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Abstract

A two-level system which decays spontaneously into field vacuum is
studied through the Jaynes-Cummings model in the rotating wave ap-
proximation (RWA). When at most one excitation is considered, this
model is exactly solvable. Here we evaluate the non-Markovian two-
time correlation functions (CFE’s) of system operators for this model in
two ways: one by directly solving the system-environment evolution,and
the other by using the perturbative time-convolutionless non-Markovian
master equation approach. We derive valid to fourth order in system-
bath coupling strength a non-Markovain evolution equation for the two-
time CF’s of system operators. We use the derived evolution equation
to calculate a two-time CF for the two-level model and compare it with
the exact result obtained by direct evaluation. Another numerical se-
ries acceleration method is applied to the calculation of the perturbation
decay, and this method is found to improve the accuracy of the evolu-
tion equation. The result obtained by the derived perturbative two-time
evolution equation is much better than those by the perturbative Marko-
vian Quantum regression theorem(QRT), the non-Markovian QRT and
exact QRT as it agrees more closely with the exact result even when the
model is in the regime where the bath correlation time is comparable
to the system relaxation time.This demonstrates the validity and use-
fulness of our derived non-Markovain two-time evolution equation. The
exact spontaneous emission spectrum is also calculated, and it has very

different behaviours in the strong coupling an the weak coupling regions.
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Chapter 1

Introduction

A realistic quantum systems is always hard to isolate from its environments. The
environments that usually contain infinite number of degrees of freedom, interact
with the quantum systems. The infinite environment degrees of freedom contain
many information that we do not want to know, and the relevant information is
from the quantum system of interest. One of the quantities is reduced density
matrix of the system, it describes the state of the reduce system. Thus the system-
environment interaction will lead to quantum dissipative, quantum decoherence, and
spontaneous emission phenomena of the system when the environment degrees of
freedom are traced over.

The evolution of reduced density matrix is governed by a equation called the
quantum master equation. There are two kind of master equations Nakajima-
Zwanzig time-convolution and the time-convolutionless ones. In this thesis, we focus
mainly on the time-convolutionless approach.

The two-time correlation functions are important quantities [1-10], they can pro-
vide some important information of the system, whereas the single-time expectation
values can not. There are some physical quantities that require the calculation of
two-time correlation functions, like the spontaneous emission spectrum of an atom,
the photon bunching and anti-bunching phenomena, and the current noise in nanos-
tructure devices.

In the Markovain open quantum systems, an useful method to calculate two-time

correlations functions by master equation is the quantum regression theorem (QRT).



It states that the two(multi)-time evolution equation of the system operator corre-
lation functions same as the one-time evolutionequation for expectation values. The
quantum regression theorem could is valid in Markovain open quantum systems,
but may not be valid in non-Markovain open quantum systems [1, 2, 4, 10, 11].
The Markovain approximation assumes that the bath correlation time is very short
as compared to typical system response time, and the bath correlation function
is treated as delta-correlated in time, this is not true for non-Markovain systems.
Therefore, the quantum regression theorem is not applicable when the bath corre-
lation time is large and comparable to system response time.

In Ref.[2], a time-convolutionless equation for two-tome correlation function of
system operators to second system-environment interaction Hamiltonian has been
derived. In this thesis, we extend the derivation of the general time-convolutionless
evolution equation for two-time correlation functions in higher order in perturbation
expansion. Furthermore, we study a two-level system coupled to zero-temperature
bath through the Jaynes-Cumming model. When at most one excitation is con-
sidered, this model is exactly solved. That is, all single-time expectation values of
this model can be calculated. We also find that a particular two-time correlation
function can be evaluated exactly. We then use the derived evolution equation up to
fourth order to calculate the two-time correlation function for the two-level model
and compare it with the exact result. Since the higher order perturbation result be-
come very complicated and hard to calculate, we employ series acceleration method
to improve the perturbation result.

The thesis is organized as follows. In Chapter 2, we derive the general time-
convolutionless evolution equation for two-time correlation functions up to fourth
order in the system-environment interaction Hamiltonian. In Chapter 3, we evaluate
an exact two-time correlation function of system operators for Jaynes-Cummings
model with one excitation. In Chapter 4, we use the evolution equation derived in
Chapter 4 to obtain a perturbation evolution equation to fourth order, and then

deduce an exact evolution equation based on the result obtained in Chapter 3. We



also introduce the series acceleration method in this chapter. In Chapter 5, we show
the difference between the perturbation and the exact results in different conditions.
We also calculate the exact spontaneous emission spectrum in the chapter. Finally,

a short conclusion is given in Chapter 6.



Chapter 2

General master equation of
two-time correlation functions for
reduced effective density matrix

An open quantum system is usually described by a system Hamiltonian belonging
to Hilbert space S, an environment Hamiltonian belonging to Hilbert space B and
an interaction Hamiltonian between system and environment belonging to Hilbert

space S ® B. The total Hamiltonian can be written in the form
H=H,+ Hg+ H; = Hy+ Hy, (2.1)

where H, and Hp are system and environment Hamiltonians, which describe the
uncoupled state evolutions of system and environment respectively, and Hj is the
interaction Hamiltonian which describes the interaction between the system and
environment.

To describe the open quantum systems, we use the density matrix approach
which is helpful for dealing with mixed states. The density matrix contains the
information of not only the probability but also the coherence. The state vector
|¢) is always a pure state. The relation between state vector and density matrix is
defined as p = [¢) (9| .

The time-evolution of density matrix is described by the von Neumann equation

in the Schrodinger picture.

ot



In interaction picture, the von Neumann equation becomes

9 plt) = —ilHi(0) 5(0)] = Z(Dpl1), (2.3)

where ;(t) = e~ Hyelo! and j(t) = e/ p(t)e=.

The two-time correlation functions can be written in the Heisenberg picture as:

(A(t1)B(t2)) = Trsan{UT (1) AU (1)U (t2) BU (t2)p(0) } (2.4)
= Trser{ AU (1 — t2) Bp(t2)U' (t1 — t2)} (2.5)
= Trs{ATrp{X (t:1)}} (2.6)
= Trg{e 0N Ae™ 00 Trg { (1) }}, (2.7)

where A, B is any operator which belong to S, and we have transformed from the

Heisenberg picture of Eq.(2.4) to the interaction picture of Eq.(2.7).

x(t1) = Uty — t2) Bp(t2)U' (t1 — t2) (2.8)

X(t) = el (e 0n, (2.9)

x(t1) and x(t1) are effective density matrix in the Schrodinger and interaction pic-
tures, respectively.
To solve for x(¢;), we require that x(¢;) satisfies the following conditions

Table 2.1: The requirement of problem
1. The effect density matrix satisfy %TIB{)Z(U)}} = Trg{—i[H;(t1), x(t1)]}

2. The initial condition in the time ¢y X(t2) = B(t2)p(t2) should be know.
3. The state p(0) can be factorized in time t = 0 , i.e. p(0) = p,4(0) ® pp,
where p, €S, pp € B

All of the following discussion had assume above three conditions be satisfied.

