Rt @ FLpiadrialed
HERCR

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Doctoral Dissertation

FE G PR IR

Context-Aware Pervasive Service Management
in Smart/ Home Environments

o
M B

Chun-Feng Liao

R B WL
Advisor: Li-Chen Fu, Ph.D.

P33 K 100 £ 6 ®
June, 2011

B 3L 2 KRB 23 3
DREBEeERLZE

B EFIET & E SRR L BORF B I M

Context-Aware Pervasive Service Management in Smart
Home Environments

WXtk Bugsgs B (£3£D93922006) AR ERRET ML
fi%%mﬁkifiﬂ:'ﬁ‘l'& a3 zAE&l 100 = 6 A 16 BATF 7 £
ZBEELRBROIREM HILE

o 8 3 23(‘
[%%%%%ua@w)? % M
L)

2 X 1z

S

A EFHALET B S E - BEA TR G B s ARy LB TR o
- BIUEDEHR FRFF I A AR A2 TR A}
A RPFURE IR EEFE s AR bR EDT R RAA AT T2 R
A Eg BR e AR FEEE LRy v R A R AL I K

FERHE LA CEAF S ER PR AN LA R e T B

—\

A P LTI E 0 R RS F S BN o B PR
Foff B R TR PR SOR S SR RO R R R Rpre i g

-\

ver L v R AR B4 SR g

\

3
3

TRE AP RTE

For EHMFARLEP AR ERZONREFRREEC T RREETHYRFIF A
LR T AERERY LS ; ﬂ,ﬁfwm o)éfgfr. LA E A AR L 2 AR
Fre FRSHLE -miktiai xi.h"’#ﬁ Jﬁﬁ—l ENI YR Y

ml |;
FHREY R AL AL R w+TA@&%ﬁ’ FA M s ek e

Py

B A EEF S e B ﬁf? ’iszpr" °

PRy BRHBFTHRTT LA ﬁi:@v FEEBE S FufL gL B
TETRFEHTREF R OMAFTAEFIREF oL BRRHEITIR L SR
Fipo R HE VBT s F4- LT3 ABRPI &G E S
i o TR ARBEA - FREFFAY > A AHTNABRCE AP D
Ao CZHENNENER R ECNREEELAY AR EIPE RS
#

TSR E kA BT b

@” s
l
3

~

Bofs & R HHcE Ripd aF BAFADFA > AH LG § IBE - R 3w

[l

R RS CE W REE

dos BIBE G RA oo 4 & B L 2

ER I

e

FEFELLDFR ZEEFHRAPOPD ¥ AR L g - AT EL
BEFEFRRE L » DR ER HER TR 4 o 2 {06 afr &
B pdRAR3id 35 5 F R i v o Agn e A & T g P AR T ARG -
BPRIEE ARG R FER TR L R B EM Rt s oAl 2 - RE
g d o

A kAR AT A B B R K 2 78 45 4] ¢ (Architectural
Style) » fvt R iBAP M kA E e g2 BT FRALES Y 4 WA
(Message-Oriented Middleware, MOM) & _# & & B4 ¥ § & v F 3" RAepe it 2 %
HA e ¥ - 2w o BEAR ?;?/,?“’SJ} bop W 5O E Rl k SR T sk 2 -
otV ERARZFAT FTar aeee ’TL L %iff”af ?#__,fﬂ oy E RS o T

—-

Amc - B EEMS SR l“i.ﬂ?P
| | , ,
#<(Process Algebra) = 3% :;;&] —| PR A E S BRI BEYR

B

~ﬁi%@ﬁﬁﬁﬂﬁﬂiﬂ%i&i%ﬂfﬁﬁﬁﬂ?ﬁi@ﬁﬁ%ﬁﬁﬁ%
BhE R P v AR K PR PIED B o

B A E R 0 &P SV IR I R (doid * AR T B)RR
PG AR B ST E R PRAR] o TR S R0 IP A R R e
EF S A RRBEDOPIE . FY s A miz L e R RE o AR TR D -
S R R S SECLE R gt S e S R S b
BTS2 R IERE DN SESITERERERTER > VERS F LR R
FBoeh- R TR E A IEHR B T ek o

TEKRFAEOFTFENEEIIRBADELERE Lo F 2RI W 0 @
* R AR 4 (Preference) o fe i H 2 hF A FEELE TV A

Rod WA FEBEELERP 4 BT d AT B 2 PRIFZ B p S R 0 50

B BT AL RN - BT A BT B S R/T B AMA L B

7% ;% (Preference Expression) o ¢ — #4|fe & 27§ 78 B2 - 2V B FE B4R

%% & 4LR|(Unification Rules) » ¥ #-% — 3 enié % & i & 7 N & 5 - Rehk T

BT ORI/ - B EBEL AH D B ANRESERT R
B JRAr AR T B R 2 BEAZR c KRBT BT FER I FE L EBH T RP
‘AP E B APRIFE L 2 B R A o

Bofs» AR L A FIE R (T X R EM S AR R G RS

B RFERRE UREAR N LTSI T A

Mg 238 ~d * AE4E T R [HORAE B R AP E RS IR

oA~ PRSI A~ IP F R PR%Z» Fus Fl?ijz» £~

R

i f‘_-"_;g_ml_.j;:—"l 1
| 22| |
R |

-

ABSTRACT

The concept of Smart Home envisions a technology-enriched living space that is
capable of anticipating intensions of occupants and providing appropriate services ac-
cordingly. Most of the services in such space are context-aware and are realized by
an assemblage of heterogeneous components. The objective of this thesis is to design
a suite of service management mechanisms that makes such context-aware services
flexible, robust, efficient, and consistent.

The flexibility heavily depends on the underlying architecture style. After a thor-
ough review on existing representative-pervasive systems, it is concluded that the
Message-Oriented Middleware (MOM). 1s onllén‘ of the most flexible architecture styles

for the Smart Home. Meanwhile, robustneéss is ‘one of the key challenges for the

[=

Smart Home, but few researches haye bee

|

‘-‘d'éﬂe todmprove the robustness of Message-

Oriented Smart Home systems. Hénce, Fhié .;esé‘zirchw(‘)rk attempts to propose a flexible
and robust service management fréﬁ;levvork by f;fmally defining an MOM-based ser-
vice application model and protocols that facilitate autonomous composition, failure
detection and recovery of services. The proposed approach is evaluated by first proving
the reliability property and then conducting experiments on recovery rate as well as
performance.

Decentralized service management protocols such as UPnP are believed to be more
suitable for Smart Homes. These protocols are usually realized by using IP multicast,
which, if not carefully designed, often suffer from network flooding problems. This
research proposes several efficiency boosting techniques that reduce the replications

of unnecessary messages. The analytical predictions agree well with the simulated

and experimental results, which show that the traffic can be greatly reduced by the

proposed approaches.

Pervasive service composition also attracts increasing interests. When composing
services, the criteria for scoring and electing services are usually specified by users,
which tend to be vague and subjective. Moreover, the deployment of services in smart
homes is usually not as well-planned as that in traditional enterprise environments.
Hence, the criteria can be contradictory and the activated components can interfere
with one another. This thesis addresses these issues by first proposing the Preference
Expression that is capable of specifying both enumerative/numeric as well as manda-
tory/negotiable preferences. Then, a set of unification rules for unifying conflicting
preferences is presented. Finally, this thesis proposes a Fuzzy-based approach to esti-
mate the degree of interference based on available context information. By incorporat-
ing the above-mentioned mechanisnis, ain intégrated service composition framework is

presented. Experiments that evaluate t_he effepti\féness of the proposed framework are

also conducted and reported. | . f,.h_ | l‘

Keywords: Pervasive Comput1n$ UﬁﬁP,l |SSDP Smart Home, Services Models,
||/ %

Services Discovery Architecture, 1P- Multlcast Serv1ce Systems, Service Composition,

Feature Interaction, User Preferences.

TABLE OF CONTENTS

Acknowledgements (In Chinese)

Abstract (In Chinese)

Abstract

Contents

List of Figures

List of Tables

1 Introduction
1.1 Research Challenges and Objectives
1.2 Contributions
1.3 Research Scope
1.4 Research Process
1.5 Organization a0 S

2 Background and Related Work‘
2.1 Pervasive Systems . & i 4. = . e A 2N - TR

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.1.8

The Context Toolkits| (OTF-K)
Universal Plug and P} \“UrPnP
The Gaia Meta—Operz?ujmg Syspem (Gaia OS)
The Aura Platform 00 . . QLA 0000000
CoBra (Context Broker Archltecture)
SOCAM (Service-Oriented Context-Aware Middleware)
Tuple Spaces
Message-Oriented Middleware (MOM)

2.2 Pervasive Service Discovery

221
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7

Service Discovery in CTK
Service Discovery in GaiaOS
CoBra/JADE Service Discovery
Aura/Jinio
Service Discovery in One.world
Bluetooth SDP (Bluetooth’s Service Discovery Protocol)
Simple Service Discovery Protocol (SSDP)

2.3 Pervasive Service Composition

23.1
2.3.2

Unifying Inconsistent User Preferences
Dealing with Inconsistent Service Effects

24 Summary

vil

iii

vii

3 Flexible and Robust Service Management in a Smart Home 56

3.1 Pervasive Service Application Model (PerSAM) 58
3.1.1 The Pervasive Communities 61
3.1.2 The Pervasive Managers 66

3.2 Pervasive Service Management Protocol (PSMP) 68
3.2.1 Presence Announcement, Leave Announcement, and Life-cycle

Management 70
3.2.2 Service Composition and Activation 71
3.2.3 Failure Detection and Recovery 76
3.24 Security 82

3.3 Evaluation 86
3.3.1 Robustness 87
3.3.2 Recovery Rate 89
3.3.3 Performance 93
3.3.4 Discussion 95

3.4 Summary: A Running Scenario 96

4 Efficiency Boosting Schemes for UPnP-based Smart Home Networks 98

4.1 Assumptions and Term Definitions 100
4.2 Decomposing the MulticastTraffic .. vwm 104
4.3 Service-based Node Searching .. . s u 108
4.4 Reducing the Heartbeat, Traﬂic 110
4.5 Evaluation S0 0 NG NRR 113
4.5.1 Communication Complex;rgl 114
4.5.2 NS-2 Simulations ' .’I ’ A ‘ . 117
4.5.3 Experiments &' (N AL 0o 125
4.5.4 Discussion . . ol @t e A 128

4.6 Summary2 =N D 130
5 Consistent Service Composition in a Smart Home 132
5.1 Overall Architecture 134
5.1.1 Capabilities and Preferences for Service Composition 135
5.1.2 The Enhanced Architecture for Pervasive Service Composition . 140
5.1.3 Dynamic Contextual Node Re-binding 141

5.2 Specifying and Unifying User Preferences 142
5.2.1 Enumerative Preference Expressions. 143
5.2.2 Numeric Preference Expressions 154

5.3 Type-based Node Searching 166
5.4 Candidate Scoring and Selection L. 168
5.4.1 Estimating the Degree of Interference 169
5.4.2 Scoring Candidate Worker Nodes 175

5.5 Evaluation 179
5.5.1 Application Scenario 179
5.5.2 Quality Metrics oo 181
5.5.3 Performance 189

5.6 Summary 190

viil

6 Implementation

7 Conclusion and Future Work
7.1 Summary of Contribution
7.2 Future Work

Bibliography

1X

191

199
199
202

205

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

3.15
3.16

4.1

4.2

4.3

LIST OF FIGURES

Providing a context-aware service in the Smart Home 2
The vertical architecture of a smart home and the scope of proposed

research 8
The layered architecture of Context Toolkits 15
The layered architecture of Context Toolkits 17
The MPACC Service operation architecture in Gaia 20
Aura’s overall architecture (source: [125]) 22
A typical message-oriented pervasive system 27
Overall structure of OWL-S 30
CTK service discovery architecture 31
The hierarchical structure of CTK Discoverers 32
Discovering and invoking service components in Gaia 34
Presence management in Gaia. 35
Overall architecture of CoBra/JADE 38
JADE service discovery architecture 39
Jini service discovery architecture oo 40
The protocol stack of UPnP&® "5, -0 oo o0 44
A taxonomy of PerNode |/ .a". . " Ve YR 58
The message-oriented pervasi\ze system N, L L L 59
The states of a PerNode/ . .|~ iyl o 00 oo 000 60
The structure of a PerNode quker Node 61
The Pervasive Service eom lﬂlltl s | | 64
The Pervasive Host cominudities . .|L42 <7 o000 o000 64
The structures of PSMandPHENM ™. &0 0 66
The projection of PerSAMito UPnP Dévice Architecture 69
PSMP service composition L. 72
PSMP failure detection 7
Registering the public key and acquiring the secret key in PSMP . . . 84
Sending and receiving data in PSMPo 000 85
The PS recovery rates of Aura PIP and PSMP under various failure

rate (NT=25) 90
The PS recovery rates of Aura PIP and PSMP under various failure

rate (NT=50) 91
Performance of PSMP service composition 93
Performance of PSMP failure detection and recovery 94

Packet loss rate with various number of nodes in a typical UPnP-based
local area networko oo o oo 99
Sequence diagrams of PA/LA and node searching protocols: (a) Orig-
inal PA; (b) PA after applying DMT; (c) Original node searching; (d)

Node searching after applying SNS 107
Sequence diagrams of heartbeat protocols:(a) Original heartbeat proto-
col; (b) After applying DMTH; (¢) After applying ODH. 110

4.4

4.5
4.6

4.7
4.8

4.9

4.10

4.11

4.12
4.13

4.14

4.15

4.16

5.1
5.2

5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

Traffic generated by presence announcement, before and after applying

DMT A=1land £ =4) 118
Traffic reductions of presence announcement after applying DMT . . . 118
Traffic generated by the node discovery protocol, before and after ap-
plying SNS and DMT (A=1land £ =4) 119
Traffic reductions of node discovery after applying SNS and DMT . . . 119
Heartbeat traffic in a light-loaded system, before and after applying
ODH (A=Tland {=4) 120
Heartbeat traffic in a light-loaded system, before and after applying
DMTH A=1and £=4) 121
Heartbeat traffic in a heavy-loaded system, before and after applying
ODH (A=n(S)and £ =4) 122
Heartbeat traffic in a heavy-loaded system, before and after applying
DMTH A =/(=n(S)=n(W)) 123

Traffic reductions of heartbeat after applying ODH when ¢ = 4 and A = 1123
Traffic reductions of heartbeat after applying DMTH when A\ = ¢ =

n(S)=n(W) . . 124
Evaluating the proposed schemes in a real home network, where A = 1
and ¢ = 2, when only PA and LA are enabled. 125
Evaluatmg the proposed s¢hemes insa reéal home network, where A=1
and ¢ = 2, after enabling PA, LA and node searching. 126
Evaluating the propoesed s¢hemes in a real home network, where \ = 1
and ¢ = 2, after enabling all ‘protocol lcapabilities. 127
= |
A general service compositio a';glzlt%ture 134

Modifying Worker Node strLll ture” toifacﬂltate more sophisticated Per-
vasive service composition;. () Orlgmal Worker Node structure, (b)
Enhanced Worker Node structure Lt 136
Modifying PSM structure tofacilitate more sophisticated Pervasive
service composition: (a) Original PSM structure, (b) Enhanced PSM

structure Lo 138
Refined service composition architecture for Pervasive environments . . 140
Dynamic contextual node re-binding 141
Reducing < vV <y when (a) x >y, (b) z <y, and (¢c) z=y. 159
Reducing > 2V <y when (a) x >y, (b) z <y,and (¢c)z=y. 160
Reducing > VvV >y when (a) x >y, (b) x <y, and (¢c) z=y. 160
Reducing == 2V <y when (a) z >y, (b) x <y,and (¢c) z=y. 160
Reducing == 2V >y when (a) x >y, (b) z <y, and (¢) z=y. 160
Reducing == zV ==y when (a) x >y, (b) z < y, and (c) z =y. . 160
Reducing ! = 2V <y when (a) 2 >y, (b) z <y, and (¢) z=y. 161
Reducing ! = 2V >y when (a) 2 >y, (b) z <y, and (¢) z=y. 161
Reducing | = 2V ==y when (a) z >y, (b) z <y, and (c) z = y. . 161
Reducing ! = V! =y when (a) z >y, (b) r <y, and (¢) z=y. 161
Reducing the first term of (5.15): ! =sA(>av <b). 165
The Effect ontology in a Smart Home 170
Fuzzy sets of "distance”o 173

x1

5.19
5.20
5.21
5.22
5.23
5.24
5.25

5.26
5.27
5.28

6.1
6.2
6.3
6.4
6.5
6.6

Fuzzy sets of "intensity”

Fuzzy sets of "similarity” oL 174
Fuzzy sets of "interference” oL 176
Success Rate of Composition (SRC) 183

Success Rate of Matching (SRM) with different number of Worker Nodes184
Precision of Composition (PoC) with different number of Worker Nodes 186
Precision of Composition (PoC) with different ratio of constrained at-

tributes 186
F, Score with different number of Worker Nodes 188
F, Score with different number of Worker Nodes 188
Turnaround time of service composition 189
The drag-and-drop code generating service 192
The code template generating wizard 192
The toolchain for constructing PerNode 194
PerNode Code/Project generator configuration file 195
The NTU Attentive Home 196
The NTU INSIGHT Living Lab 197

xii

2.1
2.2

2.3

2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.9

5.6
5.7

5.8

5.9

5.10

6.1
6.2

7.1

LIST OF TABLES

Sources for state of the art survey of the representative Pervasive systems 12
Architectural styles and service management functionalities of Pervasive

SYStems 53
Detailed comparisons among Service Discovery mechanisms of Pervasive

SYStems 54
Detailed comparisons among Service Composition mechanisms of Per-

vasive systemso 55
Summary of acronyms Lo 61
Summary of notations 62
The Operations of a Pervasive Service Manager 67
The Operations of a Pervasive Host Manager 68
Summary of CSP notations used in PerSAM/PSMP 71
Notations for communication complexity analysis 105
Additional acronyms used in this chapter 105
Traffic Reductions after applying the Decomposing Multicast Traffic . 115
Traffic Reductions after applying Service-based Node Searching 115
Traffic Reductions after applying On-Demand Heartbeat 117
Traffic Reductions after applylng the Heartbeat by Decomposing Mul-

ticast Traffic . . . & Ju 4. e NERR 117
Possible pairwise combinatioris Fbﬁﬁf@én twosnumeric p-terms 158
Reduction rules for deriving, ﬁom@aet formse. 158
General forms for dlS‘]unCtIV*% clausesfd oo 0. 161
Compact forms for dlsJunctlve clauses & 163
Compact forms derived form >"aVv <oV (===z;) 164
Unification rules for NegotiationExpr . .Z 166
Membership functions for Fuzzy sets of ”distance” and default param-

eter values Lo 172
Membership functions for Fuzzy sets of ”intensity” and default param-

eter values 172
Membership functions for Fuzzy sets of ”similarity” and default param-

eter values 173
Membership functions for Fuzzy sets of ”interference” and default pa-

rameter values 175
Implemented Pervasive Services 196
Implemented PerNodes 198
Enhancements of service model and service management 201

xiil

Chapter 1

Introduction

In recent years, the rapid emerging of Pervasive and Ubiquitous Computing [138],
Context-Aware Computing [104], and Service Computing [147], and Machine Learning
[30] have brought the concept of a ”Smart Home” into reality. The concept of a ” Smart
Home” was first proposed officially in 1984 by the American Association of House
Builders, which envisions a technology-enriched living environment that anticipates
the needs and intensions of occupants and provides services accordingly to promote
comfort, convenience, security, entertainment, and therefore an improved quality of
life for them [21, 68]. Most of the services in the Smart Home have to be ”context-

aware” since ”contexts” are essentialdhformation<used to infer needs and intensions of

inhabitants. A service is context—awaré‘:i-fi%ﬁ”s%% cont.elxts, or it adapts to contexts [46],
where a "context” is any informatiOr# ’thaﬂhca'H be used to characterize the situation
of an entity which can be a persd.r':l.,‘, ﬁlihce, or !b‘)_j.et'that is considered relevant to the
provision of service [47]. “

Figure 1.1 depicts the relationship among occupants, the environment, contexts and
the context-aware services in a Smart Home. In such environment, contexts are usually
inferred from the environmental data gathered by sensors. According to the contexts,
applications infer the user situations and then perform appropriate actions, such as to
turn on a light or to play a media file. We can observe that the data flow discussed
above forms a feedback loop between the environment and the context aware service
(see Figure 1.1). In summary, Figure 1.1 reveals that providing a context-aware service
in a Smart Home is a four-step procedure: 1) gathering context data from sensors, 2)

inferring users’ situations based on gathered context data, 3) anticipating users’ needs

or intensions based on their situations, and 4) determining and performing the most

Sensors D 'Context change event

; Context-{\ware * Change behavior
Service R

Gathering context data
Inferring users’ situations
Adapting to users’ needs
Perform actions

.
‘e,

1
: 2.
Fesaesmssssacnnananns .,,, - Perform actions 3.

: 4

Figure 1.1: Providing a context-aware service in the Smart Home

appropriate actions such as manipulating appliances or displaying information to fulfill
user’s needs. It is important to observe that, a context-aware service is reactive (event-
driven) by nature, since these serviees react $o-gontexts or situations by performing
desired actions. N

In addition, heterogeneity is also a k(}y iﬁaﬁ;ql‘e of Smart Home services since a service
in the Smart Home is realized by an a sembla@e of heterogeneous service components
such as wireless sensors, networked Llpphancéi and intelligent agent software that
collaboratively offer context-aware habltual supports to residents. Moreover, these
service components are usually interconnected by different wired or wireless protocols.
Because of the context-awareness and heterogeneity of Smart Home services, a set
of service management mechanisms are obviously required which composes services
by discovering and selecting service components as well as makes the services work
consistent and durable. It is worthy to point out that Bedrouni et al. [26] also reported
the same observation that among all emerging issues associated with building services
in ambient systems, none is more fundamental, challenging, and complex than the need
to dynamically ensure adequate management of activities attributed to a large number

of heterogeneous entities.

It can be concluded from the above discussions that service management is a core

issue in the Smart Home. However, managing services in such a complicated envi-
ronment is not a trivial task. The objective of this thesis is therefore to investigate
effective and efficient approaches for dealing with challenges of service management in
the Smart Home. In Section 1.1, the challenges and users’ expectations identified by
related literatures are first discussed. Based on these challenges and expectations, this
section also motivates the desired qualities, that is, flexibility, robustness, consistency,
and efficiency. After that, Section 1.2 presents the contributions of this work and then
in Section 1.3 the research scope is identified. Section 1.4 explains the research process

of this work. Finally, Section 1.5 introduces the organization of this thesis.

1.1 Research Challenges and Objectives

. . . s o .
This section examines challenges of service-management in Smart Homes. Based on

these challenges, several desired téchnic'@l".,qugﬁt‘ies ofsSmart Home service management

—
-

that serve as the objectives of this reqeiar?ﬁér?then discussed.

Contrary to other smart enviyonn&e?nté::-‘s:uclllq!g as Srﬁart Offices or Smart Campuses
where there are significant efforts 1n "pla‘,nning ‘in.‘:a‘dvance, the deployments of services
in Smart Homes are usually not well-planned and are upgraded incrementally. Hence,
the design of a smart home is not benefited from holistic, ground-up approaches [53].
As a result, a context-aware service management platform is apparently required [17],
that is, 1) flexible enough to be modified without affecting other interacting parts, and
2) is able to detect /resolve the service inconsistency arising from conflicting effects of
appliances or conflicting user preferences. Moreover, due to the heterogeneous nature
of Smart Homes, the platform must be interoperable so that heterogeneous hardware
and software, incompatible wiring protocols are able to interoperate with one another
(72, 62]. As a result, flexibility, consistency, and interoperability are essential qualities

of the Smart Home.

In addition, Edwards et al. also observe that robustness is a paramount concern
of Smart Home users [53, 62], since most of the domestic technologies are expected to
work 24-7. Unlike in other types of smart environments, the Smart Home is in lack of
professional system administrator [53]. What is more, the occupants of Smart Homes
are usually non-technical users. The persons setting up and maintaining the home
services are everyday consumers, with little or no knowledge of networking technologies.
Since the consumers would be unable to pinpoint the source of failures [50], the service
management platform must be highly reliable and be able to detect and to recover
from failures autonomously. Note that the detection and recovery procedures have to
be carried out in a minimal amount of time. Otherwise, the failures can lead to a
very frustrating user experience and bad marketing perception for the vendors of home
services. Consequently, a robust service mnanagement platform in the Smart Home has
to be self-diagnosable, self-recoverable; and e‘fﬁlciéht.

It should be concluded, from Whati lhag-;b]@ép mentioned above, that a service man-
agement platform for a Smart Home wfi%ph tTTIe f(?%lowigg qualities is apparently required.
0 ol LA
1. Flexible: The service managéfnent platforﬁl must be designed carefully by fol-

lowing an appropriate architectural style so that the platform is flexible enough

for incremental deployment and is able to support impromptu interoperability.

2. Robust: The Smart Home services have to be available durably. The failures

should be detected and recovered as soon as possible.

3. Consistent: The service management platform must be able to detect and to

resolve conflicts arising from effects of appliances and user preferences.

4. Efficient: The proposed mechanisms that realize the qualities mentioned above

have to be completed in a minimal amount of time.

1.2 Contributions

As discussed in the previous sub-section, the overall objective is to design a man-
agement platform for Smart Home services that are flexible, robust, and consistent.
In addition, the proposed platform has to carry out service management mechanism
efficiently. In order to meet the objective, this sub-section reports several technical
contributions that have been achieved so far which serve as important milestones of

this research. The contributions of this work are listed below.

1. Message-oriented architecture for the Smart Home: This work suggests
that the message-orient architecture, or so-called publish-subscribe architecture,
is one of the most appropriate architecture for the service management platform
in Smart Homes among existing ones. Ihe rationales behind this suggestion are

reported and its superiority over comparable alternatives is also presented.
| [= J |
2. Verifiable service applicatiorll ‘model, for thé Smart Home: This work pro-
.'!",A | 4 >
poses a service application mod+9‘, namely, Peryvasive Service Application Model
<\ %
(PerSAM), that specifies the everall logical 6i"ganization of the Smart Home from
the point of view of its use or design. The proposed model is formally presented

by using process algebra so that it is verifiable by mathematical proofs. This ap-

proach facilitates the analysis of communication complexity (see Item 4 below).

3. Robust service management protocol for the Smart Home: Based on
PerSAM | this work proposes Pervasive Service Management Protocol (PSMP)
which is a service management protocol that realizes autonomous failure diction
and recovery by utilizing Universal Plug and Play (UPnP), a well-known home
service network standard [15]. PSMP inherits the rigorous nature of PerSAM so

that it can be mathematically validated to guarantee the service robustness.

4. Boosting the efficiency of home service network: Although the approach
mentioned in Item 3 makes Smart Home services more robust, the UPnP-based
service management protocol is usually realized by using IP multicast, which,
if not carefully designed, often suffers from network flooding problems due to
replications of too many unnecessary messages. Hence, boosting techniques that
avoid replications of unnecessary messages are proposed here. The analytical
predictions agree well with the simulated results, which show great improvements

on efficiency.

5. Service composition algorithms that ensure consistency: Smart Home
services usually have to allow user-in-the-loop service composition which is ab-
sent in most of the traditional enterprise service composition mechanisms. More
specifically, the criteria for select‘iﬁg aﬁd ranking services are usually specified

by users, which tend to be vague and subJectlve The criteria can be contra-

“‘..-u-l

dictory and the activated serv1cF c'é‘;‘%f niterfere with one another. This research
addresses these issues by deﬁnm&; the Preference Expression (PE) that is capable
of specifying both enumeratlve/numerlc as well as mandatory /negotiable user
preferences. A set of unification rules for possible conflicting preferences is also
presented. Finally, it is suggested that the degree of interference be modeled
and estimated by using a Fuzzy reasoner. A preference-guided and interference-
aware service composition framework can therefore be obtained by incorporating
the above-mentioned mechanisms. Experiments that evaluate the effectiveness

of the proposed approaches are conducted and reported as well.

6. Development support and rapid prototyping: To enable the rapid and
correct development of home services, a Java-based object-oriented application
framework that provides design time supports is devised, which is composed of

a set of reusable libraries, interfaces, and default implementations. One of the

salient features of this application framework is that it supports attribute-based
programming [36], which implies that the resulting code becomes intuitive and
more comprehensible. In addition, this framework provides template-based as
well as drag-and-drop code generation services by a set of interactive wizards,

which are realized as plug-in modules of the Eclipse IDE.

1.3 Research Scope

To date, Smart Home is still an emerging research field which requires technologies from
several related fields such as communications, artificial intelligence, human-computer
interfaces, service computing, and pervasive computing. The definition of a Smart
Home, or more concretely, the smartnesssof a Smart Home is still a controversial
concept. Inspired by Mann et al. 497]. &Qnd Kldrileh et al. [19], this thesis suggests a
vertical architecture that tries tb' reﬂe‘(‘:’?p'_%@hel.--“‘émartneés of a Smart Home, as depicted

¥ --x|‘

in Figure 1.2. | ’

One of the most essential cha‘ractéqistic:-‘s“ 01‘? !lthe‘Sr‘nart Home is the deployment of
interconnected devices (see Figure 12, Level 1) SO that they can be controlled and be
mediated by computer programs (Level 2) to provide appropriate services to occupants.
In order to facilitate more intelligent behaviors, it is necessary to design a management
platform that can integrate, configure, and maintain devices as well as programs dis-
tributed over the home network (Level 3). Based on the platform, the Smart Home
is able to be aware of the environment and occupants by analyzing contexts gathered
by sensors (Level 4). Furthermore, by aggregating contexts and by employing machine
learning mechanisms, the Smart Home can be aware of situations which are at higher
level of abstractions than contexts [92] such as the behaviors of occupants (Level 5).

The highest level should be the Attentive home which tries to infer deeper and unob-

servable situation of occupants, for example, emotion or intension of people, and thus

Emotion aware, Sense aware,
Intension aware

Level 6: Attentive

Inference / Learning Mechanisms/ Activity

Level 5: Situation Aware Recognition

Incorporating (Wireless) Sensors

Level 4: Context Aware Context Processing, Preference Processing

Level 3: Managed and Integrated HA mechanism / Platform /

Application Layer Protocol / Device
Discovery, Service Composition,

Level 2: Controllable Failure Recovery

Research Scope

Level 1: Connected Protocol / Network Infrastructure / HW

e ey ey

Figure 1.2: The vertical architecture of a smart home and the scope of proposed

research

provides service in more attentive ways:

As revealed in Figure 1.2, this reseaf%focuses o1l service management issues. In
other words, the issues and challenge;s?posl:éd by this thesis fall into level 2 and level
3. Note that in order to enhance ‘thelefﬁciency‘,. this research also concerns some of
the network issues (Level 1). For similar reasons, it is also necessary to take context
information (Level 4) into account in order to resolve consistency problems in the Smart
Home. To sum up, the primary interests of the proposed research lies in levels 2 and

3, while network and context-awareness issues lying in levels 1 and 4, respectively, are

also within the scope of this research work.

1.4 Research Process

As Herbert A. Simon pointed out in the highly influential book The Sciences of the
Artificial [122], the research field on information and communication technology (ICT)

actually falls into the domain of Design Science. The research discipline of Design

Science is obviously different from Natural Science in view of ontology, epistemology,
methodology, and axiology. More concretely, the research outcomes of Natural Science
refer to a body of knowledge about objects or phenomena in the world that describes
and explains how they behave and interact with one another. On the other hand,
the goal of Design Science research is to obtain a body of knowledge about artificial
(human-made) objects and phenomena designed to meet certain desired goals [135].
In this respect, the artificial object of interest in this work is the Smart Home service
management platform which is designed to meet several desired qualities including
flexibility, robustness, consistency, and efficiency. The rationales and motivations of
setting up these objectives are explained in Section 1.1. The knowledge on how to
design service mechanisms to achieve these objectives is therefore presented in the rest
of this thesis. o
Vaishnavi et al. [135] observed that D681gn Sc1ence research has a long history of
knowledge building through making. |The;1;e.seé1rch process forms a general design cycle

[130] which involves the constructlpn PL ar%faq"d;s and'the evaluation of artifact perfor-
mance following the aforementloned Constructlon Ttdds also important to note from the
above discussion that every fragment of the research outcomes is valid only in certain
situations [101] which is called the circumscription of research. The Design Science
research is usually performed by iteratively proposing new methods that deals with
the problems arising from the relaxation of circumscription of the previous research.
Consequently, this research follows the process mentioned above in which assump-

tions or restrictions are made in the earlier phase of research. After that, some circum-

scriptions are removed by enhancing the original research outcomes iteratively.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses backgrounds and re-
lated works, and Chapter 3 introduces the proposed mechanisms that facilitate flexible
and robust service management in Smart Homes, namely, PerSAM and PSMP. After
that, Chapter 4 proposes several efficiency boosting techniques to reduce the traffic of
service management. Then, Chapter 5 concentrates on consistency issues among user
preferences. Chapter 6 presents the implementations of the proposed mechanisms.

Finally, in Chapter 7, conclusions and future works are provided.

10

Chapter 2

Background and Related Work

Mark Weiser [138] envisioned that due to the rapid advances of technologies, computing
devices will become so small and so cheap that they can be embedded in everyday
objects scattered over the living environment. In such an environment, computing
devices become pervasive or ubiquitous. The technologies that facilitate this vision
form a new emerging research domain, namely, Pervasive or Ubiquitous Computing.
Therefore, the living environments equipped with Pervasive Computing devices is also
known as pervasive environment, given that a collection of hardware and software
components that cooperate to prowvide s‘ervilces in a pervasive environment is called

a pervasive system. Pervasive systemis are difficult to design and maintain because

they involve heterogeneous hardware‘; ‘v-séﬁvé-ar%a, wiring protocols, and programming

= |

paradigms. Moreover, services-in perkf%sig?lé? en‘\irironments are highly dynamic. Many
pervasive systems have been proﬁéged ‘E‘to deal!'\';v_i:t‘h the above problems since the rise
of Pervasive Computing. It is importaﬁt to nbte that the Smart Home is a pervasive
environment so that many existing works with previously developed architectures for
pervasive systems are also applicable to a Smart Home. Hence, the purpose of this
chapter is to provide backgrounds and the state of the art of the pervasive systems
that are closely related to this work.

In this chapter, 11 representative Pervasive systems are investigated in detail (see
Table 2.1). Primary issues concerned in these investigations are the contributions
and methodologies of these works. For contributions, this work primary focuses on
the architectural styles, service management functionalities, and the qualities obtained
through the proposed systems, namely, flexibility, reliability, efficiency, and consis-

tency. As for the methodologies, special attentions have been paid to the theoretical

11

Table 2.1: Sources for state of the art survey of the representative Pervasive systems

Name Ph.D. Journal Conference Source code
Thesis
Context Toolkits v 2 3 v
UPnP (UPnP specifications) v (Reference Implementation)
Gaia OS v 2 3 -
Aura v 2 4 Partial
CoBra v - 3 v
SOCAM v - 3 v
One.World v 2 - v
Event Heap v 1 =~ Archive file damaged
LIME v 1 l‘ 2 ‘I: v
SOLAR v 1 v
MIRES - . z

underpinnings and the evaluation nllllét‘ho’dolog"i‘es‘;: |

Before turning to further discussions, it is helpful to clarify the meanings of several
terms used throughout this thesis precisely. A service in a pervasive environment is
an assemblage of distributed components that collaboratively provides supports to a
given user’s intention. A service is also referred to as an application [15, 46, 114]
or task [125] in some literatures. For example, a media-follow-me service is capable
of choosing the most appropriate displays for playing media files according to user’s
current location. Under such a service, the user’s intention is to listen to music or to
watch a movie; the ingredients of a media-follow-me service include control programs,
smart floors, all LCD displays and speakers that are capable of adapting to the user’s

location change cooperatively. Each of these ingredients is called a ”service component”

12

or simply ”component” in the sequel. In some pervasive systems [48, 115, 58], there
is also a "service manager” for each service that is responsible for managing service
components belonging to the service.

Although numerous pervasive systems have been proposed so far, however, most
of them do not deal with the service management issues of a system. These works
either rely on the existing general-purpose service management mechanisms, or leave
these issues un-handled. For example, CoBra (Context Broker Architecture) [39, 40]
and SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] leave service man-
agement issues to their underlying platforms (i.e. JADE (Java Agent DEvelopment
Framework) [27] and OSGi (Open Service Gateway Initiative) [11], respectively. Con-
sequently, this research investigates the pervasive systems from both architecture and
service management’s points of view. o

The following section concentratés‘on prqyjdiﬁg a.bird’s eye view for architectures
and service management mechanisms d‘fﬁi@gé?;antative Pervasive systems. Deeper in-

. . . ; | m |\ ¥ £ . . .
vestigations of service managemént 1ss*r|Jes are then introduced consecutively in Section
"l | 1 o
I 1

2.2 and 2.3.

2.1 Pervasive Systems

Based on the architectural styles, pervasive systems can be classified into two categories:
process-centric and data-centric [141]. In a process-centric system, the distributed
components collaborate by invoking sequences of remote procedures. The flows of
calls are controlled by software programs, which search services in a centralized service
registry and invoke services in a synchronized way. The Context Toolkits [116, 46],
UPnP [15], Gaia [115, 114], Aura [58, 125], CoBra (Context Broker Architecture)
39, 40] and SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] fall into

this category.

13

Due to synchronous and centralized nature of the process-centric systems, they
suffer from many reliability issues. First, the distributed components of these platforms
are usually tightly coupled since they are usually bound to a static network address.
Hence, the components must start in a strict order. Moreover, if a service consists of
a chained call sequences, all intermediates must be restarted when one of them fails.
The failed services are hard to recover because all components must be shut down and
then be restarted in a strict order. Finally, the distributed components communicate
synchronously. Hence, both service provider and service user both must be ready to
communicate at the same time. The caller gets stuck when the callee fails or when it
is heavily-loaded.

Recently, more loosely-coupled and asynchronous data-centric architecture such as
Tuple Space (TS) [59] and Message—Oriented;Middleware (MOM) [24] are proposed.
TS is essentially an associative Vlrtual shared memory storing serialized objects. Dis-
tributed clients can read, write, ot take Sggahbed objects from TS server. The Event
Heap [76], One.world [61, 63, and L l‘l/fE TmyLIME [105, 42] fall into this category
whereas SOLAR [87] and MIRES [-12|7] is tWQ of- the few Pervasive systems based on
MOM. ‘

The succeeding sub-sections present the design and evaluation of the most fre-
quently cited pervasive systems. Service management issues will also be briefly men-

tioned when these systems are presented, while the details will be discussed in Sections

2.2 and 2.3.

2.1.1 The Context Toolkits (CTK)

The Context Toolkits (CTK) is one of the earliest research works that attempt to
propose a general architecture for Pervasive systems. In typical window-based desktop

applications, a "widget” is a sub-component of a window such as a button, drop-down

14

Applications
. J/
4 ™y
Aggregator }[Interpreter } { Discoverer
L y, Core Services of
i _ N\ [Context Toolkits
Widgets
e S/
4 ™
Sensors and Actuators
. J

Figure 2.1: The layered architecture of Context Toolkits

list or a text area. Inspired by desktop applications, Dey et al. suggest a "widget”
abstraction for sensors and actuators in pervasive environments [116, 46].
Figure 2.1 reveals the overall architecture of CI'K. For each sensor, there is a com-

ponent called a "widget” that isiresponsible for interacting with the sensors physically

.
=

and then turning raw data into meaningfalFepresentations, referred to as "context”. In
T " m 1!

|4

CTK, a piece of context information iisrepr-esa"n:ted by, a key/value pair that describes
the situation of an entity. A serviceis called an ”‘.application” which operates by inter-
acting with remote networked socket servers such as widgets, interpreters, aggregators,
and the discoverer. Note that CTK provide three types of core services based on wid-
gets. The aggregator is essentially a context query agent that gathers context data
from several widgets according to certain criteria. For instance, a location context ag-
gregator gathers all context information in a specific location. The context interpreter
analyzes contexts and then transforms them into higher level contexts. For example,
context information provided by location widgets can be used to infer human activities.
Finally the discoverer is a directory service by which the applications find appropriate
widgets, aggregators, or interpreters as context sources.

According to [46], abstracting sensors by using widgets has two benefits. First,

15

widgets hide the complexities of interacting with heterogeneous sensors such as floor
sensor, pressure sensor, light sensor, and RFID from application developers and provide
a uniform way for accessing them. Second, the widgets also become reusable building
blocks. The most significant contribution of CTK is the sensor abstraction which sepa-
rates the tasks of writing application logic from context gathering. This design not only
relieves developers from the burdens of dealing with heterogeneous sensors, but also de-
couples context providers (e.g. sensors, interpreters, or aggregators) from context users
(e.g. applications). Also, CTK provides development support with an object-oriented
application framework written in Java. Developers of widgets can greatly reduce their
efforts by inheriting template classes provided by the framework. Besides, the commu-
nication among CTK components rely on XML-based (eXtensible Markup Language)
message, making CTK thus potentially intexéperable, since CTK provides neither an
XML schema nor DTD for defining thgh_formal“SYhta?; of messages. In addition, a new
component still needs to understand thezi@;r]}_a#ltms of the XML-based messages before

Y

interacting with CTK components‘: ! | :‘!‘

The major limitation of CTK‘is"théLt 1t lagi{:S"’iOf sophisticated service management
mechanisms, since it primary deals With context handling and leaves most of service
management issues to the developers. More precisely, CTK only provides naive service
discovery mechanisms and leaves these burdens to developers. In real world cases where
there are tens or hundreds of components, it is tedious and error prone to maintain the

states and life-cycles of these components. More discussions on CTK service discovery

can be found in Section 2.2.1.

