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Abstract

One of the fundamental criteria for physical implementation of a practi-
cal quantum computer is to design a reliable universal set of quantum gates.
A promising class of candidates for realization of scalable quantum com-
puters are solid-state quantum devices based on superconducting Josephson-
junction qubits. Typically, a central challenge to overcome in this enterprise
is decoherence and dissipation induced by the coupling to the its environ-
ment. It is thus important to find strategies to alleviate the problems and to
to build a high-fidelity quantum gates meeting the error threshold of about
1073 ~ 10=*. Optimal control method is one of the powerful tools already
applied to the problem of dynamical decoupling from the environment and
to finding the control sequence for high-fidelity quantum gates. Furthermore,
optimal control technique has recently been applied to Markovian open quan-
tum systems in which the approximation of the bath correlation function be-
ing delta-correlated in time is assumed. However, in some real experiments,
we need to consider the non-local memory effects of the bath on the dynamics
of the qubits. Especially, the bath memory effects are typically non-negligible
in solid state devices. Thus it is desirable to apply optimal control technique
to quantum gate operations in the non-Markovian open quantum systems. In
this thesis, we first review some basic elements of superconducting quan-
tum circuit and introduce the quantum qubit devices. We then introduce the
Krotov optimization method which is one of the most effective and univer-
sal computation methods for solving optimal control problems. Then the
quantum master equation approach for non-Markovian open quantum sys-
tems with time-dependent external control are presented. The Krotov based
optimal method is then used to implement quantum logical gates for a single
qubit in a non-Markovian environment. It is possible to achieve high-fidelity
Z-gate with error less than 10~° for the non-Markovian open qubit system.
The control-dissipation correlation and the memory effect of the bath are cru-
cial in achieving the high-fidelity gates.
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Chapter 1
Introduction

In 1982 Feynman published a paper in which he discussed the question of whether it is
possible to simulate quantum mechanics effectively using a classical (probabilistic) com-
puter. He also introduced the concept of a quantum computer as a universal quantum
simulator which uses ”quantum elements” in order to simulate another quantum system.
For a quantum computer, such a quantum element is a quantum bit or qubit, which can be
seen as the quantum mechanical analogue to the classical bit. The difference with respect
to the classical bit, which is either in the state O or 1, is that a qubit can be in a super-
position state. The relevant idea of a quantum computer that make use of superposition,
interference entanglement or other quantum effects based on the principles of quantum
mechanics was introduced by Deutsch in 1985. The power of quantum computing in
factoring and discrete logarithm was proposed by Shor in 1994. After two years, Grove
published an quantum algorithm for searching an unordered database. These quantum al-
gorithms make possible to solve those problems which are difficult to solve with classical
computers.

To achieve the purpose of quantum computing and quantum information, practical
quantum bits or qubits to perform reliably single- and two-qubit gates are needed. Vari-
ous candidates for realizing building quantum bits have been proposed in the last decade.
Intensive experimental and theoretical activities to realize suitable schemes for quantum
gates in a variety of physical systems such as ion traps, cold atoms and solid-state de-
vices were reported. One of the most promising class of candidates is solid-state quantum
devices based on superconducting Josephson-junction qubits. Series of ingenious experi-
ments related to superconducting qubit have been demonstrated and theoretical proposals
have been investigated. Fundamentally, a quantum system is never completely isolated
from its environment which results in noticeable effects such as decoherence, dissipation,
and entanglement. One prominent example embodies a two-level system interacting with

a collection of harmonic oscillators, the so-called spin-boson model. Many works were



recently directed toward understanding and controlling the dissipative spin-boson dynam-
ics in nonequilibrium situations such as applying time-dependent external fields to build
a quantum gate. In the related experiments[] the measured fidelity was increased up to
87% via accounting for measurement errors and large decoherence times. However, the
requirement for high fidelity gates with error less than 10~ for the purpose fault-tolerant
quantum computation has not be done. Therefore it is important to find strategies to al-
leviate the effects of environments and to build quantum gates through time-dependent
controls.

Optimal control method is one of the powerful tools already applied to the problem
of dynamical decoupling from the environment and to finding the control sequence for
high-fidelity quantum gates. Furthermore the optimal control method based on Kro-
tov’s method is proved to satisfy sufficient and necessary conditions and can find the
global minimum or maximum for the given initial values. It has also been extended to
treat quantum systems with noise, imperfections and leakage to noncomputational states
[16, 30, 25]. Besides, optimal control technique has recently been applied to Marko-
vian open quantum systems in which the approximation of the bath correlation function
being delta-correlated in time is assumed [22]. However, in some real experiments, we
need to consider the non-local memory effects of the bath on the dynamics of the qubits.
Especially, the bath memory effects are typically non-negligible in solid state devices.
Thus it is desirable to apply optimal control technique to quantum gate operations in the
non-Markovian open quantum systems [6, 29, 20, 4, 7, 8].

In this thesis, we will investigate quantum optimal control problem for superconduct-
ing qubits using optimization method based on Krotov’s method [10]. In chapter 2, we
begin with a brief introduction of the Josephson Effect and discuss the physical properties
of the Josephson junction. Then, the cooper-pair box and the SQUID quantum devices are
introduced. These devices play the fundamental roles in recent physical research. Finally,
charge qubits and flux qubits are discussed, which are the most important elements for
quantum computing and information processing.

In chapter 3, we start from the original Krotov’s optimal method, and then summarize
the algorithm of achieving the optimal control process. Few examples are given to illus-
trate and demonstrate the optimal control method. An optimal control case on a closed
quantum system is also discussed for the purpose of further extension.

In chapter 4, the theory of quantum master equation used to describe open quantum
system dynamics is introduced. The Born approximation and Markov approximation are
discussed. We also use the Born approximation to obtain the master equation for a time-
dependent non-markovian open quantum system which will be used in our problems.

Moreover, the useful tricks for dealing with open quantum systems are discussed.



Finally, In chapter 5, we will the Krotov based optimal control method to investigate
the quantum optimal control problem of the quantum gate operations for superconducting
qubits. We first introduce the novel form of equations of motion of the open quantum
system we study, and extend the optimal control method to the equation. We obtain
optimal control sequences for the single-qubit gate, including the Z-gate in the presence

of a non-Markovian environment.



Chapter 2

Superconducting Quantum Qubit

2.1 Josephson Junctions

The phenomenon that electric current across two weakly coupled superconductors is
called Josephson effect. British physicist Brian David Josephson predicted the existence
of the effect in 1962. Josephson Effect is one of the most important discover in the last
century. It not only open a new physical field for fundamental interesting but also shows a
long-term potential on quantum computing and quantum technology(3, 34, 13, 12, 9, 27].
The superconducting circuits built by Josephson junction has generic quantum properties
such as quantized energy level, entanglement and superposition of states, all of which
are more easier connected with atoms. On the other hand, these circuits can be de-
signed and constructed to control their characteristic frequencies and other parameters.
These frequencies and parameters can be adjusted by controlling an external magnetic
field ,voltage and current. This possibilities can be extended to the idea of quantum
bits(qubits)[3, 34, 13, 12], which are the fundamental elements of quantum computer.
In this chapter, we begin with a brief introduction of Josephson Effect and discussing
the physical qualities of the Josephson junction. Secondly, the cooper-pair box and the
SQUID quantum devices are introduced. These devices play the fundamental characters
in recent physical research. Finally, charge qubits and flux qubits are discussed, which

are the most important elements for quantum computing and quantum communication.

2.1.1 Josephson Effect

Consider two superconductors separated by a macroscopic distance. In the situation, the
phase of the two superconductors can change independently. When the two superconduc-
tors are moved closer, so that their separation is reduced to about 30 A, quasiparticles can

flow from one superconductor to the other by means of tunnelling. If we further reduce



the distance between two superconductors down to 10 A, as we shall see, also Cooper
pairs can flow from one superconductor to the other, this phenomenon is called Joseph-
son tunnelling. One can build a Josephson junction which consists of a sandwich of two
superconductors separated by a thin insulating layer to see the Josephson tunnelling ef-
fect. In the experiment, current and voltage can be changed, so there are two kind of
Josephson effect: DC Josephson effect and AC Josephson effect. DC Josephson effect
is happened when a DC current flows across the junction in the absence of any electric
or magnetic field. The relationship between the phase difference ¢ and the current I of

superconducting pairs across the junction is
I; = I.sind (2.1)

The critical current /. is the maximum zero-voltage superconducting current that can pass
through the junction above which the superconducting state will become normal state. It
is proportional to the transfer interaction. Because no voltage apply, the phase difference
0 is a constant. For finite voltage situations involving the AC Josephson effect, a more
complete description is required. AC Josephson effect is happened when a DC voltage is
applied across the junction, an AC current flows across the junction. The phase difference

0 is no longer a constant. The relationship between voltage and phase difference is

d =—2eV/h (2.2)
or
2¢ [k
) E 7 Vdt + 6(0) (2.3)
0
and the superconducting current is
I; = I.sin(6(0) — 2¢eVt/h) (2.4)

Furthermore, considering more general cases, we can apply a time-dependent voltage,

and write down the function in some significant symbols,

I;(t) = Icsinw = I.sind(t) (2.5)
b0

where the generalized flux is defined by ®; = f;’o V(t')dt and ¢g = h/2e is the reduced
flux quantum, or ¢g = /27, where ®g, h/2e, is the magnetic flux quantum. Actually,
phase difference is not a gauge-invariant quantity; for a given physical situation, there
is not only one unique value of phase difference. Hence it cannot in general determine
the current /;, which is a well-defined gauge-invariant physical quantity. The phase dif-
ference mentioned before is not the real phase difference between two superconductor,
defined by

2

s=¢ A-dl (2.6)

0
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where ¢’ is the real phase difference and the integration over the vector potential Alis from
one electrode of the weak link to the other. Thus, the difficulty is cured. In addition to
curing the conceptual problem, the introduction of the gauge-invariant phase difference
is the key to working out the effects in a magnetic field, which cannot be treated without
introducing the vector potential A

For some cases, one need to consider a Josephson junction with a nonlinear induc-

tance. At first, let’s take a short review of a conventional inductance.
L=®/lorl=¢/L, 2.7

where L is the inductance, ® is the magnetic flux, and I is the current, We thus expand
Eq. (2.5)

3(t) + ... (2.8)

or simpletly

) (2.9)

By comparing the functions of a Josephson junction and a conventional inductance, it is
very easy to find that besides the linear term in the relation of current and magnetic flux,
there are additional nonlinear high-order terms in a Josephson junction. A Josephson

junction, therefore, can be considered having a nonlinear inductance.