2.1 Projection operator

Most often, the relevant information we want to know is reduce effect density

matrix, so we need a technique to separate system and environment. One of widely



used method ([10, 12-16] ) is the Nakajima-Zwanzig projection operator P ([17, 18]

). It is defined as follows:
PW(t) = Tra{W (1)} ® pp = Wi(t) ® pp (2.10)

Here we do not require W (t) must be a genuine density matrix, and it could be an
effective density matrix. pp is some known state of environment called the reference
state. We assume that pp would not change with time evolution. The projection
operator helps us to separate the relevant part and irrelevant part. It also helps
us make calculation easier. In other words, with projection operator P, we do
not need to treat the evolution of environment state. With completeness relation,
we define operator @ = [ — P. QW (t) contains the information about system-
environment entanglement, about whether pg is in an equilibrium or pgp change

with time. Operator P and Q satisfy the following properties.

o) 1=y 3 (2.11)
00 =0, (2.12)
PP =P, (2.13)
PQ=QP =0, (2.14)

Here, we make an addition assumption. We assume the reference state pp of
the environment is a Gaussian state. It implies that we can apply Wick’s rule to
express the high order moment as a combination of the second order moments, and
the interaction Hamiltonian satisfy Trg{[ps, H;]} = 0 . Using above properties we

obtain the following equation.

PL(t)P =0, (2.15)

PL(1).L (L)L (ts)P =0, (2.16)



2.2 Cumulant expansion

Cumulant expansion provides an elegant and easy method to obtain exact time-
convolutionless master equation or evolution equation for two-time correlation func-
tions. The method introduced by Kubo [19] and Van Kampen [20, 21], can apply
to many physical problems. The connection of cumulant is through the moment
generating function. Suppose we have an operator y and reference state pg, which

satisfy y € S® B, and Trg{pp} = 1 . The first and second moments are defined by

(X)p =Tre{Xpp} =, (2.17)

(X% g = po. (2.18)

The moment generating function is defined as

M(©) = ()5 = S =3 (2.19)

where £ is the expansion parameter. The cumulants generating function K (&) is

(e.e] o0

K(©) = (@) = 3RSy =S (2.20)
M(E) = exp(K() = 3 (XS =ep(3 (X5, 221)

The cumulants K, are the coefficient of expansion of generating function K (§).
The cumulant average (X™). is not usual average, it is the coefficient in Eq.(2.20)
with order ¢°. It is obviously that g = 1 makes Ky = 0. The notions for average
used in this thesis are summarized below. The notation (---)p means to trace the
quantity over the environment reference state pg, (---). denotes the cumulant av-
erage, the average without any subscript means to trace over all degrees of freedom.
For examples, the moment (X™)p means trace over reference state with operator

X", (X™), is n-th cumulant.



The cumulants expansion can be extended to multi-observable as,

M(&,--- ,€n Z ZHﬁ (XU X g, (2.22)

M(E) = exp(K(D)) = exp(> - 3 15X, @2

v1=0 UN= =0 ]
and the cumulant (1). = 0. The results of cumulants with multi-observable can be

found in Ref.[19]. For example

(Xi)e = (Xi) B, (2.24)
(XiXj)e = (XiX;) 5 — (Xi){X}) B, (2.25)
(XiX;Xp)e = (XiX;Xy) B + 2(Xi) B(X}) B{(Xk)B

— {(Xi) B{X; Xk) B + (X;) B(XiXi) B + (Xi) B(XiX;) B}, (2.26)

The most important result to us is the relation of the time-ordering function and

cumulant. The relation was found in Ref. [19-21]

<Texp(/t: dr X (7)) B
:i/t:dﬁ /t de---/tOTnldTn<X(¢1)X(Tz)---X<Tn)>B (2.27)

= exp( Z K (t) = exp(K (1)), (2.29)

where T' denote as time-ordering operator and

K'(t) = i K. (t) (2.30)

-3 [an /t dTQ---/tM A (X (r)X (7) - X(m))er  (2.31)
Kot = [ dn /t Yy /t T (X ()X (1) - X (7). (2.32)



2.3 Cumulant expansion to homgenous master equa-
tion

First, we give a connection between the moments and the projection operator.

We can write an alternate form of average through the projection operator.

PXP = TI'B{X,OB}TI'B{' e ® /)B} = <X>BP, (233)
(X; - X)) (X X)P =PX; - X;P - PX, - X, P, (2.35)

The moment followed by projection operator is equal to projection operators in both
side of operator. Our main goal is to get an exact time-convolutionless evolution
equation for two-time correlation functions or equivalently the time-convolutionless
for the effective density matrix ys(t). The requirement of the master equation
for xs(t) was listed in Table 2.1. We will solve the following equation with the
requirement,

a% X(t) = —ilHi(t), X(1)] = ZL(t)x(h), (2.36)

where .Z is Liouville operator defined in Eq.(2.3). The formal solution is

() = T exp / Ldr 2(n)R(t), (2.37)

to

Pi(ty) = PT exp / L4 2(n)(P + Q). (2.38)

to
If we apply the projection operator on x(t), we obtain

Pi(t) = (Texp( / dr 2 (1)) 5P (1)

to

+ PTeXp(/t dr £ (1)) Qx(t2), (2.39)

t1

Using Eq.(2.29) - Eq.(2.31), we obtain Eq.(2.41)

PR(tr) = exp(Y K, (t,2))X(t2) + PT eXP(/t dr2(7))Qx(t2), (2.40)

n=1 t1



Differential Eq.(2.40) with respect to t;, we obtain

0

(‘)_tlpx t1) ZK t1,t9)Pexp ZK (t1,t2))PX(t2)

t1
+P$(t1)TeXp(/ dr (7)) Qx(t2),
to
where

K,(t) = a[(n(t).

Using the relation obtained from Eq.(2.40)

exp ZK (t,t2)) =Px(ty) — PTexp(/t 2cl7:,?(7))Q>2(751),

and insert Eq.(2.43) to Eq.(2.41), we can get

0

a—tlpx tl ZK tl,tQ)PX(tl)

n=1

+P{L(ty) ZK (t, ) PYT exp( / § dr 2 (7)) QX (t2)

to

= i K, (t1,t2)Px(t1) + R, (t1,12) QX (t2),

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)



The relation between cumulants and moments of higher order are not showing here.

The expressions of the lowest three R, (t1,t2) shown in the following

Rl(tl, tg) - Pf(tl)Q, (250)

Rg(tl, t2) = /tl dTlpg(tl).,iﬂ(Tl)Q, (251)

to

t1 T1
Rg(tl, tg) = / dTl/ dTQPg(tl)g(Tl)j(TQ)Q
to to

—PL()L(1)PL (1) Q — PL (1)L (m)PL(m1)Q. (2.52)

Here, we have used the relation PQ =0 .

