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EFe R
The purpose of this thesis is to price the inflation indexed securities and solve for an
inter-temporal portfolio consumption choice problem under inflation. In the first part of
this thesis, a diffusion model for inflation rates with stochastic volatility is proposed,
and closed-form solutions are derived for treasury inflation protected securities (TIPS).
Empirically, our model with 29 TIPS, treasury constant maturity rates and reference
CPI numbers in the U.S. market was used to derive the unknown parameters and
spreads during January 2000 to October 2009. Empirical results show that an
over-estimated spread is induced by ignoring the embedded option in TIPS. The average
difference between the distorted estimate and actual value is about 0.82%. The
minimum spread occurred around Jan. 2009 while the CPI-U decreased drastically. In
the second part of this thesis, we solve for an inter-temporal portfolio consumption
choice problem under inflation. The inclusion of the inflation-indexed bonds in the
investor’s portfolio provides an opportunity to perfectly hedge against the inflation risk,
while the hedging demand of the nominal bonds would be crowded out in proportion to
the demand of the indexed bonds. The direction in which the interest rate and the
inflation rate affect the optimal consumption-wealth ratio relies on the elasticity of
inter-temporal substitution of the investor. The consumption wealth ratio is not

completely determined by the real interest rate, it also depends on the nominal levels of

v



the interest rate and the inflation rate. The capital market is calibrated to U.S. stock,

bond, and inflation data. The optimal weights show that aggressive investors hold more

nominal bonds to earn the inflation risk premium, and conservative ones concentrate on

indexed bonds to hedge against the inflation risk.

Key words: Stochastic volatility, TIPS, Embedded option, Inflation Risk, Indexed

Bond, Dynamic Portfolio Choice, Elasticity of Inter-temporal Substitution
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Chapter 1
Treasury Inflation Protected Securities Pricing
under the Heath- Jarrow-Morton model with Stochastic Volatility

1.1 Introduction

Since January 1997, the treasury inflation protected securities, or TIPS, created by the
U.S. treasury to help investors manage inflation risk, have been issued regularly.
Principals of TIPS are adjusted periodically to keep pace with the rate of inflation,
measured by the consumer price index for all urban consumers (CPI-U). Investors
receive semi-annual coupon payments based on a fixed semi-annual coupon rate applied
to the inflation-adjusted principal. At maturity, if inflation has increased the value of the
principal, investors receive the higher value. If deflation has decreased the value,
investors still receive the original face amount of the security. The redemption valuation

at maturity is recognized as an embedded option in TIPS.

Fischer (1975) first analyzed the demand for index bonds. Unlike traditional
treasury bonds, investors in TIPS are guaranteed by the government a specific rate of
return and a specific purchasing power of the principal above inflation. According to the
estimates of the treasury department, the outstanding volume of TIPS has risen from
about $15 billion in 1997 to about $413 billion by late 2006, and trading of TIPS among

primary securities dealers has risen from a daily average of $1 billion in early 1998 to

1



approximately $8 billion by late 2006 due to their built-in inflation protection.

Yields calculated from prices of TIPS are usually denoted as approximations of

inflation-adjusted or real interest rates. That information, together with yields on

traditional, nominal-treasury securities, is often used to provide implicit indications of

general agreement of medium-term to long-term expectations of inflation by the bond

market. However, the fact that the long-term inflation expectation from the survey has

almost always been higher than that computed from the spread between nominal and

TIPS yields (called term premium) suggests that measure is distorted. As a measure of

expected inflation, the spread between nominal- and indexed-treasuries could be

distorted by inflation uncertainty, risk aversion, and the probability of deflation.

Like Melino and Turnbull (1990), Frachot (1995), or Bakshi and Cao, we propose

a much more general and flexible pricing model for TIPS with embedded options which

allows for consideration of stochastic volatility and correlations among inflation rates,

nominal forward rates, real forward rates, and volatility variants. This aids in more

accurately capturing the distribution properties of inflation. However, due to the long

maturity property of TIPS, fitting the current term structure is an important

consideration for practitioners. Jarrow and Yildirim (2003) applied the term structure

model introduced by Heath, Jarrow, and Morton (HIM) (1992) to both nominal and real

rates. Options embedded in TIPS also have long maturity and are very different from

2



ordinary options. Unlike an ordinary option, whose value always increases with
maturity, the relation between the TIPS-embedded option and maturity is much more
complex. The relationship depends on the term structures of real and nominal forward
rates and the reference CPI-U on the issue date. This article provides the theoretical and

empirical basis of TIPS for pricing in the stochastic volatility framework.

