness of a Smart Home, as depicted

in Figure 1.2.

One of the most essential characteristics of the Smart Home is the deployment of

interconnected devices (see Figure 1.2, Level 1) so that they can be controlled and be

mediated by computer programs (Level 2) to provide appropriate services to occupants.

In order to facilitate more intelligent behaviors, it is necessary to design a management

platform that can integrate, configure, and maintain devices as well as programs dis-

tributed over the home network (Level 3). Based on the platform, the Smart Home

is able to be aware of the environment and occupants by analyzing contexts gathered

by sensors (Level 4). Furthermore, by aggregating contexts and by employing machine

learning mechanisms, the Smart Home can be aware of situations which are at higher

level of abstractions than contexts [92] such as the behaviors of occupants (Level 5).

The highest level should be the Attentive home which tries to infer deeper and unob-

servable situation of occupants, for example, emotion or intension of people, and thus

7

Figure 1.2: The vertical architecture of a smart home and the scope of proposed

research

provides service in more attentive ways.

As revealed in Figure 1.2, this research focuses on service management issues. In

other words, the issues and challenges posed by this thesis fall into level 2 and level

3. Note that in order to enhance the efficiency, this research also concerns some of

the network issues (Level 1). For similar reasons, it is also necessary to take context

information (Level 4) into account in order to resolve consistency problems in the Smart

Home. To sum up, the primary interests of the proposed research lies in levels 2 and

3, while network and context-awareness issues lying in levels 1 and 4, respectively, are

also within the scope of this research work.

1.4 Research Process

As Herbert A. Simon pointed out in the highly influential book The Sciences of the

Artificial [122], the research field on information and communication technology (ICT)

actually falls into the domain of Design Science. The research discipline of Design

8

Science is obviously different from Natural Science in view of ontology, epistemology,

methodology, and axiology. More concretely, the research outcomes of Natural Science

refer to a body of knowledge about objects or phenomena in the world that describes

and explains how they behave and interact with one another. On the other hand,

the goal of Design Science research is to obtain a body of knowledge about artificial

(human-made) objects and phenomena designed to meet certain desired goals [135].

In this respect, the artificial object of interest in this work is the Smart Home service

management platform which is designed to meet several desired qualities including

flexibility, robustness, consistency, and efficiency. The rationales and motivations of

setting up these objectives are explained in Section 1.1. The knowledge on how to

design service mechanisms to achieve these objectives is therefore presented in the rest

of this thesis.

Vaishnavi et al. [135] observed that Design Science research has a long history of

knowledge building through making. The research process forms a general design cycle

[130] which involves the construction of artifacts and the evaluation of artifact perfor-

mance following the aforementioned construction. It is also important to note from the

above discussion that every fragment of the research outcomes is valid only in certain

situations [101] which is called the circumscription of research. The Design Science

research is usually performed by iteratively proposing new methods that deals with

the problems arising from the relaxation of circumscription of the previous research.

Consequently, this research follows the process mentioned above in which assump-

tions or restrictions are made in the earlier phase of research. After that, some circum-

scriptions are removed by enhancing the original research outcomes iteratively.

9

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses backgrounds and re-

lated works, and Chapter 3 introduces the proposed mechanisms that facilitate flexible

and robust service management in Smart Homes, namely, PerSAM and PSMP. After

that, Chapter 4 proposes several efficiency boosting techniques to reduce the traffic of

service management. Then, Chapter 5 concentrates on consistency issues among user

preferences. Chapter 6 presents the implementations of the proposed mechanisms.

Finally, in Chapter 7, conclusions and future works are provided.

10

Chapter 2

Background and Related Work

Mark Weiser [138] envisioned that due to the rapid advances of technologies, computing

devices will become so small and so cheap that they can be embedded in everyday

objects scattered over the living environment. In such an environment, computing

devices become pervasive or ubiquitous. The technologies that facilitate this vision

form a new emerging research domain, namely, Pervasive or Ubiquitous Computing.

Therefore, the living environments equipped with Pervasive Computing devices is also

known as pervasive environment, given that a collection of hardware and software

components that cooperate to provide services in a pervasive environment is called

a pervasive system. Pervasive systems are difficult to design and maintain because

they involve heterogeneous hardware, software, wiring protocols, and programming

paradigms. Moreover, services in pervasive environments are highly dynamic. Many

pervasive systems have been proposed to deal with the above problems since the rise

of Pervasive Computing. It is important to note that the Smart Home is a pervasive

environment so that many existing works with previously developed architectures for

pervasive systems are also applicable to a Smart Home. Hence, the purpose of this

chapter is to provide backgrounds and the state of the art of the pervasive systems

that are closely related to this work.

In this chapter, 11 representative Pervasive systems are investigated in detail (see

Table 2.1). Primary issues concerned in these investigations are the contributions

and methodologies of these works. For contributions, this work primary focuses on

the architectural styles, service management functionalities, and the qualities obtained

through the proposed systems, namely, flexibility, reliability, efficiency, and consis-

tency. As for the methodologies, special attentions have been paid to the theoretical

11

Table 2.1: Sources for state of the art survey of the representative Pervasive systems

Name Ph.D.

Thesis

Journal Conference Source code

Context Toolkits X 2 3 X

UPnP (UPnP specifications) X(Reference Implementation)

Gaia OS X 2 3 -

Aura X 2 4 Partial

CoBra X - 3 X

SOCAM X - 3 X

One.World X 2 - X

Event Heap X 1 2 Archive file damaged

LIME X 1 2 X

SOLAR X 1 3 X

MIRES - - 1 -

underpinnings and the evaluation methodologies.

Before turning to further discussions, it is helpful to clarify the meanings of several

terms used throughout this thesis precisely. A service in a pervasive environment is

an assemblage of distributed components that collaboratively provides supports to a

given user’s intention. A service is also referred to as an application [15, 46, 114]

or task [125] in some literatures. For example, a media-follow-me service is capable

of choosing the most appropriate displays for playing media files according to user’s

current location. Under such a service, the user’s intention is to listen to music or to

watch a movie; the ingredients of a media-follow-me service include control programs,

smart floors, all LCD displays and speakers that are capable of adapting to the user’s

location change cooperatively. Each of these ingredients is called a ”service component”

12

or simply ”component” in the sequel. In some pervasive systems [48, 115, 58], there

is also a ”service manager” for each service that is responsible for managing service

components belonging to the service.

Although numerous pervasive systems have been proposed so far, however, most

of them do not deal with the service management issues of a system. These works

either rely on the existing general-purpose service management mechanisms, or leave

these issues un-handled. For example, CoBra (Context Broker Architecture) [39, 40]

and SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] leave service man-

agement issues to their underlying platforms (i.e. JADE (Java Agent DEvelopment

Framework) [27] and OSGi (Open Service Gateway Initiative) [11], respectively. Con-

sequently, this research investigates the pervasive systems from both architecture and

service management’s points of view.

The following section concentrates on providing a bird’s eye view for architectures

and service management mechanisms of representative Pervasive systems. Deeper in-

vestigations of service management issues are then introduced consecutively in Section

2.2 and 2.3.

2.1 Pervasive Systems

Based on the architectural styles, pervasive systems can be classified into two categories:

process-centric and data-centric [141]. In a process-centric system, the distributed

components collaborate by invoking sequences of remote procedures. The flows of

calls are controlled by software programs, which search services in a centralized service

registry and invoke services in a synchronized way. The Context Toolkits [116, 46],

UPnP [15], Gaia [115, 114], Aura [58, 125], CoBra (Context Broker Architecture)

[39, 40] and SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] fall into

this category.

13

Due to synchronous and centralized nature of the process-centric systems, they

suffer from many reliability issues. First, the distributed components of these platforms

are usually tightly coupled since they are usually bound to a static network address.

Hence, the components must start in a strict order. Moreover, if a service consists of

a chained call sequences, all intermediates must be restarted when one of them fails.

The failed services are hard to recover because all components must be shut down and

then be restarted in a strict order. Finally, the distributed components communicate

synchronously. Hence, both service provider and service user both must be ready to

communicate at the same time. The caller gets stuck when the callee fails or when it

is heavily-loaded.

Recently, more loosely-coupled and asynchronous data-centric architecture such as

Tuple Space (TS) [59] and Message-Oriented Middleware (MOM) [24] are proposed.

TS is essentially an associative virtual shared memory storing serialized objects. Dis-

tributed clients can read, write or take serialized objects from TS server. The Event

Heap [76], One.world [61, 63], and LIME/TinyLIME [105, 42] fall into this category

whereas SOLAR [87] and MIRES [127] is two of the few Pervasive systems based on

MOM.

The succeeding sub-sections present the design and evaluation of the most fre-

quently cited pervasive systems. Service management issues will also be briefly men-

tioned when these systems are presented, while the details will be discussed in Sections

2.2 and 2.3.

2.1.1 The Context Toolkits (CTK)

The Context Toolkits (CTK) is one of the earliest research works that attempt to

propose a general architecture for Pervasive systems. In typical window-based desktop

applications, a ”widget” is a sub-component of a window such as a button, drop-down

14

Figure 2.1: The layered architecture of Context Toolkits

list or a text area. Inspired by desktop applications, Dey et al. suggest a ”widget”

abstraction for sensors and actuators in pervasive environments [116, 46].

Figure 2.1 reveals the overall architecture of CTK. For each sensor, there is a com-

ponent called a ”widget” that is responsible for interacting with the sensors physically

and then turning raw data into meaningful representations, referred to as ”context”. In

CTK, a piece of context information is represented by a key/value pair that describes

the situation of an entity. A service is called an ”application” which operates by inter-

acting with remote networked socket servers such as widgets, interpreters, aggregators,

and the discoverer. Note that CTK provide three types of core services based on wid-

gets. The aggregator is essentially a context query agent that gathers context data

from several widgets according to certain criteria. For instance, a location context ag-

gregator gathers all context information in a specific location. The context interpreter

analyzes contexts and then transforms them into higher level contexts. For example,

context information provided by location widgets can be used to infer human activities.

Finally the discoverer is a directory service by which the applications find appropriate

widgets, aggregators, or interpreters as context sources.

According to [46], abstracting sensors by using widgets has two benefits. First,

15

widgets hide the complexities of interacting with heterogeneous sensors such as floor

sensor, pressure sensor, light sensor, and RFID from application developers and provide

a uniform way for accessing them. Second, the widgets also become reusable building

blocks. The most significant contribution of CTK is the sensor abstraction which sepa-

rates the tasks of writing application logic from context gathering. This design not only

relieves developers from the burdens of dealing with heterogeneous sensors, but also de-

couples context providers (e.g. sensors, interpreters, or aggregators) from context users

(e.g. applications). Also, CTK provides development support with an object-oriented

application framework written in Java. Developers of widgets can greatly reduce their

efforts by inheriting template classes provided by the framework. Besides, the commu-

nication among CTK components rely on XML-based (eXtensible Markup Language)

message, making CTK thus potentially interoperable, since CTK provides neither an

XML schema nor DTD for defining the formal syntax of messages. In addition, a new

component still needs to understand the semantics of the XML-based messages before

interacting with CTK components.

The major limitation of CTK is that it lacks of sophisticated service management

mechanisms, since it primary deals with context handling and leaves most of service

management issues to the developers. More precisely, CTK only provides näıve service

discovery mechanisms and leaves these burdens to developers. In real world cases where

there are tens or hundreds of components, it is tedious and error prone to maintain the

states and life-cycles of these components. More discussions on CTK service discovery

can be found in Section 2.2.1.

2.1.2 Universal Plug and Play (UPnP)

The UPnP Device Architecture [15], revealed in Figure 2.2, is a well-known ISO/IEC

standard for home network. The service component is called an UPnP Device in an

16

Figure 2.2: The layered architecture of Context Toolkits

UPnP network. Each UPnP Device is composed of a set of “UPnP Services”, and

each UPnP Service consists of a set of UPnP Actions. It is important to distinguish

the term “service”defined above from the UPnP Services mentioned here. An UPnP

Service always embedded in an UPnP Device, while a service refers to a collection of

components that collaboratively support user’s task.

From Remote Procedure Call (RPC)’s point of view, an UPnP Action is identical

to a remote procedure which has a method name, parameters, a return value, and

is located by an URL (Uniform Resource Locator). The application logic of UPnP

is typically controlled by a Control Point which invokes UPnP Actions remotely. A

component that plays the role of Control Point can also be an UPnP Device. It is also

legal for an UPnP Device to contain another UPnP Device (see Figure 2.2, the bottom

right block), which also contains a set of UPnP Services and UPnP Actions.

Despite the absence of sophisticated service management mechanisms, the service

operation architecture of UPnP is very similar to that of CTK in the following aspects:

1. Device abstraction: Akin to CTK’s widgets, UPnP abstracts sensors, appliances,

or software programs by ”UPnP Devices”.

2. RPC-based: The Control Points of UPnP as well as CTK applications are both

responsible for serially invoking remote procedures.

17

3. HTTP (Hyper Text Transfer Protocol) and XML-based wiring format: The

wiring format of UPnP remote invocations is based on SOAP [12], a widely

adopted XML-based for remote invocation standard, while CTK uses a propri-

etary XML-based wiring format. Besides, widgets and UPnP Devices are both

implemented by embedding an HTTP server and an HTTP client.

UPnP provides more sophisticated support for service management than CTK. As

mentioned earlier, the management of UPnP Devices is carried out by SSDP. Unlike

CTK, SSDP is a decentralized protocol that does not require a dedicated discoverer. At

first glance, it seems impossible to manage the presence of service components without

a centralized broker. However, UPnP overcomes this issue by relying on the underlying

network infrastructure. Specifically, UPnP eliminates the need for a centralized broker

by using the IP multicast mechanism which is supported by the most low-end switches

or home gateway. Hence, from the network layer’s perspective, the multicast service

provided by the switch becomes the centralized broker which is transparent to the

service components in the application layer. Since multicasting is the realization of

publish-subscribe style communication in the network layer, it is interesting to note that

UPnP adopts the process-centric architecture for service operation and the data-centric

architecture for service management, while CTK uses the process-centric architecture

for both.

To sum up, the service management of UPnP is superior to CTK in both inter-

operability and reliability because that the encoding format of UPnP, that is, SOAP,

is more widely recognized than the proprietary protocol proposed in CTK and that

UPnP does not require a centralized broker.

18

2.1.3 The Gaia Meta-Operating System (Gaia OS)

The Gaia meta-operating system (Gaia OS) is proposed by Roman et al. [115, 114].

Compared with other pervasive systems, Gaia focuses more on large scale pervasive

environments (or called Active Spaces in the literature) such as museums, office build-

ings or campus, where the deployment of a dedicated centralized high-end server is

reasonable. Gaia OS takes a monolithic approach and aims to become a pervasive op-

erating system, so that it addresses a wide range of issues such as distributed context

file system, distributed event service, security policy, remote invocation, and databases.

As a result, the design and implementation is based on CORBA (Common Object Re-

quest Broker Architecture) [1], a full scale industrial standard for enterprise distributed

systems.

The service operation architecture of Gaia OS is inspired by both CTK and MVC

(Model-View-Controller), a programming paradigm widely used in window-based desk-

top applications [115]. Roman et al. also propose a Model-Presentation-Adapter-

Controller-Coordinator (MPACC) as standard service operation architecture for Gaia

to fit the needs of Active Spaces which is describe in detail in [114]. The overall archi-

tecture of MPACC is depicted in Figure 2.3, a service is managed by a Coordinator.

The Gaia OS’s is responsible for composing a service, that is, to discover and to select

most appropriate components for the service according to the predefined application

description documents. An Application Generic Description (AGD) prescribes the

default preferred types and attributes of a service, while an Application Customized

Description (ACD) describes the user preferences. It is worthy to note that ACD is

implemented as a script called LuaOrb [37] to facilitate rapid prototyping of services.

Each device in the Active Space is controlled by a controller, where the function of

a controller is akin to a widget in CTK or an UPnP Device in UPnP. After a con-

troller reads from or writes to a device, the signals are then transformed by Adapters

19

Figure 2.3: The MPACC Service operation architecture in Gaia

into standard format used in Gaia. The actual application logic is embedded in the

Model component which determines an appropriate output and then delegates to the

Presentation component.

Similar to UPnP Device Architecture, the architecture of Gaia is process-centric.

Service management in Gaia relies on CORBA’s event notification service. Each service

component declares its presence by emitting heartbeats to CORBA’s event notification

service periodically [145]. However, Gaia considers neither service recovery nor service

consistency issues.

The major criticism of Gaia comes form its dependency on CORBA. Although

Gaia benefits from CORBA by reusing many standard services such as the directory

service, shared repository, and event notification service, Gaia remains tightly cou-

pled with CORBA. As pointed out by Chappel [38] and Henning [69], the design of

CORBA standard is deficient and currently it has been regarded as a failed attempt to

20

standardized distributed systems: 1) CORBA has incomplete interoperability since it

standardizes interface but not the wiring format; 2) The cost of implementing CORBA

is high since the specification is too complex; 3) Most of CORBA services can not pass

through firewalls. As a result, most of the existing CORBA applications have been

replaced by XML-based Web Services in recent years. Besides, taking heavy weight

and monolithic approach also makes it hard to be compatible with legacy applications,

which makes Gaia infeasible in highly dynamic environments such as the Smart Home

[76, 145].

2.1.4 The Aura Platform

Aura [58, 125] is a platform that aims to provide distraction-free services to occupants

of pervasive environments by utilizing its service migration mechanisms among hetero-

geneous environments. The Aura platform is constructed on top of Linux kernel and

is composed of four main building blocks. Specifically, Satyanarayanan et al. [118]

proposed Coda and Odyssey, a file system for mobile user that supports ubiquitous file

access with application-transparent adaptation; Spectra [56] is a self-tuned remote ex-

ecution mechanism; Prism [109, 125] is a sophisticated service composition system that

predicts and adapts to user’s intent inspired by microeconomic model in Economics.

Figure 2.4 shows the overall architecture of Aura. A service is called a ”task” in

Aura platform, which is managed by a centralized Task Manager, a Context Observer

that provides context information, an Environment Manager (EM), and many Suppliers

that provide actual support to the task [125, 126]. Aura is process-centric, since the

Task Manager is responsible for initiating, negotiating, and monitoring the progress of

”tasks” in Aura according to pre-specified user preferences.

The developers of Aura recognized the importance of asynchronous communication

between components in pervasive environments [125]. Hence, Aura components use

21

Figure 2.4: Aura’s overall architecture (source: [125])

non-blocking sockets to communicate with one another. As pointed out by Eugster et

al. [55], non-blocking sockets facilitate decoupling in time and synchronization. This

feature makes Aura platform more robust than other process-centric systems men-

tioned in previous sections. However, since point-to-point communication still requires

explicit address-binding, the locations of components are still tightly coupled. Sim-

ilar to CTK, the communication among Aura components also rely on XML-based

messages, hence Aura is also “potentially”interoperable. In addition, Aura adopts the

asynchronous process-centric architecture for performing service management. The

most notable service management mechanism is the utility-based and task-centric ser-

vice composition [126] which will be elaborated in Section 2.3.

Despite the sophisticated service composition mechanism (Prism), Prism does not

deal with inconsistency issues between services (tasks). As for the management about

components’ presence, Aura relies on Environment Manager as a centralized registry

for detecting presences of Suppliers. In [125], the authors claim that current imple-

22

mentation of Aura can use existing tools such as INS [18] or Jini [20] as its default

presence management mechanism. However, as INS only focuses on routing and Jini

is tightly coupled by Java, it is not clear that how these mechanisms are applied or

customized so that it can fit into the overall architecture. Another limitation of Aura is

that although core components such as Environment Manager, Context Observer, and

Task Manager are centralized, it does not deal with the single-point-of-failure issues.

2.1.5 CoBra (Context Broker Architecture)

CoBra [39, 40] emphasizes more on context reasoning. At the core of this architecture

is a centralized server called Context Broker, which is the mediator of all components in

the pervasive system. CoBra is tightly coupled with JADE (Java Agent DEvelopment

Framework), a java-based multi agent platform that implements the FIPA (The Foun-

dation for Intelligent Physical Agents) specifications. FIPA [10] is an IEEE Computer

Society standards organization that promotes agent-based technology and the interop-

erability of its standards with other technologies. As a result, a service is composed of

a set of collaborative agents, each of which resides in JADE containers.

CoBra delegates the presence management to the Directory Facilitator (DF) of

JADE. Hence, the service management architecture of CoBra is process-centric. How-

ever, DF does not guarantee the validity of presence information [27], and the service

composition mechanism is absent, as well. It can be concluded from the above discus-

sion that the CoBra services are neither reliable nor user-centric. Like Aura, agent in-

teraction is done by asynchronous peer-to-peer communication which uses ACL (Agent

Communication Language) as the wiring format. Another limitation of CoBra is that

the design of the Context Broker is purely centralized and lacks of recovery mecha-

nism. Furthermore, all components have to be hosted by JADE (or at least conformed

to FIPA specification) in order to access CoBra services, and CoBra does not fully uti-

23

lize the functionalities of JADE which aim to provide general support for multi agent

systems. The library of JADE is complex and not easy to learn, and it is very likely

that adopting the JADE platform is an overkill for pervasive environments.

2.1.6 SOCAM (Service-Oriented Context-Aware Middleware)

Similar to CoBra, SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] pri-

marily focuses on context reasoning. The service management issues are left to its

underlying platform, namely, OSGi (Open Service Gateway Initiative) [11]. Note that

OSGi is an emerging open standard for deploying services to smart home environments.

Components deployed in the OSGi platform are called ”bundles,” and the bundles can

be installed, updated, or removed on the fly without having to disrupt the operation of

the device. Bundles are libraries or applications that can dynamically discover other

services from the service directory or can be used by other bundles.

The OSGi framework is originally designed for a home gateway. However, the OSGi

specification does not deal with the nature of distributed systems which is one of the

important characteristics of a pervasive environment. As a result, SOCAM services

have to be deployed in the same machine. All OSGi services are deployed locally so

that the service management can be greatly simplified: the presence of components

can be accurately detected by the OSGi ServiceRegistry service and the recovery of

components can also be easily realized by utilizing OSGi ServiceTracker service.

Recent progress in the computing power of embedded systems has made it possi-

ble to embed the OSGi platform inside intelligent appliances such as the Interactive

Television or home entertainment stations. Wu et al. [142] proposed a distributed

architecture that enables interactions among distributed OSGi platforms, which is one

of the baseline technologies of this research.

24

2.1.7 Tuple Spaces

As mentioned earlier, recently data-centric architecture has been proposed to deal

with the flexibility and reliability issues of process-centric architecture. Contrary to

the interaction style of process-centric architecture, the components in data-centric

architecture usually interact with one another in publish-subscribe mechanism so that

data-centric architecture is able to addresses the flexibility and reliability problems by

enforcing decoupling in space, time, and synchronization [55].

The core idea of these decoupling techniques is to introduce a centralized mediator

for all components in the system such as Tuple Space (TS) or Message-Oriented Mid-

dleware (MOM). The introduction of a centralized mediator can cause single-point-of

failure problem, but it can be alleviated by deploying a cluster of mediators [59] or by

delegating the mediating tasks to the underlying network infrastructure [15]. Among

the data-centric pervasive systems, Event Heap [76, 77], One.world [61, 63], and LIME

[105, 42] are implemented by using a centralized TS server. A TS sever is a remotely

accessible associative virtual shared memory storing serialized objects. Therefore, com-

ponents can read, write or take serialized objects from TS server.

Event Heap serves as the underlying infrastructure for a larger platform called iROS

(Interactive Room Operating System). The service management mechanisms of iROS

are carried out by another component called ICrafter [110]. Components announce

their presence by a broadcasting mechanism called service bacon. In ICrafter, compo-

nents describe themselves by SDL (Service Description Language) which is similar to

UPnP service descriptions. SDL is capable of describing the type and supports oper-

ations of a component but it does not support attributes. ICrafter provides a naive

service composition mechanism for iROS applications. Compared with Prism of Gaia,

it lacks of advanced features such as attributed-based filtering and conflicts detection

and resolution.

25

One.world proposes a programming model for TS, in which an application (i.e. a

service) consists of a set of ”scoped event handlers” (i.e. service components). The

scope of these event handlers regulates their data access authority in the TS server.

However, the application must be written according to specific guidelines and hard to

support legacy applications [76]. One.world also proposes a robust presence manage-

ment mechanism by an renewable centralized discoverer: upon failure of the discoverer,

another new discoverer will be elected and initiated. However, it neither deals with

service reliability nor service consistency issues. Finally, LIME emphasizes on cus-

tomizing the TS server for applications in the pervasive environments and do not deal

with service and service management issues.

The major problem of TS systems is their scalability and performance. As reported

by Johanson [76], it is difficult to scale the TS system to large number of simultaneously

communicating entities due to performance issues. Moreover, Grimm [61] reported

that, LIME, Event Heap, and One.world all tightly coupled with Java, since TS server

stores serialized java objects. Hence, the interoperability of these TS systems is poor.

2.1.8 Message-Oriented Middleware (MOM)

Message-Oriented Middleware (MOM) is an event-based mechanism that enables asyn-

chronous communication and loosely-coupled integration. Hohpe and Woolf [71] point

out that when compared with other paradigms, messaging is considered more imme-

diate than file transfer, better encapsulated than shared database, and more flexible

than RPC-based invocation. MOM creates a virtual ”software bus” for integrating

heterogeneous message publishers and subscribers, namely, the ”nodes”. The logical

pathways between nodes are called ”topics”. Based on this architecture, the system

provides services by chaining nodes and topics together. For instance, A, C, D, and F

in Figure 3.2 collectively provide an ”adaptive air conditioner” service. In this service,

26

Figure 2.5: A typical message-oriented pervasive system

A is a software adapter of wireless temperature sensors, C is a context interpreter that

transforms raw data into high-level context data, D decides the commands to be taken

by performing logical reasoning based on the context data, and F is responsible for

controlling fans or air-pumps based on messages coming from the COMMAND topic.

MOM has several advantages. First, it comes up with simple and intuitive abstrac-

tions of node behaviors. More specifically, all node behaviors can be reduced to three

types (to receive messages, to process messages, and to send messages). Second, nodes

are easier to ”mock” and test. In Figure 3.2, node E can be tested separately without

the presence of node A by using a ”mock” node that feeds dummy sensor messages. In

addition, MOM facilitates ”separation of concerns”, that is, since each node is isolated

by the topics, developers are capable of concentrating only on the logic of the node to

be built without worrying about the interferences with other nodes. Finally, due to

the loosely-coupled nature of MOM, failures are isolated. In Figure 3.2, if D fails, the

failure is isolated by the topics, but either C or F will be aware of the failure.

MOM and TS have similar advantages, that is, easy to integrate heterogeneous

27

hardware/software as well as failure isolation. However, they are two different archi-

tectures from the technology’s point of view: TS is a way to access shared information

across multiple concurrent clients, whereas MOM focuses on message delivery. More

concretely, TS combines the concepts of centralized database and message delivery to-

gether. TS can simulate the event-driven feature of MOM; however, it tends to be less

efficient as they are generally implemented using a remote accessible shared memory,

which uses locks with read/writes to entries. Moreover, TS tends to store serialized ob-

jects, which is usually a penalty on performance and interoperability. Since that MOM

does not enforce the wiring format of messaging content, the performance of MOM is

better than TS. Because of the relief of performance and interoperability issues, MOM

appears to be a good alternative that keeps the benefits of data-centric architecture

and prevents performance and interoperability issues at the same time.

SOLAR [87] and MIRES [127] are two of the few Pervasive systems based on MOM.

SOLAR is an infrastructure for processing context information, the primary application

domain of SOLAR is large scale mobile and distributed systems so that P2P techniques

such as Distributed Hashtable [23] are used, which is scalable but less efficient. The

wiring format of SOLAR is proprietary text-based key-value pairs. It is noteworthy that

SOLAR is capable of recover failed service components by restarting the failed ones.

However, it does not support service-level recovery. Contrary to Aura, SOLAR deals

with failures by reloading components into memory instead of finding an replacement.

Meanwhile, MIRES is designed mainly for Wireless Sensor Networks (WSN). However,

MIRES focuses on the gathering of contexts, and doesn’t address reliability issues or

how to compose services by grouping nodes of MOM.

28

2.2 Pervasive Service Discovery

Service discovery is the process by which an entity on a network (the service manager) is

spontaneously notified of the presences of desirable resources (the service components)

[52]. The process is usually initiated by issuing a query which contains a set of criteria

the desired resources must comply with [136]. Although the idea of service discovery

emerges from large scale enterprise systems, it has been extensively used to manage

highly dynamic pervasive environments [82]. Typical objectives of service discovery

include: 1) getting the locations (e.g. URLs or remote references) of components

that meet certain criteria; 2) monitoring the presence or absence of affiliated service

components, this is also known as presence management; 3) (optional) trying to recover

failed services.

Many service discovery mechanisms have been proposed. They can be classified

into three categories: directory-based, non-directory-based, and hybrid [44]. Directory-

based systems [20, 3] usually have dedicated registries that maintain information and

status of service components, while non-directory-based systems [15, 7] rely on broad-

casting or multicasting mechanisms. Some systems support both model mentioned

above and are capable to adapt themselves according to the environments [67].

Item 1 mentioned above implies that there is a matching process. To facilitate the

matching process, each service component has to be associated with a ”capability de-

scriptor” that is to be matched by the ”specification”. Typically, a capability descriptor

contains type and attributes of a service component. In a pervasive environment where

heterogeneity is a concern, ontology standards such as OWL-S (Web Ontology Lan-

guage for Services) [99] are employed to enhance interoperability. Ontology is a set of

shared vocabularies used in a specific domain. Sycara et al. [129] suggested an exten-

sion of OWL-S for describing the capabilities of a service component. In OWL-S, the

capabilities of a service component consist of three parts (see Figure 2.6): 1) Service

29

Figure 2.6: Overall structure of OWL-S

Profile that describes what a service component does; 2) Service Model that describe

how a service component works (i.e. logic flow); 3) Service Grounding that provides the

information of how to access a service. Paolucci et al. further refined the traditional

capability descriptor by extending Service Profile of OWL-S, namely, Amigo-S [108].

Capabilities of a service component in Amigo-S are characterized by a type, IOPE

(Input, Output, Precondition, and Effect), context parameter, and QoS parameters.

In their paper, Paolucci et al. also defined a term ”degree of similarity” that is used to

estimate the quality of matching between the specification and a capability descriptor.

If there are more than one qualified resource, then more sophisticated mechanisms

are required to rank these resources. Moreover, many systems take users’ preferences

into account so that the specified criteria are so complicated that they have to be pro-

cessed by a dedicated interpreter. Finally, some other systems require that executing

sequences of components to be constrained by a workflow. In this thesis, the mech-

anisms that resolve the above-mentioned design issues are called service composition

which is a stage of service discovery. The taxonomy and the state of the art of service

composition are discussed in the next section.

30

Figure 2.7: CTK service discovery architecture

2.2.1 Service Discovery in CTK

CTK service discovery is designed based on directory-based architecture. The cen-

tralized directory is called a Discoverer. After being initialized, a CTK component

(e.g. a Widget, an Aggregator, or an Interpreter) searches for a Discoverer by using

HTTP-MU (HTTP over UDP Multicast) (Figure 2.7, step 1) and then registers itself

to one of the Discoverer (Figure 2.7, step 2). Although CTK allows multiple co-existing

Discoverers, each component is only allowed to associate itself with one Discoverer. In

CTK, a Discoverer is also a CTK component, so that a Discoverer can also register

itself to another Discoverer. Consequently, the network of CTK components looks like

a tree-like hierarchy structure (see Figure 2.8).

If there is only one Discoverer in the system, then components can discover one

another other by simply querying the Discoverer (Figure 2.7, step 4). Currently, CTK

Discoverers support query by ID, component type, and attribute. Finally, the applica-

tion obtains remote references (IP and port) of the discovered components by which the

application can then interact with these components (Figure 2.7, step 5). On the other

hand, if there is more than one Discoverer, an application has to traverse the whole

tree to obtain all qualified components. Taking Figure 2.8 as an example, the client

31

Figure 2.8: The hierarchical structure of CTK Discoverers

can find an IO Board by consulting the local Discoverer; however, exhaustive traversals

are needed if the client wishes to find the IO Board that best fits its requirements.

The Discoverer is also responsible for the presence management over components.

Components announce the presence and absence by registering and un-registering,

respectively. After a component is registered, the Discoverer occasionally pings the

component to validate its liveness. Once a component is not responding, the Discoverer

notifies the application. But CTK does not deal with recovery tasks.

There are several issues with respect to the design and implementation of service

discovery in CTK. First of all, although CTK allows multiple Discoverers, the single

point of failure problem of the centralized discoverer is still not addressed since the hi-

erarchical tree-like structure makes the system fragile: If one of the Discoverer crashes,

then all registered components become undiscoverable. Second, due to the nature of

multicast, when there are multiple co-existing Discoverers, the components do not have

32

a chance to choose among available Discoverer, in the latest released implementation

(December 29, 2003). Hence, the registration holder of newly initiated components

is chosen randomly causing the tree to become unbalanced. Third, the need to ex-

haustively search through the component tree makes the CTK service discovery a time

consuming process. More sophisticated mechanisms are required to enhance efficiency

of service discovery. Finally, to maintain the availability of an application means to

make sure each participating component is available. However, CTK service discovery

is supported by a centralized Discoverer which is assumed to reflect accurate presence

or absence of components. If a component fails without notifying the discoverer, it

is not clear that how long it will take for the Discoverer to recover from inconsistent

state, since the pinging mechanisms are not elaborated in [46]. Even if the failures are

detected accurately, the CTK-based applications are still unreliable since there is no

recovery mechanism for applications.

To sum up, CTK service discovery is designed based on directory-based architecture

without addressing single point of failure problem. In presence of multiple Discoverers,

the efficiency and reliability of applications is questionable. It can be helpful if more

efficient tree-search and tree-reformation algorithms can be proposed to deal with the

efficiency and reliability issues.

2.2.2 Service Discovery in GaiaOS

The design of service discovery in Gaia is obviously different from that in CTK except

that they both required a centralized directory. In Gaia, the centralized directory

is called Service Repository which is realized based on the CORBA Trading Object

Service [6]. As mentioned in Section 2.1.3, Gaia is tightly coupled with CORBA.

In addition, its service management architecture is data-centric in the sense that its

presence management heavily depends on a publish/subscribe communication service

33

Figure 2.9: Discovering and invoking service components in Gaia

called Event Manager. The Gaia Event Manager is implemented by using CORBA

Notification Service.

Figure 2.9 depicts the overall architecture of Gaia service discovery. It is carried

out by the coordination among the following components: Event Manager, Service

Repository, Presence Service, and Application Framework. Unlike in CTK, Gaia ser-

vice components publish presence notification messages to Event Manager instead of

registering themselves to the directory (i.e. Space Repository) directly. The Pres-

ence Service subscribes these notifications, and then these messages are forwarded to

the Space Repository. After that, the Space Repository registers service components

according to the received presence notifications. One advantage induced from this

data-centric (publish-subscribe) approach is that the service components do not need

to discover the location of Space Repository. Instead, the presence announcement mes-

sages are just sent to Event Manager, which are subscribed by the Presence Service.