2.4 Inhomogenous term

The second term in the r.h.s. of Eq. (2.41) can not be evaluated directly because
we do not know about Qx(tz), that contains the information of the environment
degrees of freedom. An alternative way is to use the requirement 3 in Table 2.1 such
thatp(0) = Pp(0). The first step is to separate Qx(ts) as QX(t2) = B(t2)Qp(ts)
since B(ty) is a system operator, Then the problem becomes how to derive Qp(t,)
in term of Pp(ts).

Staring form Eq.(2.2) and requirement 3 in Table 2.1, we can obtain

i) = Z(t)le), (259
p(te) = {1+ Z /0 2 dry -+ - /OTn1 dry L(11) - L (1) }YPp(0)
= {1+ MYPp(0), (2.54)
where
M= Z/ﬂ Cdr - /0 dr L) L), (2.55)
We apply P and Q to Eq.(2.54)
Qp(t2) = QI + M)Pp(0), (2.56)
Pits) = P(I + M)Pp(0), (2.57)

11



We invert (I +PMP) in Eq.(2.57) to obtain

Pp(0) = P{I + PMP} '"Pp(t), (2.58)

Substituting Eq.(2.58) in Eq.(2.56), we obtain the relation between Qp(ts) and

Pp(t2)
Qp(ty) = QI + M)P{I + PMP} 'Pp(ta). (2.59)
Then we expand = P{I + PMP}~! to a geometric series to obtain
Qp(ts) = QMP{I — PMP + {PMP}> — {PMP} +--- }Pp(ts)
=0 i Jn(t2,0)Pp(ts). (2.60)
n=1

The first few J,,(t2,0) are given as follows.

to
Ti(ta, 0) = / dn QL (1)P, (2.61)
0

t?v / drm / dTQQa? 71 (Tz) (2.62)

tQ, Q/ dT1/ dTQ/ d7'3

L(1)L(19) L (13)P — L (1)PL(12) L (13)P
— L()PZL (1)L (13)P — L(13)PL (1)L (12)P, (2.63)

We can combine Egs.(2.50)-(2.52) and (2.61)-(2.63) to get the final results of the

master equation for the effective density matrix from Eq.(2.45)

0

g Pt ZK (t1, 1) PX(11) +ZI (t1,12,0, BYPj(ts), (2.64)

n=1 n=1

where the first few inhomogeneous terms are

12



]1(t17t2707B> - O? (265>
I5(t1,t2,0,B) = 0, (2.66)
Ly(t1,t2,0, B) = Ry(t1,t2) B(t2) Jy(t2,0)

= /tz drnPZL(t))B(ty) L ()P, (2.67)

I4(t1, 12,0, B) = Ry(t1,t2) B(ts) J3(ts, 0)
+ Ry(ty,t2) B(ty) Jo(t, 0) + Rs(ty, t2) B(ty) i (ta,0) (2.68)
/ dn / dr, / P2 () B(ts) L(11) L (1) L ()P
— PL(t)B(t) L(1)PL (1)L (13)P — PL(t1) B(t2) L (1) PL (1)L (73)P
— PL(t))B(13) L (1) PL (1)L (1) P
/ an, / dr, / IsPZ (1)L (1) Blts) L (1)L ()P
— PL ()L (1)PB(t:).L (1)L ()P
/ dry / dr / drsP.L(t).L (1)L (1) B(t2).L (13)P
—PL (1)L (n)PL (1) B(t2) L (13)P — PL(t1).L (1) PL(11) B(t2).ZL (73)P.
(2.69)

Equation (2.64) is the exact master equation for the effective density matrix if the
series converges. However, in some parameter region the series may diverge. This
may happen in the strong coupling region. When the series of Eq.(2.64) diverges,
the effect density matrix can not be obtained from Eq.(2.64). The same result of
Eq.(2.64) was also found in [10].

13



2.5 Insert the interaction Hamiltonian to master
equation

We consider the interaction Hamiltonian in the following form;

H; = Z grap LT + gkakL Z Z graj L, (2.70)
k

where a) = ay, a; = ak, L= LT L' = L ,ai is the bath annihilation operator acting
on bath mode k, L is the system operator, g, is the coupling strength between bath
mode k and system.

We assume the reference state pr to be Gaussian. Therefore we can use Wick’s

rule to express the fourth order moment to second order moment as following.

Pa‘d’a"a"P = Pa'a’Pa*a'P + Pa'a*Pa’a'P + Pa'a' Pa’ a* P, (2.71)

define the bath correlation functions as

(a'(t1)a’ (1)) ZTYB{gmgn w(t1)ad, (1) pp} (2.72)

where a/ (t) are annihilation operator for the bath mode m in the interaction picture.
Then we can express the first few terms in the series of Eq.(2.64) in terms of the

second order moment as follows.

Ky(ty, t2)PR(t) = /t ! dnPZL ()L (1)Px(t1)

N /t 1 dr Y (a! (m)a' (t))[L' (1), Xs(t1) L (71)]

i.j=0

— {a'(t)a’ () [L'(t1), L7 (1) Xs(t1))], (2.73)

14



K, 1) P (1) = / " i / "y / s (L (1) L (1)L ()L (7))

/dn/ dTg/ dng{

,7,k,1=0
(a'(tr)a" (m2))(a’ (m1)a! (7)) [L'(t1), [L7 (1), L*(m2) ] L' (73) X (t1)]
— (a'(tr)a"(2))(d' (m3)a’ (1)) [L*
— (a"(m)a' (t)(d ( )al

_l’_
=
—~

~
<
S~—
>
V-

[Se
S
S~—

h

e
E —
-
SN—
=
<
P oY
5]

)
Yo |
&

=
=

_ / 2d712<aﬂ'<71>ai<t1>>[u 1), B(ta)ps(t2) L (71)]

— (a'(t1)a’ (1)) [L'(t2), B(t2) L7 (11)ps(t2)], (2.75)

The first term in the fourth order inhomogeneous term I,(t1,t5,0, B) can be

15



written as

1

t2 T1 T2
Ry(ty,t2) B(t2) J3(t2, 0)Pp(ts) = / dry / drs / drs > |
0 0 i,

0 5.k, l=0

+
—
Q
—~
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Q
~—~
~
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—
Q
e
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|
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A 4
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F ™8
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~
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o
SN—
™
—~
~
no
S~—
Sy
—~
&
N—
t~
>
—~
.
Pt

+ [Li(t1), B(ta)ps(t2)[LF (72) L (1), L' (73)]])
— (a'(t1)d (73)) (a"(r2)a? (1)) ([L'(t1), B(t2)[L7 (71), L' (75))ps (t2) L¥ (7)]

