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中中中文文文摘摘摘要要要

量子邏輯閘 (Quantum Gate)是在實際的物理上實現量子電腦最基本
的元件。其中，固態的約瑟夫森量子元件 (Superconducting Josephson-
Junction Qubit)是實現量子邏輯閘最好的候選人之一。而通常在面對
建立量子邏輯閘的過程中，受環境影響的去相干化 (Decoherence) 和
耗散 (Dissipation)是最主要的課題。藉由克服此課題我們才有可能建
造一個高準確度 (Fidelity)且錯誤大約在10−3 ∼ 10−4 之間的量子邏輯

閘。因此，找尋一個好的操作策略來降低影響與建造量子邏輯閘是非

常重要的。最佳化控制方法 (Optimal Control Method)是其中一個有效
的工具，並且已經被用在減少與環境的作用和建造高準度的量子邏輯

閘上。另外，最佳化控制方法亦已經被拿來使用在假設環境與系統

是沒有記憶效應的馬可夫開放系統 (Markovian Open Qunatum System)
上。但是，在諸多實際的相關實驗上，非同時的記憶效應 (Non-Local
Memory Effect)對於量子系統的影響是需要被關切的。尤其是在固態
的裝置上環境的記憶效應是不可忽略的。所以，將最佳化控制方法延

伸到在非馬可夫開放系統 (Non-Markovian Open Quantum System)建立
量子邏輯閘的研究是值得且具有必要性的。在本論文裡，我們首先回

顧一些基礎的量子超導電路 (Superconducting Quantum Circuit) 並且介
紹量子計算元件 (Quantum Qubit Device) 。接著，被視為解決最佳化
問題其中一個最有效且恆定的計算方法─科羅多夫的最佳化控制方法

(Krotov Optimization Method)將被引入。我們跟著推導非馬可夫開放系
統以及含時的非馬可夫量子模型，並且將科羅多夫最佳化控制方法應

用在非馬卡夫的單一量子邏輯閘 (Z-Gate)上。並且發現控制相關係數
(Control-Dissipation Correlation)和記憶效應 (the memory effect)在高準
確度的量子邏輯閘建立上，扮演極重要的角色。
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Abstract

One of the fundamental criteria for physical implementation of a practi-
cal quantum computer is to design a reliable universal set of quantum gates.
A promising class of candidates for realization of scalable quantum com-
puters are solid-state quantum devices based on superconducting Josephson-
junction qubits. Typically, a central challenge to overcome in this enterprise
is decoherence and dissipation induced by the coupling to the its environ-
ment. It is thus important to find strategies to alleviate the problems and to
to build a high-fidelity quantum gates meeting the error threshold of about
10−3 ∼ 10−4. Optimal control method is one of the powerful tools already
applied to the problem of dynamical decoupling from the environment and
to finding the control sequence for high-fidelity quantum gates. Furthermore,
optimal control technique has recently been applied to Markovian open quan-
tum systems in which the approximation of the bath correlation function be-
ing delta-correlated in time is assumed. However, in some real experiments,
we need to consider the non-local memory effects of the bath on the dynamics
of the qubits. Especially, the bath memory effects are typically non-negligible
in solid state devices. Thus it is desirable to apply optimal control technique
to quantum gate operations in the non-Markovian open quantum systems. In
this thesis, we first review some basic elements of superconducting quan-
tum circuit and introduce the quantum qubit devices. We then introduce the
Krotov optimization method which is one of the most effective and univer-
sal computation methods for solving optimal control problems. Then the
quantum master equation approach for non-Markovian open quantum sys-
tems with time-dependent external control are presented. The Krotov based
optimal method is then used to implement quantum logical gates for a single
qubit in a non-Markovian environment. It is possible to achieve high-fidelity
Z-gate with error less than 10−5 for the non-Markovian open qubit system.
The control-dissipation correlation and the memory effect of the bath are cru-
cial in achieving the high-fidelity gates.
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Chapter 1

Introduction

In 1982 Feynman published a paper in which he discussed the question of whether it is

possible to simulate quantum mechanics effectively using a classical (probabilistic) com-

puter. He also introduced the concept of a quantum computer as a universal quantum

simulator which uses ”quantum elements” in order to simulate another quantum system.

For a quantum computer, such a quantum element is a quantum bit or qubit, which can be

seen as the quantum mechanical analogue to the classical bit. The difference with respect

to the classical bit, which is either in the state 0 or 1, is that a qubit can be in a super-

position state. The relevant idea of a quantum computer that make use of superposition,

interference entanglement or other quantum effects based on the principles of quantum

mechanics was introduced by Deutsch in 1985. The power of quantum computing in

factoring and discrete logarithm was proposed by Shor in 1994. After two years, Grove

published an quantum algorithm for searching an unordered database. These quantum al-

gorithms make possible to solve those problems which are difficult to solve with classical

computers.

To achieve the purpose of quantum computing and quantum information, practical

quantum bits or qubits to perform reliably single- and two-qubit gates are needed. Vari-

ous candidates for realizing building quantum bits have been proposed in the last decade.

Intensive experimental and theoretical activities to realize suitable schemes for quantum

gates in a variety of physical systems such as ion traps, cold atoms and solid-state de-

vices were reported. One of the most promising class of candidates is solid-state quantum

devices based on superconducting Josephson-junction qubits. Series of ingenious experi-

ments related to superconducting qubit have been demonstrated and theoretical proposals

have been investigated. Fundamentally, a quantum system is never completely isolated

from its environment which results in noticeable effects such as decoherence, dissipation,

and entanglement. One prominent example embodies a two-level system interacting with

a collection of harmonic oscillators, the so-called spin-boson model. Many works were
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recently directed toward understanding and controlling the dissipative spin-boson dynam-

ics in nonequilibrium situations such as applying time-dependent external fields to build

a quantum gate. In the related experiments[] the measured fidelity was increased up to

87% via accounting for measurement errors and large decoherence times. However, the

requirement for high fidelity gates with error less than 10−3 for the purpose fault-tolerant

quantum computation has not be done. Therefore it is important to find strategies to al-

leviate the effects of environments and to build quantum gates through time-dependent

controls.

Optimal control method is one of the powerful tools already applied to the problem

of dynamical decoupling from the environment and to finding the control sequence for

high-fidelity quantum gates. Furthermore the optimal control method based on Kro-

tov’s method is proved to satisfy sufficient and necessary conditions and can find the

global minimum or maximum for the given initial values. It has also been extended to

treat quantum systems with noise, imperfections and leakage to noncomputational states

[16, 30, 25]. Besides, optimal control technique has recently been applied to Marko-

vian open quantum systems in which the approximation of the bath correlation function

being delta-correlated in time is assumed [22]. However, in some real experiments, we

need to consider the non-local memory effects of the bath on the dynamics of the qubits.

Especially, the bath memory effects are typically non-negligible in solid state devices.

Thus it is desirable to apply optimal control technique to quantum gate operations in the

non-Markovian open quantum systems [6, 29, 20, 4, 7, 8].

In this thesis, we will investigate quantum optimal control problem for superconduct-

ing qubits using optimization method based on Krotov’s method [10]. In chapter 2, we

begin with a brief introduction of the Josephson Effect and discuss the physical properties

of the Josephson junction. Then, the cooper-pair box and the SQUID quantum devices are

introduced. These devices play the fundamental roles in recent physical research. Finally,

charge qubits and flux qubits are discussed, which are the most important elements for

quantum computing and information processing.

In chapter 3, we start from the original Krotov’s optimal method, and then summarize

the algorithm of achieving the optimal control process. Few examples are given to illus-

trate and demonstrate the optimal control method. An optimal control case on a closed

quantum system is also discussed for the purpose of further extension.

In chapter 4, the theory of quantum master equation used to describe open quantum

system dynamics is introduced. The Born approximation and Markov approximation are

discussed. We also use the Born approximation to obtain the master equation for a time-

dependent non-markovian open quantum system which will be used in our problems.

Moreover, the useful tricks for dealing with open quantum systems are discussed.

2



Finally, In chapter 5, we will the Krotov based optimal control method to investigate

the quantum optimal control problem of the quantum gate operations for superconducting

qubits. We first introduce the novel form of equations of motion of the open quantum

system we study, and extend the optimal control method to the equation. We obtain

optimal control sequences for the single-qubit gate, including the Z-gate in the presence

of a non-Markovian environment.

3



Chapter 2

Superconducting Quantum Qubit

2.1 Josephson Junctions

The phenomenon that electric current across two weakly coupled superconductors is

called Josephson effect. British physicist Brian David Josephson predicted the existence

of the effect in 1962. Josephson Effect is one of the most important discover in the last

century. It not only open a new physical field for fundamental interesting but also shows a

long-term potential on quantum computing and quantum technology[3, 34, 13, 12, 9, 27].

The superconducting circuits built by Josephson junction has generic quantum properties

such as quantized energy level, entanglement and superposition of states, all of which

are more easier connected with atoms. On the other hand, these circuits can be de-

signed and constructed to control their characteristic frequencies and other parameters.

These frequencies and parameters can be adjusted by controlling an external magnetic

field ,voltage and current. This possibilities can be extended to the idea of quantum

bits(qubits)[3, 34, 13, 12], which are the fundamental elements of quantum computer.

In this chapter, we begin with a brief introduction of Josephson Effect and discussing

the physical qualities of the Josephson junction. Secondly, the cooper-pair box and the

SQUID quantum devices are introduced. These devices play the fundamental characters

in recent physical research. Finally, charge qubits and flux qubits are discussed, which

are the most important elements for quantum computing and quantum communication.

2.1.1 Josephson Effect

Consider two superconductors separated by a macroscopic distance. In the situation, the

phase of the two superconductors can change independently. When the two superconduc-

tors are moved closer, so that their separation is reduced to about 30 Å, quasiparticles can

flow from one superconductor to the other by means of tunnelling. If we further reduce

4



the distance between two superconductors down to 10 Å, as we shall see, also Cooper

pairs can flow from one superconductor to the other, this phenomenon is called Joseph-

son tunnelling. One can build a Josephson junction which consists of a sandwich of two

superconductors separated by a thin insulating layer to see the Josephson tunnelling ef-

fect. In the experiment, current and voltage can be changed, so there are two kind of

Josephson effect: DC Josephson effect and AC Josephson effect. DC Josephson effect

is happened when a DC current flows across the junction in the absence of any electric

or magnetic field. The relationship between the phase difference 𝛿 and the current I of

superconducting pairs across the junction is

𝐼𝐽 = 𝐼𝑐𝑠𝑖𝑛𝛿 (2.1)

The critical current 𝐼𝑐 is the maximum zero-voltage superconducting current that can pass

through the junction above which the superconducting state will become normal state. It

is proportional to the transfer interaction. Because no voltage apply, the phase difference

𝛿 is a constant. For finite voltage situations involving the AC Josephson effect, a more

complete description is required. AC Josephson effect is happened when a DC voltage is

applied across the junction, an AC current flows across the junction. The phase difference

𝛿 is no longer a constant. The relationship between voltage and phase difference is

�̇� = −2𝑒𝑉/ℎ̄ (2.2)

or

𝛿(𝑡) = −2𝑒

ℎ̄

∫ 𝑡

0

𝑉 𝑑𝑡+ 𝛿(0) (2.3)

and the superconducting current is

𝐼𝐽 = 𝐼𝑐𝑠𝑖𝑛(𝛿(0)− 2𝑒𝑉 𝑡/ℎ̄) (2.4)

Furthermore, considering more general cases, we can apply a time-dependent voltage,

and write down the function in some significant symbols,

𝐼𝐽(𝑡) = 𝐼𝑐𝑠𝑖𝑛
Φ(𝑡)

𝜙0

= 𝐼𝑐𝑠𝑖𝑛𝛿(𝑡) (2.5)

where the generalized flux is defined by Φ𝐽 =
∫ 𝑡

∞ 𝑉 (𝑡′)𝑑𝑡 and 𝜙0 = ℎ̄/2𝑒 is the reduced

flux quantum, or 𝜙0 = Φ0/2𝜋, where Φ0, ℎ/2𝑒, is the magnetic flux quantum. Actually,

phase difference is not a gauge-invariant quantity; for a given physical situation, there

is not only one unique value of phase difference. Hence it cannot in general determine

the current 𝐼𝐽 , which is a well-defined gauge-invariant physical quantity. The phase dif-

ference mentioned before is not the real phase difference between two superconductor,

defined by

𝛿 ≡ 𝛿′ − 2𝜋

Φ0

∫
�⃗� ⋅ 𝑑𝑙 (2.6)
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where 𝛿′ is the real phase difference and the integration over the vector potential �⃗� is from

one electrode of the weak link to the other. Thus, the difficulty is cured. In addition to

curing the conceptual problem, the introduction of the gauge-invariant phase difference

is the key to working out the effects in a magnetic field, which cannot be treated without

introducing the vector potential �⃗�.

For some cases, one need to consider a Josephson junction with a nonlinear induc-

tance. At first, let’s take a short review of a conventional inductance.

𝐿 = Φ/𝐼 or 𝐼 = 𝜙/𝐿, (2.7)

where L is the inductance, Φ is the magnetic flux, and I is the current, We thus expand

Eq. (2.5)

𝐼𝐽 =
1

𝐿
− 1

6𝐿𝐽𝜙2
0

Φ3
𝐽(𝑡) + ... (2.8)

or simpletly

𝐼𝐽(𝑡) = 𝐼𝑐𝑠𝑖𝑛𝛿(𝑡) = 𝐼𝑐(𝛿(𝑡)− 𝛿3(𝑡)

3!
) (2.9)

By comparing the functions of a Josephson junction and a conventional inductance, it is

very easy to find that besides the linear term in the relation of current and magnetic flux,

there are additional nonlinear high-order terms in a Josephson junction. A Josephson

junction, therefore, can be considered having a nonlinear inductance.

I

R J C

Figure 2.1: The current-biased Josephson junction and its equivalent circuit.

2.1.2 The current-biased Josephson junction

A Josephson junction schematically shown in Fig. 2.1 as a sandwich structure can be

modeled as a parallel circuit which consists of a nonlinear inductance, a resistance, and

6



a capacitance. According to Kirchhoff’s rule and some relationships, 𝐼 = 𝐶�̇� = 𝐶𝛿,

𝛿 = 2𝑒
ℎ̄
Φ and 𝐼𝑗 = 𝐼𝑐𝑠𝑖𝑛𝛿, the equation of the circuit is

ℎ̄

2𝑒
𝐶𝛿 +

ℎ̄

2𝑒𝑅
�̇� + 𝐼𝑐𝑠𝑖𝑛𝛿 = 𝐼𝑒, (2.10)

where C is the capacitance, R is the resistance, and V is the voltage across the capacitance.

Then, it is useful to define some meaningful parameters, 𝐸𝑐 ≡ 4𝑒2

2𝐶
and 𝐸𝐽 ≡ ℎ̄

2𝑒
𝐼𝑐. The

kinetic energy of the quasi-partial of phase 𝛿 is

𝐾(�̇�) =
ℎ̄2�̇�2

4𝐸𝑐

, (2.11)

the potential energy of it is

𝑈(𝛿) = 𝐸𝐽(1− 𝑐𝑜𝑠𝛿)− ℎ̄

2𝑒
𝐼𝑒𝛿, (2.12)

and the Hamiltonian has the form

𝐻 = 𝐸𝐶𝑛
2 − 𝐸𝐽𝑐𝑜𝑠𝛿 − ℎ̄

2𝑒
𝐼𝑒𝛿, (2.13)

The relationship of potential versus phase is shown in Fig. 2.2. It is obvious that nonlinear

inductance, 𝑐𝑜𝑠𝛿, makes potential oscillate and bias current makes it slope. When current

bias is applied, the pendulum potential becomes tilted. By the way, a current-biased

Josephson junction can be considered as a qubit, because the potential is cosine function,

making energy gaps different.

δ

U

Figure 2.2: The ”tilted-washboard” effective potential versus phase difference of a

current-biased Josephson junction.