O

R
1

m | MR ———
.
O

O

Figure 2.1: The current-biased Josephson junction and its equivalent circuit.

2.1.2 The current-biased Josephson junction

A Josephson junction schematically shown in Fig. 2.1 as a sandwich structure can be

modeled as a parallel circuit which consists of a nonlinear inductance, a resistance, and



a capacitance. According to Kirchhoff’s rule and some relationships, I = cV = 6’5,
0= %CD and [; = I.sind, the equation of the circuit is
n e + O + Isind = I, (2.10)
2e 2eR
where C is the capacitance, R is the resistance, and V is the voltage across the capacitance.
Then, it is useful to define some meaningful parameters, F'c = % and £; = 2—'1]6. The
kinetic energy of the quasi-partial of phase J is

2¢2
K(9) = %, 2.11)
the potential energy of it is
U(6) = E (1 — cosd) — %1}5, (2.12)
and the Hamiltonian has the form
H =Een® — Ejcosd — 2—2165, (2.13)

The relationship of potential versus phase is shown in Fig. 2.2. It is obvious that nonlinear
inductance, cosd, makes potential oscillate and bias current makes it slope. When current
bias is applied, the pendulum potential becomes tilted. By the way, a current-biased
Josephson junction can be considered as a qubit, because the potential is cosine function,

making energy gaps different.

Figure 2.2: The “tilted-washboard” effective potential versus phase difference of a

current-biased Josephson junction.

2.2 The Cooper-pair box and the SQUID

2.2.1 The single cooper-pair box device

There is a small superconducting island in a superconducting Cooper-pair box(SCB) de-

vice as shown in Fig. 2.3. One side of the island is connected via a Josephson tunneling

7



Figure 2.3: The single Cooper pair box. One side of a small superconducting island
is connected via a Josephson tunnel junction to a large superconducting reservoir, and

another side is coupled capacitively to a voltage source.

junction to a large superconducting reservoir, and the other side is coupled capacitively
to a voltage source. Cooper pair can only transfer to the island one by one in the device.
The number of electrons on the island is controlled by the bias voltage.

The Hamiltonian of the cooper-pair box is
H = Eg(h =ilg) =E jcos6 (2.14)

where n, = C,V,/2e is the offset Cooper pair number caused by the gate voltage V,
through gate capacitance C,, and n is the number of extra Cooper pairs between the
two capacitances, the gate capacitance and the capacitance in the Josephson junction.
Therefore, the first term, Eq(n — n,)?, represents the electrostatic energy of the island,
where Ec = 4¢?/2(C + C,). Due to the nonlinear inductance of the Josephson junction,

the second term, £ JCOSg, appears.

%)

b=

&

m | NS —
-
O
—

Figure 2.4: The superconducting quantum interference device, SQUID, and its equivalent

circuit.



2.2.2 The SQUID device

A Superconducting quantum interference device(SQUID) is a device involved with quan-
tum interference. A rf-SQUID, shown in Fig. 2.4, consists of a superconducting loop
interrupted by a tunnel junction. a external magnetic flux is sent through the loop, induc-

ing quantum interference. According to the Meissner effect, we have

» qh ¢ 7
J(F) = |¥(r) P [Z=VO(F) — A 2.15

(1) = () P Vo) - L A({) .15)

where A is the vector potential and ¢ = —2e for a Cooper pair. Inside a superconductor,
the current vanlishs,

I 2e -
Vo(r) = —h—A(F) (2.16)
c

Choosing a contour inside the superconducting loop. with Eq. (2.6) we can get

I o Ag_» o Al_) k.
o, = %A-dl:/ A-dl—l—/ A-dl
c Ay As

2% [ et
= ¥ | Wwarfdal AM
hC Ay Ay
%
- i& 2.17)

where &, is total manetic flux.
With magnetic flux ¢ = &, —®, where ®, is external magnetiv flux and the inductance

energy %, the Hamiltonian of a rf-SQUID is given by

(5 - 5@)2

H = Ezn? = Ejcosd + By 5

(2.18)

where 0, = 2—;@6. The first term Ecn? is electrostatic energy of the capacitance in the
Josephson junction, and the second term is related to the Josephson energy. The last term
corresponds to the inductance energy of the loop, and £}, = ;—;L.

Now we introduce another SQUID device called dc-SQUID. A dc-SQUID is a device
which consists of two tunnel junction in a superconducting loop and is biased by an exter-
nal current. It is similar to a current-biased Josephson junction with a two-junction loop,
as shown in Fig. 2.5, instead of a single junction. Two superconducting phases, 0 o, is

involved, and according to Eq.(2.5), the external current is
1158101 — I.9sinds = 1, (2.19)

It is convenient to define some new variables,

e
)

ot (2.20)

9



Lo o

Figure 2.5: The dc-SQUID. A superconducting loop with two Josephson junctions re-

places the single junction in the current-biased Josephson junction circuit.

and in a symmetry case, which the two Josephson junction are the same [, = I

Eq.(2.19) reduces to the form
21.c08(0./2)sind_ = I, (2.21)

Comparing Eq. (2.21) with Eq. (2.5), we can find that 21.cos(d. /2) is the effective critical
current. Most importantly, it can be tuned by the external magnetic flux and consequently
the effective Josephson energy, E; = 2-21.co5(0./2) is tunable too. The Hamiltonian can

be written by generalizing Eqs. (),() for the phases d...

H== chzi + Elf — 2EJ0035+0035_
(254- Tk 56‘)2 h

e ————+ L0} (2.22)

where n, and n_ are the conjugate momentum of 5+ and §_. According to quantum
mechanics-just like the familiar position and momentum operators & and p,-the opera-
tor 0 and Cooper-pair number operator 7 on the capacitor are canonically conjugate, as

expressed by the commutator braket, [0, 7] = 4.

\/
T T

-0.5 0 0.5 1 15 0.5 n
ng g

——

Figure 2.6: Left: The energy spectrum of a charge qubit versus gate voltage. Right: The

lowest two energy levels near V;, = 0.5, the part circumscribed by solid line in left figure.

10



2.3 Charge Qubits and Flux Qubits

2.3.1 Charge qubits

A superconducting Josephson junction qubit in which the charging energy is much large
than the Josephson coupling, £~ >> FEj, is called a charge qubit. In this regime, a
convenient basis is formed by the charge states, and the phase terms can be considered
as perturbation. This is why this kind of qubits are called charge qubits. The necessary
of one-qubit and two-qubit gates can be performed by controlling applied gate voltages
and magnetic fields. Different designs will be presented that not only complexity, but
also in flexibility of manipulations. In this subsection, the simplest charge qubit, cooper-
pair box, Fig. 2.3, is presented in details. This is example illustrates how charge qubits
provide two energy states, which satisfy the requirement of qubits. In charge regime, at
first we expand all operators in the basis of the charge states {|n) }. The Hamiltonian of a

cooper-pair box, Eq. (2.14), is
H'=Ec(h — n,)? — Ejcosd. (2.23)

Then by using the properties of orthonomal and complete set, (n|n|n') = 6, and I =

>, In)(n|, the first term is rewritten as
> ] Bo(n — iig)*|n) (hl (2.24)

and by using the commutator relation,

= 6™, Al = imé™ T m > 0

= e =Y (w)m] = ¢’ (2.25)

m)!

The commutator relation Eq. (2.25) is similar to the commutator relation of number oper-

ator a'a and the creation operator a', [aTa = af. so e and e~* can be presented in charge

basis,

¢ = N |n+1)(nle Z In)(n + 1 (2.26)

n

and the second term of Eq. (2.14) is

LB S (i 1]+ [+ L) (227)

By combining Eq. (2.24) and Eq. (2.27), in this basis the Hamiltonian reads

H = Y {Ec(n—ny)*n){n| -

n

%Ej(ln) (n+1] + n + 1){n)} (2.28)
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The energy spectrum of Eq. (2.28) is shown in Fig. 2.6:left Under suitable conditions,
when charge number on a gate capacitor n, controlled by gate Voltage V, equals half inte-
gers, the lowest two energy states are well-isolated from other states, shown in Fig. 2.6:right

Because of that, near n, = 1/2, the Hamiltonian can be reduced to

H = —%(eaz—l—Aax), (2.29)

where € = Ec(1 — 2n,), and A = E;. The qubit eigenenergies are then given by the

equation

)

1
B, = :FE\/E(%(l —9n,)? + 2. (2.30)

So, under suitable conditions charge qubits provide physical realizations of qubits with
two charge states differing by one cooper-pair charge on a small island. For quantum
computation, it is required to have the ability to rotate a state on the Bloch sphere to any
position at will, and consequently o, and o, rotation are necessary. In a cooper-pair box,
pure o, rotation is acquirable, as n, = 1/2, but pure o, rotation is not, since E is fixed.
In previous part, an important concept is mentioned. A two-junction loop can substitute
for the single Josephson junction, creating a SQUID-controlled qubit, Fig. 2.7. Thus, the

effective Josephson energy £, is tunable and pure o, rotation can be performed.

Figure 2.7: The single Cooper pair transistor. A superconducting loop with two Josephson

junctions replaces the single junction in a SCB for a tunable ;.