2.1.2 Universal Plug and Play (UPnP)

The UPnP Device Architecture [15], revealed in Figure 2.2, is a well-known ISO/IEC

standard for home network. The service component is called an UPnP Device in an

16

[Control Point] Device

Service

Action

. Device
Device

Figure 2.2: The layered architecture of Context Toolkits

UPnP network. Each UPnP Device is composed of a set of “UPnP Services”, and
each UPnP Service consists of a set of UPnP Actions. It is important to distinguish
the term “service”defined above from the UPnP Services mentioned here. An UPnP
Service always embedded in an UPnP Device, while a service refers to a collection of
components that collaboratively Suppoftl'use;ll“:’ls task

From Remote Procedure Caﬂ RP@S pomt of VleW an UPnP Action is identical

..-uu,,li

to a remote procedure which hasa met d ame, parameters, a return value, and
is located by an URL (Unlform ,ReS(Llprce L0¢Lt0r)' The application logic of UPnP
is typically controlled by a Control Pomt Wthh invokes UPnP Actions remotely. A
component that plays the role of Control Point can also be an UPnP Device. It is also
legal for an UPnP Device to contain another UPnP Device (see Figure 2.2, the bottom
right block), which also contains a set of UPnP Services and UPnP Actions.

Despite the absence of sophisticated service management mechanisms, the service

operation architecture of UPnP is very similar to that of CTK in the following aspects:

1. Device abstraction: Akin to CTK’s widgets, UPnP abstracts sensors, appliances,

or software programs by ”UPnP Devices”.

2. RPC-based: The Control Points of UPnP as well as CTK applications are both

responsible for serially invoking remote procedures.

17

3. HTTP (Hyper Text Transfer Protocol) and XML-based wiring format: The
wiring format of UPnP remote invocations is based on SOAP [12], a widely
adopted XML-based for remote invocation standard, while CTK uses a propri-
etary XML-based wiring format. Besides, widgets and UPnP Devices are both

implemented by embedding an HTTP server and an HTTP client.

UPnP provides more sophisticated support for service management than CTK. As
mentioned earlier, the management of UPnP Devices is carried out by SSDP. Unlike
CTK, SSDP is a decentralized protocol that does not require a dedicated discoverer. At
first glance, it seems impossible to manage the presence of service components without
a centralized broker. However, UPnP overcomes this issue by relying on the underlying
network infrastructure. Specifically, UPnP-eliminates the need for a centralized broker
by using the IP multicast mechanism Whiéh i:é"sup.ported by the most low-end switches

or home gateway. Hence, from“the net‘\'z_vprkl,--layer’s perspective, the multicast service

YFar—xy! |
=

provided by the switch becomes the| Iei’f%zli‘fii@d broker which is transparent to the

B ,
service components in the applic‘a,tioJmi laj;é;f. :‘S‘ince‘ multicasting is the realization of
publish-subscribe style communicatiﬁ(‘);ﬁ in'the n'étv;c‘)rk layer, it is interesting to note that
UPnP adopts the process-centric architecture for service operation and the data-centric
architecture for service management, while CTK uses the process-centric architecture
for both.

To sum up, the service management of UPnP is superior to CTK in both inter-
operability and reliability because that the encoding format of UPnP, that is, SOAP,

is more widely recognized than the proprietary protocol proposed in CTK and that

UPnP does not require a centralized broker.

18

2.1.3 The Gaia Meta-Operating System (Gaia OS)

The Gaia meta-operating system (Gaia OS) is proposed by Roman et al. [115, 114].
Compared with other pervasive systems, Gaia focuses more on large scale pervasive
environments (or called Active Spaces in the literature) such as museums, office build-
ings or campus, where the deployment of a dedicated centralized high-end server is
reasonable. Gaia OS takes a monolithic approach and aims to become a pervasive op-
erating system, so that it addresses a wide range of issues such as distributed context
file system, distributed event service, security policy, remote invocation, and databases.
As a result, the design and implementation is based on CORBA (Common Object Re-
quest Broker Architecture) [1], a full scale industrial standard for enterprise distributed
systems.

The service operation architecture of"'Gai"éf O‘S‘.is inspired by both CTK and MVC
(Model-View-Controller), a programmmg paradlgm widely used in window-based desk-
top applications [115]. Roman et aﬁ. "v a:%:' yopose a Model-Presentation-Adapter-
Controller-Coordinator (MPACC) as #stand;rd. $€I‘VICG operation architecture for Gaia
to fit the needs of Active Spaces Wthh is descrlbe in detail in [114]. The overall archi-
tecture of MPACC is depicted in Figure 2.3, a service is managed by a Coordinator.
The Gaia OS’s is responsible for composing a service, that is, to discover and to select
most appropriate components for the service according to the predefined application
description documents. An Application Generic Description (AGD) prescribes the
default preferred types and attributes of a service, while an Application Customized
Description (ACD) describes the user preferences. It is worthy to note that ACD is
implemented as a script called LuaOrb [37] to facilitate rapid prototyping of services.
Each device in the Active Space is controlled by a controller, where the function of
a controller is akin to a widget in CTK or an UPnP Device in UPnP. After a con-

troller reads from or writes to a device, the signals are then transformed by Adapters

19

———

Adapter

3

Controller Presentation

Zim e

Devices

o] s
‘|‘.1_;rl‘r LT .

2

¥ . T
ation architecture in Gaia
o\
e

~

‘\ v 1=
Figure 2.3: The MRACM:(%

into standard format used inl':Ga'

: s E ~
& £ . ¥ _g

Similar to UPnP Device Archﬁ&:ﬁ%e‘,’ t"hé zhi'r.ghitecture of Gaia is process-centric.
Service management in Gaia relies on CORBA’s event notification service. Each service
component declares its presence by emitting heartbeats to CORBA’s event notification
service periodically [145]. However, Gaia considers neither service recovery nor service
consistency issues.

The major criticism of Gaia comes form its dependency on CORBA. Although
Gaia benefits from CORBA by reusing many standard services such as the directory
service, shared repository, and event notification service, Gaia remains tightly cou-
pled with CORBA. As pointed out by Chappel [38] and Henning [69], the design of

CORBA standard is deficient and currently it has been regarded as a failed attempt to

20

standardized distributed systems: 1) CORBA has incomplete interoperability since it
standardizes interface but not the wiring format; 2) The cost of implementing CORBA
is high since the specification is too complex; 3) Most of CORBA services can not pass
through firewalls. As a result, most of the existing CORBA applications have been
replaced by XML-based Web Services in recent years. Besides, taking heavy weight
and monolithic approach also makes it hard to be compatible with legacy applications,

which makes Gaia infeasible in highly dynamic environments such as the Smart Home

76, 145].

2.1.4 The Aura Platform

Aura [58, 125] is a platform that aims to provide distraction-free services to occupants
of pervasive environments by utilizing if§ service migration mechanisms among hetero-

geneous environments. The Aura platferm is-consttucted on top of Linux kernel and

|
{

is composed of four main building b%d‘;@%beciﬁcally, Satyanarayanan et al. [118]
proposed Coda and Odyssey, a ﬁlg,.:sys!tilm;f‘ér I%l!éobileltliser that supports ubiquitous file
access with application—transparent".‘a‘dz‘xptation; ébectra [56] is a self-tuned remote ex-
ecution mechanism; Prism [109, 125] is a sophisticated service composition system that
predicts and adapts to user’s intent inspired by microeconomic model in Economics.

Figure 2.4 shows the overall architecture of Aura. A service is called a "task” in
Aura platform, which is managed by a centralized Task Manager, a Context Observer
that provides context information, an Environment Manager (EM), and many Suppliers
that provide actual support to the task [125, 126]. Aura is process-centric, since the
Task Manager is responsible for initiating, negotiating, and monitoring the progress of
"tasks” in Aura according to pre-specified user preferences.

The developers of Aura recognized the importance of asynchronous communication

between components in pervasive environments [125]. Hence, Aura components use

21

LI

0

\Ry
ffo Context

A Observer <}

> Prism

iask
mana Q‘Eﬂ‘?&ﬁf

>
>

L/l

~V E ~ mqnaged
. envircmnmernt
Environment
Manager | @ — - - -
App enviranment
Operating System

seryice

Supplier <j¢—pp>

Figure 2.4: Aura’s overall architecture (source: [125])

non-blocking sockets to commuiticate with q-pé}another. As pointed out by Eugster et

o, |
—

al. [55], non-blocking sockets facilitatiei d’é:%&ﬁ;ﬁlhing in time and synchronization. This

feature makes Aura platform mere I‘!qbuéq‘lcltkljgjﬁn‘other process-centric systems men-
tioned in previous sections. Howeve.r; sifice poi’nt;:tb—point communication still requires
explicit address-binding, the locations of components are still tightly coupled. Sim-
ilar to CTK, the communication among Aura components also rely on XML-based
messages, hence Aura is also “potentially”interoperable. In addition, Aura adopts the
asynchronous process-centric architecture for performing service management. The
most notable service management mechanism is the utility-based and task-centric ser-
vice composition [126] which will be elaborated in Section 2.3.

Despite the sophisticated service composition mechanism (Prism), Prism does not
deal with inconsistency issues between services (tasks). As for the management about

components’ presence, Aura relies on Environment Manager as a centralized registr
)

for detecting presences of Suppliers. In [125], the authors claim that current imple-

22

mentation of Aura can use existing tools such as INS [18] or Jini [20] as its default
presence management mechanism. However, as INS only focuses on routing and Jini
is tightly coupled by Java, it is not clear that how these mechanisms are applied or
customized so that it can fit into the overall architecture. Another limitation of Aura is
that although core components such as Environment Manager, Context Observer, and

Task Manager are centralized, it does not deal with the single-point-of-failure issues.

2.1.5 CoBra (Context Broker Architecture)

CoBra [39, 40] emphasizes more on context reasoning. At the core of this architecture
is a centralized server called Context Broker, which is the mediator of all components in
the pervasive system. CoBra is tightly coupled with JADE (Java Agent DEvelopment
Framework), a java-based multi agent plétfofrh thatimplements the FIPA (The Foun-

dation for Intelligent Physical Agents) specifications;:FIPA [10] is an IEEE Computer

Society standards organization that p1|"®m'e':‘tes ‘la'gent—based technology and the interop-
erability of its standards with oths; teliJhn(f)mllogll{le$ As a result, a service is composed of
a set of collaborative agents, each df'WhiCh resides.ift JADE containers.

CoBra delegates the presence management to the Directory Facilitator (DF) of
JADE. Hence, the service management architecture of CoBra is process-centric. How-
ever, DF does not guarantee the validity of presence information [27], and the service
composition mechanism is absent, as well. It can be concluded from the above discus-
sion that the CoBra services are neither reliable nor user-centric. Like Aura, agent in-
teraction is done by asynchronous peer-to-peer communication which uses ACL (Agent
Communication Language) as the wiring format. Another limitation of CoBra is that
the design of the Context Broker is purely centralized and lacks of recovery mecha-

nism. Furthermore, all components have to be hosted by JADE (or at least conformed

to FIPA specification) in order to access CoBra services, and CoBra does not fully uti-

23

lize the functionalities of JADE which aim to provide general support for multi agent
systems. The library of JADE is complex and not easy to learn, and it is very likely

that adopting the JADE platform is an overkill for pervasive environments.

2.1.6 SOCAM (Service-Oriented Context-Aware Middleware)

Similar to CoBra, SOCAM (Service-Oriented Context-Aware Middleware) [64, 65] pri-
marily focuses on context reasoning. The service management issues are left to its
underlying platform, namely, OSGi (Open Service Gateway Initiative) [11]. Note that
OSGi is an emerging open standard for deploying services to smart home environments.
Components deployed in the OSGi platform are called "bundles,” and the bundles can
be installed, updated, or removed on the fly without having to disrupt the operation of
the device. Bundles are libraries or ap‘plicat‘i'ons that can dynamically discover other
services from the service directory or can be used by other bundles.

The OSGi framework is origimally (?eSLgﬁed ‘for athome gateway. However, the OSGi
specification does not deal with t_.h“e nlazLure of llﬁlstrlbuted systems which is one of the
important characteristics of a perVaéive environﬂfﬁent. As a result, SOCAM services
have to be deployed in the same machine. All OSGi services are deployed locally so
that the service management can be greatly simplified: the presence of components
can be accurately detected by the OSGi ServiceRegistry service and the recovery of
components can also be easily realized by utilizing OSGi ServiceTracker service.

Recent progress in the computing power of embedded systems has made it possi-
ble to embed the OSGi platform inside intelligent appliances such as the Interactive
Television or home entertainment stations. Wu et al. [142] proposed a distributed
architecture that enables interactions among distributed OSGi platforms, which is one

of the baseline technologies of this research.

24

2.1.7 Tuple Spaces

As mentioned earlier, recently data-centric architecture has been proposed to deal
with the flexibility and reliability issues of process-centric architecture. Contrary to
the interaction style of process-centric architecture, the components in data-centric
architecture usually interact with one another in publish-subscribe mechanism so that
data-centric architecture is able to addresses the flexibility and reliability problems by
enforcing decoupling in space, time, and synchronization [55].

The core idea of these decoupling techniques is to introduce a centralized mediator
for all components in the system such as Tuple Space (TS) or Message-Oriented Mid-
dleware (MOM). The introduction of a centralized mediator can cause single-point-of
failure problem, but it can be alleviated by.deploying a cluster of mediators [59] or by
delegating the mediating tasks t0 the uﬂderf&ing network infrastructure [15]. Among
the data-centric pervasive systenis, Event Heap 76, 77] One.world [61, 63], and LIME
[105, 42] are implemented by using a F ntf:hzlqd TS server. A TS sever is a remotely
accessible associative virtual shared mle ory‘. st@png sérlallzed objects. Therefore, com-
ponents can read, write or take Serlahze,d ObJeCtS from TS server.

Event Heap serves as the underlying infrastructure for a larger platform called iROS
(Interactive Room Operating System). The service management mechanisms of iROS
are carried out by another component called ICrafter [110]. Components announce
their presence by a broadcasting mechanism called service bacon. In ICrafter, compo-
nents describe themselves by SDL (Service Description Language) which is similar to
UPnP service descriptions. SDL is capable of describing the type and supports oper-
ations of a component but it does not support attributes. ICrafter provides a naive
service composition mechanism for iROS applications. Compared with Prism of Gaia,
it lacks of advanced features such as attributed-based filtering and conflicts detection

and resolution.

25

One.world proposes a programming model for TS, in which an application (i.e. a
service) consists of a set of "scoped event handlers” (i.e. service components). The
scope of these event handlers regulates their data access authority in the TS server.
However, the application must be written according to specific guidelines and hard to
support legacy applications [76]. One.world also proposes a robust presence manage-
ment mechanism by an renewable centralized discoverer: upon failure of the discoverer,
another new discoverer will be elected and initiated. However, it neither deals with
service reliability nor service consistency issues. Finally, LIME emphasizes on cus-
tomizing the TS server for applications in the pervasive environments and do not deal
with service and service management issues.

The major problem of TS systems is their scalability and performance. As reported
by Johanson [76], it is difficult to scale the TS'.System to large number of simultaneously
communicating entities due to performance 1ssues Moreover Grimm [61] reported
that, LIME, Event Heap, and One. Wor].d g.Ltlghtly coupled with Java, since TS server

stores serialized java objects. Hence ?kLe 1nteroperab1hty of these TS systems is poor.

2.1.8 Message-Oriented Middleware (MOM)

Message-Oriented Middleware (MOM) is an event-based mechanism that enables asyn-
chronous communication and loosely-coupled integration. Hohpe and Woolf [71] point
out that when compared with other paradigms, messaging is considered more imme-
diate than file transfer, better encapsulated than shared database, and more flexible
than RPC-based invocation. MOM creates a virtual "software bus” for integrating
heterogeneous message publishers and subscribers, namely, the "nodes”. The logical
pathways between nodes are called "topics”. Based on this architecture, the system
provides services by chaining nodes and topics together. For instance, A, C, D, and F

in Figure 3.2 collectively provide an ”adaptive air conditioner” service. In this service,

26

, .= :::: :< DJD SENSOR (}

‘ ©

(j come< 4)

Foop

i B (T @D {5

Figure 2.5: A typical message-oriented pervasive system

A is a software adapter of wireless tempéi"attife Sensors, C is a context interpreter that
transforms raw data into high-level coryi@xt d(a‘ta D demdes the commands to be taken

OWI ‘Eontext data, and F is responsible for
‘l

by performing logical reasoning base%
M
Lmessagf% ¢oming from the COMMAND topic.

controlling fans or air-pumps base.(j 0:11

MOM has several advantages. I‘F'i'rfs't,..‘_it (;omes"f3"1'1p with simple and intuitive abstrac-
tions of node behaviors. More specifically, all node behaviors can be reduced to three
types (to receive messages, to process messages, and to send messages). Second, nodes
are easier to "mock” and test. In Figure 3.2, node E can be tested separately without
the presence of node A by using a "mock” node that feeds dummy sensor messages. In
addition, MOM facilitates ”separation of concerns”, that is, since each node is isolated
by the topics, developers are capable of concentrating only on the logic of the node to
be built without worrying about the interferences with other nodes. Finally, due to
the loosely-coupled nature of MOM, failures are isolated. In Figure 3.2, if D fails, the
failure is isolated by the topics, but either C or F will be aware of the failure.

MOM and TS have similar advantages, that is, easy to integrate heterogeneous

27

hardware/software as well as failure isolation. However, they are two different archi-
tectures from the technology’s point of view: TS is a way to access shared information
across multiple concurrent clients, whereas MOM focuses on message delivery. More
concretely, T'S combines the concepts of centralized database and message delivery to-
gether. TS can simulate the event-driven feature of MOM; however, it tends to be less
efficient as they are generally implemented using a remote accessible shared memory,
which uses locks with read/writes to entries. Moreover, TS tends to store serialized ob-
jects, which is usually a penalty on performance and interoperability. Since that MOM
does not enforce the wiring format of messaging content, the performance of MOM is
better than TS. Because of the relief of performance and interoperability issues, MOM
appears to be a good alternative that keeps the benefits of data-centric architecture
and prevents performance and interoperability issues at the same time.

SOLAR [87] and MIRES [127] axeé two of the few Pervasive systems based on MOM.
SOLAR is an infrastructure for processmg;gmtbxt information, the primary application
domain of SOLAR is large scale mobﬂ? \and dlstmbuted systems so that P2P techniques
such as Distributed Hashtable [23} are used Wthh is scalable but less efficient. The
wiring format of SOLAR is proprietary text-based key-value pairs. It is noteworthy that
SOLAR is capable of recover failed service components by restarting the failed ones.
However, it does not support service-level recovery. Contrary to Aura, SOLAR deals
with failures by reloading components into memory instead of finding an replacement.
Meanwhile, MIRES is designed mainly for Wireless Sensor Networks (WSN). However,
MIRES focuses on the gathering of contexts, and doesn’t address reliability issues or

how to compose services by grouping nodes of MOM.

28

2.2 Pervasive Service Discovery

Service discovery is the process by which an entity on a network (the service manager) is
spontaneously notified of the presences of desirable resources (the service components)
[52]. The process is usually initiated by issuing a query which contains a set of criteria
the desired resources must comply with [136]. Although the idea of service discovery
emerges from large scale enterprise systems, it has been extensively used to manage
highly dynamic pervasive environments [82]. Typical objectives of service discovery
include: 1) getting the locations (e.g. URLs or remote references) of components
that meet certain criteria; 2) monitoring the presence or absence of affiliated service
components, this is also known as presence management; 3) (optional) trying to recover
failed services.

Many service discovery mechanisims ‘havé.‘bee_n proposed. They can be classified
into three categories: directory-based, ﬁ:Q.‘I}_—Hd_if-.rel"ctory—b'ased, and hybrid [44]. Directory-
based systems [20, 3] usually have deqijcéf‘hiii:fle'gistrie‘s that maintain information and
status of service components, while n(%@—diql;éctzp!ry‘—baséd systems [15, 7] rely on broad-
casting or multicasting mechanismls;.. Some sysf;éms support both model mentioned
above and are capable to adapt themselves according to the environments [67].

Item 1 mentioned above implies that there is a matching process. To facilitate the
matching process, each service component has to be associated with a ”capability de-
scriptor” that is to be matched by the ”specification”. Typically, a capability descriptor
contains type and attributes of a service component. In a pervasive environment where
heterogeneity is a concern, ontology standards such as OWL-S (Web Ontology Lan-
guage for Services) [99] are employed to enhance interoperability. Ontology is a set of
shared vocabularies used in a specific domain. Sycara et al. [129] suggested an exten-
sion of OWL-S for describing the capabilities of a service component. In OWL-S, the

capabilities of a service component consist of three parts (see Figure 2.6): 1) Service

29

" ServiceProfile What a service does 7
Senvice SenviceModal How a service works (logic flow) 7

Has-a)
ServiceGrounding Hows to access a service ¥

Figure 2.6: Overall structure of OWL-S

Profile that describes what a service component does; 2) Service Model that describe
how a service component works (i.e. logic flow); 3) Service Grounding that provides the
information of how to access a service. Paolucci et al. further refined the traditional
capability descriptor by extending Serviee P‘r.oﬁle of OWL-S, namely, Amigo-S [108].
Capabilities of a service component iﬁ Amigo—S are characterized by a type, IOPE
(Input, Output, Precondition, and Effec%p chntext parameter and QoS parameters.
In their paper, Paolucci et al. also deﬂrred 'h. term “degree of similarity” that is used to
estimate the quality of matching between the speeiﬁcation and a capability descriptor.

If there are more than one qualified ‘resouree, then more sophisticated mechanisms
are required to rank these resources. Moreover, many systems take users’ preferences
into account so that the specified criteria are so complicated that they have to be pro-
cessed by a dedicated interpreter. Finally, some other systems require that executing
sequences of components to be constrained by a workflow. In this thesis, the mech-
anisms that resolve the above-mentioned design issues are called service composition

which is a stage of service discovery. The taxonomy and the state of the art of service

composition are discussed in the next section.

30

[Discoverer]

(4) discovererQuery (2) addDiscoveredObject

(3) Find discoverer (1) Find discoverer

A
A

Application

(5) Interaction

CTK
Component

Figure 2.7: CTK service discovery architecture

2.2.1 Service Discovery in CTK

CTK service discovery is designed based on directory-based architecture. The cen-
tralized directory is called a Discd'{}erer After bemg initialized, a CTK component
(e.g. a Widget, an Aggregator or an(\.t_;?fpfz\?‘llzer searches for a Discoverer by using
HTTP-MU (HTTP over UDP Multlc%t J@‘ 1g| reg2.7, step 1) and then registers itself
to one of the Discoverer (Figure 2:7; st b 2)a Al“lough CTK allows multiple co-existing
Discoverers, each component is only allowed to assoc1ate itself with one Discoverer. In
CTK, a Discoverer is also a CTK component, so that a Discoverer can also register
itself to another Discoverer. Consequently, the network of CTK components looks like
a tree-like hierarchy structure (see Figure 2.8).

If there is only one Discoverer in the system, then components can discover one
another other by simply querying the Discoverer (Figure 2.7, step 4). Currently, CTK
Discoverers support query by ID, component type, and attribute. Finally, the applica-
tion obtains remote references (IP and port) of the discovered components by which the
application can then interact with these components (Figure 2.7, step 5). On the other

hand, if there is more than one Discoverer, an application has to traverse the whole

tree to obtain all qualified components. Taking Figure 2.8 as an example, the client

31

Discoverer

[Discoverer]

[Discoverer]

) FER 0 =
.

Figure 2.8: The h1eraw We of CTK Discoverers

can find an IO Board by eonsultln o th sk ‘Discov re\\r ‘however, exhaustive traversals

are needed if the client WlsheS‘ t‘@r ﬁl‘ie@\t best fits its requirements.
"'es'eﬁee 'management over components.

Hy 3

Components announce the presence aI{dz a4b$ehce by registering and un-registering,

The Discoverer is also respon&ble:

respectively. After a component is registered, the Discoverer occasionally pings the
component to validate its liveness. Once a component is not responding, the Discoverer
notifies the application. But CTK does not deal with recovery tasks.

There are several issues with respect to the design and implementation of service
discovery in CTK. First of all, although CTK allows multiple Discoverers, the single
point of failure problem of the centralized discoverer is still not addressed since the hi-
erarchical tree-like structure makes the system fragile: If one of the Discoverer crashes,
then all registered components become undiscoverable. Second, due to the nature of

multicast, when there are multiple co-existing Discoverers, the components do not have

32

a chance to choose among available Discoverer, in the latest released implementation
(December 29, 2003). Hence, the registration holder of newly initiated components
is chosen randomly causing the tree to become unbalanced. Third, the need to ex-
haustively search through the component tree makes the CTK service discovery a time
consuming process. More sophisticated mechanisms are required to enhance efficiency
of service discovery. Finally, to maintain the availability of an application means to
make sure each participating component is available. However, CTK service discovery
is supported by a centralized Discoverer which is assumed to reflect accurate presence
or absence of components. If a component fails without notifying the discoverer, it
is not clear that how long it will take for the Discoverer to recover from inconsistent
state, since the pinging mechanisms are not elaborated in [46]. Even if the failures are
detected accurately, the CTK-based applicafions are still unreliable since there is no
recovery mechanism for applications)

To sum up, CTK service dlscovery is d_g@gpbd based on directory-based architecture
without addressing single point Of_falhiue p%bl?fn Ip presence of multiple Discoverers,
the efficiency and reliability of aﬁbhcaﬁons 1S questlonable It can be helpful if more

efficient tree-search and tree-reformation algorithms can be proposed to deal with the

efficiency and reliability issues.

2.2.2 Service Discovery in GaiaOS

The design of service discovery in Gaia is obviously different from that in CTK except
that they both required a centralized directory. In Gaia, the centralized directory
is called Service Repository which is realized based on the CORBA Trading Object
Service [6]. As mentioned in Section 2.1.3, Gaia is tightly coupled with CORBA.
In addition, its service management architecture is data-centric in the sense that its

presence management heavily depends on a publish /subscribe communication service

33

[Presence Service]

(2) Presence Announcementl T (1) Presence notification

EVent Manager (1) Presence notification
(CORBA Notification Service)

(3) Learnabout the presence of the component

4 B

Space Repository

(4) Specify application configurations (CORBA Trading ObJECt SerViCE))
AGD .,

(5) Query (CORBA constraint query language)

Application .,
Fram ework (6) initializing applications Application
Components

ACD

Composition Rule
(LuaOrb Script)

Figure 2.9: Discovering and invokilg gqrvice components in Gaia

called Event Manager. The Gala EV%mM@[d(ger is 1mp1emented by using CORBA
d."'" =
Ikl

Notification Service. 4 |

Figure 2.9 depicts the overall"':‘.ép(;llittecture‘1' fGala service discovery. It is carried
out by the coordination among thev folll"l.(‘)vx‘finé‘ cc‘)mponents: Event Manager, Service
Repository, Presence Service, and Application Framework. Unlike in CTK, Gaia ser-
vice components publish presence notification messages to Event Manager instead of
registering themselves to the directory (i.e. Space Repository) directly. The Pres-
ence Service subscribes these notifications, and then these messages are forwarded to
the Space Repository. After that, the Space Repository registers service components
according to the received presence notifications. One advantage induced from this
data-centric (publish-subscribe) approach is that the service components do not need
to discover the location of Space Repository. Instead, the presence announcement mes-

sages are just sent to Event Manager, which are subscribed by the Presence Service.

The Application Framework is responsible for service composition. First of all, the

34

Presence Service

(2) Leave Announcementl 1 (1) Does not receive heartbeat for a period of time

~
Event Manager (1) Stop heartbeat

(CORBA Notification Service)

(3) Learn about the absence of the component

o

Space Repository
(CORBA Trading Object Service)

(3) Learn about the absence of the component

A

p— Application] .
T Framework

Application
Components

ACD (4) Handle application failures according to pre-defined ACD

‘.“l:l' §
Figure 2.10: PyeSence man&éér‘r_;ent in Gaia
f(——-” ‘

u"ﬂl

e P4
application developer specifies locatiov(Eﬂiﬁk ent/configuration (AGD) as well as the
cript). cgording to AGD and LuaOrb scripts,

h

an ACD is automatically generateéi‘i;by_.-thﬂe Apﬁiication Framework. Then, the Ap-

composition rule (written by LuéQrb S

plication Framework search for appropriate component for composing the application
based on ACD. In current implementation, Application Framework search for appro-
priate components by CORBA’s constraint query language which is defined in [6]. If
the Application Framework is capable of finding all qualified components specified in
ACD, then it initializes the Coordinator of the application causing the application to
be started.

In CTK, the Discoverer keeps track of presence information of components by
polling each of them periodically. On the contrary, in Gaia, heartbeats are emitted
from components periodically and then they are received by the Presence Service which

is responsible for keeping track of the presence information of components. Similarly,

35

a failed component is identified if it has failed to emit heartbeat message for a certain
period of time. After Presence Service is aware of the failed component, it notifies
both Space Repository and Application Framework to remove the failed component
from registry and to undertake failure handling. The failure handling mechanism is
decided by ACD which is generated according to rules written in LuaOrb script (see
Figure 2.10). By default, an application is stopped once failed components are identi-
fied. However, failure recovery mechanisms can be implemented by overwriting default
rule in the LuaOrb script.

In short, Gaia service discovery is more sophisticated then that in CTK, since
dedicated services such as Presence Service and Application Framework are developed
for monitoring components and for handling failures. Nevertheless, the burdens of
recovering failed application are still left to-@pplication developers. The architecture
of Gaia is process-centric, where eaeh Compgnéht ,i.S tightly coupled, causing Gaia

applications to become fragile. Hencé,.‘wi"giflﬂajrd to design a generic failure recovery
|

mechanism for Gaia application S,l.nc% Lhemrnteqlrrdependen01es among components can
be very complex. In addition, thesiel serv1ces are also possible point of failure, which also
lack of recovery mechanisms. Finally, Gala uses Event Manager Service (TCP-based) as
its communication mechanism for service management instead of IP Multicast (UDP-
based). However, as pointed out by Tran et al. [133], most packets used for service
management in Pervasive systems are with short lengths, and the relevant sessions are

not kept for a long time. In their experiments, even with reliable UDP, the system is

still 4 times faster than with TCP.

2.2.3 CoBra/JADE Service Discovery

This sub-section elaborates service discovery mechanisms used in CoBra (see Section

2.1.5). Actually, CoBra itself does not deal with service management directly, and all

36

these tasks are delegated to its underlying platform, namely, JADE, an implementa-
tion of FIPA (The Foundation for Intelligent Physical Agents) specifications [10]. In
FIPA, there are three specifications that concentrate on service discovery issues: Agent
Management, Agent Discovery Service, and JXTA [60] Discovery Middleware. Among
these specifications, only Agent Management is standardized [13], whereas the other
two specifications are currently pending in preliminary state. Therefore, only Agent
Management Service (AMS) are implemented in the current release of JADE platform.

As mentioned earlier, in CoBra each service component is implemented as a JADE
Agent. Figure 2.11 illustrates the overall architecture of JADE. In each machine,
there is a Container that manages local Agents. One of the Containers is chosen
as the Main Container, in which the Directory Facilitator (the directory of JADE
service discovery) and the AMS reside.! The locations of Directory Facilitator and
AMS are determined and can not be changed afterwards as soon as the system is
initialized. Directory Facilitator prov1de§:;(ellbw page service for Agents, while AMS
is responsible for creating and susper}c{mg *anthdeletmg Agents. Note that according
to FIPA specification, AMS is maadatory Whe;Leas Directory Facilitator is optional, so
that AMS also plays the role of Agent directory when Directory Facilitator is absent.
Context Broker, the core service of CoBra that serves as facade for acquiring context
information, can be deployed in an arbitrary Container and then be found through
Directory Facilitator.

To certain extent, JADE service discovery is less flexible, since the locations of
Directory Facilitator and AMS are fixed and are known by all Agents. After an Agent
is started, it registers its Agent Description and Service Description to the Directory
Facilitator with a lease time. It is the Agent’s responsibility to renew the lease time
before it expires. After expiration of the lease time, the Agent is considered failed.

Agents in JADE are addressed by AID (Agent Identifier). Before using a service

37

/] Directory 1\

Facilitator
\

/ 9
Context [
Broker AMS

7N

o _4 N\ ' 4

Container Main Container Container

Figure 2.11: Overall architecture of CoBra/JADE

‘}fﬂ'-“'f',

provided by an Agent, the Client,.uw_lj'lichfi:s‘ also af} ‘Agent, first searches for the Agents

3 %
that provide such service in thé Biréﬁ

‘foIfi_";;,Directory Facilitator returns the

AIDs of matching Agents to the chent‘ ‘ Wthh it can then consume the service.

Apparently, the Main Contéungr
is the single point of failure. JA]jEL?:;reﬁtes the 'pass1b1hty of failure by providing a
replication service for Main Contalner 27! As for the Context Broker, Chen et al.
[40] suggests a persistent team based approach, which is inspired by Adaptive Agent
Architecture [88], to prevent the single point of failure. However, since there is no
evaluation on the proposed approach, it is not clear that this approach is cost-effective,
namely, to what extent can the system be recovered, and to what extent does this
approach affect the overall performance of the system.

In summary, CoBra/JADE service discovery is designed based on directory-based
architecture with a replication service to alleviate the single point of failure problem.

However, the synchronization of data among replicated Main Containers can cause

flooding of additional network traffic. In addition, the locations of core services includ-

38

Directory Facilitator]

A A
(2) Agent discovery (1) Registration
A
Agent R A
(Cllent) (3) Interaction i Agent
(Server)

Figure 2.12: JADE service discovery architecture

T a
il B

ing AMS and Directory Facﬂltator are ﬁxed.-i After theses services are re-located (i.e
e

the Main Container crashes and IS "laced b?;é% rephcated one), the burdens of de-

tecting new locations of these servlces S fj; & re-bmdmg to these services are left to

la. 1

o |V

for service discovery. Specn‘ically,.y -lacksb'xf‘supports for selecting and composing ser-

and prov1des only naive mechanisms

vices according to users’ needs. Finally, the whole JADE platform is Java-based and

process-centric, and it is questionable that whether the legacy services can interact

with CorBa/JADE Agents.

2.2.4 Aura/Jini

Aura does not propose dedicated service discovery mechanism. Instead, in [125], the
author suggests that Jini [20] should be used as Aura’s service discovery mechanism.
Therefore, this sub-section examines Jini service discovery mechanism in detail.

Jini is designed based on directory-based architecture. The centralized directory

is called a Lookup Service. After being initialized, a service component locates the

39

[Lookup Service]

(3) Register by using
ServiceRegistrar

(6) Lookup by using ServiceRegistrar
(7) Get the service proxy

(4) Find Lookup Service
(5) Get ServiceRegistrar

(1) Find Lookup Service
(2) Get ServiceRegistrar

A

Client

v

(8) Invoke service

through service proxy Jini Service

Figure 2.13: Jini service discovery architecture

Lookup Service either by emitting a UDP multicast request or by waiting for a multi-
cast announcement from the existing Lookup Services. If the multicast service is not
available (e.g. WAN), the location of the Logkup:Service has to be known in advance

so that Jini service components gaﬁ contact the "'I:'foqukup Service directly.

After a Lookup Service is located, t 1_ h,;s'}jc‘te component acquires a serialized Java
==\
object called a ServiceRegistraz- fro th_ﬂﬁr\lﬁLd"

kup Service. After that, the service
registers itself via the ServiceRééfstgal. Sim\i\‘anj}y‘,j“; client component discovers the
Lookup Service by using the same way Wlth sérvice component mentioned above. The
ServiceRegistrar is now used to invoke the lookup operation of Lookup Service. If
the desired service is found, a proxy object associated with the service is downloaded.
Finally, the client invokes the service through the downloaded proxy object.

From the architecture’s point of view, Jini is identical to that of CTK and Gaia.
However, the most significant difference is that Jini is tightly coupled with the Java
RMI (Remote Method Invocation) technology. More concretely, instead of registering
explicit remote references (e.g. IP and port), Jini service components upload a serial-

ized Java proxy object to the directory, by which clients can invoke them. While this

mechanism makes Jini independent of specific network protocol, however, all service

40

components in the system have to be implemented by using the Java technology.

Jini’s presence management is similar to Gaia (Section 2.2.2) and CoBra (Section
2.2.3) which depend on the lease-based timeout techniques to detect the presence of
components. A component is considered as failed if it fails to renew the lease within a
certain period. Note that Jini does not support failure recovery. In Aura, components
that constitute a service are monitored by the service composition engine, namely, the
Prism service composer. A service is re-composed by Prism if a failed node belonging
to the service is detected.

The major issues of Jini/Aura service discovery is two folds. First of all, Jini is
tightly coupled with Java RMI, in which the interactions among components are syn-
chronous. However, one of the important contributions of Aura is its asynchronous
point-to-point communication mechanism. H'ence there is an obvious paradigm mis-
match. The designers of Aura do.not address these isstes in the literature. As a result,
it is not clear that how Jini is fitted mto ﬁs dwerall architecture of Aura. Second, the
adaptation of Jini as the underly}lng]L%rvr?:e dmcove@ technology forces Aura tightly
coupled with Java and process—cer‘l.tlric Is‘ervice Ifllgxﬁ'agement, causing poor flexibility and

interoperability.

2.2.5 Service Discovery in One.world

Similar to other directory-based service discovery mechanisms, the service discovery
of One.world also relies on a centralized directory server. However, the design of
One.world service discovery is very similar to CTK, Gaia, and Aura except that the di-
rectory server in One.world is electable. The election is performed based on the devices
suitability to be the directory, that is, memory size and devices’ uptime. Therefore, in
addition to service components, and Directory Servers, there is also an Election Man-

ager that is responsible for electing and initiating a new directory server aggressively.

41

More concretely, the Election Manager monitors presence announcement, sent by UDP
multicast, emitted from Directory Servers, a new Directory Server will be elected when
one of the existing Directory Server fails to perform presence announcement for suc-
cessively two time periods or when one of the clients receives a malformed message.
The core idea behind this design is to make sure there are always more than one Di-
rectory Servers in the system. The contents of a newly started directory server can
be inconsistent with the system. Hence, the service components are assumed to cache
most recent information and then forward to the newly started directory servers.
Although the design of electable directory servers increases the reliability of service
management, One.world does not deal with the reliability of services or service com-
ponents. Moreover, the aggressive approach can greatly increases the load of devices
and network. This approach even €auses'the deployment of One.world runtime impos-
sible for some resource constrained devices su.(‘:h"as Wireless sensor node. After all, it

1

is unreasonable to assume that every d{evﬁgs'| capable of becoming a directory server.

2.2.6 Bluetooth SDP ('B'lﬁétootﬁ"sr Service Discovery Proto-
col)

In the following two sub-sections, two non-directory-based service discovery mecha-
nisms, that is, Bluetooth SDP and UPnP are introduced. In contrast to the above-
mentioned directory-based approaches, Bluetooth SDP and UPnP focus more on resi-
dential applications and smaller networks.

Bluetooth is a short-range RF-based communication technology [52]. Different
from other service discovery systems mentioned above, Bluetooth is realized based on
non-IP network so that it can achieve robustness, low power consumption, and low
cost. Bluetooth SDP (Bluetooth’s Service Discovery Protocol) is an optional profile

of Bluetooth core specification [7], which is tightly couple with L2CAP (Logical link

42

control and adaptation protocol). L2CAP is the base of many higher-level Bluetooth
protocols, which hides the complexity of RF-based communication. Bluetooth devices
form a small group called a ”piconet” by coordinating nearby devices. Each piconet
can only consist of up to 7 devices, and one of these devices is the master. The master
can be a slave of upper level group called ”scatternets”. Hence, the entire Bluetooth
forms a hierarchy network. Bluetooth is based on non-directory-based architecture.
The major limitation of Bluetooth SDP is it’s tightly coupling with a specific pro-
tocol stack. Hence, it is not easy to interoperate with non-Bluetooth devices. Second,
due to the low bandwidth, only 128-bits UUID-based search is allowed. The data
structures used to represent attributes become more complex than competing service
discovery protocols. The burden of processing these complex data structures is left to
application developers. Third, thesearch'scope of Bluetooth SDP is limited by physical
distance which is usually less than ten meters Flna,lly, Bluetooth SDP is designed for
Personal Area Network which typlcally Cgmal'ns less than ten devices. If it is used in
| \

the scale of a smart home, the mothng of pomponents can become inefficient and

less accurate.

2.2.7 Simple Service Discovery Protocol (SSDP)

As mentioned in Section 2.1.2, UPnP is a well-known standard for home network,
which composes of three HTTP-based sub-protocols: SDDP, GENA (General Event
Notification Architecture), and SOAP. Among these protocols, SSDP takes charge of
service discovery in an UPnP network.

By default, SSDP operates based on HITPMU (HTTP over UDP multicast). Mul-
ticast is an IP-layer mechanism of forwarding IP datagrams to a group of interested
receivers via a set of predefined addresses, which is supported by most network switch-

ing equipments. By default, SSDP uses the address 239.255.255.250:1900. Therefore,

43

—
L USSP GENALLSORRLLL
TR
U

Figure 2.14: The protocol stack of UPnP

SSDP does not need a centralized directory. SSDP is a simple yet effective service
discovery protocol. It extends HTTP with two message types: Notify and M-Search.