The Application Framework is responsible for service composition. First of all, the

34

Figure 2.10: Presence management in Gaia

application developer specifies location independent configuration (AGD) as well as the

composition rule (written by LuaOrb script). According to AGD and LuaOrb scripts,

an ACD is automatically generated by the Application Framework. Then, the Ap-

plication Framework search for appropriate component for composing the application

based on ACD. In current implementation, Application Framework search for appro-

priate components by CORBA’s constraint query language which is defined in [6]. If

the Application Framework is capable of finding all qualified components specified in

ACD, then it initializes the Coordinator of the application causing the application to

be started.

In CTK, the Discoverer keeps track of presence information of components by

polling each of them periodically. On the contrary, in Gaia, heartbeats are emitted

from components periodically and then they are received by the Presence Service which

is responsible for keeping track of the presence information of components. Similarly,

35

a failed component is identified if it has failed to emit heartbeat message for a certain

period of time. After Presence Service is aware of the failed component, it notifies

both Space Repository and Application Framework to remove the failed component

from registry and to undertake failure handling. The failure handling mechanism is

decided by ACD which is generated according to rules written in LuaOrb script (see

Figure 2.10). By default, an application is stopped once failed components are identi-

fied. However, failure recovery mechanisms can be implemented by overwriting default

rule in the LuaOrb script.

In short, Gaia service discovery is more sophisticated then that in CTK, since

dedicated services such as Presence Service and Application Framework are developed

for monitoring components and for handling failures. Nevertheless, the burdens of

recovering failed application are still left to application developers. The architecture

of Gaia is process-centric, where each component is tightly coupled, causing Gaia

applications to become fragile. Hence, it is hard to design a generic failure recovery

mechanism for Gaia application since the inter-dependencies among components can

be very complex. In addition, these services are also possible point of failure, which also

lack of recovery mechanisms. Finally, Gaia uses Event Manager Service (TCP-based) as

its communication mechanism for service management instead of IP Multicast (UDP-

based). However, as pointed out by Tran et al. [133], most packets used for service

management in Pervasive systems are with short lengths, and the relevant sessions are

not kept for a long time. In their experiments, even with reliable UDP, the system is

still 4 times faster than with TCP.

2.2.3 CoBra/JADE Service Discovery

This sub-section elaborates service discovery mechanisms used in CoBra (see Section

2.1.5). Actually, CoBra itself does not deal with service management directly, and all

36

these tasks are delegated to its underlying platform, namely, JADE, an implementa-

tion of FIPA (The Foundation for Intelligent Physical Agents) specifications [10]. In

FIPA, there are three specifications that concentrate on service discovery issues: Agent

Management, Agent Discovery Service, and JXTA [60] Discovery Middleware. Among

these specifications, only Agent Management is standardized [13], whereas the other

two specifications are currently pending in preliminary state. Therefore, only Agent

Management Service (AMS) are implemented in the current release of JADE platform.

As mentioned earlier, in CoBra each service component is implemented as a JADE

Agent. Figure 2.11 illustrates the overall architecture of JADE. In each machine,

there is a Container that manages local Agents. One of the Containers is chosen

as the Main Container, in which the Directory Facilitator (the directory of JADE

service discovery) and the AMS reside. The locations of Directory Facilitator and

AMS are determined and can not be changed afterwards as soon as the system is

initialized. Directory Facilitator provides yellow page service for Agents, while AMS

is responsible for creating and suspending and deleting Agents. Note that according

to FIPA specification, AMS is mandatory whereas Directory Facilitator is optional, so

that AMS also plays the role of Agent directory when Directory Facilitator is absent.

Context Broker, the core service of CoBra that serves as facade for acquiring context

information, can be deployed in an arbitrary Container and then be found through

Directory Facilitator.

To certain extent, JADE service discovery is less flexible, since the locations of

Directory Facilitator and AMS are fixed and are known by all Agents. After an Agent

is started, it registers its Agent Description and Service Description to the Directory

Facilitator with a lease time. It is the Agent’s responsibility to renew the lease time

before it expires. After expiration of the lease time, the Agent is considered failed.

Agents in JADE are addressed by AID (Agent Identifier). Before using a service

37

Figure 2.11: Overall architecture of CoBra/JADE

provided by an Agent, the client, which is also an Agent, first searches for the Agents

that provide such service in the Directory Facilitator. Directory Facilitator returns the

AIDs of matching Agents to the client, based on which it can then consume the service.

Apparently, the Main Container, in which Directory Facilitator and AMS resides,

is the single point of failure. JADE reduces the possibility of failure by providing a

replication service for Main Container [27]. As for the Context Broker, Chen et al.

[40] suggests a persistent team based approach, which is inspired by Adaptive Agent

Architecture [88], to prevent the single point of failure. However, since there is no

evaluation on the proposed approach, it is not clear that this approach is cost-effective,

namely, to what extent can the system be recovered, and to what extent does this

approach affect the overall performance of the system.

In summary, CoBra/JADE service discovery is designed based on directory-based

architecture with a replication service to alleviate the single point of failure problem.

However, the synchronization of data among replicated Main Containers can cause

flooding of additional network traffic. In addition, the locations of core services includ-

38

Figure 2.12: JADE service discovery architecture

ing AMS and Directory Facilitator are fixed. After theses services are re-located (i.e.

the Main Container crashes and is replaced by a replicated one), the burdens of de-

tecting new locations of these services as well as re-binding to these services are left to

developers. CoBra focuses on context processing and provides only naive mechanisms

for service discovery. Specifically, it lacks of supports for selecting and composing ser-

vices according to users’ needs. Finally, the whole JADE platform is Java-based and

process-centric, and it is questionable that whether the legacy services can interact

with CorBa/JADE Agents.

2.2.4 Aura/Jini

Aura does not propose dedicated service discovery mechanism. Instead, in [125], the

author suggests that Jini [20] should be used as Aura’s service discovery mechanism.

Therefore, this sub-section examines Jini service discovery mechanism in detail.

Jini is designed based on directory-based architecture. The centralized directory

is called a Lookup Service. After being initialized, a service component locates the

39

Figure 2.13: Jini service discovery architecture

Lookup Service either by emitting a UDP multicast request or by waiting for a multi-

cast announcement from the existing Lookup Services. If the multicast service is not

available (e.g. WAN), the location of the Lookup Service has to be known in advance

so that Jini service components can contact the Lookup Service directly.

After a Lookup Service is located, the service component acquires a serialized Java

object called a ServiceRegistrar from the Lookup Service. After that, the service

registers itself via the ServiceRegistrar. Similarly, a client component discovers the

Lookup Service by using the same way with service component mentioned above. The

ServiceRegistrar is now used to invoke the lookup operation of Lookup Service. If

the desired service is found, a proxy object associated with the service is downloaded.

Finally, the client invokes the service through the downloaded proxy object.

From the architecture’s point of view, Jini is identical to that of CTK and Gaia.

However, the most significant difference is that Jini is tightly coupled with the Java

RMI (Remote Method Invocation) technology. More concretely, instead of registering

explicit remote references (e.g. IP and port), Jini service components upload a serial-

ized Java proxy object to the directory, by which clients can invoke them. While this

mechanism makes Jini independent of specific network protocol, however, all service

40

components in the system have to be implemented by using the Java technology.

Jini’s presence management is similar to Gaia (Section 2.2.2) and CoBra (Section

2.2.3) which depend on the lease-based timeout techniques to detect the presence of

components. A component is considered as failed if it fails to renew the lease within a

certain period. Note that Jini does not support failure recovery. In Aura, components

that constitute a service are monitored by the service composition engine, namely, the

Prism service composer. A service is re-composed by Prism if a failed node belonging

to the service is detected.

The major issues of Jini/Aura service discovery is two folds. First of all, Jini is

tightly coupled with Java RMI, in which the interactions among components are syn-

chronous. However, one of the important contributions of Aura is its asynchronous

point-to-point communication mechanism. Hence, there is an obvious paradigm mis-

match. The designers of Aura do not address these issues in the literature. As a result,

it is not clear that how Jini is fitted into the overall architecture of Aura. Second, the

adaptation of Jini as the underlying service discovery technology forces Aura tightly

coupled with Java and process-centric service management, causing poor flexibility and

interoperability.

2.2.5 Service Discovery in One.world

Similar to other directory-based service discovery mechanisms, the service discovery

of One.world also relies on a centralized directory server. However, the design of

One.world service discovery is very similar to CTK, Gaia, and Aura except that the di-

rectory server in One.world is electable. The election is performed based on the devices

suitability to be the directory, that is, memory size and devices’ uptime. Therefore, in

addition to service components, and Directory Servers, there is also an Election Man-

ager that is responsible for electing and initiating a new directory server aggressively.

41

More concretely, the Election Manager monitors presence announcement, sent by UDP

multicast, emitted from Directory Servers, a new Directory Server will be elected when

one of the existing Directory Server fails to perform presence announcement for suc-

cessively two time periods or when one of the clients receives a malformed message.

The core idea behind this design is to make sure there are always more than one Di-

rectory Servers in the system. The contents of a newly started directory server can

be inconsistent with the system. Hence, the service components are assumed to cache

most recent information and then forward to the newly started directory servers.

Although the design of electable directory servers increases the reliability of service

management, One.world does not deal with the reliability of services or service com-

ponents. Moreover, the aggressive approach can greatly increases the load of devices

and network. This approach even causes the deployment of One.world runtime impos-

sible for some resource constrained devices such as wireless sensor node. After all, it

is unreasonable to assume that every device is capable of becoming a directory server.

2.2.6 Bluetooth SDP (Bluetooth’s Service Discovery Proto-

col)

In the following two sub-sections, two non-directory-based service discovery mecha-

nisms, that is, Bluetooth SDP and UPnP are introduced. In contrast to the above-

mentioned directory-based approaches, Bluetooth SDP and UPnP focus more on resi-

dential applications and smaller networks.

Bluetooth is a short-range RF-based communication technology [52]. Different

from other service discovery systems mentioned above, Bluetooth is realized based on

non-IP network so that it can achieve robustness, low power consumption, and low

cost. Bluetooth SDP (Bluetooth’s Service Discovery Protocol) is an optional profile

of Bluetooth core specification [7], which is tightly couple with L2CAP (Logical link

42

control and adaptation protocol). L2CAP is the base of many higher-level Bluetooth

protocols, which hides the complexity of RF-based communication. Bluetooth devices

form a small group called a ”piconet” by coordinating nearby devices. Each piconet

can only consist of up to 7 devices, and one of these devices is the master. The master

can be a slave of upper level group called ”scatternets”. Hence, the entire Bluetooth

forms a hierarchy network. Bluetooth is based on non-directory-based architecture.

The major limitation of Bluetooth SDP is it’s tightly coupling with a specific pro-

tocol stack. Hence, it is not easy to interoperate with non-Bluetooth devices. Second,

due to the low bandwidth, only 128-bits UUID-based search is allowed. The data

structures used to represent attributes become more complex than competing service

discovery protocols. The burden of processing these complex data structures is left to

application developers. Third, the search scope of Bluetooth SDP is limited by physical

distance which is usually less than ten meters. Finally, Bluetooth SDP is designed for

Personal Area Network which typically contains less than ten devices. If it is used in

the scale of a smart home, the monitoring of components can become inefficient and

less accurate.

2.2.7 Simple Service Discovery Protocol (SSDP)

As mentioned in Section 2.1.2, UPnP is a well-known standard for home network,

which composes of three HTTP-based sub-protocols: SDDP, GENA (General Event

Notification Architecture), and SOAP. Among these protocols, SSDP takes charge of

service discovery in an UPnP network.

By default, SSDP operates based on HTTPMU (HTTP over UDP multicast). Mul-

ticast is an IP-layer mechanism of forwarding IP datagrams to a group of interested

receivers via a set of predefined addresses, which is supported by most network switch-

ing equipments. By default, SSDP uses the address 239.255.255.250:1900. Therefore,

43

Figure 2.14: The protocol stack of UPnP

SSDP does not need a centralized directory. SSDP is a simple yet effective service

discovery protocol. It extends HTTP with two message types: Notify and M-Search.

Notify and M-SEARCH messages are used to encapsulate SSDP actions. There are

three kinds of SSDP primitive actions: 1) ssdp:alive: announces the presence of a com-

ponent by using a HTTP Notify message, 2) ssdp:byebye: announces that a component

has left the network by using a HTTP Notify, and 3) ssdp:discover: finds a component

that meets certain type specified in the ST (Search Target, see Listing 2.1) header

in an M-SEARCH message. The matched component then replies by sending back

an HTTP Response message (see Listing 2.1, lower part). It is noteworthy that it is

possible that a device fails without sending a ”ssdp:byebye” message. Therefore when

issuing a ”ssdp:alive” or a response message, the device attaches information of valid

time period by using a HTTP ”Cache-Control” header (see the bottom part of Listing

2.1). After this time period, the presence announcement becomes invalid.

SSDP/UPnP has the following benefits. First, it is an ISO standard. Second, it is

one of the few dynamic service discovery protocols that do not need a dedicated and

centralized service registry [148], which is more feasible in smart home environments.

Furthermore, SSDP/UPnP is platform and language independent, as it is based on

44

Listing 2.1: An ”ssdp:discover” request and its response

M−SEARCH ∗ HTTP/1 .1

ST : urn : schemas−upnp−org : dev i ce : s en so r : 1
MX: 3

MAN: ” ssdp : d i s c ove r ”

HOST: 239 . 255 . 255 . 250 : 1900

HTTP/1 .1 200 OK

Content−Type : t ex t /html ; cha r s e t=”utf−8”
Server : Windows XP/5 .1 UPnP/1 .0 CyberLink /1 .7

Content−Length : 0

Cache−Control : max−age=1800

EXT:

Date : Sun , 08 June 2008 13 : 35 : 12 GMT

ST: urn : schemas−upnp−org : dev i ce : s en so r : 1
USN: uuid :94 b7fab5−52df−4222−b2f1−d5573e74859a : :

urn : schemas−upnp−org : dev i c e : TarokoSensorGateway : 1

Locat ion : http : // 192 .168 .4 .102 :4040/ d e s c r i p t i o n . xml

MYNAME: Taroko Sensor Gateway

SOAP/HTTP protocol. Despite these advantages, there are still many issues in the

original design of UPnP/SSDP. First of all, despite of high flexibility and interoper-

ability, SSDP does not take care of both service composition and recovery. Second,

service representation in SSDP is näıve. Specifically, service components can only be

characterized by ID and type, while most of other service discovery mechanisms sup-

port at least ID, type, and attribute. Notice that in Smart Homes, services components

with the same type do not mean they are substitutable. For example, the informa-

tion obtained from sensors in living room is different from the information in the bed

room. Therefore, supporting only type-based representation prevents UPnP network

from applying sophisticated service composition mechanisms. Third, SSDP relies on

UDP, which is unreliable. UDP is very likely to lose packets thus causing SSDP to

become invalid in a busy network. Hence, the UPnP specification suggests broadcast-

ing SSDP messages repeatedly for 2 to 3 times. Unfortunately, this approach tends to

45

make network traffic heavier. The situation is getting worse if we increase heartbeat

rate to achieve higher availability. Finally, SSDP suffers from efficiency problems: the

broadcasting nature of UDP tends to flood the network with unnecessary packets. We

need more sophisticated mechanisms to save the bandwidth.

2.3 Pervasive Service Composition

Traditionally, service composition has been an integral part of service discovery. The

major purpose of service composition is to select, to rank, and to assemble qualified

service components according to a pre-specified service specification. Service compo-

sition is one of the most active research issues in Service Computing [147]. In the

last few years, a considerable number of studies have been made on designing service

composition mechanisms, but most of them focus on enterprise environments [103].

Many of these works [123, 132] aggregate service components according to workflow-

based service template language such as Business Process Execution Language (BPEL)

[79]. Researches using workflow-based approach focus on service units with prede-

fined profiles. Other researchers propose to compose services by planning techniques

[146, 83, 91], and they who suggest that the time of selection of components should

be considered dynamically during runtime instead of in design time. Notably they

emphasize on finding global optimal execution paths among numerous tasks and their

subtasks. Generally speaking, planning techniques are more suitable when the struc-

ture of services can be divided into many sub-tasks hierarchically. In an enterprise

environment, services are usually composed based on pre-defined business policies and

are relatively well-planned. On the contrary, pervasive service compositions are often

user-dependent and ad hoc.

Although numerous attempts have been made in studying service composition is-

sues in enterprise environments; however, according to a recent study conducted by

46

Bronsted et al. [33], there are surprisingly few researches have been done on this is-

sue for pervasive environments. After performing a thorough survey, Bronsted et al.

noticed that few existing service composition solutions are feasible in pervasive environ-

ment. They also observed that there are some problems that made service composition

in pervasive environments more challenging than that in traditional enterprise environ-

ments due to the following reasons: 1) composing services under changing contexts, 2)

managing service contingencies, 3) device heterogeneity, and 4) taking user preferences

into consideration. Among these issues, little research has been made on the last two

problems, namely, the inconsistency problems among conflicting user preferences and

service effects (the effects of services interfere with one another). They will be discussed

further in the following sections.

2.3.1 Unifying Inconsistent User Preferences

The goal of service compositions in pervasive environment is to meet maximum sat-

isfaction of users. Before composition starts, users specify their needs or preferences

to the system via user interfaces. There are several methods proposed to model user

preferences in intelligent information systems such as [90] and [96]. However, these

approaches either do not provide a complete formal framework for users to represent

their preferences or does not work when multiple conflictive preferences are present.

Furthermore, complexity arises when multiple parties submit conflicting preferences

simultaneously. For example, the preferences of energy saving policies and the user

preferences are very likely to be conflicting.

Most of the existing pervasive service composition mechanisms only focus on cap-

turing user preferences in either direct [110] or indirect ways [126, 111] to help to obtain

optimal outcomes. For example, ICrafter [110] is a user-mediated service framework

for Event Heap (see Section 2.1.7). In ICrafter, the term ”service” is used in a narrow

47

sense, which refers to a user interface (UI) plus an appliance. An appliance can be

a computer program or a real world device. At the core of ICrafter is a well-known

service (e.g. every component knows its location) called the Interface Manager (IM)

which generates UI for the users to operate appliances according to the contexts on the

fly. Strictly speaking, ICrafter does not address most of service discovery issues such

as presence management, service recovery and service locating.

Existing service composition mechanisms deal with conflicting policies problems

by either explicitly defining the precedence among policies or by attempting to seek

a common ground among conflicting policies using logic-based approach. Olympus

[111] falls into the first category, which takes charge of service composition tasks for

Gaia. In Olympus, the user preferences are specified by using LuaOrb-based policy

files. According to AGD and the policy files, the Gaia service composition framework

then generates ACD automatically. The conflicting policies are resolved by explicitly

assigning a master policy for each criterion. The ranking of candidate service compo-

nents are determined by heuristic utility functions predefined by users. On the other

hand, Bettini [29] proposes a first-order-logic based profiling system for mobile systems.

They discuss cases of conflicting profiles and offer their resolution strategies. Shankar et

al. [119] proposes an Event-Condition-Action-Post-Condition (ECA-P) policy model.

This work detects conflicts among policies by analyzing their semantic post-conditions

and replaces conflicting ones with the one with preferred post-conditions. Due to lim-

ited expressiveness of ECA-P model, the results are decisive: users either come to a

common agreement or the service is not provided at all. However, in real cases, users

tend to change their minds and are usually negotiable. Obviously, more powerful rep-

resentation techniques have to be developed in order to capture the negotiable user

preferences.

48

2.3.2 Dealing with Inconsistent Service Effects

Services that work perfectly when they are isolated do not guarantee that they can

still work perfectly when several services co-exist in the same environment. Usually,

compatibility issues arise due to resource competing and interferences among different

effects of services. This issue is traditionally referred to as the ”Feature Interaction

Problems (FIP)” [86], which is first observed in 1980s in telecommunications systems.

FIP refers to some unexpected side-effects caused by interactions between or within

services. It is important to note that from the users’ point of view, not all interactions

are unacceptable. Therefore, the pervasive service composition mechanisms should

be able to distinguish acceptable interactions from undesired ones according to user

preferences.

Earlier research that set their theme on telecommunications systems focuses on res-

olution after interferences occur rather than avoiding them in advance. The resolution

processes usually involve rolling back the whole transaction of business calls [35, 81].

However, in pervasive environments such as smart homes, resolution approaches are

usually infeasible, and hence, how to prevent service interferences becomes important

in pervasive environments. Tsang et al. [134] propose a learning approach to cap-

ture sequences of behaviors and then detect service interferences. Low [93] propose a

rule-based approach to detect interferences and improved the performance by using a

cache. Kolberg et al. [86] divide service interference problems into several categories:

1) conflicting accesses to single device at the same time, 2) undesirable effects among

activated devices, and 3) unexpected consequences caused by sequential connections

among devices. Nevertheless, they only provide an architectural approach to handle

the first two categories. Nakamura et al. [107] claim that there are two types of service

interferences, namely, appliance interferences and environment interferences, depend-

ing on whether the interference takes place due to direct conflict among appliances or

49

via the environment. Existing prevention approaches take care of resource confliction,

but in pervasive environments, the presences of interferences are usually dependent on

users’ perceptions, which are vague and subjective. Hence, it appears that fuzzy-based

approaches which account for human’s linguistic ambiguity can be promising.

It follows from the above discussions that there is still much space for further in-

vestigation on the consistency issues of pervasive service compositions. Currently, the

scope of this thesis concentrates on dealing with two inconsistency issues of perva-

sive service composition, namely, inconsistent user preferences and inconsistent service

effects.

2.4 Summary

Tables 2.2, 2.3 and 2.4 summarize the investigated systems with regard to the design

issues this thesis has discussed so far. The expected contributions of this work are

appended in the last row in the tables. As mentioned in previous sub-sections, in

respect of flexibility (including extensibility and interoperability) of a pervasive system,

data-centric architecture appears superior to process-centric architecture; standard-

based wiring format is more interoperable than proprietary ones. Among the systems

investigated so far, UPnP, Gaia, and CoBra are more interoperable. Strictly speaking,

although CTK and Aura use XML, they are only ”potentially interoperable” since the

syntax and semantic of the XML-based wiring formats are still proprietary.

It is also important to point out that all systems being investigated except UPnP

use TCP-based service management (see Table 2.3). Nevertheless, contrary to me-

dia streaming protocols, the packet size of service management is typically small (for

example, most of the SSDP packets range from 200 bytes to 450 bytes), and can be

transmitted by single UDP-based packet, since theoretical size of an UDP datagram is

65507 bytes, and empirical size is 576 bytes. Consequently, adopting UDP for service

50

management is more efficient.

Generally speaking, directory-based approach has better scalability and perfor-

mance, but is poor in reliability because the directory can become single point of failure.

On the contrary, non-directory-based approaches are more robust, but produce more

network traffic. As reported by Meshkova et al., the design of service discovery systems

depends on the scale of their deployment [102]. According to their classification, enter-

prise scale service discovery systems such as Jini, COBRA Trading Object Service, and

JADE typically are designed based on directory-based approaches to reduce the traffic.

On the other hand, small scale systems such as UPnP and Bluetooth are more suitable

for non-directory-based approaches, since it avoids the single point of failure problem,

and is easier to be implemented in embedded devices [148]. Nevertheless, in Table 2.3,

all systems except for SSDP (UPnP) use directory-based approach for service discov-

ery. This is because that these systems are designed for generality. The UPnP has

been customized for home network. Therefore, its non-directory-based design is more

suitable for the smart home.

CoBra and One.world deal with the single-point-of-failure problem by automatic

recovery of directory servers and by re-electing directory servers, respectively. However,

recovering the discovery server does not guarantee the reliability of services. Among

the systems, only Aura is capable of recovering a failed service by re-composing the

service. As for service consistency, only Gaia and Aura partially deal with the con-

sistency problem which includes the consistency between service specification and the

consistency between the effects caused by components.

Among four key qualities of the Smart Home systems (i.e. flexibility, reliability,

consistency, efficiency), SSDP is superior to other mechanisms in flexibility but lacks

of supports in reliability, consistency, and efficiency. Over the last few years, several

mechanisms have been proposed to enhance UPnP/SSDP. Nakamura et al. [106] stud-

51

ied the efficiency problems of the interconnecting UPnP gateways. They proposed to

store SSDP Presence Announcement messages in the caches of UPnP gateways in order

to reduce the service discovery traffic. Knauth et al. [85] proposed to reduce traffic

by introducing proxies among UPnP Devices that serve as cache in LAN. In [100, 73],

the authors enhanced GENA (General Event Notification Architecture), a TCP-based

sub-protocol of UPnP used for event notification by realizing GENA based on IP mul-

ticast. IP multicast mechanism is UDP-based, which is considered unreliable yet more

efficient than TCP. However, these enhancements do not deal with service composition

and recovery issues directly, which are critical for achieving high reliability, consistency,

and efficiency.

To sum up, SSDP (of UPnP) tends to be very competitive in respect of flexibility,

and none of existing systems fully address the reliability and consistency issues of

service management. As a result, SSDP should be a good starting point based on

which one can design more sophisticated mechanisms to address the reliability and

consistency issues. This research proposes a self-organizing and self-healing service

management protocol for smart homes by enhancing reliability of services (Chapter

3) and consistency of service composition (Chapter 5). Furthermore, efficient service

management mechanisms in decentralized protocols are hard to design since it is apt to

drain out bandwidths with a lot of heartbeat or polling messages. Hence, this research

deals with efficiency issues by striking a balance between the robustness of system

and the overhead of communication complexity by designing, analyzing and evaluating

mechanisms to eliminate unnecessary network traffics. The details are elaborated in

Chapter 4.

52

Table 2.2: Architectural styles and service management functionalities of Pervasive

systems

Name Architectural Wiring (Service Management Functionalities)

Style Format Discovery Recovery Composition

CTK Process-Centric XML X - X

UPnP Process-Centric XML (SOAP) X - -

Gaia OS Process-Centric IIOP X(COBRA) - X

Aura Process-Centric

(Asynchronous)

XML X(Jini) X X

CoBra Process-Centric

(Asynchronous)

FIPA-ACL X(JADE) X -

SOCAM Process-Centric

(Local)

- X(OSGi) - -

One.world Data-Centric

(Tuple Space)

Serialized Java

Objects

X X X

Event Heap Data-Centric

(Tuple Space)

Serialized Java

Objects

X X X

LIME Data-Centric

(Tuple Space)

Serialized Java

Objects

X - -

SOLAR Data-Centric

(MOM)

Text

(Proprietary)

X(INS) X X

MIRES Data-Centric

(MOM)

Active Message

(Tiny OS)

- - -

This work Data-Centric

(MOM)

JSON X X X

53

Table 2.3: Detailed comparisons among Service Discovery mechanisms of Pervasive

systems

Name Category Recovery Network

Scale

Transport

Layer

CTK Directory-based - LAN TCP

UPnP Non-directory-

based

- LAN UDP

Gaia Directory-based Component Internet TCP

Aura Directory-based Service LAN TCP

CoBra Directory-based Backbone Internet TCP

SOCAM Directory-based

(Local)

- - -

One.world Directory-based Backbone LAN TCP

Event Heap Directory-based Backbone LAN TCP

LIME Directory-based - Internet TCP

Solar Directory-based Component LAN TCP

MIRES - - - -

This work Non-directory-

based

Service LAN UDP

54

Table 2.4: Detailed comparisons among Service Composition mechanisms of Pervasive

systems

Name Expression

Support

Sophisticated

Ranking

Expressiveness of

Expression

Preferences

Unification

Interferences

Estimation

CTK - - - - -

UPnP - - - - -

Gaia X X Enumerate;

Mandatory

X -

Aura X X Enumerate and

Numeric; Manda-

tory

- -

CoBra - - - - -

SOCAM X - Enumerate;

Mandatory

-

One.world - - - - -

Event Heap - - - - -

LIME - - - - -

Solar X - Enumerate and

Numeric; Manda-

tory

- -

MIRES - - - - -

This work X X Enumerate and

Numeric; Manda-

tory and Nego-

tiable

X X

55

Chapter 3

Flexible and Robust Service Management

in a Smart Home

As mentioned in Chapter 2, data-centric architectures such as MOM and Tuple Spaces

are more flexible and robust than process-centric architectures. Furthermore, it has also

been pointed out that MOM is superior to Tuple Spaces since it preserves the flexibility

of data-centric architecture while prevents from performance and interoperability issues

caused by Tuple Spaces. Despite these advantages, there are still several challenges

when designing pervasive systems based on MOM.

First of all, a pervasive system designed based on MOM is called a Message-Oriented

Pervasive System (MOPS) which consists of a virtual ”software bus” for interchanging

messages among heterogeneous publishers and subscribers, namely, the ”nodes”. The

logical pathways between nodes are called ”topics”. Contrary to traditional enterprise

systems, pervasive systems are highly dynamic since the service components can join,

leave or fail at any-time. However, MOM lacks of appropriate service management

mechanisms to maintain and to keep track of the relationship between services and

service components. (Recall that a service is composed of a group of collaborating ser-

vice components.) Moreover, among the few MOPS such as SOLAR [87] and MIRES

[127], none of them deal with service management issues. Second, regarding to robust-

ness, MOM supports failure isolation, but it lacks of both failure detection and recovery

mechanisms. In this thesis, the term ”robustness” refers to the ability of a system to

detect failed service components and then either to recover them from failure states

or to find a replacement eventually. Third, in typical pervasive environments such

as Smart Homes, the people setting up and maintaining the systems are consumers

56

with little technical knowledge. Hence, the proposed solutions to challenges mentioned

above have to make the system as autonomous as possible. The robustness issue of

a Pervasive system is a typical example: the system without autonomous failure de-

tection and recovery capabilities may frustrate users from time to time, since they are

hardly able to pinpoint the sources of all failed services and to recover them.

It follows from what has been discussed that the following features are of crucial

importance: 1) an autonomous service discovery and composition framework that is

capable of discovering, selecting, and activating nodes spontaneously; 2) a failure de-

tection and recovery mechanism that is aware of service failures. Such mechanisms is

capable of directing the system to identify failed components and then to recover the

failed service by either replacing the failed components by alternative ones or restart-

ing the failed components autonomously. In the following,the term ”robust service

management” will be used to refer to the two features mentioned above.

The objective of this chapter is therefore to design a robust service management

framework for MOPS under the challenges listed above. In the following, a service

model, namely, PerSAM (Pervasive Service Application Model), which defines key ab-

stractions, data structures and a taxonomy of entities (see Figure 3.1) for MOPS is

first presented. The reason for defining a service model is that MOM only comes up

with the ”node” and ”bus” abstractions, which are insufficient to facilitate robust ser-

vice management. After that, Section 3.2 describes an application layer robust service

management protocol, namely, PSMP (Pervasive Service Management Protocol). It is

important to point out that this section focuses on the application layer of the net-

work stack, the protocol issues at lower layers such as the robustness of UDP and the

efficiency of IP multicast are taken up in the next chapter. PerSAM and PSMP are

presented by using Unified Modeling Language (UML) [31] and Communicating Se-

quential Processes (CSP) [70]. UML is useful in illustrating data structures (by using

57

Figure 3.1: A taxonomy of PerNode

Class diagrams) and interacting flow (by using Sequence diagrams) visually. On the

other hand, CSP is a member of the family of Process Algebra and is a widely used

mathematical language for specifying distributed systems, where Process Algebra is

a formal description technique for complex distributed systems, especially those with

communicating or concurrently executing components [28]. As reported by Sharp [120],

the Process Algebra not only enables us to describe protocol in a concise manner, but

also makes it possible to analyze protocols. The benefits of using the CSP are: 1) the

models and protocols can be specified accurately, 2) it enhances the reproducibility

of PerSAM/PSMP since CSP is more precise than pseudo code and UML, and 3) it

is easier to validate the desired system attributes formally because of the preciseness

of process algebra. In this thesis, UML is used to convey high-level concepts, while

recognizing that CSP is useful in increasing preciseness and reproducibility.

3.1 Pervasive Service Application Model (PerSAM)

This section focuses on presenting the proposed service model, namely, PerSAM. Sev-

eral acronyms and notations are used throughout this thesis to keep the presentation

concise, which are summarized in Table 3.1 and in Table 3.2.

58

Figure 3.2: The message-oriented pervasive system

In PerSAM, the term ”PerNode” refers to a service component in MOPS. Also note

that the term ”PerNode” or ”node” are used interchangeably in the sequel. PerNodes

fall into one of the two categories: the Manager Nodes and the Worker Nodes. Manager

Node is designed for administrative purposes. Pervasive Service Manager (PSM) and

Pervasive Host Manager (PHM) are both Manager Nodes, which are responsible for

managing a Pervasive Service and a Pervasive Host, respectively. On the other hand,

Worker Nodes are basic useful functional units. Worker Nodes can be further classified

into three categories according to their behaviors: Sensor Nodes, Actuator Nodes, and

Logic Nodes. Taking Figure 3.2 as an example, A and B are Sensor Nodes, which are

connected to gateways of sensors and the sensed data are sent to the SENSOR topic.

Similarly, C and D are Logic Nodes that encapsulate logics of message processing.

Figure 3.3 indicates the life-cycle of PerNode. The computing device on which a

PerNode are deployed is called a Pervasive Host. The procedures of installing a PerN-

ode on a Pervasive Host are: 1) placing binaries of the node in a directory, and 2)

registering its metadata so that it is manageable. After being installed, a node en-

59

Figure 3.3: The states of a PerNode

ters INSTALLED state. Next the node is loaded into memory, starting in DORMANT

state. Note that although a DORMANT node does not perform any message-processing

task, it still issues heartbeat and is ”discoverable” by discovery protocols. A node goes

into in ACTIVE state when it is activated. An activated node can receive, process, and

send messages. Similarly, nodes can be removed from memory by a ”shutdown” oper-

ation, or fall back to DORMANT state by a ”rest” operation. The formal definitions

of PerNode and Worker Node are as follows, which are depicted in Figure 3.4.

Definition 1. (PerNode) A PerNode p ∈ P is an atomic stateful entity in MOPS,

where P is the universe of PerNodes in the system, and state ∈ {INSTALLED,DORMANT,ACTIVE}

is an attribute of p.

Definition 2. (Worker Node) A Worker Node w ∈ W is a PerNode that encap-

sulates a unit of application logic, where W is the universe of Worker Nodes in the

system. In addition to the attributes inherited from PerNode, a Worker Node has three

additional attributes: node type nt ∈ NT , where NT is the universe of node types in

60

Table 3.1: Summary of acronyms

Abbreviation Full Name

MOM Message-Oriented Middleware

MOPS Message-Oriented Pervasive system

PerSAM Pervasive Service Application Model

PSMP Pervasive Service Management Protocol

PH Pervasive Host

PHM Pervasive Host Manager

PS Pervasive Service

PSM Pervasive Service Manager

PA/LA Presence Announcement or Leave Announcement

the system and the heartbeat period (hbp), which specify the functional category and the

heartbeat rate of the node, respectively.

3.1.1 The Pervasive Communities

A Pervasive Community is a logical organization of nodes. There are two kinds of

Pervasive Communities: 1) the Pervasive Service (PS) consists of one or more nodes

Figure 3.4: The structure of a PerNode and a Worker Node

61

Table 3.2: Summary of notations

Notation Description

nt An instance of node type

ps An instance of Pervasive Service

ph An instance of Pervasive Host

w An instance of Worker Node

mps An instance of PSM that manages ps

mph An instance of PHM that manages ph

W ps The set of Worker Nodes belonging to ps

W ph The set of Worker Nodes belonging to ph

ST ps The Service template of ps

MT ps The set of missed or failed node types that prevent

ps from being alive

T ps The set of timestamps that records the previous

heartbeat time for each w ∈ W ps

m̂ A multicast channel

t̂ An TCP-based unicast channel

ûn An UDP-based unicast channel to node n

ssdpx An instance of SSDP message, x indicates the

message type

W ∗
nt A list of candidate Worker Nodes with type nt

that collectively provide a service to user, and 2) the Pervasive Host (PH) refers to a

group of nodes that co-locate in the same computing device. Each community has a

Manager Node that keeps track of its members. In other words, each PS has a PSM

and each PH also has a PHM. A Worker Node can join several PSs at the same time.

