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中文摘要 

    Catalan’s Conjecture 的敘述是，唯一連續的完全次方數正整數數對是 8 和 9 這

一組。換言之，Catalan’s equation，即        ， 的唯一正整數解是(3,2,2,3)。

這個定理在 1844 年作為猜想被提出，並且在 2002 年被證明。這篇論文沿用了在

J. Daems 所寫的「Cyclotomic Proof of Catalan’s Conjecture」中所使用的各種方法，

去重新描述這個定理的部分證明。 

    整個定理的證明依據 Catalan’s equation 中的兩個指數的各種情況，共分成四部

分。這篇論文主要是著重於有利用到 cyclotomic field 相關的理論去進行證明的部

分。 
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Abstract 

    Catalan’s Conjecture says that the only pair of consecutive powers of positive 

integers is 8 and 9. Namely, the Clatalan’s equation 

        

has (x, y, p, q) = (3, 2, 2, 3) as its only positive integer solution. This is a theorem in 

number theory that was proposed by Eugène Charles Catalan in 1844 as a conjecture, 

and proven in 2002 by Preda Mihӑilescu. Following the treatment in the article by J. 

Daems, this thesis gives partial proof of Catalan’s Conjecture. 

    The all proof contains four parts, classified according to the two exponents in 

Catalan’s equation. This thesis focuses on the cases in which the handling contains 

cyclotomic field theory. 
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1. Introduction

A complete proof of Catalan’s conjecture was first given by P. Mihăilescu [3]. Following that,
several articles have been written with the intention to explain and to modify the original proof.
One of them was by J. Daems [2] which I choose as a reading material of a research project on
cyclotomic fields. Soon, I was very much attracted by its own style of beauty and simplicity,
thus determined to understand it in every detail. This thesis is basically a report on my study.

Recall that Catalan’s conjecture says that the only pair of consecutive powers of positive
integers is 8 and 9. Obviously, this is actually equivalent to a weaker statement which only
involves prime powers. Namely, after Mihăilescu, we have the following theorem:

Theorem 1.1. The Catalan’s equation

xp − yq = 1,

where p and q are prime numbers, has no positive integer solution except for the case 32−23 = 1.

The proof of this theorem can be divided into parts corresponding to the following (mutual
exclusive) cases:

Case 1: p or q is even.
Case 2: p, q > 2 and at least one of them equals 3 or 5.
Case 3: p, q ≥ 7, q < p and q | (p− 1) (resp. p < q and p | (q − 1)).
Case 4: p, q ≥ 7, q < p and q - (p− 1) (resp. p < q and p - (q − 1)).

The proof of the first case is given by L. A. Lebesque (for q = 2 [8]) and K. Chao (for p = 2
[9]). A nice treatment of this part can be found in [5]. Basically, it is shown by elementary
discussion, except for the p = 2 and q = 3 case which uses the following result on elliptic curves.

Theorem 1.2. Let E be the elliptic curve defined by the equation

y2 = x3 + 1,

and let E(Q) denote the group formed by Q-rational points on E. Then

E(Q) = {(0, 1), (0,−1), (2, 3), (2,−3), (−1, 0)} ∪ {∞},
where ∞ is the identity element of the group.

This theorem is a result which comes from the work involving the use of Descent Theorem,
Mordell’s Theorem and Nagell-Lutz Theorem (for proof of these, see chapter 2 and 3 of [6]).
The other detail of the proof of Theorem 1.2 is omitted in this thesis. For a rigorous proof, see
page 13 to 16 in [2].

The proofs of the remaining three cases are of quite different nature, they all apply the
arithmetic of the cyclotomic field. The proof of Case 2 actually uses the computation of the
relative class number, while those of Case 3 and Case 4 use the results on the Stickelberger ideal,
the estimation of the absolute norms, as well as a theorem of Cassels that gives information
on the cyclotomic unit group. In this thesis, we shall discuss these three cases and show that
the Catalan’s equation indeed has no nonzero-integer solutions. Note that if xp − yq = 1, then
(−y)q − (−x)p = 1, and hence without loss of generality, we can assume that p > q.

This thesis is organized in the following way that in Chapter 2, we summarize general results
on cyclotomic fields which will be further elaborated, in Chapter 3, we proceed the proof by
giving a detailed outline, while leaving some key lemmas to Chapter 4.

1
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Finally, we shall emphasize that there is essentially nothing original in this thesis, which
should be considered as only a modification of Daems [2].

2. Notations and Basic Materials

In this section, we first set notations and then establish key results for latter application.

2.1. Notations. Through out, we shall fix odd prime numbers p and q. Except in section, 3.1,
we also assume that p > q and let ζ denote a fixed pth root of unity by ζ. Write K = Q(ζ),
K+ = Q(ζ + ζ−1), which is the maximal real subfield of K, and G = Gal(K/Q), G+ =
Gal(K+/Q). Also, let OK and OK+ respectively denote the integral closures of Z in K and
K+.

Moreover, we fix another prime number q and define the following:

• Let σa denote the automorphism in G that sends ζ to ζa and let ι = σ−1.
• Let p denote the ideal (2− (ζ + ζ−1)) = ((1− ζ)(1− ζ−1)) in OK+ .
• Let H = {α ∈ Q(ζ + ζ−1)∗ : ordI(α) ≡ 0 (mod q), for all prime ideal I 6= p}.
• Let E = {α ∈ Q(ζ + ζ−1)∗ : ordI(α) = 0, for all prime ideal I 6= p}.
• Let V denote the multiplicative group generated by the set
{±ζ, 1− ζa : a = 2, 3, ..., p− 1}.
• Let C denote the group of cyclotomic units of K, i.e. C = O∗K ∩ V .
• Let C+ denote the group of cyclotomic units of K+, i.e. C+ = O∗K+ ∩ V .

• We call the element θS =
p−1∑
a=1

a
p
σ−1
a in Q[G] the Stickelberger element.

• Let IS denote the Stickelberger ideal Z[G] ∩ θSZ[G].
• Let I−S denote the minus part of Stickelberger ideal (1− ι)IS.
• For a commutative ring A and group H, let

w : A[H] −→ A∑
h∈H

ahh 7−→
∑
h∈H

ah

denote the weight function on the group ring A[H].
• Let I0 denote the kernel of weight function on Fq[G

+].

2.2. Cassels’ Theorem. We first recall a theorem of Cassels:

Proposition 2.1. Let x and y be nonzero integers satisfying the Catalan’s equation xp−yq = 1.
Then p | y and q | x. Furthermore, we have x − 1 = pq−1aq and xp−1

x−1
= puq for some integers

a, u such that (1) p - u, (2) gcd(a, u) = 1, and (3) y = pau. Similarly, we have y + 1 = qp−1bp

and yq+1
y+1

= qvp for some integers b, v such that (4) q - v, (5) gcd(b, v) = 1, and (6) x = qbv.

Proof. First, observe that gcd(y
q+1
y+1

, y + 1) = 1 or q, for we have yq+1
y+1

=
q−1∑
i=0

yi(−1)q−1−i, which

is congruent to q modulo y + 1. Similar argument also implies that gcd(x
p−1
x−1

, x− 1) = 1 or p.
Then we claim that the following two inequalities hold, for α = p

q
> 1:

(A) f(t) := (tα − 1)
1
α − t+ 1 > 0, for t > 1;

(B) g(t) := (tα + 1)
1
α − t− 1 < 0, for t > 0.
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By applying t = cq and t = (−c)q respectively to (A) and (B), we conclude that

(cq − 1)p − (cp − 1)q < 0, for all non-zero c ∈ Z

except for the case c = 1, which leads to y = 0. Suppose that gcd(y
q+1
y+1

, y + 1) = 1. Since

xp = yq+1
y+1
· (y + 1), we must have y + 1 = cp for some non-zero integers c. It follows that

xp − (cp − 1)q = 1. Since the value of h(t) := tp − (cp − 1)q strictly increases with t, we must
have x > cq − 1. On the other hand, the value of h(cq) = cpq − (cp− 1)q is greater than 1. This
would imply that cq − 1 < x < cq, a contradiction to the fact x ∈ Z. Therefore, we must have
gcd(y

q+1
y+1

, y + 1) = q and q | x.

Write y = −1 + qr · z, with q - z. Then we have yq = −1 + qr+1 · w, q - w. As yq + 1 = xp is
divisible by qp, we must have q‖yq+1

y+1
as well as the conditions (4), (5) and (6).

To prove the claim, we just argue that f(1) = 0 and the derivative

f ′(t) =

(
tα

tα − 1

)α−1
α

− 1 > 0, for t > 1;

as well as g(0) = 0 and

g′(t) =

(
tα

tα + 1

)α−1
α

− 1 < 0, for t > 0.

It is much more difficult to show that gcd(x − 1, x
p−1
x−1

) = p (theorem 6.4 of [5]). However,
once it is proved. A similar argument can be applied to show that (1), (2) and (3) hold.

�

An immediate consequence of the proposition is in order.

Lemma 2.1. Under the assumption of Proposition 2.1, the element x−ζ
1−ζ ∈ OK and there exists

an OK-ideal a so that the principal ideal(
x− ζ
1− ζ

)
= aq.