2.2 The Cooper-pair box and the SQUID

2.2.1 The single cooper-pair box device

There is a small superconducting island in a superconducting Cooper-pair box(SCB) de-

vice as shown in Fig. 2.3. One side of the island is connected via a Josephson tunneling

7



Vg

Cg

Figure 2.3: The single Cooper pair box. One side of a small superconducting island

is connected via a Josephson tunnel junction to a large superconducting reservoir, and

another side is coupled capacitively to a voltage source.

junction to a large superconducting reservoir, and the other side is coupled capacitively

to a voltage source. Cooper pair can only transfer to the island one by one in the device.

The number of electrons on the island is controlled by the bias voltage.

The Hamiltonian of the cooper-pair box is

�̂� = 𝐸𝐶(�̂�− 𝑛𝑔)
2 − 𝐸𝐽𝑐𝑜𝑠𝛿 (2.14)

where 𝑛𝑔 = 𝐶𝑔𝑉𝑔/2𝑒 is the offset Cooper pair number caused by the gate voltage 𝑉𝑔
through gate capacitance 𝐶𝑔, and n is the number of extra Cooper pairs between the

two capacitances, the gate capacitance and the capacitance in the Josephson junction.

Therefore, the first term, 𝐸𝐶(�̂� − 𝑛𝑔)
2, represents the electrostatic energy of the island,

where 𝐸𝐶 = 4𝑒2/2(𝐶 + 𝐶𝑔). Due to the nonlinear inductance of the Josephson junction,

the second term, 𝐸𝐽𝑐𝑜𝑠𝛿, appears.

Ø

A1
A2

R J C L

Figure 2.4: The superconducting quantum interference device, SQUID, and its equivalent

circuit.
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2.2.2 The SQUID device

A Superconducting quantum interference device(SQUID) is a device involved with quan-

tum interference. A rf-SQUID, shown in Fig. 2.4, consists of a superconducting loop

interrupted by a tunnel junction. a external magnetic flux is sent through the loop, induc-

ing quantum interference. According to the Meissner effect, we have

𝐽(�⃗�) = ∣Ψ(𝑟)∣2[ 𝑞ℎ̄
𝑚∗∇𝜃(�⃗�)−

𝑞2

𝑚 ∗ 𝑐�⃗�(⃗(𝑟))] (2.15)

where �⃗� is the vector potential and 𝑞 ≡ −2𝑒 for a Cooper pair. Inside a superconductor,

the current vanlishs,

∇𝜃(�⃗�) = −2𝑒

ℎ̄𝑐
�⃗�(�⃗�) (2.16)

Choosing a contour inside the superconducting loop. with Eq. (2.6) we can get

Φ𝑡 =

∮
𝑐

�⃗� ⋅ 𝑑𝑙 =
∫ 𝐴2

𝐴1

�⃗� ⋅ 𝑑𝑙 +
∫ 𝐴1

𝐴2

�⃗� ⋅ 𝑑𝑙

= −2𝑒

ℎ̄𝑐

∫ 𝐴2

𝐴1

∇𝜃(�⃗�) ⋅ 𝑑𝑙 +
∫ 𝐴2

𝐴1

�⃗� ⋅ 𝑑𝑙

=
2𝑒

ℎ̄𝑐
𝛿, (2.17)

where Φ𝑡 is total manetic flux.

With magnetic flux Φ = Φ𝑡−Φ𝑒 where Φ𝑒 is external magnetiv flux and the inductance

energy Φ2

2𝐿
, the Hamiltonian of a rf-SQUID is given by

�̂� = 𝐸𝐶 �̂�
2 − 𝐸𝐽𝑐𝑜𝑠𝛿 + 𝐸𝐿

(𝛿 − 𝛿𝑒)
2

2
(2.18)

where 𝛿𝑒 = 2𝑒
ℎ̄
Φ𝑒. The first term 𝐸𝐶 �̂�

2 is electrostatic energy of the capacitance in the

Josephson junction, and the second term is related to the Josephson energy. The last term

corresponds to the inductance energy of the loop, and 𝐸𝐿 =
Φ2

0

4𝜋2𝐿
.

Now we introduce another SQUID device called dc-SQUID. A dc-SQUID is a device

which consists of two tunnel junction in a superconducting loop and is biased by an exter-

nal current. It is similar to a current-biased Josephson junction with a two-junction loop,

as shown in Fig. 2.5, instead of a single junction. Two superconducting phases, 𝛿1,2, is

involved, and according to Eq.(2.5), the external current is

𝐼𝑐1𝑠𝑖𝑛𝛿1− 𝐼𝑐2𝑠𝑖𝑛𝛿2 = 𝐼𝑒 (2.19)

It is convenient to define some new variables,

𝛿± =
𝛿1 ± 𝛿2

2
(2.20)

9



I

Figure 2.5: The dc-SQUID. A superconducting loop with two Josephson junctions re-

places the single junction in the current-biased Josephson junction circuit.

and in a symmetry case, which the two Josephson junction are the same 𝐼𝑐1 = 𝐼𝑐2

Eq.(2.19) reduces to the form

2𝐼𝑐𝑐𝑜𝑠(𝛿𝑒/2)𝑠𝑖𝑛𝛿− = 𝐼𝑒 (2.21)

Comparing Eq. (2.21) with Eq. (2.5), we can find that 2𝐼𝑐𝑐𝑜𝑠(𝛿𝑒/2) is the effective critical

current. Most importantly, it can be tuned by the external magnetic flux and consequently

the effective Josephson energy, 𝐸𝐽 = ℎ̄
2𝑒
2𝐼𝑐𝑐𝑜𝑠(𝛿𝑒/2) is tunable too. The Hamiltonian can

be written by generalizing Eqs. (),() for the phases 𝛿±.

𝐻 = 𝐸𝐶 �̂�
2
+ + 𝐸𝑐�̂�

2
− − 2𝐸𝐽𝑐𝑜𝑠𝛿+𝑐𝑜𝑠𝛿−

+𝐸𝐿
(2𝛿+ − 𝛿𝑒)

2

2
+
ℎ̄

2𝑒
𝐼𝑒𝛿−, (2.22)

where �̂�+ and �̂�− are the conjugate momentum of 𝛿+ and 𝛿−. According to quantum

mechanics-just like the familiar position and momentum operators �̂� and 𝑝𝑥-the opera-

tor 𝛿 and Cooper-pair number operator �̂� on the capacitor are canonically conjugate, as

expressed by the commutator braket, [𝛿, �̂�] = 𝑖.

−0.5 0 0.5 1 1.5
n

g

0.5 n
g

Figure 2.6: Left: The energy spectrum of a charge qubit versus gate voltage. Right: The

lowest two energy levels near 𝑉𝑔 = 0.5, the part circumscribed by solid line in left figure.
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2.3 Charge Qubits and Flux Qubits

2.3.1 Charge qubits

A superconducting Josephson junction qubit in which the charging energy is much large

than the Josephson coupling, 𝐸𝐶 >> 𝐸𝐽 , is called a charge qubit. In this regime, a

convenient basis is formed by the charge states, and the phase terms can be considered

as perturbation. This is why this kind of qubits are called charge qubits. The necessary

of one-qubit and two-qubit gates can be performed by controlling applied gate voltages

and magnetic fields. Different designs will be presented that not only complexity, but

also in flexibility of manipulations. In this subsection, the simplest charge qubit, cooper-

pair box, Fig. 2.3, is presented in details. This is example illustrates how charge qubits

provide two energy states, which satisfy the requirement of qubits. In charge regime, at

first we expand all operators in the basis of the charge states {∣𝑛⟩}. The Hamiltonian of a

cooper-pair box, Eq. (2.14), is

�̂� = 𝐸𝐶(�̂�− 𝑛𝑔)
2 − 𝐸𝐽𝑐𝑜𝑠𝛿. (2.23)

Then by using the properties of orthonomal and complete set, ⟨𝑛∣�̂�∣𝑛′⟩ = 𝛿𝑛,𝑛′ and 𝐼 =∑
𝑛 ∣𝑛⟩⟨𝑛∣, the first term is rewritten as∑

𝑛

𝐸𝐶(𝑛− 𝑛𝑔)
2∣𝑛⟩⟨𝑛∣ (2.24)

and by using the commutator relation,

[𝛿, �̂�] = 𝑖,

⇒ [𝛿𝑚, �̂�] = 𝑖𝑚𝛿𝑚−1,𝑚 > 0

⇒ [�̂�, 𝑒𝑖𝛿] = [�̂�,
∑
𝑚

(𝑖𝛿)𝑚

𝑚!
] = 𝑒𝑖𝛿 (2.25)

The commutator relation Eq. (2.25) is similar to the commutator relation of number oper-

ator �̂�†�̂� and the creation operator �̂�†, [�̂�†�̂� = �̂�†. so 𝑒𝑖𝛿 and 𝑒−𝑖𝛿 can be presented in charge

basis,

𝑒𝑖𝛿 =
∑
𝑛

∣𝑛+ 1⟩⟨𝑛∣, 𝑒−𝑖𝛿 =
∑
𝑛

∣𝑛⟩⟨𝑛+ 1∣ (2.26)

and the second term of Eq. (2.14) is
1

2
𝐸𝐽

∑
𝑛

(∣𝑛⟩⟨𝑛+ 1∣+ ∣𝑛+ 1⟩⟨𝑛∣). (2.27)

By combining Eq. (2.24) and Eq. (2.27), in this basis the Hamiltonian reads

�̂� =
∑
𝑛

{𝐸𝐶(𝑛− 𝑛𝑔)
2∣𝑛⟩⟨𝑛∣ −

1

2
𝐸𝐽(∣𝑛⟩⟨𝑛+ 1∣+ ∣𝑛+ 1⟩⟨𝑛∣)} (2.28)
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The energy spectrum of Eq. (2.28) is shown in Fig. 2.6:left Under suitable conditions,

when charge number on a gate capacitor 𝑛𝑔 controlled by gate Voltage 𝑉𝑔 equals half inte-

gers, the lowest two energy states are well-isolated from other states, shown in Fig. 2.6:right

Because of that, near 𝑛𝑔 = 1/2, the Hamiltonian can be reduced to

�̂� = −1

2
(𝜖𝜎𝑧 +Δ𝜎𝑥), (2.29)

where 𝜖 = 𝐸𝐶(1 − 2𝑛𝑔), and Δ = 𝐸𝐽 . The qubit eigenenergies are then given by the

equation

𝐸1,2 = ∓1

2

√
𝐸2

𝐶(1− 2𝑛𝑔)2 + 𝐸2
𝐽 . (2.30)

So, under suitable conditions charge qubits provide physical realizations of qubits with

two charge states differing by one cooper-pair charge on a small island. For quantum

computation, it is required to have the ability to rotate a state on the Bloch sphere to any

position at will, and consequently 𝜎𝑧 and 𝜎𝑥 rotation are necessary. In a cooper-pair box,

pure 𝜎𝑥 rotation is acquirable, as 𝑛𝑔 = 1/2, but pure 𝜎𝑧 rotation is not, since 𝐸𝐽 is fixed.

In previous part, an important concept is mentioned. A two-junction loop can substitute

for the single Josephson junction, creating a SQUID-controlled qubit, Fig. 2.7. Thus, the

effective Josephson energy 𝐸𝐽 is tunable and pure 𝜎𝑧 rotation can be performed.

Vg

I

Figure 2.7: The single Cooper pair transistor. A superconducting loop with two Josephson

junctions replaces the single junction in a SCB for a tunable 𝐸𝐽 .

2.3.2 Flux qubits

In the previous section, we describe the quantum dynamics of low-capacitance Josephson

devices where the charging energy dominates over the Josephson energy, 𝐸𝐶 >> 𝐸𝐽 ,

and the relevant quantum degree of freedom is the charge on superconducting island. We
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do talk about another quantum regime, the phase regime, 𝐸𝐽 >> 𝐸𝐶 , in which the flux

states are the better basis. This kind of qubits are called flux qubits. A rf-SQUID is the

simplest example of a flux qubit. The Hamiltonian Eq. (2.18) is

�̂� = 𝐸𝐶 �̂�
2 − 𝐸𝐽𝑐𝑜𝑠𝛿 + 𝐸𝐿

(𝛿 − 𝛿𝑒)
2

2
, (2.31)

and in the phase regime, the potential energy is given by

𝑈(𝛿) = −𝐸𝐽𝑐𝑜𝑠𝛿 + 𝐸𝐿
(𝛿 − 𝛿𝑒)

2

2
. (2.32)

The potential energy is cosine function added a second power function. 𝛿𝑒 in a flux qubit

play as the same role as 𝑛𝑔 do in a charge qubit. The lowest area can be approximated

to a double-well. When 𝛿𝑒 equals 𝜋 or odd 𝜋, a symmetric double-well potential energy

appears. It is similar to that of 𝑛𝑔 equal 1/2 in a charge qubit. Because of the tunnelling

through center barrier, the lowest two energy level split with a gap Δ, which depends

on the height of the barrier. When 𝛿𝑒 does not equal 𝜋 or odd 𝜋, the potential energy

becomes unsymmetric, the probability of the lowest energy pair is not half in each well.

This situation is like when 𝑛𝑔 is near 1/2, in a charge qubit, the probability is not the same

in ∣0⟩ and ∣1⟩. The Hamiltonian of a flux qubit can be truncated to the lowest two energy

states in a simple form of

�̂� = −1

2
(𝜖𝜎𝑧 +Δ𝜎𝑥), (2.33)

where Δ depends on 𝐸𝐽 and 𝜖 is given by

𝜖 = 4𝜋
√
6(𝐸𝐽/𝐸𝐶 − 1)𝐸𝐽(Φ𝑒/Φ0 − 1/2). (2.34)

In this form, the pure operator X-rotation can be performed by setting Φ/Φ𝑒 = 1/2, but

the pure Z-rotation can not. In order to solve this problem, we can replace the single

junction with a two-junction loop that introduces an additional external flux Φ𝑒 as another

control variable. Therefore, the effective Josephson energy becomes tunable.
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Chapter 3

Krotov Optimal Control Method

3.1 Preliminary Preparation of the Krotov Method

In the Krotov optimal control method, one need to know the equation of motion of a

system, and decide the goal (cost) function for the system. The goal function depends

on the function of system and the control parameters. For further implementation, we

consider the equation of motion to be of the form

∂𝑥

∂𝑡
= 𝑣[𝑡, 𝑥(𝑡), 𝑐(𝑡)], (3.1)

and suppose we want to minimize the general form of the goal function

𝐼[𝑥(𝑡), 𝑐(𝑡)] =

∫ 𝑇

0

𝑓 0(𝑡, 𝑥(𝑡), 𝑐(𝑡))𝑑𝑡+ 𝐹 [𝑥(𝑇 )] −→ min. (3.2)

Here 𝑥(𝑡) is the system evolution function with time or the trajectory of the system, 𝑐(𝑡) is

the control parameter with time, and the vector-functional 𝑓0(𝑡, 𝑥(𝑡), 𝑐(𝑡)) and the func-

tional 𝐹 [𝑥(𝑇 )] are defined for all 𝑡, 𝑥(𝑡), 𝑐(𝑡) and are twice differentiable with respect to

𝑡 and 𝑥. The initial vector 𝑥(0) = 𝑥0 is a given and fixed vector, 𝑥(𝑇 ) is the final val-

ues of the vector 𝑥(𝑡) at final time T, and 𝑐(𝑡) can be required within a close set 𝑈 . The

general functional, 𝐹 [𝑥(𝑇 )], depends only on the final value of 𝑥(𝑡) and 𝑓 0(𝑡, 𝑥(𝑡), 𝑐(𝑡))

depends on the intermediative values of 𝑥(𝑡) and 𝑐(𝑡), so 𝐹 [𝑥(𝑇 )] and 𝑓0(𝑡, 𝑥(𝑡), 𝑐(𝑡)) are

general functional that representing that the goal function 𝐼 depends on the terminal and

intermediate time values of 𝑥(𝑡). For a quantum system with multi-dimensional vector

space or multi-argument processes and control parameters, we will have more than one

equation of motion, �̇�𝑖(𝑡) = 𝑣𝑖[𝑡, 𝑥𝑖(𝑡), 𝑐𝑖(𝑡)], and the minimization problem will become

to 𝐼[𝑡, 𝑥𝑖(𝑡), 𝑐𝑖(𝑡)] =
∫ 𝑇

0
𝑓 0[𝑡, 𝑥𝑖(𝑡), 𝑐𝑖(𝑡)] + 𝐹 [𝑥𝑖(𝑡)], where 𝑖 = 1, 2, ..., 𝑛.
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3.2 The Tricks of Krotov Method