— (a'(m3)a’ (t1))(a’ (11)a" (m2)) ([L*(t1), B(t2) L* (12) s (t2) [L/ (71), L' (75)]]},
(2.76)

The second term in Eq.(2.68) is

T to T2 1
Rg(tl,tg)B(t2)J2(t2,O)Pﬁ(t2) = / dTl/ dTQ/ d7'3 Z {
to 0 0

Z'7.7'7k"7l:0

— (e ()l (7)) (m2)a (1)) + (A () (02)) (0 () (7))

[L'(t1), [L7 (1), B(t2) L' (73) ps(t2) LF ()]}, (2.77)
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The third term in Eq.(2.68) is

to 1

EDBR
gk

d
(a'(t1)a" (m2))(a (1)’ (7)) [L' (t1), [L7 (1), L* (72)] B (t2) L (75) s (2)]

— (a'(t1)a"(m2)) (a! (r3)a’ (1)) [L*(t1), [L7 (1), L*(72)] B(t2) s (t2) L' (73)]

t1 T1
Rg(t]_,tQ)B(tQ)J]_(tQ, O)Pﬁ(tz) = / dT1/ dTQ/
t2 t2 0

— (a"(r)a’(tr)){a’ (m1)a (7)) (L]

+ (' (tr)a' (7)) (o’ (m1)a® (72)) [L' (t1), [L(71), L¥(72) B(t2) L' (73) ps(t2)]]
= {a'(t)a' (m3))(a" (ra)a? (1)) [L' (tr), [LY (m0), B(t2) L' (1) s (t2) L* (72)]]
+ {a!(rs)a’ (b)) (a" (r2)a? (1)) L' (tr), [L7 (10), B(t2) s (t2) L' (75) L* (72)]]
— {al(ms)a’ (b)) (@ (1)a" (7)) [ (t1), [L7 (10), L* (72) B(t2) s (£2) L' (73)]]}.
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Chapter 3

The exact two time correlation
function

3.1 Hamiltonian

We consider Jaynes-Cummings (JC) model[22] with a Lorentz spectral density.
This model describes a two-level systems interaction with a bath represented by a
collection of harmonic oscillators. This model is exactly solvable in zero temperature
when at most one excitations considered,or when the bath is replaced with a single
mode of an EM filed. Many researches use this model to demonstrate their new
method or ideas by analysing some properties in this model. ([15, 23-25] ).

The Hamiltonian of JC model can be written as

H = Hy+ Hy, (31)
Hy = wooyo_ + Zwkaiak, (3.2)
k=1
H; = ng{a_az +oar}t, (3.3)
k=1

where Hj is the interaction between the system and the bath | o, (o_) is the raising
(lowing) operator of two-level system, and a (a;) is the raising (lowing) operator
of the harmonic oscillator in mode k. We can define the total excitation numbers

operator which measure the excitation numbers in the total system as

oo
N=o,0_+ Z alak
k=1
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In the JC model it is obvious that [H, N] = 0. Thus the total excitation number
is conserved during the total system evolution.Because of this property , we can
block-diagonalize the total system space into the subspace with the eigenvalue of

N =0,1,2,--- respectively.

3.2 Exact two time-correlation function

Because the propagator is block-diagonal with eigenvalue N, we will classify the
basis with different excitation numbers. The elements of the propagator will be
calculated in each subspace of eigenvalue N. The subspace can be classified by

different excitation numbers as follows.

1. Zero excitation :

0) = [0)s ® > [0, (3.4)

where the subscript of £ means Bath mode with frequency wy, the subscript

of s means system’s state.

2. One excitation :

1) =11)s® ) _ [0}, (3.5a)

m) =10).® > |0)x & [1)m, (3.5b)
k#m
3. Two excitations :
[1m) = 1), ® ) 100k @ [1)m, (3.6a)
k#m
2m) = [0), ® Y 0}k ® [2)m, (3.6b)
k#m
[m1,ma) = |0)s ® Z 00k @ [1)my & |1}, (3.6¢)
k#m1,mo

and so on.
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We consider the bath initially in a vacuum state, i.e. all of the bath modes are
in the ground state. In other words, it is a zero-temperature environment. We will
also consider the case that at most one excitation happen in the total system. The
one-excitation problem was solved in Ref.[23, 26]. The two-excitation problem was
solved in Ref. [27], but we do not consider the two-excitation problem. When at
most one excitation is consider, the general initial state of the total system can be

written as

[2(0)) = Co(0)[0) + C1(0)]1), (3.7)

The state evolving to |®(t)) in time ¢ can be written as

|[©(8)) = U(t,0)[®(0))

= Co(0)[0) + C1()I1) + > Cr(B)[k), (3.8)

k
where U(t,0) = e~ is propagator , Ci.(t) = C1(0)(k|U(¢,0)]1) ,C1(t) = C1(0)(1|U(t,0)[1)
and (0|U(t,0)|0) = I. The coefficients of |®(¢)) will be determined by the Schrodinger

equation.

3.3 Exact two-time correlation function and exact
QRT result

The possible two-time correlation functions of system operator for a two-level
system are (o4 (t1)0%(t2)),(0x(t1)o:(t2)) and (0. (t1)oL(t2)). In this thesis, we focus
on (o4 (t1)o_(t2)) which can be exactly evaluated by calculating the propagator
with at most one excitation. Furthermore, this two-time correlation function is
also important and required to calculate the spontaneous emission spectrum of the

two-level system. The two time correlation functions can be evaluated as follows.
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(04 (t1)o—(t2)) = Trsea{U' (t1)o.U(t1)U (t2)o_U(t2)p(0)}
= Trsgp{o+U(t1 — t2)0_U(t2)|2(0))(2(0)|UT(t1)}

= TI‘S{0'+TT]B{U(tl - t2)0'_|q)(t2)><q)(t1)|}} (39)

Equation (3.9) can be written as

(o1 (t)o-(t2)) = Trs{orxe(t1, t2)} (3.10)

where x.(t1,t2) = Trg{U(t1 — t2)o_|P(t2))(P(t1)|}} is the exact effective density
matrix, and will be used latter. To evaluate Eq.(3.9), we note that o_|®(t)) =

C1(t)]0), U(t; — t2)|0) = |0) and then o, |0) = |1). Then

(o1 (t1)o-(t2)) = Trsge{C1(t2)[)(|P(1)[} = Ci(t2)CT(t1) (3.11)

Equation (3.11) is the exact two-time correlation function of (o (t1)o_(t2)). To
compare the two-time correlation function with QRT, we also calculate the two-
time correlation function by the QRT. The QRT says that the two-time evolution
is as same as one time evolution. We denote the form of the two-time correlation

function by the QRT as

(A1 (t1) Ag(ta))orr =~ Treep{ AU (t; — t2)Tre{Asp(ts)} @ ppUT(t — t2)}.  (3.12)