Notify and M-SEARCH messages\,lgréﬂ%’ﬁgg%i’éﬁzen%apsulate SSDP actions. There are
e -1 < -i.!._' T

%

in an M-SEARCH message. The maid;@d,lq}mf)onent then replies by sending back

an HTTP Response message (see Listing 2.1, lower part). It is noteworthy that it is
possible that a device fails without sending a ”ssdp:byebye” message. Therefore when
issuing a ”ssdp:alive” or a response message, the device attaches information of valid
time period by using a HTTP ” Cache-Control” header (see the bottom part of Listing
2.1). After this time period, the presence announcement becomes invalid.

SSDP /UPnP has the following benefits. First, it is an ISO standard. Second, it is
one of the few dynamic service discovery protocols that do not need a dedicated and
centralized service registry [148], which is more feasible in smart home environments.

Furthermore, SSDP/UPnP is platform and language independent, as it is based on

44

Listing 2.1: An ”ssdp:discover” request and its response

M-SEARCH « HTTP/1.1

ST: urn:schemas—upnp—org:device:sensor:1
MX: 3

MAN: 7ssdp:discover”

HOST: 239.255.255.250:1900

HTTP/1.1 200 OK
Content—Type: text/html; charset="utf—-8”
Server: Windows XP/5.1 UPnP/1.0 CyberLink /1.7
Content—Length: 0
Cache—Control: max—age=1800
EXT:
Date: Sun, 08 June 2008 13:35:12 GMT
ST: urn:schemas—upnp—org:device:sensor:1
USN: uuid:94b7fabb—52df—4222—bH2f1—-d5573e74859a ::

urn : schemas—upnp—org: device: TarokoSensorGateway : 1
Location: http://192.168.4.102:4040/description .xzml
MYNAME: Taroko Sensor Gateway

SOAP/HTTP protocol. Despite these a,d-vanﬁarges there are still many issues in the
original design of UPnP/SSDP: F1rst|+f aql desp1te of high flexibility and interoper-
ability, SSDP does not take care of both servjl‘ce comp081t10n and recovery. Second,
service representation in SSDP is na'l've. Speciﬁcally, service components can only be
characterized by ID and type, while most of other service discovery mechanisms sup-
port at least ID, type, and attribute. Notice that in Smart Homes, services components
with the same type do not mean they are substitutable. For example, the informa-
tion obtained from sensors in living room is different from the information in the bed
room. Therefore, supporting only type-based representation prevents UPnP network
from applying sophisticated service composition mechanisms. Third, SSDP relies on
UDP, which is unreliable. UDP is very likely to lose packets thus causing SSDP to

become invalid in a busy network. Hence, the UPnP specification suggests broadcast-

ing SSDP messages repeatedly for 2 to 3 times. Unfortunately, this approach tends to

45

make network traffic heavier. The situation is getting worse if we increase heartbeat
rate to achieve higher availability. Finally, SSDP suffers from efficiency problems: the
broadcasting nature of UDP tends to flood the network with unnecessary packets. We

need more sophisticated mechanisms to save the bandwidth.

2.3 Pervasive Service Composition

Traditionally, service composition has been an integral part of service discovery. The
major purpose of service composition is to select, to rank, and to assemble qualified
service components according to a pre-specified service specification. Service compo-
sition is one of the most active research issues in Service Computing [147]. In the
last few years, a considerable number of studies have been made on designing service
composition mechanisms, but most-of. t“heml‘l Ifoc,us on enterprise environments [103].
Many of these works [123, 132] aggregégg sefvice coinponents according to workflow-
based service template language sueh z}j Bﬁ?ifl%s;s Progess Execution Language (BPEL)

| a=s ||
[79]. Researches using Workﬁow7.bas$ approach focus on service units with prede-

fined profiles. Other researchers prlo'pose to cOmI.)‘ose services by planning techniques
[146, 83, 91], and they who suggest that the time of selection of components should
be considered dynamically during runtime instead of in design time. Notably they
emphasize on finding global optimal execution paths among numerous tasks and their
subtasks. Generally speaking, planning techniques are more suitable when the struc-
ture of services can be divided into many sub-tasks hierarchically. In an enterprise
environment, services are usually composed based on pre-defined business policies and
are relatively well-planned. On the contrary, pervasive service compositions are often
user-dependent and ad hoc.

Although numerous attempts have been made in studying service composition is-

sues in enterprise environments; however, according to a recent study conducted by

46

Bronsted et al. [33], there are surprisingly few researches have been done on this is-
sue for pervasive environments. After performing a thorough survey, Bronsted et al.
noticed that few existing service composition solutions are feasible in pervasive environ-
ment. They also observed that there are some problems that made service composition
in pervasive environments more challenging than that in traditional enterprise environ-
ments due to the following reasons: 1) composing services under changing contexts, 2)
managing service contingencies, 3) device heterogeneity, and 4) taking user preferences
into consideration. Among these issues, little research has been made on the last two
problems, namely, the inconsistency problems among conflicting user preferences and
service effects (the effects of services interfere with one another). They will be discussed
further in the following sections.

2.3.1 Unifying Inconsistent Usen Preferences

f |
|
{

| M=)
The goal of service compositions lin pervasive| i‘environment is to meet maximum sat-

fm

isfaction of users. Before composifcior!l}sta}ﬁ:s, IH‘]sers sbecify their needs or preferences
SN | 1

to the system via user interfaces. There are sevgfal methods proposed to model user
preferences in intelligent information systems such as [90] and [96]. However, these
approaches either do not provide a complete formal framework for users to represent
their preferences or does not work when multiple conflictive preferences are present.
Furthermore, complexity arises when multiple parties submit conflicting preferences
simultaneously. For example, the preferences of energy saving policies and the user
preferences are very likely to be conflicting.

Most of the existing pervasive service composition mechanisms only focus on cap-
turing user preferences in either direct [110] or indirect ways [126, 111] to help to obtain
optimal outcomes. For example, ICrafter [110] is a user-mediated service framework

for Event Heap (see Section 2.1.7). In ICrafter, the term ”service” is used in a narrow

47

sense, which refers to a user interface (UI) plus an appliance. An appliance can be
a computer program or a real world device. At the core of ICrafter is a well-known
service (e.g. every component knows its location) called the Interface Manager (IM)
which generates Ul for the users to operate appliances according to the contexts on the
fly. Strictly speaking, ICrafter does not address most of service discovery issues such
as presence management, service recovery and service locating.

Existing service composition mechanisms deal with conflicting policies problems
by either explicitly defining the precedence among policies or by attempting to seek
a common ground among conflicting policies using logic-based approach. Olympus
[111] falls into the first category, which takes charge of service composition tasks for
Gaia. In Olympus, the user preferences are specified by using LuaOrb-based policy
files. According to AGD and the policy files; the Gaia service composition framework
then generates ACD automatically, The conﬂjptihg policies are resolved by explicitly
assigning a master policy for each crltelrla_fﬂ:he ranking of candidate service compo-
nents are determined by heuristic“uti]:ity f%ncﬁitons predefined by users. On the other

hand, Bettini [29] proposes a ﬁrst—brderilogic bal,sé’d profiling system for mobile systems.
They discuss cases of conflicting profiles énd offer their resolution strategies. Shankar et
al. [119] proposes an Event-Condition-Action-Post-Condition (ECA-P) policy model.
This work detects conflicts among policies by analyzing their semantic post-conditions
and replaces conflicting ones with the one with preferred post-conditions. Due to lim-
ited expressiveness of ECA-P model, the results are decisive: users either come to a
common agreement or the service is not provided at all. However, in real cases, users
tend to change their minds and are usually negotiable. Obviously, more powerful rep-
resentation techniques have to be developed in order to capture the negotiable user

preferences.

48

2.3.2 Dealing with Inconsistent Service Effects

Services that work perfectly when they are isolated do not guarantee that they can
still work perfectly when several services co-exist in the same environment. Usually,
compatibility issues arise due to resource competing and interferences among different
effects of services. This issue is traditionally referred to as the ”Feature Interaction
Problems (FIP)” [86], which is first observed in 1980s in telecommunications systerms.
FIP refers to some unexpected side-effects caused by interactions between or within
services. It is important to note that from the users’ point of view, not all interactions
are unacceptable. Therefore, the pervasive service composition mechanisms should
be able to distinguish acceptable interactions from undesired ones according to user
preferences.

Earlier research that set their'theme e'n teleco__mmunications systems focuses on res-
olution after interferences occur: rather ’than aV01d1ng them in advance. The resolution

processes usually involve rolling back| jhe“thle transaction of business calls [35, 81].

i
However, in pervasive environments 515

ch as s;rnart homes resolution approaches are
usually infeasible, and hence, how to prevent service interferences becomes important
in pervasive environments. Tsang et al. [134] propose a learning approach to cap-
ture sequences of behaviors and then detect service interferences. Low [93] propose a
rule-based approach to detect interferences and improved the performance by using a
cache. Kolberg et al. [86] divide service interference problems into several categories:
1) conflicting accesses to single device at the same time, 2) undesirable effects among
activated devices, and 3) unexpected consequences caused by sequential connections
among devices. Nevertheless, they only provide an architectural approach to handle
the first two categories. Nakamura et al. [107] claim that there are two types of service

interferences, namely, appliance interferences and environment interferences, depend-

ing on whether the interference takes place due to direct conflict among appliances or

49

via the environment. Existing prevention approaches take care of resource confliction,
but in pervasive environments, the presences of interferences are usually dependent on
users’ perceptions, which are vague and subjective. Hence, it appears that fuzzy-based
approaches which account for human’s linguistic ambiguity can be promising.

It follows from the above discussions that there is still much space for further in-
vestigation on the consistency issues of pervasive service compositions. Currently, the
scope of this thesis concentrates on dealing with two inconsistency issues of perva-
sive service composition, namely, inconsistent user preferences and inconsistent service

effects.

2.4 Summary

Tables 2.2, 2.3 and 2.4 summarize the ir;Veseliéated systems with regard to the design
issues this thesis has dlscussed S0 far The expected contributions of this work are
appended in the last row in the tab rlAS ||r‘nentloned in previous sub-sections, in
respect of flexibility (including extensJthty and]]mteroperablhty) of a pervasive system,
data-centric architecture appears superlor to* process—centrlc architecture; standard-
based wiring format is more interoperable than proprietary ones. Among the systems
investigated so far, UPnP, Gaia, and CoBra are more interoperable. Strictly speaking,
although CTK and Aura use XML, they are only ”potentially interoperable” since the
syntax and semantic of the XML-based wiring formats are still proprietary.

It is also important to point out that all systems being investigated except UPnP
use TCP-based service management (see Table 2.3). Nevertheless, contrary to me-
dia streaming protocols, the packet size of service management is typically small (for
example, most of the SSDP packets range from 200 bytes to 450 bytes), and can be

transmitted by single UDP-based packet, since theoretical size of an UDP datagram is

65507 bytes, and empirical size is 576 bytes. Consequently, adopting UDP for service

20

management is more efficient.

Generally speaking, directory-based approach has better scalability and perfor-
mance, but is poor in reliability because the directory can become single point of failure.
On the contrary, non-directory-based approaches are more robust, but produce more
network traffic. As reported by Meshkova et al., the design of service discovery systems
depends on the scale of their deployment [102]. According to their classification, enter-
prise scale service discovery systems such as Jini, COBRA Trading Object Service, and
JADE typically are designed based on directory-based approaches to reduce the traffic.
On the other hand, small scale systems such as UPnP and Bluetooth are more suitable
for non-directory-based approaches, since it avoids the single point of failure problem,
and is easier to be implemented in embedded devices [148]. Nevertheless, in Table 2.3,
all systems except for SSDP (UPnP) usé directory—based approach for service discov-
ery. This is because that these systems are d681gned for generality. The UPnP has
been customized for home network. Thelgoré |1ts non-directory-based design is more
suitable for the smart home. | ’

CoBra and One.world deal Wlth the s1ngle pomt -of-failure problem by automatic
recovery of directory servers and by re-electing directory servers, respectively. However,
recovering the discovery server does not guarantee the reliability of services. Among
the systems, only Aura is capable of recovering a failed service by re-composing the
service. As for service consistency, only Gaia and Aura partially deal with the con-
sistency problem which includes the consistency between service specification and the
consistency between the effects caused by components.

Among four key qualities of the Smart Home systems (i.e. flexibility, reliability,
consistency, efficiency), SSDP is superior to other mechanisms in flexibility but lacks
of supports in reliability, consistency, and efficiency. Over the last few years, several

mechanisms have been proposed to enhance UPnP/SSDP. Nakamura et al. [106] stud-

o1

ied the efficiency problems of the interconnecting UPnP gateways. They proposed to
store SSDP Presence Announcement messages in the caches of UPnP gateways in order
to reduce the service discovery traffic. Knauth et al. [85] proposed to reduce traffic
by introducing proxies among UPnP Devices that serve as cache in LAN. In [100, 73],
the authors enhanced GENA (General Event Notification Architecture), a TCP-based
sub-protocol of UPnP used for event notification by realizing GENA based on IP mul-
ticast. IP multicast mechanism is UDP-based, which is considered unreliable yet more
efficient than TCP. However, these enhancements do not deal with service composition
and recovery issues directly, which are critical for achieving high reliability, consistency,
and efficiency.

To sum up, SSDP (of UPnP) tends to be very competitive in respect of flexibility,
and none of existing systems fully address the reliability and consistency issues of
service management. As a resulf, SSDP shoulc‘l' he-a good starting point based on
which one can design more sophlstlcatezi:_,n‘]ebhamsms to address the reliability and

\
consistency issues. This research prq);Loses alself-orgamzmg and self-healing service

|
management protocol for smart homes by enhancmg reliability of services (Chapter
3) and consistency of service compositién (Chapter 5). Furthermore, efficient service
management mechanisms in decentralized protocols are hard to design since it is apt to
drain out bandwidths with a lot of heartbeat or polling messages. Hence, this research
deals with efficiency issues by striking a balance between the robustness of system
and the overhead of communication complexity by designing, analyzing and evaluating

mechanisms to eliminate unnecessary network traffics. The details are elaborated in

Chapter 4.

52

Table 2.2: Architectural styles and service management functionalities of Pervasive

systems

Name Architectural Wiring (Service Management Functionalities)
Style Format Discovery Recovery Composition

CTK Process-Centric =~ XML - v

UPnP Process-Centric ~ XML (SOAP) v - -

Gaia OS Process-Centric ~ IIOP v (COBRA) -

Aura Process-Centric ~ XML v/ (Jini) v
(Asynchronous)

CoBra Process-Centric ~ FIPA-ACL v (JADE) Vv -
(Asynchronous) g

SOCAM Process-Centric /- 4 V(OSGi) - B,
(Loca | l)

One.world Data-Centric ‘ SgriaIl zecﬂi; JTV&S .’\‘/ v v
(Tuple Space) 6b-j_eclts_ II

Event Heap Data-Centric Serialiéed java v v v
(Tuple Space) Objects

LIME Data-Centric Serialized Java Vv - -
(Tuple Space) Objects

SOLAR Data-Centric Text v (INS) v v
(MOM) (Proprietary)

MIRES Data-Centric Active Message - - -
(MOM) (Tiny OS)

This work Data-Centric JSON v v v

(MOM)

93

systems

Table 2.3: Detailed comparisons among Service Discovery mechanisms of Pervasive

Name Category Recovery Network Transport
Scale Layer
CTK Directory-based - LAN TCP
UPnP Non-directory- - LAN UDP
based
Gaia Directory-based C;lom;l)':onent Internet TCP
Aura Directory—bgse;i Serv1ce LAN TCP
CoBra Directory—]gla;sed ’Pﬂzkbbpe .‘ Internet TCP
SOCAM Directory—based ‘ | . -
(Local) t A/
One.world Directory-based Backbone LAN TCP
Event Heap Directory-based Backbone LAN TCP
LIME Directory-based - Internet TCP
Solar Directory-based Component LAN TCP
MIRES - - - -
This work ~ Non-directory- Service LAN UDP

based

o4

Table 2.4: Detailed comparisons among Service Composition mechanisms of Pervasive

systems
Name Expression Sophisticated Expressiveness of Preferences Interferences
Support Ranking Expression Unification Estimation

CTK - - - - -
UPnP - - - - -
Gaia v v Enumerate; v -

Mandatory
Aura v v Enumerate and - -

Numeric; Manda-

; ‘;fcoryl-':.
CoBra - -) SR - i
SOCAM v i Eﬁ;ﬂrﬁr@rate .
[hﬂénda‘tory

One.world - - { = t & - -
Event Heap - - 2 - i,
LIME - - - - -
Solar v - Enumerate and - -

Numeric; Manda-

tory
MIRES - - - - -
This work v v Enumerate and v v

Numeric; Manda-
tory and Nego-

tiable

95

Chapter 3
Flexible and Robust Service Management

in a Smart Home

As mentioned in Chapter 2, data-centric architectures such as MOM and Tuple Spaces
are more flexible and robust than process-centric architectures. Furthermore, it has also
been pointed out that MOM is superior to Tuple Spaces since it preserves the flexibility
of data-centric architecture while prevents from performance and interoperability issues
caused by Tuple Spaces. Despite these advantages, there are still several challenges
when designing pervasive systems based on MOM.

First of all, a pervasive system desighed beL‘!s.ed oh MOM is called a Message-Oriented

Pervasive System (MOPS) which'consists, of 4 ¥irtual™ software bus” for interchanging
Yal =3\
=i ||

messages among heterogeneous publis erg;?;ndl Esubscyibers, namely, the "nodes”. The
logical pathways between nodes are Céhled‘q’:’ltof}i;%c“s"’. Contrary to traditional enterprise
systems, pervasive systems are highly dynamic siﬁce the service components can join,
leave or fail at any-time. However, MOM lacks of appropriate service management
mechanisms to maintain and to keep track of the relationship between services and
service components. (Recall that a service is composed of a group of collaborating ser-
vice components.) Moreover, among the few MOPS such as SOLAR [87] and MIRES
[127], none of them deal with service management issues. Second, regarding to robust-
ness, MOM supports failure isolation, but it lacks of both failure detection and recovery
mechanisms. In this thesis, the term "robustness” refers to the ability of a system to
detect failed service components and then either to recover them from failure states

or to find a replacement eventually. Third, in typical pervasive environments such

as Smart Homes, the people setting up and maintaining the systems are consumers

o6

with little technical knowledge. Hence, the proposed solutions to challenges mentioned
above have to make the system as autonomous as possible. The robustness issue of
a Pervasive system is a typical example: the system without autonomous failure de-
tection and recovery capabilities may frustrate users from time to time, since they are
hardly able to pinpoint the sources of all failed services and to recover them.

It follows from what has been discussed that the following features are of crucial
importance: 1) an autonomous service discovery and composition framework that is
capable of discovering, selecting, and activating nodes spontaneously; 2) a failure de-
tection and recovery mechanism that is aware of service failures. Such mechanisms is
capable of directing the system to identify failed components and then to recover the
failed service by either replacing the failed components by alternative ones or restart-
ing the failed components autonomously. In the following,the term ”robust service
management” will be used to refer to the two features mentioned above.

The objective of this chapter is ther@e H;o design a robust service management

framework for MOPS under thé ohaqllnggs hsrtled above. In the following, a service
model, namely, PerSAM (Pervasﬁe S(lerlwce Apphoatlon Model), which defines key ab-
stractions, data structures and a taxonomy of entities (see Figure 3.1) for MOPS is
first presented. The reason for defining a service model is that MOM only comes up
with the "node” and "bus” abstractions, which are insufficient to facilitate robust ser-
vice management. After that, Section 3.2 describes an application layer robust service
management protocol, namely, PSMP (Pervasive Service Management Protocol). It is
important to point out that this section focuses on the application layer of the net-
work stack, the protocol issues at lower layers such as the robustness of UDP and the
efficiency of IP multicast are taken up in the next chapter. PerSAM and PSMP are

presented by using Unified Modeling Language (UML) [31] and Communicating Se-

quential Processes (CSP) [70]. UML is useful in illustrating data structures (by using

o7

PerNode

Manager Mode |- --------- Worker Node
ya\ manages |T

PSM PHM Sensor Node Logic Hode Actuator Hode

Figure 3.1: A taxonomy of PerNode

Class diagrams) and interacting flow (by using Sequence diagrams) visually. On the
other hand, CSP is a member of the family of Process Algebra and is a widely used
mathematical language for specifying distribuited systems, where Process Algebra is
a formal description technique for g¢omplex disfributed systems, especially those with
communicating or concurrently executingzﬁihanents [28]. As reported by Sharp [120],
the Process Algebra not only enables qu t('}"‘degcribe protocol in a concise manner, but
also makes it possible to analyze i)fot;)éols. Thé ‘benefits of using the CSP are: 1) the
models and protocols can be specified accurately, 2) it enhances the reproducibility
of PerSAM /PSMP since CSP is more precise than pseudo code and UML, and 3) it
is easier to validate the desired system attributes formally because of the preciseness

of process algebra. In this thesis, UML is used to convey high-level concepts, while

recognizing that CSP is useful in increasing preciseness and reproducibility.

3.1 Pervasive Service Application Model (PerSAM)

This section focuses on presenting the proposed service model, namely, PerSAM. Sev-
eral acronyms and notations are used throughout this thesis to keep the presentation

concise, which are summarized in Table 3.1 and in Table 3.2.

o8

E M1 e N

, A | :::: :() SENSOR(.)n:'.{:....._z‘-.'C

) Cemlp o
o sl) (e (‘b

Figure 3.2: The message-oriented pervasive system

In PerSAM, the term ”PerNode” refers to.a servige component in MOPS. Also note

that the term ”PerNode” or ” nng” arfﬁklsed /,i;ltellch“angeably in the sequel. PerNodes
[N JF)

=) |

aﬁfml' I‘Vodes and the Worker Nodes. Manager

h ||

Node is designed for administrative prllrpds'?és. L‘Deryaéive Service Manager (PSM) and

fall into one of the two categories: the !

Pervasive Host Manager (PHM) ar'"é‘if“bqth Manzf‘g"er Nodes, which are responsible for
managing a Pervasive Service and a Pervasive Host, respectively. On the other hand,
Worker Nodes are basic useful functional units. Worker Nodes can be further classified
into three categories according to their behaviors: Sensor Nodes, Actuator Nodes, and
Logic Nodes. Taking Figure 3.2 as an example, A and B are Sensor Nodes, which are
connected to gateways of sensors and the sensed data are sent to the SENSOR topic.
Similarly, C and D are Logic Nodes that encapsulate logics of message processing.
Figure 3.3 indicates the life-cycle of PerNode. The computing device on which a
PerNode are deployed is called a Pervasive Host. The procedures of installing a PerN-
ode on a Pervasive Host are: 1) placing binaries of the node in a directory, and 2)

registering its metadata so that it is manageable. After being installed, a node en-

29

‘ Installed I >®

Iinstall Tuninstall

shutdown activate

shutdown

{ oo

Figure 3.3: The states of a PerNode

ters INSTALLED state. Next the nbdeisllloa:i:ed"iﬁto‘memory, starting in DORMANT
state. Note that although a DORMAN{]Sﬁ_Edéﬁi(')eS n.‘olt""perform any message-processing
task, it still issues heartbeat and is #di c;ﬂzir;b'k” by,‘.(‘iiscovery protocols. A node goes
into in ACTIVE state when it isaéﬁy‘lﬂed.‘ An :a]‘qj;ix}ated node can receive, process, and
send messages. Similarly, nodes can ;t;e “r.emov“éd from memory by a ”"shutdown” oper-
ation, or fall back to DORMANT state by a "rest” operation. The formal definitions

of PerNode and Worker Node are as follows, which are depicted in Figure 3.4.

Definition 1. (PerNode) A PerNode p € P is an atomic stateful entity in MOPS,
where P is the universe of PerNodes in the system, and state € { INSTALLED, DORMANT, ACTIVE}

s an attribute of p.

Definition 2. (Worker Node) A Worker Node w € W is a PerNode that encap-
sulates a unit of application logic, where W is the universe of Worker Nodes in the
system. In addition to the attributes inherited from PerNode, a Worker Node has three

additional attributes: node type nt € NT', where NT is the universe of node types in

60

Table 3.1: Summary of acronyms

Abbreviation Full Name

MOM Message-Oriented Middleware

MOPS Message-Oriented Pervasive system

PerSAM Pervasive Service Application Model

PSMP Pervasive Service Management Protocol

PH Pervasive Host

PHM Pervasive Host Manager

PS Pervasive Service

PSM Pervasive Service Manager

PA/LA Presence Announcement or Leave Announcement

the system and the heartbeat period fhbp),‘ which specify the functional category and the

heartbeat rate of the node, respectively. r;:-f “
| i no|

3.1.1 The Pervasive Communities”‘

A Pervasive Community is a logical organization of nodes. There are two kinds of

Pervasive Communities: 1) the Pervasive Service (PS) consists of one or more nodes

Perhode

- state

|

Worker Hoide

- nt
- hbp

Figure 3.4: The structure of a PerNode and a Worker Node

61

Table 3.2: Summary of notations

Notation Description

nt An instance of node type

DS An instance of Pervasive Service

ph An instance of Pervasive Host

w An instance of Worker Node

mp? An instance of PSM that manages ps

mph An instance of PHM that manages ph
Wwes The set of Worker Nodes belonging to ps
Wrh The set of Worker Nodes belonging to ph
STPs The Service template of DS

MTP? The set of mlssed or faﬂed node types that prevent

ps from bemg aﬁve I.-"
s
Trs The set of fime talﬂps fhat records the previous

|

heartbeat tlme| for 'each' *A,U € Wps

m A multicast channel

t An TCP-based unicast channel

u" An UDP-based unicast channel to node n

ssdp® An instance of SSDP message, = indicates the
message type

Wy, A list of candidate Worker Nodes with type nt

that collectively provide a service to user, and 2) the Pervasive Host (PH) refers to a
group of nodes that co-locate in the same computing device. Each community has a
Manager Node that keeps track of its members. In other words, each PS has a PSM

and each PH also has a PHM. A Worker Node can join several PSs at the same time.

62

Considering the example depicted in Figure 3.5, node A is a member of the ” Adaptive
Air Conditioner” PS (psl) as well as the ”Sensor Map” PS (ps2) at the same time.

Let us denote the PSM of a Pervasive Service ps as mP® and the Worker Nodes that
join ps as a set WP € 2V where 2V is the power set of W. Considering psl in Figure
3.5, we have mP*! = PSM1 and W?' = {A,C, D, F}. The Service Template ST €
2NT g pre-defined by service designers. Each STP® specifies required node types that
comprise ps. For example, in Figure 3.5, ST?*! = {Temperature Sensor, Context
Interpreter, Indoor Temperature Control Logic, Air Conditioner}. To com-
pose a Pervasive Service ps, mP® first finds the best w € W such that w.nt = nt for each
nt € STP°. The definition of "the best” depends on a user-defined selecting function
(see Table 3.3). The default selecting function is FCFS (First Come, First Select), but
it can be substituted by a more sephisticated mechanism such as the one proposed in
Chapter 5. 2 .

Before ps is successfully compos.ed,i slo@,]\}{orker Nodes of required types nt € STP*

| h ||
could be still missing. Let us denote t'rﬂL sgﬁ:‘ofllfpode types of missing Worker Nodes as
| ‘E !I f -

MTP*. Formally:
MT? = {nt|nt € ST?,=3w € WP?* : w.nt = nt} (3.1)

In the previous example, assuming that W?st = {C, D, F'}, then MTP*! is {Temperature
Sensor}, because the missing Worker Node A is of the type ”Temperature Sensor”.
In the beginning of service composition, since there are no Worker Nodes found,
thus WP = ¢ and STP*! ={Temperature Sensor, Context Interpreter, Indoor
Temperature Control Logic, Air Conditioner}. It is easy to observe from this
example that MT?® C STP®. It is worthy to point out that MTP® = ¢ implies that ps
is successfully composed and that ps is alive if and only if all w € WP* are in ACTIVE
states. Based on this observation, it is the time to define the liveness of a Pervasive

Service.

63

e
Jiy
L]
CJ
]
L

w n'.. .'."-
= - .
I —
1
¥\
N
~
\
]
]
/
1
Sm—_———— -_— -

-

P

2 B %

5

e, W

L) = o .
.1cé?£ommun1tles

A

&)

&
Figure 3.5:&§‘h

e

&

i \ 1=

I 2 — - B ~ \

1 1/ l!! T

] [P i 1

1 1 - 1

' ! B — !

1 [_'"__I | ll

[: R)

! g] D |

I 2 - 1 ._,’ - I

! ! L / !

| 1 S _— ’ - A

I pht B/ ST

" p -) ! F !
\ ph2 !

N 4 \
PHM 1 Bl T — - == - e JPHM 2

Figure 3.6: The Pervasive Host communities

64

Definition 3. (Liveness of a Pervasive Service) A Pervasive Service ps is alive

if and only if the following statement holds:
MT? = ¢ ANVw € WP w.state = ACTIVE (3.2)

To detect possible failures of affiliating Worker Nodes, a PSM (m?®) keeps track of
timestamps of previous heartbeats t* for each w € W?® in a vector of timestamps T?*,
where t¥ € TP and |T?%| = |WP®|. Based on the above discussions, a Pervasive Service

can be formally defined as follows.

Definition 4. (Pervasive Service, PS) A Pervasive Service ps is a tuple:
ps = (mP, STP*, MTP®, W»s TP | (3.3)

where mP® is PSM of ps, STP 2N 4s the Service Template, MTP* C STP® is set
of missed types, WPs € 2V is/the, sét of Worker Nod'es join ps, and TP is a vector of

timestamps that records the previous ﬂqaﬁe@th time for each w € WPs,

Likewise, each Pervasive Host/is (l;(pmposed‘I !gof a sét of Worker Nodes, whose life-
cycles are managed by a PHM. T hé"PHM and 1ts affiliating Worker Nodes locate in
the same device. Therefore, a PHM is able to detect the node states, to load and to
shutdown Worker Nodes. In Figure 3.6, there are 3 Pervasive Hosts: A and B belong
to phl since they are deployed in the same device; similarly, C, D and F belong to ph2;
the ph3 has single member E. Note that phl, ph2 and ph3 are managed by PHM 1, 2

and 3, respectively. The definition of a Pervasive Host is as follows:

Definition 5. (Pervasive Host, PH) A Pervasive Host ph is a tuple:
ph = <mph, th> , (3.4)

where mP" is the PHM of ph, and WP" is the set of Worker Nodes that currently locate

on ph.

65

P5M PHM
- candidates Floadn
+ Berviceslivel : + Shutdownd
+ Refresh(SETCEIEmpIate + Install)
+ Timeoutd + Lininstalld
+ Removel)
+ Addd
+ Belectd

Figure 3.7: The structures of PSM and PHM
3.1.2 The Pervasive Managers

The responsibilities of a PSM are as follows: 1) to compose a PS according to Service
Template STP*. As mentioned in Seetion 3.1, When there are many qualified candidates,
PSM first stores them in a candidate list denoted W, and then selects the best one
by invoking the pre-defined selecting fung_tion. 2) PSM monitors all w € WP, Once
PSM observes that a Worker Node dbifas ﬁot iléartbeat for longer than a pre-defined
threshold, it emits a ”suspect” méssaée for thé’c.node. 3) PSM can add to or remove
community members from PS. 4) PSMiisiresponsible for keeping the PS alive. In case
PS is not alive, PSM attempts to to re-compose PS. As depicted in Figure 3.7, there
are six operations in PSM used to support the above-mentioned responsibilities. The
input parameters, return values, definitions and explanations of these operations are
revealed in Table 3.3. Fuller discussion of how these operations work will be presented
in Section 3.2.

On the other hand, PHM is an agent that administrates nodes located in the same
computing device. The tasks of PHM include monitoring and maintaining local Worker
Nodes, loading local Worker Nodes from the file system into memory, and killing the

failed Worker Nodes that do not emit heartbeat messages. It is important to point

66

Table 3.3: The Operations of a Pervasive Service Manager

Name Input Output Definition Comments

ServiceAlive @ Boolean see Def. 3 Returns the liveness of a
Pervasive Service

Refresh weWr o TP [w) = t"ov Update heartbeat timestamps
of w with current time

Timeout w € WP Boolean t"" — TP [w| > k Returns if w does not
heartbeat more than a
threshold k&

Remove weWwr g Wps .= WP —w Removes w from ps

Add weWwr g Wiktine= Wps Uw Add w to ps

Select Wy, User déﬁned“ Returns a best node w among

w e W

candidate list W,

~ \ Fa'
= |

l|

1
&1t
{

out that the task of discovering com) uitity qﬂ(embefs is faster and more robust for
2 e | | |

PHM than for PSM, since no netw'éfk-based contiunications are involved. The life-

cycles of Worker Nodes deployed in the same PH can be altered by the PHM locally.

As indicated in Figure 3.7, PHM contains two operations. The Shutdown operation

removes a local Worker Node from memory. Similarly, the Load operation loads a

local Worker Node into memory. The input parameters, return values, definitions and

explanations of these operations are shown in Table 3.4. Notice that the Install and

Uninstall operations are invoked when a Worker Node installed to or uninstalled from

a computing device.

67

Table 3.4: The Operations of a Pervasive Host Manager

Name Input Output Definition Comments

Load weWrh & w.state = DORMANT Returns the liveness of a
Pervasive Service

Shutdown w € WP & w.state = INSTALLED Update heartbeat timestamps
of with current time

Install weWwrh @ Weh = Wrh U w Add a Worker Node into
a Pervasive Host

Uninstall w € WP @ Wrh .= Wrh — Remove a Worker Node

from a Pervasive Host

3.2 Pervasive Service Management Protocol (PSMP)

PerSAM and PSMP are realize by extendmg UPnP a home networking protocol stan-
dard (ISO/IEC 29341) [15]. The reasde f(;;-r_lchobsmg UPnP is three fold: 1) it is one of
the few dynamic service discovery prdtocols that‘_:ldo not need a dedicated and central-
ized service directory [43], which is fndre feasiblé for robust service management. 2)
UPnP is independent of platform and programming languages. 3) UPnP is a widely
used and well-known standard. SSDP takes charge of service discovery in an UPnP
network. By default, SSDP operates based on HTTPMU (HTTP over UDP and Mul-
ticast). HTTPMU uses IP multicast, which is supported by most network switching
equipments. I[P multicast forwards packets to a group of interested receivers via a
set of pre-defined virtual IP addresses. Therefore, SSDP does not need a centralized
server since the multicast service is carried out by the underlying infrastructure. SSDP
extends HTTP by two HTTP methods: NOTIFY and M-SEARCH.

UPnP specifies a Device Architecture. An UPnP Device consists of a set of UPnP

Services, and each UPnP Service comprises several UPnP Actions. A node that is

68

Device Service Action
Control Point

UPnF Device AN
Architecture
FerSAM

Shutdown Action

Manager Node Device Worker Node Device | | Lifecycle Management Service Activate Action

Rest Action

Figure 3.8: The projection of PerSAM to UPnP Device Architecture

capable of invoking UPnP Actions is called a Control Point, which can also be embed-
ded in an UPnP Device. In this research, PerNode is implemented based on UPnP
Device Architecture (see Figure 3.8). Mote pregisely, each PerNode Device consists of
an UPnP Service, the PerNode Life—cydé Me;ﬁagement Service, which manages PerN-
ode life-cycle by using three uPnPp Actiqrﬁ (:_Ajotivaté,l Rest, and Shutdown). Manager
Nodes (PSM and PHM) are special tyﬁ;)e‘g{?‘fn:ﬁérNode Devices because they contain a
Control Point. The reason for this ‘desiiﬁgn is thz;t a Control Point is capable of invoking
UPnP Actions of remote PerNodes ;co mandge their life-cycles. It is important to point
out that despite the similarity in their names, the UPnP Services are different from
Pervasive Services: An UPnP Service always embedded in an UPnP Device, while a
Pervasive Service is a virtual community that consists of a group of nodes.

Before turning to a closer examination of PSMP, let us first take a look at some
basic CSP [70] syntax. CSP uses the form P = ¢ — R to describe the behaviors
of a Process P, which first takes part in an event e, and then behaves like process R.
Parameters can be passed to a process by enclosing with square brackets. For example,
in Plx] £ f(z) — R, the z enclosed by square brackets is passed to the function f(x)
in the right hand side. In CSP, ¢!m denotes an output event, in which a message m

is emitted through network channel c¢. In similar way, ¢?m denotes an input event, in

69

which a message m is received through channel c¢. A special process SKIP denotes a
process that terminates without error. Table 3.5 summarized the CSP notations used

throughout this paper.

3.2.1 Presence Announcement, Leave Announcement, and Life-

cycle Management

In PSMP, Presence Announcement (PA) and Leave Announcement (LA) in PSMP can

be formally described as follows:

PA[p] £ rilssdp™“[p] — SKIP (3.5)

LA[p] £ m!ssdp™¥¢[p] — SKIP (3.6)

In (3.5), PA sends an "ssdp:alive” to the multicast channel 1 to announce the
presence of the node p, and then terminates. The saine syntax applies to the definition
Fa | S ’

of LA except that the message is SsdPLbyéﬁye Based on (3.5) and (3.6), we can now
|

define Life-cycle Management (see Pﬂq ocol 1] The Life- cycle Management protocol

(LM) enables Manager Nodes to change, states of nodes remotely.

Protocol 1. (Life-cycle Management, LM) A Life-cycle Management (LM) proto-
col changes state of PerNode according to incoming calls to UPnP Actions. A function
NewState is used to decides new state based on the current state and the action being

invoked. If a node is changed to INSTALLED state, it performs a leave announcement

(LA).
LM [p] £ t?call —if(call.action = shutdown)
(3.7)
then LA[p]; NS[p] else NS|[p]
NS[p] £p.state := NewState(p.state, call.action)
(3.8)

— LM]p]

70

Table 3.5: Summary of CSP notations used in PerSAM/PSMP

Notation Description

P2e— R A process P takes part in an event e and then

behaves like another process R

ctm Listening for an incoming message m from
channel ¢

cm Emitting a message m to channel ¢

P;Q P and Q run sequentially

P|Q P and Q run concurrently

HmeX €] For each z € X do e

SKIP A process_terminates successfully

In (3.7), is a call channel #o & URnP Action from remote Manager Nodes, the
notation call denotes an incoming call [to Wﬁﬂ? "Actions, and ”;” is used to concatenate

| m R

two sequential processes. The ?!= sy;f | bdfésﬁi'gns valtes to variables.
ey N LS

3.2.2 Service Composition and Activation

The purpose of service composition and Activation in PSMP is first to find appropriate
Worker Nodes for a PS, and then to ensure that the chosen nodes are in ACTIVE
states persistently. If there are multiple matching nodes, PSM selects one from them
according to a pre-defined strategy. Currently, FCFS is the default strategy. PSMP
provides extension points for more sophisticated service selection strategies such as
the one proposed in Chapter 5. Figure 3.9 illustrates the interactions between these
nodes when performing service composition. Whenever the service is not alive (see
Definition 3), the PSM issues a ”psmp:discover” to find PS members (Figure 3.9, step

1) to initiate a service composition.

71

FSm

PHM

1: psmp:discover)

WiorkerMode
(DORMANT

2 responsen

1.1: match(

T 3 psmpdiscover) T

: |

L 3.1 matchd :
| ;

| I

| =<=cregate== |

I 4 load) Workertode |

SR e (NSTALLED) | |

I

| |

| T l

| Sossdpalived T | |

L

| |_| |

[I |

1 | |

| |

B: select) : |

|

o 7: activated) | -

~ | LJ

0 & activate(|

Figure 3.9: PSMP service composition

72

k

Note that finding qualified Worker Nodes can not be achieved by simply issuing a
"ssdp:discover” action. The reasons is twofold. First, "ssdp:discover” only discovers
nodes that are already loaded into memory (i.e. in DORMANT state or in ACTIVE state).
To put it another way, the nodes that are in INSTALLED state do not respond to PSM.
This problem causes low degree of support and low composition sustainability [80].
A typical case is that for a newly booted system, nearly all nodes are in INSTALLED
states. Hence, few services can be successfully composed in this circumstance.

Second, "ssdp:discover” does not support property-based lookup. SSDP messages
contain only type information (ST), so that in the matching phase of a DORMANT node
(Figure 3.9, step 1.1), only node types are compared. In pervasive environments such
as Smart Homes, components with the same type does not imply that they are in-
terchangeable. For instance, the contexts ob'.tained from sensors in the living room is
different from the contexts observedfin the bed room As a result, PSMP propose the
following extensions to deal with the ab@'ga nientloned problems: 1) PSMP defines a
new " psmp:discover” action. Thls. lactHn 13 1ssu|1:ed by PSM to perform ”eager loading”
of nodes. In simple terms, when PHl\l/I receive:ls ‘psmp:discover”, it loads all qualified
local nodes that are in INSTALLED staté. Once the qualified nodes become DORMANT,
they will send presence announcements so that PSM will be able to discover them
(Figure 3.9, Step 3-5). The ”psmp:discover” can discover nodes that are not loaded,
therefore the first problem mentioned above is solved. 2) A new header, CRITERIA,
is added to support the property-based lookup. In CRITERIA header, the key-value
pairs are separated by a comma. The comma represents an ”and” relation, that is, a
Worker Node is matched if and only if it fulfills all constraints specified by the key-
value pairs. The key-value pairs are helpful to specify additional contexts of the nodes

such as location and time. Hence, the search results are more accurate.