3.2.1 Decomposition of Goal Function

For implementing the Krotov method, a real and twice differentiable function 𝜙[𝑡, 𝑥(𝑡)] is

introduced. The function can be proved to satisfy the constructions

𝑅[𝑡, 𝑥(𝑡), 𝑐(𝑡)] =
∂𝜙

∂𝑥
𝑣[𝑡, 𝑥(𝑡), 𝑐(𝑡)]− 𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)] +

∂𝜙

∂𝑡
, (3.3)

𝐺[𝑇, 𝑥(𝑇 )] = 𝐹 [𝑇, 𝑥(𝑇 )] + 𝜙[𝑇, 𝑥(𝑡)], (3.4)

𝐿[𝑥(𝑡), 𝑐(𝑡), 𝜙] = 𝐺[𝑇, 𝑥(𝑇 )]−
∫ 𝑇

0

𝑅[𝑡, 𝑥(𝑡), 𝑐(𝑡)]𝑑𝑡− 𝜙[0, 𝑥(0)]. (3.5)

To be more specific, 𝐿[𝑥(𝑡), 𝑐(𝑡), 𝜙] = 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)] for any function 𝜙[𝑡, 𝑥(𝑡)] and all of

the 𝑥(𝑡) and 𝑐(𝑡) can be shown through the constructions. The following is the proof:

𝐿[𝑥(𝑡), 𝑐(𝑡), 𝜙] = 𝐺[𝑇, 𝑥(𝑇 )]−
∫ 𝑇

0

𝑅[𝑡, 𝑥(𝑡), 𝑐(𝑡)]− 𝜙[0, 𝑥(0)]

= 𝐺[𝑇, 𝑥(𝑇 )]−
∫ 𝑇

0

[
∂𝜙

∂𝑥
𝑣[𝑡, 𝑥(𝑡), 𝑐(𝑡)]− 𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)] +

∂𝜙

∂𝑡
]𝑑𝑡

−𝜙[0, 𝑥(0)]
= 𝐺[𝑇, 𝑥(𝑇 )]−

∫ 𝑇

0

[
∂𝜙

∂𝑥

𝑑𝑥

𝑑𝑡
+
∂𝜙

∂𝑡
− 𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)]]𝑑𝑡

−𝜙[0, 𝑥(0)]
= 𝐹 (𝑇, 𝑥(𝑇 )) + 𝜙(𝑇, 𝑥(𝑇 ))−

∫ 𝑇

0

𝑑𝜙

𝑑𝑡
𝑑𝑡− 𝜙[0, 𝑥(0)]

+

∫ 𝑇

0

𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)]𝑑𝑡

= 𝐹 (𝑇, 𝑥(𝑇 )) +

∫ 𝑇

0

𝑓0[𝑡, 𝑥(𝑡), 𝑐(𝑡)]𝑑𝑡

= 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)]. (3.6)

Therefore minimizing 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)] can be achieved by minimizing 𝐿[𝑡, 𝑥(𝑡), 𝑐(𝑡), 𝜙],

and this intends to minimizing 𝐺[𝑥(𝑇 )] and maximizing 𝑅[𝑡, 𝑥(𝑡), 𝑐(𝑡)].

For a multi-dimensional quantum system or multi-argument processes, the equations

of 𝑅 and 𝐺 will be written as 𝑅[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡)] = ∂𝜙
∂𝑥𝑖𝑣[𝑡, 𝑥

𝑖(𝑡), 𝑐(𝑡)]−𝑓 0[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡)]+ ∂𝜙
∂𝑡

and 𝐺[𝑇, 𝑥𝑖(𝑇 )] = 𝐹 [𝑇, 𝑥𝑖(𝑇 )] + 𝜙[𝑇, 𝑥𝑖(𝑇 )]. For later use, it is convenient to define the

function Φ = ∂𝜙
∂𝑡

, and the functional 𝑅[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡)] = 𝐻[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡),Φ(𝑡)]+ ∂𝜙
∂𝑥𝑖 , where

𝐻[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡),Φ(𝑡)] = Φ𝑣[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡)]− 𝑓 0[𝑡, 𝑥𝑖(𝑡), 𝑐(𝑡)]. (3.7)

Note that the parameters in 𝐻 denoted by Φ emphasize that 𝑥𝑖 and ∂𝜙
∂𝑥𝑖 should be treated

as independent variables with respect to 𝐻 .
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3.2.2 Iterative Algorithm of the Krotov Method

The main purpose of the Krotov method is to find out optimal control sequences 𝑐𝑘+1(𝑡)

in 𝑘 + 1 iteration can perform better than 𝑘 iteration. In other words, Krotov method

hopes 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)] is monotonically decreasing respect to 𝑐𝑘(𝑡) when 𝑘 is increasing.

That is, 𝐼[𝑡, 𝑥𝑘(𝑡), 𝑐𝑘(𝑡)] ≥ 𝐼[𝑡, 𝑥𝑘+1(𝑡), 𝑐𝑘+1(𝑡)] in every iteration. Since 𝜙[𝑡, 𝑥(𝑡)] is not

restricted, we can freely choose the form of 𝜙[𝑡, 𝑥(𝑡)]. However, if we can construct the

function 𝜙[𝑡, 𝑥(𝑡)] to make 𝐿[𝑡, 𝑥𝑘(𝑡), 𝑐𝑘(𝑡), 𝜙] being maximized in each 𝑘 then we can

randomly choose next control sequences 𝑐𝑘+1(𝑡) without worrying about the effect of 𝑐(𝑡)

will increase the value of 𝐿[𝑡, 𝑥(𝑡), 𝑐(𝑡), 𝜙]. We therefore derive a smaller value of the

goal function by the chosen 𝜙. To be more clearly, we suppose that we already found the

function 𝜙 for a problem, and the complete processes will be as follows:

(i.) Taking an arbitrary control sequences 𝑐0(𝑡) and than deriving the corresponding

trajectory 𝑥0(𝑡).

(ii.) Choosing the functional 𝜙[𝑡, 𝑥(𝑡)] to make 𝐿[𝑡, 𝑥(𝑡), 𝑐(𝑡), 𝜙] a maximum with the

control 𝑐0(𝑡) and trajectory 𝑥0(𝑡). This requirement is equivalent to the following

two conditions:

𝑅[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)] = min
𝑥

𝑅[𝑡, 𝑥(𝑡), 𝑐0(𝑡)], (3.8)

𝐺[𝑇, 𝑥(𝑇 )] = max
𝑥

𝐺[𝑇, 𝑥(𝑇 )]. (3.9)

Above conditions imply that the functional 𝑅 and 𝐺 are calculated using the new

𝜙[𝑡, 𝑥(𝑡)]. As a result, the current control sequences 𝑥0(𝑡) will be the worst of all

possible 𝑥(𝑡) in minimizing the goal functional 𝐿[𝑡, 𝑥(𝑡), 𝑐(𝑡),Φ] = 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)].

Any change in 𝑐(𝑡) which makes a new trajectory 𝑥(𝑡) will now improve the mini-

mization of the goal function 𝐼[𝑡, 𝑥(𝑡), 𝑐(𝑡)].

(iii.) Finding a new control sequences 𝑐(𝑡) that maximizes the functional 𝑅. The corre-

sponding conditions are

𝑐[𝑡, 𝑥(𝑡)] = 𝐴𝑟𝑔 max
𝑐

𝑅[𝑡, 𝑥(𝑡), 𝑐(𝑡)]

= 𝐴𝑟𝑔 max
𝑐

𝐻[𝑡, 𝑥(𝑡), 𝑐(𝑡),Φ], (3.10)

where 𝐻 is mentioned in Eq. (3.7). Note that the control sequences 𝑐[𝑡, 𝑥(𝑡)] de-

pends on the trajectory function 𝑥(𝑡).

(iv.) With the new control sequences 𝑐[𝑡, 𝑥(𝑡)] the new trajectory 𝑥1(𝑡) can be derived by

the equation of motion of Eq. (3.1).
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(v.) It is now guaranteed that the goal function in Eq. (3.2) has been minimized mono-

tonically, which can be written as 𝐼[𝑡, 𝑥1(𝑡), 𝑐1(𝑡)] ≤ 𝐼[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]. The new

control sequences and the trajectory become a starting point of the next iteration

and (i.)-(iv.) can be repeated for the further decreasing in the goal function.

3.2.3 Monotonically Convergence of Krotov Method

Now we prove the new 𝐼[𝑡, 𝑥1(𝑡), 𝑐1(𝑡)] indeed smaller than the previous 𝐼[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)].

It is straightforward to show that

Δ𝐼 = 𝐼[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]− 𝐼[𝑡, 𝑥1(𝑡), 𝑐1(𝑡)]

= 𝐿[𝑡, 𝑥0(𝑡), 𝑐0(𝑡),Φ]− 𝐿[𝑡, 𝑥1(𝑡), 𝑐1(𝑡),Φ]

=

∫ 𝑇

0

𝑅[𝑡, 𝑥1(𝑡), 𝑐1(𝑡)]−𝑅[𝑡, 𝑥1(𝑡), 𝑐0(𝑡)]𝑑𝑡+𝐺[𝑇, 𝑥0(𝑇 )]−𝐺[𝑇, 𝑥1(𝑇 )]

= Δ1 +Δ2 +Δ3 (3.11)

where

Δ1 = 𝐺[𝑇, 𝑥0(𝑇 )]−𝐺[𝑇, 𝑥1(𝑇 )] (3.12)

Δ2 =

∫ 𝑇

0

𝑅[𝑡, 𝑥1(𝑡), 𝑐1(𝑡)]−𝑅[𝑡, 𝑥1(𝑡), 𝑐0(𝑡)]𝑑𝑡 (3.13)

Δ3 =

∫ 𝑇

0

𝑅[𝑡, 𝑥1(𝑡), 𝑐0(𝑡)]−𝑅[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]𝑑𝑡. (3.14)

Using the conditions in Eq. (3.8) and Eq. (3.9) one can prove that Δ1 ≥ 0 and Δ3 ≥ 0,

and Eq. (3.10) also guarantee Δ2 ≥ 0. Therefore the new goal functional 𝐼 will be smaller

than the previous one and the monotonically convergence has been proved.

3.3 Construction of 𝜙

To carry out the above iteration method, the most important and hardest task is finding a 𝜙

that satisfies the conditions in Eq. (3.8) and Eq. (3.9) which require the absolute maximum

of the functional 𝑅 and minimum of the functional 𝐺 of the old control sequences 𝑐0(𝑡)

and the old trajectory 𝑥0(𝑡). In this section, we will show how to construct 𝜙 in first order

to 𝑥 and in second order to 𝑥 to cope with lineaer and non-lineaer problems.

3.3.1 First Order in 𝑥

If the equations of motion of the system are linear and can be written as

∂𝑥𝑖

∂𝑡
= 𝑣𝑖[𝑡, 𝑥(𝑡), 𝑐(𝑡)] = 𝑎𝑖𝑗[𝑡, 𝑐(𝑡)]𝑥

𝑗 + 𝑏𝑖, 𝑖 = 1, 2, ..., 𝑛, (3.15)
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and the function 𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)] and 𝐹 [𝑥(𝑇 )] are concave with respect to 𝑥(𝑡), which

means

∂2𝑓 0[𝑡, 𝑥(𝑡), 𝑐(𝑡)]

∂𝑥𝑖∂𝑥𝑖
≤ 0,

∂2𝐹 [𝑇, 𝑥(𝑇 )]

∂𝑥𝑖(𝑇 )∂𝑥𝑖(𝑇 )
≤ 0. (3.16)

In this case, we just need to consider 𝜙 in first order to 𝑥 since the second derivative is

guaranteed. To be more specific, The first order that implies the functional 𝜙 needs to

satisfy Eq. (3.8) and Eq. (3.9) but do not have to worry about the second derivative of the

function 𝑅 and 𝐺. Therefore the function 𝜙 only need to fit the conditions that the first

derivative of the functions 𝑅 and 𝐺 are equal to zero. For the reasons, we can choose the

function 𝜙[𝑡, 𝑥𝑖(𝑡)] = Φ𝑖(𝑡)𝑥𝑖(𝑡) which satisfies the following conditions:

∂𝑅(𝑡, 𝑥0, 𝑐0)

∂𝑥
=

∂2𝜙(𝑡, 𝑥0)

∂𝑥2
𝑓(𝑡, 𝑥0, 𝑐0) +

∂𝜙

∂𝑥

∂𝑓(𝑡, 𝑥0, 𝑐0)

∂𝑥
− ∂𝑓0(𝑡, 𝑥0, 𝑐0)

∂𝑥

+
∂

∂𝑡

∂𝜙(𝑡, 𝑥0)

∂𝑥

=
∂𝐻(𝑡, 𝑥0, 𝑐0,Φ)

∂𝑥
+
∂2𝜙(𝑡, 𝑥0)

∂𝑥2
𝑓(𝑡, 𝑥0, 𝑐0) +

∂

∂𝑡

∂𝜙(𝑡, 𝑥0)

∂𝑥

=
∂𝐻(𝑡, 𝑥0, 𝑐0,Φ)

∂𝑥
+ (

∂𝑥

∂𝑡

∂

∂𝑥
+
∂

∂𝑡
)
∂𝜙(𝑡, 𝑥0)

∂𝑥

=
∂𝐻(𝑡, 𝑥0, 𝑐0,Φ)

∂𝑥
+
𝑑Φ(𝑡, 𝑥0)

𝑑𝑡
= 0, (3.17)

∂𝐺(𝑥, 𝑥0(𝑇 ))

∂𝑥(𝑇 )
=

∂𝐹 (𝑥0(𝑇 ))

∂𝑥(𝑇 )
+
∂𝜙(𝑇, 𝑥0(𝑇 ))

∂𝑥(𝑇 )

=
∂𝐹 (𝑥0(𝑇 ))

∂𝑥(𝑇 )
+ Φ(𝑇, 𝑥0(𝑇 ))

= 0. (3.18)

Therefore, Eq. (3.17) is the equation of motion for the function Φ :

∂Φ

∂𝑡
= −∂𝐻[𝑡, 𝑥0, 𝑐0,Φ]

∂𝑥
(3.19)

with boundary conditions Eq. (3.18)

Φ(𝑇, 𝑥0(𝑇 )) =
∂𝐹 (𝑇, 𝑥0(𝑇 ))

∂𝑥(𝑇 )
(3.20)

given by Eq. (3.18)and from Eq. (3.1) and Eq. (3.7)

∂𝑥

∂𝑡
=
∂𝐻[𝑡, 𝑥0, 𝑐0,Φ]

∂Φ
(3.21)

with boundary conditions 𝑥0(0) = 𝑥0. To satisfy the above requirements, the possible

choice of 𝜙 is 𝜙 = Φ[𝑡, 𝑥(𝑡)]𝑥. In the multi-argument process, the similar choice of
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the functional 𝜙 would be 𝜙𝑖[𝑡, 𝑥
𝑖(𝑡)] = Φ𝑖(𝑡)𝑥

𝑖(𝑡). Using the formula of Eq. (3.7), the

conditions can be rewritten into the form

Φ̇ = −𝐽𝑇 (𝑡)Φ(𝑡) +
∂𝑓 0(𝑡, 𝑥0, 𝑐0)

∂𝑥
, (3.22)

where

𝐽𝑖𝑗 =
∂𝑓 𝑖(𝑡, 𝑥0, 𝑐0)

∂𝑥𝑗
(3.23)

and 𝐽𝑇 (𝑡) is the transpose matrix.

