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Abstract

In this thesis, we present a dynamic media assemblage method for summarizing
and presenting visual media interactively. We propose an iterative packing algorithm
to arrange the cropped visual media while considering their temporal-spatial salient re-
gions to efficiently utilize the 2D ecanvas. We first divide longer videos into individual
shots by detecting their shot bgundaﬁés. We;{hEn compute the temporal-spatial salient
regions within each shot and ugBithem to removgﬂzle apparent camera or object mo-

tion for more efficient packln0 Our fgdt;kmg a.l gorlthm respects the salient regions and
Wy I
N

screen aspect ratio. Its ifiteractive and ﬁiﬁqu'ature means that our method is partic-
ularly well-suited for interactive rT 1pu{grons Isr:h as moving, insertion, and deletion
of media files while compo's;;i'rtlg' mbéla assembla{g, S in real—tlme for summarization and
presentation purposes. 5 -

Terms: Algorithms, Design, Performance

Keywords: video collage, video saliency, media assemblage, media browser, iterative

packing
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Chapter 1

Introduction

The popularity of digital cameéras and vidco réCofders put the power of media cre-
ation at the hands of miliions of péié)ple. @n the onerha'nd, we can now record our
surroundings and share them almos’t mignt;ly ‘%hrough the Internet. On the other hand,
with the sheer amount of.the cor& ts \{?Eare e%posed to-nowadays, we now face an
increasing burden to categeorizcy ljrgh)wser, or l(m;;lggat our‘own personal video and photo
collections. 4 ®

To reduce the effort of managing thé ever-growing media collections, many com-
mercial applications started to incorporate search interfaces to retrieve pre-tagged me-
dia files. Keyword tags, locations, or face identities are popular methods particularly
for Internet applications such as Flickr where people wish to have their uploaded media
files noticed and discovered [2]. However, the majority of personal media files remain
untagged, and they can become forgotten in the presence of those that are heavily

tagged. What we find lacking, therefore, is a new breed of image browser that allows



us to quickly rediscover what we already have within our own piles of untagged media

store.

There have been various prior research that are useful for our purposes. For ex-
ample, image collage research such as [21] allow us to generate compact and aes-
thetically pleasing views of image collections. Image retargeting techniques such as
seam carving [22] focus on reducing the size of images without throwing away impor-
tant contents. Similarly, video summarization methods focus on producing the gist of
videos by either reducing their length or by summarizing each of them into one, or a
collection, of images [4, 25].

Our goals are related to the reseafCh staééd above, with several important distinc-
tions. First, ours goal 1s to create @ tool that allowg a user to simultaneously display

several media files at the same time. A;Sﬁlch, thé tool should not dictate what is be dis-

m

and rearrangement while using t}?e screeﬁ-’real;éstate efféctively. Second, we wish to

| e |
played where. Instead, it ought to réspﬂ‘ﬁ’gﬁé' user reguests such as insertion, deletion,

reduce the effort and time’f(;r a :Lisé:r tQ browsé'i through video and image collections,
and therefore we are not limiiea to-a specific ’cateéory of video summarization tech-
niques — we can choose to break up a single video into multiple images or even video
segments, and they can all be displayed on the same screen canvas simultaneously.
Fig. 1.1 shows a few sample results generated by our system.

Our techniques provides a new style to present several videos and images on the
same screen canvas. After developing the techniques, it not only can be a browser to
help quickly rediscover what we already have within our own piles of untagged media

store but also can be used at several purposes. For example, we can divide a single



video into several shots or just select several key frames and use this technique to do
video summarization. Moreover, it provide interaction for user to edit the final result.

Those application and comparison will show in detail later.




Figure 1.1: Example assemblages generated by our system, including a set of cartoon
movie trailers (upper) and photos on cats (lower). These are generated automatically
and can be interactively manipulated by the users. The cartoon movie trailers are from
films Ratatouﬂle(Pixar animation studios), Shark Tale(DreamWorks Animtion), Shl’Gk(DreamWorks pictures),
How to Train You Dragon(reamWorks nimation), Ice Age(Blue Sky Studios) and Toy Storywait
Disney Pictures). The cats colletion are home photos.