Listing 3.1: M-SEARCH message content with a ”psmp:discover” action and a CRI-

73

TERIA header

M-SEARCH x HTTP/1.1

ST: urn:schemas—upnp—org:device:sensor:1

MX: 3

MAN: 7psmp: discover”

CRITERIA: id=21, place=livingroom , type=thermo
HOST: 239.255.255.250:1900

Listing 3.1 shows the contents of a ” psmp:discover” message that discovers a sensor
service type. In this example, the criteria for this search are 1) the sensor id is 21, 2)
the sensor type is thermometer, and 3) it locates in living room. The behavior of PSM

in service composition is formally defined below.

Protocol 2. (PSM Service Composition) A PSM Service Composition (SCpgyr)
18 1nitiated whenever the Pervasive Servieens.not alive. For each node type in MTP?,
PSM issues a discovery message (m—s‘ed‘rch)‘"tolthe multicast channel () and then

performs PSM Service Selection (S’SPSM , sge Protocol 5), formally:

:5-- | |
SChpsulps] 2 zf(ﬁSerb’zce_ﬂ%hvﬁ())

then b T "m'ssdpmsemh[nt] s SSpsuips] (3.9)
ntEMILPS =

else SCpgp([ps]

In (3.9), the J] operator is a shorthand for iteration. For instance, [],,cares P
means that a process P executes one time for each nt € MTP*. Upon receiving a
discovery message, a qualified Worker Node responses with a message in which describes
its accessing information (Figure 3.9, step 1.1 and step 3). Protocol 3 describes the
behavior for Worker Node in service composition. In (3.10), a”*™ represents a UDP

unicast channel corresponding to the searching PSM.

Protocol 3. (Worker Node Service Composition) A Worker Node Service Com-
position (SCy) examines incoming discovery messages. If there is a match in its node

type, then it sends an response message (ssdp™P) indicating its accessing information

74

via the UDP wunicast channel (uP*™) corresponding to the source of the discovery mes-
sage.
SCyw[ps] & m?ssdp™ " [psm, nt] —
if(w.nt =nt) then aP*"ssdp™® — SCy [w] (3.10)
else SCy|w]
Meanwhile, PHM is responsible for discovering INSTALLED nodes. Upon receiving a
”psmp:discover”, PHM compares the node type against local INSTALLED nodes (Figure
3.9, step 3). If there is a match, then PHM loads the node, causing it enters the

DORMANT state (Figure 3.9, step 4).

Protocol 4. (PHM Service Composition) A PHM Service Composition (SCpp)
examines incoming discovery messagess Accqrding to the specified node type, a PHM

iteratively match against local node$-and ther :load,"the matched node into memory (i.e.

DORMANT state). It also emits d re ,Q“nseﬁn;l‘essag.é ‘for the matched node.

i \
%

—r

wLe“T‘ﬁ%‘[pém, ntl:: (3.11)
| ,
I

if (w.nt = nt) then aP""ssdp™® — SCy [w]

else SCy|w]

LS[w,psm, nt,ph] = (3.12)
if(w.nt = nt A w.state = INSTALLED)
then Load(w) — 4™ ssdp™*? — SCppu[ph]
else SCpurph)
In (3.12), Load is an operation of PHM (see Table 3.4). PSM selects and activates

Worker Nodes for a PS. The protocol for PSM Service Selection and Activation is

shown below:

5

Protocol 5. (PSM Service Selection and Activation) A PSM Service Selection
protocol (SSpsy) examines responses from Worker Nodes. For each response, PSM
add the node into a list of candidates for a specific node type (WF,). After MTP*
being empty, PSM selects the best ones for each node type according to a user-defined

selecting function. After that, it exzecutes PSM Service Activation (SApsas).-

msearch [

SSpsar[ps] £ 4?ssdp w| —

if(MT? = ¢)
Add(Select(W),)) —
then H
nteSTPs
SApga|Select(Wry), ps|
] - (3.13)
if(w.nt € MTP®)
then M1 = MT — w.nt —
else ¢
W, = Wit = SSpsu[ps]
élse SS&Mwﬁ]
NilL ¥ '
S Apsulw;psh= L?cal lactivate} = W, .= ¢
& (3.14)

=5 S‘CPS M. [pS]
In SApsa, PSM invokes an UPnP Action (activate) of the selected Worker Node,
and then reset W,. After all Worker Nodes in a PS are activated, the PS becomes

alive.

3.2.3 Failure Detection and Recovery

To keep a PS alive, all affiliating Worker Nodes must be in ACTIVE state lastingly. If
one of them fails, then the PS becomes unavailable. Therefore, PSM has to be aware of
the failures of Worker Nodes first (Failure Detection) and then resumes or substitutes
the failed ones (Service Recovery). Recall that the term ”robust service management”

is used to refer to the mechanism that enables a system to detect failures and to recover

76

FSh Worker Mode FHM

| |
| _ 1:heartbeaty |

-

o
o
J_(: 2 heartheat()

T 3. suspectn

P

|

|

o |

| |timeout [1‘1
|
|
|
|
|

/

F 4 shutdown)
[F A ssdphyvebyel
|

— - ——

Figure 3.10: PSMP failure detection

7

from failures autonomously. Having clarified the semantics of robustness, a ”Robust

Pervasive Service” is now formally defined as follows.

Definition 6. (Robust Pervasive Service) A Pervasive Service ps is robust if and

only if the following statement holds:
OFail(w!) = $-ServiceAlive() A dService Alive(), (3.15)

where w! € WP is a failed Worker Node, and Fail(w’) represents the fact that w'

fails.

The use the symbol) to denote ”eventually” and the symbol [J to denote ” always”
in the logic statements. These symbols are borrowed from Temporal Logic [89]. Note
that {$—ServiceAlive() happens before Senvice Alive(); therefore, their conjunction
is not necessarily false. This sub-seg¢tion Ibres“'é‘nts_protocols that ensure the robustness

of PS. These protocols are desigﬁed based on the foliowing assumptions.
| Ne=1€) ‘

| ==
1. Eventually correct local fail 're ﬂgiete(‘:tor (Al): A Worker Node stops per-
s || }

forming heartbeat eventuallj}':affﬂéir it fails!‘. | ThlS assumption requires that a failed
Worker Node stops heartbeat evehtuall};; It is weaker than the Fail-Stop model
in the sense that a failed node does not need to stop executing or to stop sending
packet, and the heartbeat does not need to stop immediately. It is also assumed
that an eventually correct local failure detector exists. This assumption is reason-
able since detecting failed processes or threads locally (i.e. within the same host)
is much easier than detecting failed processes distributed over an asynchronous
network. In real cases, eventually correct local failure detectors are usually sup-
ported by the underlying OS. For example, in Embedded Linux platforms, local
failure detectors can be implemented by means of either built-in system monitor-
ing hardware or software such as ”"watchdogs”, which is included in the standard

kernel package [143]. In brief, this assumption is made in theory for gaining rigor

78

of the result to be obtained. In most real cases, this assumption can be fulfilled

by implementation techniques which are platform dependent.

. Perfect-Link assumption (A2): Since we concentrate on application layer in
this research work, a Perfect-Link model is assumed, in which all messages are
guaranteed to be successfully delivered. In addition, a message does not appear
in the network unless a node sends one. In network layer, this assumption can

be ensured by using reliable multicast protocols such as RMP [140] or SRM [57].

. Persistent Manager Nodes assumption (A3): Manager nodes will not ex-
perience failure, of which such assumption is made since we don’t consider the
robustness issues of Manager Node for the time being. In real cases, a simple yet
effective solution to the reliability i,lssue,‘s‘of Manager Nodes is to handle them by
means of techniques in the impleﬁlentatioﬁ‘-ievel. For example, one can develop
a program (or use the Watc.hdogi’ ;é?;féélprovid.ed by the underlying OS) to de-
tect the failures of Manager No?%zs. lm'r(%a‘ml world, many popular mission critical
enterprise systems adopt tl‘i.i':s.,‘ a'ﬁiproach.!‘ “I Eof'éxanlple, Oracle WebLogic Clus-
ter uses similar design, in which a{ z Dorﬁain” is a logical division of application,
which contains a cluster of "Managed Servers”. Each domain is administrated
by an ” Admin Server”, which is responsible for detecting the failures of Managed
Servers in the same Domain. Actual services are provided by Managed Servers,
but Managed Servers belonging to the same Domain are not necessarily located
in the same host. In other words, a host contains Managed Servers may be-
long to different Domains. In each host, there is a "Node Manager”, which is
responsible for monitoring and recovering all Managed Servers. Apparently, the
design mentioned above does not take care of reliability issues of Admin Servers

and Node Managers, which are in fact guaranteed by the watchdog services pro-

vided by the underlying OS. The Nanny Servers of IBM WebSphere Servers use

79

similar approaches. To sum up, the rationale behind using hierarchical architec-
ture (Manager-Worker) is that the possibility of manager node failure is much
less than that of Worker Nodes in practice, since 1) actual heavy-loaded user
tasks are handled by Worker Nodes; 2) the quantity of Manager Nodes is less
than that of Worker Nodes; 3) The failures of Manager Nodes can be detected
and be recovered by using mechanisms provided by their underlying OS/Plat-
form. Consequently, we make this assumption in theoretical level, which however
can be replaced by employing either consensus protocols or implementation level
techniques. We are recently designing consensus-based protocols that make the
failures of Manager Nodes detectable and recoverable without centralized coor-
dinators [78]. When failure detection protocols for Manager Nodes are absent,
one simple yet effective solution isto use the:watchdog services provided by the

underlying platform to detects/and to re(;lové'r the failed Manager Nodes.

[\ [1
Far=pr/l

s
. Composable service assumptf rfTA4) All services are composable. In other

words, for each PS, for all typés spe01ﬁed n the Service Template of the PS,
there is at least one node of such type ex1sts in the system. If this assumption
is not hold, then it is impossible to recover the PS. The PSMP failure detection
is shown in Figure 3.10. The behaviors of PSM, PHM, and Worker Node are

formally defined as follows.

Protocol 6. (Worker Node Heartbeat) A Worker Node performs heartbeat by

emitting PA periodically. The Worker Node attribute hbp is a pre-defined interval

between each heartbeat.

H By [w] £ sleep(w.hbp) — PA[w]; H By [w] (3.16)

Protocol 7 reveals how PSM emits suspecting message. There are two processes

running in parallel, one for refreshing 7% and the other for timeout eviction (EVpgar).

80

In (3.17), || is used to combine two parallel processes. In Protocol 7, Re fresh, Timeout,

and Remove are operations of PSM (see Table 3.2).

Protocol 7. (PSM Node Suspecting) PSM Node Suspecting protocol checks if there
s an affiliated node stops performing heartbeat. If PSM does not receive any heartbeat
for more than a pre-defined interval, it sends a suspecting message indicating a possible

node failure.

. m?ssdp™[w] — Refresh(w)
NSUPSM [ps] =

|| EVpsa[ps]

EV psulps] £
if Timeoui(w)

I1 (3.18)

weWwrs | then RGWUO’UG;E@J m!psmpsuspect [’LU]

| ’ |
— EV pgyl ps 4 g

After a node is suspected, PHM stops the node and then sends a leave announce-

ment on behalf of it (Figure 3.10, step 5)."These operations are described as follows.

Protocol 8. (PHM Shutdown Suspects) PHM Shutdown Suspect protocol stops
the suspected modes according to the incoming suspect messages. The PHM also emits

LA on behalf of the suspected nodes.

suspect [

SSU pyplph] = m?psmp w]
— if (w € WPh)

Shutdown(w) (3.19)
then

— LA[w]; SSU pyyp[ph]

else SSU pyplph)

81

After a failure is detected, PSM is aware that the service is not alive, since Service Alive

returns false. Thus, according to Protocol 2, a new service composition procedure is
then triggered to recover the PS. Finally, we can define PSMP by composing the above

protocols together. The robustness of PSMP will be validated in Section 3.3.1.

Protocol 9. (Pervasive Service Management Protocol, PSMP) PSMP is a
composite protocol that describes interactions between PSM, PHM, and Worker Nodes

to realize reliable Pervasive Services.

PSMi[ps] = PA[ps]; (SCpsu[ps]||NSUpsu[ps)) (3.20)
PHM[ph] £ PA[ph], (SCPHM[ph]HSSUpHM[ph]) (321)
Wlw] £ PA[w]; (SCw [w]|| H Blw]|| LM [w]) (3.22)

3.2.4 Security

| P
Fal ra

-3
This sub-section presents the mechanif' sused "to ensure several security issues in Per-
i s | | -
SAM/PSMP. The costs of emplqyini;seéu'ritj?!‘ ntechanisms are: 1) the efficiency of
services is degraded, and 2) setting up sécurity policies, authentication, and authoriza-

tion is labor intensive and may cause inconveniences to users. These mechanisms are

independent of the original design and therefore they are optional.

Confidentiality

Since PSMP is designed based on HT'TP, it is able to ensure data confidentiality based
on SSL/TLS [49] and WS-Security [9]. In fact, the UPnP security profile [54] adopts
this approach. However, the devices (nodes) in Smart Homes typically have limited
computing resources such as network bandwidth, CPU, and memory. As a result,
Symmetric-Key Encryption mechanisms such as DES/Triple DES [124, 25] or AES

[45] are considered more feasible. For example, ZigBee [16] uses AES encryption with

82

128-bit key length. The major challenge of using a Symmetric-Key Encryption is how
to transmit the secret key over a unsecured network. In the residential mode, ZigBee
chooses to ignore the potential vulnerability.

One possible solution is to distribute the secret key using Asymmetric-Key Encryp-
tions. As a result, the following key exchanging procedure is proposed for ensuring

data confidentiality in PSMP:

1. A new Manager Node called Security Manager which is responsible for keeping
track of public keys as well as the security policies of PerNodes has to be developed

and deployed.

2. PerNodes have to be configured so that each of them has a embedded private key
as well as a corresponding public key. Thekey pairs is set up in a Security Console

[54] (identical to the Security Manager TS thesis) and can be re-configured by

users. Also, the user has to set wpa.-_geérqaﬁ key: for symmetric encryption through

the Security Console. | n ||

as ||
5d|

3. When performing PA, a node’ sends its ﬁﬁblie key without encryption to the

multicast address.

4. When the Security Manager receives a public key embedded in a PA message,
it encrypts the secret key by using the received public key and then sends the

encrypted secreted key back to the newly joined node.

5. After the node receives the encrypted secret key, it decrypts the key by using its
private key. Now, the node is able to send and receive encrypted data based on

Symmetric-Key Encryption mechanisms such as AES by using the secreted key.

Figure 3.11 depicts the overall process of registering the public key and acquiring

the secret key in PSMP.

83

% Security Manager Mew Node

User |
| 1. setup secret key |

;
'

4 1 stare public key
™~ |
|
o encrypt secret key by publilc loesy
|

6. send encrypted secret key

— 2 5etup node

I
|
|
|
|
|
2 start ’l

4 P A with public key

5.1: decrypt secret key

Figure 3.11: Registering the public key and acquiring the secret key in PSMP

84

Sending

Mode Receiving Mode

Security Manager

1: calculate MD

TJ
F

TJ

!

|

|

|

|

|

|
205 = private key + MD |
|

|

|

3 encrypting data with secret key :
|

4. send data + DS

5. decrypt data with secret

6. MD1 = data+ SHA

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ke |
|
|
|
|

7. get public key of sending|node

»a
]

9 MD1 =MD2 ? accept:

Figure 3.12: Sending and receiving data in PSMP

85

L1 8 MDZ = DS + public key of sending nade

drop

Integrity and Non-repudiation

Data integrity refers to the mechanisms that prevent the transmitted data from being
corrupted or modified, whereas non-repudiation refers to sender of a message is actually
the one claimed in that message. Integrity and non-repudiation are realized by using
the message digest and digital signature mechanisms. To ensure data integrity and non-
repudiation in PSMP, the sending node first obtains a message digest by using hash
algorithms such as SHA (Secure Hash Algorithm) [51]. The digital signature can be
generated by encrypting the message digest using the private key of the sending node,
which is then placed in the header of the message before it is sent. After the receiving
node receives the message, it first obtains a message digest from the decrypted message
and then compares it with the one obtained by decrypting the digital signature. Finally,
the receiving node can then ensure thatll'the"'.iheﬁsage is sent from a specific sender if

the message digests are identicali’ Figure.3.12 d,lepicts-‘ how PSMP ensures integrity and
| Ne=1€)
non-repudiation when sending and recﬁivi'gg-*en'prypted data.

1

Authentication and Authorization

In order to support authentication and authorization, each PerNode has to be en-
hanced according to the UPnP Security Ceremonies [54]. Specifically, every node has
an additional DeviceSecurity Service which supports authentication and authorization
functionalities. The security policies are also pre-configured by users in the Security

Console.

3.3 Evaluation

This section reports the results of evaluating PerSAM and PSMP. The following sub-
sections explain the evaluations with respect to robustness, recovery capability, perfor-

mance, cost and limitation.

86

3.3.1 Robustness

The purpose of this sub-section is to show that services in PerSAM /PSMP are robust,

that is, to validate that (3.15) holds, which is stated as follows:
Theorem 1. PerSAM/PSMP-based Pervasive Services are robust.

Before presenting the proof, it is helpful to define an auxiliary function n : £ —
Boolean that maps an CSP event to a logical assertion, where E is a set of CSP events.

For example, {n(e) represents the fact that an event e eventually happens.

Lemma 1. A failed Worker Node does not send any PA after the failure occurs even-

tually.

Proof. From (A2), all messages are gu'araﬁﬁ‘eed ta.be delivered to their sinks; and a

message does not appear in the"netwqr_:k%unles,s“ a'node sends one, hence the following

statements hold:
SN &
el IL:><>77(CL|?’|:L:)., and (3.23)
—n(cle) l‘:><>—|77:(c?x). (3.24)

Assume there is a Worker Node w/ fails, according to (A1), (3.22) and (3.16) must
stop working. From (3.5), no PA will be sent from w’ after this failure. As a result,

we have:

n(Fail(w’)) = o-m(m!lssdp™™w’]). O (3.25)

Lemma 2. After w! fails, it will eventually be removed from its affiliating Pervasive

Service ps and a suspecting message with respect to w’ will be sent.

Proof. From (3.24) and from (3.25), the following statement holds.
& (m?ssdp™™ew!]) (3.26)

87

Thus, from (3.17) and from (3.26), Refresh(w/) never executes after the failure,
which causes Timeout(w’) returns true. Finally, according to (3.18), Remove(w/)

and 7!psmp* e [w/] will occur. To sum up, the following statements can be deduced

from (3.26):
O-m(Refresh(w!)) = OTimeout(w!) =
On(Remove(w’)) A Sn(mlpsmp* e [w!]). O (3.27)

Lemma 3. Eventually, the failure of w’ will be detected, causing the PS of w! becomes

unavailable.

Proof. By definition, Remove(w’) causes WP* := WP* — w/, thus w/ ¢ W»s. In

addition, since w/.nt € ST?* since originally.wf is a community member of PS. By

combining (3.1) and (3.9), we have?

on (Remc‘)ve(‘f’j)":} <}>w nt e MTP

= <>MT”S 7&[== Qﬁﬁerm“ce/llwe() (3.28)
By combining (3.25), (3.26), (3.27) and (3.28)7a taiftire is eventually detected, namely,

n(Fail(w)) = $-ServiceAlive(). [(3.29)
Lemma 4. Fventually, PSM finds alternative nodes by performing node discovery for
the type of w.

Proof. The results is readily obtained from (3.9) and (3.28):

O-ServiceAlive() A Gwl.nt € MTPS

= On(mlssdp™etw! nt]). O (3.30)

Lemma 5. Eventually, there must be some alternative nodes of the type w' .nt that

respond to the node discovery.

88

Proof. It is easy to observe from (3.23) and (3.30) that the following statement holds:
On(mlssdp™e ™M w! nt]). (3.31)

In addition, (Ab) states that Vnt € ST?*, Jw : w.nt = nt. Since MTP* C STP the

following statement can be obtained:
Vnt € MT?® 3w : w.nt = nt. (3.32)

Since w/.nt € MTP*, from (3.32), there must be at least one alternative node w" such
that w".nt = w’/.nt, in other words, Jw".nt = w/.nt. By combining (3.10), (3.11),

(3.12), and (3.32), the following statement holds:

Vnt € MTP,

Juw" : w".nt =mt A On(u'ssdp’"“p[7). O (3.33)
From (3.13), (3.23) , (3.33), and the deﬁnitioﬁ of-Add (see Table 3.4),

On(a?ssdp™Plw WM%”S = MT" — w".nt)
= OMT? = q§:> &Vn P f:t W”SUw)

— Gu” state — AGTTVE, (3.34)

From (3.2) and (3.33), {ServiceAlive() holds. By combining (3.29), (3.30), (3.31),

(3.33), and (3.34), the following statement holds:
n(Fail(w’)) = $-ServiceAlive() A dServiceAlive() 0 (3.35)

Consequently, it can be concluded from (3.35) that PerSAM/PSMP-based Pervasive

Services are robust.

3.3.2 Recovery Rate

Several simulations were performed to study the PS recovery rates of Aura PIP (Prism

Interaction Protocol) [125] and PSMP under different failure rates of Worker Nodes.

89

100

90

80

70

60

50

40

Service Recovery Rate (%)

30

20

10l —*— Aura PIP
—6&— PSMP
0 . ! L o ¥ *
0 20 40 60 80 100

Failure Rate (%)

Figure 3.13: The PS recovery rates-of Aura P"’:‘IP@nd PSMP under various failure rate
(NT=25))]

| %
<= |
Aura PIP is re-implemented based (H the FﬁP specified in [125]. The simulation

= T,
|

=l | ik
environment consisted of 100 Sefvflc.é Components, 10 Services, and 3 Hosts. Each

Service consisted of 3 Service Componénts With different node types. Initially, node
types were evenly distributed to the Service Templates and to the Service Components.
After that, all Services were composed and made available.

In this experiment, it is assumed that each failure is independent, since in MOM,
the failures can be isolated. The exponential distribution is used as the failure model

for the experiments:

Ae ™ fort>0and A >0
f(t) = (3.36)

0, otherwise,

where the experiment starts at time ¢ = 0, and f(¢) is the probability density function

that a node fails at time unit, namely, ¢ + At. The probability that a node fails within

90

100

—*— Aura PIP
—6— PSMP

90

80

701

60

50

40

30

Service Recovery Rate (%)

20+

10+

0 1 1 X
0 20 40 60 80 100
Failure Rate (%)

¥
*
*
b

Figure 3.14: The PS recovery rafes-of Aura P"’:‘IP,@nd PSMP under various failure rate
(NT=50) ' |

P "‘,-- = --.,“
o Xl feac)
| F""_é-_-}! 2k, | |

== |
by[@'_k_ltel rating- f from 0 to ¢:

the time interval (0,¢] can be obtainefj

F(t)=2P(I< t) = /f(u)du, (3.37)

where T' is a random variable denoting the time to failure. From (3.36), the probability

that a node does not fail after time ¢ is therefore
R(t)=1—-F(t)=P(T >t) = / flu)du = e for t >0 (3.38)
t

where R(t) is the reliability function of this experiment.

From (3.37), f(t) can be defined as the difference per time unit ¢ when ¢ is very

small:

) = L@y = g EUEADZFO) o PU<T<st+AY

dt At0 At At—0 At ’

(3.39)

The failure rate function z(t¢) is then defined by the probability that a node fails at

91

t + At given that the node is still functional at time t.

Pt <t<T+ AT >1t)
At—0 At 7

from (3.39) and (3.38),

o) = fim DESTSt+AD 1 Pt<T<t+At) 1 _ f(t)

(3.40)

Combining (3.36), (3.38), and (3.40), the failure rate function for this experiment

can be derived as follows:

2(t) = % - A:_; =\, fort > 1. (3.41)

Consequently, the failure rate function z(¢) is constant in the experiment. Note
that the afore-mentioned definitions of f(t), F(t), z(t) and R(t) are adopted from

the classical system reliability theory" [L12]. .Maxyin et al. also point out that it is

reasonable to use a constant failufe rate if an i't‘ém_is in the useful life period of an

empirical bathtub curve [112]. R

| ;','_-_ |

In each experiment, Service Com %neﬂus Wéere randomly terminated (crashed) ac-
| V

’ :
cording to a constant failure rate)\ LBe81des‘ |among the failures, there are 40% of

unrecoverable hardware failures. Spe01ﬁcally, 40% of the failures were hardware or
network interface failures, and thus were unrecoverable by software-based mechanisms.
The experiments were performed 1000 rounds under each failure rate. Then, the aver-
age recovery rate is reported. Note that the recovery rate is the percentages of recovered
Pervasive Services after no further service composition is observed in the system.
Figure 3.13 and Figure 3.14 show the influences of Service Components failure rate
on the service recovery rates when the number of node types is 25 and 50, respectively.
The recovery rates of Aura PIP dropped rapidly when the failure rates of Service
Components increased. On the contrary, the recovery rates of PSMP decreased much
slower. The results suggest that PSMP is superior to Aura PIP in the recovery ca-

pability. It is noteworthy that with PSMP, significant portion of Services were able

92

2500 :
—— Turnaround time for Pervasive Service
—— Turnaround time for a Worker Node (in average

2000

1500

1000

Turnaround Time (ms)

500

s S

0 1 1 1 1 J
0 10 20 30 40 50

Number of WorkerNodes in a Pervasive Service

Figure 3.15: Performance of PSMP service composition

to be recovered even when the failurei’ ‘raj‘i:gs:'ié}rhr"ived lllOO%. This is because Aura PIP

| == |
only discovers nodes that are already'l#ad@d inlto memory (i.e. in DORMANT or ACTIVE
Ak 1) r

|

f 1 i
state). As opposed to Aura PIP, PSMP is capal!)_l:e‘ of discovering the nodes that are in
INSTALLED states via PHMs. By comparing Figure 3.13 and Figure 3.14, it can also be
concluded that the number of node types (NT) has great impact on the recovery rate

since it affects the number of alternative node for each node type.

3.3.3 Performance

This sub-section evaluates the performance of PerSAM/PSMP by conducting experi-
ments in realistic home network. Experiments consisted of two parts: 1) in the first
experiment, the objective is to measure the turnaround time of service composition
under different service lengths, and 2) Experiments on measuring the recovery time

helped us to investigate the trade-offs between eviction threshold £ (see Fig. 3.16) and

93

8000

—*%— k =500 ms
7000 | —<— k =1000 ms
—%— k =2000 ms
6000 [
m
£ 5000+
(0]
S
'_
> 4000
(]
>
(o]
& 3000+
12
2000
1000+
0 1 1 1 1 J
0 10 20 30 40 50

Number of WorkerNodes in a Pervasive Service

Figure 3.16: Performance of PSMfi'failure detection and recovery

the recovery time. Va) =¢/s -| "

| T

o= |
All nodes were deployed ‘on Kno%berﬂé}h QE.O.l OSGi servers, which were evenly

= |
distributed over three P4 1GHz nllnlLiDCs in ’!cﬂ:lg.‘s‘ame LAN with 1G bytes memory.
The environment consisted of 1 PS and 3 PHS.“‘IH each PH we deploy 50 Worker Nodes,
whose node types were configured so that all PS can be composed successfully. We
obtained the turnaround time of service composition by measuring the time from the
PSM was started to the time when all required Worker Nodes were activated. After
that, we increased the size of PS and re-performed the tests. The experiments were
performed 100 times under each configuration of service length and then the average
percentages of recoverable PSs were reported. The results are shown in Figure 3.15.
The turnaround time of service composition increased linearly when the number of

Worker Nodes in PS increased. In our experiences, most real-world PSs consist of less

than 10 nodes. Hence we can observe in Figure 3.15 that most real-world PSs require

94

less than 1.2 seconds before it is available. It is also interesting to note that due to
each node were executed in parallel, the average turnaround time for each node in a
PS decreased as the service length increased. The second experiment was performed
in similar ways with the previous experiment except that after the PS was composed,
one Worker Node was randomly terminated. After that, we recorded the time from
the Worker Node failed to the time when the PS is resumed. After that, we increased
the size of PS and re-performed the tests. Figure 3.16 indicates the performance of
failure detection and recovery. The results show that the eviction threshold k affects
the recovery time. This is because k determines the upper bound of failure detection
time. If k is set as 500 ms and the service length is less than 10, then the total service

unavailable time is less than 2 seconds.

3.3.4 Discussion

1

This sub-section discusses the cost, of |fa‘tc;171’:tatlln'g robust service management based on
PerSAM /PSMP. First of all, the }_;jeré;,r!Lhiggl ajgr‘f:hitec"c’ure can be a cost because of the
inclusion of Manager Nodes. Ina ﬁiefarchical aibproach (manager-worker), a system
can monitor the status of nodes in a more centralized and effective way. However,
it leads to possible single point of failure. On the contrary, decentralized approaches
such as consensus protocols are usually decentralized yet not efficient, less accurate,
require more overheads, and less scalable. Since the number of Worker Nodes is typi-
cally far larger than Manager Nodes. We suggest a hybrid architecture that employs
a centralized approach for Worker Node and consensus-based approach for Manager
Nodes. This research assumes Manager Nodes do not fail. A semi-consensus pro-
tocols that make the failures of Manager Nodes detectable and recoverable without
centralized coordinators is recently developed, some initial results can be found in [78].

Second, PSMP is designed by extending SSDP. Obviously, there are interoperability

95

costs imposed by this approach. However, PSMP does not interfere with the traditional
UPnP Devices. This is because the use of "psmp:” headers. According to the UPnP

specification, traditional UPnP Devices do not process the headers other than ”ssdp:”.

3.4 Summary: A Running Scenario

This section summarized the service models and protocols proposed in this chapter by
examining a running scenario that goes through service composition, failure detection
and recovery procedures of PSMP.

Let us consider a four-node Pervasive Service psl depicted in Figure 3.5, where
STPs! ={Temperature Sensor, Context Interpreter, Indoor Temperature Control Logic,
Air Conditioner}. Initially, W' = g¢uand, MTP! = ST ={Temperature Sen-
sor, Context Interpreter, Indoox Tempér;iturl"eﬁCQntrol Logic, Air Conditioner}. From
Def.3, Service Alive() = false, 5o that’ SC’psm is trlggered For example, the statement
m!ssdp™seer " TemperatureSenson] in 1cr es |1l:|hat an m-search message is emitted to
search nodes of the type ” Temperatllﬂe Sensor (refer to Figure 3.9, Step 1). After
that, Sy, is triggered, which hstens for the' responses from qualified nodes. Let us
assume that node A is a ” Temperature Sensor” node and that it responds to the dis-
covery request (Figure 3.9, Step 2). Supposing that FCFS selection policy is used, from
(3.10) and (3.13), node A is selected (Figure 3.9, Step 6). Hence, MT?** ={Context
Interpreter, Indoor Temperature Control Logic, Air Conditioner} and W?*! = {A}. In
similar way, m?*! is able to discover node C, D, and F with the node type Context
Interpreter, Indoor Temperature Control Logic, and Air Conditioner, respectively, and
causes MTP! = ¢; Wrst = {A,C, D, F}. Finally, according to (3.13), SA,g, is trig-
gered (Figure 3.9, Step 7-8), and thus Vw € WP w.state = ACTIVE. Now that
Service Alive() = true and that psl is successfully composed.

After psl is composed, its affiliating Worker Nodes perform heartbeats (3.16) peri-

96

odically (see Figure 3.10, step 1 and step 2). In (3.3), there is a set TP° used to store the
previous timestamps of heartbeat for each node. If node A fails, then node A eventually
stops heartbeat, causing (3.17) to emit a suspect message against A and MTPs! = {A}
(Figure 3.10, step 3). According to (3.19), upon receiving suspect message, phml re-
moves A from memory (Figure 3.10, step 4). Finally, ServiceAlive() = false and
then SC,, is triggered again in order to re-compose psl. Given that node B is a
"Temperature Sensor” node and that it responds to the discovery in the first place;

then node B is activated and ps1 is recovered.

97

Chapter 4
Efficiency Boosting Schemes for

UPnP-based Smart Home Networks

The previous chapter introduces a message-oriented service model for pervasive ser-
vices and an UPnP/SSDP-based service management protocol, namely, PerSAM and
PSMP, to address the flexibility and robustness issues of pervasive systems in the Smart
Home. In Chapter 3, it is assumed that all messages are guaranteed to be successfully
delivered and that a message does not appear in the network unless a node sends one.
Nevertheless, SSDP relies on UDP which is very likely to lose packets under heavy
traffic. Thus, causing PerSAM/PSMP beco;ﬁes invalid when a network is busy. To
alleviate this problem, the UPnP speci‘ﬁ‘(:jitipf}i‘sugges'ts broadcasting SSDP messages

repeatedly for 2 or 3 times. Unfortuna‘Te'I;’j;%ffli"s‘ approach tends to make network traf-
fic even heavier. Furthermore; the siicuati(:)-ﬁ iiﬁ‘! getting worse if the heartbeat rate is
increase to achieve higher availabilify.

To investigate issues mentioned above, network simulations have been conducted
using the NS-2 network simulator [74]. In these simulations, all nodes are connected by
network links with bandwidth 100Mbps and 5ms delay, and all nodes are connected to
a switching device through these links. Drop Tail is used for queue management. The
sizes of SSDP packets are normally distributed from 200 to 450 bytes. Random noises
are also introduced in the scheduled packet departure times to avoid collisions. Each
node emits an SSDP packet every 500 milliseconds. As shown in Figure 4.1, there
is a rapid increase in the rate of packet loss when the number of nodes exceeds 50.

Also, the system is nearly unusable after the number of nodes exceeds 100. One can

alleviate packet loss problem of UDP by reducing unnecessary traffic. More specifically,

98

100

80

70

50

40

SSDP Packet Loss Rate (%)

20

101

0 L L L
0 50 100 150 200 250

Number of Nodes in LAN

Figure 4.1: Packet loss rate with various ndfhb_gr- of nodes in a typical UPnP-based

local area network i-' N2
(=it
PerSAM is group-based and comprisé% a @;1‘;1%@ hierarchy (see Figure 3.1) of nodes.
= || '

On the contrary, an UPnP netwbzr.‘k‘fi@ls flat, alln!i_:‘._peér—based, where all peers share a
multicast address, so that the broadc.ast‘ihg na&ufe of SSDP tends to flood the network
with unnecessary packets. This is because not all nodes need to receive all messages. In
fact, more sophisticated traffic dissemination techniques can help to reduce unnecessary
messages.

Since UPnP/SSDP is designed for general use, an UPnP network is peer-based,
where all peers share a multicast address, so that the broadcasting nature of SSDP
tends to flood the network with unnecessary packets. Given the characteristics of an
MOM-based pervasive system, we can deal with the packet loss problem by introducing
several traffic reduction schemes. MOM-based services are usually composed of a

group of nodes that form a ”service chain”. Hence, most of the traffic is in-group

communication. In other words, not all nodes need to receive all messages. In fact, more

99

sophisticated traffic reduction schemes can help to eliminate unnecessary messages.
The objective of this chapter is therefore to investigate the UPnP/SSDP protocol
elements in an MOM-based UPnP network and then to devise possible enhancements
for them. According to the specification, UPnP/SSDP can be divided into two parts:
advertisement and search. Thus, we propose two schemes, Decomposing Multicast
Traffic (DMT) and Service-based Node Searching (SNS), to deal with the efficiency
issues of the advertisement part and the searching part, respectively. Besides, we also
introduce Heartbeat by DMT (DMTH) and On-Demand Heartbeat (ODH) that are
able to greatly reduce the heartbeat traffic. The target environment of the proposed
schemes is a typical home network, which is an Ethernet-based LAN (Local Area
Network) with one router and few switching devices. Besides, it is worthy to point out
that although the proposed schemes are’implemented based on PerSAM/PSMP, they
are also applicable to all service networks Whe‘rre‘ Sdme lﬂflorm of group-based management

--H]
|I '-ﬂf-'-""l‘

Note that this chapter involves is{s es: ="I':tellniming from the network layer and the
2N | 1

mechanisms can be enforced.

application layer. Consequently, de’p‘eflding on ‘the context of discussion, we use the
terms "packet” and "message” interchangeably, both of which are units of data trans-
mitted over the network. The term ”packet” is used when the discussions focuses on

the network layer, whereas the term "message” is used in the application layer.

4.1 Assumptions and Term Definitions

Before turning to a closer examination of these techniques, it is helpful to explain
assumptions and the definitions of terms used in the following sections. Three assump-

tions are made in the analysis of communication complexity in this chapter:

1. The packet size is not taken into account: The reason for this assumption

is that, contrary to media streaming protocols, the packet size of SSDP is small

100

(typically 200 bytes to 450 bytes), and can be transmitted with single UDP

packet. The theoretical limitation of the size of an UDP packet is 65527 bytes.

. Each endpoint in a LAN is occupied by exactly one UPnP Device:
UPnP relies on IP Multicast, where UPnP is an application layer protocol whereas
[P-multicast is a network layer mechanism. Therefore, it is possible that more
than one UPnP Devices reside in the same endpoint which is a network-connected
appliance with an IP address. From UPnP’s point of view, each message is for-
warded to all UPnP Devices whereas from IP Multicast’s point of view, an IP
Multicast-enabled switching device only forwards received packets to all end-
points, instead of all UPnP Devices residing in these endpoints. Specifically,
when one sender sends an SSDP_message to more than one UPnP Device resid-
ing in the same endpoint, although“all “tl'hese.n UPnP devices receive n copies of
messages, only one message is actually passed:through the network to the end-
point. The endpoint is responsll | le"‘F)r Idlspatchmg the message to all residing
UPnP Devices. To simplify. and to Clarlfy; the Commumcatlon complexity analy-
sis, we assume each endpomt is occupled by exactly one UPnP Device, that is,
by one PerNode. In addition, to avoid introducing too many constants in the
analysis results, we also ignore the message that are dispatched locally, namely,
when one sender sends an SSDP message, then it is replicated n times instead of
n — 1 times. This assumption can cause inaccuracy of the predictions when the

number of Worker Nodes is small.

. All Pervasive Services can be successfully activated eventually and each
Worker Node participates in at least one Pervasive Service: The purpose
of this assumption is to ensure the Equilibrium of Load Factors (see Theorem 2)
holds so that one can reduce the variables of the results, hence making them more

tractable. In fact, the proposed techniques do not depend on this assumption.

101

The enhanced protocols are still more efficient than the original ones in respect
of communication complexity even if the above assumption does not hold. Es-
pecially, when there are some Worker Nodes which do not participate in any
Pervasive Service, the hereby obtained results are even better. For example, in
the original protocols, the Worker Nodes that do not participate in any Pervasive
Service still send useless heartbeat messages, whereas in the enhanced ones, these

nodes do not send any message at all, and hence causing better results.

To facilitate further analysis and discussions, we define several concepts by extend-

ing the service model mentioned in Section 3.1 in the following:

Definition 7. (Cardinality Function) The cardinality function n : X — N returns

the cardinality of the set X.

For example, the number of all Worker Nodes can be denoted by n(W), where W

is the universe of Worker Nodes. Like%&f’i"s'.é;: S isl‘ the luniverse of Pervasive Services and

Ful |
n(S) is the number of Pervasive Servi'F S &ﬁthp‘ syster.
l‘ E !1"] L7
Definition 8. (Service Length) "'The“ length- of a Pervasive Service s is denoted as
U(s) which is the number of Worker Nodes in s. The value of £(s) can be obtained by
calculating the cardinality of W*, that is, ((s) = n(W?), where W* is the set of Worker

Nodes belonging to s.

From Definition 8, the average length of all Pervasive Services in the system, ¢, can

be obtained by:

1 1 .
g:m-;g@zm-;n(vv) (4.1)

Definition 9. (Contribution) The contribution of a Worker Node w, denoted as
AMw), is the number of Pervasive Services in which the Worker Node w participates,

where A € N and 0 < X < n(S).

102

Note that AM(w) = n(S) when w participates in all Pervasive Services in the sys-
tem, indicating that w is highly contributive. On the contrary, A(w) = 0 when w
does not participate in any Pervasive Service. According to Definition 9, the average

contribution of all Worker Nodes is:

A= Z AMw (4.2)
Intuitively, the contribution of a node w is the labors it supplies, whereas the
number of required Worker Nodes is the labors a Pervasive Service demands.
To activate all Pervasive Services, we require at least n(S) - £ labors, since each
Pervasive Service requires ¢ Worker Nodes. The most efficient way to activate all
Pervasive Services is to strike a balance between the supplied labors and the demanded

labors. The labors provided by all Worker Nodes are therefore) ., A(w). Thus, we

have the following theorem: 0 ~

|"I "
Y
n--

Theorem 2. (Equilibrium of Load{ f‘ qntoré) JF* Assumptwn 3 holds then all Perva-

sive Services are activated most q{ﬁczlantly if aqz]d only if the following equation holds:

S M) = ﬁ(S) 7. (4.3)

For example, if there are two Pervasive Services, and each of them is of length 3,
then the total load factor in demand is 6. One possible solution is to employ 6 Worker
Nodes and each is with A = 1. Alternatively, we can use 2 Worker Nodes which are
equipped with better computing capabilities. In this case, each Worker Node has to
work for 3 Pervasive Services, causing A = 3.