The remainder of this article is as follows: Section 2 describes the model and its
assumptions. Section 3 introduces the general valuation framework and presents
closed-form solutions of TIPS. Section 4 investigates the properties of TIPS and
embedded options using numerical examples. Section 5 reports the empirical analysis

based on the U.S. market data. Conclusions are given in Section 6.

1.2 Model

The HIM model was applied to TIPS in order to fit best the current term structure,
which is the first-order requirement for practitioners while pricing high
interest-rate-sensitive derivatives. As presented in Duffie, Pan, and Singleton (2000),
we assumed that, at time¢, the data-generating processes of the inflation index, 1(¢),
with its stochastic variance component, Y (z), the nominal-7 -maturity forward rate,

F (¢,T), and the real T -maturity forward rate, F.(¢,T), are calculated as follows:

%:M (t)dt+ 5, dW, () +8,dW, @)+ YO, (). M



dY (1) = (a — K, Y(0)dt + oy JY () AW, (1), )

df.t,T)=qa, t,T)dt+o, t,T)dW (1), (3)

dF.(t,T)=a,(t,T)dt+o,(t,T)dW.(1), (4)
where W,(t), W,(t), W (¢), and W (t) describe standard Brownian motions with
covariance: CoWdW,,dW,)=p,dt, CodldW, dW )=p, dt, ColdW,,dW )=0,
CowdW,,dW )=0 , CoudW,,dW )=0 , and CouWdW,,dW )=0 . Structural
parametersa, kK,,and o, represent the long-run mean, the speed of adjustment, and

the volatility of the stochastic variance component, respectively. The timez, price of a

nominal (real) zero-coupon bond maturing at time 7 , in dollars (CPI-U units), is given
by Eq. (5).
V,(t,T)= exp{f j i, (t,s)ds}, kelnr}. (5)

The nominal (real) money market account is defined as

B,(t,T) = exp{[ e (s)ds}, ke{nr}, (6)

where 7,(f) is the spot rate and 7, (f)=F,(¢,t). The instantaneous covariance
rate--between inflation rates and nominal (real) rates--is given by o, (¢,T )(5 .0, pnr)

( O-r (l’ T)(51r + 5lnpm‘ )) in thlS mOdel'

1.3 Pricing TIPS

If true processes are given by Eqgs. (1)-(4), the processes under the risk-neutral measure,

4



0, defined by (W, (1), Wy (1), W, (t), W, (¢))are given by Egs. (7)-(10),

o =l 08,4, 46,40V, ki
+8,dW, () +8,dW, (0)+Y(OdW; (2), (7
dY (1) = (o — K, Y(6) + T, )dt + o, Y)W, (2) (8)
dF,(t.T) =, (. T) +0,(t.T)A, ()t + o, (. T)AW, (¢), ©)
dF,(t.7) = (e, (t.T) +0,(t, DA O))dt+0,,T)aw, 1), (10)

where A, (¢) is the market price of W, () for ke{] ,n,r} and T, is the volatility
risk premium. After adopting the assumption that I, =7Y(¢) (Bates (1996)), Eq. (8)

can be rewritten as

dY(t) = (a— BY(@))dt + o, Y () dW; (1), (11)
where [ =k, —1. A proposition is presented that states the necessary and sufficient
conditions for bond price evolution to guarantee that arbitrage does not exist.

Proposition I: Arbitrage free term structures

V.(T)/B,0,), ItV .(¢t,T)/B,0,¢), and 1(¢)B.(0,t)/B,(0,¢) are Q-martingale if

and only if
a,(tT) =0, (t,T)[ [ o, (tuydu-2, (r)} (12)
@, @1 =0,0.1) [ o, (wdi=2,0)-6,p, -5, | (13)
H () = 1,(0) =1,.() = 6,4,(0) = 6,4, () =Y (D) 4, (1) (14)

5



Proof: See Appendix A.