Proof. In OK , p = (1− ζ)p−1 · µ, for some µ ∈ O∗K . By Proposition 2.1, x− 1 is divisible by p
and hence x− ζ = x− 1 + 1− ζ is divisible by 1− ζ but not divisible by (1− ζ)2. In particular,
the first statement of the lemma is proved.

Next, we claim that (x−ζ
1−ζ )σ and (x−ζ

1−ζ )τ are coprime for all pairs of distinct σ and τ in G.

Indeed, the gcd of x−ζσ
1−ζσ and x−ζτ

1−ζτ must divide (1− ζ), as we have

(1− ζσ)
x− ζσ

1− ζσ
− (1− ζτ )x− ζ

τ

1− ζτ
= ζσ − ζτ = ζσ(1− ζτ−σ).

On the other hand, neither x−ζσ
1−ζσ nor x−ζτ

1−ζτ is divisible by (1− ζ) as we have seen that x− ζ is

not divisible by (1− ζ)2.
To complete the proof, observe that∏

σ∈G

x− ζσ

1− ζσ
=

1

p

∏
σ∈G

(x− ζσ) =
xp − 1

p(x− 1)
= uq
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for some integer u, by Proposition 2.1. In view of the claim, we see that each factor (x−ζ
σ

1−ζσ ) is

a qth power. �

2.3. Stickelberger Ideals. In this section, we explicitly give a set of generators of the Stick-
elberger ideal IS. As usual, for a real number x, let the Gauss symbol [x] denote the integral
part of x. For an integer c coprime to p, denote

θc := (c− σc)θS.

Proposition 2.2. For an integer c with gcd(c, p) = 1, the equality

p−1∑
a=1

[
ca

p

]
σ−1
a = θc

holds. Furthermore, the set

{θc | c is coprime to p}
generates the Stickelberger ideal IS.

Proof. We have c · θS =
∑p−1

a=1
ca
p
σ−1
a , while σc · θS =

∑p−1
a=1

ja
p
σ−1
a with 1 ≤ ja ≤ p − 1 so that

ja ≡ c · a (mod p), for each a. Thus, ja
p

is just the fractional part of ca
p

, and the first statement

is proved. In particular, θc ∈ Z[G], and hence θc ∈ IS = Z[G] ∩ θSZ[G].

To complete the proof we need to show that if ξ =

(
p−1∑
a=1

zaσa

)
θS ∈ Z[G], with za ∈ Z, for

each a, then ξ can be written as
∑

c αc · θc, with each αc ∈ Z[G]. Observe that(
p−1∑
a=1

zaσa

)
θS =

(
p−1∑
a=1

zaσa

)(
p−1∑
a=1

a

p
σ−1
a

)

=

p−1∑
a=1

p−1∑
c=1

za
c

p
σaσ

−1
c .

In particular, the coefficient of the term σaσa−1 = σ1 is

β :=

p−1∑
a=1

za
a

p
=

1

p

p−1∑
a=1

zaa.

The assumption that

(
p−1∑
a=1

zaσa

)
θS belongs to Z[G] implies β ∈ Z. By writing

p = p+ σ1 − σ1 = (p+ 1)− σp+1

and
p−1∑
a=1

zaσa =

p−1∑
a=1

zaa+

p−1∑
a=1

za(σa − a) = −β(σp+1 − (p+ 1)) +

p−1∑
a=1

za(σa − a),

we can express ξ as the sum −βθp+1 −
p−1∑
a=1

zaθa.

�
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2.4. Mihăilescu’s Lemma. Next, we introduce a lemma that plays an important role in the
proof of Case 4.

Lemma 2.2 (Mihăilescu). Let x and y be non-zero integers satisfying the Catalan’s equation
xp − yq = 1. Then for any θ ∈ I−S , the element (x− ζ)θ is a qth power in K. Furthermore, we
have q2 | x.

Proof. Let Z(q) denote the localization of Z at the prime ideal (q) and let O(q) denote the
integral closure of Z(q) in OK .

Let θ = (1 − ι)θ′ ∈ I−S , for some θ′ ∈ IS. By Lemma 2.1, the ideal
(
x−ζ
1−ζ

)
= aq, for some

a ⊂ OK . On the other hand, Stickelberger’s theorem says that aθ
′

is principal in OK . Thus we

can write aθ
′
= (α), for some α ∈ OK , and consequently,

(
x−ζ
1−ζ

)θ′
= η0α

q, for some OK-unit η0.

Note that, for each a, (1− ζ)σ
−1
a = µa · (1− ζ), for some unit µa ∈ O∗K , and hence (1− ζ)θ

′
=

η1 · (1− ζ)l, for some l ∈ Z and η1 ∈ O∗K . Therefore, we can write

(x− ζ)θ =

((
x− ζ
1− ζ

)
(1− ζ)

)(1−ι)θ′

= (η0η1α
q(1− ζ)l)(1−ι)

=
η0η1

η̄0η̄1

αq

ᾱq

(
1− ζ
1− ζ̄

)l
.

Obviously, 1−ζ
1−ζ̄ = −ζ̄, which is a 2p-th root of unity and hence a qth power in K. Also, as η0η1

η̄0η̄1

is a unit of OK with absolute value 1 at every archimedean place, it is a pth root of unity and
is a qth power, too. This shows that (x− ζ)θ is a qth power in K.

The element (1−xζ̄)θ = (−ζ̄)θ(x−ζ)θ is also a qth power in K. Furthermore, as x is divisible
by q (Proposition 2.1), 1 − xζ̄ is a unit of O(q) and so is (1 − xζ̄)θ. Therefore, (1 − xζ̄)θ = f q

for some f ∈ O(q).
To continue the proof, we note that as q is unramified in K (see [1]),

(q) = q1 · q2 · ... · qr,

where qi, i = 1, ..., r, are distinct prime ideals in O(q), and hence, by Chinese Remainder
Theorem,

O(q)/(q) ∼= O(q)/q1 ×O(q)/q2 × · · · × O(q)/qr.

In particular, the quotient O(q)/(q) contains no non-zero nilpotent element. This together with
the following congruence (note that q | x):

(f − 1)q ≡ f q − 1 ≡ (1− ζ̄x)θ
′ − 1 ≡ 0 (mod q),

implies that f = 1 + kq for some element k ∈ O(q). Then we obtain the equality

(1− ζ̄x)θ = f q = 1 + kq2 +
kq2(q − 1)

2
+ · · · ≡ 1 (mod q2).
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On the other hand, if θ =
∑
σ∈G

nσσ, then

(1− ζ̄)θx =
∏
σ∈G

σ(1− ζ̄x)nσ

≡
∏
σ∈G

(1− nσσ(ζ̄)x) (mod q2)

≡ 1− x
∑
σ∈G

nσσ(ζ̄) (mod q2),

and hence q2 divides x
∑
σ∈G

nσσ(ζ̄).

If q2 - x, then q divides
∑
σ∈G

nσσ(ζ̄). Therefore, each nσ is divisible by q. From this, we can

easily deduce a contradiction by choosing

θ = (1− ι)(2− σ2)θS = −

p−1
2∑

a=1

σ−1
a +

p−1∑
a= p+1

2

σ−1
a ,

which is indeed contained in I−S (Proposition 2.2).
�

2.5. The Class Group and the Group of Cyclotomic Units. We close this chapter with
some results on the structure of E/Eq, H/(K+)∗q and ClK+ [q], viewed as Fq[G+]-modules. To
do so, we shall assume that

q - p− 1,

as the results will be only used for dealing with Case 4.
Let σ̄a denote the image of σa, under the natural map (the restriction of Galois action):

G −→ G+. Since G+ =< σ̄2 > is cyclic of order (p− 1)/2, the homomorphism

Fq[G+] −→ Fq[x]/(x
p−1

2 − 1),

sending σ̄i2 to (the residue class of ) xi is an isomorphism. Also, as the derivative (x
p−1

2 − 1)′ =
p−1

2
x
p−3

2 is relatively prime to x
p−1

2 − 1, the algebra Fq[G+] is separable. In this sense if

x
p−1

2 − 1 =
r∏

k=1

gk(x),

is the factorization into product of irreducible polynomials over Fq[x], then (Chinese Remainder
Theorem)

Fq[G+] ∼= Fq[x]/(x
p−1

2 − 1) ∼=
r∏

k=1

Fq[x]/(gk(x)),

where the right-hand side is a finite product of finite fields.
Recall that E is included in H and Eq is included in (K+)∗q. Thus, we have a natural

homomorphism
ψ : E/Eq −→ H/(K+)∗q,

which obviously is a monomorphism.
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The principal ideal generated by each element α ∈ H can be expressed as (α) = pkaq, where
a is relatively prime to the prime ideal p. Let [a] ∈ ClK+ denote the ideal class of a. As p is
actually principal, aq = (α) · p−k is also principal, and hence [a] ∈ ClK+ [q]. It is easy to see
that the assignment α 7→ [a] induces a homomorphism

ψ′ : H/(K+)∗q −→ ClK+ [q].