Consequently, from (4.2) and (4.3), one can obtain the following equation:

n(S) -0
n(W)

A= , where 1 < X\ < n(S). (4.4)

Note that 1 < X due to Assumption 3. Finally, the UPnP specification requires

re-sending of messages to deal with UDP packet loss. We therefore define a repetition

103

factor r to represent the count of messages being re-sent, where 1 < r < 3 is suggested
by the UPnP specification. Table 4.1 is the summary of notations mentioned above
and Table 4.2 summarizes additional terms and abbreviations used in this chapter.
Based on the above discussions, the following sub-sections present the core idea of the
proposed traffic reduction techniques as well as the analysis on how much traffic can

be reduced after applying these techniques.

4.2 Decomposing the Multicast Traffic

Whenever an UPnP Device is started, it sends presence announcement (PA) messages
to a multicast address to inform other UPnP Devices about its presence. The PA
messages that are sent to the multicast address are replicated and then propagated to
all UPnP Devices in the UPnP Networ‘k:“ Aégbrding to the UPnP specification [15], a
PA demands 3 + 2d + k messages, Where 3 .r.nessages -are used to describe the specific
information about the UPnP Device| ’d 'Tﬂ-%pthé number of embedded UPnP Devices,
and £ is the number of UPnP Servmles As mentloned in Section 3.2, a PerNode is
identical to an UPnP Device Wlth one- UPnP Serv1ce in an UPnP Network. Thus,
d = 0 and k£ = 1 because that a PerNode does not have any embedded device and that
a PerNode has one UPnP Service (see Section 3.2). Consequently, a PerNode demands
4 (i.e. 3+2-0+1) messages for PA. Furthermore, the UPnP specification also suggests
re-sending of messages with a pre-determined repetition factor r, which is usually 2 or
3, to deal with UDP packet loss. Let us denote the SSDP multicast address and the
4 PA messages as m**% x,, x9, x5, and x4, respectively. Then, the original presence

announcement protocol (PA°%) can be formally described as follows:

mPlry — msPpy —

pAre 2] — SKIP. (4.5)

e

104

Table 4.1: Notations for communication complexity analysis

Notation Description

s A Pervasive Service

S The set of all Pervasive Services in the system

w A Worker Node

w The set of all Worker Nodes in the system

Ws The set of Worker Nodes belonging to Pervasive
Service s

n(X) Number of elements in the set X

0(s) Length of the Pervasive Service s

0 Average length ofall Pe}"vasive Services in
the system ~

Aw) Contribution’of ahwﬂerkelr Node’l W

A Average contribﬂi(;%?% %Lil Worker Nodes in the system

r Repetition fa’uctoL | :| !4 |

m A multicast addre‘ss ”

il An unicast address

T,Y,2,2 " messages

Table 4.2: Additional acronyms used in this chapter

Abbreviation Full Name

DMT Decomposing Multicast Traffic

SNS Service-based Node Searching

DMTH Heartbeat by Decomposing Multicast Traffic
ODH On-Demand Heartbeat

TRR Traffic Reduction Ratio

105

Recall that there is one PSM for each Pervasive Service, in other words,
Vs € S,n(m®) =1, (4.6)

so that the quantity of PSM instances is the same as the quantity of Pervasive Services

D n(m) =) 1=mn(S). (4.7)

ses ses

From (4.7), it can be concluded that there are totally n(WW)+n(S) nodes in the network.
To perform PA, 4 messages are sent (i.e. 1, T, x3, and x4) and totally 4-r messages are
sent if the repetition factor r is taken into account. Due to the effect of multicasting,
the 4-r PA messages are replicated for n(W)+n(S) times to be forwarded to all nodes
in the network. Hence, there are totally 4 - r - (n(WW) 4+ n(S)) messages replicated. To
sum up, from (4.5) we can conclude tha-t the-communication complexities of sending
and replicating PA messages are 4 r and 4.7} (w (W) + n(S)), respectively.

It is important to observe that althmgﬁ mpltlcast is believed to be more efficient

than broadcast, it is not the case frﬂ tﬁé U‘PnP network’s points of view since all
' I
UPnP Devices in the network share the same multlcast address. In other words, com-

munication complexity of the multlcast istactually identical to broadcast in a UPnP
network. So far as the hierarchical structure of PerSAM is concerned, this design is in-
efficient. In PerSAM, only PSMs are interested in receiving PA messages, and therefore
traffic can be reduced by assigning different multicast addresses for different types of
receivers. This technique is called Decomposing the Multicast Traffic, or simply DMT,
in the sequel. As a result, two new multicast addresses, mP*™ and m", are created for
messages to be received by PSMs and Worker Nodes, respectively.

Furthermore, sending 4 PA messages is unnecessary, either. As discussed in Section
3.2, the structures of PerNodes and UPnP Devices are identical. Thus, one message,

denoted as x*, is sufficient to convey the information describing the structure of a

106

|n(W)W0rkerNodes || Switch || n(S) PSMs | |n(W)W0rkefN0d95 ” Switch ” n(S) PSMs |
T T I I I

Ar

W [: D—f’ﬁj \
- Replicated ’
[arn(s) - 4~ (One of the Worker 7
| | ﬁ MNodes sends PA 4
Worker Nodes [! PShis

(a) (b)

|m(\N)W0rRerNodes || Swiitch || H(S) PSMs |

Replicated for all ‘ = l_ ‘
Wiorker Nodes i s~ (V] Worker Nodes || Switch || n[S) PShs |

Fel - nge | Eneiok e oM Replicated for all ! L ‘
| re \’- nisi sends M-Search \orker Modes "

s | Fniwg Qne of the PSW
Replicated for all PSks % | | sends M-Search
() (d)

Figure 4.2: Sequence diagrams of PA /LA and node. searching protocols: (a) Original
PA; (b) PA after applying DMT;;(c)*Original node searching; (d) Node searching after

applying SNS s
PerNode. The enhanced protocol LRA%) is shownas follows:

pArer £ wmesme® — SKIP. (4.8)

For PA™" | there is only one PA message sent to mP*™, which are then received by all
PSMs. As mentioned earlier, there are n(S) PSMs in the network, so that messages
are also replicated for n(S) times. By considering repetition factor, the communication
complexities of sending and replicating PA messages after applying DMT become r and
r-(n(9)), respectively. Note that the same results can be obtained in the case of leave

announcement.

107

4.3 Service-based Node Searching

After a Pervasive Service is activated, a PSM first searches for qualified Worker Nodes
by sending M-Search messages for each required node type to 1m**®, where an M-Search

message describes a required node type (see Listing 4.1).

Listing 4.1: A typical SSDP M-Search message

M-SEARCH x HTTP/1.1

ST: urn:schemas—upnp—org:device:sensor:1
MX: 3

MAN: 7ssdp:discovevr”

HOST: 239.255.255.250:1900

A Pervasive Service has ¢ members (Definition 8), and each of them has distinct
node type, so that totally ¢ M-Search messages are sent. A Worker Node responds to
the PSM immediately when its node type is identigal to the one given in the M-Search
message. After gathering at least onelmq‘uali’ﬁgd Worker Nodes for each node type, a
PSM then selects and activates the b@sﬁm&" among these candidates. The above-

. J
mentioned protocol is called node searchifig éN S99 ‘which is listed in (4.9). Note
| 1 .

that an M-Search message is denoted éus y and “SAidenotes the service selection and

activation protocol (see Protocol 5).

ND9 & Hm“dp!y — SA (4.9)
¢

In this protocol, a PSM sends an M-Search message for each required node type.
Thus, in order to find all required node types for a Pervasive Service, ¢ messages are
sent in average. These messages are broadcasted to all nodes, so that the messages
are replicated for £ - (n(W) 4+ n(S)) times. Again, the repetition factor 7 is taken into
account, causing the average communication complexities of sending and replicating

messages to be r- £ and 7 - £ - (n(W) + n(S)), respectively.

108

Note that the required node types are known in advance, and hence, instead of
sending ¢ M-Search messages individually, the search request belonging to the same
service can be sent in a batch. Specifically, all required node types of a Pervasive Service
can be bundled into one message by which the message counts are reduced to 1// in
average. For example, the aggregated M-Search message shown in Listing 4.2 is capable
of specifying several node types at the same time. In Listing 4.2, the MAN header is
changed to "psmp:discover” to prevent non-PSMP devices from processing aggregated
M-Search messages. In this scheme, the node types specified in the ST header belong
to the same service. Hence, this scheme is called Service-based Node Searching or SNS.
Also note that only Worker Nodes need to receive M-Search messages, so that DMT
(see Section 4.2) can also be applied. In short, the number of M-Search messages of
a Pervasive Service now becomes one, dénoted as g, and DMT is applied by sending
the message to m®, which replicates nll’gssage_s_lo.r.illy fqr Worker Nodes. The enhanced
protocol, denoted as N.S™¥, s Shownbegyl_ 'I| ll‘

| |
‘.4"2 | ' 1
N1 Son

& 94 (4.10)

From (4.10), it can be concluded that to find all required node types for a Pervasive
Service, one aggregated message is sufficient, which is then replicated for n(WV) times
because that the message sent to m" are forwarded to Worker Noes. Finally, if the
repetition factor is considered, then r messages are sent and 7 - n(WV) messages are

replicated.

Listing 4.2: An aggregated M-Search message

M-SEARCH « HTTP/1.1

ST: urn:attentivehome—org:sensor:temperature:1,
urn:attentivehome—org:logic:aircon:1,
urn: attentivehome—org:actuator:fan:1

MX: 3

MAN: "psmp:discover”

HOST: 239.255.255.250:1900

109

| n(W) Worker Noes || Switch ” n(S) PSiis | |n(V\/)WorkerNode5 || Switch || n(3) PSMs |
I : I

[
— \ - I T Z T T
- Replicated 1 > 4
One of the Worker 5 | f;’;l‘\csseMs ¥ /’ | |
Nodes sends a W | [Pl r-i |
I

I aWorker Node I | Switch | | 7 PSMs I

heartbeat rons) -l One of the Worker Nodes 1 / [
sends a heartbeat

N |
Replicated for all Replicated for all D
[Méorker Nodes [I PSMs

a Worker Nodes sends a heartbeat to |
its affiliating PSMs

Figure 4.3: Sequence diagrams of heartbeat protocols:(a) Original heartbeat protocol;

(b) After applying DMTH; (c) After applying ODH.

It is important to point out that the size of y* depends on £. When ¢ is too large, the
aggregated message can exceeds MTU or even the maximum size of an UDP. However,
the proposed scheme works well in most practical cases. To show this, assuming that
the average M-Search message size withoutsthe ST header is # and that average size

of ST header is 7. Then, the average size-of g'/* is;+

(hie)) 4.11
| 1:, T'" (4.11)
m), | !

In real world, it is reasonable to assqme that the average size of M-Search messages

__E:I r

without ST header [is less than 300 bytes, the average size of ST headers 7T are less
than 100 bytes and the average service length ¢ are less than 10. In the extreme case
where ¢ = 10, 3 + ¢ -7 = 1300 bytes, which is still less than MTU (1500 bytes). If
y* exceeds MTU but not the UDP packet limitation (65527 bytes), then it takes more
frames to transmit the message in the data link layer. However, the overall traffic is
still reduced by (¢ — 1) - 3 bytes since the total size of contents to be transmitted is
(-B+10-7

4.4 Reducing the Heartbeat Traffic

Although SSDP does not provide heartbeat mechanism, however, it can be simulated

by sending one PA messages every few seconds which can be described by the following

110

CSP statement:

I BoTi9 A HmSSdp!Z N HBOT‘Z@J? (4.12)

where z is used to denote the heartbeat message. Unfortunately, this approach tends
to flood the network since the messages are broadcasted to all peers. In each heartbeat,
one message is sent to m**%_ which is then replicated for n(S) + n(W) times, causing
the message count of sending and replicating messages to be r and r - (n(S) + n(W)),
respectively, if the repetition factor is taken into account.

Again, since only PSMs are interested in knowing the status of Worker Nodes,
DMT can be employed by sending messages to mP*™ instead of m**% so that only n(.9)
messages are replicated per heartbeat. Therefore, the number of sent messages and that
of replicated messages can be reduced to .z and r - n(S), respectively. The following
CSP statement shows the enhanced prcli‘toc"oll‘, Which is referred to as Heartbeat by

Decomposing Multicast Traffie (BMTH), ;
| ’ i} ‘

P

| Y
DMTH.2 [LI "\ S DMTH (4.13)
ol P i q

However, DMTH is still not optiﬁlal; since"‘he&lu‘"tbeat messages are forwarded to all
PSMs, whereas not every PSM is interested in the status of every Worker Node. For
example, when A\ = 1, each Worker Node participates in exactly one Pervasive Service,
then for each heartbeat, n(S) — 1 out of n(S) heartbeat messages are useless. It is
desirable to ensure the heartbeat messages being only sent to the needed PSMs. The
mechanism that realizes this idea is called On-Demand Heartbeat (ODH). By using
ODH, a PSM asks all affiliated Worker Nodes to keep track of its remote reference after
they are activated. Note that the remote reference of a PSM is encoded in the messages
that are used to activate Worker Nodes, and then the Worker Nodes send heartbeat

back according to these references. The resulting protocol is shown in (4.14), where [*

111

is a remote reference of a Pervasive Service s in which the Worker Node participates.
ODH £]['z - ODH (4.14)

In this protocol, a Worker Node only sends heartbeat messages to the demanding PSMs.
Thus, the message count depends on how many Pervasive Services does a Worker Node
takes part in. In other words, \ messages are sent in average for each heartbeat. Upon
arriving at the switching device, the messages are also replicated for A times and then
are forwarded to their destinations. As a result, the numbers of messages sent and
replicated are both 7 - A times after the repetition factor is considered. It is important
to note that ODH induces overheads when sending messages by a factor of X, so that
ODH is only effective when the average load factor of Worker Nodes A is small. More

specifically, although ODH reduces the, replicated messages to - it also sends

p)
(S)+n(W)”
more messages than H B by X times: In the worst case, where A = £ = n(S) = n(W),
ODH only saves replicated messages b)l(‘%-}-;sin(:?
WIE
A = WP 1

n(S) RSV Li(9) 2

(4.15)

whereas the messages sent by ODH is sfill A t‘imes more than H B, where 1 < \ <
n(S) (see (4.4)), causing the traffic to be heavier. In this case, the system should
use DMTH instead, which reduces the replicated messages by %, but the number of
messages sent is the same as H B9, Consequently, one solution is to switch between
DMTH and ODH depending on which of them is more efficient, i.e.,

HB"" £ [[[ODH o DMTH |, (4.16)

where ¢ is a CSP deterministic choice operator which means that one of the two
processes will be executed and it can be decided deterministically depending on the
system context. In (4.16), the choice is made based on the value of A against a threshold,

which is calculated based on the ratio between saved messages and the overheads

112

produced by ODH, namely,

where 1 < A < n(S). Consequently, it is more efficient to use ODH when A\ <

V/n(S) + n(W). Otherwise, DMTH is a better alternative.

4.5 FEvaluation

This section concentrates on evaluations of the proposed techniques for reducing traffics
produced by PerSAM/PSMP. The proposed techniques are first evaluated analytically
and then the NS-2 simulation results are presented. Meanwhile, we also validate the
consistencies between analysis results and simulation results. Finally, the results of
experiments in a small scale network arell'repg'rte_dl..
Before taking a closer look of tHe a;rralysas ‘lrtlasults,-‘ we first introduce Traffic Reduc-
I'r‘(aductions of the proposed approaches.
|

| ¢
]

tion Ratio (TRR), which estimates th*e‘I trn%fﬁb

|

| 1 e
Definition 10. (Traffic Reductiqﬂ Ratio)’ b"he “Traffic Reduction Ratio (TRR) is

defined as:

T(Pnew)
T(Porig)”

where 7 : P — N returns the number of messages produced by a protocol P, and P4

TRR(POMQ7 Pnew) =1- (418)

and P, denote the original protocol and the proposed protocol, respectively. Notice

that TRR is negative if the proposed method increases the message count.

It can be observed from Definition 10 that the proposed techniques are more effec-
tive when TRRs are higher. For instance, if original 100 messages are produced and
TRR equals 50%, then only 50 messages are produced after applying the proposed

technique.

113

4.5.1 Communication Complexity

Table 4.3, 4.4, 4.5 and 4.6 summarize the traffic reductions of several protocols after
applying the proposed techniques. Note that the details of calculating message counts
of these protocols have been mentioned in Section 4.2, Section 4.3, and Section 4.4.

This sub-section focuses only on calculating the TRRs of the proposed techniques.

Presence Announcement and leave Announcement From Table 4.3, it is obvi-

ous that the messages sent by original PA protocol are reduced by %, since 1 — - /7;1-1« = %.

Similarly, the ratio of replicated messages between PA° (4.5) and PA™™ (4.8) are

r-n(S)
4-r-(n(W)+n(S))

From (4.4), we can substitute n(W) byssi=n(S), thus we have

RN]

1
/X -1

The TRR of replicated messages is th|e efc:'pé.. l|| I‘

) (A

T

Since larger ¢ or smaller A both cause TRR to be larger, the advantage of the

enhanced protocol (PA™") is greater when the average length of Pervasive Services
(¢) increases and when the average contribution ()\) decreases. Empirically, ¢ ranges
from 3 to 5, and A is close to 1. Hence, we can expect that the traffic reductions ranges
from = to 5;. In the worst case, where n(S) = n(W) = A =1, PA™" still reduces the

replicated messages by %. Note that the proposed approach and the analysis results

also applies to the leave announcement protocol.

Node Searching Based on Table 4.4, in respect of sending messages, the TRR

between N D9 (4.9) and N D™ (4.10) is:

[]
|
—_

LT
r-

|
€\|‘

114

Table 4.3: Traffic Reductions after applying the Decomposing Multicast Traffic

P Ao PA™ TRR

Sent 4-r r

o

Replicated 4 -7 - (n(W)+n(S)) r-n(S) 1- 4.(Z/15\+1)

Table 4.4: Traffic Reductions after applying Service-based Node Searching

N Sorig NS™ TRR

Sent rf r -1

Replicated 7 -£- (n(W) +n(S)) r-n(W) -1

1

_ 1 —
C+X
Again, the advantage of SNS is greater both when £ increases or when \ increases,
since larger ¢ or smaller A both cause TRR to be larger. For instance, if £ = 4 and
X\ = 1, then we can expect to reduce the replicated message count by %. In the worst
case, that is, (n(S) = n(W) = £ = 1) and A = 1, NS still reduces the message

count of replicated messages by %

Heartbeat According to the strategy proposed in Section 4.4, ODH is used when

A < y/n(S) and DMTH is used otherwise. Table 4.5 and Table 4.6 summarize the

115

analysis results of ODH and DMTH, respectively. So far as the messages sent by
Worker Nodes are concerned, the TRR of ODH is -1 since it performs worse than the
SSDP for A times. It is trivial that ODH reduces replicated messages by 1 — %
Observe that since lower m implies higher TRR, the smaller X is, the better
ODH performs. It is important to point out that since ODH is unicast-based, the
message count of ODH is invariant to the service length (), and thus the equation
(4.4) is not applicable to ODH.

On the other hand, DMTH does not produce additional traffic when it sends mes-
sages. Thus the TRR is zero. The TRR for the replicated messages are

r-n(S)
r- (n(W) +n(S))

Again, from (4.4), we can substitute n(W) % - n(S), thus we have
1

£/>\+1

The TRR of replicated messages is the eﬁe
| n | ‘f ks
I |

|

Tl s A
Similar to PA™", the superiority of DMTH OQer H B is greater when / increases
and when)\ decreases. Since 1 < \ < n(S), so that in the extreme case mentioned in
Section 4.4, where A = n(S) and 2 - n(S) = n(W), from Table 4.6 we know that the

message counts are saved by % On the contrary, when A = 1, where ODH is used, the

W)+n(S

WY En(S) S . On these bases we can conclude that ODH makes the

traffic is reduced by =
system more scalable when the average contribution is low, since the traffic is greatly
reduced by ODH when number of nodes increases. Consequently, the analysis results
shown in this sub-section imply a great reduction in network traffic by applying the
proposed techniques to UPnP Networks.

Concluding from the above analysis results, there are great reductions in network

traffic by applying the proposed techniques to UPnP Networks.

116

Table 4.5: Traffic Reductions after applying On-Demand Heartbeat

HBer9 ODH TRR

Sent T reA 1—A

Replicated 7 - (n(W)+n(S)) r- A 1— =

Table 4.6: Traffic Reductions after applying the Heartbeat by Decomposing Multicast
Traffic

HBer DMTH TRR

Sent T T 0

Replicated 7 - (n(W) +n(S)) r-n(9) L

4.5.2 NS-2 Simulations

To investigate the traffic reductions Of;‘the. proposed techniques, we simulated a typical

home network by using the NS-2 netvlyi)rr%iff}ll'llyﬁlator [74] with two extensions, that is,
AgentJ [131] and the IGMP exte‘-‘ns.ioh‘ [34, | 66‘J|‘ AgeﬁtJ enables NS-2 to access Java
classes; the IGMP (Internet Group Man‘agement ﬁrotocol) extension to NS-2facilitates
IGMP, which is required to realize the proposed techniques. The simulation parameters
are set based on typical local area networks. Specifically, the simulated home network
adopts a star topology, where every device and host is connected to a IGMP-capable
switching device by a 100 megabits per second link with 5 ms delay. The sizes of
packets are normally distributed from 200 to 450 bytes. Drop-Tail is used for queue
management. The total simulation time is 120 time units for each scenario. The

simulated protocols are implemented as Java classes, which can be accessed via AgentJ

wrapper interfaces.

117

x 10°

B Original PA
[]After applying DMT

12

Traffic (Messages)

0 50 100 150 200
Number of Worker Nodes

Figure 4.4: Traffic generated by presence anmeouricement, before and after applying

DMT (A =1 and ¢ = 4)

100
—<v— Avg. Service Length =5
99+ —©6— Avg. Service Length = 4
—%#— Avg. Service Length = 3
981
g o7t
i)
S o6t
c
R
B 95f
>
°
]
S W
L2
= 93.75%
<
= 93r
92+r
911
90 1 1 1 J
0 50 100 150 200

Number of Worker Nodes

Figure 4.5: Traffic reductions of presence announcement after applying DMT

118

x 10°
6k

I Criginal node searching
[]After applying SNS and DMT

Traffic (Messages)
w IN

N

0 50 100 150 200
Number of Worker Nodes

Figure 4.6: Traffic generated by the nede discowery protocol, before and after applying

SNS and DMT (A = 1 and / = 4)

85r
83.33%
S - 23 =z T2 L 2 S V_‘V

S

S 80%

S 80f K

IS

24

c

el

©

>

e}

(]

24

2 75%

B 751

|_
—v— Avg. Service Length =5
—©O— Avg. Service Length =4
—%*— Avg. Service Length =3

70 1 1 1 J
0 50 100 150 200

Number of Worker Nodes

Figure 4.7: Traffic reductions of node discovery after applying SNS and DMT

119

x 10°
5k

I Original heartbeat
45| [] on-Demand Heartbeat

w
o

w

N

Traffic (Messages)
N
(6]

=
ol

=

0.5

0 50 100 150 200
Number of Worker Nodes

Figure 4.8: Heartbeat traffic in_a light-leaded system; before and after applying ODH

(A=1and (= 4)

-
-

Presence Announcement and Leave ;&nnouncement Figure 4.4 shows the traf-
fic generated by SSDP-based PA and. By applying DMT when A = 1 and ¢ = 4. The
results show that traffic can be greatly reduced after applying DMT. Similar results can
be obtained when ¢ equals to 3 or 5, and when DMT is applied to leave announcement.
All simulations were performed under varying numbers of Worker Nodes, and then we
calculated the message counts from the traces generated by NS-2. The numbers of
PSMs are determined by the average service length (n(S) = n(W)/f). Hence, if n(W)
is fixed in each round of simulation, then n(S) decreases when ¢ increases. The traffic
reductions of replicated messages after applying DMT to PA under different service
lengths are depicted in Figure 4.5, from which we can observe that more than 90% of

replicated messages can be saved. The dotted lines in Figure 4.5 indicate the expected

TRRs under different service lengths. Note that the analysis and the simulation results

120

x 10°
5k

I Original heartbeat
4.5 [Heartbeat by Decomposing Multicast Traffic

w
o

w

N

Traffic (Messages)
N
(6]

15

0 50 100 150 200
Number of Worker Nodes

Figure 4.9: Heartbeat traffic in a light-loadedssystem, before and after applying DMTH

(A=1and ¢ = 4)

-
—

are quite consistent. The results arefmor‘é; consistent: with the analysis results when
n(W) is greater, since we introduce randouiness to tle message departure time. Similar
consistencies can be perceived for the ERRsyof sent messages when ¢ = 3, 4 and 5,

which are all approaching 75%.

Node Searching In a similar fashion, we set up simulations for evaluating the en-
hancements after applying SNS to the node searching. As mentioned in Section 4.3,
DMT is also used after aggregating messages. We can perceive from Figure 4.6 and
from Figure 4.7 that the traffic can be reduced by more than 70% after applying the
proposed techniques. In Figure 4.7, the dotted lines indicate the expected TRRs under
different service lengths. The results are more consistent with analysis results when
n(W) is greater then 50. As for the TRRs of sent messages, the TRRs approach 66%,

75%, and 80% when ¢ equals to 3, 4 and 5, respectively.

121

x 10°
10t

I Original heartbeat
[]On-Demand Heartbeat

Traffic (Messages)
(6]

0 50 100 150 200
Number of Worker Nodes

Figure 4.10: Heartbeat traffic in a_heavy-leaded: system, before and after applying

ODH (A = n(S) and ¢ = 4)

-
—

Heartbeat Two sets of simulations are.'igonducted to evaluate traffic reductions of
HB. Because of 1 < \ < n(9S), A was Séf toflfor the fitst set of simulations and was set
to n(S) for another set. Two proposedsheartbeat efficiency enhancement techniques,
that is, ODH and DMTH, were both applied to the original heartbeat protocol under
different A values. By comparing Figure 4.8 and Figure 4.9, we can observe that in
a light-loaded system (A = 1), DTH performed much better than DMTH. On the
contrary, in a heavy-loaded system, where A = n(S), ODH performs worse than the
original protocol (see Figure 4.10), whereas DMTH was still capable of reducing traffic
by approximately 50% (see Figure 4.11). As mentioned in Section 4.4, the reason
is that ODH sent additional messages when A > 1. Based on these results we can
conclude that ODH is more suitable when X is low and DMTH is more suitable for

high A, which is consistent with the analysis presented in Section 4.5.1.

122

x 10°

10
I Original heartbeat
o []Heartbeat by Decomposing Multicast Traffic
8 |-
7 |-

Traffic (Messages)
[(6)]

0 50 100 150 200
Number of Worker Nodes

Figure 4.11: Heartbeat traffic/in a heavy-loaded system, before and after applying

DMTH (A = £ = n(S) = n(W))

100
98 -

96 -

90

88

Traffic Reduction Ratio (%)

86

Expected (Analyzed Results)
82r —©6— Actual (Simulated Results)

80 1 1 1 J
0 50 100 150 200

Number of Worker Nodes

Figure 4.12: Traffic reductions of heartbeat after applying ODH when ¢ = 4 and A = 1

123

551

Expected (Analyzed Results)

Sar —©6— Actual (Simulated Results)

521
51

0,
ol 50%

49+

Traffic Reduction Rate (%)

46

45 1 1 1 J
0 50 100 150 200

Number of Worker Nodes

Figure 4.13: Traffic reductions of -heartbeat :‘aftgr applying DMTH when A\ = (=

Figure 4.12 depicts the TRRs of |+nes‘];ag ‘qcounts‘ after applying ODH. In these
|

|
experiments, we set £ = 4 and)\ = 1 snmlar’ le_gsulfs were obtained when ¢ = 3 and
¢ = 5. The traffic can be reduced by niore thaﬁ 95% after number of nodes exceeds 50.
The dotted lines indicate the expected values of TRR obtained by analysis. Unlike in
PA/LA and in ND, the expected TRRs in these simulations are fixed. The expected
values of TRR increase when the number of nodes in the system grows. Figure 4.12
also reveals that the expected results are consistent with simulated results.

According to (4.16), the heartbeat protocol switches to DMTH when A is greater
than /n(S). Hence, we set A = £ = n(S) = n(W) to ensure that DMTH is chosen.
Figure 4.13 shows the TRRs after applying DMTH. The results show that even the

system was heavy-loaded, the traffic was still reduced by more than 47%. These results

are also consistent with the analysis results, and they are more coherent when n(W)

124

x 10*

[]Original PA/LA

7 |] Original PA/LA (without background traffic)
I After applying DMT

I ~fter applying DMT (without background traffic)

a1
T

Traffic (Messages)
w IN

10 20 30 40 50 60 70 80 90 100
Node Mobility (%)

Figure 4.14: Evaluating the proposed scheres in<a real home network, where A=1

and ¢ = 2, when only PA and LA dre enabled
| Na=ié)

[=5 l‘

|

is greater then 100. | m |}

4.5.3 Experiments

To investigate the effectiveness of the proposed approaches when deploying in a real en-
vironment, we conducted prototype-based experiments in a small-scale switched home
network. In these experiments, the original and proposed schemes are implemented
and integrated. Then, we evaluate these protocols under different node mobility, that
is, the frequency of leaving and joining the network, in a home network.

The home network consists of two PSMs and four Worker Nodes. Each PSM is
installed on an IBM X61 notebook with Intel Core 2 Duo 1.8 GHz CPU and 2G RAM,
whereas each Worker Node is installed on an IBM X31 notebook with Intel Pentium-M

1.6 GHz CPU and 512MB RAM. The machines are interconnected by an IGMP-capable

125

x 10*

[]Original PA/LA and node searching

[] Original PA/LA and node searching (without background traffic)
I Afger applying SNS and DMT

I Afger applying SNS and DMT (without background traffic)

6V

Traffic (Messages)
IN o

w
T

10 20 30 40 50 60 70 80 90 100
Node Mobility (%)

Figure 4.15: Evaluating the proposed scheres in<a real home network, where A=1

and ¢ = 2, after enabling PA, 1A dnd Mode Ise‘allrching‘;

- ‘

| == |
switch (D-Link DES-3526), and are able @,,ao‘q‘ﬁss the internet via a router (DrayTek

Voyger 2104). On each machine, i .ir‘;!st;ance of!‘{k{jrés'hark packet sniffer ! is installed in
order to capture and analyze the netwofk trafﬁc. In addition, to facilitate all nodes to
start execution at approximately the same time and to dispatch the parameters to each
node more efficiently, each PerNode is instrumented so that it receives multicast control
messages sent by a centralized experiment controller. The experimental environment
is configured so that there are two Pervasive Services and each of them is with r = 1,

=2, and A = 1. After being executed, a Worker Node runs for 120 time units, which
is equal to the heartbeat period. According to the assigned value of node mobility, an
action vector that indicates when a node should join or leave the network is generated.

For example, 50% mobility causes a node to leave and then to re-join the network in

60 time units, which are randomly distributed over 120 time units. In addition, the

!The Wireshark packet sniffer, available at http://www.wireshark.org

126

x 10°

[loriginal

[Joriginal (without background traffic)

[DMT+SNS+DMTH

I DMT+SNS+DMTH (without background traffic)
6/ I DM T+SNS+ODH I
I DM T+SNS+ODH (without background traffic) |

[¢)]

Traffic (Messages)
N
]

w
T

10 20 30 40 50 60 70 80 90 100
Node Mobility (%)

Figure 4.16: Evaluating the proposed scheres in<a real home network, where A=1

and ¢ = 2, after enabling all pro-f"ocol eapabilities.
| Ni=2Q) |
== ||

<

= |
heartbeat process is implemented. as a %paﬂgtel'dhread,‘in order to prevent the heartbeat

periods from being interfered by the ‘.miain pro(L; ‘s“?‘_':-"

Figure 4.14, Figure 4.15, and Figﬁfe 4.1%5 depict the message counts when the
node mobility increases. In the first experiment (Fig. 4.14), the heartbeat and node
searching capabilities are turned off. The results show that even in a small scale
network, the PA/LA traffic can still be greatly reduced by applying DMT. Also note
that the PA/LA message count increases when the node mobility is higher, since a
node performs PA/LA whenever it joins/leaves the network. In Fig. 4.15, the node
searching capability is turned on, so that the network traffic slightly increases. Again,
higher node mobility increases the message counts of node searching, since when PA /LA

messages are observed, a PSM either finds that one of its affiliating Worker Node leaves

or some nodes re-join the network. In either case, the PSM will re-compose the service

127

by performing node searching. Thus, the message count of node searching is roughly
in proportion to the node mobility. In Fig. 4.15, the traffic does not increase much
since the size of network is small. In the third experiment (Fig. 4.16), all capabilities
are enabled, so that the traffic is greatly increased. In this experiment, the re-joining
time is relatively short due to the scale of the network. As a result, the message
counts of heartbeat are less sensitive to node mobility. On the other hand, the traffic
of heartbeats decreases when the average time to re-join the network of a node is too

long, since an absent node does not send any heartbeat message.

4.5.4 Discussion

This sub-section discusses costs and limitations of the techniques we have proposed
so far. Currently, the proposed techniqﬁes are tightly coupled with UPnP networks.

However, the core ideas of these techniques are, still applicable to other service models.

{ 1
|

Specifically, DMT is useful when the Ptroﬁt’ehls based on single IP multicast channel
and some unbalanced commumcatlonl atternsl‘ ‘lktan be observed. When information is
known in advance, it is helpful to aggregate several search requests into one as long as
the package size is less than a unit of transportation (theoretical size of an UDP packet
is 65527 bytes). Finally, the comparisons of ODH and DMTH give us the insight
that as a heartbeat mechanism, unicast is much more efficient than multicast when
the number of monitors/managers are related much fewer than the number of service
entities (i.e. Worker Nodes in PerSAM).

As mentioned in 4.3, when applying SNS, the size of an aggregated message can
exceed MTU or even the maximum size of an UDP when / is too large. As a result,
SNS may not work properly when the size of an aggregated message exceeds the UDP

packet limit (65527 bytes). From (4.11) we can obtain the theoretical upper bound

of the ¢, which is approximately 652. In other words, the theoretical limitation for

128

applying SNS is when the average service length is smaller than 652.

Mobility is one of the most important issues in a pervasive network, since nodes can
join or leave the network at anytime. While this issue has been addressed in Chapter 3,
we assume that all nodes are always available in the analysis to simplify and clarify the
presentation. In a highly dynamic network, where n(W) and n(S) change drastically,
one has to add an additional time parameter, and then performs a summation over
a time period. On the other hand, if n(W) and n(S) are relatively stable, where the
number of nodes does not change significantly, then the analysis results are still good
approximations of the message reductions. In these cases, given that the advertising
and searching messages are emitted constantly, DMT and SNS are still able to reduce
more message counts. However, the TRR (see Definition 10) is not affected. Likewise,
to make the network more sensitive to-the mpbility, one has to increase the heartbeat
rate and therefore the heartheat trafﬁc As & result DMTH and ODH are able to
reduce more messages while TRR does ngfaﬂected

Compatibility can also be an 1§su1|3l smée hll‘ue proposed approaches are extensions
of UPnP/SSDP. According to th(.e.UPnP spe(nﬁcatlon UPnP Devices do not process
the headers other than ”ssdp:”. So that we can avoid the interferences between legacy
UPnP devices and PerNodes by introducing additional headers in SSDP MAN header.
More specifically, PSMP uses an unique "psmp:” header to distinguish from ”ssdp:”
headers used by SSDP. As a result, PerSAM nodes and traditional UPnP Devices are
able to co-exist in the same network without interfering with one another.

Observe that the DMT technique is only effective when the router or home gate-
way supports IGMP[34]. Otherwise, the routers broadcast packets to all endpoints
instead of sending packets only to the listeners of multicast addresses. Recently we
notice that there is an increasing number of low-end IGMP-capable routers available

in the consumer markets. To name a few, D-Link DES-1228 and DrayTek Vigor 2110

129

are examples of IGMP-capable routers, for which the prices are less than 200 USD.
Therefore, we believe that the proposed techniques will be realizable in most home
networks in the near future. If there are more than one switch in the network, it
will result in greatest traffic reduction if each switch is IGMP-capable. If only a few
IGMP-capable switches are available, then the one with the highest performance and
being IGMP-capable should be deployed at the root of the tree.

Finally, the correctness of the analysis results can be interfered when the system
suffered from extremely high loads, where the message arrival rate is larger than the
message consumption rate. The Worker Node starts dropping messages when the size of
un-processed messages exceeds the buffer size, causing the accuracy of analysis results
being affected. However, in an MOM-based pervasive system, it is reasonable to assume
short data processing time since meost of the tasks are I/O bound and MOM-based I/O
is asynchronous (fire-and-forget). Besides Since.."the average service length ? is used
throughout the analysis process, the a@cg-y,cy' q:an be interfered when the variation of

!
service lengths is large. This is becalil e t%e seivme length affects the message count

|
of node searching. As mentioned earhelr the seIl"Vlce lengths typically range from 3 to
5 in practice so that the variation of £ is'limited. Likewise, the average contribution
)\ is used in the analysis. A\ has great impact to the traffic of heartbeat. Therefore, it
can be difficult to determine whether to use ODH or DMTH when the variation of A

is significant. In this case, DMTH is a better choice, since it does not cause negative

effect, as discussed in Section 4.4.

4.6 Summary

Many popular service management protocols uses broadcast-based or multicast-based
group communication mechanisms, which, if not carefully designed, tend to flood the

network with unnecessary messages. Therefore, a compact service management pro-

130

tocol should be designed to minimize the downtime of a system while maintaining
low message counts. In this chapter, we present the design, analysis, simulations, and
experiments of several techniques for boosting the network efficiency - Decomposing
Multicast Traffic, Service-based Node Searching, Heartbeat by Decomposing Multicast
Traffic and On-Demand Heartbeat - based on PerSAM and PSMP. Both analysis re-
sults and simulation results reveal that the proposed approaches can reduce message
counts of presence and leave announcement, node searching, and heartbeat by more

than 93.75%, 66%, and 50%, respectively, in average service lengths.

131

Chapter 5
Consistent Service Composition in a Smart

Home

Service composition is the process of discovering, selecting, and activating service com-
ponents that best fit pre-specified criteria. It has been an object of study in Service
Computing discipline for a long time [147]. Although it has been reported that service
composition is also one of the most significant issues of Pervasive systems [33], existing
enterprise service composition techniques are not suitable for such systems due to the

following challenges that do not take placeinzenterprise environments:

1. User-centricity: As mentionéd earlier, enterprise services are usually composed
based on developer-defined Servipé?@ﬂplates that are specified to fit business

. om L : o
requirements, whereas the goal of Pervasive service composition is to compose

Ty 1 Ii ‘
services that meet maximum satisfaetion of users.

2. Representing and unifying user preferences: In a Pervasive environment
such as the Smart Homes, users should be able to describe their preferences ac-
cording to which the service template is updated before the composition starts.
Complexities arise when multiple parties submit conflicting preferences simulta-

neously. For example, the energy saving policy is likely to conflict with the user’s

comforts.

3. Impromptu consistency: Enterprise services are relatively static and well-
planned whereas Pervasive services are usually dynamic and ad hoc. Since service
components can come and go at any time, a Pervasive service must be able to

search for alternatives when a required service components suddenly disappears.

132

Contrary to enterprise services, Pervasive services are usually deployed in ad
hoc ways. Service components work perfectly individually do not guarantee that
they can still work perfectly when several of service components co-exist in the
same environment. Compatibility issues arise due to resource competing and

interferences among different effects of service components.

To sum up, the core issue of Pervasive service composition is threefold: 1) how
users specify their preferences precisely, 2) how to unify preferences submitted by
multiple parties, and 3) how to detect and to avoid undesired interactions among
service components. This chapter concentrates on issues mentioned above by improving
the framework introduced in Chapter 3. The objective of this chapter is therefore to
devise a set of techniques that facilitates'the eomposition of consistent services, where
a service is consistent if all conflicting ‘us:"er ﬁlféferences can be unified and the service

components are chosen so that the in@é?rfere;’}éés amoéng them are minimized from the

| "'",..-__ ' |

users’ points of view. | |l

| ¢
]

The following sections first iritr_odhces a ﬁdrmal- expression language, Preference
Expression (PE), that is able to preéisel‘y Specify ﬁéer preferences based on the CC/PP
(Composite Capability /Preference Profiles) standard [84]. Note that PE denotes user
preferences from two perspectives: the enumerability and the necessity. Next, a set of
rules for unifying different types of potentially conflicting preferences are also presented.
Lastly, since the degree of interference is usually determined by user’s subjective feeling,
which is usually vague, we propose a fuzzy-based approach to estimate the degree of
interference among service components and a quality evaluation scheme for integrating
all techniques mentioned above. Details of these mechanisms will be elaborated in the

subsequent sections.