2.3.2 Flux qubits

In the previous section, we describe the quantum dynamics of low-capacitance Josephson
devices where the charging energy dominates over the Josephson energy, Fc >> Ej,

and the relevant quantum degree of freedom is the charge on superconducting island. We

12



do talk about another quantum regime, the phase regime, £/; >> FE, in which the flux
states are the better basis. This kind of qubits are called flux qubits. A rf-SQUID is the
simplest example of a flux qubit. The Hamiltonian Eq. (2.18) is

: RO AT
H = E:n? — Ejcosd + EL%, (2.31)
and in the phase regime, the potential energy is given by
§ — 0. )?
U() = —Ej cosé+ ELu. (2.32)

2

The potential energy is cosine function added a second power function. d. in a flux qubit
play as the same role as ny do in a charge qubit. The lowest area can be approximated
to a double-well. When 0, equals 7 or odd 7, a symmetric double-well potential energy
appears. It is similar to that of n, equal 1/2 in a charge qubit. Because of the tunnelling
through center barrier, the lowest two energy level split with a gap A, which depends
on the height of the barrier. When 6. does not equal 7 or odd 7, the potential energy
becomes unsymmetric, the probability of the lowest energy pair is not half in each well.
This situation is like when n, is near 1/2, in a charge qubit, the probability is not the same
in |0) and |1). The Hamiltonian of a flux qubit can be truncated to the lowest two energy

states in a simple form of

~

|
o = —5(602+A0x), (2.33)

where A depends on E; and € is given by

¢ = 4m\/6(Es/Ec— 1)E;(®./ Py — 1/2). (2.34)

In this form, the pure operator X-rotation can be performed by setting ®/®. = 1/2, but
the pure Z-rotation can not. In order to solve this problem, we can replace the single
junction with a two-junction loop that introduces an additional external flux ®, as another

control variable. Therefore, the effective Josephson energy becomes tunable.
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Chapter 3

Krotov Optimal Control Method

3.1 Preliminary Preparation of the Krotov Method

In the Krotov optimal control method, one need to know the equation of motion of a
system, and decide the goal (cost) function for the system. The goal function depends
on the function of system and the control parameters. For further implementation, we
consider the equation of motion to be of the form
ox
— =vlt,x(t), c(t)]|, 3.1
~ = ulta(t)(t)] G.1)

and suppose we want to minimize the general form of the goal function
T
I[z(t),e(t)] = / o, x(t), ct))dt + Fla(T)] — min. (3.2)
0

Here x(t) is the system evolution function with time or the trajectory of the system, c(t) is
the control parameter with time, and the vector-functional f°(, z(t), ¢(t)) and the func-
tional F'[x(T)| are defined for all ¢, 2:(t), ¢(t) and are twice differentiable with respect to
t and x. The initial vector z(0) = x, is a given and fixed vector, x(7') is the final val-
ues of the vector z(t) at final time T, and ¢(¢) can be required within a close set U. The
general functional, F[z(T')], depends only on the final value of () and f°(t, z(t), c(t))
depends on the intermediative values of x(t) and c(t), so F|x(T)] and f°(¢, z(t), c(t)) are
general functional that representing that the goal function / depends on the terminal and
intermediate time values of x(¢). For a quantum system with multi-dimensional vector
space or multi-argument processes and control parameters, we will have more than one
equation of motion, 7%(t) = v'[t, x*(t), ¢'(t)], and the minimization problem will become
to I[t, 2'(t),c'(t)] = fOT fOlt, 2 (t), & (¢)] + F[z'(t)], where i = 1,2, ..., n.
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3.2 The Tricks of Krotov Method

3.2.1 Decomposition of Goal Function

For implementing the Krotov method, a real and twice differentiable function ¢|[¢, z(t)] is

introduced. The function can be proved to satisfy the constructions

Rlt,o(0), ()] = Soolt,ale)efe)] - e, (0 (o) + 52, 63)
GT,z(T)] = F|[T,z(T)|+ o[T,z(t)], (3.4)

Llz(t), c(t), o] = G[T>$(T)]—/O R[t, x(t), c(t)]dt — ¢[0,z(0)].  (3.5)

To be more specific, L]z (t), c(t), ¢| = I]t, z(t),c(t)] for any function ¢[t, x(t)] and all of

the x(t) and ¢(¢) can be shown through the constructions. The following is the proof:

Llx(t), c(t), 9] = G[T,SC(T)]—/O Rt, x(t),c(t)] = [0, 2(0)]

= I, a(T)] G2 0) )] — 0 0] + Sl
_Qb[OvI(O)]

= cmatn [ G2+ 88— o) el
~6[0,2(0)

= R0+ o) — [ %t~ 510,5(0)
+/ fOIt, z(t), e(t)]dt

- / POt (). c(t))ar

- I[t (1), ¢ (3.6)

Therefore minimizing [[t, z(t), c(t)] can be achieved by minimizing L[t, x(t), c(t), ¢],
and this intends to minimizing G[x(7")] and maximizing R[t, z(t), c(t)].

For a multi-dimensional quantum system or multi argument processes, the equations
of R and G will be written as R[t, 2(t), c(t)] = 2% v[t, 2'(t), c(t)] — fOt, 2°(t), c(t)] + 22
and G[T, (T )] = F[T,2(T)] + ¢[T, 2*(T)]. For later use, it is convenient to define the

function ® = 22, and the functional R[t, 2 (t), c(t)] = H[t,2'(t), c(t), D()] + 2%, where

HI[t,2'(t), c(t), (t)] = Do[t, 2'(t), c(t)] — fO[t, 2" (1), c(t)]. (3.7)

Note that the parameters in / denoted by ® emphasize that z* and gﬁ should be treated

as independent variables with respect to /.
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3.2.2 Iterative Algorithm of the Krotov Method

The main purpose of the Krotov method is to find out optimal control sequences ¢ 1(t)

in k + 1 iteration can perform better than k iteration. In other words, Krotov method

hopes I[t, z(t), c(t)] is monotonically decreasing respect to cx(t) when k is increasing.

That is, I[t, xx(t), cx(t)] > I[t, 2x11(t), cka1(t)] in every iteration. Since ¢[t, z(t)] is not

restricted, we can freely choose the form of ¢[t, z(¢)]. However, if we can construct the

function ¢[t, z(t)] to make L[t, zx(t), cx(t), #] being maximized in each k then we can

randomly choose next control sequences ¢y 11 (t) without worrying about the effect of ¢(t)

will increase the value of L[t,z(t),c(t), ¢]. We therefore derive a smaller value of the

goal function by the chosen ¢. To be more clearly, we suppose that we already found the

function ¢ for a problem, and the complete processes will be as follows:

(i)

(ii.)

(iii.)

@iv.)

Taking an arbitrary control sequences cy(t) and than deriving the corresponding

trajectory xq(%).

Choosing the functional ¢[t, z(¢)] to make L[t, z(t), c(t),¢] a maximum with the
control ¢y(t) and trajectory x (). This requirement is equivalent to the following

two conditions:

B <o (§) k(0] & min R[t, x(t), o (t)], (3.8)
G, k(7)) % max G[T, z(T)). (3.9)

Above conditions imply that the functional R and G are calculated using the new
o[t, z(t)]. As a result, the current control sequences (t) will be the worst of all
possible (t) in minimizing the goal functional L[t, x(t), c(t), ®] = I[t, z(t), c(t)].
Any change in ¢(t) which makes a new trajectory x(¢) will now improve the mini-

mization of the goal function I[¢, z(t), ¢(t)].

Finding a new control sequences ¢(¢) that maximizes the functional R. The corre-

sponding conditions are

clt,x(t)] = Arg max RIt, z(t),c(t)]
= Arg max Hlt,x(t), c(t), D], (3.10)

where H is mentioned in Eq. (3.7). Note that the control sequences ¢[t, z(t)] de-

pends on the trajectory function xz(t).

With the new control sequences ¢[t, z(t)] the new trajectory x4 () can be derived by

the equation of motion of Eq. (3.1).

16



(v.) It is now guaranteed that the goal function in Eq. (3.2) has been minimized mono-
tonically, which can be written as I[t,x(t),c1(t)] < I[t,zo(t),co(t)]. The new
control sequences and the trajectory become a starting point of the next iteration

and (i.)-(iv.) can be repeated for the further decreasing in the goal function.

3.2.3 Monotonically Convergence of Krotov Method

Now we prove the new I[t, z!(t), c'(¢)] indeed smaller than the previous I[t, zo(t), co(t)].
It is straightforward to show that

AI = I[t,zo(t), co(t)] — I[t, z1(t), e1(t)]
= L[t,on(t),Co(t), (I)] T L[t,[L‘l(t),Cl(t), (I)]

- /O Rt, z1(t), c1(8)] = Rltsa1 (1), co(®)]dt + G|T, 2o(T)] — G[T, 21 (T)]

Y a1
where
A1 = GIT, do(PhAGTI (3.12)
3 /O " Rlk, e bl o () ) (3.13)
Pogps /OTR[t,xl(t),co(t)]—R[t,xo(t),co(t)]dt. (3.14)

Using the conditions in Eq. (3.8) and Eq. (3.9) one can prove that A; > 0 and Az > 0,
and Eq. (3.10) also guarantee Ay > 0. Therefore the new goal functional / will be smaller

than the previous one and the monotonically convergence has been proved.

3.3 Construction of ¢

To carry out the above iteration method, the most important and hardest task is finding a ¢
that satisfies the conditions in Eq. (3.8) and Eq. (3.9) which require the absolute maximum
of the functional R and minimum of the functional G of the old control sequences cy(t)
and the old trajectory x((¢). In this section, we will show how to construct ¢ in first order

to x and in second order to x to cope with lineaer and non-lineaer problems.

3.3.1 First Order in =

If the equations of motion of the system are linear and can be written as

ox’
ot

= u'[t,z(t), c(t)] = al[t,c(t)]a! + V', i =1,2,...,n, (3.15)
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and the function f°[t, z(t),c(t)] and F[x(T)] are concave with respect to z(t), which
means

O fOlt, z(t), c(t)] <0 O*FIT,x(T)]
0x'0x? - 0z (T)0z*(T)

< 0. (3.16)

In this case, we just need to consider ¢ in first order to x since the second derivative is
guaranteed. To be more specific, The first order that implies the functional ¢ needs to
satisfy Eq. (3.8) and Eq. (3.9) but do not have to worry about the second derivative of the
function R and (. Therefore the function ¢ only need to fit the conditions that the first
derivative of the functions R and G are equal to zero. For the reasons, we can choose the
function ¢[t, z'(t)] = ®*(¢)x*(t) which satisfies the following conditions:

OR(t,x0,c0)  0*P(t, wo) P Of(t,xo,co)  Of°(t, wo, co)
Ox I Ox? f(t,a:o,co)—l—% Ox B Ox

0 0p(t, o)
+§ ox .
6H(t, Zo, Co, CI)) (9 qf)(t, 1‘0) 8 6¢(t, ZL‘O)
£ Ox 1 Ozl F&zo.co) + ot Oz
L DH (t,af,co, W) | Of 0% 0, 0p(tikg)
N ox (5871: &) or
OH (t, xg, ¢, D) -~ do(t, xo)
ox dt

= N (3.17)

0G (s, mo(T)) _ - OF(ao@)) . 00(T, zo(T))
0x(T) 0z(T) 0z (T)
_ O0F(xo(T))
N o) 2 + ®(T, (7))
= 0. (3.18)

Therefore, Eq. (3.17) is the equation of motion for the function P :

0P . aH[t,$0,007 (I)]
ot Ox G-19)

with boundary conditions Eq. (3.18)

_ OF(T, z(T))

(T, 0o(T)) = —5° T (3.20)

given by Eq. (3.18)and from Eq. (3.1) and Eq. (3.7)

ox - 8H[t, Zo, Co, CD]
Frie 50 (3.21)

with boundary conditions z¢(0) = xo. To satisfy the above requirements, the possible

choice of ¢ is ¢ = ®[t,z(¢)]x. In the multi-argument process, the similar choice of

18



the functional ¢ would be ¢;[t, x'(t)] = ®;(¢)z'(t). Using the formula of Eq. (3.7), the
conditions can be rewritten into the form

afO (t7 o, CO)

d = —JUB)D(t) + p—

(3.22)

where

afz(tv Lo, CO)

hi = O

(3.23)

and J7(t) is the transpose matrix.