62

Considering the example depicted in Figure 3.5, node A is a member of the ”Adaptive

Air Conditioner” PS (ps1) as well as the ”Sensor Map” PS (ps2) at the same time.

Let us denote the PSM of a Pervasive Service ps as mps and the Worker Nodes that

join ps as a set W ps ∈ 2W , where 2W is the power set of W . Considering ps1 in Figure

3.5, we have mps1 = PSM1 and W ps1 = {A,C,D, F}. The Service Template ST ps ∈

2NT is pre-defined by service designers. Each ST ps specifies required node types that

comprise ps. For example, in Figure 3.5, ST ps1 = {Temperature Sensor, Context

Interpreter, Indoor Temperature Control Logic, Air Conditioner}. To com-

pose a Pervasive Service ps, mps first finds the best w ∈ W such that w.nt = nt for each

nt ∈ ST ps. The definition of ”the best” depends on a user-defined selecting function

(see Table 3.3). The default selecting function is FCFS (First Come, First Select), but

it can be substituted by a more sophisticated mechanism such as the one proposed in

Chapter 5.

Before ps is successfully composed, some Worker Nodes of required types nt ∈ ST ps

could be still missing. Let us denote the set of node types of missing Worker Nodes as

MT ps. Formally:

MT ps = {nt|nt ∈ ST ps,¬∃w ∈ W ps : w.nt = nt} (3.1)

In the previous example, assuming thatW ps1 = {C,D, F}, thenMT ps1 is {Temperature

Sensor}, because the missing Worker Node A is of the type ”Temperature Sensor”.

In the beginning of service composition, since there are no Worker Nodes found,

thus W ps1 = ϕ and ST ps1 ={Temperature Sensor, Context Interpreter, Indoor

Temperature Control Logic, Air Conditioner}. It is easy to observe from this

example that MT ps ⊆ ST ps. It is worthy to point out that MT ps = ϕ implies that ps

is successfully composed and that ps is alive if and only if all w ∈ W ps are in ACTIVE

states. Based on this observation, it is the time to define the liveness of a Pervasive

Service.

63

Figure 3.5: The Pervasive Service communities

Figure 3.6: The Pervasive Host communities

64

Definition 3. (Liveness of a Pervasive Service) A Pervasive Service ps is alive

if and only if the following statement holds:

MT ps = ϕ ∧ ∀w ∈ W ps, w.state = ACTIVE (3.2)

To detect possible failures of affiliating Worker Nodes, a PSM (mps) keeps track of

timestamps of previous heartbeats tw for each w ∈ W ps in a vector of timestamps T ps,

where tw ∈ T ps and |T ps| = |W ps|. Based on the above discussions, a Pervasive Service

can be formally defined as follows.

Definition 4. (Pervasive Service, PS) A Pervasive Service ps is a tuple:

ps = ⟨mps, ST ps,MT ps,W ps, T ps⟩ , (3.3)

where mps is PSM of ps, ST ps ∈ 2NT is the Service Template, MT ps ⊆ ST ps is set

of missed types, W ps ∈ 2W is the set of Worker Nodes join ps, and T ps is a vector of

timestamps that records the previous heartbeat time for each w ∈ W ps.

Likewise, each Pervasive Host is composed of a set of Worker Nodes, whose life-

cycles are managed by a PHM. The PHM and its affiliating Worker Nodes locate in

the same device. Therefore, a PHM is able to detect the node states, to load and to

shutdown Worker Nodes. In Figure 3.6, there are 3 Pervasive Hosts: A and B belong

to ph1 since they are deployed in the same device; similarly, C, D and F belong to ph2;

the ph3 has single member E. Note that ph1, ph2 and ph3 are managed by PHM 1, 2

and 3, respectively. The definition of a Pervasive Host is as follows:

Definition 5. (Pervasive Host, PH) A Pervasive Host ph is a tuple:

ph =
⟨
mph,W ph

⟩
, (3.4)

where mph is the PHM of ph, and W ph is the set of Worker Nodes that currently locate

on ph.

65

Figure 3.7: The structures of PSM and PHM

3.1.2 The Pervasive Managers

The responsibilities of a PSM are as follows: 1) to compose a PS according to Service

Template ST ps. As mentioned in Section 3.1, when there are many qualified candidates,

PSM first stores them in a candidate list denoted W ∗
nt and then selects the best one

by invoking the pre-defined selecting function. 2) PSM monitors all w ∈ W ps. Once

PSM observes that a Worker Node does not heartbeat for longer than a pre-defined

threshold, it emits a ”suspect” message for that node. 3) PSM can add to or remove

community members from PS. 4) PSM is responsible for keeping the PS alive. In case

PS is not alive, PSM attempts to to re-compose PS. As depicted in Figure 3.7, there

are six operations in PSM used to support the above-mentioned responsibilities. The

input parameters, return values, definitions and explanations of these operations are

revealed in Table 3.3. Fuller discussion of how these operations work will be presented

in Section 3.2.

On the other hand, PHM is an agent that administrates nodes located in the same

computing device. The tasks of PHM include monitoring and maintaining local Worker

Nodes, loading local Worker Nodes from the file system into memory, and killing the

failed Worker Nodes that do not emit heartbeat messages. It is important to point

66

Table 3.3: The Operations of a Pervasive Service Manager

Name Input Output Definition Comments

ServiceAlive ∅ Boolean see Def. 3 Returns the liveness of a

Pervasive Service

Refresh w ∈ W ps ∅ T ps[w] := tnow Update heartbeat timestamps

of w with current time

Timeout w ∈ W ps Boolean tnow − T ps[w] ≥ k Returns if w does not

heartbeat more than a

threshold k

Remove w ∈ W ps ∅ W ps := W ps − w Removes w from ps

Add w ∈ W ps ∅ W ps := W ps ∪ w Add w to ps

Select W ∗
nt w ∈ W ∗

nt User defined Returns a best node w among

candidate list W ∗
nt

out that the task of discovering community members is faster and more robust for

PHM than for PSM, since no network-based communications are involved. The life-

cycles of Worker Nodes deployed in the same PH can be altered by the PHM locally.

As indicated in Figure 3.7, PHM contains two operations. The Shutdown operation

removes a local Worker Node from memory. Similarly, the Load operation loads a

local Worker Node into memory. The input parameters, return values, definitions and

explanations of these operations are shown in Table 3.4. Notice that the Install and

Uninstall operations are invoked when a Worker Node installed to or uninstalled from

a computing device.

67

Table 3.4: The Operations of a Pervasive Host Manager

Name Input Output Definition Comments

Load w ∈ W ph ∅ w.state = DORMANT Returns the liveness of a

Pervasive Service

Shutdown w ∈ W ph ∅ w.state = INSTALLED Update heartbeat timestamps

of with current time

Install w ∈ W ph ∅ W ph :=W ph ∪ w Add a Worker Node into

a Pervasive Host

Uninstall w ∈ W ph ∅ W ph :=W ph − w Remove a Worker Node

from a Pervasive Host

3.2 Pervasive Service Management Protocol (PSMP)

PerSAM and PSMP are realize by extending UPnP, a home networking protocol stan-

dard (ISO/IEC 29341) [15]. The reason for choosing UPnP is three fold: 1) it is one of

the few dynamic service discovery protocols that do not need a dedicated and central-

ized service directory [43], which is more feasible for robust service management. 2)

UPnP is independent of platform and programming languages. 3) UPnP is a widely

used and well-known standard. SSDP takes charge of service discovery in an UPnP

network. By default, SSDP operates based on HTTPMU (HTTP over UDP and Mul-

ticast). HTTPMU uses IP multicast, which is supported by most network switching

equipments. IP multicast forwards packets to a group of interested receivers via a

set of pre-defined virtual IP addresses. Therefore, SSDP does not need a centralized

server since the multicast service is carried out by the underlying infrastructure. SSDP

extends HTTP by two HTTP methods: NOTIFY and M-SEARCH.

UPnP specifies a Device Architecture. An UPnP Device consists of a set of UPnP

Services, and each UPnP Service comprises several UPnP Actions. A node that is

68

Figure 3.8: The projection of PerSAM to UPnP Device Architecture

capable of invoking UPnP Actions is called a Control Point, which can also be embed-

ded in an UPnP Device. In this research, PerNode is implemented based on UPnP

Device Architecture (see Figure 3.8). More precisely, each PerNode Device consists of

an UPnP Service, the PerNode Life-cycle Management Service, which manages PerN-

ode life-cycle by using three UPnP Actions (Activate, Rest, and Shutdown). Manager

Nodes (PSM and PHM) are special types of PerNode Devices because they contain a

Control Point. The reason for this design is that a Control Point is capable of invoking

UPnP Actions of remote PerNodes to manage their life-cycles. It is important to point

out that despite the similarity in their names, the UPnP Services are different from

Pervasive Services: An UPnP Service always embedded in an UPnP Device, while a

Pervasive Service is a virtual community that consists of a group of nodes.

Before turning to a closer examination of PSMP, let us first take a look at some

basic CSP [70] syntax. CSP uses the form P , e → R to describe the behaviors

of a Process P , which first takes part in an event e, and then behaves like process R.

Parameters can be passed to a process by enclosing with square brackets. For example,

in P [x] , f(x)→ R, the x enclosed by square brackets is passed to the function f(x)

in the right hand side. In CSP, c!m denotes an output event, in which a message m

is emitted through network channel c. In similar way, c?m denotes an input event, in

69

which a message m is received through channel c. A special process SKIP denotes a

process that terminates without error. Table 3.5 summarized the CSP notations used

throughout this paper.

3.2.1 Presence Announcement, Leave Announcement, and Life-

cycle Management

In PSMP, Presence Announcement (PA) and Leave Announcement (LA) in PSMP can

be formally described as follows:

PA[p] , m̂!ssdpalive[p]→ SKIP (3.5)

LA[p] , m̂!ssdpbyebye[p]→ SKIP (3.6)

In (3.5), PA sends an ”ssdp:alive” to the multicast channel m̂ to announce the

presence of the node p, and then terminates. The same syntax applies to the definition

of LA except that the message is ”ssdp:byebye”. Based on (3.5) and (3.6), we can now

define Life-cycle Management (see Protocol 1). The Life-cycle Management protocol

(LM) enables Manager Nodes to change states of nodes remotely.

Protocol 1. (Life-cycle Management, LM) A Life-cycle Management (LM) proto-

col changes state of PerNode according to incoming calls to UPnP Actions. A function

NewState is used to decides new state based on the current state and the action being

invoked. If a node is changed to INSTALLED state, it performs a leave announcement

(LA).

LM [p] , t̂?call →if(call.action = shutdown)

then LA[p];NS[p] else NS[p]

(3.7)

NS[p] ,p.state := NewState(p.state, call.action)

→ LM [p]

(3.8)

70

Table 3.5: Summary of CSP notations used in PerSAM/PSMP

Notation Description

P , e→ R A process P takes part in an event e and then

behaves like another process R

c?m Listening for an incoming message m from

channel c

c!m Emitting a message m to channel c

P ;Q P and Q run sequentially

P∥Q P and Q run concurrently⨿
x∈X [e] For each x ∈ X do e

SKIP A process terminates successfully

In (3.7), t̂ is a call channel to a UPnP Action from remote Manager Nodes, the

notation call denotes an incoming call to UPnP Actions, and ”;” is used to concatenate

two sequential processes. The ”:=” symbol assigns values to variables.

3.2.2 Service Composition and Activation

The purpose of service composition and Activation in PSMP is first to find appropriate

Worker Nodes for a PS, and then to ensure that the chosen nodes are in ACTIVE

states persistently. If there are multiple matching nodes, PSM selects one from them

according to a pre-defined strategy. Currently, FCFS is the default strategy. PSMP

provides extension points for more sophisticated service selection strategies such as

the one proposed in Chapter 5. Figure 3.9 illustrates the interactions between these

nodes when performing service composition. Whenever the service is not alive (see

Definition 3), the PSM issues a ”psmp:discover” to find PS members (Figure 3.9, step

1) to initiate a service composition.

71

Figure 3.9: PSMP service composition

72

Note that finding qualified Worker Nodes can not be achieved by simply issuing a

”ssdp:discover” action. The reasons is twofold. First, ”ssdp:discover” only discovers

nodes that are already loaded into memory (i.e. in DORMANT state or in ACTIVE state).

To put it another way, the nodes that are in INSTALLED state do not respond to PSM.

This problem causes low degree of support and low composition sustainability [80].

A typical case is that for a newly booted system, nearly all nodes are in INSTALLED

states. Hence, few services can be successfully composed in this circumstance.

Second, ”ssdp:discover” does not support property-based lookup. SSDP messages

contain only type information (ST), so that in the matching phase of a DORMANT node

(Figure 3.9, step 1.1), only node types are compared. In pervasive environments such

as Smart Homes, components with the same type does not imply that they are in-

terchangeable. For instance, the contexts obtained from sensors in the living room is

different from the contexts observed in the bed room. As a result, PSMP propose the

following extensions to deal with the above-mentioned problems: 1) PSMP defines a

new ”psmp:discover” action. This action is issued by PSM to perform ”eager loading”

of nodes. In simple terms, when PHM receives ”psmp:discover”, it loads all qualified

local nodes that are in INSTALLED state. Once the qualified nodes become DORMANT,

they will send presence announcements so that PSM will be able to discover them

(Figure 3.9, Step 3-5). The ”psmp:discover” can discover nodes that are not loaded,

therefore the first problem mentioned above is solved. 2) A new header, CRITERIA,

is added to support the property-based lookup. In CRITERIA header, the key-value

pairs are separated by a comma. The comma represents an ”and” relation, that is, a

Worker Node is matched if and only if it fulfills all constraints specified by the key-

value pairs. The key-value pairs are helpful to specify additional contexts of the nodes

such as location and time. Hence, the search results are more accurate.

Listing 3.1: M-SEARCH message content with a ”psmp:discover” action and a CRI-

73

TERIA header

M−SEARCH ∗ HTTP/1.1

ST: urn : schemas−upnp−org : dev i c e : s en so r : 1
MX: 3

MAN: ”psmp : d i s c ove r ”

CRITERIA: id=21, p lace=l iv ingroom , type=thermo

HOST: 239 . 255 . 255 . 250 : 1900

Listing 3.1 shows the contents of a ”psmp:discover” message that discovers a sensor

service type. In this example, the criteria for this search are 1) the sensor id is 21, 2)

the sensor type is thermometer, and 3) it locates in living room. The behavior of PSM

in service composition is formally defined below.

Protocol 2. (PSM Service Composition) A PSM Service Composition (SCPSM)

is initiated whenever the Pervasive Service is not alive. For each node type in MT ps,

PSM issues a discovery message (m-search) to the multicast channel (m̂) and then

performs PSM Service Selection (SSPSM , see Protocol 5), formally:

SCPSM [ps] , if(¬ServiceAlive())

then
⨿

nt∈MT ps

m̂!ssdpmsearch[nt]→ SSPSM [ps]

else SCPSM [ps]

(3.9)

In (3.9), the
⨿

operator is a shorthand for iteration. For instance,
⨿

nt∈MT ps P

means that a process P executes one time for each nt ∈ MT ps. Upon receiving a

discovery message, a qualifiedWorker Node responses with a message in which describes

its accessing information (Figure 3.9, step 1.1 and step 3). Protocol 3 describes the

behavior for Worker Node in service composition. In (3.10), ûpsm represents a UDP

unicast channel corresponding to the searching PSM.

Protocol 3. (Worker Node Service Composition) A Worker Node Service Com-

position (SCW) examines incoming discovery messages. If there is a match in its node

type, then it sends an response message (ssdpresp) indicating its accessing information

74

via the UDP unicast channel (ûpsm) corresponding to the source of the discovery mes-

sage.

SCW [ps] , m̂?ssdpmsearch[psm, nt]→

if(w.nt = nt) then ûpsm!ssdpresp → SCW [w]

else SCW [w]

(3.10)

Meanwhile, PHM is responsible for discovering INSTALLED nodes. Upon receiving a

”psmp:discover”, PHM compares the node type against local INSTALLED nodes (Figure

3.9, step 3). If there is a match, then PHM loads the node, causing it enters the

DORMANT state (Figure 3.9, step 4).

Protocol 4. (PHM Service Composition) A PHM Service Composition (SCPHM)

examines incoming discovery messages. According to the specified node type, a PHM

iteratively match against local nodes and then load the matched node into memory (i.e.

DORMANT state). It also emits a response message for the matched node.

SCPHM [ph] , m̂?ssdpmsearch[psm, nt] (3.11)

→
⨿
w∈ph

LS[w, psm, nt, ph]

if(w.nt = nt) then ûpsm!ssdpresp → SCW [w]

else SCW [w]

LS[w,psm, nt, ph] , (3.12)

if(w.nt = nt ∧ w.state = INSTALLED)

then Load(w)→ ûpsm!ssdpresp → SCPHM [ph]

else SCPHM [ph]

In (3.12), Load is an operation of PHM (see Table 3.4). PSM selects and activates

Worker Nodes for a PS. The protocol for PSM Service Selection and Activation is

shown below:

75

Protocol 5. (PSM Service Selection and Activation) A PSM Service Selection

protocol (SSPSM) examines responses from Worker Nodes. For each response, PSM

add the node into a list of candidates for a specific node type (W ∗
nt). After MT ps

being empty, PSM selects the best ones for each node type according to a user-defined

selecting function. After that, it executes PSM Service Activation (SAPSM).

SSPSM [ps] , û?ssdpmsearch[w]→

if(MT ps = ϕ)

then
⨿

nt∈ST ps

Add(Select(W ∗
nt))→

SAPSM [Select(W ∗
nt), ps]



else



if(w.nt ∈MT ps)

then MT :=MT − w.nt→

W ∗
nt :=W ∗

nt + w → SSPSM [ps]

else SSPSM [ps]



(3.13)

SAPSM [w, ps] , t̂?call[activate]→ W ∗
nt := ϕ

→ SCPSM [ps]

(3.14)

In SAPSM , PSM invokes an UPnP Action (activate) of the selected Worker Node,

and then reset W ∗
nt. After all Worker Nodes in a PS are activated, the PS becomes

alive.

3.2.3 Failure Detection and Recovery

To keep a PS alive, all affiliating Worker Nodes must be in ACTIVE state lastingly. If

one of them fails, then the PS becomes unavailable. Therefore, PSM has to be aware of

the failures of Worker Nodes first (Failure Detection) and then resumes or substitutes

the failed ones (Service Recovery). Recall that the term ”robust service management”

is used to refer to the mechanism that enables a system to detect failures and to recover

76

Figure 3.10: PSMP failure detection

77

from failures autonomously. Having clarified the semantics of robustness, a ”Robust

Pervasive Service” is now formally defined as follows.

Definition 6. (Robust Pervasive Service) A Pervasive Service ps is robust if and

only if the following statement holds:

♢Fail(wf)⇒ ♢¬ServiceAlive() ∧ ♢ServiceAlive(), (3.15)

where wf ∈ W ps is a failed Worker Node, and Fail(wf) represents the fact that wf

fails.

The use the symbol ♢ to denote ”eventually” and the symbol � to denote ”always”

in the logic statements. These symbols are borrowed from Temporal Logic [89]. Note

that ♢¬ServiceAlive() happens before ♢ServiceAlive(); therefore, their conjunction

is not necessarily false. This sub-section presents protocols that ensure the robustness

of PS. These protocols are designed based on the following assumptions.

1. Eventually correct local failure detector (A1): A Worker Node stops per-

forming heartbeat eventually after it fails. This assumption requires that a failed

Worker Node stops heartbeat eventually. It is weaker than the Fail-Stop model

in the sense that a failed node does not need to stop executing or to stop sending

packet, and the heartbeat does not need to stop immediately. It is also assumed

that an eventually correct local failure detector exists. This assumption is reason-

able since detecting failed processes or threads locally (i.e. within the same host)

is much easier than detecting failed processes distributed over an asynchronous

network. In real cases, eventually correct local failure detectors are usually sup-

ported by the underlying OS. For example, in Embedded Linux platforms, local

failure detectors can be implemented by means of either built-in system monitor-

ing hardware or software such as ”watchdogs”, which is included in the standard

kernel package [143]. In brief, this assumption is made in theory for gaining rigor

78

of the result to be obtained. In most real cases, this assumption can be fulfilled

by implementation techniques which are platform dependent.

2. Perfect-Link assumption (A2): Since we concentrate on application layer in

this research work, a Perfect-Link model is assumed, in which all messages are

guaranteed to be successfully delivered. In addition, a message does not appear

in the network unless a node sends one. In network layer, this assumption can

be ensured by using reliable multicast protocols such as RMP [140] or SRM [57].

3. Persistent Manager Nodes assumption (A3): Manager nodes will not ex-

perience failure, of which such assumption is made since we don’t consider the

robustness issues of Manager Node for the time being. In real cases, a simple yet

effective solution to the reliability issues of Manager Nodes is to handle them by

means of techniques in the implementation level. For example, one can develop

a program (or use the watchdog services provided by the underlying OS) to de-

tect the failures of Manager Nodes. In real world, many popular mission critical

enterprise systems adopt this approach. For example, Oracle WebLogic Clus-

ter uses similar design, in which a ”Domain” is a logical division of application,

which contains a cluster of ”Managed Servers”. Each domain is administrated

by an ”Admin Server”, which is responsible for detecting the failures of Managed

Servers in the same Domain. Actual services are provided by Managed Servers,

but Managed Servers belonging to the same Domain are not necessarily located

in the same host. In other words, a host contains Managed Servers may be-

long to different Domains. In each host, there is a ”Node Manager”, which is

responsible for monitoring and recovering all Managed Servers. Apparently, the

design mentioned above does not take care of reliability issues of Admin Servers

and Node Managers, which are in fact guaranteed by the watchdog services pro-

vided by the underlying OS. The Nanny Servers of IBM WebSphere Servers use

79

similar approaches. To sum up, the rationale behind using hierarchical architec-

ture (Manager-Worker) is that the possibility of manager node failure is much

less than that of Worker Nodes in practice, since 1) actual heavy-loaded user

tasks are handled by Worker Nodes; 2) the quantity of Manager Nodes is less

than that of Worker Nodes; 3) The failures of Manager Nodes can be detected

and be recovered by using mechanisms provided by their underlying OS/Plat-

form. Consequently, we make this assumption in theoretical level, which however

can be replaced by employing either consensus protocols or implementation level

techniques. We are recently designing consensus-based protocols that make the

failures of Manager Nodes detectable and recoverable without centralized coor-

dinators [78]. When failure detection protocols for Manager Nodes are absent,

one simple yet effective solution is to use the watchdog services provided by the

underlying platform to detect and to recover the failed Manager Nodes.

4. Composable service assumption (A4): All services are composable. In other

words, for each PS, for all types specified in the Service Template of the PS,

there is at least one node of such type exists in the system. If this assumption

is not hold, then it is impossible to recover the PS. The PSMP failure detection

is shown in Figure 3.10. The behaviors of PSM, PHM, and Worker Node are

formally defined as follows.

Protocol 6. (Worker Node Heartbeat) A Worker Node performs heartbeat by

emitting PA periodically. The Worker Node attribute hbp is a pre-defined interval

between each heartbeat.

HBW [w] , sleep(w.hbp)→ PA[w];HBW [w] (3.16)

Protocol 7 reveals how PSM emits suspecting message. There are two processes

running in parallel, one for refreshing T ps and the other for timeout eviction (EVPSM).

80

In (3.17), || is used to combine two parallel processes. In Protocol 7, Refresh, Timeout,

and Remove are operations of PSM (see Table 3.2).

Protocol 7. (PSM Node Suspecting) PSM Node Suspecting protocol checks if there

is an affiliated node stops performing heartbeat. If PSM does not receive any heartbeat

for more than a pre-defined interval, it sends a suspecting message indicating a possible

node failure.

NSUPSM [ps] ,

 m̂?ssdpalive[w]→ Refresh(w)

→ NSUPSM [ps]


|| EVPSM [ps]

(3.17)

EV PSM [ps] ,

⨿
w∈W ps

 if T imeout(w)
then Remove(w)→ m̂!psmpsuspect[w]


→ EV PSM [ps]

(3.18)

After a node is suspected, PHM stops the node and then sends a leave announce-

ment on behalf of it (Figure 3.10, step 5). These operations are described as follows.

Protocol 8. (PHM Shutdown Suspects) PHM Shutdown Suspect protocol stops

the suspected nodes according to the incoming suspect messages. The PHM also emits

LA on behalf of the suspected nodes.

SSUPHM [ph] , m̂?psmpsuspect[w]

→ if (w ∈ W ph)

then

Shutdown(w)
→ LA[w];SSUPHM [ph]


else SSUPHM [ph]

(3.19)

81

After a failure is detected, PSM is aware that the service is not alive, since ServiceAlive

returns false. Thus, according to Protocol 2, a new service composition procedure is

then triggered to recover the PS. Finally, we can define PSMP by composing the above

protocols together. The robustness of PSMP will be validated in Section 3.3.1.

Protocol 9. (Pervasive Service Management Protocol, PSMP) PSMP is a

composite protocol that describes interactions between PSM, PHM, and Worker Nodes

to realize reliable Pervasive Services.

PSM [ps] , PA[ps]; (SCPSM [ps]||NSUPSM [ps]) (3.20)

PHM [ph] , PA[ph]; (SCPHM [ph]||SSUPHM [ph]) (3.21)

W [w] , PA[w]; (SCW [w]||HB[w]||LM [w]) (3.22)

3.2.4 Security

This sub-section presents the mechanisms used to ensure several security issues in Per-

SAM/PSMP. The costs of employing security mechanisms are: 1) the efficiency of

services is degraded, and 2) setting up security policies, authentication, and authoriza-

tion is labor intensive and may cause inconveniences to users. These mechanisms are

independent of the original design and therefore they are optional.

Confidentiality

Since PSMP is designed based on HTTP, it is able to ensure data confidentiality based

on SSL/TLS [49] and WS-Security [9]. In fact, the UPnP security profile [54] adopts

this approach. However, the devices (nodes) in Smart Homes typically have limited

computing resources such as network bandwidth, CPU, and memory. As a result,

Symmetric-Key Encryption mechanisms such as DES/Triple DES [124, 25] or AES

[45] are considered more feasible. For example, ZigBee [16] uses AES encryption with

82

128-bit key length. The major challenge of using a Symmetric-Key Encryption is how

to transmit the secret key over a unsecured network. In the residential mode, ZigBee

chooses to ignore the potential vulnerability.

One possible solution is to distribute the secret key using Asymmetric-Key Encryp-

tions. As a result, the following key exchanging procedure is proposed for ensuring

data confidentiality in PSMP:

1. A new Manager Node called Security Manager which is responsible for keeping

track of public keys as well as the security policies of PerNodes has to be developed

and deployed.

2. PerNodes have to be configured so that each of them has a embedded private key

as well as a corresponding public key. The key pairs is set up in a Security Console

[54] (identical to the Security Manager in this thesis) and can be re-configured by

users. Also, the user has to set up a secret key for symmetric encryption through

the Security Console.

3. When performing PA, a node sends its public key without encryption to the

multicast address.

4. When the Security Manager receives a public key embedded in a PA message,

it encrypts the secret key by using the received public key and then sends the

encrypted secreted key back to the newly joined node.

5. After the node receives the encrypted secret key, it decrypts the key by using its

private key. Now, the node is able to send and receive encrypted data based on

Symmetric-Key Encryption mechanisms such as AES by using the secreted key.

Figure 3.11 depicts the overall process of registering the public key and acquiring

the secret key in PSMP.

83

Figure 3.11: Registering the public key and acquiring the secret key in PSMP

84

Figure 3.12: Sending and receiving data in PSMP

85

Integrity and Non-repudiation

Data integrity refers to the mechanisms that prevent the transmitted data from being

corrupted or modified, whereas non-repudiation refers to sender of a message is actually

the one claimed in that message. Integrity and non-repudiation are realized by using

the message digest and digital signature mechanisms. To ensure data integrity and non-

repudiation in PSMP, the sending node first obtains a message digest by using hash

algorithms such as SHA (Secure Hash Algorithm) [51]. The digital signature can be

generated by encrypting the message digest using the private key of the sending node,

which is then placed in the header of the message before it is sent. After the receiving

node receives the message, it first obtains a message digest from the decrypted message

and then compares it with the one obtained by decrypting the digital signature. Finally,

the receiving node can then ensure that the message is sent from a specific sender if

the message digests are identical. Figure 3.12 depicts how PSMP ensures integrity and

non-repudiation when sending and receiving encrypted data.

Authentication and Authorization

In order to support authentication and authorization, each PerNode has to be en-

hanced according to the UPnP Security Ceremonies [54]. Specifically, every node has

an additional DeviceSecurity Service which supports authentication and authorization

functionalities. The security policies are also pre-configured by users in the Security

Console.

3.3 Evaluation

This section reports the results of evaluating PerSAM and PSMP. The following sub-

sections explain the evaluations with respect to robustness, recovery capability, perfor-

mance, cost and limitation.

86

3.3.1 Robustness

The purpose of this sub-section is to show that services in PerSAM/PSMP are robust,

that is, to validate that (3.15) holds, which is stated as follows:

Theorem 1. PerSAM/PSMP-based Pervasive Services are robust.

Before presenting the proof, it is helpful to define an auxiliary function η : E →

Boolean that maps an CSP event to a logical assertion, where E is a set of CSP events.

For example, ♢η(e) represents the fact that an event e eventually happens.

Lemma 1. A failed Worker Node does not send any PA after the failure occurs even-

tually.

Proof. From (A2), all messages are guaranteed to be delivered to their sinks; and a

message does not appear in the network unless a node sends one, hence the following

statements hold:

η(c!x)⇒♢η(c?x), and (3.23)

¬η(c!x)⇒♢¬η(c?x). (3.24)

Assume there is a Worker Node wf fails, according to (A1), (3.22) and (3.16) must

stop working. From (3.5), no PA will be sent from wf after this failure. As a result,

we have:

η(Fail(wf))⇒ ♢¬η(m̂!ssdpalive[wf]). (3.25)

Lemma 2. After wf fails, it will eventually be removed from its affiliating Pervasive

Service ps and a suspecting message with respect to wf will be sent.

Proof. From (3.24) and from (3.25), the following statement holds.

♢¬η(m̂?ssdpalive[wf]) (3.26)

87

Thus, from (3.17) and from (3.26), Refresh(wf) never executes after the failure,

which causes Timeout(wf) returns true. Finally, according to (3.18), Remove(wf)

and m̂!psmpsuspect[wf] will occur. To sum up, the following statements can be deduced

from (3.26):

♢¬η(Refresh(wf))⇒ ♢Timeout(wf)⇒

♢η(Remove(wf)) ∧ ♢η(m̂!psmpsuspect[wf]). (3.27)

Lemma 3. Eventually, the failure of wf will be detected, causing the PS of wf becomes

unavailable.

Proof. By definition, Remove(wf) causes W ps := W ps − wf , thus wf /∈ W ps. In

addition, since wf .nt ∈ ST ps since originally wf is a community member of PS. By

combining (3.1) and (3.9), we have:

♢η(Remove(wf))⇒ ♢wf .nt ∈MT ps

⇒ ♢MT ps ̸= ϕ⇒ ♢¬ServiceAlive(). (3.28)

By combining (3.25), (3.26), (3.27), and (3.28), a failure is eventually detected, namely,

η(Fail(wf))⇒ ♢¬ServiceAlive(). (3.29)

Lemma 4. Eventually, PSM finds alternative nodes by performing node discovery for

the type of wf .

Proof. The results is readily obtained from (3.9) and (3.28):

♢¬ServiceAlive() ∧ ♢wf .nt ∈MT ps

⇒ ♢η(m̂!ssdpmsearch[wf .nt]). (3.30)

Lemma 5. Eventually, there must be some alternative nodes of the type wf .nt that

respond to the node discovery.

88

Proof. It is easy to observe from (3.23) and (3.30) that the following statement holds:

♢η(m̂!ssdpmsearch[wf .nt]). (3.31)

In addition, (A5) states that ∀nt ∈ ST ps, ∃w : w.nt = nt. Since MT ps ⊆ ST ps, the

following statement can be obtained:

∀nt ∈MT ps, ∃w : w.nt = nt. (3.32)

Since wf .nt ∈MT ps, from (3.32), there must be at least one alternative node wr such

that wr.nt = wf .nt, in other words, ∃wr.nt = wf .nt. By combining (3.10), (3.11),

(3.12), and (3.32), the following statement holds:

∀nt ∈MT ps,

∃wr : wr.nt = nt ∧ ♢η(û!ssdpresp[wr]). (3.33)

From (3.13), (3.23) , (3.33), and the definition of Add (see Table 3.4),

♢η(û?ssdpresp[wr])⇒ ♢η(MT ps :=MT ps − wr.nt)

⇒ ♢MT ps = ϕ⇒ ♢η(W ps := W ps ∪ wr)

⇒ ♢wr.state = ACTIV E. (3.34)

From (3.2) and (3.33), ♢ServiceAlive() holds. By combining (3.29), (3.30), (3.31),

(3.33), and (3.34), the following statement holds:

η(Fail(wf))⇒ ♢¬ServiceAlive() ∧ ♢ServiceAlive() (3.35)

Consequently, it can be concluded from (3.35) that PerSAM/PSMP-based Pervasive

Services are robust.

3.3.2 Recovery Rate

Several simulations were performed to study the PS recovery rates of Aura PIP (Prism

Interaction Protocol) [125] and PSMP under different failure rates of Worker Nodes.

89

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Failure Rate (%)

S
er

vi
ce

 R
ec

ov
er

y
R

at
e

(%
)

Aura PIP
PSMP

Figure 3.13: The PS recovery rates of Aura PIP and PSMP under various failure rate

(NT=25)

Aura PIP is re-implemented based on the FSP specified in [125]. The simulation

environment consisted of 100 Service Components, 10 Services, and 3 Hosts. Each

Service consisted of 3 Service Components with different node types. Initially, node

types were evenly distributed to the Service Templates and to the Service Components.

After that, all Services were composed and made available.

In this experiment, it is assumed that each failure is independent, since in MOM,

the failures can be isolated. The exponential distribution is used as the failure model

for the experiments:

f(t) =

 λe−λt, for t > 0 and λ > 0

0, otherwise,
(3.36)

where the experiment starts at time t = 0, and f(t) is the probability density function

that a node fails at time unit, namely, t+∆t. The probability that a node fails within

90

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Failure Rate (%)

S
er

vi
ce

 R
ec

ov
er

y
R

at
e

(%
)

Aura PIP
PSMP

Figure 3.14: The PS recovery rates of Aura PIP and PSMP under various failure rate

(NT=50)

the time interval (0, t] can be obtained by integrating f from 0 to t:

F (t) = P (T ≤ t) =

∫ t

0

f(u)du, (3.37)

where T is a random variable denoting the time to failure. From (3.36), the probability

that a node does not fail after time t is therefore

R(t) = 1− F (t) = P (T > t) =

∫ ∞

t

f(u)du = e−λt, for t > 0 (3.38)

where R(t) is the reliability function of this experiment.