Chapter 2

Related Work

2.1 Automatic Imagé C:@gge |
o m !

An image collage refers t9 an ;irllager Cféatca from an assemblage of a collection of
images. A variety of autorr;lralltriclihnjlage collage;‘ tieghniqlies have been developed both
for research and commercial pur:posesr. Fig. 2. T show's some examples listed according
to the publish dates.

Google’s Picasal, for example, incorporates a feature that generates collages of
complete input images. It also provides different composition styles to the users.
Atkins [3] proposed an efficient method of organizing images in a page. The method

attempts to maximize page coverage without having photo overlap and provides ex-

plicit control over the aspect ratios and relative areas of the photos. Wang et al. [27]

'http://picasa.google.com/



Picture Colla ' aﬂ;PQﬁo Sticking (2007)

§ Q= ¢ ¥

AutoCollage (2006)

Figure 2.1: Some Automatic Image Collage examples listed according to the publish
dates. This four works are all about imagfb summaries. The first style, page layout,
aims at maximize page coverage without having photo overlap. The second style,
Picture Collage, imitates the collage style created by human and later Smart Photo
Sticking adds semantic information to make more plausible results. The final one,
AutoCollage, presents a seamless and visually appealing collage style.



presented picture collage as a kind of visual image summary, which optimizes the lay-
out of rectangular images to maximize the portion of visual visible information(salient
regions) in the result. Battiato et al. [5] improved the result of picture collage both
considering a self-adaptive image cropping algorithm, exploiting visual and semantic
information, and introducing an optimization process based on a genetic algorithm.
Rother et al. [21] presented AutoCollage which constructed a visually appealing col-
lage from a collection of input images. The aim is that the resulting collage should
be representative of the collection, summarising its main themes. It is also assembled
largely seamlessly, using graph-cut, Poisson blending of alpha-masks, to hide the joins
between input images. Goferman e al. [117‘]"presented Puzzle-like Collage which is
based on assembling regions of inferest of arbitrary shape in a puzzle-like manner.
They also shows that this Kapproach pr‘(;)durcgsiscollages that are informative, compact,

N

and eye-pleasing. | e |

2.2 Video Summarization

Truong and Venkatesh [25] provided an excellent review of video summarization
techniques, which are divided into two classes, namely video skims and still image
summaries. Video skims generate a shorter summary video to summarize the whole
video, while still image summaries extract a number of keyframes from a video to pack
the summary image. For video skims, Christel et al. [8] presented studies that mea-
sure effectiveness of video skim techniques. Divakaran et al. [10] devised a method to

adjust video framerates by analyzing temporal motion activity, and speed up parts of



the video with less activity. Peker and Divakaran [20] used motion activity as well as
various semantic cues such as face, skin color, or speech to control the video playback
rate. Simakov et al. [23] propose an optimization method based on bi-directional sim-
ilarity measure to retarget (or summarization) of image/video data into smaller sizes.
Bennett et al. [6] present methods for generating novel time-lapse videos that address

the inherent sampling issues that arise with traditional photographic techniques.

The second class of techniques, image summaries, is related to image collage and
similar to our applications in several respects. Some previous works are showed in

Fig. 2.2.

Zhu et al. [30] proposed.the vided booi'det system, which extracts a number of
thumbnails from a video, and.then reshaped by ar set of. predefined shape templates.
Wang et al. [28] presented video COli;gw}:li:Cll. first selecrt;the representative keyframes
from video, and then blends.the sﬁeéleét?ﬂ?éé’jzframes t0 produce seamless video sum-
mary. Unlike Video Collage in Wf}'id_h bafﬁithe §hapes of ROI and final collage are fixed
as rectangle, Yang et al. [29];anq ;Mei etial. [lé]ib_gth extended the seamless blending

to generate arbitrary shape collages. They. also:design three ROI arrangement schemes

(i.e., book, diagonal, and spiral ) for satisfying different video genres.

Correa and Ma [9] presented a method to interactively generate seamless video
summaries and their result is the static 2D panorama background with moving object
on it. Barnes et al. [4] proposed a method to automatically generate video tapestries
in different level of details that allow for continuous panning and zooming. Chiu
et al. [7] ,for small displays on mobile devices, presented a method for creating highly

condensed video summaries called Stained-Glass visualizations and generated non-
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Video Booklet (2005)

Video Tapestries (2010)

Figure 2.2: Previous works for video presentation(image summaries methods) listed
according to the publish dates.



triangular layout to effectively summarize the salient regions. Kang et al. [15] pro-
posed the space-time video montage. The method simultaneously analyzes both the
spatial and temporal information distribution in a video sequence, and extracts the vi-
sually informative space-time portions of the input videos and then incorporates several

extracted video parts in one video volume and try to maximize total salience.