3.3.2 Second Order in z

If the equations of motion of the system are not linear, one need to consider an improve-
ment form of ¢. Since functional ¢ needs to satisfy Eq. (3.8) and Eq. (3.9), the simplest

choice of functional ¢ is of the form
) 1 ; :
o(t,x(t)) = i)z’ + iEij(t)Axlej (¢, =1,2,...,n)
1
= (O(t),x) + §<Ax, b (tMAx), (3.24)

where the A(z) = x — 9 and both the vector-function ¢(¢) and the matrix 3(¢) should be
found. Here X(t) is the matrix of the second derivatives of the function ¢(¢,z). The
first necessary conditions for inequalities of Eq. (3.8) and Eq. (3.9) are equivalent to
Eq. (3.19) and Eq. (3.20), and the second necessary conditions for inequalities of Eq. (3.8)
and Eq. (3.9) yield the following differential inequalities:

2 ~
PR>0 /@R Ag, LEETD )] N (3.25)
0x0x
2
26 <0 @20 ={ ar TCL @I N (3.26)
0x0x

For the reason that functional ¢ can be choose arbitrarily, one can require that the matrix
¥(t) is a diagonal matrix and satisfy the above conditions, which means
O*R[t, xo(t), co(t)]
Oxiox)
O’ R[t, xo(t), co(t)]
Ox'ox!

= O7 Z#], i’j:1,2,...,n7

and
02G[T, zo(T)]
o0xtoxi
62G[T, xo(T)]
0xtoxt

One therefore can determine the equation of motion of ¥(¢) with boundary condition

O) Z%j? iaj:1727"')n7

Y(T) by the above linear differential equation.
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3.3.3 Algorithm

In previous section, Krotov’s optimal method is already introduced and discussed in de-

tail. Here we will summarize the algorithm for further extension.
(1) freely choose a history of control process cy(t).
(2) Use Eq. (3.1) and initial condition x(0) = x, to find the trajectory of x(t).

(3) Find the functional ®(t) by Eq. (3.17) and Eq. (3.18) or equivalently by Eq. (3.19)
and Eq. (3.20).

(4) Use Eq. (3.27) and Eq. (3.28) to find the matrix (¢).
(5) With the functional ¢, the control ¢(t) is found according to Eq. (3.10).

(6) Derive the new trajectory x(¢) and the new control control sequence c¢;(t) by
Eq. 3.1).

(7) Repeat process (2) to (6) until the desired optimal value is achieved.

3.4 Examples

3.4.1 a Linear Problem

Consider a linear problem with ¢ chosen in the form in subsection (3.3.1) for the following

optimal control problem. The function «(¢) and ¢(¢) are constructed by
(t) = i(1 +¢(t))x(t), =x(0)=1; (3.29)
c(t) is real and one want to minimize the cost function
. 1. [F
I = Re[(1—2xz(T)e™)] + §b/ A (t)dt' — min. (3.30)
0

where b > 0.
Now we choose the parameters b = 5, T = 2 and substitute the linear form of ¢ =
®[t, z(t)]x bring into Eq. (3.3) and Eq. (3.4) to derive R and G :

1

R = Re[®(t)[i(1+ c(t))x(t)] + a(@(t)x(t))]—§bc2(t), (3.31)

ot
G = Re[(l —z(T)e™) + &(T)z(T)). (3.32)
Using Eq. (3.19) and Eq. (3.20), one can derive the equation of motion of ®:
(t) = i(1 4 (1) D(t), O(T) = €', (3.33)
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Performing the algorithm described in subsection (3.3.3), we obtain the result shown in
Fig. 3.1, where we have used the Runge Kutta method with the segment of integration
partitioned into 200 intervals, and the fidelity is define as Re[z(T)e™]. However, for
a non-linear problem, the functional ® will become more complex. Therefore we will

discuss a simple non-linear problem in the next subsection.

1 bbb Al
0.95 0.66
0.64
0.9
0.62
20.85 _. 06
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£ 08 0.58
0.56
0.75
0.54
0.7 F-
0.65 05
0 10 20 0 1 2

—

Iteration times

Figure 3.1: Left: fidelity versus iteration times. Right: optimal control sequences respect

to time t.

3.4.2 a Non-Linear Problem

Let us consider the approach from subsection (3.3.2) for the following optimal control

problem. The functions #(t) and ¢(t) are constructed by
g =¥c, tE< 1, x{@ds 0; (3.34)
and one want to minimize the cost function
T
2 2 L o :
I = / (¢ —z%)dt + §ba: (T) — min, (3.35)
0

where b > 0.
Now we choose the parameters b = 20, T" = 4 substitute Eq. (3.24) into Eq. (3.3) and
Eq. (3.4) to derive R and G of the form

1

R = ®(t)x (t)+§z( )(Az)? + ®(t)c(t)
+3Az(t)(c(t) — co(t)) — A (t) + 22(t), (3.36)
G = BT (T)+%E( \(Az(T))? +%bx2(T). (3.37)

Since R,, = %(t) + 1 and G, = X(T) + b, we first choose that ¥(t) = 0 and
Y(T) = —b — 4. Performing the algorithm described on subsection (3.3.3), we obtain
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the result shown in Fig. 3.2, where we have use the Runge Kutta method with the seg-
ment of integration partitioned into 200 intervals. For comparison, the known solution of

the problem is shown below

:l:ta t S 71,
2(t) = { dkeos(t —T/2), 1 <t <, (3.38)
+T F 1, 7 <t

where 7' is the final time and 7y, 75 and k are chosen according to smoothness conditions:
t==xlfort =m,s = Flfort =1, £t = tkcos(t — T/2) att = 7, and £kcos(t —
T/2) = £TFt att = 5. Note that the result of Krotov optimal method in Fig. 3.2 is equal
to the known solution. Therefore the validity and usefulness of the Krotov optimal method
are demonstrated. We will extend the Krotov optimal method to investigate quantum gate

of closed quantum system in the next example.
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Figure 3.2: Left: Cost function versus iteration times. Right: Optimal evolution of x

respect to time t.

3.4.3 The Closed Quantum System Problem

The time dependent Schrodinger equation for the evolution operator (propagator) U (t)
of a quantum system in an extended time-dependent control Hamiltonian je(¢) when the

control parameters €(t) is read, can be written as

ih%U@) = (H + pe(t))U(2). (3.39)

Suppose that one want to minimize the cost function
T
[ = 1-Re[rr{O'U(T)}] + A / (e(t') — 20)?dt —> min.  (3.40)
0
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where A > 0 and ¢ is an initial energy that can be considered as the restriction for the
optimal control sequences; furthermore, € can also be time-dependent. O is a target goal
for the propagator U(T').

Now we choose the parameters A = 1, 7" = 1 and substitute ¢ = B(¢)U(t) into
Eq. (3.3) and Eq. (3.4) to derive R and G :

= Re |Tr{B(t)(H + ue(t))U(t) + ag—it)U(t)} —Me(t) —e0)?, (341
= Re[Tr{O'U(T) — (B(t) = U(T)) |5 }] - (3.42)

Using Eq. (3.19) and Eq. (3.20), one can derive the equation of motion of B(t):

z’h%B(t) = BO(H + pe(t)), ~ B(T)=O". (3.43)

Here we find out a straight way to derive optimal control sequences for every time interval
by differential the function R respect to . Since the control value is chosen for a better
result, we need to require R /0z = 0and 0°R/(9=)? < 0. Therefore the optimal control
sequences is of the form

“(t) = =0+ 5 Relr{ Bl ()} 644

Using the algorithm in subsection (3.3.3) carefully with the above conditions where B(t)
depends on old £(t), and U (¢) is built from new £(¢). Note that for a better performance,
one can substitute £y with old =(¢) to derive new £(t). The system under consideration
is a charge qubit built by Cooper pair box. Under appropriate conditions mentioned in
2.3.1 (chage energy E¢ much larger than the Josephson coupling £; and temperatures

kT < Ej) only two charge states are important, and the Hamiltonian of the qubit reads
H(t)=—¢(t)o./2 — Qo /2 (3.45)

where H = Qo, /2 and = 0, /2 and €2 is a bias voltage. If we consider a target goal

10
0= 3.46
(1) o

we obtain the result shown in Fig. 3.3, where we use the Euler method with the seg-
ment of integration partitioned into 100 intervals (dt = 0.017), and fidelity is define as
Re[Tr{OTU(T)}]. Note that this is a quantum optimal control problem of a single-qubit
Z-gate and can be considered as the fundamental quantum computation problem of opti-

mal control.
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Figure 3.3: Left: (1-fidelity) versus iteration times. Right: optimal control sequence as a

function of time ¢.