In other words, the QRT neglects the bath correlation between ¢ < t5 and ¢ >
ts so one can trace over the bath degrees of freedom in time 0 < t < t, first.
But this bath correlation will in general affect the system dynamic. In Markovian
systems, the system affected by bath operators between t < t, and ¢ > {5 are
not correlated, and therefore QRT is a useful method to calculate the multi-time

correlation functions. Using Eq.(3.12 ), we obtain the two-time correlation function

of (o, (t1)o_(t2)) as
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(04 (t1)o-(t2))grr = Trser{o+ (t1)o-(t2)p(0)}
= Trsep{oU(t1 — ta) Tre{o_p(t2)} @ (|0)(ONUT(t — £5)}
= Trser{o Ut — t)[|C1(t2)[*|0) (1] + C1(t2) C5(0)[0) (O UT (1 — )}

= [C1(t2)POT (1 — ta), (3.13)

In this thesis, we will called the result of Eq.(3.13) as the exactQRT result. We
can see that the exact two-time correlation function Eq.(3.11)and the exact QRT

Eq.(3.13) have very different structure.

3.4 Evaluation of Cy(¢)

To evaluate C;(t) , we solve Schrodinger equation in interaction picture

A (2))

i = H;(t)|2(t)), (3.14)

1B(t)) = ot |B(t)), Hy(t) = eHot F¢ifot (3.15)

Inserting the Eq(3.8) into the Eq.(3.14) and then separating the vector differen-

tial equation to a set of coupled differential equations, we obtain

dCy(t) A i)t
prai ; 91Ci(t)e (3.16)
dC;t(t) = —igpCy(t)e(owr)t (3.17)

We directly integrate of Eq.(3.17) and use the initial environment state being in

the vacuum state ( Cy(0) = 0) which we required is Eq.(3.7), we obtain the formal

solution of Cy(t) as

t
Cr(t) = —igy / drCp(r)e i womwr)T (3.18)
0
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Then insert Eq. (3.18) to the Eq.(3.16), we can get an uncoupled equation of

motion for Cy(t) .

dCi (t) o2 A i) (=)
e :_;W /Ochl(T)e o-)-7) (3.19)

Defining f(t — 7) = Y, |gr|?e"“0)=7) then Eq.(3.19) become

dcdlt(t) . /0 drf(t — 7)Ci(7), (3.20)

The summation over k in f(t — 7) can be changed to a continuum integral over w

through the spectral density J(w) = >_, |gx|*0(w — wy). Thus we have

fe—1) = 3 |gulPeitomentn = / dw J(w)e' @)= (3.91)
k=1 0

We consider the bath spectral density is Lorentz form

_# A°
T 2m (w —wp)? + A2

J(w) (3.22)

where 7 is decay rate (in Markovian case), A is cutoff frequency. The cutoff fre-
quency A is an important parameter in the non-Markovian system, because the bath
correlation time 75 is about 75 ~ A7'. When the bath correlation time 75 — 0, one
has a Markovian system. Otherwise,one has a non-Markovian system. We assume
system frequency wy is larger then spectral width A (wg > A ), then we can extent
the lower limit of the integral to infinity (i.e., [T ~— [°0)) to obtain f(t — 7).

Substituting Eq.(3.22) into Eq.(3.21) we obtain

0o —iw(t—T) A2 [o® —iw(t—T)
flt—1) :/ dw’ _ / dwS——

vy WEE A 2 J_ o w4+ A2

= @fW—T) (3.23)

Inserting Eq.(3.23) to Eq.(3.17) and differentiating the resultant integro-differential

equation again, we can obtain a second order ordinary differential equation

3 A ~
Co(t) + ACi (1) + L0

5 Cilt) =0, (3.24)
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with initial conditions

G1(0) = C1(0), C1(0) = 0. (3.25)

Solving the above equation, we obtain

Ci(t) = C1(0)e /?(cosh(dt/2) + %sinh(dt/Q))e_wot, (3.26)

for A > 2vy where d = /A2 — 2\vq .

Inserting Eq.(3.26) to Eq.(3.11), we obtain for A > 27, the exact two-time

correlation function as

(04 (t1)o_(t3)) = |C1(0)Peiolti—t2)=5 (frtt2)

* (COSh(%) + = Sinh(%))(cosh( 5 ) + — sinh( 5

; : )). (3.27)

Similarly for A < 27, case, the two-time correlation function can be obtained as

(o4 (t1)o_(t2)) = |C1(0) |2ei“0(t1_t2)—%(t1+t2)

* (COS(%) + 2 Sin(%))(cos(%) + A sin(%

where d = /2 9 — A%
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Chapter 4

The exact master equation of the
reduced effective density matrix in

the JC model

4.1 Master equation of the JC model

In this section, we insert the Jaynes-Cumming model (3.1) to the general master
equation (2.73 - 2.78) with a zero temperature bath reference state.
The Jaynes-Cumming model’s Hamiltonian in the interaction picture is
f{[(t) = Z gk{U_aLe_i(WO—wk)t + a_,_ake_i(wo_w’“)t}. (4.1)
k
Comparing above equation with Eq.(2.70) , we can find the system and bath operator

Li(t) and a)(t) as following

LO(t) = o_e ™! L} (t) = o e (4.2)

ad(t) = ale™t ad(t) = aper, (4.3)

The reference state pp was set to be a a zero-temperature vacuum state, i.e., pgp =
> 1q(10)14(0]) Which means all the bath modes are in the ground state. The bath

spectral J(w) is in a Lorentz form in (3.22). The bath correlation functions Eq.

(2.72) can be calculated.
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(a(t)a' () = Y Tra{gmgnam(t)al(m) Y (100 (0]}

m,n kq

o0 ‘ A .
= / dwJ (w)e~®Hh—m) — % exp(—Alty — 7p|)etotr=m), (4.4)
0

Here, to obtain the final result of Eq.(4.4) we have also extended the integral limits
from (0,00) to (—oo,00) by assuming wy > A . Setting L = o_ and substituting
the bath correlation function Eq.(4.4) into Eqs.(2.73) - (2.78), we then obtain from
Eq.(2.64) the perturbation master equation of the reduced density matrix up to

fourth order in the JC model with

Koltn, 1) (t1) = Aalta — )0 Rult)os — glowo lt)}hd, (45)

Kalty, 1)) = Aty ~ ) o u(t)ow — p{ovom, ut)}e),  (46)

{ts,12,0,0.)pu(t) = Nin(tr, 12) (0 () n(12)) s (47)

it 12,0,0_)pa(t2) = Bia(t1, 1) (0 () n(t2))or s (48)
where

Aty — t2) = 7o(1 = M=) (4.9)