2.3 Our Contributions

Our goals are similar to automatic image_collage in that we wish to preserve salient
regions on the canvas. Additionally; Wc hav.e i ingi‘orporate both images and videos
in our input, and automatically gen&rate a collaoe that we can efficiently edit and ma-
nipulate afterwards.. This nieans we h@ to fcpr;,o some of the more time-consuming
techniques such as graph-cut, Pm{sTn b}f’n(-i:ng ang Markov chain optimizations used
by several image collage researchL n the -e1'1d (5urs 18 an. 1ncremental algorithm that it-
eratively computes locally opt1ma1 collage conﬁguratlons We also choose to play the
videos as-is without skimming, and we do not consider this a drawback because we

can readily transform our input videos with any suitable skimming techniques. Specif-

ically, our contributions are as follows.

* We propose a novel method for analyzing temporal-spatial salient regions of a

video,

* a method for extracting the temporal-spatial salient regions while removing ap-

parent camera or object motions,

10



* an efficient, greedy technique for packing a collection of irregularly-shaped vi-

sual media, and

* a scheme to iteratively optimize the packing when it is disturbed.

11



12



Chapter 3

Algorithm

% =

We design our media asgs:érr:lblage techniqueév";f;ﬁSed on a few visual guidelines.

First, we wish to reduce Visual co@jtiesﬁ:ﬁye navi:glaiing these media. This means
the non-essential parts of a video IC n@__ﬁe ed up ot eliminated in the assemblage.
We also plan to supportjnteract'lv op{%ion |' such as-addition, deletion, and rear-
rangement, and while the(_f_é[é@em elge v-vm-lld c|1 nge "ei'_tiring these operations, its lay-
out should stabilize and stay stétlc 500N aftqr:thé'zégoperations are complete so as to

minimize disturbances while playing individual videos within the assemblage. For

Media Collections Saliency Analysis Salient Volume Extraction Packing Media Assemblage

() (b) (c) (d) (e)

Figure 3.1: The overview of our assemblage system. (a) The media collections with
shots are detected. (b) The saliency analysis is performed on every frame. (c) The
salient volumes are extracted in every shot. (d) These media are packed into the canvas.
(e) The final assemblage is generated.

13



this purpose, the essential, or salient, region of a video needs to have a static outline
throughout its timeline. To ensure efficient extraction of the salient regions, we need

to be aware of the camera motions for videos where the subject matters are moving.

Starting with a set of videos and photos M, our system computes a configuration
X = {p,-,Ri}LIZIJ, where p; is the position and R; is the high salient region of the i-th
element of M. Our goal is to find the optimal configuration X* subject to a packing
energy E,

X* = argm)%nE(X). (3.1)

Fig. 3.1 illustrates the stepsiof our,algorithm. We treat photos as static videos, and
perform the process in two stages, nafnely ;n'ediaanalysis (Fig. 3.1(a-c)) and media
packing (Fig. 3.1(d-e)). -The medig:,analysis,_Stageris @ preprocessing step designed
to discover informative regions Withff;:each.'indjvidtlal videgs. Given an input video,
we use color histogram to Sphit 1} ntof;.:umbel oftvideo shots. Then, for each in-
dividual shot i, we compute tem@oLll spatla sallency of its frames (Fig. 3.1(b)) and
extract the region of 1ntereé-t1;3 byI éons1der1ng thie: saliency distribution within the shot
(Fig. 3.1(c)). The media packing stage Eombinesall the input media and efficiently
packs them together. We first compute an initial packing by greedily minimizing the
blank region on the canvas, followed by an iterative process that adjusts the packing
configuration X according to the packing energy E (Fig. 3.1(d)). Finally, the system
decides what regions are visible for every media and generates a final assemblage

(Fig. 3.1(e)). In the rest of this section, each step of the algorithm will be described in

more details.