24



Chapter 4

Open Quantum System

4.1 Master Equation

4.1.1 Density Matrix

For a closed quantum system, the physical object obeys Schrodinger equation,

0 )
aiw —~ —ﬁHW% 4.1)

where H is the total Hamiltonian. The density matrix can be defined as p = |¢) (%]
Using Schrodinger equation Eq. (4.1), we can get the equation of motion of the density

matrix p,

p = () (Wl o))

(=7 HY) (] + = 10) (U] H)
=~ (HW) W]~ [ WIH)

{
= —ﬁ(HP — pH)
= ) (42)

Equation (4.2) is called Liouville-Von Neumann equation of motion for density matrix.
Note that Liouville equation, Eq. (4.2), can only be used in closed quantum system.
Hence, it is not valid for the subsystem of a composite system whose subsystems have
interaction with each other. The equation can only describe the whole system, including
the subsystem in which we are interested, and the rest of the system. The next section, we
will discuss how to write down the equation of motion for the subsystem in which we are

interested.
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(S+B,H YH,,X)

Environment

Figure 4.1: Schematic picture of an open system

4.1.2 The Derivation

Because that Eq. (4.2) can only be used in a closed system, when we solve a composite
system, we can divide the system into two parts. A schematic picture is shown in Fig. 4.1
One part is the subsystem in which we are interested, and the other is called a bath. The
Hamiltonian of the subsystem is time dependent, Hg(t), and the bath is the rest system
with Hamiltonian, 3. Also, consider that the subsystem and bath couple to each other,
and the interaction Hamiltonian of the coupling term is noted as Hgp. Hence, the total

Hamiltonian can be written as,
H(t)=Hs(t) ® I+ Is ® Hg + Hgs, 4.3)
and the Hilbert space of the total system is defined by a tensor product,
H="Hs®Hs. (4.4)

Define the total density matrix (subsystem and bath) as x(¢) obeying Liouville-Von Neu-
mann equation (4.2), .
. ?

where H(t) is given by Eq. (4.3). In general, we usually assume that the interaction
Hamiltonian between the subsystem and bath is very weak compared with the rest of

the Hamiltonian. Therefore, we may use the interaction picture that fix the dominate

26



Hamiltonian term, the subsystem and bath Hamiltonian, Hg + Hp. Define that
)Z(t) _ 6%(Hs—&-HB)tX(t)e—%(Hg-i-HB)t’

X<t> — 6—%(Hs+HB)t>~<(t)e%(Hs+HB)t (4.6)
and differential Eq. (4.6) with respect to time

K1) =~ (Hs + Hg)e HUIS g (e (15 H1o)
temnHsTHD)S (1) er (HsHHp)t
_I_ie_%(HSJ"HB)t)zt HS_I_HB e%(HS‘i‘HB)t‘ (4'7)
h

Then using Eq. (4.5), we obtain

x(t) = —%[Hs + Hp + Hgp, x(t)]

i
h
+%e—%<ﬂs+HB>t>~<(t)e%<Hs+HB>t(HS + Hp + Hsp). (4.8)

(Hs+Hp + Hgp)e nUHsHHBlg (t)er HstHa)t

Comparing with Eq. (4.7) and Eq. (4.8), we can get

h
+%6—%(HS+HB)t>~<(t)6%(H5+HB)'5HSB_ 4.9)
Defining
I:ISB(t) _ 6%(HS+HB)tHSBe—%(lLlerhﬁs)t7 (4.10)

and inserting the Eq. (4.10) into the Eq. (4.9), we obtain
)2(25) = —%eé(HS+HB)tHSB€fé(HS+HB)t>’Z(t) + %X(t)eé(HS+HB)tHSB€;L(HSJFHB)t
U
= _ﬁ[HSB, X(1)]- 4.11)

One may integrate Eq. (4.11) to obtain

W0 = X(0) = [ F{anlt), 0. @.12)

Taking Eq. (4.12) and inserting it back into Eq. (4.11), we can get

W) = —Flsn(t). X0) = [ Fsn). 3]
— —3lsn(0). %O ~ 55 [ [Henlo) [Hsn). 30 413)



However, we are just interested in the evolution of the subsystem. Hence, we can

define the reduced density matrix of the subsystem as p satisfying that

p(t) = Trpan[x(t)] = Trp[x(?)] (4.14)

If we take the trace of the full density matrix over the bath, in the interaction picture, we

can get

TTB[)%(t)] = TTB[eﬁ(HS+HB) X(t)@ ;l(Hs-i-HB)t]
= GﬁHstTTB[e%HBtX(t)e nHBt]e—%Hst

= ey (gP et x (1) h P g e h !

i

= eSS (P |en P (F)e BEL pP) e w st

7

= eh 15[ @By (t)|gP)]e# st

= JeRHSHT g ()]e™ 1158
4 G%Hstpe—%Hst
= p(b), (4.15)

where EP and |¢?) correspond to the eigenvalues and eigenstates of Hp. In the interac-

tion picture, the density matrix of the subsystem is related to p in the Schrodinger pictures
p(8) = entist pe= st (4.16)

It means that the transformation between p and p depends only on the Hamiltonian of the

subsystem Hg. Using Eq. (4.13) and the Eq. (4.15), we can get

) = S rrplx(O) = Trali()
- —ﬁ[ﬁSB(t),)Z(O)] ;2 /t[HSB( ) [Hsn(®), p(E)dt.  (4.17)

Equation (4.17) is still exact but is difficult to solve in general. In the next two sec-
tions, we will introduce two approximations, the Born approximation and the Markovian

approximation, to Eq. (4.17).

4.1.3 Born Approximation

In Born approximation, we will assume that there the interaction is turned on at ¢ = 0
and that no correlations exist between S and R at this initial time. Then x(0) = x(0)
factorizes as

X(0) = p(0) ® Ry, (4.18)
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where Ry is an initial reservoir density matrix of the bath. Then noting that
Trbz(t)] — e(i/hba’r‘)Hstp(t)e—(i/hbar)Hst = ﬁ(t)y (419)

after tracing over the reservoir, eq. (4.17) gives the master equation

. —% /O U Ten{ [Hsn(t). [Hsn(t). ()]}, (4.20)

where, for simplicity, we have eliminated the term (1/i%)Trz{[Hsg(t), x(0)]} with the

assumption
Trr[Hsg(t)Ro) = 0. (4.21)

This is guaranteed if the reservoir operators coupling to S have zero mean in the state
Ry. The environment or reservoir by definition is large and contains many degrees of
freedom so that the influence of the system on the reservoir is small in the weak sys-
tem—environment coupling case. As a consequence, to second order in system—environment
interaction, the total density operator on the right-hand side of Eq. (4.20) can be approxi-

mated to an uncorrelated (factorized) state as
X(t) = p(t) ® Ro+O(Hsp). (4.22)

since the products of two interaction Hamiltonians /{;’s appear already there. So in many

textbooks, the replacement of
X(t) =pt) ® Ry (4.23)

is performed under the so-called Born approximation. One then obtains

plt) = —% /Ot Trp[Hsp(t), [Hsp(t), p(t") @ Rolldt'. (4.24)

In general, we usually assume that the density matrix of the bath stays in thermal equilib-

rium as the form

- Tre—ﬂ(HB) ’
However, the Eq. (4.24) is the time-nonlocal (or time-convolution) formula, and the equa-

Ry (4.25)

tion of motion could be very complicated. That is because of the future evolution j(t)
depends on its past history through the integral over 5(¢’). It can also be shown that an-
other systematically perturbative non-Markovian master equation that is local in time can
be derived from the time-convolutionless projection operator formalism. Under the simi-
lar assumption of the factorized initial system-reservoir density matrix state, the second-

order time-convolutionless master equation in the interaction picture can be obtained as
2 I ~ ~ _
§) = 5 [ Tealffsnlt), [Hsn). 50 © Rllde. (426
0
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We note here that obtaining the time-convolutionless non-Markovian master equation
perturbatively up to only second order in the interaction Hamiltonian using the time-
convolutionless projection operator technique is equivalent to obtaining it by replacing

p(t) with p(t) in Eq. (4.24).

4.1.4 Markov Approximation

In a large bath maintained in thermal equilibrium, the environment may be not possible
memorizing the influence of the system and reflect it back for very long; not for long
enough to significantly affect the future evolution of S. Therefore, with the view in mind
we can make the underlying assumption of the Markov approximation more explicit.

Let us consider a more specific form of coupling interaction Hgp can be written as
Hep =S S;®B;, (4.27)
J

where S; are the system operators in the Hilbert space of S and 5; are the bath operators,

operators in the Hilbert space of R. Then

Hgp(t) = Z€<z‘/h><Hs+HR)t S, @ B¢ /M (Hs+Hp):
j
= Z(e(i/h)Hstsje—(i/h)Hst) ® (e(/MHBLR o~ (i/WHat)

- Y5 @8, (4.28)
Inserting Eq. (4.28) into Eq. (4.24),
) = s [ Tl 8,150 © Buplt) @ Rt
0 Sk
= =3 [ Tl 0B, 0. (5ue)Bl). 5t @ Rl
ik 70
= —Z /O OO((](t)Sk(t’)ﬁ(t’) = Se(t")p(t")S;()(B; (t) Bi(t')) r
+[p(t)Sk(t)S;(t) — S;p(t')Sk(t)(Bi(t) B; (1)) r)dt, (4.29)

where we have used cyclic property of the trace and define that

(B;(t)Br(t))r = Tr[RoB;(t)Bi(t)], (4.30)

(Bp(t)B;(t))r = Tr[RoBi(t')B;(t)). 4.31)
We further define the above formula called the bath correlation function
Cju(t —t') = Trp[B;(t) Br(t") Ro). (4.32)
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We can justify the replacement of 5(t') by 5(¢) and the integral upper bound ¢ — oo
if these correlation functions decay very rapidly on the timescale on which p(t) varies.
Ideally, we might take

Cjr x o(t —t). (4.33)

The Markov approximation then relies on the existence of two widely separated time
scales: arelatively small time scale for the dynamics of the system S, and a fast time scale

characterizing the decay of reservoir correlation functions.

4.2 Master Equation of a Time-Dependent Non-Markovian

spin-boson model

4.2.1 Model

We use the computational basis {|1), |2) } to describe a charge qubit system S (mentioned
in 2.3.1) embedded in a dissipative environment B and interacting with a time-dependent
control field. The total Hamiltonian is given by H = Hg(t)+ Hsp+ H . The Hamiltonian

Hg(t) is written as
B (1) F=1-<(t)glt2 — Q.4 2, (4.34)

here (2 is the tunneling splitting and () is the control field. In the notation of the second

quantization, Hp takes the form
Hp =Y hugb, by, (4.35)
q

b,' and b, are creation and annihilation of the bath oscillator mode ¢ with frequency w,,
respectively. The interaction Hamiltonian Hgp between the system and the environment

is of the form

Hsp =0, ) cq(by+bg')/2. (4.36)

q

where c, is the coupling constant of mode q.