3.3.2 Second Order in 𝑥

If the equations of motion of the system are not linear, one need to consider an improve-

ment form of 𝜙. Since functional 𝜙 needs to satisfy Eq. (3.8) and Eq. (3.9), the simplest

choice of functional 𝜙 is of the form

𝜙(𝑡, 𝑥(𝑡)) = Φ𝑖(𝑡)𝑥
𝑖 +

1

2
Σ𝑖𝑗(𝑡)Δ𝑥

𝑖Δ𝑥𝑗 (𝑖, 𝑗 = 1, 2, ..., 𝑛)

≡ ⟨Φ(𝑡), 𝑥⟩+ 1

2
⟨Δ𝑥,Σ(𝑡)Δ𝑥⟩, (3.24)

where the Δ(𝑥) ≡ 𝑥−𝑥0 and both the vector-function 𝜙(𝑡) and the matrix Σ(𝑡) should be

found. Here Σ(𝑡) is the matrix of the second derivatives of the function 𝜙(𝑡, 𝑥). The

first necessary conditions for inequalities of Eq. (3.8) and Eq. (3.9) are equivalent to

Eq. (3.19) and Eq. (3.20), and the second necessary conditions for inequalities of Eq. (3.8)

and Eq. (3.9) yield the following differential inequalities:

𝑑2𝑅 ≥ 0, 𝑑2𝑅 =

〈
Δ𝑥,

∂2𝑅[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]

∂𝑥∂𝑥
Δ𝑥

〉
, (3.25)

𝑑2𝐺 ≤ 0, 𝑑2𝐺 =

〈
Δ𝑥,

∂2𝐺[𝑇, 𝑥0(𝑇 )]

∂𝑥∂𝑥
Δ𝑥

〉
. (3.26)

For the reason that functional 𝜙 can be choose arbitrarily, one can require that the matrix

Σ(𝑡) is a diagonal matrix and satisfy the above conditions, which means

∂2𝑅[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]

∂𝑥𝑖∂𝑥𝑗
= 0, 𝑖 ∕= 𝑗, 𝑖, 𝑗 = 1, 2, ..., 𝑛,

∂2𝑅[𝑡, 𝑥0(𝑡), 𝑐0(𝑡)]

∂𝑥𝑖∂𝑥𝑖
= Σ𝑖𝑖(𝑡), Σ𝑖𝑖(𝑡) ≥ 0, 𝑖 = 1, 2, ..., 𝑛, (3.27)

and

∂2𝐺[𝑇, 𝑥0(𝑇 )]

∂𝑥𝑖∂𝑥𝑗
= 0, 𝑖 ∕= 𝑗, 𝑖, 𝑗 = 1, 2, ..., 𝑛,

∂2𝐺[𝑇, 𝑥0(𝑇 )]

∂𝑥𝑖∂𝑥𝑖
= Σ𝑖𝑖(𝑇 ), Σ𝑖𝑖(𝑇 ) ≤ 0, 𝑖 = 1, 2, ..., 𝑛. (3.28)

One therefore can determine the equation of motion of Σ(𝑡) with boundary condition

Σ(𝑇 ) by the above linear differential equation.
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3.3.3 Algorithm

In previous section, Krotov’s optimal method is already introduced and discussed in de-

tail. Here we will summarize the algorithm for further extension.

(1) freely choose a history of control process 𝑐0(𝑡).

(2) Use Eq. (3.1) and initial condition 𝑥(0) = 𝑥0 to find the trajectory of 𝑥0(𝑡).

(3) Find the functional Φ(𝑡) by Eq. (3.17) and Eq. (3.18) or equivalently by Eq. (3.19)

and Eq. (3.20).

(4) Use Eq. (3.27) and Eq. (3.28) to find the matrix Σ(𝑡).

(5) With the functional 𝜙, the control 𝑐(𝑡) is found according to Eq. (3.10).

(6) Derive the new trajectory 𝑥1(𝑡) and the new control control sequence 𝑐1(𝑡) by

Eq. (3.1).

(7) Repeat process (2) to (6) until the desired optimal value is achieved.

3.4 Examples

3.4.1 a Linear Problem

Consider a linear problem with 𝜙 chosen in the form in subsection (3.3.1) for the following

optimal control problem. The function 𝑥(𝑡) and 𝑐(𝑡) are constructed by

�̇�(𝑡) = 𝑖(1 + 𝑐(𝑡))𝑥(𝑡), 𝑥(0) = 1; (3.29)

c(t) is real and one want to minimize the cost function

𝐼 = Re[(1− 𝑥(𝑇 )𝑒𝑖𝜋)] +
1

2
𝑏

∫ 𝑇

0

𝑐2(𝑡′)𝑑𝑡′ −→ min. (3.30)

where 𝑏 > 0.

Now we choose the parameters 𝑏 = 5, 𝑇 = 2 and substitute the linear form of 𝜙 =

Φ[𝑡, 𝑥(𝑡)]𝑥 bring into Eq. (3.3) and Eq. (3.4) to derive 𝑅 and 𝐺 :

𝑅 = Re[Φ(𝑡)[𝑖(1 + 𝑐(𝑡))𝑥(𝑡)] +
∂

∂𝑡
(Φ(𝑡)𝑥(𝑡))]− 1

2
𝑏𝑐2(𝑡), (3.31)

𝐺 = Re[(1− 𝑥(𝑇 )𝑒𝑖𝜋) + Φ(𝑇 )𝑥(𝑇 )]. (3.32)

Using Eq. (3.19) and Eq. (3.20), one can derive the equation of motion of Φ:

Φ̇(𝑡) = 𝑖(1 + 𝑐(𝑡))Φ(𝑡), Φ(𝑇 ) = 𝑒𝑖𝜋. (3.33)
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Performing the algorithm described in subsection (3.3.3), we obtain the result shown in

Fig. 3.1, where we have used the Runge Kutta method with the segment of integration

partitioned into 200 intervals, and the fidelity is define as Re[𝑥(𝑇 )𝑒𝑖𝜋]. However, for

a non-linear problem, the functional Φ will become more complex. Therefore we will

discuss a simple non-linear problem in the next subsection.
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Figure 3.1: Left: fidelity versus iteration times. Right: optimal control sequences respect

to time 𝑡.

3.4.2 a Non-Linear Problem

Let us consider the approach from subsection (3.3.2) for the following optimal control

problem. The functions 𝑥(𝑡) and 𝑐(𝑡) are constructed by

�̇� = 𝑐, ∣𝑐∣ ≤ 1, 𝑥(0) = 0; (3.34)

and one want to minimize the cost function

𝐼 =

∫ 𝑇

0

(𝑐2 − 𝑥2)𝑑𝑡+
1

2
𝑏𝑥2(𝑇 ) −→ min, (3.35)

where 𝑏 > 0.

Now we choose the parameters 𝑏 = 20, 𝑇 = 4 substitute Eq. (3.24) into Eq. (3.3) and

Eq. (3.4) to derive 𝑅 and 𝐺 of the form

𝑅 = Φ̇(𝑡)𝑥(𝑡) +
1

2
Σ̇(𝑡)(Δ𝑥)2 + Φ(𝑡)𝑐(𝑡)

+ΣΔ𝑥(𝑡)(𝑐(𝑡)− 𝑐0(𝑡))− 𝑐2(𝑡) + 𝑥2(𝑡), (3.36)

𝐺 = Φ(𝑇 )𝑥(𝑇 ) +
1

2
Σ(𝑇 )(Δ𝑥(𝑇 ))2 +

1

2
𝑏𝑥2(𝑇 ). (3.37)

Since 𝑅𝑥𝑥 = Σ̇(𝑡) + 1 and 𝐺𝑥𝑥 = Σ(𝑇 ) + 𝑏, we first choose that Σ̇(𝑡) = 0 and

Σ(𝑇 ) = −𝑏 − 4. Performing the algorithm described on subsection (3.3.3), we obtain
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the result shown in Fig. 3.2, where we have use the Runge Kutta method with the seg-

ment of integration partitioned into 200 intervals. For comparison, the known solution of

the problem is shown below

𝑥(𝑡) =

⎧⎨⎩
±𝑡, 𝑡 ≤ 𝜏1,

±𝑘cos(𝑡− 𝑇/2), 𝜏1 ≤ 𝑡 ≤ 𝜏2,

±𝑇 ∓ 𝑡, 𝜏2 ≤ 𝑡,

(3.38)

where 𝑇 is the final time and 𝜏1, 𝜏2 and 𝑘 are chosen according to smoothness conditions:

�̇� = ±1 for 𝑡 = 𝜏1, �̇� = ∓1 for 𝑡 = 𝜏2, ±𝑡 = ±𝑘cos(𝑡 − 𝑇/2) at 𝑡 = 𝜏1 and ±𝑘cos(𝑡 −
𝑇/2) = ±𝑇∓𝑡 at 𝑡 = 𝜏2. Note that the result of Krotov optimal method in Fig. 3.2 is equal

to the known solution. Therefore the validity and usefulness of the Krotov optimal method

are demonstrated. We will extend the Krotov optimal method to investigate quantum gate

of closed quantum system in the next example.
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Figure 3.2: Left: Cost function versus iteration times. Right: Optimal evolution of 𝑥

respect to time 𝑡.

3.4.3 The Closed Quantum System Problem

The time dependent Schrödinger equation for the evolution operator (propagator) 𝑈(𝑡)

of a quantum system in an extended time-dependent control Hamiltonian 𝜇𝜀(𝑡) when the

control parameters 𝜀(𝑡) is read, can be written as

𝑖ℎ̄
∂

∂𝑡
𝑈(𝑡) = (𝐻 + 𝜇𝜀(𝑡))𝑈(𝑡). (3.39)

Suppose that one want to minimize the cost function

𝐼 = 1− Re[Tr{𝑂†𝑈(𝑇 )}] + 𝜆

∫ 𝑇

0

(𝜀(𝑡′)− 𝜀0)
2𝑑𝑡′ −→ min. (3.40)
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where 𝜆 > 0 and 𝜀0 is an initial energy that can be considered as the restriction for the

optimal control sequences; furthermore, 𝜀0 can also be time-dependent. 𝑂 is a target goal

for the propagator 𝑈(𝑇 ).

Now we choose the parameters 𝜆 = 1, 𝑇 = 1 and substitute 𝜙 = 𝐵(𝑡)𝑈(𝑡) into

Eq. (3.3) and Eq. (3.4) to derive 𝑅 and 𝐺 :

𝑅 = Re

[
Tr{𝐵(𝑡)(𝐻 + 𝜇𝜀(𝑡))𝑈(𝑡) +

∂𝐵(𝑡)

∂𝑡
𝑈(𝑡)}

]
− 𝜆(𝜀(𝑡′)− 𝜀0)

2, (3.41)

𝐺 = Re
[
Tr{𝑂†𝑈(𝑇 )− (𝐵(𝑡)− 𝑈(𝑇 ))

∣∣𝑇
0 }
]
. (3.42)

Using Eq. (3.19) and Eq. (3.20), one can derive the equation of motion of 𝐵(𝑡):

𝑖ℎ̄
∂

∂𝑡
𝐵(𝑡) = 𝐵(𝑡)(𝐻 + 𝜇𝜀(𝑡)), 𝐵(𝑇 ) = 𝑂†. (3.43)

Here we find out a straight way to derive optimal control sequences for every time interval

by differential the function R respect to 𝜀. Since the control value is chosen for a better

result, we need to require ∂𝑅/∂𝜀 = 0 and ∂2𝑅/(∂𝜀)2 ≤ 0. Therefore the optimal control

sequences is of the form

𝜀(𝑡) = 𝜀0 +
1

2𝜆
Re[Tr{𝐵(𝑡)𝜇𝑈(𝑡)}]. (3.44)

Using the algorithm in subsection (3.3.3) carefully with the above conditions where 𝐵(𝑡)

depends on old 𝜀(𝑡), and 𝑈(𝑡) is built from new 𝜀(𝑡). Note that for a better performance,

one can substitute 𝜀0 with old 𝜀(𝑡) to derive new 𝜀(𝑡). The system under consideration

is a charge qubit built by Cooper pair box. Under appropriate conditions mentioned in

2.3.1 (chage energy 𝐸𝐶 much larger than the Josephson coupling 𝐸𝐽 and temperatures

𝑘𝐵𝑇 ≪ 𝐸𝐽 ) only two charge states are important, and the Hamiltonian of the qubit reads

𝐻(𝑡) = −𝜀(𝑡)𝜎𝑧/2− Ω𝜎𝑥/2 (3.45)

where 𝐻 = Ω𝜎𝑥/2 and 𝜇 = 𝜎𝑧/2 and Ω is a bias voltage. If we consider a target goal

𝑂 =

(
1 0

0 −1

)
, (3.46)

we obtain the result shown in Fig. 3.3, where we use the Euler method with the seg-

ment of integration partitioned into 100 intervals (𝑑𝑡 = 0.01𝑇 ), and fidelity is define as

Re[Tr{𝑂†𝑈(𝑇 )}]. Note that this is a quantum optimal control problem of a single-qubit

Z-gate and can be considered as the fundamental quantum computation problem of opti-

mal control.
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Chapter 4

Open Quantum System

4.1 Master Equation

4.1.1 Density Matrix

For a closed quantum system, the physical object obeys Schr𝑜dinger equation,

∂

∂𝑡
∣𝜓⟩ = − 𝑖

ℎ̄
𝐻∣𝜓⟩, (4.1)

where 𝐻 is the total Hamiltonian. The density matrix can be defined as 𝜌 = ∣𝜓⟩⟨𝜓∣.
Using Schrödinger equation Eq. (4.1), we can get the equation of motion of the density

matrix �̇�,

�̇� = (∣�̇�⟩⟨𝜓∣+ ∣𝜓⟩⟨�̇�∣)
= (− 𝑖

ℎ̄
𝐻∣𝜓⟩⟨𝜓∣+ 𝑖

ℎ̄
∣𝜓⟩⟨𝜓∣𝐻)

= − 𝑖

ℎ̄
(𝐻∣𝜓⟩⟨𝜓∣ − ∣𝜓⟩⟨𝜓∣𝐻)

= − 𝑖

ℎ̄
(𝐻𝜌− 𝜌𝐻)

= − 𝑖

ℎ̄
[𝐻, 𝜌], (4.2)

Equation (4.2) is called Liouville-Von Neumann equation of motion for density matrix.

Note that Liouville equation, Eq. (4.2), can only be used in closed quantum system.