Obviously, ψ and ψ′ are both homomorphisms of Fq[G+]-modules. We claim that the induced

1 −→ E/Eq ψ−→ H/(K+)∗q
ψ′−→ ClK+ [q] −→ 1. (1)

is an exact sequence. That ψ′ is an Fq[G+]-epimorphism is quite obvious, since if [a] ∈ ClK+ [q],
then aq is a principal ideal, say, generated by some α that must be contained in H, and
hence ψ′(α (mod (K+)∗q)) = [a]. On the other hand, if α is an element in H such that α
(mod (K+)∗q) is in the kernel of ψ′, then the ideal (α) equals to pkbq for some principal ideal
b generated by an element β ∈ (K+)∗q. Thus, α = µ(1 − ζ)k(1 − ζ̄)kβq, µ ∈ O∗K+ and
ψ(µ(1 − ζ)(1 − ζ̄) (mod Eq)) = α (mod (K+)∗q). This shows the kernel of ψ′ equals to the
image of ψ.

Proposition 2.3. The module E/Eq is free over Fq[G+] of rank 1.

Proof. For each α ∈ E , (α) = pk, for some integer k. Let λ = (1− ζ)(1− ζ̄), we have α = uλk

for some u in O∗K+ . It follows that E is isomorphic to 〈λ〉 × O∗K+ . By the Dirichlet Theorem
on the units group, O∗K+ is isomorphic to µK+ × 〈γ1〉 × 〈γ2〉 × ... × 〈γ p−3

2
〉, where µK+ is the

subgroup of O∗K+ consisting of roots of unity, and γi, i = 1, ..., p−3
2

, are fundamental units in
O∗K+ . Since the roots of unity in R are only ±1, we have

O∗K+
∼= {±1} × Z

p−3
2 ,

and hence

E ∼= 〈λ〉 × {±1} × Z
p−3

2 ∼= {±1} × Z
p−1

2 .

Consider the map

l : E −→
∏
σ∈G+

R = R
p−1

2

x 7−→ (ln |σ(x)|)σ∈G+ .

It is well known that the kernel of l consists of only roots of unity, i.e. only {±1}, and the
image of l(O∗K+) is a lattice of rank p−3

2
contained in the subspace

W := {(xσ)σ∈G+ |
∑
σ∈G+

xσ = 0} ⊂
∏
σ∈G+

R,

while we do have l(λ) 6∈ W , as∑
σ∈G+

ln |σ(λ)| = ln(

p−1∏
a=1

|1− ζa|) = ln(p) 6= 0.

Therefore, l(E) is a lattice of rank p−1
2

in
∏

σ∈G+ R.
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It is straightforward to check that the map l is indeed a Z[G+]-homomorphism and hence l
induces an obvious Z[G+]-isomorphism:

L : E/Eq −→ l(E)/ql(E).

Denote L = l(E). It is remained to prove that

L/qL ∼=Z[G+] Fq[G+].

By identifying
∏

σ∈G+ R with
∏

σ∈G+ R · σ, we can view it as a free R[G+]-module of rank
1 and view each σ ∈ G+ as an R-linear operator on it. Then the minimal polynomial of σ̄1,

which is viewed as a linear operator, equals x
p−1

2 − 1. For each proper factor g(x) of x
p−1

2 − 1,
the set

Ug := {v ∈
∏
σ∈G+

R | g(σ̄1)(v) = 0}

is a proper subspace of
∏

σ∈G+ R. Let U denote the union of all these proper subspaces. As Q
is dense in R and L is a lattice in

∏
σ∈G+ R of full rank, we have Q · L 6⊂ U . Obviously, for

any element v ∈ Q · L not contained in U , the module Z[G+] · v is free over Z[G+] of rank 1.
Let v be a such kind of element contained in L and denote L′ = Z[G+] · v. Then L′ is a free
Z[G+]-module of rank 1 contained in L. Note that as L′ is also a lattice of full rank, so the
quotient L/L′ is finite. The multiplication by q induces a Z[G+]-isomorphic

L/L′ ∼=Z[G+] qL/qL
′.

Note that L/qL′ is of finite order and it has two composition series of Z[G+]-modules:

L/qL′ ⊃M1 ⊃ ... ⊃Mr−1 ⊃Mr = L′/qL′ ⊃Mr+1 ⊃ ... ⊃Ms ⊃ {0}
and

L/qL′ ⊃ N1 ⊃ ... ⊃ Nk−1 ⊃ Nk = qL/qL′ ⊃ Nk+1 ⊃ ... ⊃ Nt ⊃ {0}.
By Jordan-Hölder theorem, this two series has the same length and permutation equivalent
factors, i.e. s = t and there is a permutation ω such that Mi/Mi+1 = Nω(i)/Nω(i)+1 for all
i = 1, 2, ..., t. From the isomorphism

(L/qL′)/(L′/qL′) ∼= L/L′ ∼= qL/qL′ ∼= (qL/qL′)/{0},
it follows that the two series

L/qL′ ⊃M1 ⊃ ... ⊃Mr−1 ⊃ L′/qL′

and

qL/qL′ ⊃ Nk+1 ⊃ ... ⊃ Nt ⊃ {0}
have the same factors up to permutation. Thus, the two series

L′/qL′ ⊃Mr+1 ⊃ ... ⊃Ms ⊃ {0}
and

L/qL′ ⊃ N1 ⊃ ... ⊃ Nk−1 ⊃ qL/qL′

also have the same factors up to permutation. Namely, L′/qL′ ∼= (L′/qL′)/{0} and L/qL ∼=
(L/qL′)/(qL/qL′), as Fq[G+]-modules, have the same Jordan-Hölder factors.
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Since q is assumed to be relatively prime to p−1
2

, the order of G+, every finite Fq[G+]-
module is isomorphic to the product of its Jordan-Hölder factors. Thus, L/qL is isomorphic to
L′/qL′ ' Fq[G+].

�

The subgroup C+ ⊂ E gives rise to the Fq[G+] submodule C+Eq/Eq ⊂ E/Eq. By identifying
E/Eq to Fq[G+], we can identify C+Eq/Eq ⊂ E/Eq to an Fq[G+]-ideal a. Since

Fq[G+] ∼= F1 × F2 × ...× Fr,

where F1, F2, ..., Fr are finite fields, we have

a ∼= a1 × a2 × ...× ar,

where each ai, being an ideal of Fi, equals Fi or {0}. Thus, each ai is a principal ideal generated
by an idempotent ei, and hence a itself is also a principal ideal generated by an idempotent,
say a = (e) with e2 = e. Let κ denote the isomorphism from C+Eq/Eq to a.

Suppose c ∈ C+ and hence κ(cEq) = a =
∑

σ∈G+ aσσ ∈ a. Then

κ((cEq)
∑
σ∈G+ σ) =

(∑
σ∈G+

σ

)
· κ(cEq) =

(∑
σ∈G+

σ

)
· a =

(∑
σ∈G+

σ

)
·

(∑
τ∈G+

aττ

)

=
∑
γ∈G+

(∑
σ∈G+

aσ

)
γ.

On the other hand, since c
∑
σ∈G+ σ = NK/Q(c) = 1 (see, for example, Chapter 8 of [7]),

κ((cEq)
∑
σ∈G+ σ) = κ(c

∑
σ∈G+ σEq)

= κ(Eq) = 0

and hence
∑
σ∈G+

aσ = 0. This leads to the conclusion that the weight of any element in a is zero,

and hence a ⊂ I0.
In the following, we shall lift the generator e of the ideal a to an element ε ∈ Z[G+] via the

canonical map Z[G+] −→ Fq[G+].

Proposition 2.4. The ideal a annihilates ClK+ [q].

The proof of this proposition needs the following result of Thaine (for a rigorous proof, see
[5], theorem 16.3):

Theorem 2.1 (Thaine). If ε ∈ Z[G+] annihilates the Sylow-q-subgroup of (O∗K+/C+) and q
does not divides p− 1, then ε also annihilates the Sylow-q-subgroup of (ClK+).

With Thaine’s theorem, we can prove Proposition 2.4.

Proof of Proposition 2.4. First, remember that the Fq[G+]-isomorphism from E/Eq to Fq[G+]
gives an Fq[G+]-isomorphism from C+E/Eq to a. Since a annihilates Fq[G+]/a, so a also an-
nihilates E/C+E ∼= (E/Eq)/(C+E/Eq). It follows that e, the generator of a, also annihilates
E/C+E , and so its preimage in Z[G+]. Because O∗K+/C+O∗qK+ ⊂ E/C+E , we also have the fact
that ε annihilates O∗K+/C+O∗qK+ . In another word, ε sends O∗K+ into C+O∗qK+ .
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To arrive our goal, we have to make connection between ε and the annihilator of O∗K+/C+.
Note that O∗K+/C+ is a finite abelian group, so it is isomorphic to direct product of its Sylow-
subgroups, say

O∗K+/C+ ∼= Sp1 × Sp2 × ...× Spn ,
with pi being distinct prime divisors of |O∗K+| and Spi are Sylow-pi-subgroups of O∗qK+ . Let m
be the integer such that the order of the Sylow-q-subgroup of O∗qK+ is qm, then it follows that

(O∗K+/C+)q
m ∼= Sq

m

p1
× Sqmp2

× ...× Sqmpn
⇒(O∗K+/C+)/(O∗K+/C+)q

m ∼= Sq,

since Spi
∼= Sq

m

pi
if pi 6= q and Sq

m

q
∼= {1}.