133

C—1 » Type-based »| Candidate Scoring [—»|—— »| Service
— Node Searching and Selection — Activation
7 7

Recommended

Service Request -
Composition Scheme

Figure 5.1: A general service composition architecture

5.1 Overall Architecture

Figure 5.1 illustrates the general architecture of a classical service composition. Clas-
sical service composition mechanisms are usually driven by developer-specified Service
Templates that describe criteria (e.g. type or attributes) for selecting qualified ser-
vice components. Typically, a service composition framework consists of three phases.
In the phase of Type-based Node Searching“,-_ a ‘service composition manager (i.e. a
PSM), which is responsible for Compésing thenservice according to the Service Re-
quest, searches for qualified candidate!é %iher! from‘ la centralized service registry or
by first broadcasting the type informH;io’rgIaS ‘.F!he searching criteria and then waiting
for responses. The actual procedﬁ“reb.h;l this pl!Ll%zaJse largely depends on the underlying
service discovery protocol (see Section 22) Uéually, there are more than one qualified
candidates, so that the manager needs to select the best one among candidates in the
phase of Candidate Scoring and Selection, where the selection will proceed according
to pre-specified preference expressions. Note that the selection mechanisms can greatly
affect the quality of composed services, and sophisticated selection mechanisms usually
involve evaluation and scoring of candidates based on their attributes. After all of the

most appropriate candidate nodes are determined, each node is then activated in the

Service Activation phase.

134

5.1.1 Capabilities and Preferences for Service Composition

Let us now examine how PerSAM/PSMP presented in Chapter 3 fits into this archi-
tecture. In PerSAM/PSMP, PSM plays the role of the service composition manager.
After the service composition is started, PSM first issues M-SEARCH messages to a
multicast channel and then waits for responses from Worker Nodes in the Type-based
Node Searching phase (see Protocol 2, 3, and 5). In the Candidate Scoring and Selec-
tion phase, FCFS (First Come, First Select) is adopted as the default selection policy.
Finally, by (3.14) in Protocol 5, a Pervasive Service is then activated.

Observe that the Service Template in PSMP only consists of a set of node types
demanded by a Pervasive Service: it does not support attribute-based lookup. However,
in Pervasive environments such as Smart. Homes, service components with the same
type do not imply that they are intercha‘tnge'é.ble‘. For instance, the contexts obtained
from sensors in the living room ar¢ differgnt fll"om thieseobserved in the bed room so that
the sensors in two rooms are not 1ntefvhaﬁ”geable In" addition, PSMP can not adapt
to user’s needs dynamically, smce a hser does‘not have a chance to modify Service
Templates. Finally, when there ar¢ miore than one candidate nodes found, PSMP
chooses the best node among these candidate nodes based on FCFS policy, which
however usually leads to low user satisfaction. To improve quality of the composed
services, more sophisticated selection or ranking algorithms that take the attributes of
nodes into account are required in the phase of Candidate Scoring and Selection.

It follows from the above discussions that further enhancements of PerSAM and
PSMP are required. In the following, several new data structures that support a PSM
to search for Worker Nodes based on both node type as well as attributes are proposed.
Originally, a Worker Node is merely described by the node type (i.e. nt in Figure 5.2-
(a)), which, as mentioned above, is too restrictive for Pervasive service composition.

Hence, it is desirable to describe Worker Nodes in a more general way. This research

135

PerHode

- state
Worker Hode
-nt
- hhp
(e
Perode
- state
Worker Node Hode Capabhility Descriptor
- nt
- hb
9] p - attrs

Figure 5.2: Modifying Worker Node structure to facilitate more sophisticated Pervasive
service composition: (a) Original Worker Node structure, (b) Enhanced Worker Node

structure

136

work therefore proposes to model the capabilities and the selection criteria for Worker
Nodes by extending CC/PP, which is a W3C standard for specifying device capabilities
and user preferences [84]. The capability of a Worker Node w is described by its type
7 and a set of attributes A = {ay, a9, .., ax} = {a;}F_;, where o; = (n;,v;) is a name-
value pair, based on which the Worker Node can be described by arbitrary attributes.
The description of the capability of a Worker Node is called Node Capability Descriptor

and is formally defined as follows.

Definition 11. (Node Capability Descriptor) The Node Capability Descriptor of
a Worker Node w is a pair: C(w) = (1, A), where T is the type of w, and A = {a;}
is the attribute set of w. For the attribute oy, (n;,v;) is its associated name-value pair,

where n; 1s the attribute name and v; is-thesattribute value.

For example, a Worker Node w; thdl contralgs? inch LCD monitor which is located

at room-1 can be described as followst /e .2 |

| == |
mn | :
(LCD, [(size, 3%')t (tocatipn,Proom —17))).

In the original service model, the nbde tyi)@; nt of a Worker Node is matched by
a Service Template. Since in the enhanced version, a Worker Node is described by
its Node Capability Descriptor (see Definition 11), a replacement for Service Template
capable of matching Node Capability Descriptors is hence required. As a result, a
new data structure, called Service Request, is proposed to replace Service Template
for this purpose (see Figure 5.3-(b)). A Service Template STP® of a Pervasive Service
ps is essentially a set of node types (cf. Definition 4). Likewise, a Service Request is a
set of Node Preference Descriptors, of which each specifies the preferable property of
one of the desired Worker Node w so that a PSM is able to search for qualified nodes
according to the set of descriptors. The structure of a Node Preference Descriptor is

defined below.

137

PSM

- candidates

+ ServiceAlive() - boolean Service Template
+ Refresh() : void

+ Timeout() : boolean
+ Remove() : void

+ Add() : void

+ Select() : void

- nts

PSM

- candidates

+ ServiceAlive() . boolean -
+ Refresh() - void Service Request
+ Timeout() : boolean
+ Remowve() : void

+ Add() : void

(b) + Zelect() : woid

Attribute Preference Descriptor

Ko— - attributeMame
- preferenceBExpression

Node Preference Descriptor

- nt

Figure 5.3: Modifying PSM structure to facilitate more sophisticated Pervasive service

composition: (a) Original PSM structure, (b) Enhanced PSM structure

138

Definition 12. (Node Preference Descriptor) The Node Preference Descriptor of
a desired Worker Node w is a pair: P(w) = (7, Z), where T is the type of w, and
A= {a;} is a set of Attribute Preference Descriptors a; = (n;,€;). Note that n; is

the attribute name and €; is a Preference Expression that specifies selecting criteria for

attribute values.

For example, the following Preference Descriptor P(w;) directs the PSM to search

for an LCD monitor that is more than 30 inches and is located at room-2:
(LCD, |(size, (> 30)), (location, (== "room — 27)]).

An Attribute Preference Descriptor facilitates users to participate in the selection
process when composing services so that, theservice composition adapts to users’ needs.
In other words, when users express theirll'preférer_llces for a specific attribute, they typ-
ically override the default Preferénte Exp,‘resllsi‘olns il Attribute Preference Descriptors.

Depending on the characteristies qflsgﬁée
LU

lc‘;omposition mechanisms, the syntax of
€ is usually different. In non—crit‘_j.cal !‘sl‘er\;i:(-i‘es,:‘#x us‘e_r‘ does not always insist on their
preferences. Instead, there is usu;ﬂy ‘.room"fo; hegotiation when some preferences
can not be met. Therefore, differentiation of mandatory preferences from negotiable
ones is useful if we want to cover wider service compositions, especially when there
are multiple users whom will be concerned by the services of interest. To facilitate
consistent services, the aforementioned Preference Expression proposes an unifiable
and negotiable expression. Based on the evaluation results of Preference Expressions,
PSM is able to filter out the unqualified nodes and to rank the qualified ones. The
details of Preference Expression and their unification rules will be elaborated in Section

5.2.

139

C—1 1
q—— Preference |, Type-based | ,| Candidate Scoring | ,|C—1 Service
Oc— . . . Ny — L
— Unification Node Searching and Selection Activation
Service R : Recommended
ervice hequests Composition Scheme
from users Degree of P

Interference

Figure 5.4: Refined service composition architecture for Pervasive environments

5.1.2 The Enhanced Architecture for Pervasive Service Com-
position

Figure 5.4 depicts the refined version of Pervasive service composition architecture.
In the refined architecture, a Service Request of a Pervasive Service is essentially a
subset of the power set of Node Preferenge,Descriptors. Similar to Service Template,
the Service Request is typically pre-defined by the developer of a Pervasive Service.
However, users can express their own pre,fer(?nces by:overriding the default ones.

\p— |

When there are multiple users, t}jl "%f{éfénces can be conflicting. As a result,
in the Preference Unification phase (éée Flgurlle‘; 5.4), “a PSM unifies multiple possibly
conflicting preferences according to ﬁniﬁcation ;ﬂes presented in Section 5.2. Next,
in the Type-based Node Searching phase, a PSM also issues M-SEARCH messages
to a multicast channel and then waits for responses from Worker Nodes. The major
difference from the original architecture is that the candidates whose attributes do not
satisfy the constraints specified in Preference Expressions are dropped in this phase.
The remaining candidates are ranked based on what have been specified in negotiable
Attribute Preference Descriptor and a scoring scheme presented in Section 5.4. In the
following sections, the details of all phases except Service Activation phase as shown
in Figure 5.4 will be elaborated. The Service Activation stage is identical to that in

the original architecture, namely, the selected nodes are activated by using (3.14) in

Protocol 5

140

Sensor Gateway A

Sensor Gateway B]n\ g
].7

P 4

Sensors

Sensor Gateway C

Context Inference
Engine

context @ (update context information)
change Composed Service
event p% l
(Update - ' : ; D :
context - — Service Composition Mechanism =)=
information) 7 &
Service o e
Request

Figure 5.5: Dynamic contextual node re-binding
5.1.3 Dynamic Contextual Node Re-binding

One of the distinguishing charagtefisties of the Pervasive system is that a Pervasive
M‘.----l '

(A
environment is highly dynamic. As| Esﬁilt“,' enyironmental contexts are changing
frequently so that the Pervasive‘ﬁs.yst%) I‘};S t‘H ad@bf to context changes. So far as
a Pervasive Service Composition m‘é‘(“éhanism is gancerned, it has to constantly probe
for better candidate nodes. Upon a better node is found, the old one is replaced to
enhance the quality of service. Bottaro et al. [32] identify these situations that will
trigger dynamic re-binding of nodes: 1) presence of new nodes, 2) absence of existing
nodes that have participated in one or more services, and 3) changes of contexts.

In fact, PSMP has built-in capabilities for detecting the presence and absence of
Worker Nodes so that the situations 1) and 2) can be detected. The last situation,
changes of contexts, can be considered from two aspects: the detection of environ-
mental context change as well as the detection of the changes of contexts in a Worker

Node. The platform is able to be aware of environmental context change such as hu-

man activities by interpreting the raw data gathered by sensors. As shown in Fig.

141

5.5, the raw data are interpreted by the Context Inference Engine [94] and then the
Service Request is updated accordingly by the PSM, which reflects the fact that the
the users’ preferences are changing dynamically. On the other hand, the changes of
contexts within a Worker Node are reported by the Worker Node itself in PerSAM. As
a result, PerSAM /PSMP is aware of context changes either from the environment or
within Worker Nodes. After the changes are detected, the Service Composition mech-
anism then re-selects the nodes that are affected by the contexts according to the new

preferences as well as the new context information.

5.2 Specifying and Unifying User Preferences

As discussed in the previous section, speeifying user preferences is a non-trivial task.
The approach taken by this research’is first tendis_tinguish different kinds of preferences
from various aspects and then proposes approa(;hes to deal with them separately. First

= o |
of all, preferences can be categorized blY’ tH”; nbeessruy For example, if a user is fond of
N \
playing a classic music composed by e!lther J. S] Bach or by W. A. Mozart, but prefers
W. A. Mozart better, then the preference assomated with the attribute ”Composer”

can be expressed by the following Attribute Preference Descriptor:
("Composer”, (=="W.A.Mozart” — " J.S.Bach”)). (5.1)

On the contrary, suppose that the expression is changed as follows:
("Composer”, (=="W.A.Mozart” —-=="J.5S.Bach” :! =7 AVivaldi")), (5.2)

where the colon means ”otherwise”, then it means that this expression is negotiable.
Specifically, all composers except A. Vivaldi can be an option for consideration if neither
Bach’s nor Mozart’s music is available. Second, depending on the nature of attribute
values, an attribute can be enumerative (such as ”J. S. Bach” or "W. A. Mozart”)

or numeric (such as the size of LCD is 17 or 22 inches). The syntax of enumerative

142

attributes is different from that of numeric ones and so are their unification rules.
Consequently, this section will present the syntax of Preference Expression and its
auxiliary unification rules to deal with the challenges mentioned above. It follows from
the above discussions that the Preference Expressions and their unification rules can
be designed from two aspects: 1) a preference can be specified either numerically or
enumeratively, and 2) from the user’s points of view, the preference is either mandatory
or negotiable.

In the Preference Unification phase (see Figure 5.4), if there are conflicting prefer-
ences specified by different users, then the PSM integrates these preferences according
to unification rules (as will be presented in Section 5.3). If the unification process fails
because that the conflicting preferences are mutually exclusive, then the PSM reports
errors to users for further correction; otherwise, the composition process proceeds to
the next phase. The following subseetions are going to elaborate different types of

|

Preference Exprssions and their umﬁc‘aTtlé'ﬁ..r_uf!es in/detail.

Hom |l

I‘v W :‘!4

5.2.1 Enumerative Preféré ne€lExpressions

The Enumerative Preference Expression is used to describe preferences for an enumer-
able attribute by specifying a list of preferred values. A candidate node is considered
unqualified immediately if its corresponding attribute value matches none of the val-
ues listed in the expression. Otherwise, a matching score is calculated and stored for
further selection (see Section 5.4). This type of expression is called a Mandatory Enu-
merative Preference Expression (MEPE). For instance, the preference to the composers

of a music can be specified as
(==7J.S. Bach” -=="W. A. Mozart”). (5.3)

The syntax of MEPE is presented in Listing 5.1 in BNF (Backus-Naur Form) [22].

In an MEPE, the preferred values are a listed of strings, delimited by arrowheads.

143

Listing 5.1: The BNF of MEPE

MEPE ::= PtList | NegationExpr

PtList := ’(’ == STRING PtListTail*)’
PtListTail == —== STRING
NegationExpr := ' (7 | = STRING(A! = STRING)*)’

Alternatively, one can enumerate the undesired values by a list of conjunctions (e.g.
I'="J.S. Bach” Al =”A. Vivaldi”). The list is ordered by preferences in descending
order so that one can easily conceive that the first qualified service component is the
most preferable one. The expression is evaluated to be true as soon as the PSM finds a
service component whose attribute value meets the criteria specified in the expression.
Alternatively, one can enumerate the undesired values by a list of conjunctions (e.g.
' = 7J.5.Bach”\! = 7 A Vivaldi”), asymentioned earlier, and then the expression is
evaluated to be true if the attribute valué of Ia service.component matches none of the

undesired values. -\ LA
Val=¥/4 \
| <=

In a Preference Expression, the tqr‘rﬁ'ﬂ;ﬂxﬁf}‘gﬂlout an operator is called a ”preference

I { ;
as ||

term” or simply a "p-term”. A_set Ip;f p-terms As“éalled a ”preference term set”, or

called a "pt-set”, which is denoted as pt(e); where € is the Preference Expression. The

formal definitions of p-term and pt-set are given below.

Definition 13. (P-term and pt-set) A term without an operator in a Preference
Ezxpression € is called a "preference term”, or simply a "p-term”. A set of p-terms
is called a "preference term set”, which is denoted as pt(e). Assume that there are k
possibly conflicting Preference Expressions {e;}*_,, then the pt-sets of these expressions

are denoted as {pt(e;)}¥_;.

For example, if ¢ = (=="J.S.Bach” —=="W.A.Mozart”), then ”J. S. Bach” and
"W. A. Mozart” are p-terms and pt(e) = {"J.S.Bach”,”W.A.Mozart”}.

In MEPE, p-terms that are associated with the notations ”==" and ”! =” operators

144

are respectively called positive p-terms (denoted ™) and negative p-terms (denoted

e7). Positive and negative p-terms are formally defined below.

Definition 14. (Positive and Negative p-terms) A p-term associated with an

operator "==""1is called a positive p-term; a p-term is a negative p-term if its operator
s V1=
For example, == ”.J.S.Bach” implies ”.J.S.Bach” is a positive p-term, whereas

I'="A.Vivaldi” shows” A.Vivaldi” is a negative p-term. An MEPE is either composed
of a set of positive p-terms, called Positive MEPE, or a set of negative p-terms, called
Negative MEPE, but not a mixture of them. The pt-set of a Positive MEPE and a
Negative MEPE are denoted as pt(¢™) and pt(¢™), respectively.

If there are more than one spegcified prefe‘]r_ence expressions, then these expressions
have to be unified. The core idea of ﬁnifying Préference Expressions is to construct

a new expression such that for all p—ﬁerf%_}__s :zli';n] "Fhe new expression satisfy all involved

| ..‘_‘-"" |
original expressions. Before the uniﬁcagt#ior_ﬂ;jllleflsi are presented, the following definition
"N | 1 :
will be useful for further discussi‘onS.I If.there 15 at least one Positive MEPE, then a
set of possibly conflicting MEPEs can beunified as a single Positive MEPE, which is

formally defined as follows.

Definition 15. (Positively Unified MEPE) Assume that {;}}_, are a set of pos-
sibly conflicting MEPEs, where 3t € {e;}¥_| such that * is a Positive MEPE. Then,
the set {e;}_, can be integrated into a Positively Unified MEPE, denoted as ", where

Vt € pt(e"t), /\?;1[t € pt(ef)] and A§=k1+1[t ¢ pt(ej_)].

As mentioned earlier, the core idea is to construct an expression ¢“* such that all
p-terms in £“* satisfy all of the involved original expressions.
Let us start from a simple case, in which all MEPEs to be unified are positive.

Intuitively, in order to fulfill all preferences, the unifying outcome should be an inter-

145

section of all pt-sets. The unification rules for deriving the pt-set from a set of possibly

conflicting Positive MEPESs is formally specified below.

Theorem 3. (Deriving the unified pt-set of Positive MEPEs) The pt-set of a
Positively Unified MEPE pt(¢"") can be obtained by the intersection among a set of

Positive MEPESs, denoted as {pt(¢])}f_,, namely,
pt(e"") = MiZypt(e)). (5.4)

If all MEPEs are positive, then according to Definition 15 the possibly conflicting
Positive MEPEs {¢; }¥_, can be unified by finding £** such that V¢ € pt(""), we have
AF_|[t € pt(e])]. Based on this observation, the proof of Theorem 3 is shown below.
Proof. From (5.4), ‘

pt(e"") = NELpt(el) =pt(eD) N pLE)N ... N pt(ef).

Thus, we have

L —
M
g
=
o
l\')_’_n
>
=
<+
—
™

S
.
IN
=
=
™
>4

HE") €)] A TS
Consequently,
Vt € pt(e"), [t € pt(eN)| A [t € pt(ed)] A ... At € pt(e])]

is true, that is,

vt € pt(e*), AL It € pi(e!)]

m
The next theorem deals with a more general case in which at least one of the

possibly conflicting MEPESs is positive.

Theorem 4. (Deriving the unified pt-set of a mixture of Positive and Nega-

tive MEPEs) If there is a mizture of several possibly conflicting Positive and Negative

146

MEPEs, then the pt-set of the Positively Unified MEPE pt(e“") can be obtained by the

following operations:
pHE") = N pt(el) — U ot (e), (55)

where there are k' positive MEPEs and k — k' negative MEPEs.

Proof. Based on the De Morgan’s laws and the set difference operation, that is,
A — B = AN B, the equation (5.5) can be transformed to intersections of pt-sets,

specifically,

ph(e"t) = N ipt(e]) — Ul apt(e))
=N pt(ef) N U 1pt(e5)

=N pt(el) NNk k/+1pt(=) =

= pt(ef) Npt(ex) AL LN ‘§k/)ﬂpt(5k'+1)mpt(5k'+2)ﬂ ﬂpt(sk).
N=3<)
" '-t’.'f"ll

4 |

"%
[pt(="+) C pt(eh)] A [PHE Em%i

Thus, we have:

s NIpt(e) C pt(eh)]A

[pt(e"") S ptleg)] A [pt(e"”) G pt(é‘k/)] AN [pt(e™™) C pt(eg)],
which can be rewritten as
[pt(e") C pt(ef)] A [pt(e™) S pt(eF)] A - Alpt(e™®) C pt(ei)]A
pt(e"™) & ptep DI A [pt(E™) € ptlep o)l Ao Alpt(e™™) & pt(ey)]
As a result, Vt € pt(e""), we see that
[t € pt(eN)] A [t € pt(ed)] A ... At € pt(ef)]A
[t & ptlep)] At E pt(ep)] A AEE pi(eg)].
In other words, Vt € pt(e“"), we have

/\fl:1[t S pt(ﬁf)] A A?=k’+1[t ¢ pt(€])]-

147

O
If all possibly conflicting MEPESs are negative, then the unification rule for generat-
ing Negatively Unified MEPESs is needed. Before turning to a closer examination of the

unification rule for unifying Negatively MEPESs, let us define the Negatively Unified

MEPE precisely first.

Definition 16. (Negatively Unified MEPE) Assume that {; }}_, is a set of
possibly conflicting Negative MEPEs. Then, {e; }¥_, can be integrated into a Negatively
Unified MEPE, denoted as €*~. If such €~ emists, then Vt € pt(e*~) implies NE_|[t ¢

pt(e;)]

Based on Definition 16, the rule for deriving the pt-set of Negatively Unified MEPE

from a set of Negative MEPES is presented below.

Theorem 5. (Deriving the pt -set of the Negatlvely Unified MEPE from a

set of Negative MEPEs) The pt- sefﬁﬁthq Negatively Unified MEPE "~ can be
|

obtained by the union among pt-sets ofl eggi‘we' MEPES {pt(e;)}Yr,, namely, pt(e*~) =

_ -~ | ' |
U§:1pt(5i). oy ‘

Proof. The equation pt(c“~) = UYL pt(e;) implies that

pt(ev) = Uk pt(s;) = Ni_ypt(e;),

in other words,

pi(e"") = pt(er) Npt(ey) N ... Npt(ey).

Thus, we have
[W;Q—ptﬁ /\[ngt% A A[ngtgk],
namely, V¢ € pt(¢“~), we have
[t @ pHED] AL PHEDI A - ATt € pt(er)] = ALt ¢ pt(er)). O

148

If follows that the pt-set of an Unified MEPE can be derived from either Theorem
3, 4, or 5 and that the unification fails if the pt-set of the Unified MEPE is an empty
set, that is, pt(e") = ¢.

After deriving unified pt-sets, the order of p-terms have to be determined if the
result is a Positively Unified MEPE. In this work, the user has to designate one Positive
MEPE as the master expression according to her/his preferences. On the contrary, the
master expression is not required for Negatively Unified MEPEs since the order of
negative p-terms does not affect the result of service composition.

The following examples demonstrate the concrete procedures of unifying MEPE
based on the rules mentioned above.

Example 1. Derive the Positively Unified MEPE from the following MEPFESs, where

+

€] 1is the master expression: =

el = (=="J.5.Bach® —== P M‘ozart” R B Vivaldi™)
ed = (=="W.A Mozart” —== ”JS%}CLC‘@” I—ﬂ‘—z ”A H.Haydn” —=="A.Vivaldi")
g5 = (I =7AVivaldi”). ' | ‘. ' | %
Solution. First of all, the pt-sets of‘ these expressions can be obtained based on
Definition 13, as shown below.

pt(ef) = {"J.S.Bach”,”"W.A.Mozart”,” A.Vivaldi’ }

pt(es) = {"W.A.Mozart”,” J.S.Bach”,” A.H. Haydn”,” A.-Vivaldi” }

pt(e3) = {7 A.Vivaldi”}
Note that € and €5 are positive, whereas 5 are negative. Therefore, after applying

Theorem 4, the pt-set of the Positively Unified MEPE can be derived, namely,

pt(e") = pt(ef) Npt(e3) — pt(e3)
= {"W.A.Mozart”,” J.S.Bach”,” AVivaldi"} — {" A.Vivaldi”}

= {"W.A.Mozart”,” J.S.Bach” }.

149

Next, pt(e“") is ordered according to €] which is chosen as the master expression
Hence, the Positively Unified MEPE, denoted as €“", can be obtained after attaching

the operators:

et = (=="7J.5.Bach” —=="W.A.Mozart”).

Example 2. Derive the Negative Unified MEPE from the following MEPFEs:

e; =(I="J.S.Bach”)

g5 = (1 ="W.A Mozart’ Nl =7 A.H.Haydn”)

Solution. Again, the pt-sets have to be found first, as shown below

pt(e;) ={"J.S.Bach”}

pt(ey) = {”WA.Mozart”, "A.H.Haydn”}

In this example, Theorem 5 is apphed since €1 and 52 are both negative MEPEs. As

a result, the pt-set of the Negative Unlﬁad- MEFE can be derived as follows:
| ‘ﬂ‘l"’-"' '
K |

|
pt(e"”) = pt(e]) Upts).
2 | | :
={" J.S.Bach”} U“{”WA.MOzart” ,VA.H.Haydn” }

={"J.S.Bach”,"W.A.Mozart”,” A.H.Haydn” }.

Finally, the Negatively Unified MEPE, denoted as "™, can be obtained after attaching

the operators:

= (1="J.5.Bach" Nl ="W.A Mozart” \! =" A.H.Haydn”).

Listing 5.2 summarizes the procedure of unifying MEPEs mentioned above

As mentioned earlier, representing preferences by mandatory expressions is decisive
that is, users either come to an agreement or no service is provided at all. However
users are usually willing to negotiate: they do not always insist on the criteria and

may want to give up some desired service quality if the criteria can not be met in the

150

Listing 5.2: The algorithm for unifying MEPESs

Procedure Unify_ MEPE

Input
{e;}k ;. PreferenceExpression[] { A set of MEPEs }
gmaster . PreferenceExpression
{ The Master MEPE, where ™ € {g;}}_, }
Return
e¥: PreferenceExpression { The Unified MEPE }
Begin

If (366{5Z o1 such that ¢ is a Positive MEPE) Then
Sort(pt(e“) ,sm‘“te”) { Ordered by the Master MEPE }
Else { All expressions are negative }
ph(e") = Uypt(e;)
= NewMEPE(pt(c"))

End.
Listing 53t The BNE.of NEPE
NEPE :: = PtList? (: ' (’«NegationExpr O3 Y
PtList ::= ' (’= STRING PtListTail*)"
PtListTail ::= =— — STRING £ '__ (~) -
NegationExpr ::= '(’ != STRING (i/\;?"- bjTRlNG)* ")’
€3

—_——

first place. The Negotiable Enumeratlve Preference Expressmn (NEPE) is designed for
this purpose, which is used to specify the 'good to have” criteria for an enumerative
attribute. The BNF of NEPE is presented in Listing 5.3.

An NEPE has the form P : N, where the P segment is a list of positive p-terms,

whereas the N segment is a set of negative p-terms. For example, in the expression:
(=="W.A.Mozart” :! =" A Vivaldi”),

the P segment is == "W.A.Mozart”, and the N segment is | = ” A.Vivaldi”. The p-
terms in P specify all "good to have” options. If the p-terms in P can not be satisfied,
then the expression can be considered satisfied as long as the criteria specified in N are
evaluated to be True. If follows that if one of the Preference Expressions to be unified

is NEPE, then the expressions are first treated as Positive MEPEs that are composed

151

of the p-terms in P. If the unification fails, namely, pt(¢*) = ¢, then the p-terms in
P are replaced by those in N and then they are unified again. In this way, the NEPE
provide an additional chance for unification, since N has weaker constraint than IP. The

following example explains the overall unification process mentioned above.

Example 3. Derive the Positively Unified MEPE from the following MEPEs and

NEPEs, where €1 is the master expression:

g1 = (=="J.5.Bach” -=="AVivaldi” -=="A.H.Haydn”)

g9 = (=="W. A Mozart” :! =7 AVivaldi”).
Solution. First of all, e5 is converted into an MEPE based on P, so that we have
P

el = (=="W.A.Mozart”), where €5 is an MEPE that are composed of all p-terms in

P. However, the unification between ey:and &5 fails, since

pte) =ptler) Ney S/~

(P
= {"J.8.Bach”,” A.Vw%l'dﬁ?-mﬁffaydn” YN {"W.A.Mozart”}
m | .
| | ‘

= (b r'-: | !3 |L A | ’|‘

Next, because €, is negotiable, €5 isreplaced by 8I§ so that the unification is performed
again. Hence,

pt(e*) = pt(e1) — &)

= {"J.S.Bach”,” AVivaldi”,” A.H.Haydn” } — {” A.Vivaldi"}
= {"J.S.Bach”,” A.H. Haydn” }.

Finally, pt(¢") is ordered according to e; which is chosen as the master expression.

Hence, the Positively Unified MEPE can be obtained after attaching the operators:
e" = (=="J.5.Bach” —-=="A.H.Haydn").

It is important to observe that the result of unifying a set of MEPEs and NEPEs

must be an MEPE. The reason is that the outcome has to be a consensus (and also the

152

most constrained). If there is at least one of them which is not negotiable, the outcome
must not be negotiable. But for a special case where all expressions to be unified are
NEPESs, the outcome will be an NEPE. When unifying NEPEs, the p-terms in P and in
N segments are converted into MEPEs and are unified correspondingly. The following

example explains the unification process mentioned above.

Example 4. Derive the unified NEPE from the following NEPEs, where €1 is the
master expression.:
g1 = (=="J.5.Bach” -=="AVivaldi” :! =" A.H.Haydn")

g9 = (=="J.5.Bach” :! =7 A Vivaldi”).

Solution. First, different segments of €; and 5 are converted into MEPEs.

= (=="J9 Bach” e " A Vivaldi”)

= (I = ”A HHaydn”) N

= —:”JSB,a‘J_) |,

l
== ”A qualdr'y’
' |
Next, the MEPEs derived from IP and from N are unlﬁed separately, that is,

pt(e™) = pt(ey) N pt(fz)
= {"J.S.Bach”,” A Vivaldi"} N {"J.S.Bach” }
— {".J.S.Bach”}

pt(e™) = pt(ey) Upt(ey)
= {"AH.Haydn’} U {" A.Vivaldi"}

={"A.H.Haydn”,” A.Vivaldi"}.

Hence, the unification result of P segment is €t = (== ”.J.S.Bach”) whereas that
of N segment is ¢** = (I = "A.H.Haydn” \! = " A.Vivaldi”). The unified Preference

Expression can be obtained by concatenating €“* and £“?, namely,

¥ = (=="J.5Bach”): (! ="A.H. Haydn” \! =" A.Vivaldi”).

153

Listing 5.4: The unification algorithm for MEPEs/NEPEs

Procedure Unify MEPE_NEPE

Input
mandatoryy ki .
{&; bity:

s PreferenceExpression []

{gyegotiable}?il. PreferenceExpression []

gmaster . PreferenceExpression { The master expression }
Return

e¥: PreferenceExpression { The unified expression }
Begin

If (|{6;nandat0ry}i«11|>0) Then { There is at least one MEPE }
e':= Unify MEPE ({e]""" V81, U {P(e] 97 We) b2 | gmaster)
If (pt(e"):=¢) Then
g':= Unify MEPE ({e]""" ™"V}, U {N(g[®9oableyyhe | - gmaster)
Else { All expressions are NEPE }
g:= NewNEPE(Unify MEPE ({IP(e]9?"*")}k2 | = gmaster)

j:1 9

Unify_MEPE ({N(s;?egf’“““e)}f;l , gmaster)

End.

If either the unification result of P.ségments oi<thatof the N segments is ¢, then the

final result have to be transformed to ‘a,nMEfl’E For 'example, if e4 is replace by (==
| |

| == |
"W.AMozart” 1! =7 A Vivaldi’), cahFin@;.,thé“l) =.¢, then the final result becomes
as || J

¢:(!="AH Haydn" Nl = ”A.Vi&i}:q_‘ldi%"), Whicﬂ can be rewritten as a negative MEPE
(!="A.H.Haydn" N = ”A.Vivaldz’”j. ‘ ‘

Listing 5.4 summarizes the unification rules for a mixture of MEPEs and NEPEs
discussed above, where the functions P(¢) and N(e) return the P segment and the N

segment of e, respectively.

5.2.2 Numeric Preference Expressions

Numeric attributes are different from enumerative ones in that they are numerically
comparable and that they can be constrained by specifying intervals (i.e. upper and
lower bounds). As a result, numeric expressions must support more operators than

that are supported in enumerative ones. Specifically, there are only two operators

154

supported in Enumerative Preference Expressions: ”==" and

»|_»

, whereas Numeric
Preference Expressions uses additional operators such as ”>", 7<” 7<” 7>” and
2 7
—
Again, Numeric Preference Expressions can also be mandatory or negotiable. A
Mandatory Numeric Preference Expression (MNPE) is a numeric preference expression

whose criteria must be met. For example, the MNPE:
((> 20N < 30)V < 10) (5.6)

can be used to specify the selection criteria of size of an LCD display whose size is
either between 20 to 30 inches or smaller than 10 inches.

On the other hand, the Negotiable Numeric Preference Expression (NNPE) is the
numeric preference expression that@ontains ”.llr_legotiable” semantics. Similar to NEPE,

an NNPE is also composed of/a P segment andban N segment which are delimited by

a colon mark. For example, the follov&iﬁgégﬁbﬁéssion

A || @
(20 & DA 25.:5) (5.7)

is capable of specifying a selection crit“eria aﬁd a negotiable expression for an LCD
display, where the former is that the size should be either larger than 20 inches or less
than 10 inches and must not equal 25 inches, whereas the later is the expression after
the colon mark (”:”), i.e. the N segment with the notation ”>>”, which means the size
is the greater the better. Note that the N segment of an NNPE is useful when the user
only wants to specify a vague constraint for an attribute. For instance, >, <, and =~
denote "the greater the better”, "the less the better”, and ”the closer to a specified
value the better”. Taking the expression (5.7) as an example, assume that three kinds
of display are available, and their sizes are 25, 18, and 12 inches, respectively. The

order of preference should be 25, 18 and 12. This is because all of them do not match

the P segment of (5.7), so that according to the N segment, their preferences will be

155

Listing 5.5: The BNF of Mandatory Numeric Preference Expression (MNPE)

MNPE ::= BinaryEzxpr | UnaryEzpr | NegateExpr
BinaryExpr ::= ’(’MNPE BinaryOp MNPE ')’
NegateFExpr ::= - BinaryExpr

UnaryExpr ::= UnaryOp NUMBER

BinaryOp ::= N | V

UnaryOp 1= = | 1= | > | < | > | <

Listing 5.6: The BNF of Negotiable Numeric Preference Expression (NNPE)

NNPE ::= LogicExpr? (: NegotiationExpr)?
NegotiationExpr ::= = NUMBER
| !~ NUMBER
| >
| <
LogicExzpr ::= BinaryExpr | UnaryExpr | NegateExpr
BinaryExpr ::= ’(’LogicExpr BinaryOp LogicExpr)’
NegateExpr ::= - BinaryExpr
UnaryEzpr ::= UnaryOp NUMBER =
BinaryOp ::= A | V
UnaryOp == = | 1= | > pp<Mis |
| M= Q) |
=i |||

| <=5
ranked in descending order. The BNﬂﬂl‘yof MNE‘E and;NNPE are shown in Listing 5.5
and Listing 5.6, respectively. L ! 20

Again, unification rules are required “if there'are more than one Numeric Preference
Expressions. Not surprisingly, the unification rules for Numeric Preference Expressions
are different from enumerative ones because they are now integration of numerical
interval as well as comparative operators rather than lists of strings. However, it can be
shown that the integration of numerical intervals and operators can actually be reduced
to a few types of compact forms so that specific unification rules for these compact
forms can still be derived to integrate Numeric Preference Expressions efficiently.

The first step of unifying MNPE is to convert the expressions into Conjunctive

Normal Forms (CNF') which is a conjunction of clauses, where a clause is a disjunction

of logical terms (e.g. > 30V < 20). Theoretically, every logical expression can be

156

converted into an equivalent CNF expression by repeatedly applying distributive law
and De Morgan’s laws.
Let us denote an MNPE and a logical term as ¢ and p, respectively, then any (can

be converted into the following CNF, denoted as é :

k1 ko

= AV pi) = (p11Vp12V ooV pies) A(parV psa VooV pary) Ao Al it V prga VooV piyiy).
=1 5=1

Here, the logical terms such as > 20, < 30, and < 10 are also called p-terms. The
clause that consists of a set of p-terms connected by V is called a disjunctive clause
(i.e. \]/ P;)-

The purpose for converting expressions into CNF is that both N and U satisfy the
associativity property so that the logical terms can be unified pairwise. Specifically,
after an MNPE is converted into a CNF all clauses are connected by N, and all logical
terms are connected by U. Therefore loglcal terms within a clause can be unified
pairwise, and the order in which they, ag'uﬂlﬁed does not affect the outcome. For

example, I = ||
2N

|
(p11Vp12 V...V plkg)

(((((p11 V p12) V p13) V pra)-- V pix,))

(1o V P1ks—1) V Pikz—2) V priy-3)--. V p11)).
The same principle holds for clauses within an MNPE. Taking the MNPE in (5.6)
as an example, it can be converted in to the following CNF by applying De Morgan’s

laws, that is,

((> 20A < 30)V < 10) = (((> 20V < 10) A (< 30V < 10)). (5.8)

Now let us turn to the second step. The purpose of this step is to derive the most
compact form for each disjunctive clause. In fact, all disjunctive clause can be reduced

to one of the eight compact forms shown in Table 5.4 by repeatedly applying the

157

Table 5.1: Possible pairwise combinations between two numeric p-terms

<z > ===z =2
<y <zv<y...(1) >av<y...(2) ==av<y...(4) l=av<y...(7)
>y >aV>y...3) ==av>y..(5) !=av>y...(8)
=y l=aV!l= (10)

fxiy

(1)
(2) wifr < ;fi;hffﬂﬂTrue
T ey T L
(3) >axv>y if >y then > y else >z
(4) ==azv<y ifz<ythen <y
(5) ==azv>y ifxz>ythen >y
(6) ==azv==y ifr==ythen===2n
(7) !'=azv<y if x <y then True else | =z
8) !'=azv>y if x > y then True else | =z
(9) !=av==y ifox==ythen Trueelse! =z
(10) !'=aVl=y if x ==y then!=x else True

158

Y

Y

Figure 5.6: Reducing < zV < y when (a) z >y, (b) x < y, and (c) x = y.

reduction rules shown in Table 5.2. It can be observed from Listing 5.5 that there are
six different operators defined in MEPE, namely, >, <, <, >, ==, and ! =. Among
these operators, < and > is semantically equivalent to (< V ==) and (> V ==),
respectively. In this way, the number of different operators can be reduced to four:
> <, ==, and ! =. Consequently, all possible pairwise combinations among numeric
p-terms in a disjunctive clauses are 4> = 16. However, as show in Table 5.1, there are
actually 10 distinct combinations beeause of the.commutativity of V.

Because the logical operator ‘for‘ coﬁnectirll.g p:-ferms in distinctive clauses is V, the
outcomes of unifications should bé Witl’ll;-féﬁﬁgii%E?nstra'i'nts, that is, with greater possible
coverage. Taking case (1) shown in TFab eﬂf}l:'a? tan example, Figure 5.6-(a) reveals that
the coverage of "< 27 is greater than Ftilat v 'Q ,_yf"-When x >y, whereas the coverage
of < y” is greater that of ”< x” Whén & < y“‘(Figure 5.6-(b)). In case that z is equal
to y, one can reduce "< xV < y” to either "< x”, or "< y”, which is reduced to " < z”
in this work, as shown in Figure 5.6-(c). The same procedure for obtaining the rules
applies to other cases as well. Specifically, the reduction rules for the cases (1) to (10)
listed in Table 5.2 can be diagrammatically and intuitively derived, as illustrated from
Figure 5.6 to 5.15, respectively. The deriving procedures for the remaining cases are
therefore not elaborated in further detail.

Now let us prove that all disjunctive clauses can be reduced to one of the eight

compact forms shown in Table 5.4 (i.e. Theorem 6).

Lemma 6. If a p-term of the form | = s appears in a disjunctive clause, then either

159

<y >
—_—
>) <y <y
» » | »
y T] T y] T,y
(b) (c)

(a)

Y

Y

<y ==z == ,..<y <y
° 4—.-7-;—— 71
> N 1l > >
Yy T & :] T, Y

— ° ==T ¢—T
) 4 Z Y T,y

(a) (b) ()

([] [] (]
:.: y ° prm y ° == y
> | > >
y x x y z,y
(b) ()

Figure 5.11: Reducing == xV ==y when (a) z >y, (b) x <y, and (¢) z = y.

160

Y
8
<
Y
8
<

Y x
(b) ()

| = ¢ | = ¢ =z
>y ~ >y >y
Y z g xr Y g T,y g
(b) (c)

| — o Td o =z
:.: y ° e — y ° == y
| > I 1 > >
y r o n=dOV | Ty
(0 | =7 || (©
Figure 5.14: Reducing ! = av =:ig‘/ when (2)x >y, (b) z <y, and (c) z =y.
| | ' =T
=z =z
O - - O i O ————*
=y B o =Y — =y
Yy T g r Y g %y=
(b) ()

Figure 5.15: Reducing ! = V! =y when (a) x >y, (b) z <y, and (c) =

Table 5.3: General forms for disjunctive clauses

No. General Form

(1) I=s
(2) >av<bVV(==uw), where a#b

161

' = s is the only p-term in the disjunctive clause or the clause is resolved to be True.

Proof. Recall that the unification is performed pairwise throughout the disjunctive
clause. According to Case (7)-(10) shown in Table 5.2, the results of integrating ”! = s”
with another p-term is either True or 7! = s”. If the result is True, then the whole
disjunctive clause are immediately evaluated as being True; otherwise, only 7! = s” is
derived and then it is integrates with the next term in the disjunctive clause. Finally,
the clause contains either solely ”! = s” or the whole clause is evaluated as being

True. OJ

Lemma 7. There is at most one p-term of the form > a and at most one p-term of

the form < b in a disjunctive clause.