Aty —ty) = %ge_k(tl_m)(sinh()\(tl — 1)) = Aty — t3)) (4.10)

are decay rates coming from homogeneous terms in 2nd order and 4th order, respec-

tively, and.
A’ig(tl, tg) = ’706_/\(t1_t2)<1 — G_AtQ) (411)
. o ’Yg —At1 [o:
AZ4(t1,t2) = —{6 [Slnh()\tQ) — )\tg]
A
—3A(t1—t2) —Xt2 A . A
+e 2 1—e ][§(t1 — o) — smh(§(t1 —t2))|} (4.12)
are effective decay rates coming from inhomogeneous terms. The effective decay
rates are strongly depend on memory effect.
The exact master equation of the system density matrix, which multiple by a

system operator and the traced over the system states lead to the evolution equation

of the single-time had found in Ref.[10, 23, 28, 29].
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In the following, we derive an exact master equation for effective density matrix
Xe(t). The exact master equation can be derived from the exact operator method.
First, we can evaluate the exact effective density matrix x.(t1,t2) from Eq.(3.10)
following the similar procedure to evaluate the exact two-time correlation function

of Eq.(3.11). We then obtain

Xe(tr,t2) = Tra{U(t — t2)5—(t2)U (t2)(|2(0))(@(0) )T (1)}
0 0

= i etz (4.13)
Cl(tl)cl(t2> Cl(tg)oo

Taking a derivative of Eq.(4.13) with respect to time and observing the operator
forms of Eqs.(4.5)-(4.8), we find that the exact effective density matrix X, (t;, 1)

satisfies the following master equation

Rt 1) = (11 = ) Xers — 3Hoso Reh)
= tQ)%l&(tg)ﬁs(tg)aJra, (4.14)
where
B 2790 A sinh(dt/2)
) = d cosh(dt/2) + Asinh(dt/2) (4.15)
i(h1,t2) = (3(01) = (81 — t2>>% (4.16)

are the exact decay rate and effective decay rate.

Multiplied by the operator &, (t;) and trace over the system state, Eq.(4.14)
then leads to the exact evolution equation for the two-time correlation function
(o4 (t1)o_(t2)). The structure of the exact master equation is the same as the
perturbation result of Eqs.(4.5)-(4.8). The only difference is the time-dependent
coefficient. The time dependent coefficient Avy(t) and A~,(t) are the first two
terms of the Taylor expansion of (t,7o) in power of yg. Aiy(ty,ts) and Aiy(ty,ts)

are also the first two terms of the Taylor expansion of i(t1, ta,79) in power of .
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4.2 Aitken’s 62 method

In previous chapter, we had seen the perturbation of higher order need calculate
many terms. We can see from Eqgs.(2.73)-(2.78) that the second order expansion of
the master equation for effective density matrix y, contains near 30 terms, and the
fourth order expansion of master equation contains near 600 terms. We can expect
that the sixth order contains at least thousands of terms, and the calculation would
become very tedious and complicated. Therefore, we provide an easier method,
which can improve the accuracy of the perturbation time-dependent decay rates
without really going to calculate the higher order contributes of K,, and I,.

The methos is Aitken’s delta-squared method. It is a numerical method used
for accelerate the rate of convergence of the sum of a series. Aitken’s delta-squared
method can be described as follows. Suppose S, = > 7" , X; is a partial sum of X
to the nth term of a slowly convergent sequence where exact result is achieved when
n — oo . The new sequence S/ transformed by Aitken’s 2 method will converges
faster or closer to the exact result then S,, does. The expression of the new sequence

is form from S,, and previous two sequence S,,_; and S,,_» as

(Sn = Sn—l)2
Sn — 2571—1 i Sn—2 .

S =8, — (4.17)

In one case, we have calculate the decay rate up to fourth order to obtain v4(t) =
Ao (t) + Avy(t). If we set the Oth and 2nd order decay rates to be () = 0 and

Y2(t) = Avs(t), we may apply Aitken’s 62 method to find a new decay rate as

(7a(t) — 72(t))?
Ya(t) = 272(t) +0° (4.18)

a(t) = n(t) -

Similarly, the effective Oth, 2nd and 4th order decay rates ig(t1,t2) = 0, ia(t1, t2) =
Aiy(ty,ts) and iyg(ty,ta) = ia(ty,ta) + Aig(ti,t2). One can also apply Aitken’s §2

method to find a new effective decay rate

(ia(t1, ta) —ia(t1, t2))?

- - . 4.19
i4(t1,t2) — 2ia(ts,t2) +0 ( )

iy (ty, ta) = i4(t1, t2) —
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In Fig. 4.1(a),we show the decay rates calculated by different methods for A =
2.0017,(in the weak-coupling region). The black sold line is exact decay obtained
from Eq. (4.15), the blue dotted lien is the 2nd-order decay rate v»(t), the green dot-
dashed line is the 4th order decay rate ~4(t), and the red dashed line is decay rate
74 (t) obtained by Aitken’s 62 method . It is obvious that the 4th order perturbation
result is better than the 2nd order one, and the Aitken’s 6> method can improve
the decay rate as the result obtained from it is closer to the exact result than the
4th order perturbation. In section 5.3, we apply Aitken’s 62 method to perturbative
master equation up to 4th order and then to obtain the two-time correlation function.

Figures4.1(b) - 4.1(d) show the effective decay rates with different value of ¢,.
One can see that the decay time of the effective decay rate is about 75 ~ A~! which
is the bath correlation time. The strength of the effective decay rate dependent
strongly on t5. When {5 is small, the strength of effective decay rate is also small.
When ¢, increases, the strength of the effective decay rate also increase, but it would

reach a steady state and will not increase any more at largest t,.
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Figure 4.1: Time-dependent decay rates and effective rates obtained by different

methods.
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Chapter 5

Comparison between the exact
result and the perturbation results

With the various master equation for the reduced density matrix X, obtained,
we can find the solution of x4 then trace the product of o7, \,(t1,t2) over the system
state to obtain the two-time correlation function (o, (t1)o_(t3). In this chapter, we
will show the time evolution of two-time correlation function (o (¢1)o_(t2)) obtained
using different methods.

To eliminate the oscillating factor of e°(1=%2) and to make the time evolution be-
haviors clearly the absolute value of two-time correlation function (|{o, (t1)o_(t2))])
illustrated, we plot in all the figures shown in this Chapter.

The different methods and corresponding time evolution were shown in the fig-
ures are summarized below. The first method is the perturbative mater equation
approach for the reduced effective density matrix.The time-evolutions calculated us-
ing Eq.(2.64) with different perturbaion order are presented. We denote Kywithls
in black dashed line as calculation using Eq.(2.64) with homogeneous and inhomo-
geneous terms up to 2nd order, Kywithl, in green dotted line as with homogeneous
terms up to 4th order and inhomogeneous terms up to 2nd order, Kywithl, in pur-
ple solid line as with homogeneous and inhomogeneous terms up 4th order. We also
plot the Markovain time evolution to 2nd order in blue dot-solid line as Markovian.
The second method is the exact direct evaluation by operator technique. The time
evolution obtained by the exact result Eq.(3.11) in red solid line denoted as Ezact.