From Egs. (7) and (9)-(11), and Proposition I, the following equations are derived

under the risk-neutral measure, Q:

% =07 Okt +6,dW, (1) + 5,4, O+ YO, 1. (15)
dY(t) = (a— BY(0))dt + o, [Y()dW; (¢), (16)
av,w1) _ .
W— n(t)dt+an(t,T)de (f), (17)
dv,@T) (o .
V) (. ()= (S, p,, +6, )a,(t,T))dt +a,(t,T)AW, (t), (18)

where a, (t,T) = - fak (Luydu for kelnr}. Let VI(t,7), IL(t,7), and I7()
denote the forward prices of V, (t,7), I(t)V.(t,7), and I(t)B.(0,f) with respect to
V(1) as defined by V. (6,0) =V, (D), (1), IL(t,0)= 10, @0)/V,(1.T), and
I'(t)= 1())B.(0,0)/V,(t,T), where T <7 . Other forward prices are defined in a
similar manner. Next, Q" is determined under which V, (¢,7), I.(t,7), and I’ (?)
are martingale.

Proposition I1: Martingales under measure Q"

Vo) V.eT), I¢V.(t,7)/V (¢T), and 1(t)B.(0,t)/V (¢t,T) are martingale under
Q" defined by { W/ (1), W/@) . W ). W ()} whee W =W,
WO =W, @0, W] @ =W, @) [a,(s.T)ds,and W] 0) =W, (1)~ p,, [ a,(s.T)ds.

Proof: See Appendix B.



Let EtQ and E[T denote the conditional-expectation operators at time ¢ under

the risk-neutral measure @ and the forward-neutral measure Q" , respectively. Kijima

and Muromachi (2001) demonstrated that, if the relative price of a risky asset S(z) is a

martingale under the risk-neutral measure O, and its forward price is also a martingale

under the forward-neutral measure, QT , then

o C(T) |_ oy r| €M)
£ {—Bn(O,T)} €(0) V,,(O,T)EO[V}T(T’TJ (19)

where C(¢) is the time ¢ price of a European derivative maturing at time 7 written
on S(t).

Consider a European call option issued against the inflation index with a strike
price of K index units and maturity date 7' . Because the index is denominated in units
of dollars per CPI-U, each unit of the option was assumed to be written on one CPI-U
unit. Therefore, the time 7 payoff to the option, in dollars, is equivalent to

max{] (T-K ,O}. The present value of this option can be formulated as

C(T.K) = Eg{ max{I(T) - K,O}} . (20)

B, (0,T)
Instead of solving Eq. (20) under the risk-neutral measure, it was solved by
transforming into the forward-neutral measure. BecauseV,(T,7) =1, Eq. (20) can be

written as:



max{/(T) - K ,0}} = E¢ { max{I(T)V,(T,T) - K,o}} . 2D

E? !
*| B,(0,T) B (0,T)

n

Combining Proposition I and Proposition II, and Eq. (19), yields

0

1
“| B,(0,T)

_ r ITyv.(r.7)
max{I(T)V,(T,T) - K,O}} =V (0,T)E, {max{—Vn oD K,OH .(22)

Proposition III is provided for deriving the formula of C(7,K).

Proposition I11.

The present value of maX{I o (r,n/v.(r,T)-K ,0} under the forward-neutral

T . .
measure, O, is given by

E, {max{w - K,OH = wa(—i - V) —KE)(—V) , (23)
V (T,T) V (0,T)

where E)(¢,V) is defined by

Iml:exp{A(O, Ti¢, ., T.T)+ B(T;¢, )Y(0)—iv ln{I(O)V’(O’T)}ﬂ

11 KV, (0,T)

6(¢,V E__;T dv.

2 v
Proof: See Appendix C.
Combining Egs. (20)-(22) with Proposition III, generates Eq. (24).
C(T,K) =1OW.(0,T)D(~i —v) — KV, (0,T)D(—v). (24)
Pricing TIPS is performed in much the same way as for a conventional bond with the

addition of mechanisms for inflation adjustment and redemption valuation at maturity.