From (3.37), f(t) can be defined as the difference per time unit t when t is very

small:

f(t) =
d

dt
F (t) = lim

∆t→0

F (t+∆t)− F (t)
∆t

= lim
∆t→0

P (t < T ≤ t+∆t)

∆t
, (3.39)

The failure rate function z(t) is then defined by the probability that a node fails at

91

t+∆t given that the node is still functional at time t.

z(t) = lim
∆t→0

P (t < t ≤ T +∆t|T > t)

∆t
,

from (3.39) and (3.38),

z(t) = lim
∆t→0

P (t < T ≤ t+∆t)

P (T > t)

1

∆t
= lim

∆t→0

P (t < T ≤ t+∆t)

∆t

1

R(t)
=
f(t)

R(t)
. (3.40)

Combining (3.36), (3.38), and (3.40), the failure rate function for this experiment

can be derived as follows:

z(t) =
f(t)

R(t)
=
λe−λt

e−λt
= λ, for t > 1. (3.41)

Consequently, the failure rate function z(t) is constant in the experiment. Note

that the afore-mentioned definitions of f(t), F (t), z(t) and R(t) are adopted from

the classical system reliability theory [112]. Marvin et al. also point out that it is

reasonable to use a constant failure rate if an item is in the useful life period of an

empirical bathtub curve [112].

In each experiment, Service Components were randomly terminated (crashed) ac-

cording to a constant failure rate λ. Besides, among the failures, there are 40% of

unrecoverable hardware failures. Specifically, 40% of the failures were hardware or

network interface failures, and thus were unrecoverable by software-based mechanisms.

The experiments were performed 1000 rounds under each failure rate. Then, the aver-

age recovery rate is reported. Note that the recovery rate is the percentages of recovered

Pervasive Services after no further service composition is observed in the system.

Figure 3.13 and Figure 3.14 show the influences of Service Components failure rate

on the service recovery rates when the number of node types is 25 and 50, respectively.

The recovery rates of Aura PIP dropped rapidly when the failure rates of Service

Components increased. On the contrary, the recovery rates of PSMP decreased much

slower. The results suggest that PSMP is superior to Aura PIP in the recovery ca-

pability. It is noteworthy that with PSMP, significant portion of Services were able

92

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Number of WorkerNodes in a Pervasive Service

T
ur

na
ro

un
d

T
im

e
(m

s)

Turnaround time for Pervasive Service
Turnaround time for a Worker Node (in average)

Figure 3.15: Performance of PSMP service composition

to be recovered even when the failure rates arrived 100%. This is because Aura PIP

only discovers nodes that are already loaded into memory (i.e. in DORMANT or ACTIVE

state). As opposed to Aura PIP, PSMP is capable of discovering the nodes that are in

INSTALLED states via PHMs. By comparing Figure 3.13 and Figure 3.14, it can also be

concluded that the number of node types (NT) has great impact on the recovery rate

since it affects the number of alternative node for each node type.

3.3.3 Performance

This sub-section evaluates the performance of PerSAM/PSMP by conducting experi-

ments in realistic home network. Experiments consisted of two parts: 1) in the first

experiment, the objective is to measure the turnaround time of service composition

under different service lengths, and 2) Experiments on measuring the recovery time

helped us to investigate the trade-offs between eviction threshold k (see Fig. 3.16) and

93

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of WorkerNodes in a Pervasive Service

R
ec

ov
er

y
T

im
e

(m
s)

k = 500 ms
k = 1000 ms
k = 2000 ms

Figure 3.16: Performance of PSMP failure detection and recovery

the recovery time.

All nodes were deployed on Knopflerfish 2.0.1 OSGi servers, which were evenly

distributed over three P4 1GHz mini-PCs in the same LAN with 1G bytes memory.

The environment consisted of 1 PS and 3 PHs. In each PH we deploy 50 Worker Nodes,

whose node types were configured so that all PS can be composed successfully. We

obtained the turnaround time of service composition by measuring the time from the

PSM was started to the time when all required Worker Nodes were activated. After

that, we increased the size of PS and re-performed the tests. The experiments were

performed 100 times under each configuration of service length and then the average

percentages of recoverable PSs were reported. The results are shown in Figure 3.15.

The turnaround time of service composition increased linearly when the number of

Worker Nodes in PS increased. In our experiences, most real-world PSs consist of less

than 10 nodes. Hence we can observe in Figure 3.15 that most real-world PSs require

94

less than 1.2 seconds before it is available. It is also interesting to note that due to

each node were executed in parallel, the average turnaround time for each node in a

PS decreased as the service length increased. The second experiment was performed

in similar ways with the previous experiment except that after the PS was composed,

one Worker Node was randomly terminated. After that, we recorded the time from

the Worker Node failed to the time when the PS is resumed. After that, we increased

the size of PS and re-performed the tests. Figure 3.16 indicates the performance of

failure detection and recovery. The results show that the eviction threshold k affects

the recovery time. This is because k determines the upper bound of failure detection

time. If k is set as 500 ms and the service length is less than 10, then the total service

unavailable time is less than 2 seconds.

3.3.4 Discussion

This sub-section discusses the cost of facilitating robust service management based on

PerSAM/PSMP. First of all, the hierarchical architecture can be a cost because of the

inclusion of Manager Nodes. In a hierarchical approach (manager-worker), a system

can monitor the status of nodes in a more centralized and effective way. However,

it leads to possible single point of failure. On the contrary, decentralized approaches

such as consensus protocols are usually decentralized yet not efficient, less accurate,

require more overheads, and less scalable. Since the number of Worker Nodes is typi-

cally far larger than Manager Nodes. We suggest a hybrid architecture that employs

a centralized approach for Worker Node and consensus-based approach for Manager

Nodes. This research assumes Manager Nodes do not fail. A semi-consensus pro-

tocols that make the failures of Manager Nodes detectable and recoverable without

centralized coordinators is recently developed, some initial results can be found in [78].

Second, PSMP is designed by extending SSDP. Obviously, there are interoperability

95

costs imposed by this approach. However, PSMP does not interfere with the traditional

UPnP Devices. This is because the use of ”psmp:” headers. According to the UPnP

specification, traditional UPnP Devices do not process the headers other than ”ssdp:”.

3.4 Summary: A Running Scenario

This section summarized the service models and protocols proposed in this chapter by

examining a running scenario that goes through service composition, failure detection

and recovery procedures of PSMP.

Let us consider a four-node Pervasive Service ps1 depicted in Figure 3.5, where

ST ps1 ={Temperature Sensor, Context Interpreter, Indoor Temperature Control Logic,

Air Conditioner}. Initially, W ps1 = ϕ and MT ps1 = ST ps1 ={Temperature Sen-

sor, Context Interpreter, Indoor Temperature Control Logic, Air Conditioner}. From

Def.3, ServiceAlive() = false, so that SCpsm is triggered. For example, the statement

m̂!ssdpmsearch[TemperatureSensor] indicates that an m-search message is emitted to

search nodes of the type ”Temperature Sensor” (refer to Figure 3.9, Step 1). After

that, SSpsm is triggered, which listens for the responses from qualified nodes. Let us

assume that node A is a ”Temperature Sensor” node and that it responds to the dis-

covery request (Figure 3.9, Step 2). Supposing that FCFS selection policy is used, from

(3.10) and (3.13), node A is selected (Figure 3.9, Step 6). Hence, MT ps1 ={Context

Interpreter, Indoor Temperature Control Logic, Air Conditioner} and W ps1 = {A}. In

similar way, mps1 is able to discover node C, D, and F with the node type Context

Interpreter, Indoor Temperature Control Logic, and Air Conditioner, respectively, and

causes MT ps1 = ϕ; W ps1 = {A,C,D, F}. Finally, according to (3.13), SApsm is trig-

gered (Figure 3.9, Step 7-8), and thus ∀w ∈ W ps1, w.state = ACTIV E. Now that

ServiceAlive() = true and that ps1 is successfully composed.

After ps1 is composed, its affiliating Worker Nodes perform heartbeats (3.16) peri-

96

odically (see Figure 3.10, step 1 and step 2). In (3.3), there is a set T ps used to store the

previous timestamps of heartbeat for each node. If node A fails, then node A eventually

stops heartbeat, causing (3.17) to emit a suspect message against A andMT ps1 = {A}

(Figure 3.10, step 3). According to (3.19), upon receiving suspect message, phm1 re-

moves A from memory (Figure 3.10, step 4). Finally, ServiceAlive() = false and

then SCpsm is triggered again in order to re-compose ps1. Given that node B is a

”Temperature Sensor” node and that it responds to the discovery in the first place;

then node B is activated and ps1 is recovered.

97

Chapter 4

Efficiency Boosting Schemes for

UPnP-based Smart Home Networks

The previous chapter introduces a message-oriented service model for pervasive ser-

vices and an UPnP/SSDP-based service management protocol, namely, PerSAM and

PSMP, to address the flexibility and robustness issues of pervasive systems in the Smart

Home. In Chapter 3, it is assumed that all messages are guaranteed to be successfully

delivered and that a message does not appear in the network unless a node sends one.

Nevertheless, SSDP relies on UDP which is very likely to lose packets under heavy

traffic. Thus, causing PerSAM/PSMP becomes invalid when a network is busy. To

alleviate this problem, the UPnP specification suggests broadcasting SSDP messages

repeatedly for 2 or 3 times. Unfortunately, this approach tends to make network traf-

fic even heavier. Furthermore, the situation is getting worse if the heartbeat rate is

increase to achieve higher availability.

To investigate issues mentioned above, network simulations have been conducted

using the NS-2 network simulator [74]. In these simulations, all nodes are connected by

network links with bandwidth 100Mbps and 5ms delay, and all nodes are connected to

a switching device through these links. Drop Tail is used for queue management. The

sizes of SSDP packets are normally distributed from 200 to 450 bytes. Random noises

are also introduced in the scheduled packet departure times to avoid collisions. Each

node emits an SSDP packet every 500 milliseconds. As shown in Figure 4.1, there

is a rapid increase in the rate of packet loss when the number of nodes exceeds 50.

Also, the system is nearly unusable after the number of nodes exceeds 100. One can

alleviate packet loss problem of UDP by reducing unnecessary traffic. More specifically,

98

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes in LAN

S
S

D
P

 P
ac

ke
t L

os
s

R
at

e
(%

)

Figure 4.1: Packet loss rate with various number of nodes in a typical UPnP-based

local area network

PerSAM is group-based and comprises a 2-layer hierarchy (see Figure 3.1) of nodes.

On the contrary, an UPnP network is flat and peer-based, where all peers share a

multicast address, so that the broadcasting nature of SSDP tends to flood the network

with unnecessary packets. This is because not all nodes need to receive all messages. In

fact, more sophisticated traffic dissemination techniques can help to reduce unnecessary

messages.

Since UPnP/SSDP is designed for general use, an UPnP network is peer-based,

where all peers share a multicast address, so that the broadcasting nature of SSDP

tends to flood the network with unnecessary packets. Given the characteristics of an

MOM-based pervasive system, we can deal with the packet loss problem by introducing

several traffic reduction schemes. MOM-based services are usually composed of a

group of nodes that form a ”service chain”. Hence, most of the traffic is in-group

communication. In other words, not all nodes need to receive all messages. In fact, more

99

sophisticated traffic reduction schemes can help to eliminate unnecessary messages.

The objective of this chapter is therefore to investigate the UPnP/SSDP protocol

elements in an MOM-based UPnP network and then to devise possible enhancements

for them. According to the specification, UPnP/SSDP can be divided into two parts:

advertisement and search. Thus, we propose two schemes, Decomposing Multicast

Traffic (DMT) and Service-based Node Searching (SNS), to deal with the efficiency

issues of the advertisement part and the searching part, respectively. Besides, we also

introduce Heartbeat by DMT (DMTH) and On-Demand Heartbeat (ODH) that are

able to greatly reduce the heartbeat traffic. The target environment of the proposed

schemes is a typical home network, which is an Ethernet-based LAN (Local Area

Network) with one router and few switching devices. Besides, it is worthy to point out

that although the proposed schemes are implemented based on PerSAM/PSMP, they

are also applicable to all service networks where some form of group-based management

mechanisms can be enforced.

Note that this chapter involves issues stemming from the network layer and the

application layer. Consequently, depending on the context of discussion, we use the

terms ”packet” and ”message” interchangeably, both of which are units of data trans-

mitted over the network. The term ”packet” is used when the discussions focuses on

the network layer, whereas the term ”message” is used in the application layer.

4.1 Assumptions and Term Definitions

Before turning to a closer examination of these techniques, it is helpful to explain

assumptions and the definitions of terms used in the following sections. Three assump-

tions are made in the analysis of communication complexity in this chapter:

1. The packet size is not taken into account: The reason for this assumption

is that, contrary to media streaming protocols, the packet size of SSDP is small

100

(typically 200 bytes to 450 bytes), and can be transmitted with single UDP

packet. The theoretical limitation of the size of an UDP packet is 65527 bytes.

2. Each endpoint in a LAN is occupied by exactly one UPnP Device:

UPnP relies on IP Multicast, where UPnP is an application layer protocol whereas

IP-multicast is a network layer mechanism. Therefore, it is possible that more

than one UPnP Devices reside in the same endpoint which is a network-connected

appliance with an IP address. From UPnP’s point of view, each message is for-

warded to all UPnP Devices whereas from IP Multicast’s point of view, an IP

Multicast-enabled switching device only forwards received packets to all end-

points, instead of all UPnP Devices residing in these endpoints. Specifically,

when one sender sends an SSDP message to more than one UPnP Device resid-

ing in the same endpoint, although all these n UPnP devices receive n copies of

messages, only one message is actually passed through the network to the end-

point. The endpoint is responsible for dispatching the message to all residing

UPnP Devices. To simplify and to clarify the communication complexity analy-

sis, we assume each endpoint is occupied by exactly one UPnP Device, that is,

by one PerNode. In addition, to avoid introducing too many constants in the

analysis results, we also ignore the message that are dispatched locally, namely,

when one sender sends an SSDP message, then it is replicated n times instead of

n − 1 times. This assumption can cause inaccuracy of the predictions when the

number of Worker Nodes is small.

3. All Pervasive Services can be successfully activated eventually and each

Worker Node participates in at least one Pervasive Service: The purpose

of this assumption is to ensure the Equilibrium of Load Factors (see Theorem 2)

holds so that one can reduce the variables of the results, hence making them more

tractable. In fact, the proposed techniques do not depend on this assumption.

101

The enhanced protocols are still more efficient than the original ones in respect

of communication complexity even if the above assumption does not hold. Es-

pecially, when there are some Worker Nodes which do not participate in any

Pervasive Service, the hereby obtained results are even better. For example, in

the original protocols, the Worker Nodes that do not participate in any Pervasive

Service still send useless heartbeat messages, whereas in the enhanced ones, these

nodes do not send any message at all, and hence causing better results.

To facilitate further analysis and discussions, we define several concepts by extend-

ing the service model mentioned in Section 3.1 in the following:

Definition 7. (Cardinality Function) The cardinality function n : X → N returns

the cardinality of the set X.

For example, the number of all Worker Nodes can be denoted by n(W), where W

is the universe of Worker Nodes. Likewise, S is the universe of Pervasive Services and

n(S) is the number of Pervasive Services in the system.

Definition 8. (Service Length) The length of a Pervasive Service s is denoted as

ℓ(s) which is the number of Worker Nodes in s. The value of ℓ(s) can be obtained by

calculating the cardinality of W s, that is, ℓ(s) = n(W s), where W s is the set of Worker

Nodes belonging to s.

From Definition 8, the average length of all Pervasive Services in the system, ℓ̄, can

be obtained by:

ℓ̄ =
1

n(S)
·
∑
s∈S

ℓ(s) =
1

n(S)
·
∑
s∈S

n(W s) (4.1)

Definition 9. (Contribution) The contribution of a Worker Node w, denoted as

λ(w), is the number of Pervasive Services in which the Worker Node w participates,

where λ ∈ N and 0 ≤ λ ≤ n(S).

102

Note that λ(w) = n(S) when w participates in all Pervasive Services in the sys-

tem, indicating that w is highly contributive. On the contrary, λ(w) = 0 when w

does not participate in any Pervasive Service. According to Definition 9, the average

contribution of all Worker Nodes is:

λ̄ =
1

n(W)
·
∑
w∈W

λ(w) (4.2)

Intuitively, the contribution of a node w is the labors it supplies, whereas the

number of required Worker Nodes is the labors a Pervasive Service demands.

To activate all Pervasive Services, we require at least n(S) · ℓ̄ labors, since each

Pervasive Service requires ℓ̄ Worker Nodes. The most efficient way to activate all

Pervasive Services is to strike a balance between the supplied labors and the demanded

labors. The labors provided by all Worker Nodes are therefore
∑

w∈W λ(w). Thus, we

have the following theorem:

Theorem 2. (Equilibrium of Load Factors) If Assumption 3 holds then all Perva-

sive Services are activated most efficiently if and only if the following equation holds:∑
w∈W

λ(w) = n(S) · ℓ̄. (4.3)

For example, if there are two Pervasive Services, and each of them is of length 3,

then the total load factor in demand is 6. One possible solution is to employ 6 Worker

Nodes and each is with λ̄ = 1. Alternatively, we can use 2 Worker Nodes which are

equipped with better computing capabilities. In this case, each Worker Node has to

work for 3 Pervasive Services, causing λ̄ = 3.

Consequently, from (4.2) and (4.3), one can obtain the following equation:

λ̄ =
n(S) · ℓ̄
n(W)

, where 1 ≤ λ ≤ n(S). (4.4)

Note that 1 ≤ λ̄ due to Assumption 3. Finally, the UPnP specification requires

re-sending of messages to deal with UDP packet loss. We therefore define a repetition

103

factor r to represent the count of messages being re-sent, where 1 ≤ r ≤ 3 is suggested

by the UPnP specification. Table 4.1 is the summary of notations mentioned above

and Table 4.2 summarizes additional terms and abbreviations used in this chapter.

Based on the above discussions, the following sub-sections present the core idea of the

proposed traffic reduction techniques as well as the analysis on how much traffic can

be reduced after applying these techniques.

4.2 Decomposing the Multicast Traffic

Whenever an UPnP Device is started, it sends presence announcement (PA) messages

to a multicast address to inform other UPnP Devices about its presence. The PA

messages that are sent to the multicast address are replicated and then propagated to

all UPnP Devices in the UPnP Network. According to the UPnP specification [15], a

PA demands 3 + 2d + k messages, where 3 messages are used to describe the specific

information about the UPnP Device, d is the number of embedded UPnP Devices,

and k is the number of UPnP Services. As mentioned in Section 3.2, a PerNode is

identical to an UPnP Device with one UPnP Service in an UPnP Network. Thus,

d = 0 and k = 1 because that a PerNode does not have any embedded device and that

a PerNode has one UPnP Service (see Section 3.2). Consequently, a PerNode demands

4 (i.e. 3+2 ·0+1) messages for PA. Furthermore, the UPnP specification also suggests

re-sending of messages with a pre-determined repetition factor r, which is usually 2 or

3, to deal with UDP packet loss. Let us denote the SSDP multicast address and the

4 PA messages as m̂ssdp, x1, x2, x3, and x4, respectively. Then, the original presence

announcement protocol (PAorig) can be formally described as follows:

PAorig ,
⨿
r

 m̂ssdp!x1 → m̂ssdp!x2 →

m̂ssdp!x3 → m̂ssdp!x4

→ SKIP. (4.5)

104

Table 4.1: Notations for communication complexity analysis

Notation Description

s A Pervasive Service

S The set of all Pervasive Services in the system

w A Worker Node

W The set of all Worker Nodes in the system

W s The set of Worker Nodes belonging to Pervasive

Service s

n(X) Number of elements in the set X

ℓ(s) Length of the Pervasive Service s

ℓ̄ Average length of all Pervasive Services in

the system

λ(w) Contribution of a Worker Node w

λ̄ Average contribution of all Worker Nodes in the system

r Repetition factor

m̂ A multicast address

µ̂ An unicast address

x,y,z,x∗,y∗ messages

Table 4.2: Additional acronyms used in this chapter

Abbreviation Full Name

DMT Decomposing Multicast Traffic

SNS Service-based Node Searching

DMTH Heartbeat by Decomposing Multicast Traffic

ODH On-Demand Heartbeat

TRR Traffic Reduction Ratio

105

Recall that there is one PSM for each Pervasive Service, in other words,

∀s ∈ S, n(ms) = 1, (4.6)

so that the quantity of PSM instances is the same as the quantity of Pervasive Services

∑
s∈S

n(ms) =
∑
s∈S

1 = n(S). (4.7)

From (4.7), it can be concluded that there are totally n(W)+n(S) nodes in the network.

To perform PA, 4 messages are sent (i.e. x1, x2, x3, and x4) and totally 4·r messages are

sent if the repetition factor r is taken into account. Due to the effect of multicasting,

the 4 ·r PA messages are replicated for n(W)+n(S) times to be forwarded to all nodes

in the network. Hence, there are totally 4 · r · (n(W) + n(S)) messages replicated. To

sum up, from (4.5) we can conclude that the communication complexities of sending

and replicating PA messages are 4 · r and 4 · r · (n(W) + n(S)), respectively.

It is important to observe that although multicast is believed to be more efficient

than broadcast, it is not the case from the UPnP network’s points of view since all

UPnP Devices in the network share the same multicast address. In other words, com-

munication complexity of the multicast is actually identical to broadcast in a UPnP

network. So far as the hierarchical structure of PerSAM is concerned, this design is in-

efficient. In PerSAM, only PSMs are interested in receiving PA messages, and therefore

traffic can be reduced by assigning different multicast addresses for different types of

receivers. This technique is called Decomposing the Multicast Traffic, or simply DMT,

in the sequel. As a result, two new multicast addresses, m̂psm and m̂w, are created for

messages to be received by PSMs and Worker Nodes, respectively.

Furthermore, sending 4 PA messages is unnecessary, either. As discussed in Section

3.2, the structures of PerNodes and UPnP Devices are identical. Thus, one message,

denoted as x∗, is sufficient to convey the information describing the structure of a

106

(a) (b)

(c) (d)

Figure 4.2: Sequence diagrams of PA/LA and node searching protocols: (a) Original

PA; (b) PA after applying DMT; (c) Original node searching; (d) Node searching after

applying SNS

PerNode. The enhanced protocol (PAnew) is shown as follows:

PAnew ,
⨿
r

m̂psm!x∗ → SKIP. (4.8)

For PAnew, there is only one PA message sent to m̂psm, which are then received by all

PSMs. As mentioned earlier, there are n(S) PSMs in the network, so that messages

are also replicated for n(S) times. By considering repetition factor, the communication

complexities of sending and replicating PA messages after applying DMT become r and

r · (n(S)), respectively. Note that the same results can be obtained in the case of leave

announcement.

107

4.3 Service-based Node Searching

After a Pervasive Service is activated, a PSM first searches for qualified Worker Nodes

by sending M-Search messages for each required node type to m̂ssdp, where an M-Search

message describes a required node type (see Listing 4.1).

Listing 4.1: A typical SSDP M-Search message

M−SEARCH ∗ HTTP/1 .1

ST : urn : schemas−upnp−org : dev i c e : s en so r : 1

MX: 3

MAN: ” ssdp : d i s covevr ”

HOST: 239 . 255 . 255 . 250 : 1900

A Pervasive Service has ℓ members (Definition 8), and each of them has distinct

node type, so that totally ℓ M-Search messages are sent. A Worker Node responds to

the PSM immediately when its node type is identical to the one given in the M-Search

message. After gathering at least one qualified Worker Nodes for each node type, a

PSM then selects and activates the best ones among these candidates. The above-

mentioned protocol is called node searching (NSorig) which is listed in (4.9). Note

that an M-Search message is denoted as y and SA denotes the service selection and

activation protocol (see Protocol 5).

NDorig ,
⨿
ℓ

m̂ssdp!y → SA (4.9)

In this protocol, a PSM sends an M-Search message for each required node type.

Thus, in order to find all required node types for a Pervasive Service, ℓ̄ messages are

sent in average. These messages are broadcasted to all nodes, so that the messages

are replicated for ℓ̄ · (n(W) + n(S)) times. Again, the repetition factor r is taken into

account, causing the average communication complexities of sending and replicating

messages to be r · ℓ̄ and r · ℓ̄ · (n(W) + n(S)), respectively.

108

Note that the required node types are known in advance, and hence, instead of

sending ℓ M-Search messages individually, the search request belonging to the same

service can be sent in a batch. Specifically, all required node types of a Pervasive Service

can be bundled into one message by which the message counts are reduced to 1/ℓ̄ in

average. For example, the aggregated M-Search message shown in Listing 4.2 is capable

of specifying several node types at the same time. In Listing 4.2, the MAN header is

changed to ”psmp:discover” to prevent non-PSMP devices from processing aggregated

M-Search messages. In this scheme, the node types specified in the ST header belong

to the same service. Hence, this scheme is called Service-based Node Searching or SNS.

Also note that only Worker Nodes need to receive M-Search messages, so that DMT

(see Section 4.2) can also be applied. In short, the number of M-Search messages of

a Pervasive Service now becomes one, denoted as y∗, and DMT is applied by sending

the message to m̂w, which replicates messages only for Worker Nodes. The enhanced

protocol, denoted as NSnew, is shown below.

NDnew , m̂w!y∗ → SA (4.10)

From (4.10), it can be concluded that to find all required node types for a Pervasive

Service, one aggregated message is sufficient, which is then replicated for n(W) times

because that the message sent to m̂w are forwarded to Worker Noes. Finally, if the

repetition factor is considered, then r messages are sent and r · n(W) messages are

replicated.

Listing 4.2: An aggregated M-Search message

M−SEARCH ∗ HTTP/1 .1

ST : urn : attentivehome−org : s en so r : temperature : 1 ,

urn : attentivehome−org : l o g i c : a i r con : 1 ,

urn : attentivehome−org : ac tuator : fan : 1

MX: 3

MAN: ”psmp : d i s c ove r ”

HOST: 239 . 255 . 255 . 250 : 1900

109

(a) (b) (c)

Figure 4.3: Sequence diagrams of heartbeat protocols:(a) Original heartbeat protocol;

(b) After applying DMTH; (c) After applying ODH.

It is important to point out that the size of y∗ depends on ℓ̄. When ℓ̄ is too large, the

aggregated message can exceeds MTU or even the maximum size of an UDP. However,

the proposed scheme works well in most practical cases. To show this, assuming that

the average M-Search message size without the ST header is β̄ and that average size

of ST header is τ̄ . Then, the average size of y∗ is

β̄ + ℓ̄ · τ̄ . (4.11)

In real world, it is reasonable to assume that the average size of M-Search messages

without ST header β̄ is less than 300 bytes, the average size of ST headers τ̄ are less

than 100 bytes and the average service length ℓ̄ are less than 10. In the extreme case

where ℓ̄ = 10, β̄ + ℓ̄ · τ̄ = 1300 bytes, which is still less than MTU (1500 bytes). If

y∗ exceeds MTU but not the UDP packet limitation (65527 bytes), then it takes more

frames to transmit the message in the data link layer. However, the overall traffic is

still reduced by (ℓ̄ − 1) · β̄ bytes since the total size of contents to be transmitted is

ℓ̄ · β̄ + ℓ̄ · τ̄ .

4.4 Reducing the Heartbeat Traffic

Although SSDP does not provide heartbeat mechanism, however, it can be simulated

by sending one PA messages every few seconds which can be described by the following

110

CSP statement:

HBorig ,
⨿
r

m̂ssdp!z → HBorig, (4.12)

where z is used to denote the heartbeat message. Unfortunately, this approach tends

to flood the network since the messages are broadcasted to all peers. In each heartbeat,

one message is sent to mssdp, which is then replicated for n(S) + n(W) times, causing

the message count of sending and replicating messages to be r and r · (n(S) + n(W)),

respectively, if the repetition factor is taken into account.

Again, since only PSMs are interested in knowing the status of Worker Nodes,

DMT can be employed by sending messages to m̂psm instead of m̂ssdp so that only n(S)

messages are replicated per heartbeat. Therefore, the number of sent messages and that

of replicated messages can be reduced to r and r · n(S), respectively. The following

CSP statement shows the enhanced protocol, which is referred to as Heartbeat by

Decomposing Multicast Traffic (DMTH).

DMTH ,
⨿
r

m̂psm!z → DMTH (4.13)

However, DMTH is still not optimal, since heartbeat messages are forwarded to all

PSMs, whereas not every PSM is interested in the status of every Worker Node. For

example, when λ̄ = 1, each Worker Node participates in exactly one Pervasive Service,

then for each heartbeat, n(S) − 1 out of n(S) heartbeat messages are useless. It is

desirable to ensure the heartbeat messages being only sent to the needed PSMs. The

mechanism that realizes this idea is called On-Demand Heartbeat (ODH). By using

ODH, a PSM asks all affiliated Worker Nodes to keep track of its remote reference after

they are activated. Note that the remote reference of a PSM is encoded in the messages

that are used to activate Worker Nodes, and then the Worker Nodes send heartbeat

back according to these references. The resulting protocol is shown in (4.14), where µ̂s

111

is a remote reference of a Pervasive Service s in which the Worker Node participates.

ODH ,
⨿
r

µ̂s!z → ODH (4.14)

In this protocol, a Worker Node only sends heartbeat messages to the demanding PSMs.

Thus, the message count depends on how many Pervasive Services does a Worker Node

takes part in. In other words, λ̄ messages are sent in average for each heartbeat. Upon

arriving at the switching device, the messages are also replicated for λ̄ times and then

are forwarded to their destinations. As a result, the numbers of messages sent and

replicated are both r · λ̄ times after the repetition factor is considered. It is important

to note that ODH induces overheads when sending messages by a factor of λ̄, so that

ODH is only effective when the average load factor of Worker Nodes λ̄ is small. More

specifically, although ODH reduces the replicated messages to λ̄
n(S)+n(W)

, it also sends

more messages thanHBorig by λ̄ times. In the worst case, where λ̄ = ℓ̄ = n(S) = n(W),

ODH only saves replicated messages by 1
2
, since

λ̄

n(S) + n(W)
=

n(S)

n(S) + n(S)
=

1

2
, (4.15)

whereas the messages sent by ODH is still λ̄ times more than HBorig, where 1 ≤ λ̄ ≤

n(S) (see (4.4)), causing the traffic to be heavier. In this case, the system should

use DMTH instead, which reduces the replicated messages by 1
2
, but the number of

messages sent is the same as HBorig. Consequently, one solution is to switch between

DMTH and ODH depending on which of them is more efficient, i.e.,

HBnew ,
⨿
r

[ODH ⋄ DMTH], (4.16)

where ⋄ is a CSP deterministic choice operator which means that one of the two

processes will be executed and it can be decided deterministically depending on the

system context. In (4.16), the choice is made based on the value of λ̄ against a threshold,

which is calculated based on the ratio between saved messages and the overheads

112

produced by ODH, namely,

n(W) + n(S)

λ̄
> λ̄⇒ λ̄2 < n(S) + n(W), (4.17)

where 1 ≤ λ̄ ≤ n(S). Consequently, it is more efficient to use ODH when λ̄ <√
n(S) + n(W). Otherwise, DMTH is a better alternative.

4.5 Evaluation

This section concentrates on evaluations of the proposed techniques for reducing traffics

produced by PerSAM/PSMP. The proposed techniques are first evaluated analytically

and then the NS-2 simulation results are presented. Meanwhile, we also validate the

consistencies between analysis results and simulation results. Finally, the results of

experiments in a small scale network are reported.

Before taking a closer look of the analysis results, we first introduce Traffic Reduc-

tion Ratio (TRR), which estimates the traffic reductions of the proposed approaches.

Definition 10. (Traffic Reduction Ratio) The Traffic Reduction Ratio (TRR) is

defined as:

TRR(Porig, Pnew) = 1− τ(Pnew)

τ(Porig)
, (4.18)

where τ : P → N returns the number of messages produced by a protocol P , and Porig

and Pnew denote the original protocol and the proposed protocol, respectively. Notice

that TRR is negative if the proposed method increases the message count.

It can be observed from Definition 10 that the proposed techniques are more effec-

tive when TRRs are higher. For instance, if original 100 messages are produced and

TRR equals 50%, then only 50 messages are produced after applying the proposed

technique.

113

4.5.1 Communication Complexity

Table 4.3, 4.4, 4.5 and 4.6 summarize the traffic reductions of several protocols after

applying the proposed techniques. Note that the details of calculating message counts

of these protocols have been mentioned in Section 4.2, Section 4.3, and Section 4.4.

This sub-section focuses only on calculating the TRRs of the proposed techniques.

Presence Announcement and leave Announcement From Table 4.3, it is obvi-

ous that the messages sent by original PA protocol are reduced by 3
4
, since 1− r

r/4·r =
3
4
.

Similarly, the ratio of replicated messages between PAorig (4.5) and PAnew (4.8) are

r · n(S)
4 · r · (n(W) + n(S))

.

From (4.4), we can substitute n(W) by ℓ̄
λ̄
· n(S), thus we have

1

4 · (ℓ̄/λ̄+ 1)
.

The TRR of replicated messages is therefore

1− 1

4 · (ℓ̄/λ̄+ 1)
.

Since larger ℓ̄ or smaller λ̄ both cause TRR to be larger, the advantage of the

enhanced protocol (PAnew) is greater when the average length of Pervasive Services

(ℓ̄) increases and when the average contribution (λ̄) decreases. Empirically, ℓ̄ ranges

from 3 to 5, and λ̄ is close to 1. Hence, we can expect that the traffic reductions ranges

from 1
16

to 1
24
. In the worst case, where n(S) = n(W) = λ̄ = 1, PAnew still reduces the

replicated messages by 1
8
. Note that the proposed approach and the analysis results

also applies to the leave announcement protocol.

Node Searching Based on Table 4.4, in respect of sending messages, the TRR

between NDorig (4.9) and NDnew (4.10) is:

1− r

r · ℓ̄
=
ℓ̄− 1

ℓ̄
.

114

Table 4.3: Traffic Reductions after applying the Decomposing Multicast Traffic

PAorig PAnew TRR

Sent 4 · r r 3
4

Replicated 4 · r · (n(W) + n(S)) r · n(S) 1− 1
4·(ℓ̄/λ̄+1)

Table 4.4: Traffic Reductions after applying Service-based Node Searching

NSorig NSnew TRR

Sent r · ℓ̄ r ℓ̄−1
ℓ̄

Replicated r · ℓ̄ · (n(W) + n(S)) r · n(W) ℓ̄+λ̄−1
ℓ̄+λ̄

On the other hand, the number of replicated messages is reduced by:

r · n(W)

r · ℓ̄ · (n(W) + n(S))
,

which can be further reduced by substituting n(W) with ℓ̄
λ̄
· n(S):

n(W)

ℓ̄ · (n(W) + n(S))
=

n(S) · ℓ̄/λ̄
ℓ̄ · (n(S) · ℓ̄/λ̄+ n(S))

=
1

ℓ̄+ λ̄
.

As a result, the TRR for replicated messages is:

1− 1

ℓ̄+ λ̄
=
ℓ̄+ λ̄− 1

ℓ̄+ λ̄
.