Proof. This lemma can be directly proved by"liéing case (1) and case (3) shown in

Table 5.2. Assuming there are two dnffenen't -ﬁ‘—term's of the form > a, (for instance,
| A"':-l,..-._“_:; '
> x and > y), then according to chise 1) fin Ta‘bble 542, the p-terms can be integrated
as || }

A Wk .
into single term, namely, either > T, Q'rl> i Sﬁ1£_1:lar results hold for for < b according

to case (3). “ ‘ O

Lemma 8. All disjunctive clauses can be reduced to the general forms shown in Table

5.3, namely, either ! =s or > aV < bV \/(== z;), where a # b.

7

Proof. From the definition of MNPE (Listing 5.5), the resulting general form of a

disjunctive clauses should be

V(0 =s5)VV (> a,) v\ (<by) v\ (==)
i1 i i3 i4
The general form can be reduced to one of the following form based on Lemma 6:

\/(> aiz) \/\./<< b13) v\/(:: 551'4)7 (59)

i2

162

Table 5.4: Compact forms for disjunctive clauses

No. Type Compact Form
(1) Negation l=s
(2) Disjoint Intervals or >aV <bV\(==x;), where a # b

Disjunctions of Positive Enumerations

(3) Disjoint Intervals or >aV\ (==)

Disjunctions of Positive Enumerations

(4) Disjoint Intervals or <bV\ (==)

Disjunctions of Positive Enumerations

(5) Disjoint Intervals > aV < b, where a # b
(6) Disjoint Intervals o B R
(7) Disjoint Intervals . L) < b
(8) Disjunctions of Positive Enunﬁraf_gl :S| l‘, \i/(:: ;)
VI N
or e ! ' § :' !é
Vil =s): (5.10)

Note that (5.9) can be further reduced to the following form based on Lemma 7:

>av < bV \/(==). (5.11)

(]

As a result, this lemma can be proved by combining (5.10) and (5.11). O
Theorem 6. (The compact forms of disjunctive clauses) All disjunctive clauses

can be reduced to one of the eight compact forms shown in Table 5.4.

Proof. The compact forms (1) and (2) listed in Table 5.4 can be directly obtained
from the two general forms derived in Lemma 8, namely, (5.10) and (5.11). The

compact forms (3) to (8) are special cases of general forms, which can be obtained by

163

Table 5.5: Compact forms derived form > aV < bV \/(== z;)

Condition Derived Compact Form

b= —o0,(i.e. <b= False) >aV\/(==)

a=o00,(ie >a=False) <bV\/(==u)

1=0 > aV < b, where a # b
b= —ocoandi=0 >a

a=o00and =0 <b

a=o00and b = —o0 V(== ;)

i

assigning oo, —oo, and 0 to the variable @ and b in (5.11) and 7 in (5.10), respectively,

as shown in Table 5.5. O

After each disjunctive clauses argreduced to the most compact forms, the final step

involves connecting disjunctive clauses‘lﬁ&ﬁji?mﬁive logical operator (A) and applying

. . . m | . . .
unification rules to each pair. From Lle n;[aiJ 8,|J’chere are three possible combination:
A I || /o
1l 1L

| = Al =1, L . B (5.12)

l=sA[>av <bV\/(== ;)] and (5.13)
[>av<bv\/(==z)|A[>cv <dV\/(==y)], (5.14)

where a > b. The following paragraphs will derive reduction rules for each of them.
First, let us consider (5.12). It is important to observe that the statement can not
be reduced further unless s equals ¢, in which case the statement can be reduced to

either | = s or ! = ¢. In this work, ! = s is chosen.

164

<b

Y

Figure 5.16: Reducing the first term of (5.15): | = s A (> aV < b).

As for the case of (5.13), it can be expanded as follows:

!:sA[>av<b\/\/(==l’z‘)]

i

=[l=sA(>av<bd)]V '—s/\\/——xZ : (5.15)

According to Figure 5.16, the first term of (5.15) can be reduced to > aV < b if
s> bAs <a, where a > b, since when s > bA s < a,! = s is redundant. As for the
second term, by the definition of subtractlon (B MA = A — B), it can be reduced to

Vi(== 2], where z; € (X — §)..X & {xl,@,,.}'l" |

) 7R 3
To reduce (5.14), we first apply Dé{Mﬁgah s laws;
| 11§ l ‘f :

[>av<bv\L(z= wlil I A > JV <;d\/ V(=) =

%

[(>aV <b)A(>cV <ld)]\/ . (5.16)

(> aV < b) A \/(:: Y,V (5.17)
\(==2) A (> v < d)v (5.18)
V(== AV (== w)] (5.19)

To merge (5.16), one should use a more restrictive boundary. In other words, (5.16)
can be reduced to > eA < f, where e = max(a,c) and f = min(b,d). Semantically,
the term \/(== ;) in (5.17) positively enumerates acceptable values. The term (>
aV < b) further constraints the acceptable values, and therefore (5.17) can be reduced

to \/(== z), zx € Y, where Y = {y1,¥2, ...}, and 2z < b or z; > a. Finally, it can
k

165

Table 5.6: Unification rules for Negotiation Expr

Master Slave Outcome
> > >

< < <

> < 10}

< > qb

other cases other cases Master Negotiation Expr

be inferred that if statement (5.19) is true, than there exists a non-empty set W such
that W C X and that W C Y, namely, W C (X NY), where W = {wy,ws, ...}, X =
{z1,29,...}, and Y = {y1,ya,...}. Consequently, (5.19) can be reduced to \/(== w,),
where w; € (X NY). =z 8 |

The unification procedure of NNPEJS the sameas that of MNPE except for the N

segment. The rules for unifying N Se%m% afe listed in Table 5.6. If the semantics
|
of terms in N are the same, then the ’ﬁlgment N is dlrectly adopted. On the contrary,

the terms are removed if any conﬂlct exlsts. If it ismeither of the two cases, then the

segment N of the master expression is chosen.

5.3 Type-based Node Searching

After the Preference Unification phase (see Figure 5.4), there is exactly one unified
Preference Expression that specifies the criteria for each attribute. Based on the unified
Preference Expression, the PSM issues M-SEARCH messages to a multicast channel
and then waits for responses from Worker Nodes. In fact, the M-SEARCH messages
are responsible for conveying the Node Preference Descriptor (see Definition 12) which
consists of a type criterion and Attribute Preference Descriptors for selecting nodes.

As revealed in Listing 5.8, the type criterion is encoded as the value for the ST header,

166

Listing 5.7: Embedding an Node Preference Descriptor in an M-SEARCH message

MSEARCH * HTTP/1.1

ST: wurn:schemas—upnp—org:device:sensor:a

MX: 3

MAN: "psmp:discover”

CRITERIA: (location , (== "livingroom” —== "bedroom”))
(sensor_type , (==7thermo’ :! =”humidity”))

HOST: 239.255.255.250:1900

whereas the Attribute Preference Descriptors are embeded in the CRITERI A section.

After receiving M-SEARCH messages, Worker Nodes will judge whether their types
satisfies the ones specified in the Node Preference Descriptors embedded in the M-
SEARCH messages and respond to the PSM if a match is found.

To enhance the interoperability, an Ontology for Smart Home system is proposed to
standardize the representation of node types.ZAdvantages of using Ontology techniques
in Pervasive systems have been exteunsively discysééd in several literatures, which can be
summarized as follows: 1) Knowledge é}llaﬁ.éﬂ?etween agents and services, 2) Supports

| ||
of the hierarchical inference, and 3) Pﬁiuséqi?of Ip“[reviou'sly defined ontology models. As
‘ 1 ;

a result, many researchers have Beeh‘ c‘Qmmittlle(li"fto develop the ontology of Pervasive
environments [41, 137]. In this work, we define concepts of sensors and actuators by
using OWL [8]. Note that the ontology can be easily incorporated into other well-
known ontology such as SOUPA [41]. In order to decide if a node type is the sub-type
of another node, PSM consults the ontology repository by issuing an SPARQL [14]
statement. Assuming that there is a class called VideoDisplay, the following statement
searches for all sub-classes of Display, which can be used for performing type matching.

To decide whether their attributes satisfies the criteria specify in the Attribute Pref-
erence Descriptor, Worker Nodes evaluate their attribute values against the Preference
Expressions that specify constraints for the attributes having the same names. Note

that some Worker Nodes may be implemented in embedded devices (hosts) causing im-

167

Listing 5.8: The SPARQL statement for searching sub-classes of a class called

VedioDisplay

PREFIX home:<http://www.attentivehome.org/ontologies/
pernode /2010/10/ Core. owl#>
SELECT ?name
WHERE {
Zappliance home:hasType home: Display.
2appliance home:hasName ?name.

}

plementation of evaluating mechanisms for Preference Expression infeasible. In these
cases, these Worker Nodes do not check attributes. Instead, the attribute evaluating
tasks are delegated to PSM.

As mentioned above, to be compatible with hosts having weak computing capabil-
ities, for each response from a Worker Node; the PSM first evaluates the attributes of
the Worker Node against the Preferénce EXprgssi‘(')ns:.speciﬁed in the Attribute Prefer-
ence Descriptor to filter out the un—qlrﬁiii‘ggét\'f\‘lorker Nodes. Next, the PSM adds the

node into a list of candidates for a sq)eLciﬁ%?ncl)de type and then selects the best ones
| 11 ;

T] L
among them based on the results of interference estimation and a scoring mechanism

which are going to be presented in the next section.

5.4 Candidate Scoring and Selection

The objective of the Candidate Scoring and Selection phase is first to assess the pos-
sible interference of the candidate node with other existing nodes, that is, the degree
of interference, and then to grade each candidate node depending on how well the

capability of the candidate node matches the Preference Expressions.

168

5.4.1 Estimating the Degree of Interference

Let us first introduce how we estimate the interference degree among nodes. The
interference degree ((w) is a measure that indicates the degree of user’s dissatisfac-
tion caused by the interferences among the Worker Node w and other nodes, where
0 < «(w) < 1. The point to observe is that the estimated outcomes usually depend
on "feelings” of users, which are rather subjective, vague, and context dependent. As
a result, Fuzzy sets are used to represent the factors that affect the interference de-
gree, which are inputs to the Fuzzy reasoner. Currently, three factors are taken into

consideration:

1. The physical distance between two devices: The shortest physical distance
between two devices respectively controlled,by two candidate nodes in the smart
home. The closer two devices ar€'to ealmother, the more interferences between

them there can be. PARY/ ‘|

| 2= | "

2. The similarity of effects: Thq Jlmﬂarmy between two different effects produced
by the physical devices controlled by two dlfferent nodes. For instance, the effects
of playing music and text-to-speech, respectively, are similar : both of them

produce sounds. In this thesis, the effects of devices are represented by ontological

concepts (see Fig. 5.17) which can be obtained in their Capability Descriptors.

3. The intensity of the effect: The intensity, ranging from 0 to 1, of the effect is
an attribute pre-defined by the system administrator. The higher the intensity
of the effect is, the more likely that the device that produce the effect to interfere

with other devices.

To calculate the distance between devices (nodes), an undirected graph is created
based on a given floor plan, which considers each room as a vertex and edges two

vertices if the corresponding two rooms are adjacent. As a result, the distance between

169

l':R eproducedAcousticEffe c-t-_'_:l

i

i 3 = el
!r..f“’ff (q_‘_SyntheslzedAcnustlcEﬁect 3
- iga——— . _

[AcousticEffect .

et - _.-'“'-H-—JELH____ o —
_":L-:ucaIAc-:-usticEffect
o o : T ey s P _ o e
'HH_I_Ell:-unl:IEd‘JlsuaIEﬂ’e¢f__§,' '\J_Sp.aﬂﬁllngEﬁect-__)

e R ks e
iza— =

e ol —, :i\.__,—'—"'_'_ e —

f”;f' | Eff -;{;': ' #L hiEff t & i h; tualLightEff -t =
{ p—isa T ima y
54, isualEffect | (L ig BC " NatualLig e_i_#,

- S . - - = .
1 Temperature s=—%4———— WarmEffect) (_ArificialLightEffect
o > \._. - - . s o .
- _ —iga L= _— i
— -
-\-_?_.-- S :
[CoolEffect |
(Humldlt‘y {‘r' iz { HumidEffect)
e -_'j'?\—\‘l e

— P

{ DryEffect)
S -~

B e, -
& -, - —_— R
“hy e TR
= / \ L]
| | i ¥
i Ly .

edges contained in the shortest patfl bgtweén tWQ lvértlces Note that it is assumed that

A R

the floor plan is given and that the location of nodes can be obtained by examining
the attributes in the Capability Descriptors. The distance is oo if the node does not
control any devices (i.e. sensors or actuators) at all. For each candidate node, the
device is calculated against all activated nodes. After that, the least value is chosen as
the representative value since the nearest node is more likely to cause interference.
Meanwhile, the similarity values of effects among nodes are obtained by calculating
the semantic relevance of effects. This work adopts the approach proposed by Yu et

al. [144] to estimate the semantic relevance of effects. In this approach, the semantic

170

relevance between two effects, which are ancestor/descendant, is defined by a function,

S(enre,) = d(AncesAtor(em, ey)) 7

dmam

where the function Ancestor(e,,e,) returns the ancestor node of the two, d, s is the
maximum depth of the ontology, and cZ(e) is the depth of the effect e. Otherwise, if
the effects do not have ancestor/descendant relationships, then

S(€w, ey) — d(NC{l(Gx, ey))7

dmam

where NC'A(e,, e,) is the Nearest Common Ancestor (NCA) of e, and e,. Note that
the depth of the root is defined as 1.

Taking the ”Effect” ontology in Figure 5.17 as an example, the semantic similarity
between VisualE f fect and ArtificialLightEffect is

d(V@sualEffect) 2

- =0.5.
4

S(Visual Ef fect, ArtzfzczaleghtEffect)

~— y max

Likewise, the semantic surnllarlty of B1 ? @edW@sualE ffect and DryEf fect is
|

S(BoundedVisual E f fect, DryEf-.fec{t =

2 d(Effect)

dmaac

I\kCA(BoundedesualEffect DryEf fect))

dma:p

= (.25,

since BoundedVisualE f fect and DryE f fect do not have a ancestor/descendant re-
lationship. After the similarity values are calculated, the highest value is chosen as the
representative value since the most similar node is more likely to cause interference.
In this work, Fuzzy sets are modeled by Sigmoid functions and Gaussian distribution
functions (see Fig. 5.18, 5.19, and 5.20). The Sigmoid function is of the form

1

An(@) = e

(5.20)

where L, is the label of a Fuzzy set; ¢t and u are parameters pre-defined for a specific
membership functions of the Fuzzy set L;. t is used to adjust the shape of func-

tion, where as u is used to adjust the offset from the origin. Likewise, the Gaussian

171

Table 5.7: Membership functions for Fuzzy sets of "distance” and default parameter

values
Label Membership Function Default Parameter Values
Close Sigmoid (5.20) t=—17and u=14
Average Gaussian (5.21) m=2and o =0.25
Far Sigmoid (5.20) t =10 and u = 2.5

Table 5.8: Membership functions for Fuzzy sets of "intensity” and default parameter

values

Label Membership Function Default Parameter Values

Small Sigmoid (5.20) t=-30and u=0.3

Medium ~ Gaussian (5.21) = m =0.5and 0 =0.1

Large Sigmoid (5.20) % 30/and u=0.7

| | "'r' ' ‘\
distribution functions is of the ferm I '1' I‘ \‘
A, (@) = exp(%), (5.21)

where L, is the label of the membership function, and m is the mean and o is the
standard deviation of the distribution. Tables 5.7, 5.8, and 5.9 show respectively how
the Fuzzy sets of ”distance”, "intensity”, and ”similarity” are defined. The default
parameter values are pre-defined based on empirical experiences of the system designer,
which can be adjusted afterwards by users or by automatic fuzzy learners such as
ANFIS [75].

Figures 5.18, 5.19, and 5.20 depict respectively the Fuzzy sets for ”distance” | ”inten-

sity”, and "similarity” diagrammatically after the membership functions and parameter

values are applied.

172

Table 5.9: Membership functions for Fuzzy sets of ”similarity” and default parameter

values

Label Membership Function Default Parameter Values
Dissimilar Sigmoid (5.20) t=-25and u=0.4
Average Gaussian (5.21) m=0.5and 0 =0.1
Similar Gaussian (5.21) m =0.75 and o = 0.75

Nearly The Same

Sigmoid (5.20) t =35and u=0.8

distance

085

078
070

065

055

050

Membership

045

035

030

020
0.15

0.10

Figure 5.18: Fuzzy sets of "distance”

173

Membership

Membership

intensity

similarity

0.80

Similar

%

& dissimilar & nearlyTheSame & average * similar

Figure 5.20: Fuzzy sets of ”similarity”

174

Table 5.10: Membership functions for Fuzzy sets of ”interference” and default param-

eter values

Label Membership Function Default Parameter Values
Critical Sigmoid (5.20) t =40 and u = 0.8
Serious Gaussian (5.21) m = 0.75 and o = 0.75
Average Gaussian (5.21) m =0.4 and 0 = 0.1
Insignificant Sigmoid (5.20) t =—40 and u = 0.2

Similarly, the output of Fuzzy inference is also represented by Fuzzy sets, as shown
in Table 5.10 and Figure 5.21.

Listing 5.9 shows the algorithm used to estimate the interference degree of a candi-
date Worker Node w. This algorithm use"Mamdani’s approach for Fuzzy inference [95],
where the MIN-MAX model is used for aggregatlon and accumulation and the results
are defuzzified by calculating COG (ﬁ]@n@ﬁ»ﬁf‘ Gravity). To ensure the completeness

and consistency of rules, one rule 18 (F(lﬁned f®1r each"combination of Fuzzy variables.
o | | .

Consequently, there are totally 3:x"3 >< = 36 riles defined (3 for both variables of

distance and intensity, and 4 for similarity).

5.4.2 Scoring Candidate Worker Nodes

As mentioned in Section 5.3, the Type-based Node Searching phase is essentially to
search for the sets of Worker Nodes whose types are identical to the ones specified
in Preference Descriptors. Specifically, assuming that there are k desired Worker
Nodes specified in a Service Request, then there are k Preference Descriptors, that
is, {P(w;)}F_|, and k sets of candidate Worker Nodes whose types are the same with
the ones specified in {P(w;)}r_,, namely, {W™ W™, .. W™} = {WT}F | where 7; is

the type specified in P(w;).

175

interference

Insignificant

Memhbership

0O0 005 040 075 020 025 030 035 040 045 0S50 055 060 085 070 075 080 085 080 085 100
x

& interference:MaN (CenterOfGravity) critical serious & average © insignificant

Input
A*: A list of attribute sets of all cti ,
A": The attribute set of the candidateWorker Node

Local
Adistance, Dsimilarity, dintensity

Return
t € [0,1]: The interference degree

Begin
For each A€ A*

Agistance|A] + D(AY[location], Allocation))
Agimitarity[A] < S(A%[ef fect], Alef fect])
End;
Sintensity < Av[intensity]
¢ <Mamdani(min(Agistance), Max(Asimitarity), dintensity)
End;

176

The objective of the Candidate Scoring and Selection phase is therefore to calculate
a score for each w € W7 and then to pick out the one with the highest score as the
recommended candidate. The score is calculated based on how well the attribute
values of a candidate satisfies the Attribute Preference Descriptors (cf. Definition 12).
We quantify the issue mentioned above by defining the concept of Delta Value for

attributes.

Definition 17. (Delta Value) The Delta Value § is a measure of difference between
an attribute value o of the desired Worker Node w and the value of the same attribute

of the candidate Worker Node w.

Listing 5.10 is the default algorithm for calculating Delta Value d, where 0 < ¢§ < 1.
If the value of o at least satisfies onep-term inpt(e), then 0 is calculated based on the

rank of the matched term for an enusierative @xpression. For numeric expressions, if

the value of « at least satisfies one p- term..-ln tbe compact form of €, then § is assigned
depending on the number of satlsﬁed|4> t“;d;;r:sz‘ T the: cases mentioned above, 0 must
be less than or equal to 0.5. Othéfwfslka, if the hggotlamon part of € is matched, then
0.5 < 9 < 1. Finally, § = 1 if there is no“match“or if w does not have the corresponding
a. To calculate the rank r in the negotiation part of numeric expressions, attribute
values have to be sorted according to the negotiation operator. For < and >, the
values are sorted in ascending and descending orders, respectively. In case of ~, the
values are sorted according to min(|b, — a.v|, |b; — a.v|), where b, and b; are upper
bound and lower bound of the terms specified in the numeric expression, respectively.

The score of a Worker Node w given a desired node w can be obtained by accu-
mulating 1 — ¢ for all « in w. Since the importance of each attribute can be different,
we also use a weight vector 15 = (1,9, ..., 1) to specify the relative importance of

attributes, with Z% = 1, where ¢ is the number of attributes of w. Therefore, the

score of w given w can be formally defined as follows.

177

Listing 5.10: Algorithm for calculating the Delta Value

Procedure Calculate_Delta_Value
Input

€: The Preference Expression

«: The attribute

p~ € (0,0.5): The negotiation penalty
Return

0 €[0,1]: The Delta Value for the attribute
Begin

If « is enumerative Then

If v matches the r-th psterm im pt(e) Then

0 57 P
2[pt(e)] . [A)
Else If v matches the negotiatic;)n,;ail_riz Jiof ¢ Then
5 05+p .' ‘ n |
| = ! |
Else <+ 1 AU 1
End If; ‘

Else If « is numeric Then

If v at least satisfies partial of ¢ Then
Ipt(e)|—|satisfied p-terms|
2[pt(e)]
Else If v matches the negotiation part of € with rank » Then

6 0.5+ s
Else 6+ 1
End If;
End;

O

178

Definition 18. (Score of a candidate Worker Node) The score of a candidate
Worker Node w given a desired Worker Node w, denoted as score(w|w), is the weighed
sum of all 1 — 6,,, where d,, is the Delta Value of the i-th attribute specified in w,

namely,

score(w|@) =1 - 6, (5.22)

where 1) = (1,09, ...y Uy), 5 = (1 =00y, 1 = 0agy ey L = d4,), v is the attributes of w,

and n is the number of attributes in w.

Finally, based on (5.22) and the interference degrees (see Section 5.4.1), we can

obtain the best candidate Worker Node w”*" as the one with the highest score, namely,

W't = arg max{(1 — t(w;)) - score(w;|w)}, (5.23)

wj,1<j<k
= E

where k is the number of candidate Wdrker Nodsés:

5.5 Evaluation o m |

!‘; ars :‘!4

This section presents an example écénafjo that éhbwé possible applications of the tech-
niques proposed in this chapter, namely, negotiable expression, preference unification,
and interference estimation. Then, these techniques are evaluated based on a set of
quality metrics, namely, Success Rate of Composition (SRC), Success Rate of Matching

(SRM), Precision of Composition (PoC), and User Satisfaction Index (USI).

5.5.1 Application Scenario

Bob comes home today after work at 7:00 P.M. Usually, the first thing he wants to
do is to watch TV. After identifying Bob’s ID at the front door, the pervasive system
in the smart home initiates a Watching TV Service. There are three instances where

televisions are available; one is with 31 inches, one is 17 inches, and the other is 28

179

inches. According to Bob’s preference (size, (> 30 :>>)), the system learns that the
one with 31-inch screen is preferred. Unfortunately, the TV with largest screen is now
broken. As a result, the 28-inch television is chosen since Bob has specified that it is
okay if his preference can not be satisfied, but the size should be the larger the better.

At 8:00 P.M., John, Bob’s room-mate, comes home. John is used to watch movie
via an on-line media service when he is at home so that he also prefers a display with
larger size. There is a device with 17-inch screen being available in the living room.
However, the system soon finds that this device has the same effect (see Fig 5.17) with
the one used by Bob. Moreover, these devices located at the same room. The ¢ value of
the 17-inch display is high, causing its score to be low. As a result, the system select an
alternative display located at the study room so that the interferences between Bob’s
and John’s services are avoided. =

After finishing dinner, John -and Bob bro‘wlsexmagazines in the living room. They
used to listen to classical musie when reads'g'gllli' 1Lhe living room but they prefer different

| m |
composers. Their preferences on com]P sef%?ar%a‘!listed”belowz
LN E) <

ePoh — (=="Ju§. Biich? H=—9A. Vivaldi”)
gl — (== 7M. S. Mozart” ! =7 A. Vivaldi”).

Although Bob’s and John’s preferences appear to be conflicting, the preferences are still
unifiable since John’s preference expression specifies that any composer is acceptable
except A. Vivaldi. As a result, Bach’s music is played since the unified result is ==
{7J. S. Bach”}.

We can learn from the above application scenario that, due to the negotiable expres-
sion, Bob’s Watching TV service can still be composed even when the most preferable
component is broken. The price is that Bob has to specify a negotiable criterion and
the quality of service may be degraded. Also, despite the interference degree is taken

into account when selecting nodes, Bob’s and John’s services are free from interfering

180

with each other. Finally, when Bob and John are located at the same place, their pref-
erences can be negotiated and then be unified according to the proposed unification

mechanisms.

5.5.2 Quality Metrics

According to a recent survey of 24 existing service composition frameworks in perva-
sive environments [33], 17 of them are categorized as Type-based Service Composition
(TBSC), since they only compose the service by simply matching node types; the re-
maining 7 of them match the values of attributes against a set of user-specified expres-
sion, which are called Expression-driven Service Composition (EDSC). In the following,
the negotiable and unifiable service composition approach is called the Negotiable-
Expression-driven Service Composition ‘(NESC). This work evaluates the quality of

the above mentioned approaches:based-on several metrics. The detailed discussions

| \ | |
Fal J

and experimental results of these metrics;f%é }(é‘ported below.

All experiments are conducte‘_q Of;lg P4mI1G|E[J;[z CPU PCs with 1GB memory and
all input data are randomly generéf‘éd to simuléfe the real world situation. In each
experiment, the number of Service Request is set to 1000, the lengths of services are
randomly distributed from 3 to 5, and there are totally 15 node types in the system.
Each composition method is performed to select candidates among a group of Worker
Nodes ranging from 500 to 1500 instances and each node consists of 7 to 11 attributes.

Among these attributes, 50% of them are constrained by user preferences. By default,

the number of mandatory preferences is equal to the number of negotiable preferences.

181

Success Rate of Composition (SRC)

One simple way to evaluate the quality of a service composition mechanism is to cal-

culate the Success Rate of Composition (SRC) [80]. SRC is defined as follows:

n(ssuccess)
SRC = ————~ 5.24
where 5°%“¢*% is the set of services that are successfully composed, and S is the set of

services to be composed. Recall that n(S) is the cardinality of the set S (see Definition
7).

As depicted in Figure 5.22, along with increasing of the number of nodes, the success
rate for EDSC and NESC (the proposed approach) are also slightly increased, whereas
TBSC is steady at approximately 75%. TBSC always has the best SRC score since its
selection criteria are less restrictive., More spe"éiﬁcla,lly, only the type information is used
as a constraint. On the other hand, EDSC has poor: SRC, since its Node Preference

Descriptor is more restrictive. It is thhy'ft-o |p01nt olit that the SRC of the NESC is

higher than that of EDSC because thé 1IlC1US1d£} of negotlatlon capability.

The major issue of SRC metrie 1s'that it is'a coarse—gramed measure of the success
rate of service composition. Specifically, a service is successfully composed if and only if
all of the desired Worker Nodes are found. Assuming that there are n desired Worker
Nodes, then the composition fails even when n — 1 out of n valid nodes are found.
Hence, SRC largely depends on desired Worker Nodes specified in the Service Request

so that it can be inaccurate to evaluate the quality of a service composition mechanism

by using only the SRC metric.

Success Rate of Matching (SRM)

To deal with the issue mentioned above, a finer-grained metric called the Success Rate

of Matching (SRM) is proposed below:

182

100

—>— TBSC
90 —o— EDSC
—&— NESC

80

701

60

30

20+

Success Rate of Composition (%)

101

0 1 J
500 1000 1500
Number of Worker Nodes

Figure 5.22: Sticeess Rate of Composition (SRC)

SRM =28 (5.25)
Y l(s)

where W2 is get of Worker Nodés: fh‘at are""‘sué‘cessfully found and matched for the
service s, S is the set of services to be composed, and £(s) is the length of s which is
defined in the Definition (8).

The core idea of SRM is to measure the success rate based on the number of
successfully found nodes instead of the number of successfully composed services. When
a service needs to be composed and if there are n — 1 out of n nodes which are found,
then ”T_l is given to SRM instead of 0. Figure 5.23 shows SRM with different number of
Worker Nodes. Both the SRMs of EDSC and NESC slightly increase when the number
of nodes is increased. Again, TBSC has the highest SRM. It is interesting to point out
that all evaluated approaches have higher score in SRM than in SRC, since SRC is an

"all or nothing” type metric. Also note that the SRM scores of both EDSC and NESC

183

100

90

80 !/A/A/A\A/A
/

70+

60

50

40t

30

Success Rate of Matching (%)

20F —>— TBSC
—o— EDSC
10+ —A— NESC

0 1 J
500 1000 1500
Number of Worker Nodes

Figure 5.23: Success Rate of Matching (SRM’) with different number of Worker Nodes

are higher than that of SRC. ! 'il Ir:__-'|'|
<= |

A composition mechanism with thh QEMI'%ioes not guarantee high quality of ser-
vice. In an extreme case, a Compr(.)':s.it:ifiolh meché’ni_:sm‘ ¢an achieve high SRM by simply
reporting that all nodes are candidates.: As a £esﬁlt, a metric that measures the preci-
sion of the timing for reporting candidates is required.

Recently, many researchers found that ”recall” and ”precision”, which are common
evaluation measures in the information retrieval field [98], are very useful metrics for
evaluating the quality of service composition [121, 117]. According to (5.23), NESC
only returns the best node so that n(W7eduested) represents the total number of relevant
nodes of a Service Request. Therefore, the semantics of SRM is identical to the concept
of "recall” which is the number of relevant items retrieved (i.e. > n(Wrd)) over the

seS

number of total number of relevant items (i.e. Y n(Wreuested)) In the following, the
ses

metrics for measuring the precision of a composed service will be presented.

184

Precision of Composition (PoC)

Precision is the number of relevant items retrieved over the number of total retrieved
items [98]. Hence, the Precision of Composition (PoC) can be defined as the number

of valid nodes retrieved over the number of total retrieved nodes, namely,

5 n(Wyei)
POO = W, (526)

s€S
where n(W2) is the number of nodes that fulfills the corresponding Node Preference
Descriptors and n(W7/°#") is the number of nodes found by the PSM.

Figure 5.24 illustrates the PoC of the three approaches with increasing number of
nodes. The PoCs of TBSC, EDSC, and NESC are steady at 10%, 78%, and 86%,
respectively. It is important to note tha’g thqalthough TBSC gets high SRC/SRM in
the previous experiments, it suffers frém extreni‘ély low PoC. In other words, TBSC

tends to retrieve too many candidates ca.usmg the precision being extremely low. On
the contrary, EDSC is too restrictive|| %0 @l},at;‘ Ealthough it gets the highest PoC, the

success rate (SRC/SRM) is poor‘i-':_Eig;‘ure 5,23 and 5.24 show that NESC is able to
maintain high score both in SRM/ SRC and“PoC. Specifically, the NESC is precise
enough so that it is able to compose high quality services while maintaining reasonable
success rate of composition.

Also, from Fig. 5.24, given that the number of constraints on node attributes
are the same, PoC is independent of the number of the Worker Nodes. Therefore,
additional experiments are performed to observe the relationship between PoC and the
ratios of constrained attributes. The outcomes are shown in Figure 5.25. Observe that
the PoCs of TBSC drop rapidly whereas PoCs of other approaches increase gradually.

The results show that TBSC is more inappropriate if there are more constraints on

attributes.

185

—x— TBSC
100 —6— EDSC
—A— NESC
90
— 6— FT——o 66— 9
SOA\Er N
S 70
c
S
3 60f
Q.
§ sol
$)
©
.5 40
R
g 30¢
o
20+
00— —e—
0 1 J
500 1000 1500

Number of Worker Nodes

Figure 5.24: Precision of Composition ‘(POC) with' different number of Worker Nodes

1" 1
|
(Fa

100

——TBSC
90r | —o—EDSC
—4&— NESC

70+
602

50+

Precision of Composition (%)

20+

10+

O 1 1 1 1 J
20 30 40 50 60 70

Ratio of Constrained Attributes (%)

Figure 5.25: Precision of Composition (PoC) with different ratio of constrained at-

tributes

186

User Satisfaction Index (USI)

In this work, the Fj-score is used to represent the overall quality of composition by
integrating SRM and PoC. Fj-score is a popular method used to combine the precision
and recall metrics [113], where /3 is a weight parameter used to adjust the importance
between precision and recall. In fact, Fj-score is the harmonic mean of precision and
recall. The following equation defines a Fz3-based metric called User Satisfaction Index

(USI) by integrating the outcomes of SRM and PoC:

PoC - SRM
(8% PoC)+ SRM"

USI(Fg) = (1+ %) - (5.27)

In real cases, a composition method with low success rate (SRM) usually leads to
frustrating user experiences. Users’ preferences are usually adjustable, dynamic, and
vague so that they are usually willing to‘nl'egot"ilate,. that is, to adjust their preferences, in
order to prevent the composition’ from faﬂmg When ‘evaluating composition methods,

one can put more emphases on succesF ra:tE* {'éfbd\/[)'by increasing f.

Figures 5.26 and 5.27 show the U$ s olfrl‘the; (chree methods when B=1and g =2,
respectively. The results show that the proposed approach obtains the highest score
both in QoC(F;) and QoC(F,). When § = 2, where the metric is in favor of the
approaches with higher success rate, The USI score of NESC is obviously much higher
than that of EDSC.

It can be concluded that the proposed approach, namely, NESC, is able to achieve
high composition precision and maintains reasonable success rate of composition at the

same time so that it outperforms the other methods in both USI(F)) and USI(F3)

metrics.

187

F1 Score

Figure 5.26: F; Score with

F2 Score

0.7r

0.6}

0.3

0.2F—m—

——TBSC
—o— EDSC
—4A— NESC

0.1r

0
500

0.9

0.8+

0.6

0.4r

0.2

Number of Worker Nodes

J
1500

ifferent .fﬂlmber of Worker Nodes

—*— TBSC
—6— EDSC
—4A— NESC

0.7 w
Vi

03 M

0
500

Number of Worker Nodes

J
1500

Figure 5.27: F, Score with different number of Worker Nodes

I
!

Turnaround Time (ms)
(]
T

ra
T

i] | i | i |] i
0 5 10 15 20 25 30 35 40 45 50
Mumber of Waorker Nodes in a Pervasive Senice

Figure 5.28: Turnaroufid-timie of service composition

5.5.3 Performance | _: :

= ||
To evaluate the performance of the prldlposlx%d serviee‘composition approach, the nodes
and their Node Capability Descripéérsl are first g:enerated and then the turnaround time
is measured. In this experiment, the turnaround time is defined as the duration from
the time when the Service Request is submitted to the time when all Worker Nodes are
activated. After each round, the average length of Pervasive Services are increased and
the tests are re-performed, where each round is performed 100 times. The results are
shown in Figure 5.28. The turnaround time of service composition increases linearly
when the number of nodes increases. In the real world, most Pervasive Services consist
of nodes whose quantity is less than 10 nodes. Hence, one can observe from Figure

5.28 that most real-world Pervasive Services require 10 seconds or less before they are

available based on the proposed approach.

189

5.6 Summary

In a Pervasive system such as the Smart Home, the criteria for selecting and ranking
services are usually specified by users, which tend to be vague and subjective. More-
over, the deployment of Pervasive services here is usually not as well-planned as that in
traditional enterprise environments. Hence, the criteria can be contradictory and the
activated services can interfere with one another. This chapter proposes an integrated
preference-guided and interference-aware service composition system for composing
applications in a smart home. The primary contributions include: 1) we propose a ne-
gotiable and unifiable expression language, namely, Preference Expression, along with
a set of unification rules for integrating conflicting preferences. Moreover, the expres-
sion represents both enumerative and numeriq preferences. 2) We propose fuzzy-based
mechanism for estimating the degrées of lintellllrferences between service components. 3)

A scoring scheme is proposed to 'seaml‘éfé,_s-ly integrate-the techniques mentioned above.
| w," : : 2‘.“‘ |
Experimental results show that the pr pd,ié'c'l 'laJpproach is able to greatly increase the
1N f 2

| = ||

success rate of composition especiallyunder strict ¢onstraints.

190

Chapter 6

Implementation

The mechanisms proposed in this thesis are realized as a platform that provides infras-
tructural support for pervasive services. The Manager Nodes and some Worker Nodes
are implemented mainly by using Java language on JDK 6. Other Worker Nodes are
implemented with C# and others in C++. This platform uses ActiveMQ !, an open
source MOM, as the message exchanging backbone. ActiveMQ adopts a cross-platform
messaging protocol, and supports several programming languages such as C, C++, C#,
and Java.

Therefore, a Pervasive Service can'be compesed of Worker Nodes implemented by
means of heterogeneous technologies. Thié ab;iity'ié of critical importance in developing
pervasive services. UPnP functlonahtles Ls mnplemented based on Intel UPnP SDK ? for

C# and C++ based PerNodes, while J Va{t?asgéli PerNodes are developed by Cyberlink
UPnP for Java 3. There are man'yl_ACSP—ioéseéi‘ l;braries or toolkits available such as
JCSP [139] and PAT [128]. These toéls arc valuable in the design and validation phase
of a protocol. However, these libraries typically built on top of primitive network API,
therefore they inevitably lack of the abilities of performing low level control on packets
(such as SSDP packet modification). In addition, these implementations are usually
alternatives to the primitive thread model; it can be dangerous to mix them with other
libraries. Consequently, these libraries are not used in the production release.

An application framework called PerNode SDK (Software Developer’s Kits) that

supports rapid-prototyping of PerNodes is also developed. PerNode SDK is a Java-

! Available at http://activemq.apache.org/

*Intel Software for UPnP Technology, available at http://software.intel.com/en-
us/articles/intel-software-for-upnp-technology-download-tools/

3Available at http://www.cybergarage.org/twiki/bin/view/Main/ CyberLinkFor-
Java

191

€ Pervesive Node List &3 =0

Model Name | Frisndly Name | Listening Topic | Mestage Example
W 2hactuator zas Gras
. s2h actuator haopenlah | Openlab Apphiance Manager COMMAND {"walug":"TV_ON"}

') #h application TThi() s2h application. TThiC)

') #h Jogic aircon.openlab | Openlab Adr Conditioner &gent RAW _DATA {"temperature":"26 7"

M =2h logic burglar Burglar Detection Logie CONTEXT {"mbject":"hame", "burglar": "tooe" }

M =2hlogic earthyake Earthyuake Detection Logic

M =2h logic fire Fire Detection Logie

M =2h logic gohome s2h Jogic zohame

M =2hlogic plan2 Health Cuery With Mysygl

M =2hlogic veom Voiee Command Logie HCI SR EEEmH]

M =2hlogic watchby Watch TV Logic —
M s2hssnsornche s2h seneor nche -

- —— I ;I_I

Figure 6.1: The drag-and-drop code generating service

~lolx|

Create a Pervasive Node

Project Container: |."PervasivePraject Brows... |
Package Name: |imight.lng~j13

Class Mame | Burglar
Hode Tvpe
) < Back Hed> | Finsh | Cemeel

Figure 6.2: The code template generating wizard

192

Listing 6.1: The code segment that implements a ”Media Follow Me” service

@MessageBus (” failover :(tcp://192.168.4.100:61616)”)

@MessageFrom (PlatformTopic .CONTEXT)

@PSMP

public class MediaFollowMeLogic extends LogicNode {
protected void processMessage (PlatformMessage message)

(.00

based object-oriented application framework that provides design time supports with
a set of reusable libraries, interfaces, and default implementations. One of the dis-
tinguishing features of PerNode SDK is that it supports attribute-based programming
[36]. Therefore, the code becomes intuitive and more comprehensible. For example, the
code segment in Listing 6.1 describes a node that provides ”"Media Follow Me” service.
The developers can setup the MOM and the listening topic by using @MessageBus
and @MessageFrom, respectivelys, Also note that "@P.S.MP directs the framework inject
PSMP protocol mechanisms into the ﬁod:;(])ﬁnthe other hand, the developers are free

|
to switch to other service managemeqt’protocols by usmg other protocol annotations.

Currently we support @SSDP or @PSMP The PerNode SDK provides template-based
as well as drag-and-drop code generation services by a set of ”Interactive Wizards”,
which are realized as plug-in modules of the Eclipse IDE *. Figure 6.1 is a node browser,
from which the developers can drag-and-drop existing PerNodes and then the code will
be generated. Figure 6.2 is an interactive wizard that generate a template according
to the node attributes specified by developers.