Another result obtain by Eq.(3.13) that neglects the bath correlation between t < ¢,
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and t > ty but treats the reduce time evolution from 5 to ¢; exactly is plotted in
pink solid line and demoted as Fxact QRT
The initial states of the environments is in the zero-temperature vacuum state,

> 1 10)%, and the initial system state is set to be |¢(0)) = \%(|O)8 + (1))

5.1 Numerical result in the weak coupling region

of \ > 2’)/0
Absoluge value of TTCF:A = 2.001 Yo ,y0t2=4.000 Absolute value of TTCFR = 2.001y0 ,y0t2=0.200
x 10
‘ ‘ — 0.5 —
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Figure 5.1: Two-time correlation functions of |(o, (¢;)o_(t2))| obtained by different
methods with A = 2.001~, for different value of (a) ty = 47, ,(b)0.17, respectively.
In Fig. (a), when we consider perturbation of homogeneous and inhomogeneous
term up to 4th order, the result is better then exact QRT case, even 2nd order
perturbation it is also better then exact QRT in short time region. In Fig. (b), if
the t5 is not large enough do not have enough memory about the time before ¢ < ¢,
(i.e. t; < A1), QRT is applicable . The initial condition of X,(t;) was obtained
by exact operator method, it make the contributing of inhomogeneous terms to be
clear.

In this section, we consider the region with A > 27, (referred to as the weak
coupling region ). Specifically, we choose the cutoff frequency A = 2.0017y. In this
region, the two-time correlation functions will decrease monotonically.

We can see from Fig.5.1(a) that the difference between the exact result and the
result by the exact QRT method is obvious. The reasons is that the QRT that

neglects the bath correlation between ¢t < t, and ¢ > t5 does not consider the non-

Markovain memory effect of the bath comes from ¢ < ¢, that may affect the system
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dynamics in t > 5 .

Next, we compare the perturbation results in Fig.5.1(a). The two-time correla-
tion function obtained by perturbation method with homogeneous and inhomoge-
neous term up to 4th order is closer to the result by the exact operator evaluation
then the exact QRT, which demonstrates clearly the validity of the evolution equa-
tion Eq.(2.64).

As expected, the result of K withl, is more accurate than the result of Kowithls.
One can also observe that even the second order perturbation result with inhomo-
geneous contribution is better than the exact QRT in the short time region. After
Yot > 3 the inhomogeneous contribution dies out a shown in Fig.4.1(c), the exact
QRT result is then close to the exact result. The Markovain result also seem better
than the exact QRT in the short time region. This is because Markovain result
result assume a time-dependent decay rate vy, ~ 72(t — 00), so it has a large decay
rate then all other cases in the short time region.

The more high-order terms are considered, the more accuracy the results are.
However, to include the higher-order perturbation contribution require much more
tedious calculations. An alternative scheme of Aitken’s 2 method to improve accu-
racy introduced in Sec.4.2, will be discussed in Sec.5.3.

The difference between Kjwithly and Kywithls is that K withl, containing the
4th order contribution of the inhomogeneous terms. We can see from Fig.4.1(c) that
the contribution of Aiy(t1,1s) is very small. Furthermore,the bath correlation time
or memory time is about 75 ~ A7%, so the contribution of the inhomogeneous terms
becomes less affect ¢t = ¢; — to > A1

The difference between the Exact result and the Exact QRT result is not sig-
nificant. For small ¢35, the inhomogeneous contribution from t < ¢, is expected to
be small. This can be seen from Fig.4.1(b) and Fig4.1(c) that the magnitude of
the effecttive decay rate i(¢) coming from inhomogeneous contribution for vyt = 0.2
is about 5 times smaller than that for vgt = 4 case. Thus we conclude that for

ty << A7Vand for 75 ~ A71 << 75, the memory effect of the bath coming from
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the t < ty to affect the system dynamics in ¢ > ¢ will be small and thus the QRT

is valid in this case.

5.2 Numerical result in the Strong coupling re-
gion of \ < 2y

In this section, we discuss the strong coupling region, i.e. A < 27y. Specifically,
A = 0.057p is chosen.
The exact decay rate in the strong coupling region of A < 2vy from Eq.(4.15)

can be written as

p 20\ sin(dt/2)
PY(t) - )\sin(dt/2) == dCOS(dt/2>7

(5.1)

with d = /27 — A2 would become positive and negative infinity at time near

t =14, as

tain VYA sin(dt g, /2) — d cos(dtgn/2) = 0. (5.2)

The positive infinity decay rate would make the population of the excite state of
two-level system falls into zero suddenly, and then the negative decay rate will cause
a sudden birth to the the population of the excite state of the system.

In principle , the perturbation theory described in previous chapter can not be
applied to this strong coupling region of A < 27, as the decay rate will diverge at
time t = t4,. For the parameter of A\ = 0.0579 chosen, the divergent time of the
decay rate is about votg;, =~ 11.08. Nevertheless, let us plot the two-time correlation
function |(o4(¢1)o_(t2))] in Fig.5.2 using the perturbative master equation approach
in short time region and compare the results with those by exact evaluation. Bear
in mind that the perturbation result is only possibly to be valid before the exact
decay rate become very large.

For the correlation function |(o(t1)o_(t2))| at to = 0, Fig.5.2(a) investigates the

single-time expectation value and this can treat the validity of the perturbative mas-
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Figure 5.2: Time evolution of the two-time correlation functions for different values
of to with A = 0.057.

ter equation approach in the short time region since the inhomogeneous contribution
are zero for to = 0. It is obvious that the result of the Markovain approximation
is pretty bad in this strong coupling region. The non-Markovain second order per-
turbation result seems to close to the exact result for vyt < 5 and the fourth order
seem to be valid for vt < 8.

In the previous chapter we had required the series of perturbation master equa-
tion (2.64) should be bounded and converged. However, the infinity of decay rate
violate the requirement, and therefore the prediction of perturbation method made
would be failed. The divergent point of decay rate is at t; = 11.08.

Next, we investigate the time evolution of the two-time correlation function.
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The behaviors of the exact result of the two-time correlation function shown in
Figs.5.2(b)-5.2(d). We can also observe that in the short time region all the pertur-
bation with inhomogeneous contributions are much better than those of the exact
QRT. As expected, result of Kjwithl, is closer to the exact result than the other
methods. For large to value in Fig.5.2(c) and Fig.5.2(d), the result of Kywithl,
and Kywithl, are closer to each other than to Kywithly. Thus the homogeneous
contribution of K} is smaller than the inhomogeneous contribution of I,. This again

indicates that the non-Markovian memory effect is considerable and important.