Hence, it is not valid for the subsystem of a composite system whose subsystems have

interaction with each other. The equation can only describe the whole system, including

the subsystem in which we are interested, and the rest of the system. The next section, we

will discuss how to write down the equation of motion for the subsystem in which we are

interested.
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Figure 4.1: Schematic picture of an open system

4.1.2 The Derivation

Because that Eq. (4.2) can only be used in a closed system, when we solve a composite

system, we can divide the system into two parts. A schematic picture is shown in Fig. 4.1

One part is the subsystem in which we are interested, and the other is called a bath. The

Hamiltonian of the subsystem is time dependent, 𝐻𝑆(𝑡), and the bath is the rest system

with Hamiltonian, 𝐻𝐵. Also, consider that the subsystem and bath couple to each other,

and the interaction Hamiltonian of the coupling term is noted as 𝐻𝑆𝐵 . Hence, the total

Hamiltonian can be written as,

𝐻(𝑡) = 𝐻𝑆(𝑡)⊗ 𝐼𝐵 + 𝐼𝑆 ⊗𝐻𝐵 +𝐻𝑆𝐵, (4.3)

and the Hilbert space of the total system is defined by a tensor product,

ℋ = ℋ𝒮 ⊗ℋℬ. (4.4)

Define the total density matrix (subsystem and bath) as 𝜒(𝑡) obeying Liouville-Von Neu-

mann equation (4.2),

�̇�(𝑡) = − 𝑖

ℎ̄
[𝐻(𝑡), 𝜒(𝑡)], (4.5)

where 𝐻(𝑡) is given by Eq. (4.3). In general, we usually assume that the interaction

Hamiltonian between the subsystem and bath is very weak compared with the rest of

the Hamiltonian. Therefore, we may use the interaction picture that fix the dominate
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Hamiltonian term, the subsystem and bath Hamiltonian, 𝐻𝑆 +𝐻𝐵. Define that

�̃�(𝑡) = 𝑒
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝜒(𝑡)𝑒−

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡,

𝜒(𝑡) = 𝑒−
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡, (4.6)

and differential Eq. (4.6) with respect to time

�̇�(𝑡) = − 𝑖

ℎ̄
(𝐻𝑆 +𝐻𝐵)𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

+𝑒−
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡 ˙̃𝜒(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

+
𝑖

ℎ̄
𝑒−

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)(𝐻𝑆 +𝐻𝐵)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡. (4.7)

Then using Eq. (4.5), we obtain

�̇�(𝑡) = − 𝑖

ℎ̄
[𝐻𝑆 +𝐻𝐵 +𝐻𝑆𝐵, 𝜒(𝑡)]

= − 𝑖

ℎ̄
(𝐻𝑆 +𝐻𝐵 +𝐻𝑆𝐵)𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

+
𝑖

ℎ̄
𝑒−

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡(𝐻𝑆 +𝐻𝐵 +𝐻𝑆𝐵). (4.8)

Comparing with Eq. (4.7) and Eq. (4.8), we can get

𝑒−
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡 ˙̃𝜒(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

= − 𝑖

ℎ̄
𝐻𝑆𝐵𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

+
𝑖

ℎ̄
𝑒−

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝐻𝑆𝐵. (4.9)

Defining

�̃�𝑆𝐵(𝑡) = 𝑒
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝐻𝑆𝐵𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡, (4.10)

and inserting the Eq. (4.10) into the Eq. (4.9), we obtain

˙̃𝜒(𝑡) = − 𝑖

ℎ̄
𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝐻𝑆𝐵𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡�̃�(𝑡) +

𝑖

ℎ̄
�̃�(𝑡)𝑒

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝐻𝑆𝐵𝑒

− 𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡

= − 𝑖

ℎ̄
[�̃�𝑆𝐵, �̃�(𝑡)]. (4.11)

One may integrate Eq. (4.11) to obtain

�̃�(𝑡) = �̃�(0)−
∫ 𝑡

0

𝑖

ℎ̄
[�̃�𝑆𝐵(𝑡

′), �̃�(𝑡′)]𝑑𝑡′. (4.12)

Taking Eq. (4.12) and inserting it back into Eq. (4.11), we can get

˙̃𝜒(𝑡) = − 𝑖

ℎ̄
[�̃�𝑆𝐵(𝑡), �̃�(0)−

∫ 𝑡

0

𝑖

ℎ̄
[�̃�𝑆𝐵(𝑡

′), �̃�(𝑡′)]𝑑𝑡′]

= − 𝑖

ℎ̄
[�̃�𝑆𝐵(𝑡), �̃�(0)]− 1

ℎ̄2

∫ 𝑡

0

[�̃�𝑆𝐵(𝑡), [�̃�𝑆𝐵(𝑡
′), �̃�(𝑡′)]]. (4.13)
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However, we are just interested in the evolution of the subsystem. Hence, we can

define the reduced density matrix of the subsystem as 𝜌 satisfying that

𝜌(𝑡) = TrBath[𝜒(𝑡)] = Tr𝐵[𝜒(𝑡)] (4.14)

If we take the trace of the full density matrix over the bath, in the interaction picture, we

can get

𝑇𝑟𝐵[�̃�(𝑡)] = 𝑇𝑟𝐵[𝑒
𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡𝜒(𝑡)𝑒−

𝑖
ℎ̄
(𝐻𝑆+𝐻𝐵)𝑡]

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡𝑇𝑟𝐵[𝑒

𝑖
ℎ̄
𝐻𝐵𝑡𝜒(𝑡)𝑒−

𝑖
ℎ̄
𝐻𝐵𝑡]𝑒−

𝑖
ℎ̄
𝐻𝑆𝑡

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡[

∑
𝑖

⟨𝜙𝐵
𝑖 ∣𝑒

𝑖
ℎ̄
𝐻𝐵𝑡𝜒(𝑡)𝑒−

𝑖
ℎ̄
𝐻𝐵𝑡∣𝜙𝐵

𝑖 ⟩]𝑒−
𝑖
ℎ̄
𝐻𝑆𝑡

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡[

∑
𝑖

⟨𝜙𝐵
𝑖 ∣𝑒

𝑖
ℎ̄
𝐸𝐵

𝑖 𝑡𝜒(𝑡)𝑒−
𝑖
ℎ̄
𝐸𝐵

𝑖 𝑡∣𝜙𝐵
𝑖 ⟩]𝑒−

𝑖
ℎ̄
𝐻𝑆𝑡

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡[

∑
𝑖

⟨𝜙𝐵
𝑖 ∣𝜒(𝑡)∣𝜙𝐵

𝑖 ⟩]𝑒−
𝑖
ℎ̄
𝐻𝑆𝑡

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡𝑇𝑟𝐵[𝜒(𝑡)]𝑒

− 𝑖
ℎ̄
𝐻𝑆𝑡

= 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡𝜌𝑒−

𝑖
ℎ̄
𝐻𝑆𝑡

= 𝜌(𝑡), (4.15)

where 𝐸𝐵
𝑖 and ∣𝜙𝐵

𝑖 ⟩ correspond to the eigenvalues and eigenstates of 𝐻𝐵. In the interac-

tion picture, the density matrix of the subsystem is related to 𝜌 in the Schr𝑜dinger pictures

𝜌(𝑡) = 𝑒
𝑖
ℎ̄
𝐻𝑆𝑡𝜌𝑒−

𝑖
ℎ̄
𝐻𝑆𝑡. (4.16)

It means that the transformation between 𝜌 and 𝜌 depends only on the Hamiltonian of the

subsystem 𝐻𝑆 . Using Eq. (4.13) and the Eq. (4.15), we can get

˙̃𝜌(𝑡) =
∂

∂𝑡
𝑇𝑟𝐵[�̃�(𝑡)] = 𝑇𝑟𝐵[ ˙̃𝜒(𝑡)]

= − 𝑖

ℎ̄
[�̃�𝑆𝐵(𝑡), �̃�(0)]− 1

ℎ̄2

∫ 𝑡

0

[�̃�𝑆𝐵(𝑡), [�̃�𝑆𝐵(𝑡
′), 𝜌(𝑡′)]]𝑑𝑡′. (4.17)

Equation (4.17) is still exact but is difficult to solve in general. In the next two sec-

tions, we will introduce two approximations, the Born approximation and the Markovian

approximation, to Eq. (4.17).

4.1.3 Born Approximation

In Born approximation, we will assume that there the interaction is turned on at 𝑡 = 0

and that no correlations exist between S and R at this initial time. Then 𝜒(0) = �̃�(0)

factorizes as

𝜒(0) = 𝜌(0)⊗𝑅0, (4.18)
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where 𝑅0 is an initial reservoir density matrix of the bath. Then noting that

Tr[�̃�(𝑡)] = 𝑒(𝑖/ℎ𝑏𝑎𝑟)𝐻𝑠𝑡𝜌(𝑡)𝑒−(𝑖/ℎ𝑏𝑎𝑟)𝐻𝑠𝑡 ≡ 𝜌(𝑡), (4.19)

after tracing over the reservoir, eq. (4.17) gives the master equation

˙̃𝜌 = − 1

ℎ̄2

∫ 𝑡

0

𝑑𝑡′Tr𝑅{[�̃�𝑆𝑅(𝑡), [�̃�𝑆𝑅(𝑡
′), �̃�(𝑡′)]]}, (4.20)

where, for simplicity, we have eliminated the term (1/𝑖ℎ̄)Tr𝑅{[�̃�𝑆𝑅(𝑡), 𝜒(0)]} with the

assumption

Tr𝑅[�̃�𝑆𝑅(𝑡)𝑅0] = 0. (4.21)

This is guaranteed if the reservoir operators coupling to S have zero mean in the state

𝑅0. The environment or reservoir by definition is large and contains many degrees of

freedom so that the influence of the system on the reservoir is small in the weak sys-

tem–environment coupling case. As a consequence, to second order in system–environment

interaction, the total density operator on the right-hand side of Eq. (4.20) can be approxi-

mated to an uncorrelated (factorized) state as

�̃�(𝑡) = 𝜌(𝑡)⊗𝑅0 +𝑂(𝐻𝑆𝐵). (4.22)

since the products of two interaction Hamiltonians 𝐻𝐼’s appear already there. So in many

textbooks, the replacement of

�̃�(𝑡′) = 𝜌(𝑡′)⊗𝑅0 (4.23)

is performed under the so-called Born approximation. One then obtains

˙̃𝜌(𝑡) = − 1

ℎ̄2

∫ 𝑡

0

Tr𝐵[�̃�𝑆𝐵(𝑡), [�̃�𝑆𝐵(𝑡
′), 𝜌(𝑡′)⊗𝑅0]]𝑑𝑡

′. (4.24)

In general, we usually assume that the density matrix of the bath stays in thermal equilib-

rium as the form

𝑅0 =
𝑒−𝛽𝐻𝐵

𝑇𝑟𝑒−𝛽(𝐻𝐵)
. (4.25)

However, the Eq. (4.24) is the time-nonlocal (or time-convolution) formula, and the equa-

tion of motion could be very complicated. That is because of the future evolution 𝜌(𝑡)

depends on its past history through the integral over 𝜌(𝑡′). It can also be shown that an-

other systematically perturbative non-Markovian master equation that is local in time can

be derived from the time-convolutionless projection operator formalism. Under the simi-

lar assumption of the factorized initial system–reservoir density matrix state, the second-

order time-convolutionless master equation in the interaction picture can be obtained as

˙̃𝜌(𝑡) = − 1

ℎ̄2

∫ 𝑡

0

Tr𝐵[�̃�𝑆𝐵(𝑡), [�̃�𝑆𝐵(𝑡
′), 𝜌(𝑡)⊗𝑅0]]𝑑𝑡

′. (4.26)
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We note here that obtaining the time-convolutionless non-Markovian master equation

perturbatively up to only second order in the interaction Hamiltonian using the time-

convolutionless projection operator technique is equivalent to obtaining it by replacing
˜𝜌(𝑡′) with ˜𝜌(𝑡) in Eq. (4.24).

4.1.4 Markov Approximation

In a large bath maintained in thermal equilibrium, the environment may be not possible

memorizing the influence of the system and reflect it back for very long; not for long

enough to significantly affect the future evolution of S. Therefore, with the view in mind

we can make the underlying assumption of the Markov approximation more explicit.

Let us consider a more specific form of coupling interaction 𝐻𝑆𝐵 can be written as

𝐻𝑆𝐵 =
∑
𝑗

𝑆𝑗 ⊗𝐵𝑗, (4.27)

where 𝑆𝑗 are the system operators in the Hilbert space of S and 𝐵𝑗 are the bath operators,

operators in the Hilbert space of R. Then

�̃�𝑆𝑅(𝑡) =
∑
𝑗

𝑒(𝑖/ℎ̄)(𝐻𝑆+𝐻𝑅)𝑡𝑆𝑗 ⊗𝐵𝑗𝑒
−(𝑖/ℎ̄)(𝐻𝑆+𝐻𝑅)𝑡

=
∑
𝑗

(𝑒(𝑖/ℎ̄)𝐻𝑆𝑡𝑆𝑗𝑒
−(𝑖/ℎ̄)𝐻𝑆𝑡)⊗ (𝑒(𝑖/ℎ̄)𝐻𝐵𝑡𝐵𝑗𝑒

−(𝑖/ℎ̄)𝐻𝐵𝑡)

=
∑
𝑗

𝑆𝑗 ⊗ �̃�𝑗. (4.28)

Inserting Eq. (4.28) into Eq. (4.24),

˙̃𝜌(𝑡) = − 1

ℎ̄2

∫ 𝑡

0

∑
𝑗,𝑘

Tr𝐵[𝑆𝑗 ⊗ �̃�𝑗, [𝑆𝑘 ⊗ �̃�𝑘, 𝜌(𝑡
′)⊗𝑅0]]𝑑𝑡

′

= −
∑
𝑗,𝑘

∫ ∞

0

Tr𝐵[𝑆𝑗(𝑡)�̃�𝑗(𝑡), [𝑆𝑘(𝑡
′)�̃�𝑘(𝑡

′), 𝜌(𝑡′)⊗𝑅0]]𝑑𝑡
′,

= −
∑
𝑗,𝑘

∫ ∞

0

((𝑆𝑗(𝑡)𝑆𝑘(𝑡
′)𝜌(𝑡′)− 𝑆𝑘(𝑡

′)𝜌(𝑡′)𝑆𝑗(𝑡))⟨�̃�𝑗(𝑡)�̃�𝑘(𝑡
′)⟩𝑅

+[𝜌(𝑡′)𝑆𝑘(𝑡
′)𝑆𝑗(𝑡)− 𝑆𝑗𝜌(𝑡

′)𝑆𝑘(𝑡
′)]⟨�̃�𝑘(𝑡

′)�̃�𝑗(𝑡)⟩𝑅)𝑑𝑡′, (4.29)

where we have used cyclic property of the trace and define that

⟨�̃�𝑗(𝑡)�̃�𝑘(𝑡
′)⟩𝑅 = 𝑇𝑟[𝑅0�̃�𝑗(𝑡)�̃�𝑘(𝑡

′)], (4.30)

⟨�̃�𝑘(𝑡
′)�̃�𝑗(𝑡)⟩𝑅 = 𝑇𝑟[𝑅0�̃�𝑘(𝑡

′)�̃�𝑗(𝑡)]. (4.31)

We further define the above formula called the bath correlation function

𝐶𝑗𝑘(𝑡− 𝑡′) ≡ 𝑇𝑟𝐵[�̃�𝑗(𝑡)�̃�𝑘(𝑡
′)𝑅0]. (4.32)
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We can justify the replacement of 𝜌(𝑡′) by 𝜌(𝑡) and the integral upper bound 𝑡 → ∞
if these correlation functions decay very rapidly on the timescale on which 𝜌(𝑡) varies.

Ideally, we might take

𝐶𝑗𝑘 ∝ 𝛿(𝑡− 𝑡′). (4.33)

The Markov approximation then relies on the existence of two widely separated time

scales: a relatively small time scale for the dynamics of the system S, and a fast time scale

characterizing the decay of reservoir correlation functions.

4.2 Master Equation of a Time-Dependent Non-Markovian

spin-boson model

4.2.1 Model

We use the computational basis {∣1⟩, ∣2⟩} to describe a charge qubit system S (mentioned

in 2.3.1) embedded in a dissipative environment B and interacting with a time-dependent

control field. The total Hamiltonian is given by𝐻 = 𝐻𝑆(𝑡)+𝐻𝑆𝐵+𝐻𝐵. The Hamiltonian

𝐻𝑆(𝑡) is written as

𝐻𝑆(𝑡) = −𝜀(𝑡)𝜎𝑧/2− Ω𝜎𝑥/2, (4.34)

here Ω is the tunneling splitting and 𝜀(𝑡) is the control field. In the notation of the second

quantization, 𝐻𝐵 takes the form

𝐻𝐵 =
∑
𝑞

ℎ̄𝜔𝑞𝑏𝑞
†𝑏𝑞, (4.35)

𝑏𝑞
† and 𝑏𝑞 are creation and annihilation of the bath oscillator mode 𝑞 with frequency 𝜔𝑞,

respectively. The interaction Hamiltonian 𝐻𝑆𝐵 between the system and the environment

is of the form

𝐻𝑆𝐵 = 𝜎𝑥
∑
𝑞

𝑐𝑞(𝑏𝑞 + 𝑏𝑞
†)/2. (4.36)

where 𝑐𝑞 is the coupling constant of mode 𝑞.