14



3.1 Video Shot Detection

As stated before, we would like the salient boundaries of each individual element
in the final assemblage to stay fixed while playing back videos. For this purpose, we
want each element in M to be as coherent as possible, and ideally each element should
consist of only one single shot. Since how to detect perfect shots is not our main
concern, we find solution from previous shot boundary works. There are many possible
methods for shot boundary detection and they shows that different kinds of video will
need different kinds of algorithms to produce suitable result. After experimenting with
several possible methods, we found the methpd by Lienhart [16] to be effective for our
video sample sets. This'techniqueameasures eolor-histogram differences between two

adjacent frames and declaresa shokboundary-when a large color discontinuity occurs.

3.2 Saliency Analysiéi

Psychological studies show: tﬁa{t visual sighélsf contrast such as motion and color
are likely to attract people’s visual attentions t24]. We adopt similar visual attention
formulation by Liu et al. [17] to compute a saliency map per frame per video, and
emphasize the salient regions in the final assemblage in order to utilize the 2D canvas
more efficiently. In this method, the saliency of each pixel p is calculated as a weighted
sum of the motion contrast saliency (Sys), the image saliency (S7) and the face saliency

(SF), as follows

S(p) =wuSu(p) +wiSi(p) +wrSr(p). (3.2)

15



@ S © @

Figure 3.2: The examples of saliency analysis on the video frame. (a) The input video
frame i. (b) The input video frame i+ 1. (c) The original motion magnitude of frame
i. (d) The motion contrast magnitude of frame i. (The dog video clip is licensed as
Creative Commons.)

(b) © W @

Figure 3.3: Examples of our saliené?analysis'p-)‘rocess (&) The input video frames. (b)
The motion contrast saliency S;. (c) TiIE nnage saliency S7. (d) The face saliency Sr.
(e) The combined salienCy S. | | === .

m |l

Weuse wyy =wy=wp=1/ 3 in ourllerlementatloh Our method differs in that we use a

[
simple panning motion model to preserve the styles of the original shot, and we adopt

a different image saliency measure. An example of this process is shown in Fig. 3.3.

Motion Contrast Saliency. Moving objects should be assigned higher saliency val-
ues because humans are particularly good at perceiving them. Therefore, given the
observed motion (the optical flow that assigns a motion vector to each pixel) with an
image, we would expect that regions with motion are likely to be salient. However, the
simple approach of only considering the amount of motion at each pixel is insufficient

because people are good at factoring out global motion, such as that induced by head

16



or camera movement.This behavior is encoded as motion contrast saliency as shown
in Fig. 3.2. First, we use Lucas-Kanade method [18] to analyze the relative motion
between two adjacent frames, and then approximate a global camera motion by using
a voting scheme where the motion vectors are used to vote both on a consensus motion
direction and magnitude. The motion contrast is then obtained by subtracting the orig-
inal motion vector with the global camera motion and normalized to 0 ~ 1 into motion

contrast saliency.

Image Saliency. There exist various methods to measure image saliency based on
low-level feature contrast [14, 13, 1; 12]. Wefilc_hoose the approach by Achanta et al. [1]
which calculates the saliencyof eagh pixel baséden:its color and luminance differences
with respect to its neighbofs and outputs fullresolution'saliency maps with well-dened
boundaries of salient objects. Fig. 33((375hows the image saliency results.

R |

Face Saliency. To emphasizé the; ianor'téﬁice offhuman fices, we detect the presence
- N |

Ty I | | .
of faces with the methods propesed. by Viela.{261]. The face saliency value is then

1

calculated by applying a Gaussian attenuation function surrounding the area of the

detected faces. Fig. 3.3(d) shows the image saliency results.

3.3 Salient Volume Extraction

Given the saliency map of each individual frame, our next goal is to extract volumes
of the video for the following packing stages. For a video shot where a single salient

object moves at a constant speed, we may compute the cumulated saliency S, along a

17



temporal skew (x,y),
Se(i j) = 28 (i+ fx,j+fy), (3.3)
f

where S¢(i, j) is the saliency value of the f-th frame at pixel index (i, j). An optimal
direction (x,y) is where the cumulated saliency values are concentrated in a region
as small as possible. To determine this direction, for each frame we iteratively select
the pixels with highest saliency values until the sum of these values exceeds half of
the total saliency values within this frame, and construct a bounding box using the
selected pixels. Then, we fit a least-square line over the centers of the bounding boxes
over time, and use the line direction as the optimal direction to align the video volume,
accumulate the saliency values;, and determilrll'e the region. that should be preserved in

the final assemblage.