The present value (in dollars) of a TIPS coupon-bearing bond issued at time 7,(<0),



with a coupon payment of C, the face value of F', and the maturity of 7', is given by

c It) ol F 1(z,)
Brurs (0)= Z {B(Ot)l(t)}Eo {Bnm,tn)M {10) H -

where f, is the i-th coupon payment date and ¢, =7 . The value for redemption at

maturity is the larger of either the original issue par value or the cumulative

inflation-adjusted par value. When investors are concerned about the chance of deflation,

the embedded option of TIPS at redemption may be very valuable. Eq. (25) can be

written in another form:

v C o I®) F | Max{I(T) - 1(t,),0}
=3 755 s | T O] i 0D

In which EZ[I(1)/B,(0.t)] =EL[IC)V,(t.1,)/B,(0.1)] =IOWV,(0.) . After

replacing K in Eq. (20) with I(¢#,), Eq. (27) is generated,

10)
TIPS — el I( )
Fr.0,7)2 (0)) (=i —v) = FV,(0,T)D(-v). 27)

by incorporating Eq. (24). After defining ®(x) =1 —E)(x) , Eq. (27) can be written as

0Py f((f))
_FY.(0,7)L ((tO)) D(—i —v) +FV (0,T)D(-). 28)

If we ignore the embedded option in TIPS, the final two terms in Eq. (28) will also

be ignored; subsequently, the price of TIPS can be completely determined by the term

structure of real forward rates. However, the existence of the embedded option at



redemption makes it possible for nominal forward rates and stochastic volatility to play
an important role in determining the price of TIPS.

Given the market prices of TIPS, using the pricing formula of TIPS without the
embedded option at redemption may result in under estimation of the real interest rate.
This approach may induce over estimation of the spread between nominal and real
interest rates. If the over-estimated spread is treated as a measure of future inflation
rates, an over-estimated future inflation rate will result. Historically, the market has
generated an over-estimated future inflation rate from the yield spread between treasury
bonds and TIPS.

If issuing TIPS at the face value in the beginning (¢, =0), the coupon rate, ¢, can

be determined by

oo 12V (0.1) = C(T, 1(0))/1(0)

: (29)
D V,.0,)
i=1
1.4 Numerical examples
According to Jarrow and Yildirim (2003), we specify
P
a,(t.7) =—q—"(1—exp[—qk(T—z>]), keinrt. (30)
k

Based on our empirical estimation, we let p, =0.011, g =0.014, p =0.011, and
g, =0.013. Although the treasury yield curve has exhibited different shapes during the

past several decades, Fig. 1 provides the common shape of the nominal term structure

10



(similar to that observed during December 1982). The nominal term structure is set to
be f,(0,1)=a +bt+ct’, wherea =0.085,b=0.002 andc =—0.00004.

For simplicity, the spread between nominal and real yields is assumed to be
deterministic, and is denoted as s(¢). After specifying s(¢1)=1.5%, the real term
structure can be obtained by f,.(0,¢)=f, (0,£)—s(f). Next, we set t,=0,F =1,
Y(0)=0.03, a=0.0005, o,=0.01, g=6.02, 0,=0, 0,=0, p,=-0.512, and
P, =0.110 to investigate selected properties of TIPS and embedded options through
numerical examples.

Fig. 2 depicts the relationship between the coupon rate of TIPS and the maturity
according to the circumstance depicted in Fig. 1. In addition, Fig. 3 shows that the
relationship between the embedded option price and the maturity, depending on both the
nominal and real term structures, is not monotonously ascending. The embedded option
may consist of a portion of the TIPS value. Its percentage can reach nearly 3.5% if the
coupon rate is determined according to Eq. (29) while issuing TIPS at the start.

Fig. 4 shows that an over-estimated spread between nominal and real rates is
induced by ignoring the embedded option in TIPS. If the actual spread between nominal
and real rates is s(¢z) =1.5%, the spread can be over estimated by 1.95% using TIPS
with a 5-year maturity. The value is almost 1.3 times higher than the actual value. The

shorter is the maturity period the larger is the distorted estimation.

11



The embedded option may consist of a portion of the TIPS value, and its
percentage may depend on the index ratio, 1(0)/1(f,). We set coupon rate to be 4%.
We vary the index ratio, and present the results in Fig. 5. The smaller is the index ratio,
the larger is the percentage of option embedded in TIPS. The value of option embedded
in the TIPS can reach nearly 19% of the TIPS value if the index ratio is smaller than 1,
while that embedded in the TIPS can reach only 4.48% of the TIPS value if the index
ratio is bigger than 1.

1.5 Empirical analysis
We organize this section into two parts: firstly, the data used in our empirical
investigations are described. Secondly, the empirical results are shown.
1.5.1 Data description
The data used in our empirical investigation are daily market data from January 17,
2000 to October 23, 2009. There are three different data sets: nominal constant maturity
treasury rate data, TIPS data and CPI-U data.
(1) Nominal constant maturity treasury rate data:
We obtain treasury constant maturity rates on all available U.S. treasury securities. A
treasury constant maturity rate is defined to be the par yield of a government treasury
security with a specified maturity. These rates are read from the yield curve at fixed

maturities, currently 1, 3, and 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years.