4.2.2 Derivation of the quantum Master Equation

In order to investigate dissipation and decoherence in an open quantum system, the density

matrix formalism can be used to derive a master equation for the case of a subsystem
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interacting with an environment. First, rotating the Hamiltonian to the interaction picture:

�̃�𝑆𝐵(𝑡) = (𝑇−𝑒
𝑖
ℎ̄

∫ 𝑡
0 (𝐻𝑆(𝑡

′)+𝐻𝐵)𝑑𝑡′)𝐻𝑆𝐵(𝑇+𝑒
− 𝑖

ℎ̄

∫ 𝑡
0 (𝐻𝑆(𝑡

′)+𝐻𝐵)𝑑𝑡′)

= (𝑇−𝑒
𝑖
ℎ̄

∫ 𝑡
0 𝐻𝑆(𝑡

′)𝑑𝑡′)(𝑒
𝑖
ℎ̄
𝐻𝐵𝑡𝐻𝑆𝐵𝑒

− 𝑖
ℎ̄
𝐻𝐵𝑡)(𝑇+𝑒

− 𝑖
ℎ̄

∫ 𝑡
0 𝐻𝑆(𝑡

′)𝑑𝑡′)

= (𝑇−𝑒
𝑖
ℎ̄

∫ 𝑡
0 𝐻𝑆(𝑡

′)𝑑𝑡′)[𝜎𝑥(
∑
𝑞

𝑐𝑞𝑏𝑞𝑒
−𝑖𝜔𝑞𝑡 + 𝑐𝑞𝑏

†
𝑞𝑒

𝑖𝜔𝑞𝑡)](𝑇+𝑒
− 𝑖

ℎ̄

∫ 𝑡
0 𝐻𝑆(𝑡

′)𝑑𝑡′)

= (𝑈(𝑡)𝜎𝑥𝑈
†(𝑡))𝐵(𝑡)

= �̃�𝑥(𝑡)𝐵(𝑡), (4.37)

where 𝑈(𝑡) = 𝑇−𝑒
𝑖
ℎ̄

∫ 𝑡
0 𝐻𝑆(𝑡

′)𝑑𝑡′ , 𝑇− means time-ordering in negative direction and 𝐵(𝑡) =∑
𝑞 𝑐𝑞𝑏𝑞𝑒

−𝑖𝜔𝑞𝑡 + 𝑐𝑞𝑏
†
𝑞𝑒

𝑖𝜔𝑞𝑡. Substituting into Eq. (4.24), one can derive

˙̃𝜌(𝑡) = − 1

ℎ̄2

∫ 𝑡

0

𝑇𝑟𝐵[�̃�𝑥(𝑡)𝐵(𝑡), [�̃�𝑥(𝑡
′)𝐵(𝑡′), 𝜌(𝑡′)⊗𝑅0]]𝑑𝑡

′

= − 1

ℎ̄2

∫ 𝑡

0

𝑑𝑡′ [(�̃�𝑥(𝑡)�̃�𝑥(𝑡′)𝜌(𝑡′)− �̃�𝑥(𝑡)𝜌(𝑡
′)�̃�𝑥(𝑡′))𝑇𝑟𝐵[𝐵(𝑡)𝐵(𝑡′)𝑅0]

+(𝜌(𝑡′)�̃�𝑥(𝑡′)�̃�𝑥(𝑡)− �̃�𝑥(𝑡)𝜌(𝑡
′)�̃�𝑥(𝑡′))𝑇𝑟𝐵[𝐵(𝑡′)𝐵(𝑡)𝑅0]] , (4.38)

Rotating back to the Schrödinger picture, we can derive the equation of motion of the

form

�̇�(𝑡) = − 𝑖

ℎ̄
[𝐻𝑆(𝑡), 𝜌(𝑡)] + {[𝜎𝑥,𝒟(𝑡)] + [𝒟†(𝑡), 𝜎𝑥]}, (4.39)

where 𝒟(𝑡) = 1
(𝑖ℎ̄)2

𝑈 †(𝑡)
∫ 𝑡

0
𝑈(𝑡′)𝜎𝑥𝑈 †(𝑡′)𝑇𝑟𝐵[𝐵(𝑡)𝐵(𝑡′)𝑅0]𝑑𝑡

′𝑈(𝑡). In the following,

we define the bath correlation function𝐶(𝑡−𝑡′) ≡ 𝑇𝑟𝐵[𝐵(𝑡)𝐵(𝑡′)𝑅0]. It can be evaluated

as

𝐶(𝑡− 𝑡′) = 𝑇𝑟𝐵

[
(
∑
𝑞

𝑐𝑞𝑏𝑞𝑒
−𝑖𝜔𝑞𝑡 + 𝑐𝑞𝑏

†
𝑞𝑒

𝑖𝜔𝑞𝑡)(
∑
𝑞′
𝑐𝑞′𝑏𝑞′𝑒

−𝑖𝜔𝑞′ 𝑡′ + 𝑐𝑞′𝑏
†
𝑞′𝑒

𝑖𝜔𝑞′ 𝑡′)𝑅0

]
=

∑
𝑞

∣𝑐𝑞∣2
(
𝑇𝑟𝐵[𝑏𝑞𝑏

†
𝑞𝑅0]𝑒

−𝑖𝜔𝑞(𝑡−𝑡′) + 𝑇𝑟𝐵[𝑏
†
𝑞𝑏𝑞𝑅0])𝑒

𝑖𝜔𝑞(𝑡−𝑡′)
)

=

∫ ∞

0

𝑑𝜔𝐽(𝜔)[(𝑛(𝜔) + 1)𝑒−𝑖𝜔(𝑡−𝑡′) + 𝑛(𝜔)𝑒𝑖𝜔(𝑡−𝑡′)] (4.40)

where 𝐽(𝜔) =
∑

𝑞 ∣𝑐𝑞∣2𝛿(𝜔 − 𝜔𝑞) is the spectral density and 𝑛(𝜔) is the canonical en-

semble average occupation number of the bath. Note that we convert ∣𝑐𝑞∣2Tr𝐵[𝑏†𝑞𝑏𝑞𝑅0] to

𝐽(𝜔𝑞)𝑛(𝜔𝑞) and treat 𝜔𝑞 → 𝜔 in the continuum limit.

4.3 Superoperator and Column Vector

In open quantum system problems, one usually uses superoperators to simplify the nota-

tion and for numerical calculation one also has to consider the density matrix as a column
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vector to reduce difficulty. To illustrate what we mean, we first consider the case that the

density matrix 𝜌 of a quantum system has 𝑁 ×𝑁 dimensions. The equation of motion of

the density matrix can be written as

�̇�(𝑡) = − 𝑖

ℎ̄
[𝐻𝑆, 𝜌],

= ℒ𝑠[𝜌], (4.41)

where𝐻𝑆 is full Hamiltonian of the system, and the ℒ𝑠 is Liouville superoperator. Now if

we transform the density matrix into a column vector, the relation for operator and density

matrix is

𝐴𝜌𝐵 = 𝐴

⎛⎜⎜⎜⎜⎜⎝
𝜌11 𝜌12 . . . 𝜌1𝑛

𝜌21 𝜌22 . . . 𝜌2𝑛
...

... . . . ...

𝜌𝑛1 𝜌𝑛2 . . . 𝜌𝑛𝑛

⎞⎟⎟⎟⎟⎟⎠𝐵 =⇒ 𝐴⊗𝐵𝑇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌11

𝜌12
...

𝜌1𝑛

𝜌21
...

𝜌𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.42)

Therefore, we denote 𝜌𝑐 as the transformed of density matrix in the column vector form

that has 1×𝑁2 dimensions and denote ℒ𝑐
𝑠 as the corresponding superoperator to 𝜌𝑐.

Equation (4.41) is the equation of motion for the state density matrix. But for quantum

gate operations we want to obtain the equation of motion for operator evolution, so we

use the Eq.(4.41) and the relation 𝜌(𝑡) = 𝑈(𝑡)𝜌(0)𝑈 †(𝑡) = 𝒰(𝑡)𝜌(0), where 𝒰(𝑡) =

𝑇+exp{
∫ 𝑡

0
𝑑𝜏ℒ𝑠(𝜏)} is the propagator in superoperator form and 𝑈(𝑡) = 𝑇+exp{

∫ 𝑡

0
𝑑𝜏 −

𝑖𝐻𝑠(𝜏)} is the propagator. We can use above to derive

𝑑

𝑑𝑡
(𝒰(𝑡)𝜌(0)) = ℒ𝑠(𝑡)𝒰(𝑡)𝜌(0),
�̇�(𝑡)𝜌(0) = ℒ𝑠(𝑡)𝒰(𝑡)𝜌(0),
⇒ �̇�(𝑡) = ℒ𝑠(𝑡)𝒰(𝑡). (4.43)

For numerical calculation, the same equation in the column vector form is much easier to

important. That is

�̇� 𝑐(𝑡) = ℒ𝑐
𝑠(𝑡)𝒰 𝑐(𝑡). (4.44)
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Chapter 5

Optimal Control for One Qubit
Quantum Gate

5.1 Introduction

One of the fundamental criteria for physical implementation of a practical quantum com-

puter is to design a reliable universal set of quantum gates. A promising class of candi-

dates for realization of scalable quantum computers are solid-state quantum devices based

on superconducting Josephson-junction qubits. Series of beautiful experiments (charge,

flux, phase) have been demonstrated and theoretical proposals related to Josephson-junction

qubits have been investigated [33, 29, 21, 23, 30, 24, 28]. Typically, a central challenge to

overcome in this enterprise is decoherence and dissipation induced by the coupling to the

surrounding environment. Therefore it is important to find strategies to alleviate the prob-

lems and to build quantum gates operation for the purpose of quantum information pro-

cessing. Optimal control method is one of the powerful tools already applied to the prob-

lem of dynamical decoupling from the environment and to finding the control sequence

for high-fidelity quantum gates. It has also been extended to treat quantum systems with

noise, imperfections and leakage to noncomputational states [16, 30, 25]. Furthermore,

optimal control technique has recently been applied to Markovian open quantum systems

in which the approximation of the bath correlation function being delta-correlated in time

is assumed [22]. However, in some real experiments, we need to consider the non-local

memory effects of the bath on the dynamics of the qubits. Especially, the bath memory

effects are typically non-negligible in solid state devices. Thus it is desirable to apply op-

timal control technique to quantum gate operations in the non-Markovian open quantum

systems [6, 29, 20, 4, 7, 8]. Some experiment related to controlling an open quantum sys-

tem have also been demonstrated [1, 17] and open the possibilities to the optimal control

in an open quantum system.
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In this chapter we apply the optimal control method based on Krotov’s method [26,

18, 19, 10, 32, 14] to a Non-Markovian quantum system. The optimal control method is

developed based on a quantum dissipation formulation that treats the effect of dissipative

terms in the equation of motion as many auxiliary subsystem density matrices coupled to

the original density matrix of the qubits system [15, 32]. The state-independent super-

operator formulation of optimal control is implemented. Finally, we apply the optimal

control method to a single qubit gate embedded in a non-Markovian bosonic bath with

ohmic spectrum. We show that under specific conditions, optimal control method can

considerably reduce error from the non-Markovian bath and give a high fidelity Z-gate.

5.2 Quantum Dynamics

The spin-boson model is a widely used and thoroughly investigated systems to describe

dissipation and decoherence in open quantum systems, especially for modelling qubit

systems for quantum computation purposes. Here we use this model to describe super-

conducting charge qubit interacting with a non-Makrovian environment. We apply the

time-nonlocal or time-convolution master equation whereby the dissipator is computed

within second order in the spin-boson interaction to find the optimal control sequence.

5.2.1 Model

We use the computational basis {∣1⟩, ∣2⟩} to describe a qubit system S embedded in a

dissipative environment B and subject to a time-dependent control field. The total Hamil-

tonian is given by 𝐻 = 𝐻𝑆(𝑡) +𝐻𝐼 +𝐻𝐵. The Hamiltonian 𝐻𝑆(𝑡) is written as

𝐻𝑆(𝑡) = −𝜀(𝑡)𝜎𝑧/2− Ω𝜎𝑥/2, (5.1)

here Ω is the tunneling splitting and 𝜀(𝑡) is the control pulse. 𝐻𝐵 and 𝐻𝐼 are described in

section 4.2.

In order to investigate dissipation and decoherence in open quantum systems, the den-

sity matrix formalism can be used to derive a master equation for the case a subsystem

interacting with an environment from Eq. (4.39), we obtain [2, 5, 29]

�̇�(𝑡) = ℒ𝑠(𝑡)𝜌(𝑡) + [ℒ𝑥𝒟(𝑡) + {𝐻.𝐶.}], (5.2)

where ℒ𝑆(𝑡) =
1
𝑖ℎ̄
[𝐻𝑆(𝑡), ∙] and ℒ𝑥 = 1

𝑖ℎ̄
[𝜎𝑥, ∙]. The dissipation operators can be written

as [11]

𝒟(𝑡) =
1

𝑖ℎ̄

∫ 𝑡

0

𝑑𝑡′𝒰𝑆(𝑡, 𝑡
′)𝜎𝑥𝐶(𝑡− 𝑡′)𝜌(𝑡′), (5.3)
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where the propagator superoperator 𝒰𝑆(𝑡, 𝑡
′) = 𝑇+𝑒𝑥𝑝{

∫ 𝑡

𝑡′ 𝑑𝜏ℒ𝑆(𝜏)} and the bath corre-

lation function can be written as

𝐶(𝑡− 𝑡′) =
1

2𝜋

∫ ∞

0

𝑑𝜔𝐽(𝜔)cos(𝜔(𝑡− 𝑡′))coth(
𝛽𝜔

2
)

− 𝑖

2𝜋

∫ ∞

0

𝑑𝜔𝐽(𝜔)sin(𝜔(𝑡− 𝑡′)), (5.4)

with 𝛽 ≡ 1/𝑇 (𝑘𝐵 = 1), taking into account all the effects of the bosonic bath. We take

the ohmic spectral density

𝐽(𝜔) = 2𝜋𝛼𝜔𝑒−𝜔/𝜔𝑐 , (5.5)

where 𝛼 is a dimensionless coupling constant, and where 𝜔𝑐 is the bath cutoff frequency.

The result of the bath correlation function from Eq. (5.4) can be calculated in an analytic

form of

𝐶(𝑡− 𝑡′) =
𝛼𝜔2

𝑐

[𝑖+ 𝜔𝑐(𝑡− 𝑡′)]2
+

2𝛼

𝛽2
𝑅𝑒

[
𝜓′
(
1 + 𝑖𝜔𝑐(𝑡− 𝑡′)

𝛽𝜔𝑐

)]
. (5.6)

Here 𝜓′(𝑧) is the derivative of the digamma function [29]. We note that

𝐶(𝑡− 𝑡′) = 𝐶∗(𝑡′ − 𝑡). (5.7)

The dissipator defined in Eq. (5.3) contains the bath correlation function and the time-

ordered system propagator superoperator 𝒰𝑠(𝑡, 𝑡
′) that involves the control field through

𝐻𝑆(𝑡) in ℒ𝑠(𝑡). Thus the control field and dissipation are correlated. This paves the way

to manipulate the control field to counteract the effect of the environment on the system

dynamics. However, the time-convolution master equation, Eq. (5.2), togather with the

dissipator 𝒟(𝑡) defined in Eq. (5.3) is a time-ordered integro-differential equation for

non-commuting system and control operators. Is is thus difficult to solve. It is possible

to transform it into a time-local differential equations. The price to pay is to introduce

auxiliary density matrices with a extended Liouville space. We describe the procedure to

achieve this in the master equation in the next section.