4.2.2 Derivation of the quantum Master Equation

In order to investigate dissipation and decoherence in an open quantum system, the density

matrix formalism can be used to derive a master equation for the case of a subsystem
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interacting with an environment. First, rotating the Hamiltonian to the interaction picture:

JZISB(t) = (Tf‘f%f‘)t(HS(t/HHB)dt/)HSB(T+e*%fS(Hs(t’HHB)dt/)
= (T_en Jo HsWdt'y (i Hpt 1o po=iHpt) (T, o= Jo Hs(t)dt')
= (T_e% f(f HS(t’)dt,) [O‘x(z Cqbqe—iwqt + Cqbgeiwqt>j| <T+6_% fOt Hs(t/)dt/>

q

= (Ut)o,U'(1))B(t)
= 5,(t)B(1), (4.37)

where U(t) = T_en Jo Hs(W)d' T means time-ordering in negative direction and B(t) =
>, Cabge ™" + ¢ ble™e'. Substituting into Eq. (4.24), one can derive
< [ 1 . 2
pt) = —35 | Traloa(t)B(),[6.() B{E), p(t') ® Rolldt
0
t
=~ [ @ 0EEIN) — OO TralBOBER
0
(P54 (t')0a(t) = 62(1) (1) (1)) Trp[B(t') B(t) Kol , (4.38)

Rotating back to the Schrodinger picture, we can derive the equation of motion of the

form

o) = SalHs(®), o0 {low, DH)] +{DI(1), 0.}, (4.39)

where D(t) = ﬁUT fo U)o UT(1)Tr[B(t)B(t')Ro]dt'U(t). In the following,
we define the bath correlation function C'(t —t') = Trp[B(t) B(t')Ry]. It can be evaluated

as

O(t — t,) = T?“B

(Z Cabye "+ Cqbgeiwqt)(z Cq’bqle_iw‘l't, + ¢y b;, eiwq’t')Ro
q q

= Z‘Cq| (T'f’B[b bTRO] —iwq (t— t)—i—TTB[bTb R ]) dwq(t— t))

q

= / N dwJ (w)[(n(w) + 1)e” ) 4 p(w)et=1)] (4.40)
0

where J(w) = 37 |c,]*0(w — w,) is the spectral density and n(w) is the canonical en-
semble average occupation number of the bath. Note that we convert |¢,|*Tr5[blb, Ro] to

J(wq)n(w,) and treat w, — w in the continuum limit.

4.3 Superoperator and Column Vector

In open quantum system problems, one usually uses superoperators to simplify the nota-

tion and for numerical calculation one also has to consider the density matrix as a column
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vector to reduce difficulty. To illustrate what we mean, we first consider the case that the
density matrix p of a quantum system has N x N dimensions. The equation of motion of

the density matrix can be written as

p0) = —1lHs, )

= Lilp], (4.41)

where Hg is full Hamiltonian of the system, and the £, is Liouville superoperator. Now if

we transform the density matrix into a column vector, the relation for operator and density

matrix is
P11
P12
P11 P12 - Pin .
ApB = AT T TP 1o % [ | (4.42)
P21
Pnl Pn2 --- Pnn 5
pnn

Therefore, we denote p° as the transformed of density matrix in the column vector form
that has 1 x N? dimensions and denote £¢ as the corresponding superoperator to p°.
Equation (4.41) is the equation of motion for the state density matrix. But for quantum
gate operations we want to obtain the equation of motion for operator evolution, so we
use the Eq.(4.41) and the relation p(t) = U(t)p(0)UT(t) = U(t)p(0), where U(t) =
T exp{ fot dtL4(7)} is the propagator in superoperator form and U(t) = T exp{ fot dr —

iH,(7)} is the propagator. We can use above to derive

%(U(t}p(())) = L.(OU()p(0),

Ut)p(0) = L (OUt)p(0),
=Ut) = L(OU®). (4.43)

For numerical calculation, the same equation in the column vector form is much easier to

important. That is

US(t) = LEOU). (4.44)
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Chapter 5

Optimal Control for One Qubit

Quantum Gate

5.1 Introduction

One of the fundamental criteria for physical implementation of a practical quantum com-
puter is to design a reliable universal set of quantum gates. A promising class of candi-
dates for realization of scalable quantum computers are solid-state quantum devices based
on superconducting Josephson-junction qubits. Series of beautiful experiments (charge,
flux, phase) have been demonstrated and theoretical proposals related to Josephson-junction
qubits have been investigated [33, 29, 21, 23, 30, 24, 28]. Typically, a central challenge to
overcome in this enterprise is decoherence and dissipation induced by the coupling to the
surrounding environment. Therefore it is important to find strategies to alleviate the prob-
lems and to build quantum gates operation for the purpose of quantum information pro-
cessing. Optimal control method is one of the powerful tools already applied to the prob-
lem of dynamical decoupling from the environment and to finding the control sequence
for high-fidelity quantum gates. It has also been extended to treat quantum systems with
noise, imperfections and leakage to noncomputational states [16, 30, 25]. Furthermore,
optimal control technique has recently been applied to Markovian open quantum systems
in which the approximation of the bath correlation function being delta-correlated in time
is assumed [22]. However, in some real experiments, we need to consider the non-local
memory effects of the bath on the dynamics of the qubits. Especially, the bath memory
effects are typically non-negligible in solid state devices. Thus it is desirable to apply op-
timal control technique to quantum gate operations in the non-Markovian open quantum
systems [6, 29, 20, 4, 7, 8]. Some experiment related to controlling an open quantum sys-
tem have also been demonstrated [1, 17] and open the possibilities to the optimal control

in an open quantum system.
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In this chapter we apply the optimal control method based on Krotov’s method [26,
18, 19, 10, 32, 14] to a Non-Markovian quantum system. The optimal control method is
developed based on a quantum dissipation formulation that treats the effect of dissipative
terms in the equation of motion as many auxiliary subsystem density matrices coupled to
the original density matrix of the qubits system [15, 32]. The state-independent super-
operator formulation of optimal control is implemented. Finally, we apply the optimal
control method to a single qubit gate embedded in a non-Markovian bosonic bath with
ohmic spectrum. We show that under specific conditions, optimal control method can

considerably reduce error from the non-Markovian bath and give a high fidelity Z-gate.

5.2 Quantum Dynamics

The spin-boson model is a widely used and thoroughly investigated systems to describe
dissipation and decoherence in open quantum systems, especially for modelling qubit
systems for quantum computation purposes. Here we use this model to describe super-
conducting charge qubit interacting with a non-Makrovian environment. We apply the
time-nonlocal or time-convolution master equation whereby the dissipator is computed

within second order in the spin-boson interaction to find the optimal control sequence.

5.2.1 Model

We use the computational basis {|1),|2)} to describe a qubit system S embedded in a
dissipative environment B and subject to a time-dependent control field. The total Hamil-

tonian is given by H = Hg(t) + H; + Hp. The Hamiltonian Hg(t) is written as
Hs(t) = —€(t)o,/2 — Qo /2, (5.1

here (2 is the tunneling splitting and (%) is the control pulse. Hp and H; are described in
section 4.2.

In order to investigate dissipation and decoherence in open quantum systems, the den-
sity matrix formalism can be used to derive a master equation for the case a subsystem

interacting with an environment from Eq. (4.39), we obtain [2, 5, 29]
pt) = Lo(D)p(t) + [£,D(t) + {H.C.}). (5.2)

where Lg(t) = +[Hg(t), o] and £, = [0, e]. The dissipation operators can be written
as [11]

t
D(t) = - / dEUs (1, 10,0t — 1) p(t), (5.3)
0

~in
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where the propagator superoperator Us(t,t') = T’y exp{ ftt, dTLs(7)} and the bath corre-

lation function can be written as

h P

Clt—t) = — [ dw(w)cos(wl(t — #))coth( )

2m Jo
[ dwd(w)sin(w(t — ), (5.4)

2 Jo
with 5 = 1/T (kg = 1), taking into account all the effects of the bosonic bath. We take

the ohmic spectral density
J(w) = 2mawe /<, (5.5)

where « is a dimensionless coupling constant, and where w, is the bath cutoff frequency.
The result of the bath correlation function from Eq. (5.4) can be calculated in an analytic

form of

e aw? 20 T+ iw(t =)
cudy - A iy

Here ¢(2) is the derivative of the digamma function [29]. We note that
Ct—-t)=0C*t 1. (5.7)

The dissipator defined in Eq. (5.3) contains the bath correlation function and the time-
ordered system propagator superoperator U (¢, ') that involves the control field through
Hg(t) in L4(t). Thus the control field and dissipation are correlated. This paves the way
to manipulate the control field to counteract the effect of the environment on the system
dynamics. However, the time-convolution master equation, Eq. (5.2), togather with the
dissipator D(t) defined in Eq. (5.3) is a time-ordered integro-differential equation for
non-commuting system and control operators. Is is thus difficult to solve. It is possible
to transform it into a time-local differential equations. The price to pay is to introduce
auxiliary density matrices with a extended Liouville space. We describe the procedure to

achieve this in the master equation in the next section.

5.2.2 Equation of motion in the extended Liuville space

To cope with the time-convolution non-Markovian quantum master equation, Meier and
Tannor [15] proposed a bath spectral density parametrization method to properly the bath
express correlation functions in a multi-exponential form. This work was further ap-
proached by Xu and Yan [31] to construct an improved quantum dynamics theory named
CS-QDT (complete second-order quantum dissipation theory), in which the second-order

correlated system-bath canonical state is used as the initial condition. Here we shall use a
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similar algebraic approach to construct the equation of motion for the dissipators. Since
we already know the integral form of the ohmic bath in Eq. (5.6), we will focus on the
correlation function C(¢ — t’) and expand it directly by exponential functions with the
following form, instead of parametrizing the spectral density in a Lorentz form in the

frequency domain first. The bath correlation function can then be expressed as
Clt—t)=>_Cj(0)en" =3 "Cy(t — 1), (5.8)
J J

where C;(0) and -y, are complex constants and can be found by numerical method. Here
we use the toolbox in MATLAB called 1sgcurvefit to find the value of C;(0) and
r;. Therefore, the dissipation operators D(t) can be expanded with the form D(t) =
> K;j(t), where

1 t
KC;(t) = = /O dtUs(t — t")o,C;(t — t')p(t). (5.9)

Note that Eq. (5.9) is still a time-nonlocal and time-ordered integration for non-commuting
operators. Therefore, we use the auxiliary density matrix K;(¢) to replace D(t) and find
the time derivative for IC;(¢) is of the form

1

G (0)75p()F(Ls(t) + 1)K (t), (5.10)
The same process can be done for the Hermitian conjugate part D' (t) = 5 i K,T(t). The

K;(t) =

equation of motion is written as
)
vl
The Eq. (5.2) combining with Eq. (5.10) and Eq. (5.11) form a set of coupled linear

K (0= =€ (0)p(t)on + KT (0)(LBs () + 57, 5.11)

equations of motion. Obviously, the above equations are time-local and have no time-
ordering and integrating problems. One can has the extended equation of motions. The
initial conditions for above set of coupled equations of motion are p(0) = py and IC;(0) =
0.