Consider the Fq[G+]-homomorphism

π : (O∗K+/C+)q
m −→ O∗q

m

K+ /(C
+ ∩ O∗q

m

K+ )

uq
m

C+ 7−→ uq
m

(C+ ∩ O∗q
m

K+ ),

which is obviously an Fq[G+]-isomorphism. So we have that

Sq ∼= (O∗K+/C+)/(O∗K+/C+)q
m

∼= (OK+/C+)/(O∗q
m

K+ /(C
+ ∩ O∗q

m

K+ ))

∼= O∗K+/C+O∗q
m

K+ .

Since ε sends O∗K+ into C+O∗qK+ , it also sends C+O∗q
i

K+ into C+O∗q
i+1

K+ for i = 1, 2, ...,m − 1.

Therefore, we have the result that εm sends O∗K+ into C+O∗q
m

K+ , which is equivalent to saying
that εm annihilates Sq. By Theorem 2.1(Thaine’s theorem), εm also annihilates the Sylow-q-
subgroup of ClK+ . Since the elements in ClK+ [q] are of order 1 or q, by Cauchy’s theorem, the
order of ClK+ [q] equals qk for some integer k. It follows that ClK+ [q] ⊂ Sq, and so is annihilated
by εm.

Recall that e is just ε times a qth power, and em = e. So for any ideal class [b] ∈ ClK+ [q],
we have that

[1] = [b]ε
m

= [b]e
m

= [b]e.

This equality shows that ClK+ [q] is annihilated by e, and so is annihilated by a, and the proof
is complete. �

If we let α ∈ H, then φ′((α(K+)∗q)a) ⊂ ClK+ [q]a. Since Proposition 2.4 says that a annihilates
ClK+ [q], it also means that a sends H/(K+)∗q into ker(φ′) =Im(φ) = C+Eq/Eq. In another
word, (H/(K+)∗q)a ⊂ C+Eq/Eq.

Suppose x and y are non-zero integers satisfying the Catalan’e equation xp− yq = 1. Denote

ξ0 = (x− ζ)(x− ζ−1).

By Lemma 2.1, ξ0 ∈ H. Let ξ denote the image of ξ0 under the quotient map H −→ H/(K+)∗q.
Then we have the important inclusion relation:

ξa ⊂ (H/(K+)∗q)a ⊂ C+Eq/Eq ∼= a. (2)
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3. An Overview of the Proof

In this chapter, we give an overview of the proof of the main theorem. We shall list some key
results, namely, Lemma 3.1, Theorem 3.1 and Lemma 3.4, which will be proved in Chapter 4,
and show how these lead to the proof.

3.1. Case 2. In this section, we do not require p to be greater than q. The proof for Case 2 is
based on the following Lemma concerning the relative class number h−p .

Lemma 3.1. Suppose p and q are two odd prime number such that q does not divide h−p , the
relative class number of K = Q(ζ). Then the Catalan’s equation xp − yq = 1 has no nonzero
integer solutions.

Then the proof follows, as we can assume that p = 3, or 5, and in this case, the relative class
number h−p = 1 (see table 7.1 of [5]).

3.2. Case 3. In this section, we consider Case 3. Thus, we shall assume that q | p− 1.

Theorem 3.1 (Mihăilescu). Let p, q ≥ 5 be odd primes satisfying the inequality([ 3p
2(q−1)2

]
+ q−1

2[
3p

2(q−1)2

] )
>

4

3

([
3p

2(q − 1)2

]
+ 1

)(
q − 1

2

)2

+ 1.

Then the equation xp − yq = 1 has no solutions in non-zero integers x and y.

The power of the theorem is amplified via the following simple lemma.

Lemma 3.2. Let P(s, k) denote the inequality(
s+ k

s

)
>

4(s+ 1)k2

3
+ 1.

If P(s, k) holds for some pair of integers s ≥ 4 and k ≥ 2 and s′ ≥ s, k′ ≥ k, then P(s′, k′)
also holds.

Proof. The proof is by induction on s and k respectively. It only needs the works on the steps
s 7→ s+ 1 and k 7→ k + 1 if s and k we choose make P(s, k) holds.

First, observe the inequalities:(
(s+ 1) + k

(s+ 1)

)
=
s+ 1 + k

s+ 1

(
s+ k

s

)
>
s+ 1 + k

s+ 1

(
4

3
(s+ 1)k2 + 1

)
>

4

3

s+ 1 + k

s+ 1
(s+ 1)k2 + 1

>
4

3
(s+ 2)k2 + 1,

where the last inequality holds since k ≥ 2. So the step s 7→ s+ 1 is done.



12

Next, we write another estimation to see the correctness of step k 7→ k + 1:(
s+ (k + 1)

s

)
=
s+ k + 1

k + 1

(
s+ k

s

)
>
s+ k + 1

k + 1

(
4

3
(s+ 1)k2 + 1

)
>

4

3
(s+ 1)

s+ k + 1

k + 1
k2 + 1

≥ 4

3
(s+ 1)

(k + 5)k2

k + 1

>
4

3
(s+ 1)(k + 1)2,

where the second to last inequality is by the condition s ≥ 4, and the last is by k ≥ 2. �

It is easy to check that P(s, k) holds for (s, k) = (6, 4), (7, 3) and (9, 2). According to the
theorem and the lemma together, we only need to deal with the following situations:

(1) q−1
2

= 1, or equivalently, q = 3.

(2) 3p
2(q−1)2 < 9 and q−1

2
= 2, or equivalently, p < 96 and q = 5.

(3) 3p
2(q−1)2 < 7, and q−1

2
= 3, or equivalently, p < 168 and q = 7.

(4) 3p
2(q−1)2 < 6, and q−1

2
= 4, or equivalently, p < 256 and q = 9.

(5) 3p
2(q−1)2 ≤ 5, and q−1

2
≥ 5.

First, (1) is ruled out, as we are in Case 3. Also, (4) is ruled out, as q is assumed to be a prime
number. To complete the proof, we apply the following lemma.

Lemma 3.3. Suppose q | p−1 and there exist non-zero integers x and y satisfying the catalan’s
equation xp − yq = 1. Then p = 1 + k1q

2 for some integer k1 ≥ 4.

Since p ≥ 1 + 4q2 ≥ 1 + 4(q − 1)2, we know that
[

3p
2(q−1)2

]
≥ 6 and (5) is ruled out. Also, if

q = 5, then p ≥ 101; if q = 7, then p ≥ 197, and hence (2) and (3) are ruled out.

Proof. (of Lemma 3.3) By Proposition 2.1, we have

x = 1 + pq−1 · aq ≡ 0 (mod q).

This implies that a ≡ aq ≡ −1 (mod q), since pq−1 ≡ 1 (mod q). It then follows that

aq ≡ −1 (mod q2).

Therefore, pq−1 ≡ −pq−1 · aq = 1− x (mod q2). Furthermore, Lemma 2.2 says x ≡ 0 (mod q2),
and thus,

pq−1 ≡ 1 (mod q2).

On the other hand, by the assumption, there exist an integer k such that p = 1 + kq, and
consequently,

pq−1 = 1 + (q − 1)kq + (
q − 1

2
)(kq)2 + ...

≡ 1 + (q − 1)kq (mod q2).
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These two congruence equations show that k is divisible by q and p−1 is divisible by q2. Write
p = 1 + k1q

2. Then k1 is even, which must be at least 4, for otherwise p must be divisible by
3, a contradiction.

�

3.3. Case 4. Finally, we deal with Case 4. Our main tool is the following:

Lemma 3.4. Suppose p, q are two prime numbers with p > q and x, y are two non-zero integers
so that xp − yq = 1. If q - p− 1, then the element 1 + ζ in K is a q-th power modulo q2OK.

As before, let σq denote the automorphism in G sending ζ to ζq. For each α = a0 + a1ζ +
a2ζ

2 + ...+ ap−1ζ
p−1 ∈ OK , with ai ∈ Z for each i, we certainly have

σq(α) = a0 + a1ζ
q + a2ζ

2q + ...+ ap−1ζ
q(p−1)

≡ (a0 + a1ζ + a2ζ
2 + ...+ ap−1ζ

p−1)q (mod q)

≡ αq (mod q).

Consequently, by raising the above to the qth power, we see that

σq(α
q) ≡ αq

2

(mod q2).

By the lemma, 1 + ζ ≡ αq (mod q2), for some α ∈ OK . Then we have

(1 + ζ)q ≡ αq
2

≡ σq(α
q)

≡ σq(1 + ζ)

≡ 1 + ζq (mod q2OK).

This means the sum
∑q−1

i=1

(
q
i

)
ζ i is divisible by q2 in OK . However, since ζ, ζ2, ..., ζp−1 form a

Z-basis of OK , so ζ, ζ2, ...ζq−1 are Z-independent. This would imply that each
(
q
i

)
is divisible

by q2 , which is absurd.

4. Proof of the Key Results

In this chapter, we complete the main theorem by giving the proofs of Lemma 3.1, Theorem
3.1 and Lemma 3.4 in the following consecutive sections.

4.1. The proof of Lemma 3.1.

Proof of lemma3.1. Recall that h−p = hp

h+
p

, where hp and h+
p are respectively the orders of the

class groups ClK+ and ClK , and we have the natural injection:

φ : ClK+ −→ ClK .

By the assumption, q - h−p and hence φ induces an isomorphism ClK+ [q] ∼= ClK [q] on the
q-torsion subgroups of the class groups.