5.2.2 Equation of motion in the extended Liuville space

To cope with the time-convolution non-Markovian quantum master equation, Meier and

Tannor [15] proposed a bath spectral density parametrization method to properly the bath

express correlation functions in a multi-exponential form. This work was further ap-

proached by Xu and Yan [31] to construct an improved quantum dynamics theory named

CS-QDT (complete second-order quantum dissipation theory), in which the second-order

correlated system-bath canonical state is used as the initial condition. Here we shall use a

36



similar algebraic approach to construct the equation of motion for the dissipators. Since

we already know the integral form of the ohmic bath in Eq. (5.6), we will focus on the

correlation function 𝒞(𝑡 − 𝑡′) and expand it directly by exponential functions with the

following form, instead of parametrizing the spectral density in a Lorentz form in the

frequency domain first. The bath correlation function can then be expressed as

𝐶(𝑡− 𝑡′) =
∑
𝑗

𝐶𝑗(0)𝑒
𝛾𝑗(𝑡−𝑡′) =

∑
𝑗

𝐶𝑗(𝑡− 𝑡′), (5.8)

where 𝐶𝑗(0) and 𝛾𝑗 are complex constants and can be found by numerical method. Here

we use the toolbox in MATLAB called lsqcurvefit to find the value of 𝐶𝑗(0) and

𝑟𝑗 . Therefore, the dissipation operators 𝒟(𝑡) can be expanded with the form 𝒟(𝑡) =∑
𝑗 𝒦𝑗(𝑡), where

𝒦𝑗(𝑡) =
1

𝑖ℎ̄

∫ 𝑡

0

𝑑𝑡′𝒰𝑆(𝑡− 𝑡′)𝜎𝑥𝐶𝑗(𝑡− 𝑡′)𝜌(𝑡′). (5.9)

Note that Eq. (5.9) is still a time-nonlocal and time-ordered integration for non-commuting

operators. Therefore, we use the auxiliary density matrix 𝒦𝑗(𝑡) to replace 𝒟(𝑡) and find

the time derivative for 𝒦𝑗(𝑡) is of the form

�̇�𝑗(𝑡) =
1

𝑖ℎ̄
𝐶𝑗(0)𝜎𝑥𝜌(𝑡) + (ℒ𝑆(𝑡) + 𝛾𝑗)𝒦𝑗(𝑡), (5.10)

The same process can be done for the Hermitian conjugate part 𝒟†(𝑡) ≡∑𝑗 𝒦𝑗
†(𝑡). The

equation of motion is written as

�̇�𝑗
†
(𝑡) =

1

𝑖ℎ̄
𝐶𝑗

∗(0)𝜌(𝑡)𝜎𝑥 +𝒦𝑗
†(𝑡)(ℒ𝑆(𝑡) + 𝛾𝑗

∗), (5.11)

The Eq. (5.2) combining with Eq. (5.10) and Eq. (5.11) form a set of coupled linear

equations of motion. Obviously, the above equations are time-local and have no time-

ordering and integrating problems. One can has the extended equation of motions. The

initial conditions for above set of coupled equations of motion are 𝜌(0) = 𝜌0 and 𝒦𝑗(0) =

0.

5.2.3 State-independent superoperator formulation in the extended
Liouville Space

The equations of motion, Eq. (5.2), (5.10) and Eq. (5.11), define an extended Liouville

space for the dynamics of correlated control and dissipation in terms of [32]

�⃗�(𝑡) ≡ {𝜌(𝑡),𝒦𝑗,𝒦𝑗
†; 𝑗 = 1, 2, 3...}, (5.12)

Therefore, Eq. (5.2), (5.10) and Eq. (5.11) can be combined as

˙⃗𝜌(𝑡) = Λ̂(𝑡)�⃗�(𝑡), (5.13)
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where Λ̂(𝑡) is the generator defined by Eq. (5.2), (5.10) and Eq. (5.11), and can be written

as

Λ̂(𝜀(𝑡)) = Λ̂𝑆 + ℳ̂𝜀(𝑡). (5.14)

where Λ̂𝑆 is the field-free component of Λ̂(𝑡), and ℳ̂ is the matrix form of the control

parameter. The standard solution to Eq. (5.13) is written as

�⃗�(𝑡) = 𝒢(𝑡, 𝑡′)�⃗�(𝑡′), (5.15)

where the associated propagator can be shown to satisfy

∂𝒢(𝑡, 𝑡′)
∂𝑡

= Λ̂(𝑡)𝒢(𝑡, 𝑡′), (5.16)

with 𝒢(𝑡, 𝑡) = 𝐼. The propagator satisfy the following property

𝒢(𝜏2, 𝜏0) = 𝒢(𝜏2, 𝜏1)𝒢(𝜏1, 𝜏0), (5.17)

for (𝜏2 ≥ 𝜏1 ≥ 𝜏0).

5.3 Optimal Control

In this section, we first introduce the error value we define and the cost function we choose

for the optimal control method. Second, we briefly show the algorithm of the optimal con-

trol method extended from Krotov’s method. Note that in the case without environment

influence Tr[𝜌2(𝑡)] = 1 is a dynamical invariance. However, in open quantum systems

Tr[𝜌2(𝑡)] ≤ 1 is an important decreasing factor that needs to include. For this reason, we

choose the error of the control gate satisfy the form

Error = Tr{[𝒪 − 𝒰(𝑇 )]2}/𝑁. (5.18)

Here 𝒪 stands for the system control target operator. 𝒰(𝑇 ) is the superoperator for

𝜌(𝑇 ) = 𝒰(𝑇 )𝜌(0) at the target time 𝑇 , and 𝑁 is the dimension value of the density

matrix 𝜌(𝑡). To implement the optimal control method for the non-Markovian open quan-

tum system in the extended Liuville space, we first define the fidelity for the extended

superoperator 𝒢(𝑇 ) is

∣𝜏 ∣ = ∣Tr{�̂�†𝒢(𝑇 )}∣/𝒩 (5.19)

in the form of the extended superoperator as one part of our cost function. Here 𝒬 = 𝒫𝑗𝒪
is the target operator in the extended Liouville space transformed for the desired operation

𝒬 in the original Liouville space, and 𝒩 is the dimension value of the extended matrix
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𝒬. In realistic control problems, energy constraint of the control parameters are included.

For the reason, the cost function is of the form

𝐽 = ∣𝜏 ∣ −
∫ 𝑇

0

𝑑𝑡′𝜆(𝑡′)(𝜀(𝑡′)− 𝜀0(𝑡
′))2, (5.20)

where 𝜆(𝑡) is a positive function can be adjusted and chosen empirically, 𝜀(𝑡) is the control

parameter and 𝜀0(𝑡) is the standard control value that can be chosen [18, 18]. The reason

that we use 𝜏 as one part of our cost function instead of Tr{(�̂� − 𝒢(𝑇 ))2}/𝒩 is because

with the target 𝒬 we still can require the dissipation and the decoherence effects from the

auxiliary density matrix 𝒦𝑗 and 𝒦†
𝑗 to approach zero for all the elements not related to 𝒪

in 𝒫𝑒𝒪 are zero [20]. Therefore the required target is enough to implement a quantum

gate against the effect from bath. For further understanding, we derive the sufficient

and necessary conditions for the different cost function 𝐽 ′ = −Tr{(�̂� − 𝒢(𝑇 ))2}/𝒩 −∫ 𝑇

0
𝑑𝑡′𝜆(𝑡′)(𝜀(𝑡′) − 𝜀0(𝑡

′))2 in Appendix B, and shows that one cannot directly find the

sufficient condition for the cost function 𝐽 ′.

Optimal control method used in Refs. [26, 18, 19] allow us to maximize the fidelity ∣𝜏 ∣
in Eq. (5.19). To be more specific, consider a time-dependent matrix Λ̂[𝜀(𝑡)], where 𝜀(𝑡)

is the control parameter. The goal of a quantum optimal control here is to reach a desired

target �̂� with high fidelity ∣𝜏 ∣ in a certain time 𝑇 . However, since a direct algorithm to

maximize ∣𝜏 ∣ was not found, a working alternative is used: optimization of Re[𝜏 ], or of

Im[𝜏 ], or both. For simplicity, the optimization of the real part ∣𝜏 ∣ represented in the cost

functional

𝐽 = Re[𝜏 ]−
∫ 𝑇

0

𝑑𝑡′𝜆(𝑡′)(𝜀(𝑡′)− 𝜀0(𝑡
′))2 (5.21)

is used. The optimal algorithm follows the Krotov method [10], and the proof of this cost

function satisfy the necessary and sufficient condition for optimality in each iteration is

given in Appendix A. The algorithm works as follows:

(i.) An initial guess of 𝜀0(𝑡) is chosen for the control parameter.

(ii.) The time-evolution operator 𝒢[𝜀0(𝑡)] with the initial condition 𝒢(𝑡 = 0) = 𝐼 is

evolved in time according to the equations of motion, Eq. (5.16), until time 𝑇 .

(iii.) an auxiliary time-evolution superoperator ℬ̂[𝜀𝑘(𝑡)], 𝑘 = 0 for the first iteration, with

the condition ℬ̂(𝑡 = 𝑇 ) = �̂�† is evolved backward in time until 𝑡 = 0 according to

the inverse equation of motion

∂ℬ̂(𝑡, 𝑡′)
∂𝑡

= ℬ̂(𝑡, 𝑡′)Λ̂(𝑡) (5.22)
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(iv.) ℬ[𝜀𝑘(𝑡)] and 𝒢[𝜀𝑘+1(𝑡)] are propagated again forward in time, while the control

parameter is updated iteratively with the rule

𝜀𝑘+1(𝑡) = 𝜀𝑘(𝑡) +
1

2𝜆(𝑡)
Re[Tr{ℬ̂(𝑘)(𝑡)

∂Λ[𝜀(𝑡)]

∂𝜀(𝑡)
𝒢(𝑘+1)(𝑡)}], (5.23)

and the weight function 𝜆(𝑡) constrains the value of the control parameters.

(v.) steps (iii.) and (iv.) are repeated until the required value of the fidelity is obtained.

After a sufficient number of iterations, the algorithm converges and reaches asymp-

totically a maximum 𝜏m𝑎𝑥. The same procedure can be done even the Hamiltonian

contains more than one control parameter.

5.4 Numerical Results and Discussion

we study the one-qubit system coupled to a non-Markovian bosonic bath and subject to a

time-dependent external control field 𝜀(𝑡) [6, 29]. The Hamiltonian in Eq. (5.1) describes

a Josephson charge qubit with a control field applied in the gate voltage. Our objective is

to realize the state-independent single-qubit Z-gate, i.e.,

𝒪 =

(
1 0

0 −1

)
. (5.24)

We use the spectral density of the bath in Eq. (5.6) for different values of the cutoffs

and coupling constants. We first show the result for the error of ideal Z-gate and its

corresponding optimal pulse. Second, we demonstrate error versus time of the Z-gate

under different bath conditions. Finally, the cutoff frequency versus error are discussed

and we show that low cutoffs can give high fidelity Z-gate.

5.4.1 Parametrization of the correlation function

As a first step, we need to compare the correlation function of Eq. (5.6) with that obtained

numerically in the form of Eq. (5.8). Note that only a few terms in the expansion of

Eq. (5.8) are required to model the given correlation function with high accuracy in our

cases. The values for Eq. (5.8) were obtained by using MATLAB optimize toolbox with

the requirement of the difference 𝛿𝐶(𝑡 − 𝑡′) = 𝐶(𝑡 − 𝑡′) −∑𝑗 𝐶𝑗(𝑡 − 𝑡′) between the

actual and the approximated correlation function are chose to be less or equal to 10−7.

Fig. 1 shows a comparison of the actual and the approximated correlation function with

cutoff 𝜔𝑐 =7.5Ω, 𝛼 =0.1 and 𝑇 = 0.2Ω (here we choose Ω = 1) as the case used in [15],

which need more than 48 terms to expand the spectral density function of the ohmic form

at the low temperature of 𝑇 = 0.2Ω. In our situation, we need only three or four terms
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Figure 5.1: (color online). Real and imaginary part of the complex bath correlation func-

tion Eq. (5.6) with 𝜔𝑐 = 7.5Ω, 𝛼 = 0.1, and 𝑇 = 0.2Ω and fitting by the exponential

functions in Eq. (5.8). Here we named the summary result as 𝐶𝑓𝑖𝑡(𝑡− 𝑡′) for convenience.
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Figure 5.2: (color online). Error versus time for ideal Z-gate and the inset is the optimal

control pulse for any 𝑡𝑓 ≥ 0.3Ω.

to expand the correlation function and the comparison shows a great agreement over the

whole range of time in Fig. 1.

5.4.2 Z-gate control

An overview of the ideal Z-gate performance as a function of the duration 𝑡𝑓 of the gate

is given in Fig. 5.2 with the restriction 𝜀(𝑡) ≤ 30Ω. Excellent Z-gate performance can

be achieved for pulse time 𝑡𝑓 ≥ 0.3/Ω. The corresponding optimal pulse is shown in the

inset of Fig. 5.2. Indeed, if one does not require the control field restriction 𝜀(𝑡) ≤ 30Ω,

perfect Z-gate can be achieved for any finite period of time 𝑡𝑓 . For the reason, this optimal

control pulse gives an advanced choice of the control filed pulse to implement a Z-gate as

compared with the Z-gate in [20] which requires the gate operation time ≥ 𝜋/Ω. Besides,

the inset of Fig. 5.2 also shows the strategy of the optimal control pulse. As the Ω𝜎𝑥

term is always on, the optimal control first gives a negative magnitude corresponding
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Figure 5.3: The left panel is the error of the Z-gate versus time with 𝜔𝑐 = 20Ω for different

values of 𝛼 and 𝑇 . The stopping criteria of the error threshold is set to 10−5 or when the

number of iterations exceeds 3000 times. The right panel is the corresponding correlation

function for 𝛼 = 0.01

0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

Ω t
f

E
rr

or

α=0.01, T=0.1Ω
α=0.01, T=Ω
α=0.01, T=10Ω
α=0.1, T=0.1Ω
α=0.1, T=Ω
α=0.1, T=10Ω

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ω t

C
(t

)

Re[C(t)], T=0.1Ω
Re[C(t)], T=Ω
Re[C(t)], T=10Ω
Im[C(t)]
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values of 𝛼 and 𝑇 . The right panel is the corresponding correlation function for 𝛼 = 0.1

0 0.50.25

−20

0

20

Ω t

ε(
t)

 / 
Ω

0  0.5 1

−20

0

20

Ω t

0  0.75 1.5

−20

0

20

Ω t

ε(
t)

 / 
Ω

0  1 2

−20

0

20

Ω t

(a) (b)

(c) (d)

0 0.50.25

−20

0

20

Ω t

ε(
t)

 / 
Ω

0  0.5 1

−20

0

20

Ω t

ε(
t)

 / 
Ω

0  1.50.75

−20

0

20

Ω t

ε(
t)

 / 
Ω

0  1 2

−20

0

20

Ω t

ε(
t)

 / 
Ω

(a) (b)

(c) (d)

Figure 5.5: (color online). Left four panels are the optimal pulses for 𝛼 = 0.01, 𝜔𝑐 = Ω

in different values of time 𝑡𝑓= (a)0.5/Ω, (b)1/Ω, (c)1.5/Ω (d)2/Ω. Right four panels are the

optimal pulses for 𝛼 = 0.01, 𝜔𝑐 = 20Ω and 𝑇 = Ω in different values of𝑡𝑓 = (a)0.5/Ω,

(b)1/Ω, (c)1.5/Ω (d)2/Ω.
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Figure 5.6: (color online). The left panel is the error of the Z-gate versus cutoff 𝜔𝑐 with

𝑡𝑓 = 1/Ω. . The right is corresponding correlation function of the conditions: 𝛼 = 0.1,

𝑇 = 10Ω, 𝜔𝑐 = Ω and 𝜔𝑐 = 2.5Ω.

to an inverse rotation of 𝜎𝑧, which can reduce the contribution by Ω𝜎𝑥 from the direct

rotation of 𝜎𝑧. Finally the same process is performed for the same reason. This strategy

of the optimal control pulse with symmetric pulse shape also gives the minimum energy

consumption. The optimal control pulse can be approximately written as the form: 𝜀(𝑡) =

(16/𝑡𝑓 )sin(𝜋𝑡/𝑡𝑓 )− (6/𝑡𝑓 ).