12



(i1) TIPS data:

We obtain daily price on all available U.S. treasury inflation protected securities.

We choose 29 TIPS reported in Table 1; TIPS1, TIPS2 and TIPS3 are 30-year

bonds and TIPS4, TIPS5, TIPS6, TIPS7 and TIPS8 are 20-year bonds, while

TIPS12, TIPS16, TIPS19, TIPS22, TIPS25 are 5-year bonds and the remaining

ones are 10-year bonds. The time period January 17, 2000-October 23, 2009 gives a

total 2425 daily observations. We collect almost all of TIPS in the U.S. market

during the period of January 17, 2000-October 23, 2009. These twenty-nine TIPS

with their CUSIP numbers, coupon rates, issue dates, maturity dates, CPI-U of issue

dates and maturity periods are reported in Table 1.

(i11) CPI-U data:

Historical reference CPI numbers and daily index ratios are both from the treasury

direct website. Fig. 6 shows monthly CPI-U numbers from December 1999 to

November 2009. The CPI-U is mostly increasing during December 1999-July

2008 and December 2008-November 2009 and mostly decreasing during July

2008-December 2008.

1.5.2 Empirical result

Predicting all the unknowns in Eq. (28) simultaneously is the usual method. But this

method may result in time-consuming calculations and unstable solutions. Instead we

13



use a simpler method to predict the unknowns. This procedure is described as follows.
(1) Stripping the nominal zero-coupon bond prices
The bootstrap method is used to derive nominal zero rates from the treasury constant
maturity rates. A common assumption is that the zero curve is linear between the
points determined using the bootstrap method. The nominal zero-coupon bond prices
are derived by using the zero rates.
(i1) Estimating the volatility parameters of the nominal forward rates
Given the nominal zero-coupon bond prices, we assume the volatility parameters of
the nominal forward rates o, (¢,7) is as follows.
0,(t,T)=p, exp[—q,(T-1)], (31
where p, and ¢, are constants.

Using Eq. (17), we have the following formula,

AV,(LT), _ pi(expl=q, (T =1)]-1)

var
( V.(t,T) q,

A, A = one day. (32)
We run a nonlinear least square regression to estimate the parameters(p,,q, ). The
estimated parameters, p, = 0.011, ¢, =0.014, and their standard errors (in
parentheses) are reported in Table 2.

(1i1) Estimatinga, B, Oy, Py

We use historical volatility to predict the volatility of dI(z)/1(z) at time ¢. The

historical volatility is obtained using 10 years historical data prior to each

14



observation date in the data series. For simplicity, we suppose &, and § are both

equal to zero, and use formula as follow.

Dy cya. A = é . (33)

1()

Then Y(¢#) will be generated for each 7. According to Eq. (11), dY(z) is a

normal distribution with mean (o - pBY(t))dt and variance o;Y()dt .
Therefore, (dY &)—(a—-pY (t))dt)/ (O‘Y‘/Y (t)dt) is a normal distribution with mean

0 and standard deviation 1. We use the formula as follows to predict «, pgand

oy .
SNo | [ S Ney
min | = +| = -1}
a,f,oy n —1 n —1
where N(r) = X ()—(@_ A5 “ iy, (34)

oY (DA "W 19

Thus, the valuesa = 0.0005, ,B =6.02 and &, =0.01are generated. The estimated
parameters are reported in Table 2. The coefficient p,, , which captures the
correlation between volatility shocks and the underlying inflation index evolution,

are estimated by the formula

AL(1) _ 1 35
0 ,AY(2)),A TR (35)

Corr(

The estimated coefficient p,y , reported in Table 2, is equal to -0.512.