Suppose x and y are non-zero integers satisfying xp − yq = 1. Then, by Lemma 2.1, there is
an OK-ideal a such that (

x− ζ
1− ζ

)
= aq.
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This implies that the class [a] ∈ ClK is actually contained in ClK [q]. The above isomorphism
implies that [a] = [bOK ], for some OK+-ideal b. Consequently, we have a = γbOK , for some
γ ∈ K∗. For convenience, write b′ for bOK . Then

b̄′ = b′.

Denote µ = x−1
1−ζ . Then µ+ 1 = x−ζ

1−ζ . Therefore,

(
µ+ 1

µ̄+ 1

)
=

(
x− ζ
1− ζ

)1−ι

=
aq

āq
=

(
γq

γ̄q

)
,

and hence

µ+ 1

µ̄+ 1
=
γq

γ̄q
· z,

for some z ∈ O∗K . Note that z has absolute value equal to 1 at each archimedean place of K,
and hence is a root of 1. In particular, z is a qth power and we can write, for some α ∈ K∗,

µ+ 1

µ̄+ 1
= αq.

Denote η = ( q
√
µ+ 1 + ζ

−1
q q
√
µ̄+ 1)q. Then, from the identity

η = (µ̄+ 1)(α + ζ
−1
q )q,

we see that η ∈ OK . Denote π = ζ − 1 and let Oπ denote the π-adic completion of OK . By
Proposition 2.1,

µ =
x− 1

1− ζ
=
pq−1aq

−π
≡ 0 (mod π7),

and it follows from the Hensel’s lemma that both the equations Xq − (µ + 1) = 0 and Xq −
(µ̄+ 1) = 0 have solutions in Oπ. Therefore, u := q

√
µ+ 1 + ζ

−1
q q
√
µ̄+ 1 is contained in Oπ and

uq = η. Moreover, the equality

(1 + µ) + ζ−1(1 + µ̄) =
x− ζ
1− ζ

+ ζ−1x− ζ−1

1− ζ−1
=
x− ζ
1− ζ

+
ζ−1 − x
1− ζ

= ζ−1 1− ζ2

1− ζ

implies that (1 + µ) + ζ−1(1 + µ̄) is a unit in OK . Furthermore,

(1 + µ+ ζ−1(1 + µ̄))q = ( q
√

1 + µ+ ζ
−1
q q
√

1 + µ̄)q

(
q−1∑
i=0

q
√

1 + µ
q−1−i

ζ
−i
q q
√

1 + µ̄
i

)q

.

implies that η, dividing ((1 + µ) + ζ−1(1 + µ̄))q, is also a unit. In particular, NK/Q(η) = 1 and
hence NKπ/Qp(u) = 1, too. Here Kπ denote the π-adic completion of K.
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The next step is to express this NKπ/Qp(u) in terms of x and ζ. First, note that ζ
−1
q = ζr for

some integer r ∈ {1, 2, ..., p− 1}. Then

1
1−ζ + ζr

1−ζ̄

1 + ζr
=

1− ζr+1

(1− ζ)(1 + ζr)

=
1− (1 + π)r+1

−π(1 + (1 + π)r)

=
1− 1− (r + 1)π −

(
r+1

2

)
π2 + . . .

−π(1 + 1 + rπ +
(
r
2

)
π2 + . . . )

≡ r + 1

2
(mod π)

This congruence holds for any choice of ζ. Thus, taking the sum over all possible choice of ζ,
we obtain a congruence of rational integers:

∑
ζ 6=1

1
1−ζ + ζr

1−ζ̄

1 + ζr
≡ (r + 1)(p− 1)

2
(mod p).

The Hensel’s lemma tells us that

q
√

1 + µ ≡ 1 +
µ

q
(mod µ2),

and
q
√

1 + µ̄ ≡ 1 +
µ̄

q
(mod µ̄2).

We have (µ2) = (µ̄2) = (x−1
π

)2. Therefore,

1 = NKπ/Qp(u) ≡
∏
ζ 6=1

1 +
µ

q
+ ζr(1 +

µ̄

q
) (mod

(x− 1)2

π2
)

≡
∏
ζ 6=1

(1 + ζ)
∏
ζ 6=1

(
1 +

µ
q

+ ζrµ̄
q

1+ζr

)
(mod

(x− 1)2

π2
)

≡ NK/Q(1 + ζ) ·
∏
ζ 6=1

(
1 + x−1

q

1
1−ζ+ ζr

1−ζ̄
1+ζr

)
(mod

(x− 1)2

π2
)

≡ NK/Q(1 + ζ) · (1 +
x− 1

q
·
∑
ζ 6=1

(
1

1−ζ+ ζr

1−ζ̄
1+ζr

)
(mod

(x− 1)2

π2
)

≡ NK/Q(1 + ζ) · (1 +
x− 1

q
· (r + 1)(p− 1)

2
) (mod p(x− 1)).
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Since NK/Q(1 + ζ) =
∏
ζ 6=1

(−1− ζ) = (−1)p−1 + · · ·+ (−1) + 1 = 1, we must have

r + 1 ≡ 0 (mod p),

which means
q ≡ 1 (mod p),

and hence

µ+ ζ
−1
q µ̄ =

x− 1

1− ζ
+ ζ−1 x− 1

1− ζ−1
= 0.

This implies (as ζr = ζ−1)

u ≡ 1 +

(1
q

2

)
µ2 + ζ−1 + ζ−1

(1
q

2

)
µ̄2 (mod (

x− 1

π
)3).

As the congruence holds for any choice of ζ, we have

N(u) ≡
∏
ζ 6=1

(1 +

(1
q

2

)
µ2 + ζ−1 + ζ−1

(1
q

2

)
µ̄2)

≡
∏
ζ 6=1

[(1 + ζ−1) +

(1
q

2

)
(µ2 + ζ−1µ̄2)]

≡
∏
ζ 6=1

(1 +

( 1
q

2

)
(µ2 + ζ−1µ̄2)

1 + ζ−1
)

≡ 1 +

(1
q

2

)
(x− 1)2

∑
ζ 6=1

1

1 + ζ−1
[

1

(1− ζ)2
+

ζ−1

(1− ζ̄)2
]

≡ 1 +

(1
q

2

)
(x− 1)2

∑
ζ 6=1

1 + ζ

(1 + ζ−1)(1− ζ)2

≡ 1 +

(1
q

2

)
(x− 1)2

∑
ζ 6=1

(1 + ζ)ζ

(1 + ζ)(1− ζ)2

≡ 1 +

(1
q

2

)
(x− 1)2

∑
ζ 6=1

ζ

(1− ζ)2
(mod(

x− 1

π
)3).

This means (1
q

2

)∑
ζ 6=1

ζ

(1− ζ)2
≡ 0 (mod

x− 1

π3
).

To show this leads to a contradiction, we need to evaluate the sum
∑
ζ 6=1

ζ
(1−ζ)2 . Let

f(X) = Xp−1 +Xp−2 + · · ·+X + 1 =

p−1∑
i=0

X i.

g(X) = Xp−2 + 2Xp−3 + · · ·+ (p− 2)X + (p− 1) =

p−2∑
i=0

(p− 1− i)X i.
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Then
f ′(X)

f(X)
=
∑
ζ 6=1

1

X − ζ
=
∑
ζ 6=1

ζ−1

ζ−1X − 1
=
∑
ζ 6=1

ζ

ζX − 1
,

and ∑
ζ 6=1

ζ

ζ −X
=

1

X

∑
ζ 6=1

ζ

ζ 1
X
− 1

=
f ′( 1

X
)

Xf( 1
X

)
=
Xp−2f ′( 1

X
)

Xp−1f( 1
X

)

=
Xp−2(1 + 2

X
+ 3

X2 + · · ·+ (p−2)
Xp−3 + (p−1)

Xp−2 )

Xp−1(1 + 1
X

+ · · ·+ 1
Xp−2 + 1

Xp−1 )

=
Xp−2 + 2Xp−3 + · · ·+ (p− 2)X + (p− 1)

Xp−2 + 2Xp−3 + · · ·+ (p− 2)X + 1
=
g

f
.

Observe that ∑
ζ 6=1

ζ

(1− ζ)2
=
∑
ζ 6=1

ζ

(x− ζ)2
|x=1 =

(∑
ζ 6=1

ζ

ζ − x

)′
|x=1

=

(
g(x)

f(x)

)′
|x=1 =

f(1)g′(1)− f ′(1)g(1)

f(1)2

It can be seen that f(1) = p, f ′(1) = g(1) = p(p−1)
2

, and

g′(1) =

p−1∑
i=1

(p− i)(i− 1) =

p−1∑
i=1

(pi+ i− p− i2)

=
p(p+ 1)(p− 1)

2
− p(p− 1)− p(p− 1)(2p− 1)

6

=
p

12
(6p2 − 6− 12p+ 12− 4p2 + 6p− 2) =

p

12
(2p2 − 6p+ 4).

Then we conclude that ∑
ζ 6=1

(
ζ

1− ζ2

)
=

1− p2

12
.

This implies

(x− 1) divides
(1− q)(1− p2)π3

24q2
∈ Zp[ζ].