Again, the advantage of SNS is greater both when ℓ̄ increases or when λ̄ increases,

since larger ℓ̄ or smaller λ̄ both cause TRR to be larger. For instance, if ℓ̄ = 4 and

λ̄ = 1, then we can expect to reduce the replicated message count by 4
5
. In the worst

case, that is, (n(S) = n(W) = ℓ̄ = 1) and λ̄ = 1, NSnew still reduces the message

count of replicated messages by 1
2
.

Heartbeat According to the strategy proposed in Section 4.4, ODH is used when

λ̄ <
√
n(S) and DMTH is used otherwise. Table 4.5 and Table 4.6 summarize the

115

analysis results of ODH and DMTH, respectively. So far as the messages sent by

Worker Nodes are concerned, the TRR of ODH is -1 since it performs worse than the

SSDP for λ̄ times. It is trivial that ODH reduces replicated messages by 1− λ̄
n(W)+n(S)

.

Observe that since lower λ̄
n(W)+n(S)

implies higher TRR, the smaller λ̄ is, the better

ODH performs. It is important to point out that since ODH is unicast-based, the

message count of ODH is invariant to the service length (ℓ̄), and thus the equation

(4.4) is not applicable to ODH.

On the other hand, DMTH does not produce additional traffic when it sends mes-

sages. Thus the TRR is zero. The TRR for the replicated messages are

r · n(S)
r · (n(W) + n(S))

.

Again, from (4.4), we can substitute n(W) by ℓ̄
λ̄
· n(S), thus we have

1

ℓ̄/λ̄+ 1
.

The TRR of replicated messages is therefore

1− 1

ℓ̄/λ̄+ 1
=

ℓ̄

ℓ̄+ λ̄
.

Similar to PAnew, the superiority of DMTH over HBorig is greater when ℓ̄ increases

and when λ̄ decreases. Since 1 ≤ λ̄ ≤ n(S), so that in the extreme case mentioned in

Section 4.4, where λ̄ = n(S) and 2 · n(S) = n(W), from Table 4.6 we know that the

message counts are saved by 2
3
. On the contrary, when λ̄ = 1, where ODH is used, the

traffic is reduced by n(W)+n(S)−1
n(W)+n(S)

. On these bases we can conclude that ODH makes the

system more scalable when the average contribution is low, since the traffic is greatly

reduced by ODH when number of nodes increases. Consequently, the analysis results

shown in this sub-section imply a great reduction in network traffic by applying the

proposed techniques to UPnP Networks.

Concluding from the above analysis results, there are great reductions in network

traffic by applying the proposed techniques to UPnP Networks.

116

Table 4.5: Traffic Reductions after applying On-Demand Heartbeat

HBorig ODH TRR

Sent r r · λ̄ 1− λ̄

Replicated r · (n(W) + n(S)) r · λ̄ 1− λ̄
n(W)+n(S)

Table 4.6: Traffic Reductions after applying the Heartbeat by Decomposing Multicast

Traffic

HBorig DMTH TRR

Sent r r 0

Replicated r · (n(W) + n(S)) r · n(S) ℓ̄
ℓ̄+λ̄

4.5.2 NS-2 Simulations

To investigate the traffic reductions of the proposed techniques, we simulated a typical

home network by using the NS-2 network simulator [74] with two extensions, that is,

AgentJ [131] and the IGMP extension [34, 66]. AgentJ enables NS-2 to access Java

classes; the IGMP (Internet Group Management Protocol) extension to NS-2facilitates

IGMP, which is required to realize the proposed techniques. The simulation parameters

are set based on typical local area networks. Specifically, the simulated home network

adopts a star topology, where every device and host is connected to a IGMP-capable

switching device by a 100 megabits per second link with 5 ms delay. The sizes of

packets are normally distributed from 200 to 450 bytes. Drop-Tail is used for queue

management. The total simulation time is 120 time units for each scenario. The

simulated protocols are implemented as Java classes, which can be accessed via AgentJ

wrapper interfaces.

117

0 50 100 150 200
0

2

4

6

8

10

12
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original PA
After applying DMT

Figure 4.4: Traffic generated by presence announcement, before and after applying

DMT (λ̄ = 1 and ℓ̄ = 4)

0 50 100 150 200
90

91

92

93

94

95

96

97

98

99

100

Number of Worker Nodes

T
ra

ffi
c

R
ed

uc
tio

n
R

at
io

 (
%

)

95.83%

95%

93.75%

Avg. Service Length = 5
Avg. Service Length = 4
Avg. Service Length = 3

Figure 4.5: Traffic reductions of presence announcement after applying DMT

118

0 50 100 150 200
0

1

2

3

4

5

6
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original node searching
After applying SNS and DMT

Figure 4.6: Traffic generated by the node discovery protocol, before and after applying

SNS and DMT (λ̄ = 1 and ℓ̄ = 4)

0 50 100 150 200
70

75

80

85

Number of Worker Nodes

T
ra

ffi
c

R
ed

uc
tio

n
R

at
io

 (
%

)

83.33%

80%

75%

Avg. Service Length = 5
Avg. Service Length = 4
Avg. Service Length = 3

Figure 4.7: Traffic reductions of node discovery after applying SNS and DMT

119

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original heartbeat
On−Demand Heartbeat

Figure 4.8: Heartbeat traffic in a light-loaded system, before and after applying ODH

(λ̄ = 1 and ℓ̄ = 4)

Presence Announcement and Leave Announcement Figure 4.4 shows the traf-

fic generated by SSDP-based PA and by applying DMT when λ̄ = 1 and ℓ̄ = 4. The

results show that traffic can be greatly reduced after applying DMT. Similar results can

be obtained when ℓ̄ equals to 3 or 5, and when DMT is applied to leave announcement.

All simulations were performed under varying numbers of Worker Nodes, and then we

calculated the message counts from the traces generated by NS-2. The numbers of

PSMs are determined by the average service length (n(S) = n(W)/ℓ̄). Hence, if n(W)

is fixed in each round of simulation, then n(S) decreases when ℓ̄ increases. The traffic

reductions of replicated messages after applying DMT to PA under different service

lengths are depicted in Figure 4.5, from which we can observe that more than 90% of

replicated messages can be saved. The dotted lines in Figure 4.5 indicate the expected

TRRs under different service lengths. Note that the analysis and the simulation results

120

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original heartbeat
Heartbeat by Decomposing Multicast Traffic

Figure 4.9: Heartbeat traffic in a light-loaded system, before and after applying DMTH

(λ̄ = 1 and ℓ̄ = 4)

are quite consistent. The results are more consistent with the analysis results when

n(W) is greater, since we introduce randomness to the message departure time. Similar

consistencies can be perceived for the TRRs of sent messages when ℓ̄ = 3, 4 and 5,

which are all approaching 75%.

Node Searching In a similar fashion, we set up simulations for evaluating the en-

hancements after applying SNS to the node searching. As mentioned in Section 4.3,

DMT is also used after aggregating messages. We can perceive from Figure 4.6 and

from Figure 4.7 that the traffic can be reduced by more than 70% after applying the

proposed techniques. In Figure 4.7, the dotted lines indicate the expected TRRs under

different service lengths. The results are more consistent with analysis results when

n(W) is greater then 50. As for the TRRs of sent messages, the TRRs approach 66%,

75%, and 80% when ℓ̄ equals to 3, 4 and 5, respectively.

121

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original heartbeat
On−Demand Heartbeat

Figure 4.10: Heartbeat traffic in a heavy-loaded system, before and after applying

ODH (λ̄ = n(S) and ℓ̄ = 4)

Heartbeat Two sets of simulations are conducted to evaluate traffic reductions of

HB. Because of 1 ≤ λ̄ ≤ n(S), λ̄ was set to 1 for the first set of simulations and was set

to n(S) for another set. Two proposed heartbeat efficiency enhancement techniques,

that is, ODH and DMTH, were both applied to the original heartbeat protocol under

different λ̄ values. By comparing Figure 4.8 and Figure 4.9, we can observe that in

a light-loaded system (λ̄ = 1), DTH performed much better than DMTH. On the

contrary, in a heavy-loaded system, where λ̄ = n(S), ODH performs worse than the

original protocol (see Figure 4.10), whereas DMTH was still capable of reducing traffic

by approximately 50% (see Figure 4.11). As mentioned in Section 4.4, the reason

is that ODH sent additional messages when λ̄ > 1. Based on these results we can

conclude that ODH is more suitable when λ̄ is low and DMTH is more suitable for

high λ̄, which is consistent with the analysis presented in Section 4.5.1.

122

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Number of Worker Nodes

T
ra

ffi
c

(M
es

sa
ge

s)

Original heartbeat
Heartbeat by Decomposing Multicast Traffic

Figure 4.11: Heartbeat traffic in a heavy-loaded system, before and after applying

DMTH (λ̄ = ℓ̄ = n(S) = n(W))

0 50 100 150 200
80

82

84

86

88

90

92

94

96

98

100

Number of Worker Nodes

T
ra

ffi
c

R
ed

uc
tio

n
R

at
io

 (
%

)

Expected (Analyzed Results)
Actual (Simulated Results)

Figure 4.12: Traffic reductions of heartbeat after applying ODH when ℓ̄ = 4 and λ̄ = 1

123

0 50 100 150 200
45

46

47

48

49

50

51

52

53

54

55

Number of Worker Nodes

T
ra

ffi
c

R
ed

uc
tio

n
R

at
e

(%
)

50%

Expected (Analyzed Results)
Actual (Simulated Results)

Figure 4.13: Traffic reductions of heartbeat after applying DMTH when λ̄ = ℓ̄ =

n(S) = n(W)

Figure 4.12 depicts the TRRs of message counts after applying ODH. In these

experiments, we set ℓ̄ = 4 and λ̄ = 1, similar results were obtained when ℓ̄ = 3 and

ℓ̄ = 5. The traffic can be reduced by more than 95% after number of nodes exceeds 50.

The dotted lines indicate the expected values of TRR obtained by analysis. Unlike in

PA/LA and in ND, the expected TRRs in these simulations are fixed. The expected

values of TRR increase when the number of nodes in the system grows. Figure 4.12

also reveals that the expected results are consistent with simulated results.

According to (4.16), the heartbeat protocol switches to DMTH when λ̄ is greater

than
√
n(S). Hence, we set λ̄ = ℓ̄ = n(S) = n(W) to ensure that DMTH is chosen.

Figure 4.13 shows the TRRs after applying DMTH. The results show that even the

system was heavy-loaded, the traffic was still reduced by more than 47%. These results

are also consistent with the analysis results, and they are more coherent when n(W)

124

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4

Node Mobility (%)

T
ra

ffi
c

(M
es

sa
ge

s)

Original PA/LA
Original PA/LA (without background traffic)
After applying DMT
After applying DMT (without background traffic)

Figure 4.14: Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, when only PA and LA are enabled.

is greater then 100.

4.5.3 Experiments

To investigate the effectiveness of the proposed approaches when deploying in a real en-

vironment, we conducted prototype-based experiments in a small-scale switched home

network. In these experiments, the original and proposed schemes are implemented

and integrated. Then, we evaluate these protocols under different node mobility, that

is, the frequency of leaving and joining the network, in a home network.

The home network consists of two PSMs and four Worker Nodes. Each PSM is

installed on an IBM X61 notebook with Intel Core 2 Duo 1.8 GHz CPU and 2G RAM,

whereas each Worker Node is installed on an IBM X31 notebook with Intel Pentium-M

1.6 GHz CPU and 512MB RAM. The machines are interconnected by an IGMP-capable

125

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4

Node Mobility (%)

T
ra

ffi
c

(M
es

sa
ge

s)

Original PA/LA and node searching
Original PA/LA and node searching (without background traffic)
Afger applying SNS and DMT
Afger applying SNS and DMT (without background traffic)

Figure 4.15: Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, after enabling PA, LA and node searching.

switch (D-Link DES-3526), and are able to access the internet via a router (DrayTek

Voyger 2104). On each machine, an instance of Wireshark packet sniffer 1 is installed in

order to capture and analyze the network traffic. In addition, to facilitate all nodes to

start execution at approximately the same time and to dispatch the parameters to each

node more efficiently, each PerNode is instrumented so that it receives multicast control

messages sent by a centralized experiment controller. The experimental environment

is configured so that there are two Pervasive Services and each of them is with r = 1,

ℓ = 2, and λ = 1. After being executed, a Worker Node runs for 120 time units, which

is equal to the heartbeat period. According to the assigned value of node mobility, an

action vector that indicates when a node should join or leave the network is generated.

For example, 50% mobility causes a node to leave and then to re-join the network in

60 time units, which are randomly distributed over 120 time units. In addition, the

1The Wireshark packet sniffer, available at http://www.wireshark.org

126

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4

Node Mobility (%)

T
ra

ffi
c

(M
es

sa
ge

s)

Original
Original (without background traffic)
DMT+SNS+DMTH
DMT+SNS+DMTH (without background traffic)
DMT+SNS+ODH
DMT+SNS+ODH (without background traffic)

Figure 4.16: Evaluating the proposed schemes in a real home network, where λ̄ = 1

and ℓ̄ = 2, after enabling all protocol capabilities.

heartbeat process is implemented as a separate thread in order to prevent the heartbeat

periods from being interfered by the main process.

Figure 4.14, Figure 4.15, and Figure 4.16 depict the message counts when the

node mobility increases. In the first experiment (Fig. 4.14), the heartbeat and node

searching capabilities are turned off. The results show that even in a small scale

network, the PA/LA traffic can still be greatly reduced by applying DMT. Also note

that the PA/LA message count increases when the node mobility is higher, since a

node performs PA/LA whenever it joins/leaves the network. In Fig. 4.15, the node

searching capability is turned on, so that the network traffic slightly increases. Again,

higher node mobility increases the message counts of node searching, since when PA/LA

messages are observed, a PSM either finds that one of its affiliating Worker Node leaves

or some nodes re-join the network. In either case, the PSM will re-compose the service

127

by performing node searching. Thus, the message count of node searching is roughly

in proportion to the node mobility. In Fig. 4.15, the traffic does not increase much

since the size of network is small. In the third experiment (Fig. 4.16), all capabilities

are enabled, so that the traffic is greatly increased. In this experiment, the re-joining

time is relatively short due to the scale of the network. As a result, the message

counts of heartbeat are less sensitive to node mobility. On the other hand, the traffic

of heartbeats decreases when the average time to re-join the network of a node is too

long, since an absent node does not send any heartbeat message.

4.5.4 Discussion

This sub-section discusses costs and limitations of the techniques we have proposed

so far. Currently, the proposed techniques are tightly coupled with UPnP networks.

However, the core ideas of these techniques are still applicable to other service models.

Specifically, DMT is useful when the protocol is based on single IP multicast channel

and some unbalanced communication patterns can be observed. When information is

known in advance, it is helpful to aggregate several search requests into one as long as

the package size is less than a unit of transportation (theoretical size of an UDP packet

is 65527 bytes). Finally, the comparisons of ODH and DMTH give us the insight

that as a heartbeat mechanism, unicast is much more efficient than multicast when

the number of monitors/managers are related much fewer than the number of service

entities (i.e. Worker Nodes in PerSAM).

As mentioned in 4.3, when applying SNS, the size of an aggregated message can

exceed MTU or even the maximum size of an UDP when ℓ̄ is too large. As a result,

SNS may not work properly when the size of an aggregated message exceeds the UDP

packet limit (65527 bytes). From (4.11) we can obtain the theoretical upper bound

of the ℓ̄, which is approximately 652. In other words, the theoretical limitation for

128

applying SNS is when the average service length is smaller than 652.

Mobility is one of the most important issues in a pervasive network, since nodes can

join or leave the network at anytime. While this issue has been addressed in Chapter 3,

we assume that all nodes are always available in the analysis to simplify and clarify the

presentation. In a highly dynamic network, where n(W) and n(S) change drastically,

one has to add an additional time parameter, and then performs a summation over

a time period. On the other hand, if n(W) and n(S) are relatively stable, where the

number of nodes does not change significantly, then the analysis results are still good

approximations of the message reductions. In these cases, given that the advertising

and searching messages are emitted constantly, DMT and SNS are still able to reduce

more message counts. However, the TRR (see Definition 10) is not affected. Likewise,

to make the network more sensitive to the mobility, one has to increase the heartbeat

rate and therefore the heartbeat traffic. As a result, DMTH and ODH are able to

reduce more messages while TRR does not affected.

Compatibility can also be an issue, since the proposed approaches are extensions

of UPnP/SSDP. According to the UPnP specification, UPnP Devices do not process

the headers other than ”ssdp:”. So that we can avoid the interferences between legacy

UPnP devices and PerNodes by introducing additional headers in SSDP MAN header.

More specifically, PSMP uses an unique ”psmp:” header to distinguish from ”ssdp:”

headers used by SSDP. As a result, PerSAM nodes and traditional UPnP Devices are

able to co-exist in the same network without interfering with one another.

Observe that the DMT technique is only effective when the router or home gate-

way supports IGMP[34]. Otherwise, the routers broadcast packets to all endpoints

instead of sending packets only to the listeners of multicast addresses. Recently we

notice that there is an increasing number of low-end IGMP-capable routers available

in the consumer markets. To name a few, D-Link DES-1228 and DrayTek Vigor 2110

129

are examples of IGMP-capable routers, for which the prices are less than 200 USD.

Therefore, we believe that the proposed techniques will be realizable in most home

networks in the near future. If there are more than one switch in the network, it

will result in greatest traffic reduction if each switch is IGMP-capable. If only a few

IGMP-capable switches are available, then the one with the highest performance and

being IGMP-capable should be deployed at the root of the tree.

Finally, the correctness of the analysis results can be interfered when the system

suffered from extremely high loads, where the message arrival rate is larger than the

message consumption rate. The Worker Node starts dropping messages when the size of

un-processed messages exceeds the buffer size, causing the accuracy of analysis results

being affected. However, in an MOM-based pervasive system, it is reasonable to assume

short data processing time since most of the tasks are I/O bound and MOM-based I/O

is asynchronous (fire-and-forget). Besides, since the average service length ℓ̄ is used

throughout the analysis process, the accuracy can be interfered when the variation of

service lengths is large. This is because the service length affects the message count

of node searching. As mentioned earlier, the service lengths typically range from 3 to

5 in practice so that the variation of ℓ̄ is limited. Likewise, the average contribution

λ̄ is used in the analysis. λ has great impact to the traffic of heartbeat. Therefore, it

can be difficult to determine whether to use ODH or DMTH when the variation of λ

is significant. In this case, DMTH is a better choice, since it does not cause negative

effect, as discussed in Section 4.4.

4.6 Summary

Many popular service management protocols uses broadcast-based or multicast-based

group communication mechanisms, which, if not carefully designed, tend to flood the

network with unnecessary messages. Therefore, a compact service management pro-

130

tocol should be designed to minimize the downtime of a system while maintaining

low message counts. In this chapter, we present the design, analysis, simulations, and

experiments of several techniques for boosting the network efficiency - Decomposing

Multicast Traffic, Service-based Node Searching, Heartbeat by Decomposing Multicast

Traffic and On-Demand Heartbeat - based on PerSAM and PSMP. Both analysis re-

sults and simulation results reveal that the proposed approaches can reduce message

counts of presence and leave announcement, node searching, and heartbeat by more

than 93.75%, 66%, and 50%, respectively, in average service lengths.

131

Chapter 5

Consistent Service Composition in a Smart

Home

Service composition is the process of discovering, selecting, and activating service com-

ponents that best fit pre-specified criteria. It has been an object of study in Service

Computing discipline for a long time [147]. Although it has been reported that service

composition is also one of the most significant issues of Pervasive systems [33], existing

enterprise service composition techniques are not suitable for such systems due to the

following challenges that do not take place in enterprise environments:

1. User-centricity: As mentioned earlier, enterprise services are usually composed

based on developer-defined Service Templates that are specified to fit business

requirements, whereas the goal of Pervasive service composition is to compose

services that meet maximum satisfaction of users.

2. Representing and unifying user preferences: In a Pervasive environment

such as the Smart Homes, users should be able to describe their preferences ac-

cording to which the service template is updated before the composition starts.

Complexities arise when multiple parties submit conflicting preferences simulta-

neously. For example, the energy saving policy is likely to conflict with the user’s

comforts.

3. Impromptu consistency: Enterprise services are relatively static and well-

planned whereas Pervasive services are usually dynamic and ad hoc. Since service

components can come and go at any time, a Pervasive service must be able to

search for alternatives when a required service components suddenly disappears.

132

Contrary to enterprise services, Pervasive services are usually deployed in ad

hoc ways. Service components work perfectly individually do not guarantee that

they can still work perfectly when several of service components co-exist in the

same environment. Compatibility issues arise due to resource competing and

interferences among different effects of service components.

To sum up, the core issue of Pervasive service composition is threefold: 1) how

users specify their preferences precisely, 2) how to unify preferences submitted by

multiple parties, and 3) how to detect and to avoid undesired interactions among

service components. This chapter concentrates on issues mentioned above by improving

the framework introduced in Chapter 3. The objective of this chapter is therefore to

devise a set of techniques that facilitates the composition of consistent services, where

a service is consistent if all conflicting user preferences can be unified and the service

components are chosen so that the interferences among them are minimized from the

users’ points of view.

The following sections first introduces a formal expression language, Preference

Expression (PE), that is able to precisely specify user preferences based on the CC/PP

(Composite Capability/Preference Profiles) standard [84]. Note that PE denotes user

preferences from two perspectives: the enumerability and the necessity. Next, a set of

rules for unifying different types of potentially conflicting preferences are also presented.

Lastly, since the degree of interference is usually determined by user’s subjective feeling,

which is usually vague, we propose a fuzzy-based approach to estimate the degree of

interference among service components and a quality evaluation scheme for integrating

all techniques mentioned above. Details of these mechanisms will be elaborated in the

subsequent sections.

133

Figure 5.1: A general service composition architecture

5.1 Overall Architecture

Figure 5.1 illustrates the general architecture of a classical service composition. Clas-

sical service composition mechanisms are usually driven by developer-specified Service

Templates that describe criteria (e.g. type or attributes) for selecting qualified ser-

vice components. Typically, a service composition framework consists of three phases.

In the phase of Type-based Node Searching, a service composition manager (i.e. a

PSM), which is responsible for composing the service according to the Service Re-

quest, searches for qualified candidates either from a centralized service registry or

by first broadcasting the type information as the searching criteria and then waiting

for responses. The actual procedure in this phase largely depends on the underlying

service discovery protocol (see Section 2.2). Usually, there are more than one qualified

candidates, so that the manager needs to select the best one among candidates in the

phase of Candidate Scoring and Selection, where the selection will proceed according

to pre-specified preference expressions. Note that the selection mechanisms can greatly

affect the quality of composed services, and sophisticated selection mechanisms usually

involve evaluation and scoring of candidates based on their attributes. After all of the

most appropriate candidate nodes are determined, each node is then activated in the

Service Activation phase.

134

5.1.1 Capabilities and Preferences for Service Composition

Let us now examine how PerSAM/PSMP presented in Chapter 3 fits into this archi-

tecture. In PerSAM/PSMP, PSM plays the role of the service composition manager.

After the service composition is started, PSM first issues M-SEARCH messages to a

multicast channel and then waits for responses from Worker Nodes in the Type-based

Node Searching phase (see Protocol 2, 3, and 5). In the Candidate Scoring and Selec-

tion phase, FCFS (First Come, First Select) is adopted as the default selection policy.

Finally, by (3.14) in Protocol 5, a Pervasive Service is then activated.

Observe that the Service Template in PSMP only consists of a set of node types

demanded by a Pervasive Service: it does not support attribute-based lookup. However,

in Pervasive environments such as Smart Homes, service components with the same

type do not imply that they are interchangeable. For instance, the contexts obtained

from sensors in the living room are different from these observed in the bed room so that

the sensors in two rooms are not interchangeable. In addition, PSMP can not adapt

to user’s needs dynamically, since a user does not have a chance to modify Service

Templates. Finally, when there are more than one candidate nodes found, PSMP

chooses the best node among these candidate nodes based on FCFS policy, which

however usually leads to low user satisfaction. To improve quality of the composed

services, more sophisticated selection or ranking algorithms that take the attributes of

nodes into account are required in the phase of Candidate Scoring and Selection.

It follows from the above discussions that further enhancements of PerSAM and

PSMP are required. In the following, several new data structures that support a PSM

to search for Worker Nodes based on both node type as well as attributes are proposed.

Originally, a Worker Node is merely described by the node type (i.e. nt in Figure 5.2-

(a)), which, as mentioned above, is too restrictive for Pervasive service composition.

Hence, it is desirable to describe Worker Nodes in a more general way. This research

135

Figure 5.2: Modifying Worker Node structure to facilitate more sophisticated Pervasive

service composition: (a) Original Worker Node structure, (b) Enhanced Worker Node

structure

136

work therefore proposes to model the capabilities and the selection criteria for Worker

Nodes by extending CC/PP, which is a W3C standard for specifying device capabilities

and user preferences [84]. The capability of a Worker Node w is described by its type

τ and a set of attributes A = {α1, α2, .., αk} = {αi}ki=1, where αi = (ni, vi) is a name-

value pair, based on which the Worker Node can be described by arbitrary attributes.

The description of the capability of a Worker Node is called Node Capability Descriptor

and is formally defined as follows.

Definition 11. (Node Capability Descriptor) The Node Capability Descriptor of

a Worker Node w is a pair: C(w) , (τ, A), where τ is the type of w, and A = {αi}

is the attribute set of w. For the attribute αi, (ni, vi) is its associated name-value pair,

where ni is the attribute name and vi is the attribute value.

For example, a Worker Node w1 that controls 37 inch LCD monitor which is located

at room-1 can be described as follows:

(LCD, [(size, 37), (location, ”room− 1”)]).

In the original service model, the node type nt of a Worker Node is matched by

a Service Template. Since in the enhanced version, a Worker Node is described by

its Node Capability Descriptor (see Definition 11), a replacement for Service Template

capable of matching Node Capability Descriptors is hence required. As a result, a

new data structure, called Service Request, is proposed to replace Service Template

for this purpose (see Figure 5.3-(b)). A Service Template ST ps of a Pervasive Service

ps is essentially a set of node types (cf. Definition 4). Likewise, a Service Request is a

set of Node Preference Descriptors, of which each specifies the preferable property of

one of the desired Worker Node w̃ so that a PSM is able to search for qualified nodes

according to the set of descriptors. The structure of a Node Preference Descriptor is

defined below.

137

Figure 5.3: Modifying PSM structure to facilitate more sophisticated Pervasive service

composition: (a) Original PSM structure, (b) Enhanced PSM structure

138

Definition 12. (Node Preference Descriptor) The Node Preference Descriptor of

a desired Worker Node w̃ is a pair: P (w̃) , (τ, Ã), where τ is the type of w̃, and

Ã = {α̃i} is a set of Attribute Preference Descriptors α̃i = (ni, ϵi). Note that ni is

the attribute name and ϵi is a Preference Expression that specifies selecting criteria for

attribute values.

For example, the following Preference Descriptor P (w̃1) directs the PSM to search

for an LCD monitor that is more than 30 inches and is located at room-2:

(LCD, [(size, (≥ 30)), (location, (== ”room− 2”)]).

An Attribute Preference Descriptor facilitates users to participate in the selection

process when composing services so that the service composition adapts to users’ needs.

In other words, when users express their preferences for a specific attribute, they typ-

ically override the default Preference Expressions in Attribute Preference Descriptors.

Depending on the characteristics of service composition mechanisms, the syntax of

ϵ is usually different. In non-critical services, a user does not always insist on their

preferences. Instead, there is usually room for negotiation when some preferences

can not be met. Therefore, differentiation of mandatory preferences from negotiable

ones is useful if we want to cover wider service compositions, especially when there

are multiple users whom will be concerned by the services of interest. To facilitate

consistent services, the aforementioned Preference Expression proposes an unifiable

and negotiable expression. Based on the evaluation results of Preference Expressions,

PSM is able to filter out the unqualified nodes and to rank the qualified ones. The

details of Preference Expression and their unification rules will be elaborated in Section

5.2.

139

Figure 5.4: Refined service composition architecture for Pervasive environments

5.1.2 The Enhanced Architecture for Pervasive Service Com-

position

Figure 5.4 depicts the refined version of Pervasive service composition architecture.

In the refined architecture, a Service Request of a Pervasive Service is essentially a

subset of the power set of Node Preference Descriptors. Similar to Service Template,

the Service Request is typically pre-defined by the developer of a Pervasive Service.

However, users can express their own preferences by overriding the default ones.

When there are multiple users, the preferences can be conflicting. As a result,

in the Preference Unification phase (see Figure 5.4), a PSM unifies multiple possibly

conflicting preferences according to unification rules presented in Section 5.2. Next,

in the Type-based Node Searching phase, a PSM also issues M-SEARCH messages

to a multicast channel and then waits for responses from Worker Nodes. The major

difference from the original architecture is that the candidates whose attributes do not

satisfy the constraints specified in Preference Expressions are dropped in this phase.

The remaining candidates are ranked based on what have been specified in negotiable

Attribute Preference Descriptor and a scoring scheme presented in Section 5.4. In the

following sections, the details of all phases except Service Activation phase as shown

in Figure 5.4 will be elaborated. The Service Activation stage is identical to that in

the original architecture, namely, the selected nodes are activated by using (3.14) in

Protocol 5

140

Figure 5.5: Dynamic contextual node re-binding

5.1.3 Dynamic Contextual Node Re-binding

One of the distinguishing characteristics of the Pervasive system is that a Pervasive

environment is highly dynamic. As a result, environmental contexts are changing

frequently so that the Pervasive system has to adapt to context changes. So far as

a Pervasive Service Composition mechanism is concerned, it has to constantly probe

for better candidate nodes. Upon a better node is found, the old one is replaced to

enhance the quality of service. Bottaro et al. [32] identify these situations that will

trigger dynamic re-binding of nodes: 1) presence of new nodes, 2) absence of existing

nodes that have participated in one or more services, and 3) changes of contexts.

In fact, PSMP has built-in capabilities for detecting the presence and absence of

Worker Nodes so that the situations 1) and 2) can be detected. The last situation,

changes of contexts, can be considered from two aspects: the detection of environ-

mental context change as well as the detection of the changes of contexts in a Worker

Node. The platform is able to be aware of environmental context change such as hu-

man activities by interpreting the raw data gathered by sensors. As shown in Fig.

141

5.5, the raw data are interpreted by the Context Inference Engine [94] and then the

Service Request is updated accordingly by the PSM, which reflects the fact that the

the users’ preferences are changing dynamically. On the other hand, the changes of

contexts within a Worker Node are reported by the Worker Node itself in PerSAM. As

a result, PerSAM/PSMP is aware of context changes either from the environment or

within Worker Nodes. After the changes are detected, the Service Composition mech-

anism then re-selects the nodes that are affected by the contexts according to the new

preferences as well as the new context information.

5.2 Specifying and Unifying User Preferences

As discussed in the previous section, specifying user preferences is a non-trivial task.

The approach taken by this research is first to distinguish different kinds of preferences

from various aspects and then proposes approaches to deal with them separately. First

of all, preferences can be categorized by their necessity. For example, if a user is fond of

playing a classic music composed by either J. S. Bach or by W. A. Mozart, but prefers

W. A. Mozart better, then the preference associated with the attribute ”Composer”

can be expressed by the following Attribute Preference Descriptor:

(”Composer”, (== ”W.A.Mozart”→ ”J.S.Bach”)). (5.1)

On the contrary, suppose that the expression is changed as follows:

(”Composer”, (== ”W.A.Mozart”→== ”J.S.Bach” :! = ”A.V ivaldi”)), (5.2)

where the colon means ”otherwise”, then it means that this expression is negotiable.

Specifically, all composers except A. Vivaldi can be an option for consideration if neither

Bach’s nor Mozart’s music is available. Second, depending on the nature of attribute

values, an attribute can be enumerative (such as ”J. S. Bach” or ”W. A. Mozart”)

or numeric (such as the size of LCD is 17 or 22 inches). The syntax of enumerative

142

attributes is different from that of numeric ones and so are their unification rules.

Consequently, this section will present the syntax of Preference Expression and its

auxiliary unification rules to deal with the challenges mentioned above. It follows from

the above discussions that the Preference Expressions and their unification rules can

be designed from two aspects: 1) a preference can be specified either numerically or

enumeratively, and 2) from the user’s points of view, the preference is either mandatory

or negotiable.

In the Preference Unification phase (see Figure 5.4), if there are conflicting prefer-

ences specified by different users, then the PSM integrates these preferences according

to unification rules (as will be presented in Section 5.3). If the unification process fails

because that the conflicting preferences are mutually exclusive, then the PSM reports

errors to users for further correction; otherwise, the composition process proceeds to

the next phase. The following subsections are going to elaborate different types of

Preference Exprssions and their unification rules in detail.

5.2.1 Enumerative Preference Expressions

The Enumerative Preference Expression is used to describe preferences for an enumer-

able attribute by specifying a list of preferred values. A candidate node is considered

unqualified immediately if its corresponding attribute value matches none of the val-

ues listed in the expression. Otherwise, a matching score is calculated and stored for

further selection (see Section 5.4). This type of expression is called a Mandatory Enu-

merative Preference Expression (MEPE). For instance, the preference to the composers

of a music can be specified as

(== ”J. S. Bach”→== ”W. A. Mozart”). (5.3)

The syntax of MEPE is presented in Listing 5.1 in BNF (Backus-Naur Form) [22].

In an MEPE, the preferred values are a listed of strings, delimited by arrowheads.

143

Listing 5.1: The BNF of MEPE

MEPE ::= PtList | NegationExpr

PtList ::= ’ (’ == STRING PtListTail∗ ’) ’

PtListTail ::= →== STRING

NegationExpr ::= ’ (’ ! = STRING(∧! = STRING)∗ ’) ’

Alternatively, one can enumerate the undesired values by a list of conjunctions (e.g.

! = ”J. S. Bach”∧! = ”A. Vivaldi”). The list is ordered by preferences in descending

order so that one can easily conceive that the first qualified service component is the

most preferable one. The expression is evaluated to be true as soon as the PSM finds a

service component whose attribute value meets the criteria specified in the expression.

Alternatively, one can enumerate the undesired values by a list of conjunctions (e.g.

! = ”J.S.Bach”∧! = ”A.V ivaldi”), as mentioned earlier, and then the expression is

evaluated to be true if the attribute value of a service component matches none of the

undesired values.

In a Preference Expression, the term without an operator is called a ”preference

term”, or simply a ”p-term”. A set of p-terms is called a ”preference term set”, or

called a ”pt-set”, which is denoted as pt(ε), where ε is the Preference Expression. The

formal definitions of p-term and pt-set are given below.

Definition 13. (P-term and pt-set) A term without an operator in a Preference

Expression ε is called a ”preference term”, or simply a ”p-term”. A set of p-terms

is called a ”preference term set”, which is denoted as pt(ε). Assume that there are k

possibly conflicting Preference Expressions {εi}ki=1, then the pt-sets of these expressions

are denoted as {pt(εi)}ki=1.

For example, if ε = (== ”J.S.Bach”→== ”W.A.Mozart”), then ”J. S. Bach” and

”W. A. Mozart” are p-terms and pt(ε) = {”J.S.Bach”, ”W.A.Mozart”}.

In MEPE, p-terms that are associated with the notations ”==” and ”! =” operators

144

are respectively called positive p-terms (denoted ε+) and negative p-terms (denoted

ε−). Positive and negative p-terms are formally defined below.