(iv) Estimating p

nr >

the volatility parameters of the real forward rates and the
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spreads between nominal and real yields

The next step is to estimate the remaining unknowns and the spreads between
nominal and real yields. We assume the volatility parameter of the real forward
rates o, (¢,T) is as follows.

o0,(t,T)=p,exp[—q,(T -1)], (36)

where p, and ¢, are constants. For simplicity, the spread between nominal and
real yields is assumed to be deterministic at each trading day ¢, and is denoted
as s(¢) . Then, the real term structure can be  obtained
by F.(t,T)=F, (t,T)—s(t),VT =t. We use all TIPS to estimate the spreads at each
trading day. We describe the differences between the market values By ; (#) and

the theoretical values for each TIPS, j, at each trading day ¢ as &,[s(),€2],

£, [5(1), Q] = By (1) - Iif’?) (DC 0t )+ FV.T)
R O ) BT )0, (), (37)

QE {pr9qr9pnr} .
Therefore, we can describe the problem on these TIPS as follows,
29
m(i{l Z‘g Ls(0), Q]‘ for each trading day . (38)
s(t I= -
It was apparent that the remaining unknowns, p,, ¢, and p, depend on the

daily real term structure. Thus, we use an iterative method to derive these
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approximate values. Firstly, we guess initial values p,,, ¢,,and p,., forp,,
q. and p,,. Then we put these initial values into Eq. (38) and find the optimal
spreads by numerical methods. Therefore, the estimated values p,;, ¢,;and

P,.1 are generated by using these spreads and formulae as follows.

? (exp[—q, (T -0)]-1)
I/vr(ZL’T') qr,l
A T
P, = Corr AV.(T) , AGTY) , A =one day. (40)
’ V.@.1) V(1)
If |p.,—p,o|> tolerance, |q,,—q,,|> tolerance and |p,., —p,. ,|> tolerance,

letp,=p,,, 9.=4,, and p,.=p,., and recalculate. Tolerance is set to 10~
in this calculation. We stop this recursion when |p,, —p, < tolerance,

4,4 =4, 4| Stolerance and |p,., — p,. .| <tolerance for some k. The estimated
values p, =0.0193 , ¢ . =0.01, and their standard errors (in parentheses)
and p,. =0.126 are reported in Table 2.

Fig. 7 is the time-series graph of spreads during the period of January 17,
2000-October 23, 2009 (line). The estimated maximum value of spread is 2.16%,
and the minimum value is -5%. The minimum spread occurred around Jan. 2009
while the CPI-U decreased drastically. Fig. 7 shows that an over-estimated spread
between nominal and real rates is induced by ignoring the embedded option in

TIPS during the period of January 17, 2000-October 23, 2009 (dashed line). The

17



average difference between the distorted estimate and actual value is about 0.82%.

(v) The embedded option prices

The estimated price of option embedded in each TIPS is shown in Fig. 8. TIPS7 is

the most expensive one since it is a long maturity bond with a larger CPI-U of

issue date, while TIPS12 is the cheapest one since it is the shortest maturity bond

with a smaller CPI-U of issue date. The CPI-U of issue date of TIPS7 is 211.08

while the CPI-U of issue date of TIPS12 is 190.9. The average prices of options

embedded in TIPS of various maturity periods are shown in Table 3. The shorter is

the maturity period, the cheaper is the embedded option price. Since the 30-year

TIPS were issued much earlier than 20-year ones, the average CPI-U of the issue

date of 30-year TIPS is smaller than that of 20-year ones. The average CPI-U of

the issue date of 30-year TIPS is 168.8, while the average CPI-U of the issue date

of 20-year TIPS is 202.5. It is apparent that the index ratios in 20-year TIPS are

more likely to be smaller than 1. Therefore, the prices of options embedded in

20-year TIPS are more expensive than those embedded in 30-year ones. The

embedded option consists of a portion of the TIPS value. The value of option

embedded in the 20-year TIPS is about 18% of the TIPS value, while those

embedded in the 30-year, 10-year and 5-year TIPS are about 12%, 6% and 3% of

TIPS value, respectively. The percentages of options embedded in TIPS of various
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maturity periods are shown in Table 3. The shorter is the maturity period, the

smaller is the percentage. The percentage of option embedded in the 30-year TIPS

is smaller than that embedded in the 20-year TIPS since the index ratios in 20-year

TIPS are more likely to be smaller than 1.

1.6 Conclusion

We derived closed-form solutions for TIPS with stochastic volatility. At redemption, an

embedded option existed. Nominal rates and stochastic volatility were introduced into

the determination of the valuation of TIPS through embedded options. The relationship

between the embedded option price and the maturity, depending on nominal and real

term structures and the reference CPI-U on the issue date is not monotonously

ascending. The embedded option may comprise a portion of the TIPS value, reaching

nearly 19%. An embedded option mispricing can result in a seriously distorted

estimation of the nominal-TIPS spread which is often treated as future inflation rates.