To calculate this region, we againiée;lectrt‘hoqe pixels with highest cumulated saliency

1

value until the sum of these Valueis [each'es a ﬁredeﬁned threshold of say, in our case,
1

50% of the sum of cumulated s¢11 ncy*om ull the plxels We then construct this
I-Region R; of the selected plxels “The reg10n out81de the I-Region is defined as the

external region E-Region, whose plxels can be discarded when a tighter packing is

desirable.

3.4 Packing

After extracting the salient volumes, we pack the media set M by following a few
criteria. First, we wish to use the canvas space efficiently. Second, salient regions

of the media should never be occluded. Third, the canvas should observe the aspect

18



Figure 3.4: An initial packing example. The I-Region are added to canvas at the posi-
tion that minimizes the empty space while respecting the aspect ratio of the canvas. If
the placement orders are different, it will produce different initial packing results.
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ratios of the display devices. With these goals in mind, our objective is to find an
optimal configuration X* without occluding each of the I-Regions in M. This packing
problem, unfortunately, is a NP-complete problem, and we propose to approximate the
optimal solution by a two-stage heuristic. First, we use a greedy algorithm to initialize
a layout configuration. Then, this configuration is iteratively optimized to reach a local

minimum.

3.4.1 Packing Initialization

As shown in Fig. 3.4, the packing 1n1t1ahzat10n process is as follows. The first
I-Region is first placed at thefcenter of the eanvas.- Then, we place each remaining
I-Region R; (in arbitrary. order) 1‘adﬁ1¢ally aroynd the canyes center while ensuring no
overlap between R; and all other I4R@ns',éﬂrezldy on the canvas. We pick an op-
timal direction that minimizes,th¢ | | mpt;f sgaee while respecting the aspect ration of
the canvas. Because of our packlh c11terla the mltlal packmg result can have prede-

s I I

fined aspect ratio. Fig. 3.5 shows [wo examples of: the packing initialization under two

different pre-selected aspect ratios of 4:3 and 3; 1, respectively.

3.4.2 Packing Optimization

After initialization, we iteratively optimize for the configuration X* by randomly
selecting an I-Region and moving it toward a unit direction that reduces the packing
energy E by the greatest amount. Each step of this process is guaranteed to reduce the

packing energy, and we repeat the process until it stabilize to a local minima. Based
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Figure 3.5: The results of packing initialization with different preferred aspect ratio:
(a) 4:3; (b) 3:1.

G

on the packing criteria described before, we design our energy function based on a
combination of penalty measures on eimpty space, [-Region occlusion, and aspect ratio
deviation, as follows

TS BB N e (3.4)

| -
e

where the occlusion weight k is set fo 'Exﬁ@S i our implementation to ensure that the
i 1
I-Regions never get occluded. We now.deseribe each of the energy terms (E,,, o, and

E,cc) in the following paragraphs.: ‘

Empty Space Penalty. We define the.empty spaces on the canvas as regions that are
not covered by any I-Region. This energy term represents the percentage of empty

spaces on the canvas, as follows

_ Area(RB - U,‘R,’)
“" Area(Rp)

(3.5)

where Rp is the bounding box formed by all I-Regions R;.

I-Region Occlusion Penalty. This energy term penalizes coverage of salient video
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(a)

Figure 3.6: Comparison of assemblage methods. The red polygons are I-Regions. (a)
A straightforward Voronoi segmentation. Notice some I-Regions are eroded in this
example. (b) Our approximated region-based Voronoi approach.

regions, and is simply defined as the'rt(i):tal aréés of covered I-Regions,

o= Zéfea(R";)f:aA rea(ui-R_‘,ﬁ_). (3.6)

'r / |

| ™
L ,-' "-.n! E-'l'- I
— Y

Aspect Ratio Deviation Penalty| he (Rllmal packing should respect an aspect ratio

specified by the user. ThlS can be Id scrlbed by He followmg term

R — e 3.7
< (QCi_QP)Z"'g G7)

where g, is the aspect ratio of the bounding box Rpg, g, is the desired aspect ratio, and
we use a small number € = 107° to set an upper bound for ¢. Since the magnitude of
the empty space penalty E,; is always less than 1, the first term in Eq. 3.4 becomes

very small once we approach the desired aspect ratio.
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3.5 Media Assemblage