An important question to be addressed is whether the different cutoff 𝜔𝑐 of the non-

Markovian environment influence the error of a Z-gate. In Fig. 5.3, we show that for the

case of 𝜔𝑐 = 20Ω, the error will increase when operation time become longer. The error

for the case of smaller 𝛼 = 0.01 is about 10−3 at the beginning and quickly increase to

10−1 in very short time. The reason is that when 𝜔𝑐 = 20Ω, the environment is becomes

very close to a Markovian environment, and therefore the memory effect is extremely

weak. The decay rate approaches to a constant values in a very short time and thus is

almost unchangeable by the optimal control. In this case, the environment contribution

cannot be revised. We also find that the value of the coupling strength plays the most

important role in determining the amount of the error in this case. This can be understood

by the correlation function in Fig. 5.3. The correlation function at time 𝑡 = 0 for the

high temperature (𝑇 = 10Ω) is only bigger than the low temperature (𝑇 = Ω) by a

factor of 1.5. However, the coupling strength is different by a factor of 10. Therefore, the

main factor of the environment influence for the case 𝜔𝑐 = 20Ω is from the value of the

coupling strength.

On the other hand, for the case of 𝜔𝑐 = Ω, the result is totally different. In Fig. 5.4

we shows that it is possible to reduce the error of building a Z-gate to below 10−5 even

for a long time period. This can be explained from the memory effect of non-Markovian

environment. Since the correlation function in Fig. 5.4 shows a long-smooth amplitude

and approaches 0 in a time scale of 𝑡 = 1/Ω, this allows the optimal control field to
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counteract the contribution from the environment during this longer bath correlation time.

However, It is not possible to reduce all the effects from environment to build a Z-gate

for all cases considered in Fig. 5.4. As a result, even though the error can be reduced

to below 10−5 at the beginning, the influence of the environment still will increase the

error as time become longer. Besides, for the case of 𝜔𝑐 = Ω, the temperature plays an

important role similar to the coupling strength. The amplitude ratio of the bath correlation

function between the temperature 𝑇 = 10Ω case and 𝑇 = Ω case is about 10 which is

fundamentally different from the situation of 𝜔𝑐 = 20Ω, shows in Fig. 5.3.

In Fig. 5.5 we show the optimal pulses in different times under the condition 𝛼 = 0.01,

𝑇 = Ω. The cutoff frequency is 𝜔𝑐 = Ω for the left four panels and is 𝜔𝑐 = 20Ω for the

right four panels. For the case of a short gate operation time of 𝑡𝑓 = 1/Ω, we find that

the optimal pulse shapes are approximately similar to the ideal case shown in the inset of

Fig. 5.2. However, when the gate operation time become longer, the optimal pulse shapes

show significant difference from the short gate operation time case and different cutoffs

also show different pulse shapes. The optimal pulses for operation of times 𝑡 = 1/Ω

and 1.5/Ω approximately follow the similar strategy for both the cutoff cases but seem to

take different optimal strategy for operation time 𝑡𝑓 = 2/Ω. We further investigate the

dependence of the gate error on the cutoffs of the open qubit system. Fig. 5.6 shows the

gate error versus cutoff 𝜔𝑐 at time 𝑡 = 1/Ω for different values of the coupling strength

𝛼 and temperature 𝑇 . One can see that the gate error depends strongly on the bath cutoff

frequence. The error increases as the cutoff becomes bigger. For the weak coupling and

low temperature cases (𝛼 = 0.01, 𝑇 ≤ Ω), it is possible to reduce the error to below

10−5 for the cutoff between Ω ≥ 𝜔𝑐 ≤ 2.5Ω. This explains the robustness of optimized

Z-gate against non-Markovian environment processes. However, in the case 𝛼 = 0.01,

𝑇 = 10Ω, as the cutoff increase to 𝜔𝑐 ≫ 5, the gate error becomes large than 10−5. This

phenomenon can be explained from the rapid change of the bath correlation function in

the right panel of Fig. 5.6. We find that the amplitude of correlation function at 𝑡 = 0

for 𝜔𝑐 = 2.5Ω case is much bigger than that of 𝜔𝑐 = Ω case, and the bath correlation

time for 𝜔𝑐 = 2.5 case is relatively smaller than 𝜔𝑐 = Ω case. Therefore, the gate error

is increases rapidly as the cutoff increases under the conditions. The similar behaviours

processes have been investigated and observed for the X-gate case.

5.5 Conclusion

In summary, an optimal control method is constructed for a time-nonlocal or time-convolution

non-Markovian open quantum system with a dissipator in which the control field and the

bath dissipation are correlated. The optimal control method is developed based on a novel
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quantum dissipation formulation that transforms the nonlocal-in-time master equation to

a set of coupled linear local-in-time equations of motion of the original density matrix and

auxiliary density matrices in an extended Liouville space. State-independent superoper-

ator formulation is considered to implement quantum gate operations. As an illustration,

the optimal control method is applied to find the control field sequence for a single-qubit

Z-gate in a superconducting charge qubit model embedded in a non-Markovian bosonic

bath. It is possible to achieve high-fidelity Z-gate with error less than 10−4 for the non-

Markovian open qubit system. The control-dissipation correlation and the memory effect

of the bath are crucial in achieving the high-fidelity gates.

Appendix A: Iterative solution scheme based on necessary

and sufficient conditions for optimality

Using the cost function mentioned in Eq. (5.20)

𝐽 = 𝑅𝑒[Tr{𝒬†𝒢(𝑇 )}]/𝒩 −
∫ 𝑇

0

𝑑𝑡𝜆(𝑡)∣𝜀(𝑡)− 𝜀(𝑡)∣2, (5.25)

in the following discussion we will prove that the iteration algorithm for the cost function

𝐽 exhibits monotonically convergence. For convenience we set the dimension number

𝒩 = 1. First, following the Krotov’s method [26, 10], we partition 𝐽 in the following

suggestive form

𝐽 = 𝐺(𝑇 ) +

∫ 𝑇

0

𝑑𝑡𝑅(𝑡). (5.26)

Here 𝐺(𝑇 ) depends only on the terminal time 𝑇 and is defined as the form

𝐺(𝑇 ) ≡ Re

[
Tr{𝒬†𝒢(𝑇 )} − Tr{ℬ(t)𝒢(t)}

∣∣∣T
0

]
, (5.27)

where ℬ(𝑡) is an arbitrary continuously differentiable propagator which can be consid-

ered as the Lagrange multiplier function constraining the system to obey the equation of

motion. 𝑅(𝑡) is related to a time integral part and of is the form

𝑅(𝑡) ≡ Re

[
Tr{ℬ(t)(Λ̂S + ℳ̂𝜀(t))𝒢(t) + ∂ℬ(t)

∂t
𝒢(t)}

]
−𝜆(𝑡)∣𝜀(𝑡)− 𝜀(𝑡)∣2. (5.28)

For simplicity, here we choose only one control parameter for the generator Λ̂(𝑡), and for

multi-parameters case the result can be derived following the same process. To maximize

𝐽 one proceeds to maximize 𝐺 and 𝑅 independently. Note that if 𝑅 is maximized at each
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time 𝑡 the integral of 𝑅 will be maximized. Second, to prove that 𝐽 converge in every

iteration, it is straightforward to show that

𝐽 (𝑘+1) − 𝐽 (𝑘) = Δ1 +Δ2 +Δ3 ≥ 0 (5.29)

where

Δ1 ≡ 𝐺(𝒢(𝑘+1)(𝑇 ))−𝐺(𝒢(𝑘)(𝑇 ))

= Re[Tr{(𝒬† − ℬ(T))Δ𝒢(T)}], (5.30)

Δ2 ≡
∫ 𝑇

0

𝑑𝑡[𝑅(𝑡,𝒢(𝑘+1)(𝑡), 𝜀(𝑘+1)(𝑡))−𝑅(𝑡,𝒢(𝑘+1)(𝑡), 𝜀(𝑘)(𝑡))]

= 𝑅𝑒

[∫ 𝑇

0

𝑑𝑡Tr{ℬ(t)(ℳ̂Δ𝜀(t))𝒰 (k+1)(t)}
]

−
∫ 𝑇

0

𝑑𝑡2𝜆(𝑡)(𝜀(𝑘+1)(𝑡)− 𝜀(𝑡))Δ𝜀(𝑡) + 𝜆(𝑡)Δ𝜀2(𝑡), (5.31)

Δ3 ≡
∫ 𝑇

0

𝑑𝑡[𝑅(𝑡,𝒢(𝑘+1)(𝑡), 𝜀(𝑘)(𝑡))−𝑅(𝑡,𝒢(𝑘)(𝑡), 𝜀(𝑘)(𝑡))]

= 𝑅𝑒

[∫ 𝑇

0

𝑑𝑡Tr{(ℬ(t)(Λ̂S + ℳ̂𝜀k(t))Δ𝒢(t)}

−
∫ 𝑇

0

𝑑𝑡Tr{∂ℬ(t)
∂t

)Δ𝒢(t)}
]
. (5.32)

Here Δ𝜀 = 𝜀(𝑘+1)(𝑡) − 𝜀(𝑘)(𝑡) and Δ𝒢(𝑡) = 𝒢(𝑘+1)(𝑡) − 𝒢(𝑘)(𝑡) , and in deriving these

expressions we also have choose ℬ(𝑡) ≡ ℬ(𝑘)(𝑡) in the expression for 𝐽 (𝑘+1) as well as

in that for 𝐽 (𝑘). Third, we can acquire the equation of motion and initial state of ℬ(𝑡) by

making the choice

ℬ(𝑇 ) = 𝒬†, (5.33)
∂ℬ(𝑡)
∂𝑡

= ℬ(𝑡)(Λ̂𝑆 + ℳ̂𝜀𝑘(𝑡)), (5.34)

Therefore we obtain the result

Δ1 = 0, (5.35)

Δ3 = 0. (5.36)

Finally, the control parameter 𝜀(𝑘+1)(𝑡) can be decided by choosing

𝜀(𝑘+1)(𝑡) = 𝜀(𝑡) +
1

2𝜆(𝑡)
Re
[
Tr{ℬ(t)ℳ̂𝒢(k+1)(t)}] , (5.37)
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This expression also suggests that

Δ2 = 𝜆(𝑡)(Δ𝜀)2 ≥ 0. (5.38)

Here 𝜆(𝑡) is a positive function can be decided empirically. The results here prove that

the iteration algorithm for cost function 𝐽 exhibits monotonically convergence with the

proper choice of the equation of motion and initial condition for ℬ(𝑡), and the optimal

control parameter at the next time step is also decided. Note that 𝜀(𝑡) in the k+1 iteration

can be substituted by the optimal control parameter 𝜀(𝑘)(𝑡) acquired in the k iteration.

Similarly, the result of the multi-parameters cases is of the form

𝜀𝑖𝑘+1(𝑡) = 𝜀𝑖(𝑡) +
1

2𝜆(𝑡)
𝑅𝑒[Tr{ℬ̂(𝑘)(𝑡)ℳ̂𝑖𝒢(𝑘+1)(𝑡)}], (5.39)

here 𝑖 is the notation for multi-parameters and ℳ̂𝑖 is the matrix product with 𝜀𝑖(𝑡). For

linear cases, ℳ̂𝑖 can be written as ∂Λ[�⃗�(𝑡)]/∂𝜀𝑖(𝑡) with Λ̂(�⃗�(𝑡)) = Λ̂𝑆 +
∑

𝑖 ℳ̂𝑖𝜀𝑖(𝑡).

Appendix B: Necessary and sufficient conditions for cost

function 𝐽 ′

Since we already show the monotonically convergence condition in Appendix A, now we

will briefly calculate the sufficient and necessary conditions for

𝐽 ′ = −Tr{(�̂� − 𝒢(𝑇 ))2}/𝒩 −
∫ 𝑇

0

𝑑𝑡𝜆(𝑡)∣𝜀(𝑡)− 𝜀(𝑡)∣2. (5.40)

For simplicity, we also set the dimension number 𝒩 = 1. First, by following the Krotov’s

method, we partition 𝐽 ′ into

𝐽 ′ = 𝐺′(𝑇 ) +
∫ 𝑇

0

𝑑𝑡𝑅(𝑡), (5.41)

where One can easily find that 𝑅(𝑡) satisfies the same form derive in Appendix A. There-

fore, equation of motion for backward propagator ℬ(𝑡) and the control field 𝜀(𝑘+1)(𝑡) for

the next iteration are also the same as the results derived in Appendix A. The only differ-

ence is the expression of 𝐺′(𝑇 ) which now can be written as

𝐺′(𝑇 ) ≡ −Tr{(�̂� − 𝒢(𝑇 ))2} −𝑅𝑒

[
Tr{ℬ(t)𝒢(t)}

∣∣∣T
0

]
. (5.42)

To inspect the sufficient and necessary conditions of 𝐺′(𝑇 ), we check that

Δ′
1 ≡ 𝐺′(𝒢(𝑘+1)(𝑇 ))−𝐺′(𝒢(𝑘)(𝑇 ))

= 𝑅𝑒[Tr{((𝒬† − 𝒢†(T))− ℬ(T))Δ𝒢(T)}]− ∣Δ𝒢(T)∣2, (5.43)
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where Δ𝒢 = 𝒢(𝑘+1) − 𝒢(𝑘). Since there is no direct way to choose ℬ(𝑇 ) satisfy the

sufficient condition, we can use ∂𝐺′(𝑇 )
∂𝒢(𝑇 )

= 0 to find the necessary condition that ℬ(𝑇 )
satisfies. The result of the derivative is

ℬ(𝑇 ) = 2(𝒬† − 𝒢†(𝑇 )). (5.44)

We then obtain the result

Δ′ = −∣Δ𝒢(𝑇 )∣2 ≤ 0. (5.45)

We therefore show that the cost function Eq. (5.40) satisfies only the necessary condition

and has a second order contribution from Δ′ which will influence the convergence and

will require the energy constraint 𝜆(𝑡) must satisfy the condition

𝜆(𝑡)(Δ𝜀(𝑡))2 ≥ ∣Δ𝒢(𝑇 )∣2. (5.46)

This restriction may confine the range that can be used for 𝜆(𝑡) and give a worse result

for quantum gate operations.
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Chapter 6

Conclusion

In this thesis we present a general optimal control theory for Non-Markovian open quan-

tum systems based on the superoperator formalism. Therefore we do not require the

knowledge of the initial states of density matrix. We treats the effect of the bath corre-

lation function of the non-Markovian dissipation as auxiliary density matrices coupled to

qubits in an extended Liouville space. The extended propagator is formulated for both the

forward propagation of the extended density operator and the backward propagation of

the extended target operator; both depend on the control field parameters. This approach

is used to study a quantum gate for a superconducting qubit system within a spin-boson

model. The time-convolution master equation was computed within the second-order per-

turbation theory in the spin-boson interaction leading to a control-dissipation correlated

dissipator. Note, however, that the coupling between the system and external control field

is treated nonpertubatively.

With such a general formalism we presented optimal control pulses to implement a

Z-gate for different values of environment parameters, such as the temperature, the cutoff

frequency, and the coupling strength. For the ohmic bath spectral density we chose for

the investigation, we find that the gate fidelity or gate error depends strongly on the cutoff

frequency. The gate error increases as the cutoff frequency decreases. As expected, when

the system-bath coupling strength and the bath temperature increase, the gate error also

increases. It is possible to achieve a high-fidelity Z-gate with gate error smaller than 10−5

in this non-Markovian spin-boson model.

In the past, the Markovian approximation is widely used and assumed to be valid in

most of the cases, while in some systems the Markovian approximation may not valid

any more. Here we find in non-Markovian open quantum system the control-dissipation

correlation can be optimized to countered the environment effect when the bath memory

effect time is large and coupling strength is relatively weak. On the other hand, for the

Markovian case, the optimal control cannot effectively reduce decay or dephasing rate as
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they approach to a constant value in a rather small time scale (assume to be instaneous

in the Markovian limit). It can only reduce the bath effect on the system dynamics under

the constant dissipation. Therefore, we can conclude that the control-dissipative corre-

lation and memory effect really play an important role on changing the contribution of

environment to the system.

The optimal control method presented is extremely efficient to deal with the time-

nonlocal non-Markovian equation of motion, and thus open the way to investigating two-

qubits and many-qubits problems in time-dependent dissipative environment. However,

by extending to more qubits problems, the dimension of the extended density matrix will

grow up rapidly, and the numerical demonstration would take more time to compute. Our

future objective is to extend this work to the implementation of two-qubit quantum gate

operations.
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