Definition 14. (Positive and Negative p-terms) A p-term associated with an

operator ”==” is called a positive p-term; a p-term is a negative p-term if its operator

is ”!=”.

For example, == ”J.S.Bach” implies ”J.S.Bach” is a positive p-term, whereas

! = ”A.V ivaldi” shows ”A.V ivaldi” is a negative p-term. An MEPE is either composed

of a set of positive p-terms, called Positive MEPE, or a set of negative p-terms, called

Negative MEPE, but not a mixture of them. The pt-set of a Positive MEPE and a

Negative MEPE are denoted as pt(ε+) and pt(ε−), respectively.

If there are more than one specified preference expressions, then these expressions

have to be unified. The core idea of unifying Preference Expressions is to construct

a new expression such that for all p-terms in the new expression satisfy all involved

original expressions. Before the unification rules are presented, the following definition

will be useful for further discussions. If there is at least one Positive MEPE, then a

set of possibly conflicting MEPEs can be unified as a single Positive MEPE, which is

formally defined as follows.

Definition 15. (Positively Unified MEPE) Assume that {εi}ki=1 are a set of pos-

sibly conflicting MEPEs, where ∃ε+ ∈ {εi}ki=1 such that ε+ is a Positive MEPE. Then,

the set {εi}ki=1 can be integrated into a Positively Unified MEPE, denoted as εu+, where

∀t ∈ pt(εu+), ∧k1i=1[t ∈ pt(ε+i)] and ∧kj=k1+1[t /∈ pt(ε−j)].

As mentioned earlier, the core idea is to construct an expression εu+ such that all

p-terms in εu+ satisfy all of the involved original expressions.

Let us start from a simple case, in which all MEPEs to be unified are positive.

Intuitively, in order to fulfill all preferences, the unifying outcome should be an inter-

145

section of all pt-sets. The unification rules for deriving the pt-set from a set of possibly

conflicting Positive MEPEs is formally specified below.

Theorem 3. (Deriving the unified pt-set of Positive MEPEs) The pt-set of a

Positively Unified MEPE pt(εu+) can be obtained by the intersection among a set of

Positive MEPEs, denoted as {pt(ε+i)}ki=1, namely,

pt(εu+) = ∩ki=1pt(ε
+
i). (5.4)

If all MEPEs are positive, then according to Definition 15 the possibly conflicting

Positive MEPEs {ε+i }ki=1 can be unified by finding εu+ such that ∀t ∈ pt(εu+), we have

∧ki=1[t ∈ pt(ε+i)]. Based on this observation, the proof of Theorem 3 is shown below.

Proof. From (5.4),

pt(εu+) = ∩ki=1pt(ε
+
i) = pt(ε+1) ∩ pt(ε+2) ∩ ... ∩ pt(ε+k).

Thus, we have

[pt(εu+) ⊆ pt(ε+1)] ∧ [pt(εu+) ⊆ pt(ε+2)] ∧ ... ∧ [pt(εu+) ⊆ pt(ε+k)].

Consequently,

∀t ∈ pt(εu+), [t ∈ pt(ε+1)] ∧ [t ∈ pt(ε+2)] ∧ ... ∧ [t ∈ pt(ε+k)]

is true, that is,

∀t ∈ pt(εu+),∧ki=1[t ∈ pt(ε+i)].

The next theorem deals with a more general case in which at least one of the

possibly conflicting MEPEs is positive.

Theorem 4. (Deriving the unified pt-set of a mixture of Positive and Nega-

tive MEPEs) If there is a mixture of several possibly conflicting Positive and Negative

146

MEPEs, then the pt-set of the Positively Unified MEPE pt(εu+) can be obtained by the

following operations:

pt(εu+) = ∩k′i=1pt(ε
+
i)− ∪kj=k′+1pt(ε

−
j), (5.5)

where there are k′ positive MEPEs and k − k′ negative MEPEs.

Proof. Based on the De Morgan’s laws and the set difference operation, that is,

A − B = A ∩ B̄, the equation (5.5) can be transformed to intersections of pt-sets,

specifically,

pt(εu+) = ∩k′i=1pt(ε
+
i)− ∪kj=k′+1pt(ε

−
j)

= ∩k′i=1pt(ε
+
i) ∩ ∪kj=k′+1pt(ε

−
j)

= ∩k′i=1pt(ε
+
i) ∩ ∩kj=k′+1pt(ε

−
j)

= pt(ε+1) ∩ pt(ε+2) ∩ ... ∩ pt(ε+k′) ∩ pt(ε
−
k′+1) ∩ pt(ε

−
k′+2) ∩ ... ∩ pt(ε

−
k).

Thus, we have:

[pt(εu+) ⊆ pt(ε+1)] ∧ [pt(εu+) ⊆ pt(ε+2)] ∧ ... ∧ [pt(εu+) ⊆ pt(ε+k′)]∧

[pt(εu+) ⊆ pt(ε−k′+1)] ∧ [pt(εu+) ⊆ pt(ε−k′+2)] ∧ ... ∧ [pt(εu+) ⊆ pt(ε−k)],

which can be rewritten as

[pt(εu+) ⊆ pt(ε+1)] ∧ [pt(εu+) ⊆ pt(ε+2)] ∧ ... ∧ [pt(εu+) ⊆ pt(ε+k′)]∧

[pt(εu+) * pt(ε−k′+1)] ∧ [pt(εu+) * pt(ε−k′+2)] ∧ ... ∧ [pt(εu+) * pt(ε−k)].

As a result, ∀t ∈ pt(εu+), we see that

[t ∈ pt(ε+1)] ∧ [t ∈ pt(ε+2)] ∧ ... ∧ [t ∈ pt(ε+k′)]∧

[t /∈ pt(ε−k′+1)] ∧ [t /∈ pt(ε−k′+2)] ∧ ... ∧ [t /∈ pt(ε−k)].

In other words, ∀t ∈ pt(εu+), we have

∧k′i=1[t ∈ pt(ε+i)] ∧ ∧kj=k′+1[t /∈ pt(ε−j)].

147

If all possibly conflicting MEPEs are negative, then the unification rule for generat-

ing Negatively Unified MEPEs is needed. Before turning to a closer examination of the

unification rule for unifying Negatively MEPEs, let us define the Negatively Unified

MEPE precisely first.

Definition 16. (Negatively Unified MEPE) Assume that {ε−i }ki=1 is a set of

possibly conflicting Negative MEPEs. Then, {ε−i }ki=1 can be integrated into a Negatively

Unified MEPE, denoted as εu−. If such εu− exists, then ∀t ∈ pt(εu−) implies ∧ki=1[t /∈

pt(ε−i)].

Based on Definition 16, the rule for deriving the pt-set of Negatively Unified MEPE

from a set of Negative MEPEs is presented below.

Theorem 5. (Deriving the pt-set of the Negatively Unified MEPE from a

set of Negative MEPEs) The pt-set of the Negatively Unified MEPE εu− can be

obtained by the union among pt-sets of Negative MEPEs {pt(ε−i)}ki=1, namely, pt(εu−) =

∪ki=1pt(ε
−
i).

Proof. The equation pt(εu−) = ∪ki=1pt(ε
−
i) implies that

pt(εu−) = ∪ki=1pt(ε
−
i) = ∩ki=1pt(ε

−
i),

in other words,

pt(εu−) = pt(ε−1) ∩ pt(ε−2) ∩ ... ∩ pt(ε−k).

Thus, we have

[pt(εu−) * pt(ε−1)] ∧ [pt(εu−) * pt(ε−2)] ∧ ... ∧ [pt(εu−) * pt(ε−k)],

namely, ∀t ∈ pt(εu−), we have

[t /∈ pt(ε−1)] ∧ [t /∈ pt(ε−2)] ∧ ... ∧ [t /∈ pt(ε−k)] = ∧
k
i=1[t /∈ pt(ε−i)].

148

If follows that the pt-set of an Unified MEPE can be derived from either Theorem

3, 4, or 5 and that the unification fails if the pt-set of the Unified MEPE is an empty

set, that is, pt(εu) = ϕ.

After deriving unified pt-sets, the order of p-terms have to be determined if the

result is a Positively Unified MEPE. In this work, the user has to designate one Positive

MEPE as the master expression according to her/his preferences. On the contrary, the

master expression is not required for Negatively Unified MEPEs since the order of

negative p-terms does not affect the result of service composition.

The following examples demonstrate the concrete procedures of unifying MEPE

based on the rules mentioned above.

Example 1. Derive the Positively Unified MEPE from the following MEPEs, where

ε+1 is the master expression:

ε+1 = (== ”J.S.Bach”→== ”W.A.Mozart”→== ”A.V ivaldi”)

ε+2 = (== ”W.A.Mozart”→== ”J.S.Bach”→== ”A.H.Haydn”→== ”A.V ivaldi”)

ε−3 = (! = ”A.V ivaldi”).

Solution. First of all, the pt-sets of these expressions can be obtained based on

Definition 13, as shown below.

pt(ε+1) = {”J.S.Bach”, ”W.A.Mozart”, ”A.V ivaldi”}

pt(ε+2) = {”W.A.Mozart”, ”J.S.Bach”, ”A.H.Haydn”, ”A.V ivaldi”}

pt(ε−3) = {”A.V ivaldi”}

Note that ε+1 and ε+2 are positive, whereas ε−3 are negative. Therefore, after applying

Theorem 4, the pt-set of the Positively Unified MEPE can be derived, namely,

pt(εu+) = pt(ε+1) ∩ pt(ε+2)− pt(ε−3)

= {”W.A.Mozart”, ”J.S.Bach”, ”A.V ivaldi”} − {”A.V ivaldi”}

= {”W.A.Mozart”, ”J.S.Bach”}.

149

Next, pt(εu+) is ordered according to ε+1 which is chosen as the master expression.

Hence, the Positively Unified MEPE, denoted as εu+, can be obtained after attaching

the operators:

εu+ = (== ”J.S.Bach”→== ”W.A.Mozart”).

Example 2. Derive the Negative Unified MEPE from the following MEPEs:

ε−1 = (! = ”J.S.Bach”)

ε−2 = (! = ”W.A.Mozart”∧! = ”A.H.Haydn”)

Solution. Again, the pt-sets have to be found first, as shown below.

pt(ε−1) = {”J.S.Bach”}

pt(ε−2) = {”W.A.Mozart”, ”A.H.Haydn”}

In this example, Theorem 5 is applied since ε−1 and ε−2 are both negative MEPEs. As

a result, the pt-set of the Negative Unified MEPE can be derived as follows:

pt(εu−) = pt(ε−1) ∪ pt(ε−2)

= {”J.S.Bach”} ∪ {”W.A.Mozart”, ”A.H.Haydn”}

= {”J.S.Bach”, ”W.A.Mozart”, ”A.H.Haydn”}.

Finally, the Negatively Unified MEPE, denoted as εu−, can be obtained after attaching

the operators:

εu− = (! = ”J.S.Bach”∧! = ”W.A.Mozart”∧! = ”A.H.Haydn”).

Listing 5.2 summarizes the procedure of unifying MEPEs mentioned above.

As mentioned earlier, representing preferences by mandatory expressions is decisive,

that is, users either come to an agreement or no service is provided at all. However,

users are usually willing to negotiate: they do not always insist on the criteria and

may want to give up some desired service quality if the criteria can not be met in the

150

Listing 5.2: The algorithm for unifying MEPEs

Procedure Unify MEPE

Input

{εi}ki=1 : Pre f e r enceExpre s s i on [] { A se t o f MEPEs }
εmaster : Pre f e r enceExpre s s i on

{ The Master MEPE, where εm ∈ {εi}ki=1 }
Return

εu : Pre f e r enceExpre s s i on { The Uni f i ed MEPE }
Begin

I f (∃ε ∈ {εi}ki=1 such that ε i s a Po s i t i v e MEPE) Then

pt(εu) := ∩k1i=1pt(ε
+
i)− ∪kj=k1+1pt(ε

−
j)

Sort (pt(εu) ,εmaster) { Ordered by the Master MEPE }
Else { Al l e xp r e s s i on s are nega t i v e }

pt(εu) := ∪ki=1pt(ε
−
i)

εu := NewMEPE(pt(εu))

End .

Listing 5.3: The BNF of NEPE

NEPE : : = PtList? (: ’ (’ NegationExpr ’) ’)?

PtList : := ’ (’== STRING PtListTail∗ ’) ’

PtListTail : := == → STRING

NegationExpr : := ’ (’ != STRING (∧ != STRING)∗ ’) ’

first place. The Negotiable Enumerative Preference Expression (NEPE) is designed for

this purpose, which is used to specify the ”good to have” criteria for an enumerative

attribute. The BNF of NEPE is presented in Listing 5.3.

An NEPE has the form P : N, where the P segment is a list of positive p-terms,

whereas the N segment is a set of negative p-terms. For example, in the expression:

(== ”W.A.Mozart” :! = ”A.V ivaldi”),

the P segment is == ”W.A.Mozart”, and the N segment is ! = ”A.V ivaldi”. The p-

terms in P specify all ”good to have” options. If the p-terms in P can not be satisfied,

then the expression can be considered satisfied as long as the criteria specified in N are

evaluated to be True. If follows that if one of the Preference Expressions to be unified

is NEPE, then the expressions are first treated as Positive MEPEs that are composed

151

of the p-terms in P. If the unification fails, namely, pt(εu) = ϕ, then the p-terms in

P are replaced by those in N and then they are unified again. In this way, the NEPE

provide an additional chance for unification, since N has weaker constraint than P. The

following example explains the overall unification process mentioned above.

Example 3. Derive the Positively Unified MEPE from the following MEPEs and

NEPEs, where ε1 is the master expression:

ε1 = (== ”J.S.Bach”→== ”A.V ivaldi”→== ”A.H.Haydn”)

ε2 = (== ”W.A.Mozart” :! = ”A.V ivaldi”).

Solution. First of all, ε2 is converted into an MEPE based on P, so that we have

εP2 = (== ”W.A.Mozart”), where εP2 is an MEPE that are composed of all p-terms in

P. However, the unification between ε1 and εP2 fails, since

pt(εu) = pt(ε1) ∩ εP2

= {”J.S.Bach”, ”A.V ivaldi”, ”A.H.Haydn”} ∩ {”W.A.Mozart”}

= ϕ.

Next, because ε2 is negotiable, ε
P
2 is replaced by εN2 so that the unification is performed

again. Hence,

pt(εu) = pt(ε1)− εN2

= {”J.S.Bach”, ”A.V ivaldi”, ”A.H.Haydn”} − {”A.V ivaldi”}

= {”J.S.Bach”, ”A.H.Haydn”}.

Finally, pt(εu) is ordered according to ε1 which is chosen as the master expression.

Hence, the Positively Unified MEPE can be obtained after attaching the operators:

εu = (== ”J.S.Bach”→== ”A.H.Haydn”).

It is important to observe that the result of unifying a set of MEPEs and NEPEs

must be an MEPE. The reason is that the outcome has to be a consensus (and also the

152

most constrained). If there is at least one of them which is not negotiable, the outcome

must not be negotiable. But for a special case where all expressions to be unified are

NEPEs, the outcome will be an NEPE. When unifying NEPEs, the p-terms in P and in

N segments are converted into MEPEs and are unified correspondingly. The following

example explains the unification process mentioned above.

Example 4. Derive the unified NEPE from the following NEPEs, where ε1 is the

master expression:

ε1 = (== ”J.S.Bach”→== ”A.V ivaldi” :! = ”A.H.Haydn”)

ε2 = (== ”J.S.Bach” :! = ”A.V ivaldi”).

Solution. First, different segments of ε1 and ε2 are converted into MEPEs.

εP1 = (== ”J.S.Bach”→== ”A.V ivaldi”)

εN1 = (! = ”A.H.Haydn”)

εP2 = (== ”J.S.Bach”)

εN2 = (! = ”A.V ivaldi”)

Next, the MEPEs derived from P and from N are unified separately, that is,

pt(εu1) = pt(εP1) ∩ pt(εP2)

= {”J.S.Bach”, ”A.V ivaldi”} ∩ {”J.S.Bach”}

= {”J.S.Bach”}

pt(εu2) = pt(εN1) ∪ pt(εN2)

= {”A.H.Haydn”} ∪ {”A.V ivaldi”}

= {”A.H.Haydn”, ”A.V ivaldi”}.

Hence, the unification result of P segment is εu1 = (== ”J.S.Bach”) whereas that

of N segment is εu2 = (! = ”A.H.Haydn”∧! = ”A.V ivaldi”). The unified Preference

Expression can be obtained by concatenating εu1 and εu2 , namely,

εu = (== ”J.S.Bach”) : (! = ”A.H.Haydn”∧! = ”A.V ivaldi”).

153

Listing 5.4: The unification algorithm for MEPEs/NEPEs

Procedure Unify MEPE NEPE

Input

{εmandatoryi }k1i=1 : Pre f e r enceExpre s s i on []

{εnegotiablej }k2j=1 : Pre f e r enceExpre s s i on []

εmaster : Pre f e r enceExpre s s i on { The master expre s s i on }
Return

εu : Pre f e r enceExpre s s i on { The un i f i e d expre s s i on }
Begin

I f (|{εmandatoryi }k1i=1| > 0) Then { There i s a t l e a s t one MEPE }
εu := Unify MEPE({εmandatoryi }k1i=1 ∪ {P(ε

negotiable
j)}k2j=1 , εmaster)

I f (pt(εu):=ϕ) Then

εu := Unify MEPE({εmandatoryi }k1i=1 ∪ {N(ε
negotiable
j)}k2j=1 , εmaster)

Else { Al l e xp r e s s i on s are NEPE }
εu := NewNEPE(Unify MEPE({P(εnegotiablej)}k2j=1 , εmaster) ,

Unify MEPE({N(εnegotiablej)}k2j=1 , εmaster))

End .

If either the unification result of P segments or that of the N segments is ϕ, then the

final result have to be transformed to an MEPE. For example, if ε2 is replace by (==

”W.A.Mozart” :! = ”A.V ivaldi”), causing pt(εu1) = ϕ, then the final result becomes

ϕ : (! = ”A.H.Haydn”∧! = ”A.V ivaldi”), which can be rewritten as a negative MEPE

(! = ”A.H.Haydn”∧! = ”A.V ivaldi”).

Listing 5.4 summarizes the unification rules for a mixture of MEPEs and NEPEs

discussed above, where the functions P(ε) and N(ε) return the P segment and the N

segment of ε, respectively.

5.2.2 Numeric Preference Expressions

Numeric attributes are different from enumerative ones in that they are numerically

comparable and that they can be constrained by specifying intervals (i.e. upper and

lower bounds). As a result, numeric expressions must support more operators than

that are supported in enumerative ones. Specifically, there are only two operators

154

supported in Enumerative Preference Expressions: ”==” and ”!=”, whereas Numeric

Preference Expressions uses additional operators such as ”>”, ”<”, ”≤”, ”≥”, and

”¬”.

Again, Numeric Preference Expressions can also be mandatory or negotiable. A

Mandatory Numeric Preference Expression (MNPE) is a numeric preference expression

whose criteria must be met. For example, the MNPE:

((> 20∧ ≤ 30)∨ < 10) (5.6)

can be used to specify the selection criteria of size of an LCD display whose size is

either between 20 to 30 inches or smaller than 10 inches.

On the other hand, the Negotiable Numeric Preference Expression (NNPE) is the

numeric preference expression that contains ”negotiable” semantics. Similar to NEPE,

an NNPE is also composed of a P segment and an N segment which are delimited by

a colon mark. For example, the following expression

((> 20∨ < 10)∧! = 25 :≫) (5.7)

is capable of specifying a selection criteria and a negotiable expression for an LCD

display, where the former is that the size should be either larger than 20 inches or less

than 10 inches and must not equal 25 inches, whereas the later is the expression after

the colon mark (”:”), i.e. the N segment with the notation ”≫”, which means the size

is the greater the better. Note that the N segment of an NNPE is useful when the user

only wants to specify a vague constraint for an attribute. For instance, ≫, ≪, and ≈

denote ”the greater the better”, ”the less the better”, and ”the closer to a specified

value the better”. Taking the expression (5.7) as an example, assume that three kinds

of display are available, and their sizes are 25, 18, and 12 inches, respectively. The

order of preference should be 25, 18 and 12. This is because all of them do not match

the P segment of (5.7), so that according to the N segment, their preferences will be

155

Listing 5.5: The BNF of Mandatory Numeric Preference Expression (MNPE)

MNPE : := BinaryExpr | UnaryExpr | NegateExpr

BinaryExpr : := ’ (’MNPE BinaryOp MNPE ’) ’

NegateExpr : := ¬ BinaryExpr

UnaryExpr : := UnaryOp NUMBER

BinaryOp : := ∧ | ∨
UnaryOp : := == | != | ≥ | ≤ | > | <

Listing 5.6: The BNF of Negotiable Numeric Preference Expression (NNPE)

NNPE : := LogicExpr? (: NegotiationExpr)?

NegotiationExpr : := ≈ NUMBER

| ! ≈ NUMBER

| ≫
| ≪

LogicExpr : := BinaryExpr | UnaryExpr | NegateExpr

BinaryExpr : := ’ (’LogicExpr BinaryOp LogicExpr ’) ’

NegateExpr : := ¬ BinaryExpr

UnaryExpr : := UnaryOp NUMBER

BinaryOp : := ∧ | ∨
UnaryOp : := == | != | ≥ | ≤ | > | <

ranked in descending order. The BNF of MNPE and NNPE are shown in Listing 5.5

and Listing 5.6, respectively.

Again, unification rules are required if there are more than one Numeric Preference

Expressions. Not surprisingly, the unification rules for Numeric Preference Expressions

are different from enumerative ones because they are now integration of numerical

interval as well as comparative operators rather than lists of strings. However, it can be

shown that the integration of numerical intervals and operators can actually be reduced

to a few types of compact forms so that specific unification rules for these compact

forms can still be derived to integrate Numeric Preference Expressions efficiently.

The first step of unifying MNPE is to convert the expressions into Conjunctive

Normal Forms (CNF) which is a conjunction of clauses, where a clause is a disjunction

of logical terms (e.g. > 30∨ < 20). Theoretically, every logical expression can be

156

converted into an equivalent CNF expression by repeatedly applying distributive law

and De Morgan’s laws.

Let us denote an MNPE and a logical term as ζ and ρ, respectively, then any ζ can

be converted into the following CNF, denoted as ζ̂:

ζ̂ =

k1∧
i=1

(

k2∨
j=1

ρij) = (ρ11∨ρ12∨...∨ρ1k2)∧(ρ21∨ρ22∨...∨ρ2k2)∧...∧(ρk11∨ρk12∨...∨ρk1k2).

Here, the logical terms such as > 20, ≤ 30, and < 10 are also called p-terms. The

clause that consists of a set of p-terms connected by ∨ is called a disjunctive clause

(i.e.
∨
j

ρj).

The purpose for converting expressions into CNF is that both ∩ and ∪ satisfy the

associativity property so that the logical terms can be unified pairwise. Specifically,

after an MNPE is converted into a CNF, all clauses are connected by ∩, and all logical

terms are connected by ∪. Therefore, logical terms within a clause can be unified

pairwise, and the order in which they are unified does not affect the outcome. For

example,

(ρ11 ∨ ρ12 ∨ ... ∨ ρ1k2)

≡ (((((ρ11 ∨ ρ12) ∨ ρ13) ∨ ρ14)... ∨ ρ1k2))

≡ (((((ρ1k2 ∨ ρ1k2−1) ∨ ρ1k2−2) ∨ ρ1k2−3)... ∨ ρ11)).

The same principle holds for clauses within an MNPE. Taking the MNPE in (5.6)

as an example, it can be converted in to the following CNF by applying De Morgan’s

laws, that is,

((> 20∧ ≤ 30)∨ < 10) ≡ (((> 20∨ < 10) ∧ (≤ 30∨ < 10)). (5.8)

Now let us turn to the second step. The purpose of this step is to derive the most

compact form for each disjunctive clause. In fact, all disjunctive clause can be reduced

to one of the eight compact forms shown in Table 5.4 by repeatedly applying the

157

Table 5.1: Possible pairwise combinations between two numeric p-terms

< x > x == x ! = x

< y < x∨ < y. . . (1) > x∨ < y. . . (2) == x∨ < y. . . (4) ! = x∨ < y. . . (7)

> y > x∨ > y. . . (3) == x∨ > y. . . (5) ! = x∨ > y. . . (8)

== y == x∨ == y. . . (6) ! = x∨ == y. . . (9)

! = y ! = x∨! = y. . . (10)

Table 5.2: Reduction rules for deriving compact forms

No. Case Rule

(1) < x∨ < y if x ≥ y then < x else < y

(2) > x∨ < y if x ≤ y then True

(3) > x∨ > y if x ≥ y then > y else > x

(4) == x∨ < y if x ≤ y then < y

(5) == x∨ > y if x ≥ y then > y

(6) == x∨ == y if x == y then == x

(7) ! = x∨ < y if x < y then True else ! = x

(8) ! = x∨ > y if x > y then True else ! = x

(9) ! = x∨ == y if x == y then True else ! = x

(10) ! = x∨! = y if x == y then ! = x else True

158

< y

< x

xy

�

�

-

(a)

< x

< y

yx

�

�

-

(b)

< x

< y

x, y

�

�

-

(c)

Figure 5.6: Reducing < x∨ < y when (a) x > y, (b) x < y, and (c) x = y.

reduction rules shown in Table 5.2. It can be observed from Listing 5.5 that there are

six different operators defined in MEPE, namely, >, <, ≤, ≥, == , and ! =. Among

these operators, ≤ and ≥ is semantically equivalent to (< ∨ ==) and (> ∨ ==),

respectively. In this way, the number of different operators can be reduced to four:

>, <, ==, and ! =. Consequently, all possible pairwise combinations among numeric

p-terms in a disjunctive clauses are 42 = 16. However, as show in Table 5.1, there are

actually 10 distinct combinations because of the commutativity of ∨.

Because the logical operator for connecting p-terms in distinctive clauses is ∨, the

outcomes of unifications should be with fewer constraints, that is, with greater possible

coverage. Taking case (1) shown in Table 5.1 as an example, Figure 5.6-(a) reveals that

the coverage of ”< x” is greater than that of ”< y” when x > y, whereas the coverage

of ”< y” is greater that of ”< x” when x < y (Figure 5.6-(b)). In case that x is equal

to y, one can reduce ”< x∨ < y” to either ”< x”, or ”< y”, which is reduced to ”< x”

in this work, as shown in Figure 5.6-(c). The same procedure for obtaining the rules

applies to other cases as well. Specifically, the reduction rules for the cases (1) to (10)

listed in Table 5.2 can be diagrammatically and intuitively derived, as illustrated from

Figure 5.6 to 5.15, respectively. The deriving procedures for the remaining cases are

therefore not elaborated in further detail.

Now let us prove that all disjunctive clauses can be reduced to one of the eight

compact forms shown in Table 5.4 (i.e. Theorem 6).

Lemma 6. If a p-term of the form ! = s appears in a disjunctive clause, then either

159

< y

> x

xy

-

�

-

(a)

> x

< y

yx

�

-

-

(b)

> x

< y

x, y

�

-

-

(c)

Figure 5.7: Reducing > x∨ < y when (a) x > y, (b) x < y, and (c) x = y.

-> y

x

> x-
-

y

(a)

-> x

> y

yx

-
-

(b)

> x

> y

x, y

-

-
-

(c)

Figure 5.8: Reducing > x∨ > y when (a) x > y, (b) x < y, and (c) x = y.

xy

•
== x

�
< y

-

(a)
yx

•== x� < y

-

(b)

== x< y

x, y

� •
-

(c)

Figure 5.9: Reducing == x∨ < y when (a) x > y, (b) x < y, and (c) x = y.

xy

•== x -
< y

-

(a)
yx

•== x -< y

-

(b)

== x < y

x, y

-•
-

(c)

Figure 5.10: Reducing == x∨ > y when (a) x > y, (b) x < y, and (c) x = y.

xy

•== x

•== y
-

(a)
yx

•== x

• == y
-

(b)

== x

== y

x, y

•
•

-

(c)

Figure 5.11: Reducing == x∨ == y when (a) x > y, (b) x < y, and (c) x = y.

160

xy

◦� -! = x

� < y
-

(a)
yx

◦� -! = x

� < y
-

(b)

! = x

< y

x, y

�

◦� -

-

(c)

Figure 5.12: Reducing ! = x∨ < y when (a) x > y, (b) x < y, and (c) x = y.

xy

◦� -! = x

-> y

-

(a)
yx

◦� -! = x

-> y

-

(b)

! = x

> y

x, y

-

◦� -

-

(c)

Figure 5.13: Reducing ! = x∨ > y when (a) x > y, (b) x < y, and (c) x = y.

xy

◦� -! = x

•== y
-

(a)
yx

◦� -! = x

• == y
-

(b)

! = x

== y

x, y

•
◦� -

-

(c)

Figure 5.14: Reducing ! = x∨ == y when (a) x > y, (b) x < y, and (c) x = y.

xy

◦� -! = x

◦� -! = y
-

(a)
yx

◦� -! = x

◦� -! = y
-

(b)

! = x

! = y

x, y

◦
◦� -

� -
-

(c)

Figure 5.15: Reducing ! = x∨! = y when (a) x > y, (b) x < y, and (c) x = y.

Table 5.3: General forms for disjunctive clauses

No. General Form

(1) ! = s

(2) > a∨ < b ∨
∨
i

(== xi), where a ̸= b

161

! = s is the only p-term in the disjunctive clause or the clause is resolved to be True.

Proof. Recall that the unification is performed pairwise throughout the disjunctive

clause. According to Case (7)-(10) shown in Table 5.2, the results of integrating ”! = s”

with another p-term is either True or ”! = s”. If the result is True, then the whole

disjunctive clause are immediately evaluated as being True; otherwise, only ”! = s” is

derived and then it is integrates with the next term in the disjunctive clause. Finally,

the clause contains either solely ”! = s” or the whole clause is evaluated as being

True.

Lemma 7. There is at most one p-term of the form > a and at most one p-term of

the form < b in a disjunctive clause.

Proof. This lemma can be directly proved by using case (1) and case (3) shown in

Table 5.2. Assuming there are two different p-terms of the form > a, (for instance,

> x and > y), then according to case (1) in Table 5.2, the p-terms can be integrated

into single term, namely, either > x or > y. Similar results hold for for < b according

to case (3).

Lemma 8. All disjunctive clauses can be reduced to the general forms shown in Table

5.3, namely, either ! = s or > a∨ < b ∨
∨
i

(== xi), where a ̸= b.

Proof. From the definition of MNPE (Listing 5.5), the resulting general form of a

disjunctive clauses should be

∨
i1

(! = si1) ∨
∨
i2

(> ai2) ∨
∨
i3

(< bi3) ∨
∨
i4

(== xi4).

The general form can be reduced to one of the following form based on Lemma 6:

∨
i2

(> ai2) ∨
∨
i3

(< bi3) ∨
∨
i4

(== xi4), (5.9)

162

Table 5.4: Compact forms for disjunctive clauses

No. Type Compact Form

(1) Negation ! = s

(2) Disjoint Intervals or > a∨ < b ∨
∨
i

(== xi), where a ̸= b

Disjunctions of Positive Enumerations

(3) Disjoint Intervals or > a ∨
∨
i

(== xi)

Disjunctions of Positive Enumerations

(4) Disjoint Intervals or < b ∨
∨
i

(== xi)

Disjunctions of Positive Enumerations

(5) Disjoint Intervals > a∨ < b, where a ̸= b

(6) Disjoint Intervals > a

(7) Disjoint Intervals < b

(8) Disjunctions of Positive Enumerations
∨
i

(== xi)

or

∨(! = s). (5.10)

Note that (5.9) can be further reduced to the following form based on Lemma 7:

>a∨ < b ∨
∨
i

(== xi). (5.11)

As a result, this lemma can be proved by combining (5.10) and (5.11).

Theorem 6. (The compact forms of disjunctive clauses) All disjunctive clauses

can be reduced to one of the eight compact forms shown in Table 5.4.

Proof. The compact forms (1) and (2) listed in Table 5.4 can be directly obtained

from the two general forms derived in Lemma 8, namely, (5.10) and (5.11). The

compact forms (3) to (8) are special cases of general forms, which can be obtained by

163

Table 5.5: Compact forms derived form > a∨ < b ∨
∨
i

(== xi)

Condition Derived Compact Form

b = −∞, (i.e. < b = False) > a ∨
∨
i

(== xi)

a =∞, (i.e. > a = False) < b ∨
∨
i

(== xi)

i = 0 > a∨ < b, where a ̸= b

b = −∞ and i = 0 > a

a =∞ and i = 0 < b

a =∞ and b = −∞
∨
i

(== xi)

assigning ∞, −∞, and 0 to the variable a and b in (5.11) and i in (5.10), respectively,

as shown in Table 5.5.

After each disjunctive clauses are reduced to the most compact forms, the final step

involves connecting disjunctive clauses by conjunctive logical operator (∧) and applying

unification rules to each pair. From Lemma 8, there are three possible combination:

! = s∧! = t, (5.12)

! = s ∧ [> a∨ < b ∨
∨
i

(== xi)], and (5.13)

[> a∨ < b ∨
∨
i

(== xi)] ∧ [> c∨ < d ∨
∨
j

(== yj)], (5.14)

where a > b. The following paragraphs will derive reduction rules for each of them.

First, let us consider (5.12). It is important to observe that the statement can not

be reduced further unless s equals t, in which case the statement can be reduced to

either ! = s or ! = t. In this work, ! = s is chosen.

164

< b

> a

asb

-

�

-

Figure 5.16: Reducing the first term of (5.15): ! = s ∧ (> a∨ < b).

As for the case of (5.13), it can be expanded as follows:

! = s ∧ [> a∨ < b ∨
∨
i

(== xi)]

≡ [! = s ∧ (> a∨ < b)] ∨ [! = s ∧
∨
i

(== xi)]. (5.15)

According to Figure 5.16, the first term of (5.15) can be reduced to > a∨ < b if

s ≥ b ∧ s ≤ a, where a > b, since when s ≥ b ∧ s ≤ a, ! = s is redundant. As for the

second term, by the definition of subtraction (B̄ ∩ A = A − B), it can be reduced to∨
j

[(== zj)], where zj ∈ (X − s), X = {x1, x2, ...}.

To reduce (5.14), we first apply De-Morgan’s laws:

[> a∨ < b ∨
∨
i

(== xi)] ∧ [> c∨ < d ∨
∨
j

(== yj)] ≡

[(> a∨ < b) ∧ (> c∨ < d)]∨ (5.16)

[(> a∨ < b) ∧
∨
j

(== yj)]∨ (5.17)

[
∨
i

(== xi) ∧ (> c∨ < d)]∨ (5.18)

[
∨
i

(== xi) ∧
∨
j

(== yj)]. (5.19)

To merge (5.16), one should use a more restrictive boundary. In other words, (5.16)

can be reduced to > e∧ < f , where e = max(a, c) and f = min(b, d). Semantically,

the term
∨
i

(== xi) in (5.17) positively enumerates acceptable values. The term (>

a∨ < b) further constraints the acceptable values, and therefore (5.17) can be reduced

to
∨
k

(== zk), zk ∈ Y , where Y = {y1, y2, ...}, and zk < b or zk > a. Finally, it can

165

Table 5.6: Unification rules for NegotiationExpr

Master Slave Outcome

≫ ≫ ≫

≪ ≪ ≪

≫ ≪ ϕ

≪ ≫ ϕ

other cases other cases Master NegotiationExpr

be inferred that if statement (5.19) is true, than there exists a non-empty set W such

that W ⊆ X and that W ⊆ Y , namely, W ⊆ (X ∩ Y), where W = {w1, w2, ...}, X =

{x1, x2, ...}, and Y = {y1, y2, ...}. Consequently, (5.19) can be reduced to
∨
l

(== wl),

where wl ∈ (X ∩ Y).