Now that we have a layout configuration of the media set, we may begin generating
an assemblage on the canvas. The choice of rendering styles is a rather artistic one.
For example, AutoCollage adopts a seamless blending style between adjacent images
[21]. For our purposes, we need to clearly distinct media boundaries for playback and
interaction purposes. Simply rendering all /-Regions may suffice, but we would like to
equally allocate the empty spaces to its surrounding videos and fill up as much empty

spaces as possible by rendering non-essential E-Regions.

A straightforward approach is to segment the canvas using complete I-Regions as
Voronoi sites. As this method peoved to be too"slbw to run at interactive rate, we

approximate this algorithrfi by samptmg a nymber ol Voronoi sites along the bounaries

of the I-Regions. This approach, in ade"ﬁontd its speetl advantages, has an additional

I 3
| a |

benefit where we can control the s otht.i&s off ,Qoronoi region boundaries by changing

- T

Ak 1 L
the sampling rate of the sites. Fi%;.,3.6 shows ihp assemblage using our approach (b)
T ! L '
compared to a simple Voronéi {segm?ntationr(a)."ziNotice that the sites are sampled
a short distance away from the I-Région boundaries to prevent nearby regions from

eroding into each other. Fig. 3.7 shows some results of different sample rates.
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Figure 3.7: Different sample rates of the sites. (a)Only sample the I-Region’s vertex.
(b)Sample per 40 pixels length. (c)Sample per 20 pixels length. (d)Sample per 5 pixels
length, the resulting edges are much more smooth. The photos are from New York trips
photo collection.
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Chapter 4

Implementation and Results

In this section we,present gur results as'well*as several applications. Fig. 4.4
shows the intermediate restlfs of sfimmarizifg A collection’ of movie trailers, including
saliency maps (b), I-Regioni(c), and finalmedia assemblage (d).

i

|

Our implementation runs on 4 32OGHZ degktop PC with 4.00GB of memory and

the running time and space uséd by our algorithntwaries according to the amounts of

~
E> =

(a) (b) (c)

Figure 4.1: Interacting with the assemblage. The user drags the blue region (a), caus-
ing several salient regions to become occluded (b). Our system iteratively refines the
assemblage and resolves the problem in just a few iterations (c).
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Figure 4.2: This figure shows the insertion processing of four cartoon movie trailors.
In (a), there is just a video. (b),(c) and (d) are the reoptimization results after inser-
tion. The cartoon movie trailers are from films Ratatouillepixar animation studios), Shark

Tale(DreamWorks Animtion), How to Train You DragonreamWorks nimation) and Ice Age(iue Sky
Studios).
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Figure 4.4: Assembly of a collection of movie trailers, including (a) one frame
from a movie trailers, (b) its saliency map, and (c) the extracted volume and the I-
Region (red polygon). (d) shows the final assemblage of the collection. The cartoon
movie trailers are from films Ratatouille(pixar animation studios), Shark Tale(DreamWorks Animtion),
Shrek(DreamWorks pictures), How to Train You DragOIl(DreamWorks nimation), Ice Age(Blue Sky Studios)
and Toy StOI'y(Walt Disney Pictures).
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images/videos. The preprocessing, saliency map computing and video volume extrac-
tion, for a short shot(about 300 frames) takes roughly 1.5 minutes to compute. After
the preprocessings finished offline, the initial packing needs another 2 seconds to com-

pute the initial result showed on the system UI.

Our system creates interactive assemblages that users can interact with via inser-
tion, deletion, and dragging operations, and our system automatically adjust the layout
to the next optimal configuration after these operations. Fig. 4.2 and Fig. 4.1 shows ex-
amples of insertion, dragging and dropping of a media file, and our system’s response

to refine the configuration and Table 4.1 shows time consumed by our algorithm.