By Proposition 2.1, x− 1 is divided by pq−1. Therefore, pq−2 divides q − 1. But this is absurd,
since pq−2 > q − 1. �

4.2. The Proof of Theorem 3.1. Theorem 3.1 is proved in this section. To have things fit
into our previous results, we need to replace “p and q” by “q and p”. Namely, we shall exchange
the roles of p and q. Note that Doing so will not alter the statement in the theorem, as it is
symmetric in p and q. For an element θ =

∑
σ nσσ ∈ Z[G+], denote

‖θ‖ =
∑
σ

|nσ|.
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Lemma 4.1. If ([ 3q
2(p−1)2

]
+ p−1

2[
3q

2(p−1)2

] )
>

(
[

3q
2(p−1)2

]
+ 1)(p− 1)2

3
+ 1,

then there are more than q elements θ ∈ I−S such that

‖θ‖ ≤ 3q

2(p− 1)
.

Proof. First, we claim that there exists a Z-basis β = { θ̃k ∈ I−S ; k = 1, 2, ..., p−1
2
} of I−S such

that each ‖θ̃k‖ ≤ p− 1. Then consider the set

Υ = {θ =

p−1
2∑
i=1

ciθ̃i | ci ≥ 0, for every i, and

p−1
2∑
i=1

ci ≤
3q

2(p− 1)2
}.

Obviously, if θ ∈ Υ, then ‖θ‖ ≤ 3q
2(p−1)

. The cardinality |Υ| equals the number of choices of

non-negative integers c1, c2, ..., c p−1
2

whose sum is not more than
[

3q
2(p−1)2

]
, and hence equals([ 3q

2(p−1)2

]
+ p−1

2[
3q

2(p−1)2

] )
. Let −Υ denote the set {−θ | θ ∈ Υ}. Then −Υ ∪Υ has the cardinality

2

([ 3q
2(p−1)2

]
+ p−1

2[
3q

2(p−1)2

] )
− 1 >

2(p− 1)2

3
(

[
3q

2(p− 1)2

]
+ 1) + 1

>
2(p− 1)2

3
(

[
3q

2(p− 1)2

]
+ 1)

> q .

Thus, it remains to prove the claim. Next, we recall the element θc, where c is relatively prime

to p, defined in Proposition 2.2, and set θ̃k = (1− ι)(θk+1 − θk) for k = 1, 2, ..., p−1
2

. According
to the proposition, each θk is contained in I−S and

θk+1 − θk =

p−1∑
a=1

(

[
a(k + 1)

p

]
−
[
ak

p

]
)σ−1

a .

Thus, all coefficients of θk+1 − θk are non-negative and we have

‖θk+1 − θk‖ = w(θk+1 − θk)
= w(k + 1− σk+1 − k + σk) · w(θS)

= 1 · w(

p−1∑
a=1

a

p
σ−1
a )

=
p− 1

2
.
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This implies the required bound:

‖θ̃k‖ = ‖(θk+1 − θk)(1− ι)‖
≤ ‖θk+1 − θk‖ · ‖1− ι‖
= p− 1.

Notice that θ1 = 0, so θ̃1 = θ2(1− ι) and θ̃k = (θk+1− θk)(1− ι), for k = 2, 3, ..., p−1
2

. Therefore,

the two sets {θ̃k | k = 1, ..., p−1
2
} and {θk(1− ι) | k = 1, ..., p+1

2
} generate the same subgroup,

denoted as J, of I−S . The equality

θp−c(1− ι) = θS(p− c− σp−c)(1− ι)
= pθS(1− ι)− θS(c+ σ−c)(1− ι)
= pθS(1− ι)− θS(c+ σ−c − cι− σc)
= pθS(1− ι)− θc(1− ι)

shows in particular that pθS(1− ι) = θ p+1
2

(1− ι) + θ p−1
2

(1− ι) ∈ J. Then it together with the

equality

θc+p =

p−1∑
a=1

[
a(c+ p)

p

]
σ−1
a =

p−1∑
a=1

[
ac

p

]
+ p

p−1∑
a=1

a

p
σ−1
a = θc + pθS.

shows that for every c relatively prime to p, the element θc(1− ι) is contained in J. This means
J = I−S (Proposition 2.2).

We complete the proof by showing that the Z-rank of I−S is actually p−1
2

. Consider the exact
sequence

0 −→ ker(j) −→ Z[G]
j−→ (1− ι)Z[G] −→ 0,

where j(ξ) = (1 − ι)ξ, for ξ ∈ Z[G]. Obviously, ker(j) consists of all elements ξ =
∑p−1

a=0 naσa
such that n−a = na, for every σ, and hence it is of rank p−1

2
over Z. This shows that (1− ι)Z[G]

is also of rank p−1
2

. But it is well known that the index of I−S in (1 − ι)Z[G] equals to the
relative class number h− (Iwasawa’s Theorem, proof of which can be found in chapter 6 of [7])
which is finite.

�

Proof of Theorem 3.1. We shall emphasize again that the roles of p and q have been ex-
changed. Namely, we assume that([ 3q

2(p−1)2

]
+ p−1

2[
3q

2(p−1)2

] )
>

(
[

3q
2(p−1)2

]
+ 1)(p− 1)2

3
+ 1,

and hence the conclusion statement of Lemma 4.1 holds. Suppose there were non-zero integers
x and y satisfies the equality

xp − yq = 1.

First, we shall obtain a lower bound of
√
|x|+ 1, by estimating the value of |x|. By Proposi-

tion 2.1, yq+1
y+1

= qvp, y+ 1 = qp−1bp and x = qbv for some nonzero integer b and positive integer
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v. From the equality:

q(vp − 1) =
yq + 1

y + 1
− q

= yq−1 − yq−2 + ...− y + 1− q

=

q−1∑
i=1

((−y)i − 1)

we find that q(vp − 1) is divided by y + 1 = qp−1bp, whence

vp ≡ 1 (mod qp−2).

Notice that the order of the multiplicative group (Z/qp−2Z)∗ is qp−3(q−1). If p does not divide
q − 1, then

v ≡ 1 (mod qp−2).

It follows that qp−2 divides v − 1 and v ≥ qp−2 + 1, whence

|x| = |qbv| ≥ qv ≥ q(qp−2 + 1) > qp−1.

If p divides q − 1, then p < q and hence |x| > |y| = qp−1|b|p − 1 ≥ qp−1 − 1. Thus, we always
have

|x| ≥ qp−1.

As q ≥ 5, √
|x|+ 1 >

√
5
p−1

.

Next, we shall find an upper bound of
√
|x|+ 1. By Lemma 2.2, for any θ ∈ I−S , there exists

unique α ∈ K∗ such that (x− ζ)θ = αq. The assignment θ 7→ α gives rise to a map

φ : I−S −→ K∗.

The map φ is indeed a homomorphism of groups. We claim that it is injective. Suppose
θ =

∑
σ nσσ is contained in the kernel of φ. Then we have∏

σ

(x− ζσ)nσ = 1.

Lemma 2.1 says that each (x− ζσ) is divisible by 1− ζ. On the other hand, in the proof of the
lemma, it has been shown that for different σ and τ , the numbers x−ζσ

1−ζ and x−ζτ
1−ζ are relatively

prime, and hence the great common divisor of the ideals (x − ζσ) and (x − ζτ ) is the prime
ideal (1− ζ). As |NK/Q(x− ζσ)| = |xp−1

x−1
| ≥ |x− 1| > p (by. for instance, Proposition 2.1), we

see that x− ζσ must be divisible by some prime ideal, say lσ, other than (1− ζ) and lσ, lτ are
different for distinct σ and τ . Therefore, from the above equality, we deduce that nσ = 0 for
every σ, and hence θ = 0. This proves the claim.

Since for each embedding τ : K ↪→ C,

|τ(tι)| = |τ(t)|,

for every t ∈ K, we must have

|τ(φ(θ))| = 1,
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for every θ ∈ I−S , which is divided by 1− ι. Moreover, since xι = x, we also have, for θ ∈ I−S ,

φ(θ)q = (x− ζ)θ = xθ ·
(
x− ζ
x

)θ
=

(
1− ζ

x

)θ
.

For the further estimation, consider the principal branch logarithm log(z) and the principal
value of the argument Arg(z), of a complex number z as follow:

z = |z|eiArg(z), −π < Arg(z) ≤ π,

log(z) = log(|z|) + iArg(z), −π < Arg(z) ≤ π.

Now choose an embedding σ : K ↪→ C and an element θ0 =
∑
τ∈G

nττ ∈ I−S , and write α0 = φ(θ0).

From the Taylor expansion of log(1 +X) and the fact that |x| ≥ 3, it follows

|log(σ(α0)q)| = |log(σ(αq0))|

=

∣∣∣∣log(σ((1− ζ

x
)θ0))

∣∣∣∣
=

∣∣∣∣∣log(
∏
τ∈G

(
1− σ(τ(ζ))

x

)nτ
)

∣∣∣∣∣
≤
∑
τ∈G

|nτ | ·
∣∣∣∣log

(
1− σ(τ(ζ))

x

)∣∣∣∣
=
∑
τ∈G

|nτ | ·

∣∣∣∣∣−
∞∑
j=1

1

j

(
σ(τ(ζ))

x

)j∣∣∣∣∣
≤
∑
τ∈G

|nτ | ·
∞∑
j=1

∣∣∣∣σ(τ(ζ))j

jxj

∣∣∣∣
≤
∑
τ∈G

|nτ | ·
1

|x|
·
∞∑
j=0

1

|x|j

=
∑
τ∈G

|nτ | ·
1

|x|
· 1

1− 1
|x|

≤
∑
τ∈G

|nτ | ·
1

|x|
· 1

1− 1
3

=
∑
τ∈G

|nτ |
3

2|x|

=
3‖θ0‖
2|x|

.