5.2.3 State-independent superoperator formulation in the extended

Liouville Space

The equations of motion, Eq. (5.2), (5.10) and Eq. (5.11), define an extended Liouville

space for the dynamics of correlated control and dissipation in terms of [32]
) = {p(t), Kj, K55 =1,2,3.., (5.12)
Therefore, Eq. (5.2), (5.10) and Eq. (5.11) can be combined as
pt) = A, (5.13)
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where A(t) is the generator defined by Eq. (5.2), (5.10) and Eq. (5.11), and can be written

as
Ae(t)) = Ag+ Me(2). (5.14)

where Ag is the field-free component of A(t), and M is the matrix form of the control

parameter. The standard solution to Eq. (5.13) is written as
) = Gtt)a(), (5.15)

where the associated propagator can be shown to satisfy

aG(t. 1)
ot

= A@®)G(¢, 1), (5.16)
with G (t,t) = I. The propagator satisfy the following property
gA(TQ)TO) — gA(7—277—1)gA(7-17T0)7 (517)

for (’7'2 Z T1 Z 7'0).

5.3 Optimal Control

In this section, we first introduce the error value we define and the cost function we choose
for the optimal control method. Second, we briefly show the algorithm of the optimal con-
trol method extended from Krotov’s method. Note that in the case without environment
influence Tr[p?(t)] = 1 is a dynamical invariance. However, in open quantum systems
Tr[p?(¢)] < 1 is an important decreasing factor that needs to include. For this reason, we

choose the error of the control gate satisfy the form
Error = Tr{[O — U(T)]*}/N. (5.18)

Here O stands for the system control target operator. U(7") is the superoperator for
p(T) = U(T)p(0) at the target time 7', and N is the dimension value of the density
matrix p(t). To implement the optimal control method for the non-Markovian open quan-
tum system in the extended Liuville space, we first define the fidelity for the extended

superoperator G(7T) is
7| = |T{QIG(T)}/N (5.19)

in the form of the extended superoperator as one part of our cost function. Here Q = P;O
is the target operator in the extended Liouville space transformed for the desired operation

Q in the original Liouville space, and N is the dimension value of the extended matrix
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Q. In realistic control problems, energy constraint of the control parameters are included.

For the reason, the cost function is of the form

J o= |r— /0 A (') — 2o(t)?, (5.20)

where A(?) is a positive function can be adjusted and chosen empirically, £(¢) is the control
parameter and () is the standard control value that can be chosen [18, 18]. The reason
that we use 7 as one part of our cost function instead of Tr{(Q — G(T'))?} /A is because
with the target Q we still can require the dissipation and the decoherence effects from the
auxiliary density matrix K; and IC; to approach zero for all the elements not related to O
in P.O are zero [20]. Therefore the required target is enough to implement a quantum
gate against the effect from bath. For further understanding, we derive the sufficient
and necessary conditions for the different cost function J' = —Tr{(Q — G(T))?} /N —
fOT d\(t")(e(t') — eo(t'))? in Appendix B, and shows that one cannot directly find the
sufficient condition for the cost function .J'.

Optimal control method used in Refs. [26, 18, 19] allow us to maximize the fidelity |7|
in Eq. (5.19). To be more specific, consider a time-dependent matrix A[e(¢)], where &(t)
is the control parameter. The goal of a quantum optimal control here is to reach a desired
target O with high fidelity |7| in a certain time 7. However, since a direct algorithm to
maximize |7| was not found, a working alternative is used: optimization of Re[7], or of
Im[7], or both. For simplicity, the optimization of the real part |7| represented in the cost

functional
T
J = Re|7] —/ dt' A\t (e(t') — eo(t"))? (5.21)
0

is used. The optimal algorithm follows the Krotov method [10], and the proof of this cost
function satisfy the necessary and sufficient condition for optimality in each iteration is

given in Appendix A. The algorithm works as follows:

(i.) An initial guess of €y(t) is chosen for the control parameter.

(ii.) The time-evolution operator G[e,(t)] with the initial condition G(t = 0) = I is

evolved in time according to the equations of motion, Eq. (5.16), until time 7.

(iii.) an auxiliary time-evolution superoperator B[e(t)], k = 0 for the first iteration, with
the condition /3 (t=T)= Ot is evolved backward in time until ¢t = 0 according to
the inverse equation of motion

OB(t,1')
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(iv.) Blex(t)] and Gleg11(t)] are propagated again forward in time, while the control
parameter is updated iteratively with the rule

OAle(t)]
Oe(t)

Ene1(t) = ex(t) + Re[Tr{B"(t) GFD ()Y, (5.23)

A1)

and the weight function A(¢) constrains the value of the control parameters.

(v.) steps (iii.) and (iv.) are repeated until the required value of the fidelity is obtained.
After a sufficient number of iterations, the algorithm converges and reaches asymp-
totically a maximum 7,,,. The same procedure can be done even the Hamiltonian

contains more than one control parameter.

5.4 Numerical Results and Discussion

we study the one-qubit system coupled to a non-Markovian bosonic bath and subject to a
time-dependent external control field £(¢) [6, 29]. The Hamiltonian in Eq. (5.1) describes
a Josephson charge qubit with a control field applied in the gate voltage. Our objective is

to realize the state-independent single-qubit Z-gate, i.e.,

= L
Of)= : 5.24
W 520

We use the spectral density of the bath in Eq. (5.6) for different values of the cutoffs
and coupling constants.. We first show the result for the error of ideal Z-gate and its
corresponding optimal pulse. Second, we demonstrate error versus time of the Z-gate
under different bath conditions. Finally, the cutoff frequency versus error are discussed

and we show that low cutoffs can give high fidelity Z-gate.

5.4.1 Parametrization of the correlation function

As a first step, we need to compare the correlation function of Eq. (5.6) with that obtained
numerically in the form of Eq. (5.8). Note that only a few terms in the expansion of
Eq. (5.8) are required to model the given correlation function with high accuracy in our
cases. The values for Eq. (5.8) were obtained by using MATLAB optimize toolbox with
the requirement of the difference dc(t —t') = C(t —t') — >, C;j(t — t') between the
actual and the approximated correlation function are chose to be less or equal to 1077,
Fig. 1 shows a comparison of the actual and the approximated correlation function with
cutoff w, =7.5Q, a =0.1 and T" = 0.2€) (here we choose {2 = 1) as the case used in [15],
which need more than 48 terms to expand the spectral density function of the ohmic form

at the low temperature of 7" = 0.2€2. In our situation, we need only three or four terms
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Figure 5.1: (color online). Real and imaginary part of the complex bath correlation func-
tion Eq. (5.6) with w. = 7.5Q, o = 0.1, and 7' = 0.2(2 and fitting by the exponential

functions in Eq. (5.8). Here we named the summary result as C's;;(t —t') for convenience.

107

107

10

Error

10

10

Figure 5.2: (color online). Error versus time for ideal Z-gate and the inset is the optimal

control pulse for any ¢, > 0.3().

to expand the correlation function and the comparison shows a great agreement over the

whole range of time in Fig. 1.

5.4.2 Z-gate control

An overview of the ideal Z-gate performance as a function of the duration ¢ of the gate
is given in Fig. 5.2 with the restriction £(¢) < 3012. Excellent Z-gate performance can
be achieved for pulse time ¢; > 0.3/€). The corresponding optimal pulse is shown in the
inset of Fig. 5.2. Indeed, if one does not require the control field restriction €(¢) < 30¢2,
perfect Z-gate can be achieved for any finite period of time ¢ ;. For the reason, this optimal
control pulse gives an advanced choice of the control filed pulse to implement a Z-gate as
compared with the Z-gate in [20] which requires the gate operation time > 7 /). Besides,
the inset of Fig. 5.2 also shows the strategy of the optimal control pulse. As the (o,

term is always on, the optimal control first gives a negative magnitude corresponding
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Figure 5.3: The left panel is the error of the Z-gate versus time with w. = 20(2 for different

values of « and T The stopping criteria of the error threshold is set to 10~° or when the

number of iterations exceeds 3000 times. The right panel is the corresponding correlation
function for o = 0.01
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Figure 5.4: The left panel is the error of the Z-gate versus time with w,. = (2 for different

values of o and 7T'. The right panel is the corresponding correlation function for o = 0.1
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Figure 5.5: (color online). Left four panels are the optimal pulses for « = 0.01, w. = 2
in different values of time ¢ ;= (a)0.5/€2, (b)1/€2, (c)1.5/€2 (d)2/€). Right four panels are the

optimal pulses for a = 0.01, w. = 20€2 and T" = (2 in different values oft; = (a)0.5/¢2,
(b)1/€2, (c)1.5/€2 (d)2/S2.
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Figure 5.6: (color online). The left panel is the error of the Z-gate versus cutoff w, with
t; = 1/€0. . The right is corresponding correlation function of the conditions: o = 0.1,
T =109, w, = Q2 and w, = 2.52.

to an inverse rotation of o, which can reduce the contribution by (o, from the direct
rotation of o,. Finally the same process is performed for the same reason. This strategy
of the optimal control pulse with symmetric pulse shape also gives the minimum energy
consumption. The optimal control pulse can be approximately written as the form: £(¢) =
(16/t)sin(xtft7) — (6/t).

An important question to be addressed is whether the different cutoff w. of the non-
Markovian environment influence the error of a Z-gate. In Fig. 5.3, we show that for the
case of w, = 20(2, the error will increase when operation time become longer. The error
for the case of smaller v = 0.01 is about 10~* at the beginning and quickly increase to
10~ in very short time. The reason is that when w,. = 2052, the environment is becomes
very close to a Markovian environment, and therefore the memory effect is extremely
weak. The decay rate approaches to a constant values in a very short time and thus is
almost unchangeable by the optimal control. In this case, the environment contribution
cannot be revised. We also find that the value of the coupling strength plays the most
important role in determining the amount of the error in this case. This can be understood
by the correlation function in Fig. 5.3. The correlation function at time ¢ = 0 for the
high temperature (7" = 10f2) is only bigger than the low temperature (7' = (1) by a
factor of 1.5. However, the coupling strength is different by a factor of 10. Therefore, the
main factor of the environment influence for the case w,. = 20f2 is from the value of the
coupling strength.

On the other hand, for the case of w,. = (), the result is totally different. In Fig. 5.4
we shows that it is possible to reduce the error of building a Z-gate to below 107> even
for a long time period. This can be explained from the memory effect of non-Markovian
environment. Since the correlation function in Fig. 5.4 shows a long-smooth amplitude

and approaches 0 in a time scale of ¢ = 1/€), this allows the optimal control field to
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counteract the contribution from the environment during this longer bath correlation time.
However, It is not possible to reduce all the effects from environment to build a Z-gate
for all cases considered in Fig. 5.4. As a result, even though the error can be reduced
to below 107> at the beginning, the influence of the environment still will increase the
error as time become longer. Besides, for the case of w. = (), the temperature plays an
important role similar to the coupling strength. The amplitude ratio of the bath correlation
function between the temperature 7" = 10¢2 case and 1" = (2 case is about 10 which is
fundamentally different from the situation of w. = 20§2, shows in Fig. 5.3.