In addition to these manipulation o'peratilbhs, our. system can be used for a variety
of applications such as video gollection summariiation, single video summarization,
personal media folder visualization;: agéi_ ip_t_eractive vid(ejb board. We now discuss a
few of the possibilities as follows. *’ f‘”’ \

H A
Media Collection Presentation EPfevi(;us-woif.k_s like image collages and slideshow

can only present static image collections. For vidéo Gollection presentation, video-

sharing websites usually use a single frame to represent a whole video clip. Our system

Table 4.1: Processing Time

Step Cartoon New Year
Num of Medias 6 8
Initial Packing(secs) 0.071 0.134

Optimization util Stabilized(iterations/secs) 61/3.605 107/3.689
Note: The table shows time consumed by our algorithm and these experiments
are generated on a desktop PC with an Intel Core 2 Duo 3.2GHz CPU and 4GB RAM.
According to the table, we can know Initial Packing time is positive correlative to num
of medias. From the optimization time, we also can show our algorithm is real-time.
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can provide a presentation of a set of visual media collections,including both videos
and images, and dynamically play the videos. A user can preview all these videos
simultaneously on a single screen and then modify the presentation as she sees fit. If
the video shots are of un-equal duration, they are played in loop in our current design.
However, this is just one of many possible presentations of the assemblage and is not
the major concern of our core algorithm. A possible alternative is, for example, for
the system (or the users) to remove finished shots from the canvas and insert new
shots whenever desired. This can be realized without modification to our core real-
time packing algorithm. Fig. 4.4(d) and Fig. 4.3 are a few example of video collection

summarization. ' E

Single Video Summarization. Oursystem,can summarize a single video by assem-

bling each individual shot onto a Qariﬁ.f ijnlike traditional video summarizations,

| - |
which select some key framesian fsumﬂﬂl;ﬂrizei them with.still image collage, our ap-

proach can play all shots s@n}ultah})éousl; .(-)r séquentially with time overlaps, and the
users can get a quick temporal févie-w treugh t:his":dynamic summarization. In current
implementation, we fix the shots ambunt in the canvas. When shot change, we sim-
ply substitute the old shot with the new shot in the same position. After substitution,

the system will real-time reoptimize the shot layout. Fig. 4.5 shows an example of

summarizing a video.

Personal Media File Browser. Fig. 4.6 shows an example of visualizing a collection
of media related to traveling. As a user browses through this collection in the root

folder, she can choose to preview representative photos and videos from different trips
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Figure 4.5: Summarization of a mqvic?_ trailer(Harry Potter). Regions of videos in this
assemblage are different video shots.come from the same trailer.

3
:,;‘
)
%
S

Figure 4.6: A media file browser application. (a) Preview of a folder with travel photos
and videos. After clicking on the bridge photo, the system brings up an assemblage of
media files related to the trip to New York (b). The photos are from home foreign trips
photo collections.
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(a). She can click on one of the interest region on the assemblage which brings up

media files from the sub-folder, presented as another assemblage (b).

4.1 Comparisons

The main difference between our approach and the prior work is that all of the
previous methods are all offline solutions, whereas ours is the first real-time interac-
tive collage system. Moreover,our packing algorithm is designed to support real-time
media insertion, deletion, or relocation opétations, whereas previously proposed meth-
ods do not have related mechanisms-to real—-ti:me opf[imize for the media layout while

respecting user intentions.

Here we present a qﬂaiitative Eé@p—a?ri?fi‘_ﬁ,‘tb\etween AﬁtoCollage [21] and our ap-
proach. AutoCollage opérates on 1 ag;é-'!rnd ;v% generateboth of the results using the
same photo sets. Fig. 4.7 shows tk|e ‘omjglir;-isoﬁlsion twodifferent photo sets. The most
obvious difference is an aeﬁthetid cihoice where'p rE.f\u:tOCc:jllage generates seamless col-
lages while ours have clear bdﬁf;darigs around the- })hotos. Both AutoCollage and our

system are completely automatic. However, users can interactively adjust and refine

the assemblage generated by our system, and this is not possible with AutoCollage.
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tom row: New Year’s Eve 2011. Column (a): our results. Column (b): AutoCollage.
The photos are from home new year photo collection.
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4.2 Video Results

Readers are strongly recommended to watch our video results via the following
anonymous link:

http://www.youtube.com/watch?v=9tzazErlLCE
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Chapter 5

Conclusion and Future Work

In this paper, we have presented a dynamie fneaia assemblage method for sum-
marizing and presenting \;iqua m¢didintergCtiyely. We' analyze the temporal-spatial
salient regions within each shot for md"_fj-@fhmé:nt packing. Our energy function and
iterative optimization process gugr#mteel DLLIILISIOII free packing of salient media re-
gions while ensuring appropriate {:a[nvas aspect;;réltlo. We'also showed that our method
can be applied to many applic‘artiions,r rsuch as imaé:e{and video collection presentation,

single video summarization, and hierarchical media browser.