Since |σ(α0)q| = 1, we have the equality

|log(σ(α0)q)| = |log|σ(α0)q|+ iArg(σ(α0)q)| = |Arg(σ(α0)q)|,
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whence |Arg(σ(α0)q)| ≤ 3‖θ0‖
2|x| . Since Arg(σ(α0)q) ≡ qArg(σ)α0 (mod 2π), there exists an integer

k ∈ (− q
2
, q

2
) such that Arg(σ(α0)q) + 2kπ = qArg(σ(α0)), and consequently,

|Arg(σ(α0))− 2kπ

q
| = 1

q
|Arg(σ(α0)q)| ≤ 3‖θ0‖

2q|x|
.

In general, there could be more than one integer k satisfying the above inequality. however, if
‖θ0‖ ≤ 3q

2(p−1)
, then k is unique. For if there are two integers k, k′ satisfy the inequality, then

|2kπ
q
− 2kπ

q
| ≤ |Arg(σ(α0))− 2kπ

q
|+ |Arg(σ(α0))− 2kπ

q
| ≤ 3‖θ0‖

q|x|
.

As |x| ≥ qp−1, this implies

|k − l| ≤ 3‖θ0‖
2π|x|

≤ 3

2π
· 3q

2(p− 1)
· 1

qp−1
< 1,

a contradiction. This let we even corresponds each θ ∈ I−S an integer. By lemma 4.1, there are
more than q θ0 ∈ I−S with ‖θ0‖ ≤ 3q

2(p−1)
, while there are only q integers in (− q

2
, q

2
). Therefore,

by the Pigeonhole Principle, there are two elements θ1, θ2 ∈ I−S , with ‖θi‖ ≤ 3q
2(p−1)

, i = 1, 2,

corresponds to the same integer k. Write α1 = φ(θ1), α2 = φ(θ2), and put θ̄ = θ1 − θ2,
α0 = φ(θ̄) = α1

α2
6= 1, as φ is injective.

The next step is to estimate the value |σ(α0)− 1|. To do so, we first estimate

|log(σ(α0))| = |Arg(σ(α0))|
≤ |Arg(σ(α1))− Arg(σ(α2))|

≤ |Arg(σ(α1)− 2kπ

q
|+ |Arg(σ(α2))− 2kπ

q
|

≤ 3‖θ1‖
2q|x|

+
3‖θ2‖
2q|x|

≤ 3

2q|x|
3q

2(p− 1)
+

3

2q|x|
3q

2(p− 1)

=
32

2

1

|x|(p− 1)
.

Then,

|σ(α0)− 1| = |elog(σ(α0)) − 1|

= |log(σ(α0)) +
1

2!
log(σ(α0))2 +

1

3!
log(σ(α0))3 + . . . |

≤ |log(σ(α0))|+ 1

2!
|log(σ(α0))2|+ 1

3!
|log(σ(α0))3|+ . . .

≤ 32

2

1

|x|(p− 1)

(
∞∑
j=0

1

|x|j

)

≤ 32

2

1

|x|(p− 1)

1

1− 1
|x|
≤ 32

2

1

|x|(p− 1)

1

1− 1
3

=
33

22|x|(p− 1)
.
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Consequently,

|NK/Q(α0 − 1)| = |
∏

τ∈G τ(α0 − 1)|
= |σ(α0 − 1)σ(α0 − 1)|

∏
τ 6=σ,ισ

|τ(α0 − 1)|

= |σ(α0 − 1)σ(α0 − 1)|
∏

τ 6=σ,ισ
(|τ(α0)|+ 1)

≤
(

33

22|x|(p−1)

)2

· 2p−3.

For simplicity, for the rest of the proof, we let N(X) denote the norm NK/Q(X), where X

is either a number in K or a fractional ideal contained in K. Write (α0) = J ′

J
, where J

and J ′ are coprime OK-ideals, and write θ̄ =
∑

τ nττ = θ̄1 − θ̄2, with θ̄1 =
∑

nτ>0 nττ and

θ̄2 =
∑

nτ<0−nττ . Since (x− ζ)θ̄ = αq0, we have

N((x− ζ)θ̄1)

N((x− ζ)θ̄2)
= N((x− ζ)θ̄) = N(αq0) =

N(J ′)q

N(J)q
.

This means that N((x−ζ)θ̄1) = N(J ′)k and N((x−ζ)θ̄2) = N(J)qk, for some nonzero integer
k. Then, as N(α0) = 1,

N(J)2q = N(J ′) ·N(J)q

≤ N((x− ζ)θ̄1) ·N((x− ζ)θ̄2)

= N(
∏
τ∈G

(x− ζ)|nτ |)

=
∏
τ∈G

N(x− ζ)|nτ |

=
∏
τ∈G

(
∏
γ∈G

(x− ζγ))|nτ |

=
∏
τ∈G

(

p−1∏
i=1

(x− ζ i)))|nτ |

=
∏
τ∈G

(

p−1∑
i=0

xi)|nτ |

≤
∏
τ∈G

(

p−1∑
i=0

(
p

i

)
|x|i)|nτ |

=
∏
τ∈G

(|x|+ 1)(p−1)|nτ |

= (|x|+ 1)(p−1)‖θ̄‖

= (|x|+ 1)(p−1)(‖θ1‖+‖θ2‖)

≤ (|x|+ 1)(p−1) 3q
p−1
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In other words,

N(J) ≤ (|x|+ 1)
3
2 .

Since J · (α0 − 1) = J ′ − J ⊂ OK , we have

N(J)−1 ≤ |N(α0 − 1)| ≤ (
33

22|x|(p− 1)
)2 · 2p−3.

Finally, putting all things together, we have the inequality:
√

5
p−1
≤
√
|x|+ 1

=
(|x|+ 1)2

(|x|+ 1)
3
2

≤ (|x|+ 1)2

N(J)

≤ (|x|+ 1)2(
33

22|x|(p− 1)
)2 · 2p−3

≤ 729

16(p− 1)2
· 2 · 2p−3

<
46

(p− 1)2
2p−2.

But this is absurd. To see it, let m(t) = 46
(t−1)2 2t−2 and n(t) =

√
5
t−1

. Then m(5) = 23 < 25 =

n(5) and m(t+ 1) < 2m(t) < 2n(t) < n(t+ 1).
�

4.3. the Proof of Lemma 3.4. In this section, we prove Lemma 3.4. Through out the section,
we shall assume that q - p− 1 and there are non-zero integers x and y satisfying xp − yq = 1.

Theorem 4.1. Let θ be an element in Z[G], divided by 1 + ι. If the weight w(θ) is divided by
q and (x− ζ)θ = αq for some α ∈ K∗, then θ ∈ qZ[G].

This is a theorem of Mihăilescu who proves it by using Runge’s method. We shall apply the
proof given in [2] that follows the treatments in [5] and [4].

Proof. First, we note that α is indeed contained in K+, since ι · θ = θ, and hence

(
α

αι
)q =

(x− ζ)θ

(x− ζ)θ
= 1.

Then, we shall make some reduction. Let θ =
∑

τ∈G nττ and let θ′ =
∑

τ∈G n
′
ττ with nτ ≡ n′τ

(mod q) and 0 ≤ nτ ≤ q− 1 for each τ . As we also have n′ιτ = n′τ , θ
′ is divisible by 1 + ι. Thus,

by replacing θ by θ′ if necessary, we can assume that nτ ∈ [0, q − 1]. Moreover, as

w(θ + (q
∑
τ∈G

τ − θ)) = w(q
∑
τ∈G

τ) = q(p− 1),

by replacing θ with q
∑
τ∈G

τ − θ if necessary, we can assume that mq := w(θ) ≤ q(p−1)
2

.
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Next, define

(1− ζτ t)
nτ
q =

∑
k≥0

(nτ
q

k

)
(−ζτ t)k ∈ K[[t]]

and set

F (t) := (1− ζt)
θ
q =

∏
τ∈G

(1− ζτ t)
nτ
q ,

which is contained in K+[[t]], as nτι = nτ .
We have

(1− ζτqT )
nτ
q = 1 +

∞∑
k=1

(
1

q

)k
nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)

k!
(−ζτqT )k

= 1 +
∞∑
k=1

nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)

k!
(−ζτT )k.

The T k coefficient of this power series is of the form ak
k!

with

ak = nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)(−ζτ )k ≡ (−nτζτ )k (modq).

We interpolate this by writing

(1− ζτqT )
nτ
q ≡ e−nτ ζ

τT (mod q).

Therefore,

F (qT ) ≡ e−
∑
τ nτ ζ

τT (mod q).