5.3 Numerical result of applying Aitken’s 6> method

The Aitken’s delta-squared method was introduce in section 4.2, where we as-
sumed the form of higher order master equation differs only in the by time-dependent
coefficients. We applied the Aitken’s 6> method to the first three partial sums of
the decay rates, {0,72(t),v4(t) = 72(t) + Av4(t)} , to obtain a better new decay
rate ,(t). Similar procedure was applied to the effect decay rate coming from the
inhomogeneous contribution.

In Fig.5.3, we compare the results of two-time correlation function obtained by
applying the Aitken’s 62 method with those by K,withlI, and by the exact operator
evaluation.

We can see from Fig.5.3(a) with A = 2.001v, and Fig.5.3(b) that the delta-
squared method can slightly improve the accuracy of perturbation method. However,
we should be cautious to apply the Aitken’s 62 method in the strong coupling region
of A < 27y as in the case of Fig.5.3(b). Since at alrge time the decay rate may
diverge and the Aitken’s 62 method may not be applicable. Nevertheless, Aitken’s
52 method is an easy way to obtain a better convergent result in a sequence in

theproblem or regime for which it is valid
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Figure 5.3: Time-evolution of the two-time correlation function |(o(t1)o_(t2))| for
different value of (a) A = 2.0017g, (b)A = 0.0579. The value of t5 is yots = 4.0

5.4 Spontaneous emission spectrum

The spectrum of spontaneous emission in the two-level system can be evalu-
ated through the two-time correlations functions (o, (t1)o_(t2)). The spectrum of

emission photons is the double Fourier transform of (o (t1)o_(t2)) [4]

S(w) o /0 E: dt, /O I dtae” ) (5 (t)o_(t2)). (5.3)

Substituting the exact expression of Eq.(3.27) and Eq.(3.28) into Eq.(5.3), we ob-
tain respectively the spectrum of the Jaynes-Cummings model in the weak coupling

region (A > 2v,) as

w) o [(w—wo)? + N7
S (W) [(w — wo)? + (259)2][(w — wo)? + (AF4)?)’ (5.4)
and in strong coupling region (A < 27,) as
S,(w) o [(w — wp)? + N7 | .

(@ —wo+ ) + Glw —wo— $? + 3]

In Fig.5.4(a), show the spontaneous emission spectra for different value of A in
the weak coupling region. The peaks of spectra are at the system frequency wy.
The widths of the spectra are determined by cut-off frequency A\. Where the A

increase, the width becomes a little bit narrower. When A — oo, the spectra reach
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the Markovian result S(w) o< [(w—wp)?+(70/2)?] 7" [4]. The only difference between
the non-Markovian and the Markovian spectra is the width.

However, the spontaneous emission spectra are more interesting in the strong
coupling. Fig.5.4(b), shows the spontaneous emission spectra for different value of A
in the strong coupling region (A < 2v). Note that the vertical axis in Fig.5.4(b) is
in logarithmic scale. When the values of the cutoff frequence decrease, the spectrum

from a single-peak structure centered at w = wy to a double-peak structure centered

at w = wy £ %, where d = /2vA — A2 There exists a critical cutoff frequence \. at

which the second derivative of S(w) at w = wy is zero, i.e., defj;J ) lwore = 0. When
the cutoff frequence is smaller then \. ~ 1.2y, the two-peaks structure starts to
develop.

The peak structure of spectrum may be understood from the two-time correlation
function. Figure 5.4(c) shows a typical time-evolution of Re(o (t1)o_(t2)) oscillating
with the frequency wy in the weak coupling region. The monotonically decay of
the envelope of the two-time correlation function explains the spontaneous emission
spectra in this region at w = wy. In contrast the envelope of, a typical time-evolution
for A < A, shown in Fig.5.4(d) is modulated by cos(£). As a result, the spectrum
exhibits a double-peak structure centered at w = wy=+ g. Another point is the height

of the emission spectrum at w = wy remains the same independent of the values of

cutoff frequency.
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Figure 5.4: spontaneous emission spectra in arbitrary unit for different value of
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Chapter 6

Conclusion

We have derived in Chapter 2 the perturbative non-Markovian time-convolutionless
master equation for reduced effective density matrix x,(¢) through the cumulants
expansion. The master equation can be directly applied to calculate the two-time
correlation functions. The master equation is only based on a few requirements, (1)
the effective density matrix y,(¢) satisfies von Neumann equation, (2) initial system-
bath is factorized in ¢ = 0, (3) knowing the initial condition x(¢2) is known and (4)
the perturbative expansion series converges. We inserted the general interaction
Hamiltonian up to fourth order, it is useful for any kind of problems.

We have calculated in Chapter 3 an exact two-time correlation function for
a many-mode Jaynes-Cummings model with a Lorentz spectral density at zero-
temperature. The exact two-time correlation function can be used to check the va-
lidity and applicable region of the master equation approach developed in Chapter
2. We focus that the exact result of the two-time correlation function guide different
from that obtaining the exact QRT method that neglects the non-Markovain bath
correlation between ¢t < ty and t > ¢9. From the exact result of the two-time correla-
tion function, we were able to find an exact master for the reduced effective density
matrix y,. This allows us to make direct comparison between the exact two-time
correlation with that obtained perturbatively.

We have calculate the two-time correlation function using the perturbative mas-
ter equation up to fourth order. Here, we have used Aitken’s 62 method to improve

the perturbation master. To go beyond that higher order is a heavy and tedious
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task. The perturbation master equation with Aitken’s delta-squared method can
slightly improve the result of the two-time correlation function.

The perturbation result up to fourth order agrees with the exact result in the
weak coupling region. In the strong coupling region, the perturbation method is
valid only for ¢ << t4,. The contribution from the inhomogeneous terms depends
strongly on the value of t5. The smaller the value of £, the smaller contribution from
the inhomogeneous terms.

Finally, we derived spontaneous emission spectrum analytically. The spectrum
shows dramatically different structure in the weak and the strong coupling region.
In the weak coupling region, the spectrum has only one peak located at w = wy and
the spectrum width is determined by the cut-off frequency. In the strong coupling
region, there exist a critical cut-off frequency \. below which the spectrum goes
from a one-peak structure to a two-peak structure with peak centers located at
w=uwp d/2.

In summary, the two-time correlation functions are important physical quantity.
They can provide additional information about the system, which the single-time ex-
pectation values can not provide. We believe that we are the first group to calculate
the exact two-time correlation function and the spontaneous emission spectrum for
the many-mode JC model. The calculations provide significant insight into how the
non-Markovian memory effect influences the behavior of the two-time correlation
functions.

Although it is commendable to calculate the exact two-time correlation function,
but not many problems can have the exact solutions. The perturbation master
equation approach developed in this thesis can be applied to calculate the two-
time correlation functions perturbatively for the non-Markovain open (disspative)
quantum systems. We believe that this master equation approach that generalizes
the QRT to the non-Markovain case will find broad applications in many different

branches of physics.
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