In our current implementation, the packing algorithm does not respect any user-
specified order, and we are working on packing algorithms that take the order into
consideration. Furthermore, our algorithm, while being fairly interactive, may get
stuck on local minima, and we would like to see a better re-initialization scheme when
this happens. Finally, unlike a traditional file browser, a media assemblage is inherently

limited by the size of its canvas, and therefore we plan to introduce methods that allow
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panning and scrolling as well as smart hierarchical layout within the assemblage. With
this, it becomes possible to jump seamlessly from file browsers, media previewer and
media assemblage browsers, and thus endowing users with more choices of managing

their ever-growing media collections.
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Appendix A

A.1 Convex Hull Region Calculation

In order to construct the I-Region mentioned im 3.3, we need to calculate the convex

hull region. There are five common at gorithlm's'?;:

r ':'F |

Incremental. The incremental a' rlthiT is dl’ll algonthm for computing the convex

k

hull of a set of points in two or nio e d1mens1o‘nk ‘The basw idea is to add points one
4 i :

.
at a time updating the hull as We-pr oceed. '

Gift wrap(Jarvis’ march). Start at some extreme point, which is guaranteed to be on
the hull.At each step, test each of the points, and find the one which makes the largest

right-hand turn. That point has to be the next one on the hull.

Graham’s Scan. First, we need to find an extreme point with the largest y coordinate

as pivot on hull. Sort the points in order of increasing angle about the pivot. We end

Thttp://sls.weco.net/blog/josh68/07-jun-2007/2060
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up with a star-shaped polygon. To build the hull, by marching around the star-shaped
poly, adding edges when we make a left turn, and back-tracking when we make a right

turn.

Quickhull. We need to first find good chord to start the algorithm goes from the
leftmost to the rightmost point in the set and then do partition iteratively until find the

convex hull.

Divide and Conquer. Recursively divide the points into two equal sized sets and find

convex hull of each smaller sets;, and merge the final result.

The method here we use 1s proposed by Sklanskyzr. 1t’s the first O(n) algorithm. First,

find an convex vertex and'label it pQ \Secghd,YLabel\the remaining n-1 vertices in a

clockwise order, starting at p0. Thlrd';ifase ,tflree coins*on vertices p0, pl, p2 and

E

' 1
label them “back”, “center”,Jand f*ont’”}@peétively. Finally, through the remove and

relabel process to decide the ‘éonvd'zxL hull region; Fig. A: 1'shows the calculation results.

A.2 Voronoi Calculation

In 3.6, we use voronoi algorithm to equally allocate the empty spaces to its sur-
rounding videos. The problem states as follow, given a set of points S(Voronoi sites)

in the plane, do the planar subdivision3Planar subdivision is the subdivision of a plane

Zhttp://cgm.cs.mcgill.ca/ beezer/cs507/3coins.html
3
(
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(a) (b)

Figure A.1: (a) and (b) are convex hull results. The red points are point sets and the
polygon with green edges are the convex hull we found.

into a set of non-overlapped regions (facets) that cover the whole plane.) that edges
of each subdivision facets are all'the points in the plane that are equidistant to the two
nearest sites.

The algorithm we implement is basi;(:i' on delaunay triangulation which . The idea
is that for every subdivision there ekistsa"duallsubdivision in which facets and points
(subdivision vertices) swap their-iroles,s0 ifawe can do delaunay triangulation for those
voronoi sites, the planar subdivision“is result-from.the dual answer. The voronoi seg-
mentation is calculated by the following steps:

1.With voronoi sites, subdivide a plane into triangles using Delaunays algorithm.

2. The dual subdivision is a Voronoi diagram of the input 2d point set.

Fig. A.2 shows the calculation results.
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(a)

Figure A.2: (a) shows the voronoi gites. (b)'1s the planar subdivision result.

(b)
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