The overall process and the toolchain for constructing a PerNode is depicted in Fig.
6.3. In the Code Generation step, the developer specifies information required for code
generation such as the name, version, node type and listening topic in a configuration

file (see Fig. 6.4). The code generation is driven by a script file which is executed by

4 Available at http://www.eclipse.org/

193

Test

l

Code ——————— Development — Packaging

Generation
7 Module test tool
Eclipse
Project and code
skeleton
Ant Ant — 0SGiBundies
Build Build
" System —— Jar
System l
i Jsmooth
Velocity — exe
Template * Configuration file @ e
Engine

T

Code templates

Figure 6.3: The tdolchain f(;f constructing PerNode

the Ant build system °. The Ant bulldastefm geﬁérates code skeleton and Eclipse
project files based on the specified cozllhglﬁ"ati@n filevand code template. Then, in the
Development and Test phase, the .‘(iewialloper mgéiiﬁes the generated code in the Eclipse
IDE. There is also a testing tool called MQ Simulator which is a useful tool to validate
the logic of a PerNode in development time. Finally, in the Packaging step, the code
and the related resource files are packaged into a single executable or an OSGi bundles.

Based on the toolchain mentioned above, several Pervasive Services are constructed,
some of them are listed in see Table 6.1, and Table 6.2 5. These services are deployed
in two dissimilar demo sites (Figure 6.5 and Figure 6.6). These sites are different in
size (NTU Attentive Home: 400 square feet; NTU INSIGHT Living Lab: 1080 square

feet.), partition (NTU Attentive Home is with 1 living room, 1 kitchen and 1 bedroom;

NTU INSIGHT Living Lab is with 1 living room, 1 kitchen, 1 toilet, 1 dining room and

5 Available at http://ant.apache.org/
%see http://www.attentivehome.org/video.html for the demo video

194

B Perhode SDK 2.0

Eclipse-bosed PerMode project generator configuration file
#

Chun-Feng Liao

(2010) Mational Taiwan Univ, CSIE Dept.

8

Specify PerMode name
Mote that the nome should consizts of lower cose english characters without any delimeters (conventionally)
Ext hellowaorld | instead of hello-warld, helloWorld ar hello_warld

pernode-name=helloworld

Specify your name in the following

pernode-author=Chun-Feng Liao

Specify version of the Perlode

pernode-version=1.0.0

The generated project depends on the year the project iz built, the {pernode-name} and ${pernode-version}
Ex:2010-pernode-hellowarld-1.0.0

Specify package name and clas= name of the PerMode
pernode-package-name=org.attentivehome. pernode. hello

pernode-class-name=HelloPerNode
Specify Broker URL of Active()
pernode-mom=failover: (tcp://localhost: 61616)

Specify the tapic name from which message comes

pernode-listeningTopic=ssh. CONTEXT

Figure 6.4: PerNode Code/Project generator configuration file

195

Table 6.1: Implemented Pervasive Services

ID Name Member Type ID

PS1 Web-based Control and Monitoring S1, A1, A2

PS2 Media Follow Me S2, P1, A31, A32, A33
PS3 Fall Detection Alert S3, L2, A2, A4

PS4 Adaptive Air Conditioner S1, L3, A2

PS5 Burglar Detection Alert S1, L4, A2, A4

2 3,
. O

2 bedrooms), appliances, and furnlghfné" Due ’t(; their dissimilarities, the developers
modified XML-based configuration files for each site in order to deploy the services.
However, the source codes need not to be changed.

Table 6.2 shows all services deployed in these environments. These nodes are located
in three different hosts (H1, H2 and H3), each host has a PHM. Table 6.1 lists required
service types and criteria of Pervasive Services. Notice that there are five Pervasive
Services and three Pervasive Hosts. Since several node instances are with the same
node types, the PSM can choose among one of them. For instance, the ”adaptive air
conditioner” service requires node types of S1, P3 and A2. There are two nodes that

are with type S1 (PL-2303 and Taroko), hence the PSM can activate one of them when

196

Figure 6.6: The NTU INSIGHT Living Lab

performing service activation.

It is noteworthy that PerSAM c odes implemented by means of het-

process-centric architectures as well as Tuple Spaces. Besides, to avoid the possibility
of single-point-of-failure, most available MOM supports load-balancing as well as fail-
over mechanisms. Consequently, the features discussed above also make this platform

both flexible and reliable.

197

Table 6.2: Implemented PerNodes

Name Type ID Type and Criteria Host ID
PL-2303 Sensor Adapter S1 Wireless Sensor H1
Taroko Sensor Adapter S1 Wireless Sensor H1
Ekahau Position Engine S2 Location Sensor H2
Smart Floor Adapter S2 Location Sensor H1
AXIS 207TMW Network S3 Image Sensor H1
Camera Adapter
Control and Monitoring Al Web Application Server H2
Web Application
Home Appliance Controller A2 . Home Appliance Controller H2
Smart Display A A3l l‘l.‘Sm_art Display, H1
-/ ""locatié'nzlivingroom
[===
Smart Display B A:ﬁ? T’ 'lS?mart ‘Display, H2
oy ! | :J}t)catioﬁ:studyroom
Smart Display C lA.‘33‘ 'Sﬁ:lért Display, H3
location=kitchen
Short Message System Gateway A4 SMS H2
Media Follow Me Logic L1 Logic, H3
name=Media Follow Me
Fall Detection Logic L2 Logic, H3
name=Fall Detection
Air Conditioner Logic L3 Logic, H3
name=Air Conditioning
Burglar Detection Logic L4 Logic, H3

name=Burglar

198

Chapter 7

Conclusion and Future Work

As pointed out in Chapter 1, the objective of this thesis is to investigate approaches
for realizing flexible, robust, consistent, and efficient Pervasive service management in
a Smart Home. This chapter first explains the contributions of the present research
and how these contributions achieve the desired goals as proposed in Chapter 1. Then,

several issues that can be explored in the future are suggested.

7.1 Summary of Contribution

The contributions of this thesis and how thesé contributions achieve the desired goals,

that is, flexibility, robustness, consisten_cy, and'efficiency, are summarized below.

~1 g
f ‘..-l-:"|

1. Flexibility: The flexibility i 1ssuf: WFlch anclude extensibility and interoperabil-
ity, are addressed in Chapter:2. IAfter rev1ew1ng and comparing several represen-
tative Pervasive systems, it can be‘conclu‘ded that due to the relief of performance
and interoperability issues, MOM is a good choice that benefits from the data-
centric architecture while keeps good performance and interoperability at the

same time.

2. Robustness: Despite the advantages of the MOM architecture, there are still
several challenges when designing pervasive systems based on the MOM architec-
ture. Specifically, it lacks a robust service management mechanism that maintains
and keeps track of the relationship between services and service components. As
a result, Chapter 3 proposes a service application model, called PerSAM, and
its auxiliary protocol, called PSMP, for facilitating autonomous service composi-

tion, and failure detection and recovery in Message-Oriented Pervasive Systems.

199

The proposed model and protocols are formally defined by using Process Alge-
bra. Based on these formulations, PerSAM/PSMP has been proved to be robust.
The experimental studies show that PSMP has much higher recovery rate than
SSDP and is able to recover significant portions of PSs even when the failure
rate reaches 100%. The performance evaluations show that for real-world PSs,
service composition and failure recovery can be performed within 2 seconds and

0.5 seconds, respectively.

. Efficiency: This research proposes efficient enhancement mechanisms that help
PSMP minimizes the downtime of a system while maintains low communication
complexity. In Chapter 4, the design, analysis, simulations, and experiments
of several techniques for boosting the.network efficiency - Decomposing Multi-
cast Traffic, Service-based Node S‘eérchi'ﬁg,_ﬂeartbeat by Decomposing Multicast
Traffic and On-Demand Heartbea‘t based oh PerSAM and PSMP are presented
|
in detail. Both analyses and sunp t?%?ls teveal that the proposed approaches can
reduce message counts of prgsenLF and le?qve anriouncement, node searching, and

heartbeat by more than 93.75%, 66%, and '50%, respectively, in average service

lengths.

. Consistency: This research proposes an integrated negotiable and unifiable ser-
vice composition framework. First, this framework proposes a formal expression
notation, namely, the Preference Expression, which is capable of representing ne-
gotiable preferences, along with a set of unification rules for merging conflicting
preferences. Second, a Fuzzy-logic-assisted technique for interference estimation
is proposed. By integrating the proposed techniques, a user-centric service com-
position framework can be realized. According to the evaluation results, the
proposed approach outperforms other methods in the USI (User Satisfaction In-

dex) metric, which means that the proposed approach is able to achieve high

200

Table 7.1: Enhancements of service model and service management

Comparing Aspect

UPnP

This work

Architectural Style
Service Semantics
Expressiveness of Capability

Expressiveness of Preference

Discovery Coverage

Process-centric

Type

Type

Active and Dormant

Data-centric

v

Type and attribute
Type and Preference
Expression

Active, Dormant, and

nodes Installed nodes

Recovery Capability - v
Efficiency Improvement - v
Basic Service Composition - = v
Consistent Service Composition” -\ /) v

Nl

| == | |

m | :
\

composition precision and maiﬂtain’s”iredréonablé success rate of composition at

the same time.

The above-mentioned mechanisms are realized by constructing a developer’s toolkit,
called the PerNode SDK, which enables rapid developments of services in MOPS. The
toolkit consists of a reusable object-oriented application framework as well as toolkits
that enable wizard-based/drag-and-drop styles code generation. The feasibility of the

toolkit is demonstrated by developing several Pervasive Services based on the above-

mentioned toolkits.

As mentioned in Chapter 3, this work is designed based on the service model and

service discovery protocols of UPnP. Table 7.1 summarizes the afore-mentioned contri-

;

butions by listing the enhancements over UPnP.

201

7.2 Future Work

Future research could explore the following issues. In PerSAM, the hierarchical archi-
tecture can be a cost because of the inclusion of Manager Nodes. The reason for this
design is because decentralized failure detection and recovery such as consensus proto-
cols are usually not efficient and are less scalable. In the future, PerSAM/PSMP will
be enhanced by a hybrid architecture that employs a centralized approach for Worker
Node and a consensus-based approach for Manager Nodes. This approach will be more
cost effective since the number of Worker Nodes is much larger than that of Manager
Nodes. More concretely, a consensus-based failure detection and recovery protocol will
be integrated into PerSAM/PSMP to enhance its robustness.

The most important advantage of forming a Pervasive Host Community is that
a PHM is able to accurately detect the f)reéghce/'absence of a node belonging to the
same Pervasive Host. In current desigiri?é_)uf;ﬂ PSMP, thé detection of presence/absence of

| T | |
nodes is carried out by using a distrilpj:t&? i}lél:(;hanism (i.e. heartbeat). As discussed

in Chapter 4, in order to achieve‘.-'h_ighpr a(f.(:u&f!icy of presence/absence detection, the
heartbeat mechanism usually prodﬁée heavy 'ne£§vork traffic. Therefore, one way to
enhance the presence/absence detection mechanism is to delegate the job to PHMs
since they are able to accurately and efficiently detect the status of local nodes without
causing any network traffic. As a result, presence and leave announcements are issued
by PHM on behalf of Worker Nodes, so that no heartbeat is needed. This feasibility of
this approach depends on the consensus-based failure detection and recovery protocol
for Manager Nodes mentioned in the previous paragraph.

As mentioned in Chapter 4, UPnP/SSDP relies on UDP, which is unreliable since
UDP loses packets under heavy traffic, and thus causing the management mechanisms

become invalid. On the contrary, although TCP is reliable, managing services based

on TCP is an overkill since service management packets are usually short and thus do

202

not require additional functionalities provided by TCP such as congestion control and
re-sequencing mechanism. The Wireless Application Protocol (WAP) [2] specification
is an industrial standard that is more efficient and therefore useful for wireless applica-
tions. The Wireless Transaction Protocol [5], which is part of WAP, is a transport-layer
protocol that is able to support reliable communications based on current UDP /TP in-
frastructure. The reliability is achieved by using unique IDs, acknowledgements, dupli-
cate removal, and re-transmissions. In addition, WTP also support message aggrega-
tion so that the traffic can be further reduced. On top of WTP is a specification called
Wireless Session Protocol [4], which is essentially an efficient version of HT'TP /1.1 in
the sense that it uses a binary encoding scheme for headers and data. Hence, WTP
appear to be a good starting point for designing an efficient reliable transport protocol
based on UDP. Meanwhile, WSP+ean also bé a meore efficient replacement of HTTP
which is currently adopted by PSMP. As a result the Study about how to improve the
efficiency of home network by mtegratmgﬁNTP and WSP into PSMP is under way.

Currently, user preferences arg regueser?ted:a‘und utified in a concrete way. As men-
tioned earlier, users’ preferences éfe .usually Valgue. Therefore, the syntax and seman-
tics of the Preference Expression can be ‘further extended to facilitate Fuzzy preference
representation and unification.

Many services in Smart Homes contain ”contents”, that is, digitized media such
as texts, images, videos and voices that are able to be processed by computers. From
a user’s point of view, services with different digital contents should be distinguished
from one another. For instance, a media player playing different movies provide dif-
ferent user experiences. In other words, the information of contents should be taken
into account when selecting and ranking services besides types and QoS attributes of
services. Further research is also under way to investigate this type of content-based

services.

203

Besides, although fuzzy-based approaches is used to estimate the interference de-
gree, the selection criteria of membership function is arbitrary (pre-defined by the
system designer). After the system is deployed, the fuzzy rules and the parameters
of membership function should be adjusted autonomously to reflect user’s preferences.
This can be achieved by integrating fuzzy-based learning algorithm such as ANFIS
[75]. Ome possible approach is to take the advantages of collective intelligence and to
download learning results from a cloud-based service platforms. The interference issue
is currently integrated into the node selection process by estimating the possibility of
being interfered. In the future, the proposed service composition framework will be
enhanced by runtime interference detection capability. The concept of interfering in-
tensity is required which is used to estimate how these interferences affect users. When
the intensity of interference is high, a PSM should replace portion of its members to

alleviate the interference.

204

8]

[9]
[10]
[11]
[12]

BIBLIOGRAPHY

Common Object Request Broker Architecture Specifications. Object Management
Group (OMG), 1994.

Wireless Application Protocol Architecture Specification. 1998.

Salutation Architecture. Salutation Consortium, 1999.

Wireless Application Protocol Wireless Session Protocol Specification. 1999.
Wireless Application Protocol Wireless Transaction Protocol Specification. 1999.

CORBA Trading Object Service Specification, Version 1.0. Object Management
Group (OMG), 2000.

Bluetooth Service Discovery Application Profile, v.1.1. The Bluetooth Special
Interest Group, 2001.

OWL Web Ontology Language Overview. W3C Recommendation. World Wide
Web Consortium, 2004.

Web Services Security: SOAP Mes"sage','-Security 1.1 (WS-Security). 2004.
FIPA: The Foundation for Intellzgent Physzcal Agents. IEEE, 2005.
OSGi Service Platform: Release 4 @Gll Alllance 2007.

Simple Object Access Pmtocoll PS(&AP)werszon 1.2, W3C' Recommendation.
WWW Consortium, 2007, %% I“ 14

FIPA Agent Management Specz’ﬁcation. IEEE7 2008.

SPARQL Query Language for RDF. W3C Recommendation. World Wide Web
Consortium, 2008.

UPnP Device Architecture 1.1, ISO/IEC DIS 29341. UPnP Forum, 2008.
ZigBee Specification 053474r17. 2008.

G. D. Abowd. Software engineering issues for ubiquitous computing. In Proc.
21st International Conference on Software Engineering (ICSE "99), pages 75-84,
1999.

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In Proc. 17th Symposium on
Operating System Principles, 1999.

F. K. Aldrich. Inside the Smart Home. Springer-Verlag London Limited, 2003.

K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath. The Jin:
Specification. Addison-Wesley, 1999.

205

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]
[31]

[33]

[34]

[35]

[36]

J. C. Augsto and C. D. Nugent. Designing Smart Homes. Springer-Verlag, Berlin,
2006.

J. W. Backus. The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference. In Proc. International Conference
on Information Processing, pages 125-132, 1959.

H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking
up data in p2p systems. Communications of the ACM, 46(2), 2003.

G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case for message oriented
middleware. In Proc. 15th International Symposium on Distributed Computing
(DISC’99), 1999.

W. C. Barker. NIST 800-67 Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher. 2008.

A. Bedrouni, R. Mittu, A. Boukhtouta, and J. Berger. Distributed Intelligent
Systems: A Coordination Perspective. Springer, 2009.

F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems
with JADE. John Wiley & Sens,.Litd.,:2007.

J. A. Bergstra, A. Ponse, and.S. A. Smolka; The Handbook of Process Albegra.
Elsevier, 2001. ! P 2

f |
|
{

Nk

C. Bettini and D. Ribeni. Proﬁ e"ﬁf’%’tééa‘cion and policy evaluation for adap-
tive internet service. In Prec. IEEE pr#emational Conference on Mobile and
Ubiquitous Systems, pages 290~£98, 2004.|

C. M. Bishop. Pattern Recognitio‘n and Ma.chme Learning. Springer, 2006.

G. Booch, I. Jacobson, and J. Rumbaugh. the Unified Modeling Language Spec-
ification, Version 1.5. 2000.

A. Bottaro and R. S. Hall. Dynamic selection and ranking in context-aware
service composition. In Proc. of the 6th International Conference on Software
Composition (LNCS 4829, SC 2007).

J. Bronsted, K. M. Hansen, and M. Ingstrup. Service composition issues in
pervasive computing. IEEE Pervasive Computing, 9(1):62-70, 2010.

B. Cain, S. Deering, and 1. Kouvelas. Internet Group Management Protocol,
Version 3, REC 3376. 2002.

M. Calder, M. Kolberg, E. H. Magil, and S. R. Marganiec. Feature interaction:
a critical review and considered forecast. Computer Networks, 41(1):115-141,
2003.

V. Cepa. Attribute Enabled Software Development. VDM Verlag Dr. Mueller,
2007.

206

[37]

[38]
[39]

[41]

[42]

[49]

[50]
[51]

[52]

R. Cerqueira, C. Cassino, and R. lerusalimschy. Dynamic component gluing
across different componentware systems. In Proc. International Symposium on
Distributed Objects and Applications (DOA’99), pages 362-371, 1999.

D. Chappel. Trouble with CORBA. 1998.

H. Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, 2004.

H. Chen, T. Finin, and A. Joshi. Semantic web in in the context broker archi-
tecture. In Proc. IEEE International Conference on Pervasive Computer and
Communications (PerCom’04), 2004.

H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology for PervasiveComputing.
Springer-Verlag, 2005.

C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco.
Mobile data collection in sensor networks: The tinylime middleware. Journal of
Pervasive and Mobile Computing, 4(1):446-469, 2005.

C. Dabrowski and K. Mills. Understanding self-healing in service discovery sys-
tems. In Proc. Workshop on Self liealing systems 2002.

C. Dabrowski, K. Mills; and S. Qulrolglco Understanding failure response in
service discovery systems. The Journafl of Systems and Software, 80(6):896-917,
2007. [=5 ||
|J |
J. Daemen. The design of RZJnde ;-PESﬁﬁhe advanced encryption standard. 2002.

A. K. Dey. Providing Archziectuml Support Jor Building Context-Aware Applica-
tions. PhD thesis, 2000. ‘

A. K. Dey. Understanding and using context. Personal and Ubiquitous Comput-
ing, 1(5), 2001.

A. K. Dey, T. Sohn, S. Streng, and J. Kodama. icap: Interactive prototyping of
context-aware applications. In Proc. of International Conference on Pervasive
Computing (Pervasive’06). Springer, 2006.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1, RFC 48467. 2006.

S. Dixit and R. Prasad. Home Networking Challenges. Wiley-Inderscience, 2008.

D. Eastlake and P. Jones. RFC 317} - US Secure Hash Algorithm 1 (SHA1).
2001.

W. K. Edwards. Discovery systems in ubiquitous computing. [EEE Pervasive
Computing, 5(2), 2006.

207

[53]

[54]
[55]

[64]

[65]

[66]
[67]

[68]

W. K. Edwards and R. E. Grinter. At home with ubiquitous computing: Seven
challenges. In Proc. 8rd International Conference on Ubiquitous Computing (Ubi-
Comp’01), pages 256-272, 2001.

C. Ellison. UPnP Security Ceremonies Design Document. 2003.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The many faces
of publish-subscribe. ACM Computing Survey, 35(2), 2003.

J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution
for pervasive computing. In Proc. IEEE Workshop on Hot Topics in Operating
Systems, 2001.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking, 5(6), 1997.

D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: Towards
distraction-free pervasive computing. IEEE Pervasive Computing, 21(2), 2002.

D. Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems,g?(l)', 1985.

L. Gong. Jxta: a network programmlng env1ronment IEEFE Internet Computing,
5(3):88 — 95, 2001.

:‘ fis=)
| Na= ()
- |

R. Grimm. One.world: Experlprc'épwﬁh al pervasive computing architecture.
IEEE Pervasive Computing, (?1) 2004. ||

S |

R. Grimm, J. Davis, B. Hendricksof, B! Lemar A. MacBeth, S. Swanson, T. An-
derson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall. Systems direc-
tions for pervasive computing. In Proc. §8th Workshop on Hot Topics in Operating
Systems, 2001.

R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Ber-
shad, G. Borriello, S. Gribble, and D. Wetherall. System support for pervasive
applications. ACM Trans. on Computer Systems, 22(4), 2004.

T. Gu, H. K. Pung, and D. Q. Zhang. Toward an osgi-based infrastructure for
context-aware applications. IEEE Pervasive Computing, 3(4), 2004.

T. Gu, H. K. Pung, and D. Q. Zhang. A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications, 28, 2005.

S. Guan. IGMP-extension User Manual. 2009.

E. Guttman. Service location protocol: automatic discovery of ip network ser-
vices. IEEFE Internet Computing, 3(4):71-80, 1999.

R. Harper. Inside the Smart Home. Springer-Verlag, London, 2003.

208

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

M. Henning. The rise and fall of corba. ACM Queue, 2006.

C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8), 1978.

G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison Wesley, MA,
2004.

J. I. Hong and J. A. Landay. An infrastructure approach to context-aware com-
puting. Human-Computer Interaction, 16(2):287-303, 2001.

C. L. Hu, Y. J. Huang, and W. S. Liao. Multicast complement for efficient upnp
eventing in home computing network. In Proc. IEEE International Conference
on Portable Information Devices (PORTABLE’07), 2007.

T. Issariyakul and E. Hossain. Introduction to Network Simulator NS2. Springer,
2008.

J. S. R. Jang. Anfis: adaptive-network-based fuzzy inference system. [FFE
Transactions on Systems, Man and Cybernetics, 22(3):665-685, 1993.

B. Johanson. Application Coordination.Infrastructure for Ubiquitous Computing
Rooms. PhD thesis, 2002. e

B. Johanson and A. Fox:/The event, heap A ‘coordination infrastructure for
interactive workspaces. In Proc.| IEEE Workshop on Mobile Computing Systems

and Applications, 2002. | | W ||
1 |, | £

Y. W. Jong, C. F. Liao, and L| . Fu. A rotatlng roll-call-based adaptive fail-
ure detection and recovery protocol forssirt, ome environments. In Proc. 7th
International Conference On Smart ‘homes and health Telematics (ICOST’09),
20009.

M. B. Juric. Business Process Fxecution Language for Web Services BPEL and
BPEL4WS. Packt Publishing, 2 edition, 2006.

S. Kalasapur, M. Kumar, and B. Shirazi. Evaluating service oriented architec-
ture (soa) in pervasive computing. In Proc. IEEE International Conference on
Pervasive Computing and Communications (PerCom’06), 2006.

D. O. Keck and P. J. Kuehn. The feature and service interaction problem in
telecommunications system: A survey. [EFEE Transactions on Software Engi-
neering, 24(10):779-796, 1998.

T. Kindberg and A. Fox. System software for ubiquitous computing. [IEFE
Pervasive Computing, 1(1), 2002.

M. Klusch and A. Gerber. Fast composition planning of owl-s services and ap-
plication. In Proc. European Conference on Web Services, 2006.

209

[84]

[85]

[91]

G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. Butler, and
L. Tran. Composite Capability/Preference Profiles (CC/PP): Structure and Vo-
cabularies 1.0. W3C Recommendation. 2004.

S. Knauth, R. Kistler, D. Kaslin, and A. Klapproth. Upnp compression im-
plementation for building automation devices. In Proc. 5th IEEE International
Conference on Industrial Informatics, 2007.

M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services
supporting networked appliances. IEEE Communications, 41(11):136-147, 2003.

G. Kotz and D. Solar: Towards a flexible and scalable data-fusion infrastructure
for ubiquitous computing. In Proc. ACM International Conference on Ubiquitous
Computing (UbiComp’01), 2001.

S. Kumar, P. R. Cohen, and H. J. Levesque. The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams. In Proc. 4th Interna-
tional Conference on Multi-Agent Systems, pages 159-166, 2000.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3), 1994.

G. Lee, P. Faratin, S. Bauer, and T er.ocla_WSki. A user-guided cognitive agent
for network service selec¢tion in pervasive computing environments. In Proc. of
IEEFE International Conference | on ,_Eemfaswe Computing and Communications,
2004. | =2== |

|i Mol
Y. Li, J. Huai, H. Sun, T. Dengl ndH. Guo Pasgs: An approach to personalized

automated service composftion TagProc of IBEE International Conference on
Service Computing, pages 283-290; 2008.

S. Loke. Context-Aware Pervasive Systems - Architectures for a New Breed of
Applications. Auerback Publications, Taylor & Francis Group, 2007.

H. K. Low, D. Chieng, A. K. Mustapha, Y. C. Ngeow, and E. Goh. A feature
interaction conflicts detection engine for pervasive networked environment. In

Proc. International Conference on Multimedia and Ubiquitous Engineering, pages
891-896, 2007.

C. H. Lu and L. C. Fu. Robust location-aware activity recognition using wireless
sensor networks in an attentive home. IEEE Transactions on Automation Science
and Engineering, 2008.

E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal on Man Machine Studies, 7(1), 1975.

M. I. Mandel, G. E. Poliner, and D. P. W. Ellis. Support vector machine active
learning for music retrieval. ACM Journal of Multimedia System, 21(1):3-13,
2005.

210

[97]

[98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

110]

W. C. Mann and B. R. Milton. Home Automation and Smart Environments to
Support Independence. John Wilery & Sons, 2005.

C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to Information
Reterival. Cambridge University Press, 2009.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. M. Dermott, S. Mcllraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic Markup for Web Services. 2004.

Y. Mazuryk and J. J. Lukkien. Analysis and improvements of the eventing
protocol for universal plug and play. In Proc. IASTED Conference on Commu-
nications, Internet and Information Technology, 2004.

J. McCarthy. Circumscription a form of non-monotonic reasoning. Artificial
Intelligence, 13:27-39, 1980.

E. Meshkova, J. Riihijarvi, M. Petrova, and P. Mahonen. A survey on resource

discovery mechanisms, peer-to-peer, and service discovery frameworks. Computer
Networks, 52(11):2097-2128, 2008.

N. Milanovic and M. Malek. Current solutiens for web service composition. IJEEE
Internet Computing, 8(6):51-59, 2004~

T. P. Moran and P. Dourishy Human-Computer Interaction, volume 16. Lawrence

|

Erlbaum Associates, 2001. | N0
| === 1|

A. L. Murphy, G. P. Picco; an Gm IC. ‘Roman. Lime: A coordination model

and middleware supporting moﬂn ity of Hésts and agents. ACM Transactions on

Software Engineering and Methodology, 15():279-328, 2006.

K. Nakamura, M. Ogawa, T. Koita, and K. Sato. Implementation and evaluation
of caching method to increase the speed of upnp gateway. In Proc. IEEE/IFIP In-
ternational Conference on Embedded and Ubiquitous Computing (EUC’08), 2008.

M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated
services of networked home appliances -an object-oriented approach. In Proceed-
ings of International Conference on Feature Interactions in Telecommunication
Networks and Distributed Systems, pages 236—251, 2005.

M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching
of web services capabilities. In Proc. of International Semantic Web Conference

(ISWC).

V. Poladian, D. Garlan, and M. Shaw. Selection and configuration in mobile en-
vironments: A utility-based approach. In Proc. Fourth Workshop on Economics-
Driven Software Engineering Research, 2002.

S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd. Icrafter: A service
framework for ubiquitous computing environments. In Proc. 3rd International
Conference on Ubiquitous Computing, pages 5675, 2001.

211

[111]

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]
[121]

[122]
[123]

[124]

[125]

A. Ranganathan, S. Chetan, J. A. Muhtadi, R. H. Campbell, and M. D. Mick-
unas. Olympus: A high-level programming model for pervasive computing envi-
ronments. In Proc. 3rd IEEFE International Conference on Pervasive Computing
and Communications (PerCom’05), pages 7-16, 2005.

M. Rausand and A. Hoyland. System Reliability Theory: Models, Statistical
Methods, and Applications. Wiley, 2 edition, 2004.

C. J. V. Rijsbergen. Information Retrieval. Butterworth, 2 edition, 1979.

M. Roman. An Application Framework for Active Space Applications. PhD thesis,
2003.

M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt. A middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4), 2002.

D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the de-
velopment of context-enabled applications. In Proc. International Conference on
Human Factors in Computing Systems (CHI ’99), 1999.

M. Sathya, M. Swarnamugi, P.'Dhayvachelvangand G. Sureshkumar. Evaluation of
qos based web-service selection-teehniques for service composition. International
Journal of Software Engmeermg, (5) 73 90, 2010.

M. Satyanarayanan. Mobile 1nform§1',-1;.©n|access IEFE Personal Communication,
3(1), 1996. R

as | |
C. S. Shankar, A. Ranganathan' andR. @hmpbell An eca-p policy-based frame-
work for managing ubiquitous Computlng envitonments. In Proc. IEEE Interna-
tional Conference on Mobile and -Ubiquitous Systems, pages 33-42, 2005.

R. Sharp. Principles of Protocol Design. Springer-Verlag, 2008.

E. Silva, L. F. Pires, and M. v. Sinderen. A framework for the evaluation of

semantics-based service composition approaches. In Proc. of 7th IEEE European
Conference on Web Services (ECOWS).

H. A. Simon. The Sciences of the Artificial. 1996.

E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting semantic web services
with interactive composition techniques. IEEE Intelligent Systems, 19(4):42-49,
2004.

M. E. Smid and D. K. Branstad. Data encryption standard: past and future.
Proceedings of the IEEE, 76(5):550-559, 1988.

J. P. Sousa. Scaling Task Management in Space and Time:Reducing User Quver-
head in Ubiquitous-Computing Environments. PhD thesis, 2005.

212

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based
adaptation for ubiquitous computing. IEEE Transactions on Systems, Man, and
Sybernetics - Part C: Applications and Reviews, 36(3), 2006.

E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, and C. Ferraz. A
message-oriented middleware for sensor networks. In Proc. International Work-
shop on Middleware for Ubiquitous and Ad-Hoc Computing, 2004.

J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating specification and pro-
grams for system modeling and verification. In Proc. International Symposium
on Theoretical Aspects of Software Engineering, 2009.

K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and
coordination of agent-based semantic web services. IEEE Internet Computing,
8(3):66-73, 2004.

H. Takeda, P. Veerkamp, T. Tomiyama, and H. Yoshikawam. Modeling design
processes. Al Magazine, 11(4):37-48, 1990.

I. Taylor, B. Adamson, I. Downard, and J. Macker. Agentj: Enabling java ns-2
simulations for large scale distributéd multimedia applications. In Proc. 2nd In-
ternational Conference on Distributed megzworks for Multimedia Applications,
pages 1-7, 2006.

R. Thiagarajan, M. Stumptner, ar;dij 7.“‘ayer. Semantic web service composition
by consistency-based model, refinenient " In/Proc. IEEE Asia-Pacific Services
Computing Conference, pages 3%%&3@8, 2‘6908.

‘v i .
D. T. Tran and E. Choi. A’ reliéble tidp-for, ubicuitous communication environ-
ments. In Proc. WSEAS International Conference on Computer Engineering and
Applications, 2007.

S. Tsang and E. H. Magil. Learning to detect and avoid run-time feature in-

teractions in intelligent networks. IEEE Transactions on Software Engineering,
24(10), 1998.

V. K. Vaishnavi and W. K. Jr. Design Science Research Methods and Patterns -
Innovating Information and Communication Technology. Auerbach Publications,
Taylor & Francis Group, 2008.

K. Vanthournout, G. Deconinck, and R. Belmans. A taxonomy for resource
discovery. Personal and Ubiquitous Computing, 9(2):81-89, 2005.

X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology based context
modeling and reasoning using owl. In Proc. of the IEEE Conference on Pervasive
Computing and Communications Workshops, 2004.

M. Weiser. The computer for the twenty-first century. Scientific American,
265(3):94-104, 1991.

213

[139] P. Welch and J. Martin. Formal analysis of concurrent java systems. In Proc.
Communicating Process Architectures, 2000.

[140] B. Whetten, S. Kaplan, and T. Montgomery. A high performance totally ordered
multicast protocol. In Proc. Of INFOCOMM 95, 1995.

[141] T. Winograd. Architectures for cotext. Human-Computer Interaction, 16(2-
4):401-419, 2001.

[142] C. L. Wu, C. F. Liao, and L. C. Fu. Service-oriented smart home architecture
based on osgi and mobile agent technology. IEEE Transactions on Systems, Man
and Cybernetics - Part C, 37(2), 2007.

[143] K. Yaghmour, J. Masters, G. B. Yossef, and P. Gerum. System Monitoring,
page 85. O’reilly Media, Inc., 2008.

[144] Z. Yu, Y. Nakamura, D. Zhang, S. Kajita, and K. Mase. Content provisioning
for ubiquitous learning. IEEE Pervasive Computing, 7(4):62-70, 2008.

[145] A. Zeidler. Event-based Middleware for Pervasive Computing: Foundations, Con-
cepts, Design. VDM Verlag Dr. Muller,,2007.

[146] L. Zeng, B. Benatallah, A H..H. Ngu; M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for webiservices composrclon IEEFE Transaction on Soft-
ware Engineering, 30(5), 2004. [

[147] L. J. Zhang, J. Zhang, and H, (PF rtS'erbzce C’omputmg Springer and Tsinghua

University Press, 2007. I > | |
e | l I l s
[148] F. Zhu, M. W. Mutka, and.L: M Ni. Serv1ce discovery in pervasive computing

environments. IEEE Pervasive:Computings4(4):31-90, 2005.

214

PUBLICATION LIST

*: Thesis-Related Works

International Journal Papers

1. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ” Toward Reliable Service Man-

”in IEEE Transactions on Ser-

agement in Message-Oriented Pervasive Systems,
vice Computing, 2010. (to appear, http://doi.ieeecomputersociety.org/10.

1109/TSC.2010.59) [*]

. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ”Toward a Message-Oriented

Application Model and its Middleware, Support in Ubiquitous Environments”,

International Journal of Hybrid [nfornlidtion Technology, vol.1, no.3, July 2008.

[= , I| |

. Chao-Lin Wu, Chun-Feng Liag, |a%1d ‘Ll Ghen Fu; "Service-Oriented Smart Home

Architecture based on OSGi and Mobile Agent Technology”, IEEFE Transactions

on Systems, Man and C’ybemetics 5 Part €, vol.37, no.2, 2007. [*]

. Ching-Hu Lu, Chun-Feng Liao, Chao-Lin Wu, and Li-Chen Fu, "Real-Time Fine-

Grained Multiple-Target Tracking on a Extensible Virtual Fab Architecture Using
Multi-Agents”, International Journal of Electronic Business Management, vol.5,

no.1, 2007.

International Journal Papers (Work In Progress)

1. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ” A Preference-Driven Com-

position System for Consistent Smart Home Applications, ” to be submitted to

IEEE Transactions on Systems, Man and Cybernetics - Part C, 2011. [*]

215

2. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”Message-Efficient Service

Management Schemes for MOM-based UPnP Networks, ” submitted to IFEFE

Transactions on Service Computing, 2011. (Conditionally Accepted 2011.6.8) [*]

3. Ya-Wen Jong, Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ” A Rotating

Roll-call based Adaptive Failure Detection and Recovery Protocol for Ambient
Services, ” submitted to International Journal of Automation and Smart Tech-
nology, 2011. (Under Review) [*]

Domestic Journal Papers

1. Chih-Ming Chen, Chun-Feng Liao, Ya-Wen Jong, Li-Chen Fu, and Ching-Nian

Chang, ” Message-Oriented Sexvice Technelogies for Digital Homes, ” in TL Tech-

nical Journal, vol.39, no.5; Oct.2009. [*]

2. Chun-Feng Liao, Hsin-Chih Chémgﬁ'ﬁ.ﬁ‘du Li-Chen Fu, ”An Intelligent Guideline-
|l £ |l
based Home Health Care Servi? Pﬁétfo‘r‘m, "“in TL Technical Journal, vol.39,

iy | :

n0.5, Oct 2009. [¥]

3. Li-Chen Fu, Chao-Lin Wu, Ching-Hu Lu, Chun-Feng Liao, Yu-Chieh Ho, and

Yong-Cheng Liu, "The NTU Attentive Home, ” in Automation, vol.20, no.4,

pp.18-35, 2009. [*]

International Conference Papers

1. Hsin-Chih Chang, Chun-Feng Liao, and Li-Chen Fu, ”Unification of Multiple

Preferences and Avoidance of Service Interference for Service Composition in
Context-Aware Pervasive Systems,” in Proc. of 7th ACM International Confer-

ence on Pervasive Services (ACM SIGAPP ICPS’10), Berlin, Germany, 2010.
[*]

216

. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, "A Guideline Execution

7

Engine for Healthcare Services in Smart Home Environments,” in Proceedings of
8th International Conference On Smart homes and health Telematics (ICOST

2010), Seoul, Koera, 2010. (Springer LNCS 6159) [*]

. Chun-Feng Liao, Hsin-Chih Chang, and Li-Chen Fu, ”Boosting the Efficiency of

the Reliable Service Management Protocol for Message-Oriented Pervasive Sys-

)

tems,” in Proceedings of the IEEE International Conference on Service-Oriented

Computing and Applications (IEEE SOCA’09), Taipei, Taiwan, 2009. [*]

. Hsin-Chih Chang, Chun-Feng Liao, Yong-Cheng Liu, and Li-Chen Fu, ”A Spon-

taneous Preference Aware Service Composition Framework for Message-Oriented
Pervasive Systems,” in Proceedings of the 4th International Conference on Per-

vasiwe Computing and Applz'catz'ons (ICPC’AM’OQ), Taipei, Taiwan, 2009. [*]

. Ya-Wen Jong, Chun-Feng Liao,1 ane -‘_ii%Chen Eu, ”A Rotating Roll-call-based

Adaptive Failure Detection anql Re%iﬁjvellr‘y Protocol for Smart Home Environ-
S\ I\

ments,” in Proceedings of 9th :']h‘ternatiloridl C’onference On Smart homes and

health Telematics (ICOST 2009, Springer LNCS 5597), Tours, France, 2009. [*]

. Chi-Pang Lam, Wei-Jen Kuo, Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu,

7 An Efficient Hierarchical Localization for Indoor Mobile Robot with Wire-
less Sensor and Pre-Constructed Map ,” in Proceedings of the 5th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2008), Korea,

2008.

. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, "PSMP: A Fast Self-Healing

and Self-Organizing Pervasive Service Management Protocol for Smart Home
Environments,” in Proceedings of 2008 IEEE Asia-Pacific Services Computing

Conference (IEEE APSCC 2008), Yilan, Taiwan, 2008. [*]

217

8. Ya-Wen Jung, Chun-Feng Liao, and Li-Chen Fu, ” An Efficient Autonomous Fail-

ure Recovery Mechanism for UPnP-based Message-Oriented Pervasive Services,”
in Proceedings of 2008 IEEFE International Conference on System, Man, and Cy-

bernetics (IEEE SMC 2008), Singapore, Oct 2008. [*]

9. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, ” Community-based Autonomous

Service Activation and Failure Recovery in a Message-Oriented Pervasive Middle-
ware,” in Proceedings of 2008 International Workshop on Context-Aware Perva-
sive Communities: Infrastructures, Services and Applications (CAPC 2008, Held

in Conjunction with Pervasive 2008), Sydney, Australia, 2008. [*]

10. Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu, "Toward a Message-Oriented

Application Model and its Middleware Support in Ubiquitous Environments,”

in Proceedings of 2008]nternational Confefence on Multimedia and Ubiquitous
Engineering (MUE 2008), Busa,m, K.Qreal, 2008. []
| e |
11. Wan-rong Jih, Jane Yung- -jeny H?ll Cﬂao Lm Wit; Chun-Feng Liao, and Shao-you

‘ 1
Cheng, ”A Multi-Agent Serv1ce Framework for Context-Aware Elder Care,” in

Proceedings of Workshop of Service-Oriented Computing and Agent-Based Engi-

neering (SOCABE’2006), Hakodate, JAPAN, 2006. [*]

Domestic Conference Papers

1. Ching-Hu Lu, Chun-Feng Liao, Chao-Lin Wu, and Li-Chen Fu, " Real-Time Fine-

Grained Multiple-Target Tracking on A Virtual Fab Architecture Based on Multi-
Agents,” in Proceedings of 2005 Taiwan Artifical Intelligence and Application

Conference (TAAI 2005), Kaohsiung, Taiwan, 2005.

2. Chun-Feng Liao, Cheng-Rong Yu, Zhi-Yang Chen, Da-Wei Chan and Li-Chen

Fu, ”Behavior Injector: An Architectural Pattern for Rapid Prototyping the

218

Reactive Intelligent Robots,” in Proceedings of 2005 Taiwan Software Engineering

Conference (TSEC 2005), Taipei, Taiwan, 2005.

219