Then, writing F (t) = F (q · t
q
) = F (q · T ), we see that

F (t) =
∑
k≥0

ak
k!qk

tk with ak ≡ (−
∑
τ∈G

nτζ
τ )k (modq). (3)

Next, we estimate the absolute values of the coefficients of F (t) at each non-archimedean place.
To do this, we fix any embedding

σ : K+ ↪→ R
and note ∣∣∣∣σ((nτ

q

k

)
(−ζτ )k

)∣∣∣∣ =

∣∣∣∣(nτ
q

k

)∣∣∣∣ · ∣∣σ(ζτ )k
∣∣

=

∣∣∣∣∣
nτ
q

(nτ
q
− 1)(nτ

q
− 2)...(nτ

q
− (k − 1))

k!

∣∣∣∣∣
≤ (−1)k

−nτ
q

(−nτ
q
− 1)(−nτ

q
− 2)...(−nτ

q
− (k − 1))

k!

= (−1)k
(
−nτ

q

k

)
,

which is the coefficient of tk in
∑

k≥0

(−nτ
q

k

)
(−t)k = (1 − t)

−nτ
q . This shows the absolute value

of the coefficient of tk in
∑

k≥0

(nτ
q

k

)
(−ζτ t)k is bounded by that in

∑
k≥0

(−nτ
q

k

)
(−t)k, and hence
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the absolute value of tk coefficients of F σ(t) (the image of F (t) under σ) is bounded by that of∏
τ∈G

(1− t)
−nτ
q = (1− t)

1
q

∑
τ∈Gnτ = (1− t)−m.

Let Fl(t) and sl(t) respectively denote the lth partial sum of F (t) and (1 − t)−m. Then,
F σ(t0)) does converge, for t0 ∈ R, |t0| < 1, as by Taylor’s theorem, there exists ρ ∈ R with
|ρ| < |t0| < 1 so that

|F σ(t0)− σ(Fl(t0))| ≤
∣∣(1− t0)−m − sl(t0)

∣∣ (4)

=
t0

(l + 1)!

dl+1(1− z)−m

dzl+1
|z=ρ

=
|t0|l+1

(l + 1)!

(m+ l)!

(m− 1)!
(1− |ρ|)−m−l−1

= |t0|l+1

(
m+ l

l + 1

)
1

(1− |ρ|)m+l+1

≤
(
m+ l

l + 1

)
|t0|l+1

(1− |t0|)m+l+1
. (5)

In particular, if t0 is a rational number with absolute value smaller than 1, then F σ(t0) is
defined for each σ, and we have

F σ(t0)q = σ((1− ζt0)θ).

Now, consider the case where t0 = 1
x
. Then,

F σ

(
1

x

)
= σ

( α

xm

)
,

since 1 is the only qth root of unity in R and we also have (x− ζ)θ = αq, whence

F σ

(
1

x

)q
= σ

((
1− ζ

x

)θ)
= σ

(( α

xm

))q
.

Also, the fact that θ = (1 + ι)θ′ for some θ′ ∈ Z[G] implies that if we extend σ to an embedding

K
σ−→ C, then

F σ

(
1

x

)q
= NC/R

((
1− ζ

x

)θ′)
> 0.

Suppose M is an integer prime to q. Then, for each τ , there exists an integer Aτ so that

nτ ≡ q · Aτ (mod M),

whence
nτ
q

(
nτ
q
− 1) . . . (

nτ
q
− k + 1) ≡

(
Aτ
k

)
· k! (mod M).

This shows that each
(nτ
q

k

)
(−ζ)k is an M -adic integer. Consequently, the coefficients of the

partial sum Fm(t) of F (t) all have powers of q as their denominators. Thus, in view of (3), we
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see that the element qm+ordq(m!)xmFm
(

1
x

)
is contained in OK+ , and hence so is

fm := qm+ordq(m!)α− qm+ordq(m!)Fm

(
1

x

)
.

The next step is to show that fm = 0 by showing that

|σ(fm)| < 1, for every σ.

If m = 0, then θ = 0 and there is nothing to prove. therefore, we assume that m ≥ 1, for the
rest of the proof. Then,

|σ(fm)|

= qm+ordq(m!)|σ(xm)||F σ(
1

x
)− σ(Fm(

1

x
))|

= qm+ordq(m!)|xm||F σ(
1

x
)− F σ

m(
1

x
)|

≤ qm+ordq(m!)|xm|
(
m+m

m+ 1

) 1
|x|m+1

(1− 1
|x|)

m+m+1

< qm+ordq(m!)

(
2m

m+ 1

)(
49

48

)2m+1
1

|x|
,

where the last inequality comes from the estimation

|x| ≥ qp−1 ≥ 77−1 > 49.

As 1 ≤ m ≤ p−1
2

, we have the further estimation:

qm+ordq(m!)

(
2m

m+ 1

)(
49

48

)2m+1
1

|x|

≤qm+
∑
k≥1

[
m

qk

]
22m

(
492

482

)2m
1

|x|

≤qm+ m
q−1

(
2401

1152

)2m
1

|x|

≤
(
q

q
2(q−1)

(
2401

1152

))p−1
1

|x|

≤
(
q

7
12

(
2401

1152

))p−1
1

qp−1
. (6)

To have the desired inequality, we only need to observe that(
2401

1152

)12

< 2.0912 < 16807 = 75 ≤ q5.

Now, we have the equality:

qm+ordq(m!)α = qm+ordq(m!)xmF

(
1

x

)
=

m∑
k=0

qm+ordq(m!) ak
k!qk

xm−k,
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where ak ≡ (−
∑

τ∈G nτζ
τ )k (mod q). Then, since q divides qm+ordq(m!) ak

k!qk
, k = 1, 2, ...,m− 1,

and qm+ord(m!)α must be divided by q, we conclude that(
−
∑
τ∈G

nτζ
r

)m

≡ am ≡ 0 (modq).

We have seen in the proof for Lemma 2.2, OK/(q) has no nilpotent elements. Therefore,∑
τ∈G

nτζ
r must be divisible by q. Since the elements ζ i, i = 1, ..., p − 1 form a Z basis of OK ,

each nτ is divisible by q and so is θ. �

What we actually need is the following counterpart of Theorem 4.1 for OK+ and Z[G+].

Lemma 4.2. Suppose θ is an element in Z[G+] with weight divisible by q. If the element
((x− ζ)(x− ζ̄))θ is a qth power in K+, then θ ∈ qZ[G+].

Proof. For simplicity, we also let σa, a ∈ {1, 2, ..., p − 1}, denote the restriction of it to K+.

then we have σa = σp−a on K+ and write θ =
∑ p−1

2
a=1 nσaσa. Using this expression of θ, we view

it as an element in Z[G] and set θ̂ = (1 + ι)θ =
∑ p−1

2
a=1 nσa +

∑p−1

a= p+1
2

nσa . Then

(x− ζ)θ̂ = ((x− ζ)(x− ζ̄))θ

is a qth power is K, while

w(θ̂) = 2w(θ) ≡ 0 (mod q).

Thus, by Theorem 4.1, θ̂ ∈ Z[G], and hence each nσa is divisible by q. �

Recall that C+ denote the group of cyclotomic units in K+ and I0 denote the kernel of the
weight function on Fq[G+]. Also, ξ0 = (x − ζ)(x − ζ−1) ∈ H and ξ denotes the image of
(x− ζ)(x− ζ−1) under the natural projection map H −→ H/Q(K+)∗q.

Lemma 4.3. Every γ ∈ C+ is congruent to a qth power modulo q2OK+.

Proof. Obviously, if θ ∈ qZ[G+], then ξθ ∈ (K+)∗q. Thus, we the homomorphism

χ : I0 −→ H/(K+)∗q

θ 7−→ ξθ.

is well-defined. Moreover, Lemma 4.2 actually insures that χ is a monomorphism. In particular,
if a ⊂ I0, the Fq[G+]-ideal defined in Section 2.5, then χ induces an isomorphism from a to ξa.
Also, the inclusion (2) in Section 2.5 implies that

a ∼= ξa ⊂ (H/(K+)∗q)a ⊂ C+Eq/Eq ∼= a,

whence
a ∼= ξa = (H/(K+)∗q)a = C+Eq/Eq,

which implies
C+/(C+ ∩ Eq) = ξa ⊂ ξI0 .

Therefore, for the given γ ∈ C+, there exists some θ =
∑ p−1

2
a=1 naσa ∈ Z[G+], with each na ≥ 0,

and some δ ∈ (K+)∗ so that
γ−1δq = ξθ0 .
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The condition that each na ≥ 0 implies that ξθ0 and hence δ is contained in OK+ . Also, as we
have (note that x ≡ 0 (mod q2))

ξσ = (x− ζσ)(x− ζ̄σ) ≡ 1 (mod q2), for each σ ∈ G+,

we have
γ−1δq ≡ 1 (mod q2),

and finally
γ ≡ δq (mod q2).

�

Now, the last lemma is proved.

Proof of Lemma 3.4. First,

ζ−
p+1

2 + ζ
p+1

2 = ζ−
p+1

2 (1 + ζ) = ζ−
p+1

2 · 1− ζ2

1− ζ
is a cyclotomic unit and is contained in C+. Then the above lemma says that

ζ−
p+1

2 + ζ
p+1

2 ≡ δq (mod q2OK+),

and hence
1 + ζ = ζrq · δq (mod q2OK),

where r is an integer so that rq ≡ p+1
2

(mod p).
�
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