The unification procedure of NNPE is the same as that of MNPE except for the N

segment. The rules for unifying N segments are listed in Table 5.6. If the semantics

of terms in N are the same, then the segment N is directly adopted. On the contrary,

the terms are removed if any conflict exists. If it is neither of the two cases, then the

segment N of the master expression is chosen.

5.3 Type-based Node Searching

After the Preference Unification phase (see Figure 5.4), there is exactly one unified

Preference Expression that specifies the criteria for each attribute. Based on the unified

Preference Expression, the PSM issues M-SEARCH messages to a multicast channel

and then waits for responses from Worker Nodes. In fact, the M-SEARCH messages

are responsible for conveying the Node Preference Descriptor (see Definition 12) which

consists of a type criterion and Attribute Preference Descriptors for selecting nodes.

As revealed in Listing 5.8, the type criterion is encoded as the value for the ST header,

166

Listing 5.7: Embedding an Node Preference Descriptor in an M-SEARCH message

M−SEARCH ∗ HTTP/1.1

ST : urn : schemas−upnp−org : dev i c e : s enso r : a

MX: 3

MAN: ”psmp : d i s c ov e r ”

CRITERIA: (l o ca t i on , (== ”livingroom”→== ”bedroom”))

(s ensor type , (== ”thermo” :! = ”humidity”))

HOST: 239 . 255 . 255 . 250 : 1900

whereas the Attribute Preference Descriptors are embeded in the CRITERIA section.

After receiving M-SEARCH messages, Worker Nodes will judge whether their types

satisfies the ones specified in the Node Preference Descriptors embedded in the M-

SEARCH messages and respond to the PSM if a match is found.

To enhance the interoperability, an Ontology for Smart Home system is proposed to

standardize the representation of node types. Advantages of using Ontology techniques

in Pervasive systems have been extensively discussed in several literatures, which can be

summarized as follows: 1) Knowledge sharing between agents and services, 2) Supports

of the hierarchical inference, and 3) Reuse of previously defined ontology models. As

a result, many researchers have been committed to develop the ontology of Pervasive

environments [41, 137]. In this work, we define concepts of sensors and actuators by

using OWL [8]. Note that the ontology can be easily incorporated into other well-

known ontology such as SOUPA [41]. In order to decide if a node type is the sub-type

of another node, PSM consults the ontology repository by issuing an SPARQL [14]

statement. Assuming that there is a class called V ideoDisplay, the following statement

searches for all sub-classes ofDisplay, which can be used for performing type matching.

To decide whether their attributes satisfies the criteria specify in the Attribute Pref-

erence Descriptor, Worker Nodes evaluate their attribute values against the Preference

Expressions that specify constraints for the attributes having the same names. Note

that some Worker Nodes may be implemented in embedded devices (hosts) causing im-

167

Listing 5.8: The SPARQL statement for searching sub-classes of a class called

V edioDisplay

PREFIX home:<http ://www. attent ivehome . org / on t o l o g i e s /

pernode /2010/10/Core . owl#>

SELECT ?name

WHERE {
? app l i ance home : hasType home : Disp lay .

? app l i ance home : hasName ?name .

}

plementation of evaluating mechanisms for Preference Expression infeasible. In these

cases, these Worker Nodes do not check attributes. Instead, the attribute evaluating

tasks are delegated to PSM.

As mentioned above, to be compatible with hosts having weak computing capabil-

ities, for each response from a Worker Node, the PSM first evaluates the attributes of

the Worker Node against the Preference Expressions specified in the Attribute Prefer-

ence Descriptor to filter out the un-qualified Worker Nodes. Next, the PSM adds the

node into a list of candidates for a specific node type and then selects the best ones

among them based on the results of interference estimation and a scoring mechanism

which are going to be presented in the next section.

5.4 Candidate Scoring and Selection

The objective of the Candidate Scoring and Selection phase is first to assess the pos-

sible interference of the candidate node with other existing nodes, that is, the degree

of interference, and then to grade each candidate node depending on how well the

capability of the candidate node matches the Preference Expressions.

168

5.4.1 Estimating the Degree of Interference

Let us first introduce how we estimate the interference degree among nodes. The

interference degree ι(w) is a measure that indicates the degree of user’s dissatisfac-

tion caused by the interferences among the Worker Node w and other nodes, where

0 ≤ ι(w) ≤ 1. The point to observe is that the estimated outcomes usually depend

on ”feelings” of users, which are rather subjective, vague, and context dependent. As

a result, Fuzzy sets are used to represent the factors that affect the interference de-

gree, which are inputs to the Fuzzy reasoner. Currently, three factors are taken into

consideration:

1. The physical distance between two devices: The shortest physical distance

between two devices respectively controlled by two candidate nodes in the smart

home. The closer two devices are to each other, the more interferences between

them there can be.

2. The similarity of effects: The similarity between two different effects produced

by the physical devices controlled by two different nodes. For instance, the effects

of playing music and text-to-speech, respectively, are similar : both of them

produce sounds. In this thesis, the effects of devices are represented by ontological

concepts (see Fig. 5.17) which can be obtained in their Capability Descriptors.

3. The intensity of the effect: The intensity, ranging from 0 to 1, of the effect is

an attribute pre-defined by the system administrator. The higher the intensity

of the effect is, the more likely that the device that produce the effect to interfere

with other devices.

To calculate the distance between devices (nodes), an undirected graph is created

based on a given floor plan, which considers each room as a vertex and edges two

vertices if the corresponding two rooms are adjacent. As a result, the distance between

169

Figure 5.17: The Effect ontology in a Smart Home

device a and device b, denoted D(a, b), can be obtained by calculating the number of

edges contained in the shortest path between two vertices. Note that it is assumed that

the floor plan is given and that the location of nodes can be obtained by examining

the attributes in the Capability Descriptors. The distance is ∞ if the node does not

control any devices (i.e. sensors or actuators) at all. For each candidate node, the

device is calculated against all activated nodes. After that, the least value is chosen as

the representative value since the nearest node is more likely to cause interference.

Meanwhile, the similarity values of effects among nodes are obtained by calculating

the semantic relevance of effects. This work adopts the approach proposed by Yu et

al. [144] to estimate the semantic relevance of effects. In this approach, the semantic

170

relevance between two effects, which are ancestor/descendant, is defined by a function,

S(ex, ey) =
d̂(Ancestor(ex, ey))

d̂max
,

where the function Ancestor(ex, ey) returns the ancestor node of the two, d̂max is the

maximum depth of the ontology, and d̂(e) is the depth of the effect e. Otherwise, if

the effects do not have ancestor/descendant relationships, then

S(ex, ey) =
d̂(NCA(ex, ey))

d̂max
,

where NCA(ex, ey) is the Nearest Common Ancestor (NCA) of ex and ey. Note that

the depth of the root is defined as 1.

Taking the ”Effect” ontology in Figure 5.17 as an example, the semantic similarity

between V isualEffect and ArtificialLightEffect is

S(V isualEffect, ArtificialLightEffect) =
d̂(V isualEffect)

d̂max
=

2

4
= 0.5.

Likewise, the semantic similarity of BoundedV isualEffect and DryEffect is

S(BoundedV isualEffect,DryEffect) =
d̂(NCA(BoundedV isualEffect,DryEffect))

d̂max

=
d̂(Effect)

d̂max
= 0.25,

since BoundedV isualEffect and DryEffect do not have a ancestor/descendant re-

lationship. After the similarity values are calculated, the highest value is chosen as the

representative value since the most similar node is more likely to cause interference.

In this work, Fuzzy sets are modeled by Sigmoid functions and Gaussian distribution

functions (see Fig. 5.18, 5.19, and 5.20). The Sigmoid function is of the form

AL1(x) =
1

1 + et·(x−u)
, (5.20)

where L1 is the label of a Fuzzy set; t and u are parameters pre-defined for a specific

membership functions of the Fuzzy set L1. t is used to adjust the shape of func-

tion, where as u is used to adjust the offset from the origin. Likewise, the Gaussian

171

Table 5.7: Membership functions for Fuzzy sets of ”distance” and default parameter

values

Label Membership Function Default Parameter Values

Close Sigmoid (5.20) t = −17 and u = 1.4

Average Gaussian (5.21) m̃ = 2 and σ = 0.25

Far Sigmoid (5.20) t = 10 and u = 2.5

Table 5.8: Membership functions for Fuzzy sets of ”intensity” and default parameter

values

Label Membership Function Default Parameter Values

Small Sigmoid (5.20) t = −30 and u = 0.3

Medium Gaussian (5.21) m̃ = 0.5 and σ = 0.1

Large Sigmoid (5.20) t = 30 and u = 0.7

distribution functions is of the form

AL2(x) = exp(
−(x− m̃)2

σ2
), (5.21)

where L2 is the label of the membership function, and m̃ is the mean and σ is the

standard deviation of the distribution. Tables 5.7, 5.8, and 5.9 show respectively how

the Fuzzy sets of ”distance”, ”intensity”, and ”similarity” are defined. The default

parameter values are pre-defined based on empirical experiences of the system designer,

which can be adjusted afterwards by users or by automatic fuzzy learners such as

ANFIS [75].

Figures 5.18, 5.19, and 5.20 depict respectively the Fuzzy sets for ”distance”, ”inten-

sity”, and ”similarity” diagrammatically after the membership functions and parameter

values are applied.

172

Table 5.9: Membership functions for Fuzzy sets of ”similarity” and default parameter

values

Label Membership Function Default Parameter Values

Dissimilar Sigmoid (5.20) t = −25 and u = 0.4

Average Gaussian (5.21) m̃ = 0.5 and σ = 0.1

Similar Gaussian (5.21) m̃ = 0.75 and σ = 0.75

Nearly The Same Sigmoid (5.20) t = 35 and u = 0.8

Figure 5.18: Fuzzy sets of ”distance”

173

Figure 5.19: Fuzzy sets of ”intensity”

Figure 5.20: Fuzzy sets of ”similarity”

174

Table 5.10: Membership functions for Fuzzy sets of ”interference” and default param-

eter values

Label Membership Function Default Parameter Values

Critical Sigmoid (5.20) t = 40 and u = 0.8

Serious Gaussian (5.21) m̃ = 0.75 and σ = 0.75

Average Gaussian (5.21) m̃ = 0.4 and σ = 0.1

Insignificant Sigmoid (5.20) t = −40 and u = 0.2

Similarly, the output of Fuzzy inference is also represented by Fuzzy sets, as shown

in Table 5.10 and Figure 5.21.

Listing 5.9 shows the algorithm used to estimate the interference degree of a candi-

date Worker Node w. This algorithm use Mamdani’s approach for Fuzzy inference [95],

where the MIN-MAX model is used for aggregation and accumulation and the results

are defuzzified by calculating COG (Center Of Gravity). To ensure the completeness

and consistency of rules, one rule is defined for each combination of Fuzzy variables.

Consequently, there are totally 3 × 3 × 4 = 36 rules defined (3 for both variables of

distance and intensity, and 4 for similarity).

5.4.2 Scoring Candidate Worker Nodes

As mentioned in Section 5.3, the Type-based Node Searching phase is essentially to

search for the sets of Worker Nodes whose types are identical to the ones specified

in Preference Descriptors. Specifically, assuming that there are k desired Worker

Nodes specified in a Service Request, then there are k Preference Descriptors, that

is, {P (w̃i)}ki=1, and k sets of candidate Worker Nodes whose types are the same with

the ones specified in {P (w̃i)}ki=1, namely, {W τ1 ,W τ2 , ...,W τk} = {W τi}ki=1, where τi is

the type specified in P (w̃i).

175

Figure 5.21: Fuzzy sets of ”interference”

Listing 5.9: Estimating the degree of interference

Procedure Es t imat e In t e r f e r enc e Deg r e e

Input

A∗ : A list of attribute sets of all activatedWorker Nodes

Aw : The attribute set of the candidate Worker Node

Local

∆distance,∆similarity, δintensity

Return

ι ∈ [0, 1] : The interference degree

Begin

For each A ∈ A∗

∆distance[A]← D(Aw[location], A[location])

∆similarity[A]← S(Aw[effect], A[effect])

End ;

δintensity ← Aw[intensity]

ι←Mamdani(min(∆distance),max(∆similarity), δintensity)

End ;

176

The objective of the Candidate Scoring and Selection phase is therefore to calculate

a score for each w ∈ W τi , and then to pick out the one with the highest score as the

recommended candidate. The score is calculated based on how well the attribute

values of a candidate satisfies the Attribute Preference Descriptors (cf. Definition 12).

We quantify the issue mentioned above by defining the concept of Delta Value for

attributes.

Definition 17. (Delta Value) The Delta Value δ is a measure of difference between

an attribute value α of the desired Worker Node w̃ and the value of the same attribute

of the candidate Worker Node w.

Listing 5.10 is the default algorithm for calculating Delta Value δ, where 0 ≤ δ ≤ 1.

If the value of α at least satisfies one p-term in pt(ϵ), then δ is calculated based on the

rank of the matched term for an enumerative expression. For numeric expressions, if

the value of α at least satisfies one p-term in the compact form of ϵ, then δ is assigned

depending on the number of satisfied p-terms. In the cases mentioned above, δ must

be less than or equal to 0.5. Otherwise, if the negotiation part of ϵ is matched, then

0.5 < δ < 1. Finally, δ = 1 if there is no match or if w does not have the corresponding

α. To calculate the rank r in the negotiation part of numeric expressions, attribute

values have to be sorted according to the negotiation operator. For ≪ and ≫, the

values are sorted in ascending and descending orders, respectively. In case of ≈, the

values are sorted according to min(|bu − α.v|, |bl − α.v|), where bu and bl are upper

bound and lower bound of the terms specified in the numeric expression, respectively.

The score of a Worker Node w given a desired node w̃ can be obtained by accu-

mulating 1− δ for all α in w̃. Since the importance of each attribute can be different,

we also use a weight vector ψ⃗ = (ψ1, ψ2, ..., ψn) to specify the relative importance of

attributes, with
∑

ψi
= 1, where i is the number of attributes of w̃. Therefore, the

score of w given w̃ can be formally defined as follows.

177

Listing 5.10: Algorithm for calculating the Delta Value

Procedure Calcu la t e De l ta Va lue

Input

ϵ : The Preference Expression

α : The attribute

p− ∈ (0, 0.5) : The negotiation penalty

Return

δ ∈ [0, 1] : The Delta Value for the attribute α

Begin

I f α is enumerative Then

I f v matches the r-th p-term in pt(ϵ) Then

δ ← r
2|pt(ϵ)|

Else I f v matches the negotiation part of ϵ Then

δ ← 0.5 + p−

Else δ ← 1

End I f ;

Else I f α is numeric Then

I f v at least satisfies partial of ϵ Then

δ ← |pt(ϵ)|−|satisfied p-terms|
2|pt(ϵ)|

Else I f v matches the negotiation part of ϵ with rank r Then

δ ← 0.5 + r
2|pt(ϵ)|

Else δ ← 1

End I f ;

End ;

178

Definition 18. (Score of a candidate Worker Node) The score of a candidate

Worker Node w given a desired Worker Node w̃, denoted as score(w|w̃), is the weighed

sum of all 1 − δαi
, where δαi

is the Delta Value of the i-th attribute specified in w̃,

namely,

score(w|w̃) = ψ⃗ · δ⃗−, (5.22)

where ψ⃗ = (ψ1, ψ2, ..., ψn), δ⃗− = (1− δα1 , 1− δα2 , ..., 1− δαn), α is the attributes of w̃,

and n is the number of attributes in w̃.

Finally, based on (5.22) and the interference degrees (see Section 5.4.1), we can

obtain the best candidate Worker Node wbest as the one with the highest score, namely,

wbest = argmax
wj ,1≤j≤k

{(1− ι(wj)) · score(wj|w̃)}, (5.23)

where k is the number of candidate Worker Nodes.

5.5 Evaluation

This section presents an example scenario that shows possible applications of the tech-

niques proposed in this chapter, namely, negotiable expression, preference unification,

and interference estimation. Then, these techniques are evaluated based on a set of

quality metrics, namely, Success Rate of Composition (SRC), Success Rate of Matching

(SRM), Precision of Composition (PoC), and User Satisfaction Index (USI).

5.5.1 Application Scenario

Bob comes home today after work at 7:00 P.M. Usually, the first thing he wants to

do is to watch TV. After identifying Bob’s ID at the front door, the pervasive system

in the smart home initiates a Watching TV Service. There are three instances where

televisions are available; one is with 31 inches, one is 17 inches, and the other is 28

179

inches. According to Bob’s preference (size, (≥ 30 :≫)), the system learns that the

one with 31-inch screen is preferred. Unfortunately, the TV with largest screen is now

broken. As a result, the 28-inch television is chosen since Bob has specified that it is

okay if his preference can not be satisfied, but the size should be the larger the better.

At 8:00 P.M., John, Bob’s room-mate, comes home. John is used to watch movie

via an on-line media service when he is at home so that he also prefers a display with

larger size. There is a device with 17-inch screen being available in the living room.

However, the system soon finds that this device has the same effect (see Fig 5.17) with

the one used by Bob. Moreover, these devices located at the same room. The ι value of

the 17-inch display is high, causing its score to be low. As a result, the system select an

alternative display located at the study room so that the interferences between Bob’s

and John’s services are avoided.

After finishing dinner, John and Bob browse magazines in the living room. They

used to listen to classical music when reading in the living room but they prefer different

composers. Their preferences on composers are listed below:

εBob = (== ”J. S. Bach”→== ”A. Vivaldi”)

εJohn = (== ”M. S. Mozart” :! = ”A. Vivaldi”).

Although Bob’s and John’s preferences appear to be conflicting, the preferences are still

unifiable since John’s preference expression specifies that any composer is acceptable

except A. Vivaldi. As a result, Bach’s music is played since the unified result is ==

{”J. S. Bach”}.

We can learn from the above application scenario that, due to the negotiable expres-

sion, Bob’s Watching TV service can still be composed even when the most preferable

component is broken. The price is that Bob has to specify a negotiable criterion and

the quality of service may be degraded. Also, despite the interference degree is taken

into account when selecting nodes, Bob’s and John’s services are free from interfering

180

with each other. Finally, when Bob and John are located at the same place, their pref-

erences can be negotiated and then be unified according to the proposed unification

mechanisms.

5.5.2 Quality Metrics

According to a recent survey of 24 existing service composition frameworks in perva-

sive environments [33], 17 of them are categorized as Type-based Service Composition

(TBSC), since they only compose the service by simply matching node types; the re-

maining 7 of them match the values of attributes against a set of user-specified expres-

sion, which are called Expression-driven Service Composition (EDSC). In the following,

the negotiable and unifiable service composition approach is called the Negotiable-

Expression-driven Service Composition (NESC). This work evaluates the quality of

the above mentioned approaches based on several metrics. The detailed discussions

and experimental results of these metrics are reported below.

All experiments are conducted on P4 1GHz CPU PCs with 1GB memory and

all input data are randomly generated to simulate the real world situation. In each

experiment, the number of Service Request is set to 1000, the lengths of services are

randomly distributed from 3 to 5, and there are totally 15 node types in the system.

Each composition method is performed to select candidates among a group of Worker

Nodes ranging from 500 to 1500 instances and each node consists of 7 to 11 attributes.

Among these attributes, 50% of them are constrained by user preferences. By default,

the number of mandatory preferences is equal to the number of negotiable preferences.

181

Success Rate of Composition (SRC)

One simple way to evaluate the quality of a service composition mechanism is to cal-

culate the Success Rate of Composition (SRC) [80]. SRC is defined as follows:

SRC =
n(Ssuccess)

n(S)
, (5.24)

where Ssuccess is the set of services that are successfully composed, and S is the set of

services to be composed. Recall that n(S) is the cardinality of the set S (see Definition

7).

As depicted in Figure 5.22, along with increasing of the number of nodes, the success

rate for EDSC and NESC (the proposed approach) are also slightly increased, whereas

TBSC is steady at approximately 75%. TBSC always has the best SRC score since its

selection criteria are less restrictive. More specifically, only the type information is used

as a constraint. On the other hand, EDSC has poor SRC, since its Node Preference

Descriptor is more restrictive. It is worthy to point out that the SRC of the NESC is

higher than that of EDSC because the inclusion of negotiation capability.

The major issue of SRC metric is that it is a coarse-grained measure of the success

rate of service composition. Specifically, a service is successfully composed if and only if

all of the desired Worker Nodes are found. Assuming that there are n desired Worker

Nodes, then the composition fails even when n − 1 out of n valid nodes are found.

Hence, SRC largely depends on desired Worker Nodes specified in the Service Request

so that it can be inaccurate to evaluate the quality of a service composition mechanism

by using only the SRC metric.

Success Rate of Matching (SRM)

To deal with the issue mentioned above, a finer-grained metric called the Success Rate

of Matching (SRM) is proposed below:

182

500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Number of Worker Nodes

S
uc

ce
ss

 R
at

e
of

 C
om

po
si

tio
n

(%
)

TBSC
EDSC
NESC

Figure 5.22: Success Rate of Composition (SRC)

SRM =

∑
s∈S

n(W valid
s)∑

s∈S
n(W requested

s)
=

∑
s∈S

n(Ws
valid)∑

s∈S
ℓ(s)

, (5.25)

where W valid
s is set of Worker Nodes that are successfully found and matched for the

service s, S is the set of services to be composed, and ℓ(s) is the length of s which is

defined in the Definition (8).

The core idea of SRM is to measure the success rate based on the number of

successfully found nodes instead of the number of successfully composed services. When

a service needs to be composed and if there are n− 1 out of n nodes which are found,

then n−1
n

is given to SRM instead of 0. Figure 5.23 shows SRM with different number of

Worker Nodes. Both the SRMs of EDSC and NESC slightly increase when the number

of nodes is increased. Again,TBSC has the highest SRM. It is interesting to point out

that all evaluated approaches have higher score in SRM than in SRC, since SRC is an

”all or nothing” type metric. Also note that the SRM scores of both EDSC and NESC

183

500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Number of Worker Nodes

S
uc

ce
ss

 R
at

e
of

 M
at

ch
in

g
(%

)

TBSC
EDSC
NESC

Figure 5.23: Success Rate of Matching (SRM) with different number of Worker Nodes

are higher than that of SRC.

A composition mechanism with high SRM does not guarantee high quality of ser-

vice. In an extreme case, a composition mechanism can achieve high SRM by simply

reporting that all nodes are candidates. As a result, a metric that measures the preci-

sion of the timing for reporting candidates is required.

Recently, many researchers found that ”recall” and ”precision”, which are common

evaluation measures in the information retrieval field [98], are very useful metrics for

evaluating the quality of service composition [121, 117]. According to (5.23), NESC

only returns the best node so that n(W requested
s) represents the total number of relevant

nodes of a Service Request. Therefore, the semantics of SRM is identical to the concept

of ”recall” which is the number of relevant items retrieved (i.e.
∑
s∈S

n(W valid
s)) over the

number of total number of relevant items (i.e.
∑
s∈S

n(W requested
s)). In the following, the

metrics for measuring the precision of a composed service will be presented.

184

Precision of Composition (PoC)

Precision is the number of relevant items retrieved over the number of total retrieved

items [98]. Hence, the Precision of Composition (PoC) can be defined as the number

of valid nodes retrieved over the number of total retrieved nodes, namely,

PoC =

∑
s∈S

n(W valid
s)∑

s∈S
n(W found

s)
, (5.26)

where n(W valid
s) is the number of nodes that fulfills the corresponding Node Preference

Descriptors and n(W found
s) is the number of nodes found by the PSM.

Figure 5.24 illustrates the PoC of the three approaches with increasing number of

nodes. The PoCs of TBSC, EDSC, and NESC are steady at 10%, 78%, and 86%,

respectively. It is important to note that the although TBSC gets high SRC/SRM in

the previous experiments, it suffers from extremely low PoC. In other words, TBSC

tends to retrieve too many candidates causing the precision being extremely low. On

the contrary, EDSC is too restrictive so that, although it gets the highest PoC, the

success rate (SRC/SRM) is poor. Figure 5.23 and 5.24 show that NESC is able to

maintain high score both in SRM/SRC and PoC. Specifically, the NESC is precise

enough so that it is able to compose high quality services while maintaining reasonable

success rate of composition.

Also, from Fig. 5.24, given that the number of constraints on node attributes

are the same, PoC is independent of the number of the Worker Nodes. Therefore,

additional experiments are performed to observe the relationship between PoC and the

ratios of constrained attributes. The outcomes are shown in Figure 5.25. Observe that

the PoCs of TBSC drop rapidly whereas PoCs of other approaches increase gradually.

The results show that TBSC is more inappropriate if there are more constraints on

attributes.

185

500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Number of Worker Nodes

P
re

ci
si

on
 o

f C
om

po
si

tio
n

(%
)

TBSC
EDSC
NESC

Figure 5.24: Precision of Composition (PoC) with different number of Worker Nodes

20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Ratio of Constrained Attributes (%)

P
re

ci
si

on
 o

f C
om

po
si

tio
n

(%
)

TBSC
EDSC
NESC

Figure 5.25: Precision of Composition (PoC) with different ratio of constrained at-

tributes

186

User Satisfaction Index (USI)

In this work, the Fβ-score is used to represent the overall quality of composition by

integrating SRM and PoC. Fβ-score is a popular method used to combine the precision

and recall metrics [113], where β is a weight parameter used to adjust the importance

between precision and recall. In fact, F1-score is the harmonic mean of precision and

recall. The following equation defines a Fβ-based metric called User Satisfaction Index

(USI) by integrating the outcomes of SRM and PoC:

USI(Fβ) = (1 + β2) · PoC · SRM
(β2 · PoC) + SRM

. (5.27)

In real cases, a composition method with low success rate (SRM) usually leads to

frustrating user experiences. Users’ preferences are usually adjustable, dynamic, and

vague so that they are usually willing to negotiate, that is, to adjust their preferences, in

order to prevent the composition from failing. When evaluating composition methods,

one can put more emphases on success rate (SRM) by increasing β.

Figures 5.26 and 5.27 show the USIs of the three methods when β = 1 and β = 2,

respectively. The results show that the proposed approach obtains the highest score

both in QoC(F1) and QoC(F2). When β = 2, where the metric is in favor of the

approaches with higher success rate, The USI score of NESC is obviously much higher

than that of EDSC.

It can be concluded that the proposed approach, namely, NESC, is able to achieve

high composition precision and maintains reasonable success rate of composition at the

same time so that it outperforms the other methods in both USI(F1) and USI(F2)

metrics.

187

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Worker Nodes

F
1

S
co

re

 TBSC
EDSC
NESC

Figure 5.26: F1 Score with different number of Worker Nodes

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Worker Nodes

F
2

S
co

re

TBSC
EDSC
NESC

Figure 5.27: F2 Score with different number of Worker Nodes

188

Figure 5.28: Turnaround time of service composition

5.5.3 Performance

To evaluate the performance of the proposed service composition approach, the nodes

and their Node Capability Descriptors are first generated and then the turnaround time

is measured. In this experiment, the turnaround time is defined as the duration from

the time when the Service Request is submitted to the time when all Worker Nodes are

activated. After each round, the average length of Pervasive Services are increased and

the tests are re-performed, where each round is performed 100 times. The results are

shown in Figure 5.28. The turnaround time of service composition increases linearly

when the number of nodes increases. In the real world, most Pervasive Services consist

of nodes whose quantity is less than 10 nodes. Hence, one can observe from Figure

5.28 that most real-world Pervasive Services require 10 seconds or less before they are

available based on the proposed approach.

189

5.6 Summary

In a Pervasive system such as the Smart Home, the criteria for selecting and ranking

services are usually specified by users, which tend to be vague and subjective. More-

over, the deployment of Pervasive services here is usually not as well-planned as that in

traditional enterprise environments. Hence, the criteria can be contradictory and the

activated services can interfere with one another. This chapter proposes an integrated

preference-guided and interference-aware service composition system for composing

applications in a smart home. The primary contributions include: 1) we propose a ne-

gotiable and unifiable expression language, namely, Preference Expression, along with

a set of unification rules for integrating conflicting preferences. Moreover, the expres-

sion represents both enumerative and numeric preferences. 2) We propose fuzzy-based

mechanism for estimating the degrees of interferences between service components. 3)

A scoring scheme is proposed to seamlessly integrate the techniques mentioned above.

Experimental results show that the proposed approach is able to greatly increase the

success rate of composition especially under strict constraints.

190

Chapter 6

Implementation

The mechanisms proposed in this thesis are realized as a platform that provides infras-

tructural support for pervasive services. The Manager Nodes and some Worker Nodes

are implemented mainly by using Java language on JDK 6. Other Worker Nodes are

implemented with C# and others in C++. This platform uses ActiveMQ 1, an open

source MOM, as the message exchanging backbone. ActiveMQ adopts a cross-platform

messaging protocol, and supports several programming languages such as C, C++, C#,

and Java.

Therefore, a Pervasive Service can be composed of Worker Nodes implemented by

means of heterogeneous technologies. This ability is of critical importance in developing

pervasive services. UPnP functionalities is implemented based on Intel UPnP SDK 2 for

C# and C++ based PerNodes, while Java-based PerNodes are developed by Cyberlink

UPnP for Java 3. There are many CSP-based libraries or toolkits available such as

JCSP [139] and PAT [128]. These tools are valuable in the design and validation phase

of a protocol. However, these libraries typically built on top of primitive network API,

therefore they inevitably lack of the abilities of performing low level control on packets

(such as SSDP packet modification). In addition, these implementations are usually

alternatives to the primitive thread model; it can be dangerous to mix them with other

libraries. Consequently, these libraries are not used in the production release.

An application framework called PerNode SDK (Software Developer’s Kits) that

supports rapid-prototyping of PerNodes is also developed. PerNode SDK is a Java-

1Available at http://activemq.apache.org/
2Intel Software for UPnP Technology, available at http://software.intel.com/en-

us/articles/intel-software-for-upnp-technology-download-tools/
3Available at http://www.cybergarage.org/twiki/bin/view/Main/ CyberLinkFor-

Java

191

Figure 6.1: The drag-and-drop code generating service

Figure 6.2: The code template generating wizard

192

Listing 6.1: The code segment that implements a ”Media Follow Me” service

@MessageBus (” f a i l o v e r : (tcp : / / 192 . 1 6 8 . 4 . 1 0 0 : 6 1 616) ”)

@MessageFrom(PlatformTopic .CONTEXT)

@PSMP

public class MediaFollowMeLogic extends LogicNode {
protected void processMessage (PlatformMessage message)

{ . . . }
}

based object-oriented application framework that provides design time supports with

a set of reusable libraries, interfaces, and default implementations. One of the dis-

tinguishing features of PerNode SDK is that it supports attribute-based programming

[36]. Therefore, the code becomes intuitive and more comprehensible. For example, the

code segment in Listing 6.1 describes a node that provides ”Media Follow Me” service.

The developers can setup the MOM and the listening topic by using @MessageBus

and @MessageFrom, respectively. Also note that @PSMP directs the framework inject

PSMP protocol mechanisms into the node. On the other hand, the developers are free

to switch to other service management protocols by using other protocol annotations.

Currently we support @SSDP or @PSMP. The PerNode SDK provides template-based

as well as drag-and-drop code generation services by a set of ”Interactive Wizards”,

which are realized as plug-in modules of the Eclipse IDE 4. Figure 6.1 is a node browser,

from which the developers can drag-and-drop existing PerNodes and then the code will

be generated. Figure 6.2 is an interactive wizard that generate a template according

to the node attributes specified by developers.

The overall process and the toolchain for constructing a PerNode is depicted in Fig.

6.3. In the Code Generation step, the developer specifies information required for code

generation such as the name, version, node type and listening topic in a configuration

file (see Fig. 6.4). The code generation is driven by a script file which is executed by

4Available at http://www.eclipse.org/

193

Figure 6.3: The toolchain for constructing PerNode

the Ant build system 5. The Ant build system generates code skeleton and Eclipse

project files based on the specified configuration file and code template. Then, in the

Development and Test phase, the developer modifies the generated code in the Eclipse

IDE. There is also a testing tool called MQ Simulator which is a useful tool to validate

the logic of a PerNode in development time. Finally, in the Packaging step, the code

and the related resource files are packaged into a single executable or an OSGi bundles.

Based on the toolchain mentioned above, several Pervasive Services are constructed,

some of them are listed in see Table 6.1, and Table 6.2 6. These services are deployed

in two dissimilar demo sites (Figure 6.5 and Figure 6.6). These sites are different in

size (NTU Attentive Home: 400 square feet; NTU INSIGHT Living Lab: 1080 square

feet.), partition (NTU Attentive Home is with 1 living room, 1 kitchen and 1 bedroom;

NTU INSIGHT Living Lab is with 1 living room, 1 kitchen, 1 toilet, 1 dining room and

5Available at http://ant.apache.org/
6see http://www.attentivehome.org/video.html for the demo video

194

Figure 6.4: PerNode Code/Project generator configuration file

195

Table 6.1: Implemented Pervasive Services

ID Name Member Type ID

PS1 Web-based Control and Monitoring S1, A1, A2

PS2 Media Follow Me S2, P1, A31, A32, A33

PS3 Fall Detection Alert S3, L2, A2, A4

PS4 Adaptive Air Conditioner S1, L3, A2

PS5 Burglar Detection Alert S1, L4, A2, A4

Figure 6.5: The NTU Attentive Home

2 bedrooms), appliances, and furnishing. Due to their dissimilarities, the developers

modified XML-based configuration files for each site in order to deploy the services.

However, the source codes need not to be changed.

Table 6.2 shows all services deployed in these environments. These nodes are located

in three different hosts (H1, H2 and H3), each host has a PHM. Table 6.1 lists required

service types and criteria of Pervasive Services. Notice that there are five Pervasive

Services and three Pervasive Hosts. Since several node instances are with the same

node types, the PSM can choose among one of them. For instance, the ”adaptive air

conditioner” service requires node types of S1, P3 and A2. There are two nodes that

are with type S1 (PL-2303 and Taroko), hence the PSM can activate one of them when

196

Figure 6.6: The NTU INSIGHT Living Lab

performing service activation.

It is noteworthy that PerSAM can consist of nodes implemented by means of het-

erogeneous programming languages. The interoperability of PerSAM makes it a highly

extensible integrating platform for pervasive environments. For instance, the real-time

image-processing components are better implemented with C or C++ while server-

side components are usually implemented with Java language. The cross-platform

interoperability is an inherited nature of the MOM, which is very hard to achieve in

process-centric architectures as well as Tuple Spaces. Besides, to avoid the possibility

of single-point-of-failure, most available MOM supports load-balancing as well as fail-

over mechanisms. Consequently, the features discussed above also make this platform

both flexible and reliable.