In Fig. 5.5 we show the optimal pulses in different times under the condition o = 0.01,
T = (). The cutoff frequency is w. = (2 for the left four panels and is w. = 20(2 for the
right four panels. For the case of a short gate operation time of ¢ty = 1/, we find that
the optimal pulse shapes are approximately similar to the ideal case shown in the inset of
Fig. 5.2. However, when the gate operation time become longer, the optimal pulse shapes
show significant difference from the short gate operation time case and different cutoffs
also show different pulse shapes. The optimal pulses for operation of times t = 1/Q
and 1.5/2 approximately follow the similar strategy for both the cutoff cases but seem to
take different optimal strategy for operation time #; = 2/¢). We further investigate the
dependence of the gate error on the cutoffs of the open qubit system. Fig. 5.6 shows the
gate error versus cutoff w, at time ¢ = 1/€) for different values of the coupling strength
« and temperature 7'. One can see that the gate error depends strongly on the bath cutoff
frequence. The error increases as the cutoff becomes bigger. For the weak coupling and
low temperature cases (o = 0.01, 7" < (), it is possible to reduce the error to below
10~° for the cutoff between 2 > w. < 2.5Q). This explains the robustness of optimized
Z-gate against non-Markovian environment processes. However, in the case o = 0.01,
T = 1092, as the cutoff increase to w,. > 5, the gate error becomes large than 10~°. This
phenomenon can be explained from the rapid change of the bath correlation function in
the right panel of Fig. 5.6. We find that the amplitude of correlation function at ¢ = 0
for w. = 2.5{2 case is much bigger than that of w. = (2 case, and the bath correlation
time for w, = 2.5 case is relatively smaller than w. = €2 case. Therefore, the gate error
is increases rapidly as the cutoff increases under the conditions. The similar behaviours

processes have been investigated and observed for the X-gate case.

5.5 Conclusion

In summary, an optimal control method is constructed for a time-nonlocal or time-convolution
non-Markovian open quantum system with a dissipator in which the control field and the

bath dissipation are correlated. The optimal control method is developed based on a novel
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quantum dissipation formulation that transforms the nonlocal-in-time master equation to
a set of coupled linear local-in-time equations of motion of the original density matrix and
auxiliary density matrices in an extended Liouville space. State-independent superoper-
ator formulation is considered to implement quantum gate operations. As an illustration,
the optimal control method is applied to find the control field sequence for a single-qubit
Z-gate in a superconducting charge qubit model embedded in a non-Markovian bosonic
bath. It is possible to achieve high-fidelity Z-gate with error less than 10~ for the non-
Markovian open qubit system. The control-dissipation correlation and the memory effect

of the bath are crucial in achieving the high-fidelity gates.

Appendix A: Iterative solution scheme based on necessary

and sufficient conditions for optimality

Using the cost function mentioned in Eq. (5.20)

B = Re[Tr{QTg(T)}]//\/’/Tdt/\(t)yg(t)—s(t)|2, (5.25)

in the following discussion we will prove that the iteration algorithm for the cost function
J exhibits monotonically convergence. For convenience we set the dimension number
N = 1. First, following the Krotov’s method [26, 10], we partition .J in the following

suggestive form

T
T =)+ / dtR(1). (5.26)
0
Here G(T') depends only on the terminal time 7" and is defined as the form
T
G(T) = Re {Tr{QTg(T)} — Tr{B(t)g(t)}‘o] , (5.27)

where B(t) is an arbitrary continuously differentiable propagator which can be consid-
ered as the Lagrange multiplier function constraining the system to obey the equation of

motion. R(t) is related to a time integral part and of is the form

R(t) = Re {Tr{B(t)(fls + Me(£)G(t) + agit)g(t)}]

—\(t)|e(t) — ()] (5.28)

For simplicity, here we choose only one control parameter for the generator A(t), and for
multi-parameters case the result can be derived following the same process. To maximize

J one proceeds to maximize G and R independently. Note that if R is maximized at each
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time ¢ the integral of R will be maximized. Second, to prove that .J converge in every

iteration, it is straightforward to show that

JEED) _ JR = AL+ Ay + A3 >0 (5.29)
where
Ar = GGHINT)) - GGW(T))
= Re[Tr{(Q' — B(T))AG(T)}], (5.30)

pe = [ WIRGGEID DY) R G, < w)
— Re { / 4 T {B(t)(Mbe(£) U (1)}

r /T dt2A(@) (e* V(1) — &(t)) Ae(t) 4 A(t)Ae(t), (5.31)

5,
[

/ , dt[R(t,G () @)) - R(t, GUN(0), & (2))]
= Re UT dtTr{(B(t)(ds + Mk (1)) AG(1)}

y:

0B(t

—/ dtTr{L)Ag(t)} . (5.32)
d ot

Here Ae = ® V() — e®(t) and AG(t) = GF+1(t) — GW)(¢) , and in deriving these

expressions we also have choose B(t) = B%¥)(t) in the expression for J*+1) as well as

in that for J*). Third, we can acquire the equation of motion and initial state of B(t) by

making the choice

BI) = &, (5.33)
O0B(t ~ ~
7) = B(t)(Ag + Me"(t)), (5.34)
Therefore we obtain the result
A =0, (5.35)
Az = 0. (5.36)

Finally, the control parameter £(**1)(¢) can be decided by choosing

e® (1) = &(t) + Re [Tr{B(t)MG*)(t)}] (5.37)

1
A1)
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This expression also suggests that
Ay = At)(Aeg)? >0. (5.38)

Here A(t) is a positive function can be decided empirically. The results here prove that
the iteration algorithm for cost function J exhibits monotonically convergence with the
proper choice of the equation of motion and initial condition for 3(¢), and the optimal
control parameter at the next time step is also decided. Note that £(¢) in the k+1 iteration
can be substituted by the optimal control parameter £(*)(¢) acquired in the k iteration.
Similarly, the result of the multi-parameters cases is of the form

1
oA()

eppa(t) = &) + Re[Te{B® (t) MGV (1)}], (5.39)

here i is the notation for multi-parameters and M is the matrix product with %(t). For
linear cases, M’ can be written as DA[E(t)] /0" (1) with A(£(2)) = Ag + 32, Migi(t).

Appendix B: Necessary and sufficient conditions for cost

function J’

Since we already show the monotonically convergence condition in Appendix A, now we

will briefly calculate the sufficient and necessary conditions for

e —Tr{(Q—Q(T))Q}/N—A dEAN(D)|e(t) — E(1)2. (5.40)

For simplicity, we also set the dimension number A/ = 1. First, by following the Krotov’s

method, we partition J' into
T

J = G(T)+ / dtR(t), (5.41)
0

where One can easily find that R(¢) satisfies the same form derive in Appendix A. There-
fore, equation of motion for backward propagator B(t) and the control field e*+1)(¢) for
the next iteration are also the same as the results derived in Appendix A. The only differ-

ence is the expression of G’(7") which now can be written as
~ ~ T
G(T) = -Tr{(Q—G(T))*} — Re {Tr{l’)’(t)g(t)}‘o} : (5.42)
To inspect the sufficient and necessary conditions of G’(7’), we check that

Ay = G(GMTI(T) - G(GM(T))
= Re[Tr{((Q" - G"(T)) — B(T))AG(T)}] — [AG(T)P?, (5.43)
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where AG = G#+D — G Since there is no direct way to choose B(T') satisfy the
aG!(T)
aG(T)

satisfies. The result of the derivative is

sufficient condition, we can use = 0 to find the necessary condition that 5(7")

B(T) = 2(Q" -G/ (T)). (5.44)
We then obtain the result
A= —|AG(T)|* <0. (5.45)

We therefore show that the cost function Eq. (5.40) satisfies only the necessary condition
and has a second order contribution from A’ which will influence the convergence and

will require the energy constraint \(¢) must satisfy the condition
ADAe(t)® > |AGE)]* (5.46)

This restriction may confine the range that can be used for A(¢) and give a worse result

for quantum gate operations.
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Chapter 6
Conclusion

In this thesis we present a general optimal control theory for Non-Markovian open quan-
tum systems based on the superoperator formalism. Therefore we do not require the
knowledge of the initial states of density matrix. We treats the effect of the bath corre-
lation function of the non-Markovian dissipation as auxiliary density matrices coupled to
qubits in an extended Liouville space. The extended propagator is formulated for both the
forward propagation of the extended density operator and the backward propagation of
the extended target operator; both depend on the control field parameters. This approach
is used to study a quantum gate for a superconducting qubit system within a spin-boson
model. The time-convolution master equation was computed within the second-order per-
turbation theory in the spin-boson interaction leading to a control-dissipation correlated
dissipator. Note, however, that the coupling between the system and external control field
is treated nonpertubatively.

With such a general formalism we presented optimal control pulses to implement a
Z-gate for different values of environment parameters, such as the temperature, the cutoff
frequency, and the coupling strength. For the ohmic bath spectral density we chose for
the investigation, we find that the gate fidelity or gate error depends strongly on the cutoff
frequency. The gate error increases as the cutoff frequency decreases. As expected, when
the system-bath coupling strength and the bath temperature increase, the gate error also
increases. It is possible to achieve a high-fidelity Z-gate with gate error smaller than 10~°
in this non-Markovian spin-boson model.

In the past, the Markovian approximation is widely used and assumed to be valid in
most of the cases, while in some systems the Markovian approximation may not valid
any more. Here we find in non-Markovian open quantum system the control-dissipation
correlation can be optimized to countered the environment effect when the bath memory
effect time is large and coupling strength is relatively weak. On the other hand, for the

Markovian case, the optimal control cannot effectively reduce decay or dephasing rate as
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they approach to a constant value in a rather small time scale (assume to be instaneous
in the Markovian limit). It can only reduce the bath effect on the system dynamics under
the constant dissipation. Therefore, we can conclude that the control-dissipative corre-
lation and memory effect really play an important role on changing the contribution of
environment to the system.

The optimal control method presented is extremely efficient to deal with the time-
nonlocal non-Markovian equation of motion, and thus open the way to investigating two-
qubits and many-qubits problems in time-dependent dissipative environment. However,
by extending to more qubits problems, the dimension of the extended density matrix will
grow up rapidly, and the numerical demonstration would take more time to compute. Our
future objective is to extend this work to the implementation of two-qubit quantum gate

operations.
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