197

Table 6.2: Implemented PerNodes

Name Type ID Type and Criteria Host ID

PL-2303 Sensor Adapter S1 Wireless Sensor H1

Taroko Sensor Adapter S1 Wireless Sensor H1

Ekahau Position Engine S2 Location Sensor H2

Smart Floor Adapter S2 Location Sensor H1

AXIS 207MW Network S3 Image Sensor H1

Camera Adapter

Control and Monitoring A1 Web Application Server H2

Web Application

Home Appliance Controller A2 Home Appliance Controller H2

Smart Display A A31 Smart Display, H1

location=livingroom

Smart Display B A32 Smart Display, H2

location=studyroom

Smart Display C A33 Smart Display, H3

location=kitchen

Short Message System Gateway A4 SMS H2

Media Follow Me Logic L1 Logic, H3

name=Media Follow Me

Fall Detection Logic L2 Logic, H3

name=Fall Detection

Air Conditioner Logic L3 Logic, H3

name=Air Conditioning

Burglar Detection Logic L4 Logic, H3

name=Burglar

198

Chapter 7

Conclusion and Future Work

As pointed out in Chapter 1, the objective of this thesis is to investigate approaches

for realizing flexible, robust, consistent, and efficient Pervasive service management in

a Smart Home. This chapter first explains the contributions of the present research

and how these contributions achieve the desired goals as proposed in Chapter 1. Then,

several issues that can be explored in the future are suggested.

7.1 Summary of Contribution

The contributions of this thesis and how these contributions achieve the desired goals,

that is, flexibility, robustness, consistency, and efficiency, are summarized below.

1. Flexibility: The flexibility issues, which include extensibility and interoperabil-

ity, are addressed in Chapter 2. After reviewing and comparing several represen-

tative Pervasive systems, it can be concluded that due to the relief of performance

and interoperability issues, MOM is a good choice that benefits from the data-

centric architecture while keeps good performance and interoperability at the

same time.

2. Robustness: Despite the advantages of the MOM architecture, there are still

several challenges when designing pervasive systems based on the MOM architec-

ture. Specifically, it lacks a robust service management mechanism that maintains

and keeps track of the relationship between services and service components. As

a result, Chapter 3 proposes a service application model, called PerSAM, and

its auxiliary protocol, called PSMP, for facilitating autonomous service composi-

tion, and failure detection and recovery in Message-Oriented Pervasive Systems.

199

The proposed model and protocols are formally defined by using Process Alge-

bra. Based on these formulations, PerSAM/PSMP has been proved to be robust.

The experimental studies show that PSMP has much higher recovery rate than

SSDP and is able to recover significant portions of PSs even when the failure

rate reaches 100%. The performance evaluations show that for real-world PSs,

service composition and failure recovery can be performed within 2 seconds and

0.5 seconds, respectively.

3. Efficiency: This research proposes efficient enhancement mechanisms that help

PSMP minimizes the downtime of a system while maintains low communication

complexity. In Chapter 4, the design, analysis, simulations, and experiments

of several techniques for boosting the network efficiency - Decomposing Multi-

cast Traffic, Service-based Node Searching, Heartbeat by Decomposing Multicast

Traffic and On-Demand Heartbeat - based on PerSAM and PSMP are presented

in detail. Both analyses and simulations reveal that the proposed approaches can

reduce message counts of presence and leave announcement, node searching, and

heartbeat by more than 93.75%, 66%, and 50%, respectively, in average service

lengths.

4. Consistency: This research proposes an integrated negotiable and unifiable ser-

vice composition framework. First, this framework proposes a formal expression

notation, namely, the Preference Expression, which is capable of representing ne-

gotiable preferences, along with a set of unification rules for merging conflicting

preferences. Second, a Fuzzy-logic-assisted technique for interference estimation

is proposed. By integrating the proposed techniques, a user-centric service com-

position framework can be realized. According to the evaluation results, the

proposed approach outperforms other methods in the USI (User Satisfaction In-

dex) metric, which means that the proposed approach is able to achieve high

200

Table 7.1: Enhancements of service model and service management

Comparing Aspect UPnP This work

Architectural Style Process-centric Data-centric

Service Semantics - X

Expressiveness of Capability Type Type and attribute

Expressiveness of Preference Type Type and Preference

Expression

Discovery Coverage Active and Dormant

nodes

Active, Dormant, and

Installed nodes

Recovery Capability - X

Efficiency Improvement - X

Basic Service Composition - X

Consistent Service Composition - X

composition precision and maintains reasonable success rate of composition at

the same time.

The above-mentioned mechanisms are realized by constructing a developer’s toolkit,

called the PerNode SDK, which enables rapid developments of services in MOPS. The

toolkit consists of a reusable object-oriented application framework as well as toolkits

that enable wizard-based/drag-and-drop styles code generation. The feasibility of the

toolkit is demonstrated by developing several Pervasive Services based on the above-

mentioned toolkits.

As mentioned in Chapter 3, this work is designed based on the service model and

service discovery protocols of UPnP. Table 7.1 summarizes the afore-mentioned contri-

butions by listing the enhancements over UPnP.

201

7.2 Future Work

Future research could explore the following issues. In PerSAM, the hierarchical archi-

tecture can be a cost because of the inclusion of Manager Nodes. The reason for this

design is because decentralized failure detection and recovery such as consensus proto-

cols are usually not efficient and are less scalable. In the future, PerSAM/PSMP will

be enhanced by a hybrid architecture that employs a centralized approach for Worker

Node and a consensus-based approach for Manager Nodes. This approach will be more

cost effective since the number of Worker Nodes is much larger than that of Manager

Nodes. More concretely, a consensus-based failure detection and recovery protocol will

be integrated into PerSAM/PSMP to enhance its robustness.

The most important advantage of forming a Pervasive Host Community is that

a PHM is able to accurately detect the presence/absence of a node belonging to the

same Pervasive Host. In current design of PSMP, the detection of presence/absence of

nodes is carried out by using a distributed mechanism (i.e. heartbeat). As discussed

in Chapter 4, in order to achieve higher accuracy of presence/absence detection, the

heartbeat mechanism usually produce heavy network traffic. Therefore, one way to

enhance the presence/absence detection mechanism is to delegate the job to PHMs

since they are able to accurately and efficiently detect the status of local nodes without

causing any network traffic. As a result, presence and leave announcements are issued

by PHM on behalf of Worker Nodes, so that no heartbeat is needed. This feasibility of

this approach depends on the consensus-based failure detection and recovery protocol

for Manager Nodes mentioned in the previous paragraph.

As mentioned in Chapter 4, UPnP/SSDP relies on UDP, which is unreliable since

UDP loses packets under heavy traffic, and thus causing the management mechanisms

become invalid. On the contrary, although TCP is reliable, managing services based

on TCP is an overkill since service management packets are usually short and thus do

202

not require additional functionalities provided by TCP such as congestion control and

re-sequencing mechanism. The Wireless Application Protocol (WAP) [2] specification

is an industrial standard that is more efficient and therefore useful for wireless applica-

tions. The Wireless Transaction Protocol [5], which is part of WAP, is a transport-layer

protocol that is able to support reliable communications based on current UDP/IP in-

frastructure. The reliability is achieved by using unique IDs, acknowledgements, dupli-

cate removal, and re-transmissions. In addition, WTP also support message aggrega-

tion so that the traffic can be further reduced. On top of WTP is a specification called

Wireless Session Protocol [4], which is essentially an efficient version of HTTP/1.1 in

the sense that it uses a binary encoding scheme for headers and data. Hence, WTP

appear to be a good starting point for designing an efficient reliable transport protocol

based on UDP. Meanwhile, WSP can also be a more efficient replacement of HTTP

which is currently adopted by PSMP. As a result, the study about how to improve the

efficiency of home network by integrating WTP and WSP into PSMP is under way.

Currently, user preferences are represented and unified in a concrete way. As men-

tioned earlier, users’ preferences are usually vague. Therefore, the syntax and seman-

tics of the Preference Expression can be further extended to facilitate Fuzzy preference

representation and unification.

Many services in Smart Homes contain ”contents”, that is, digitized media such

as texts, images, videos and voices that are able to be processed by computers. From

a user’s point of view, services with different digital contents should be distinguished

from one another. For instance, a media player playing different movies provide dif-

ferent user experiences. In other words, the information of contents should be taken

into account when selecting and ranking services besides types and QoS attributes of

services. Further research is also under way to investigate this type of content-based

services.

203

Besides, although fuzzy-based approaches is used to estimate the interference de-

gree, the selection criteria of membership function is arbitrary (pre-defined by the

system designer). After the system is deployed, the fuzzy rules and the parameters

of membership function should be adjusted autonomously to reflect user’s preferences.

This can be achieved by integrating fuzzy-based learning algorithm such as ANFIS

[75]. One possible approach is to take the advantages of collective intelligence and to

download learning results from a cloud-based service platforms. The interference issue

is currently integrated into the node selection process by estimating the possibility of

being interfered. In the future, the proposed service composition framework will be

enhanced by runtime interference detection capability. The concept of interfering in-

tensity is required which is used to estimate how these interferences affect users. When

the intensity of interference is high, a PSM should replace portion of its members to

alleviate the interference.

204

BIBLIOGRAPHY

[1] Common Object Request Broker Architecture Specifications. Object Management
Group (OMG), 1994.

[2] Wireless Application Protocol Architecture Specification. 1998.

[3] Salutation Architecture. Salutation Consortium, 1999.

[4] Wireless Application Protocol Wireless Session Protocol Specification. 1999.

[5] Wireless Application Protocol Wireless Transaction Protocol Specification. 1999.

[6] CORBA Trading Object Service Specification, Version 1.0. Object Management
Group (OMG), 2000.

[7] Bluetooth Service Discovery Application Profile, v.1.1. The Bluetooth Special
Interest Group, 2001.

[8] OWL Web Ontology Language Overview. W3C Recommendation. World Wide
Web Consortium, 2004.

[9] Web Services Security: SOAP Message Security 1.1 (WS-Security). 2004.

[10] FIPA: The Foundation for Intelligent Physical Agents. IEEE, 2005.

[11] OSGi Service Platform Release 4. OSGi Alliance, 2007.

[12] Simple Object Access Protocol (SOAP) version 1.2, W3C Recommendation.
WWW Consortium, 2007.

[13] FIPA Agent Management Specification. IEEE, 2008.

[14] SPARQL Query Language for RDF. W3C Recommendation. World Wide Web
Consortium, 2008.

[15] UPnP Device Architecture 1.1, ISO/IEC DIS 29341. UPnP Forum, 2008.

[16] ZigBee Specification 053474r17. 2008.

[17] G. D. Abowd. Software engineering issues for ubiquitous computing. In Proc.
21st International Conference on Software Engineering (ICSE ’99), pages 75–84,
1999.

[18] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In Proc. 17th Symposium on
Operating System Principles, 1999.

[19] F. K. Aldrich. Inside the Smart Home. Springer-Verlag London Limited, 2003.

[20] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath. The Jini
Specification. Addison-Wesley, 1999.

205

[21] J. C. Augsto and C. D. Nugent. Designing Smart Homes. Springer-Verlag, Berlin,
2006.

[22] J. W. Backus. The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference. In Proc. International Conference
on Information Processing, pages 125–132, 1959.

[23] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking
up data in p2p systems. Communications of the ACM, 46(2), 2003.

[24] G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case for message oriented
middleware. In Proc. 13th International Symposium on Distributed Computing
(DISC’99), 1999.

[25] W. C. Barker. NIST 800-67 Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher. 2008.

[26] A. Bedrouni, R. Mittu, A. Boukhtouta, and J. Berger. Distributed Intelligent
Systems: A Coordination Perspective. Springer, 2009.

[27] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems
with JADE. John Wiley & Sons, Ltd., 2007.

[28] J. A. Bergstra, A. Ponse, and S. A. Smolka. The Handbook of Process Albegra.
Elsevier, 2001.

[29] C. Bettini and D. Riboni. Profile aggregation and policy evaluation for adap-
tive internet service. In Proc. IEEE International Conference on Mobile and
Ubiquitous Systems, pages 290–298, 2004.

[30] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[31] G. Booch, I. Jacobson, and J. Rumbaugh. the Unified Modeling Language Spec-
ification, Version 1.3. 2000.

[32] A. Bottaro and R. S. Hall. Dynamic selection and ranking in context-aware
service composition. In Proc. of the 6th International Conference on Software
Composition (LNCS 4829, SC 2007).

[33] J. Bronsted, K. M. Hansen, and M. Ingstrup. Service composition issues in
pervasive computing. IEEE Pervasive Computing, 9(1):62–70, 2010.

[34] B. Cain, S. Deering, and I. Kouvelas. Internet Group Management Protocol,
Version 3, RFC 3376. 2002.

[35] M. Calder, M. Kolberg, E. H. Magil, and S. R. Marganiec. Feature interaction:
a critical review and considered forecast. Computer Networks, 41(1):115–141,
2003.

[36] V. Cepa. Attribute Enabled Software Development. VDM Verlag Dr. Mueller,
2007.

206

[37] R. Cerqueira, C. Cassino, and R. Ierusalimschy. Dynamic component gluing
across different componentware systems. In Proc. International Symposium on
Distributed Objects and Applications (DOA’99), pages 362–371, 1999.

[38] D. Chappel. Trouble with CORBA. 1998.

[39] H. Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, 2004.

[40] H. Chen, T. Finin, and A. Joshi. Semantic web in in the context broker archi-
tecture. In Proc. IEEE International Conference on Pervasive Computer and
Communications (PerCom’04), 2004.

[41] H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology for PervasiveComputing.
Springer-Verlag, 2005.

[42] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco.
Mobile data collection in sensor networks: The tinylime middleware. Journal of
Pervasive and Mobile Computing, 4(1):446–469, 2005.

[43] C. Dabrowski and K. Mills. Understanding self-healing in service discovery sys-
tems. In Proc. Workshop on Self-healing systems, 2002.

[44] C. Dabrowski, K. Mills, and S. Quirolgico. Understanding failure response in
service discovery systems. The Journal of Systems and Software, 80(6):896–917,
2007.

[45] J. Daemen. The design of Rijndael: AES-the advanced encryption standard. 2002.

[46] A. K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, 2000.

[47] A. K. Dey. Understanding and using context. Personal and Ubiquitous Comput-
ing, 1(5), 2001.

[48] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. icap: Interactive prototyping of
context-aware applications. In Proc. of International Conference on Pervasive
Computing (Pervasive’06). Springer, 2006.

[49] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1, RFC 4346”. 2006.

[50] S. Dixit and R. Prasad. Home Networking Challenges. Wiley-Inderscience, 2008.

[51] D. Eastlake and P. Jones. RFC 3174 - US Secure Hash Algorithm 1 (SHA1).
2001.

[52] W. K. Edwards. Discovery systems in ubiquitous computing. IEEE Pervasive
Computing, 5(2), 2006.

207

[53] W. K. Edwards and R. E. Grinter. At home with ubiquitous computing: Seven
challenges. In Proc. 3rd International Conference on Ubiquitous Computing (Ubi-
Comp’01), pages 256–272, 2001.

[54] C. Ellison. UPnP Security Ceremonies Design Document. 2003.

[55] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The many faces
of publish-subscribe. ACM Computing Survey, 35(2), 2003.

[56] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution
for pervasive computing. In Proc. IEEE Workshop on Hot Topics in Operating
Systems, 2001.

[57] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking, 5(6), 1997.

[58] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: Towards
distraction-free pervasive computing. IEEE Pervasive Computing, 21(2), 2002.

[59] D. Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1), 1985.

[60] L. Gong. Jxta: a network programming environment. IEEE Internet Computing,
5(3):88 – 95, 2001.

[61] R. Grimm. One.world: Experiences with a pervasive computing architecture.
IEEE Pervasive Computing, 3(3), 2004.

[62] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth, S. Swanson, T. An-
derson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall. Systems direc-
tions for pervasive computing. In Proc. 8th Workshop on Hot Topics in Operating
Systems, 2001.

[63] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Ber-
shad, G. Borriello, S. Gribble, and D. Wetherall. System support for pervasive
applications. ACM Trans. on Computer Systems, 22(4), 2004.

[64] T. Gu, H. K. Pung, and D. Q. Zhang. Toward an osgi-based infrastructure for
context-aware applications. IEEE Pervasive Computing, 3(4), 2004.

[65] T. Gu, H. K. Pung, and D. Q. Zhang. A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications, 28, 2005.

[66] S. Guan. IGMP-extension User Manual. 2009.

[67] E. Guttman. Service location protocol: automatic discovery of ip network ser-
vices. IEEE Internet Computing, 3(4):71–80, 1999.

[68] R. Harper. Inside the Smart Home. Springer-Verlag, London, 2003.

208

[69] M. Henning. The rise and fall of corba. ACM Queue, 2006.

[70] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8), 1978.

[71] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison Wesley, MA,
2004.

[72] J. I. Hong and J. A. Landay. An infrastructure approach to context-aware com-
puting. Human-Computer Interaction, 16(2):287–303, 2001.

[73] C. L. Hu, Y. J. Huang, and W. S. Liao. Multicast complement for efficient upnp
eventing in home computing network. In Proc. IEEE International Conference
on Portable Information Devices (PORTABLE’07), 2007.

[74] T. Issariyakul and E. Hossain. Introduction to Network Simulator NS2. Springer,
2008.

[75] J. S. R. Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man and Cybernetics, 22(3):665–685, 1993.

[76] B. Johanson. Application Coordination Infrastructure for Ubiquitous Computing
Rooms. PhD thesis, 2002.

[77] B. Johanson and A. Fox. The event heap: A coordination infrastructure for
interactive workspaces. In Proc. IEEE Workshop on Mobile Computing Systems
and Applications, 2002.

[78] Y. W. Jong, C. F. Liao, and L. C. Fu. A rotating roll-call-based adaptive fail-
ure detection and recovery protocol for smart home environments. In Proc. 7th
International Conference On Smart homes and health Telematics (ICOST’09),
2009.

[79] M. B. Juric. Business Process Execution Language for Web Services BPEL and
BPEL4WS. Packt Publishing, 2 edition, 2006.

[80] S. Kalasapur, M. Kumar, and B. Shirazi. Evaluating service oriented architec-
ture (soa) in pervasive computing. In Proc. IEEE International Conference on
Pervasive Computing and Communications (PerCom’06), 2006.

[81] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in
telecommunications system: A survey. IEEE Transactions on Software Engi-
neering, 24(10):779–796, 1998.

[82] T. Kindberg and A. Fox. System software for ubiquitous computing. IEEE
Pervasive Computing, 1(1), 2002.

[83] M. Klusch and A. Gerber. Fast composition planning of owl-s services and ap-
plication. In Proc. European Conference on Web Services, 2006.

209

[84] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. Butler, and
L. Tran. Composite Capability/Preference Profiles (CC/PP): Structure and Vo-
cabularies 1.0. W3C Recommendation. 2004.

[85] S. Knauth, R. Kistler, D. Kaslin, and A. Klapproth. Upnp compression im-
plementation for building automation devices. In Proc. 5th IEEE International
Conference on Industrial Informatics, 2007.

[86] M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services
supporting networked appliances. IEEE Communications, 41(11):136–147, 2003.

[87] G. Kotz and D. Solar: Towards a flexible and scalable data-fusion infrastructure
for ubiquitous computing. In Proc. ACM International Conference on Ubiquitous
Computing (UbiComp’01), 2001.

[88] S. Kumar, P. R. Cohen, and H. J. Levesque. The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams. In Proc. 4th Interna-
tional Conference on Multi-Agent Systems, pages 159–166, 2000.

[89] L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3), 1994.

[90] G. Lee, P. Faratin, S. Bauer, and J. Wroclawski. A user-guided cognitive agent
for network service selection in pervasive computing environments. In Proc. of
IEEE International Conference on Pervasive Computing and Communications,
2004.

[91] Y. Li, J. Huai, H. Sun, T. Deng, and H. Guo. Pass: An approach to personalized
automated service composition. In Proc. of IEEE International Conference on
Service Computing, pages 283–290, 2008.

[92] S. Loke. Context-Aware Pervasive Systems - Architectures for a New Breed of
Applications. Auerback Publications, Taylor & Francis Group, 2007.

[93] H. K. Low, D. Chieng, A. K. Mustapha, Y. C. Ngeow, and E. Goh. A feature
interaction conflicts detection engine for pervasive networked environment. In
Proc. International Conference on Multimedia and Ubiquitous Engineering, pages
891–896, 2007.

[94] C. H. Lu and L. C. Fu. Robust location-aware activity recognition using wireless
sensor networks in an attentive home. IEEE Transactions on Automation Science
and Engineering, 2008.

[95] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal on Man Machine Studies, 7(1), 1975.

[96] M. I. Mandel, G. E. Poliner, and D. P. W. Ellis. Support vector machine active
learning for music retrieval. ACM Journal of Multimedia System, 21(1):3–13,
2005.

210

[97] W. C. Mann and B. R. Milton. Home Automation and Smart Environments to
Support Independence. John Wilery & Sons, 2005.

[98] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to Information
Reterival. Cambridge University Press, 2009.

[99] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. M. Dermott, S. Mcllraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic Markup for Web Services. 2004.

[100] Y. Mazuryk and J. J. Lukkien. Analysis and improvements of the eventing
protocol for universal plug and play. In Proc. IASTED Conference on Commu-
nications, Internet and Information Technology, 2004.

[101] J. McCarthy. Circumscription a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

[102] E. Meshkova, J. Riihijarvi, M. Petrova, and P. Mahonen. A survey on resource
discovery mechanisms, peer-to-peer, and service discovery frameworks. Computer
Networks, 52(11):2097–2128, 2008.

[103] N. Milanovic and M. Malek. Current solutions for web service composition. IEEE
Internet Computing, 8(6):51–59, 2004.

[104] T. P. Moran and P. Dourish. Human-Computer Interaction, volume 16. Lawrence
Erlbaum Associates, 2001.

[105] A. L. Murphy, G. P. Picco, and G. C. Roman. Lime: A coordination model
and middleware supporting mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology, 15(3):279–328, 2006.

[106] K. Nakamura, M. Ogawa, T. Koita, and K. Sato. Implementation and evaluation
of caching method to increase the speed of upnp gateway. In Proc. IEEE/IFIP In-
ternational Conference on Embedded and Ubiquitous Computing (EUC’08), 2008.

[107] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated
services of networked home appliances -an object-oriented approach. In Proceed-
ings of International Conference on Feature Interactions in Telecommunication
Networks and Distributed Systems, pages 236–251, 2005.

[108] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching
of web services capabilities. In Proc. of International Semantic Web Conference
(ISWC).

[109] V. Poladian, D. Garlan, and M. Shaw. Selection and configuration in mobile en-
vironments: A utility-based approach. In Proc. Fourth Workshop on Economics-
Driven Software Engineering Research, 2002.

[110] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd. Icrafter: A service
framework for ubiquitous computing environments. In Proc. 3rd International
Conference on Ubiquitous Computing, pages 56–75, 2001.

211

[111] A. Ranganathan, S. Chetan, J. A. Muhtadi, R. H. Campbell, and M. D. Mick-
unas. Olympus: A high-level programming model for pervasive computing envi-
ronments. In Proc. 3rd IEEE International Conference on Pervasive Computing
and Communications (PerCom’05), pages 7–16, 2005.

[112] M. Rausand and A. Hoyland. System Reliability Theory: Models, Statistical
Methods, and Applications. Wiley, 2 edition, 2004.

[113] C. J. V. Rijsbergen. Information Retrieval. Butterworth, 2 edition, 1979.

[114] M. Roman. An Application Framework for Active Space Applications. PhD thesis,
2003.

[115] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt. A middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4), 2002.

[116] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the de-
velopment of context-enabled applications. In Proc. International Conference on
Human Factors in Computing Systems (CHI ’99), 1999.

[117] M. Sathya, M. Swarnamugi, P. Dhavachelvan, and G. Sureshkumar. Evaluation of
qos based web-service selection techniques for service composition. International
Journal of Software Engineering, 1(5):73–90, 2010.

[118] M. Satyanarayanan. Mobile information access. IEEE Personal Communication,
3(1), 1996.

[119] C. S. Shankar, A. Ranganathan, and R. Campbell. An eca-p policy-based frame-
work for managing ubiquitous computing environments. In Proc. IEEE Interna-
tional Conference on Mobile and Ubiquitous Systems, pages 33–42, 2005.

[120] R. Sharp. Principles of Protocol Design. Springer-Verlag, 2008.

[121] E. Silva, L. F. Pires, and M. v. Sinderen. A framework for the evaluation of
semantics-based service composition approaches. In Proc. of 7th IEEE European
Conference on Web Services (ECOWS).

[122] H. A. Simon. The Sciences of the Artificial. 1996.

[123] E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting semantic web services
with interactive composition techniques. IEEE Intelligent Systems, 19(4):42–49,
2004.

[124] M. E. Smid and D. K. Branstad. Data encryption standard: past and future.
Proceedings of the IEEE, 76(5):550–559, 1988.

[125] J. P. Sousa. Scaling Task Management in Space and Time:Reducing User Over-
head in Ubiquitous-Computing Environments. PhD thesis, 2005.

212

[126] J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based
adaptation for ubiquitous computing. IEEE Transactions on Systems, Man, and
Sybernetics - Part C: Applications and Reviews, 36(3), 2006.

[127] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, and C. Ferraz. A
message-oriented middleware for sensor networks. In Proc. International Work-
shop on Middleware for Ubiquitous and Ad-Hoc Computing, 2004.

[128] J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating specification and pro-
grams for system modeling and verification. In Proc. International Symposium
on Theoretical Aspects of Software Engineering, 2009.

[129] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and
coordination of agent-based semantic web services. IEEE Internet Computing,
8(3):66–73, 2004.

[130] H. Takeda, P. Veerkamp, T. Tomiyama, and H. Yoshikawam. Modeling design
processes. AI Magazine, 11(4):37–48, 1990.

[131] I. Taylor, B. Adamson, I. Downard, and J. Macker. Agentj: Enabling java ns-2
simulations for large scale distributed multimedia applications. In Proc. 2nd In-
ternational Conference on Distributed Frameworks for Multimedia Applications,
pages 1–7, 2006.

[132] R. Thiagarajan, M. Stumptner, andW. Mayer. Semantic web service composition
by consistency-based model refinement. In Proc. IEEE Asia-Pacific Services
Computing Conference, pages 336–343, 2008.

[133] D. T. Tran and E. Choi. A reliable udp for ubiquitous communication environ-
ments. In Proc. WSEAS International Conference on Computer Engineering and
Applications, 2007.

[134] S. Tsang and E. H. Magil. Learning to detect and avoid run-time feature in-
teractions in intelligent networks. IEEE Transactions on Software Engineering,
24(10), 1998.

[135] V. K. Vaishnavi and W. K. Jr. Design Science Research Methods and Patterns -
Innovating Information and Communication Technology. Auerbach Publications,
Taylor & Francis Group, 2008.

[136] K. Vanthournout, G. Deconinck, and R. Belmans. A taxonomy for resource
discovery. Personal and Ubiquitous Computing, 9(2):81–89, 2005.

[137] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology based context
modeling and reasoning using owl. In Proc. of the IEEE Conference on Pervasive
Computing and Communications Workshops, 2004.

[138] M. Weiser. The computer for the twenty-first century. Scientific American,
265(3):94–104, 1991.

213

[139] P. Welch and J. Martin. Formal analysis of concurrent java systems. In Proc.
Communicating Process Architectures, 2000.

[140] B. Whetten, S. Kaplan, and T. Montgomery. A high performance totally ordered
multicast protocol. In Proc. Of INFOCOMM’95, 1995.

[141] T. Winograd. Architectures for cotext. Human-Computer Interaction, 16(2-
4):401–419, 2001.

[142] C. L. Wu, C. F. Liao, and L. C. Fu. Service-oriented smart home architecture
based on osgi and mobile agent technology. IEEE Transactions on Systems, Man
and Cybernetics - Part C, 37(2), 2007.

[143] K. Yaghmour, J. Masters, G. B. Yossef, and P. Gerum. System Monitoring,
page 85. O’reilly Media, Inc., 2008.

[144] Z. Yu, Y. Nakamura, D. Zhang, S. Kajita, and K. Mase. Content provisioning
for ubiquitous learning. IEEE Pervasive Computing, 7(4):62–70, 2008.

[145] A. Zeidler. Event-based Middleware for Pervasive Computing: Foundations, Con-
cepts, Design. VDM Verlag Dr. Muller, 2007.

[146] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. IEEE Transaction on Soft-
ware Engineering, 30(5), 2004.

[147] L. J. Zhang, J. Zhang, and H. Cai. Service Computing. Springer and Tsinghua
University Press, 2007.

[148] F. Zhu, M. W. Mutka, and L. M. Ni. Service discovery in pervasive computing
environments. IEEE Pervasive Computing, 4(4):81–90, 2005.

214

PUBLICATION LIST

*: Thesis-Related Works

International Journal Papers

1. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”Toward Reliable Service Man-

agement in Message-Oriented Pervasive Systems,” in IEEE Transactions on Ser-

vice Computing, 2010. (to appear, http://doi.ieeecomputersociety.org/10.

1109/TSC.2010.59) [*]

2. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”Toward a Message-Oriented

Application Model and its Middleware Support in Ubiquitous Environments”,

International Journal of Hybrid Information Technology, vol.1, no.3, July 2008.

[*]

3. Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu, ”Service-Oriented Smart Home

Architecture based on OSGi and Mobile Agent Technology”, IEEE Transactions

on Systems, Man and Cybernetics - Part C, vol.37, no.2, 2007. [*]

4. Ching-Hu Lu, Chun-Feng Liao, Chao-Lin Wu, and Li-Chen Fu, ”Real-Time Fine-

Grained Multiple-Target Tracking on a Extensible Virtual Fab Architecture Using

Multi-Agents”, International Journal of Electronic Business Management, vol.5,

no.1, 2007.

International Journal Papers (Work In Progress)

1. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”A Preference-Driven Com-

position System for Consistent Smart Home Applications, ” to be submitted to

IEEE Transactions on Systems, Man and Cybernetics - Part C, 2011. [*]

215

2. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”Message-Efficient Service

Management Schemes for MOM-based UPnP Networks, ” submitted to IEEE

Transactions on Service Computing, 2011. (Conditionally Accepted 2011.6.8) [*]

3. Ya-Wen Jong, Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”A Rotating

Roll-call based Adaptive Failure Detection and Recovery Protocol for Ambient

Services, ” submitted to International Journal of Automation and Smart Tech-

nology, 2011. (Under Review) [*]

Domestic Journal Papers

1. Chih-Ming Chen, Chun-Feng Liao, Ya-Wen Jong, Li-Chen Fu, and Ching-Nian

Chang, ”Message-Oriented Service Technologies for Digital Homes, ” in TL Tech-

nical Journal, vol.39, no.5, Oct 2009. [*]

2. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”An Intelligent Guideline-

based Home Health Care Service Platform, ” in TL Technical Journal, vol.39,

no.5, Oct 2009. [*]

3. Li-Chen Fu, Chao-Lin Wu, Ching-Hu Lu, Chun-Feng Liao, Yu-Chieh Ho, and

Yong-Cheng Liu, ”The NTU Attentive Home, ” in Automation, vol.20, no.4,

pp.18-35, 2009. [*]

International Conference Papers

1. Hsin-Chih Chang, Chun-Feng Liao, and Li-Chen Fu, ”Unification of Multiple

Preferences and Avoidance of Service Interference for Service Composition in

Context-Aware Pervasive Systems,” in Proc. of 7th ACM International Confer-

ence on Pervasive Services (ACM SIGAPP ICPS’10), Berlin, Germany, 2010.

[*]

216

2. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”A Guideline Execution

Engine for Healthcare Services in Smart Home Environments,” in Proceedings of

8th International Conference On Smart homes and health Telematics (ICOST

2010), Seoul, Koera, 2010. (Springer LNCS 6159) [*]

3. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”Boosting the Efficiency of

the Reliable Service Management Protocol for Message-Oriented Pervasive Sys-

tems,” in Proceedings of the IEEE International Conference on Service-Oriented

Computing and Applications (IEEE SOCA’09), Taipei, Taiwan, 2009. [*]

4. Hsin-Chih Chang, Chun-Feng Liao, Yong-Cheng Liu, and Li-Chen Fu, ”A Spon-

taneous Preference Aware Service Composition Framework for Message-Oriented

Pervasive Systems,” in Proceedings of the 4th International Conference on Per-

vasive Computing and Applications (ICPCA’09), Taipei, Taiwan, 2009. [*]

5. Ya-Wen Jong, Chun-Feng Liao, and Li-Chen Fu, ”A Rotating Roll-call-based

Adaptive Failure Detection and Recovery Protocol for Smart Home Environ-

ments,” in Proceedings of 7th International Conference On Smart homes and

health Telematics (ICOST 2009, Springer LNCS 5597), Tours, France, 2009. [*]

6. Chi-Pang Lam, Wei-Jen Kuo, Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu,

” An Efficient Hierarchical Localization for Indoor Mobile Robot with Wire-

less Sensor and Pre-Constructed Map ,” in Proceedings of the 5th International

Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2008), Korea,

2008.

7. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”PSMP: A Fast Self-Healing

and Self-Organizing Pervasive Service Management Protocol for Smart Home

Environments,” in Proceedings of 2008 IEEE Asia-Pacific Services Computing

Conference (IEEE APSCC 2008), Yilan, Taiwan, 2008. [*]

217

8. Ya-Wen Jung, Chun-Feng Liao, and Li-Chen Fu, ”An Efficient Autonomous Fail-

ure Recovery Mechanism for UPnP-based Message-Oriented Pervasive Services,”

in Proceedings of 2008 IEEE International Conference on System, Man, and Cy-

bernetics (IEEE SMC 2008), Singapore, Oct 2008. [*]

9. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”Community-based Autonomous

Service Activation and Failure Recovery in a Message-Oriented Pervasive Middle-

ware,” in Proceedings of 2008 International Workshop on Context-Aware Perva-

sive Communities: Infrastructures, Services and Applications (CAPC 2008, Held

in Conjunction with Pervasive 2008), Sydney, Australia, 2008. [*]

10. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”Toward a Message-Oriented

Application Model and its Middleware Support in Ubiquitous Environments,”

in Proceedings of 2008 International Conference on Multimedia and Ubiquitous

Engineering (MUE 2008), Busan, Korea, 2008. [*]

11. Wan-rong Jih, Jane Yung-jen Hsu,Chao-Lin Wu, Chun-Feng Liao, and Shao-you

Cheng, ”A Multi-Agent Service Framework for Context-Aware Elder Care,” in

Proceedings of Workshop of Service-Oriented Computing and Agent-Based Engi-

neering (SOCABE’2006), Hakodate, JAPAN, 2006. [*]

Domestic Conference Papers

1. Ching-Hu Lu, Chun-Feng Liao, Chao-Lin Wu, and Li-Chen Fu, ”Real-Time Fine-

Grained Multiple-Target Tracking on A Virtual Fab Architecture Based on Multi-

Agents,” in Proceedings of 2005 Taiwan Artifical Intelligence and Application

Conference (TAAI 2005), Kaohsiung, Taiwan, 2005.

2. Chun-Feng Liao, Cheng-Rong Yu, Zhi-Yang Chen, Da-Wei Chan and Li-Chen

Fu, ”Behavior Injector: An Architectural Pattern for Rapid Prototyping the

218

Reactive Intelligent Robots,” in Proceedings of 2005 Taiwan Software Engineering

Conference (TSEC 2005), Taipei, Taiwan, 2005.

219