Empirically, our model with 29 TIPS and treasury constant maturity rates was used to

derive the unknown parameters and daily spread between nominal and real yields during

January 2000 to October 2009. Empirical results show that an over-estimated spread

between nominal and real rates is induced by ignoring the embedded option in TIPS.

The average difference between the distorted estimate and actual value is about 0.82%.

The value of option embedded in the 20-year TIPS is about 18% of the TIPS value,
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while those embedded in the 30-year, 10-year and 5-year TIPS are about 12%, 6% and
3% of TIPS value, respectively. The shorter is the maturity period, the smaller is the
percentage. Since the index ratios in 20-year TIPS are more likely to be smaller than 1,
the percentage of option embedded in the 30-year TIPS is smaller than that embedded in
the 20-year TIPS.
1.7 Appendices
Appendix A
Proof of Proposition |
Define Z (¢,7)=V, (t,T )/ B (0,¢). Then, we have
dz (t,T) = Z. (&, T)[— [ "o (tu)du— 2, (1) [ "o (tu)du+ %UT o (t,u)dujz }dt
iz (t,T)[ [ g (t,u)du}de* . (A1)
From (Al), Z (¢t,T) is Q-martingale iff
[ &, (t.uydu = %( [o, (t,u)du)z - 2,0] &, (t.u)du (A2)
—a tT)=0, (t,T)[ [ "o (tLu)du—2, (z)} . (A3)
Define [, (t)=1(¢)B,.(0,?). Then, we have
a1, (0) = 1,0t (0)+ 8,4,(6) + 8, (DA, (O) +T (O 4, (0)+ r, (O
+ 1,08, dW, () +1,()S,dW, () + I (Y (AW, (1). (A4)
Define Z, (1)=1(t)B.(0,1)/B,(0,£)=1,.(t)/ B,(0,f). Then, we have
dz, ()= 2, O\, (1) + 8,2, (O)+ 8, (A (O) + Y4, (0) + 1. (0) —r, () it

20



+Z, (06, dW, () +Z, ()8,dW, (t)+ Z, ()Y (O)dW, (1) . (AS)
Hence, Z, (¢) is Q-martingale iff

w, () =1,(O) =1,(0) =6, 4,() = 6,4.(1) = Y (D)4, (D). (A6)

Define 1,(¢,T)=1(t)V.(¢t,T). Then, we have

r 0= [ a,(twdu—2,0) o, .u)du %( [0 (t,u)duj2

dl, (t,T)=1,(t,T) dt +

~5,p, [ o, (tw)du -8, [ o, (tu)du
1,(t,T)5,dW, (t)+1,(t, T)[&,r - f o.(t, u)dquW,* O+ 1, ¢, T)NY()dW, (t) (AT)

Define Z, (¢,7)=1()V,(t, 7)/B,(0,t)=1,(t,T)/B,(0,¢). Then, we have

az, (t,T) ~ %U;T o, (t,u)du)2 — .LT o, (t,u)du—A, (t)f o, (t,u)du
Z,tT)

dt
T T
_5Inpnr.[ O-r (t:u)du _5IVJ:‘ O-r (t,u)du

L5, dW (1) + (5” e, (t,u)du)dWr* (&) + YW, (2). (A8)
Hence, Z, (¢,T) is Q-martingale iff
T
[ @, (udu =
1/ ¢r 2 T T T
5(] o, (t,u)du) —2,(t) j o, (tuydu—35,p, j o, (t,u)du — 51,,jt o, (t,uydu (A9)
—Sa (tT)=0, (t,T)[ [ "o (tu)du—A () -5, p. — 5,,} . (A10)
Appendix B
Proof of Proposition |1
By Ito’s lemma, we have
v, (t,7) _

2 =a,(t,Ta,t,T)-a,(t,0)dt +[a,(t,0)—a,&.T)dW, (),  (BI)
VIt
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di} (t, r)

a,(t,Da,(t.T) =8, =8, p, — p,a,{t.0)dt +

1! (t,7)
[6,, —a, . D)W, () +[5,, +a,(t,DldW (t) + Y)W, (t),  (B2)
d T
I’—((f)) = a,(t.T)a,(.T) =5, - p,, 5, kit
+[8,, —a, (. DAW, )+ 5,dW, () +Y(OdW, (), (B3)

where a, (t,T) = —IT o, (t,u)du, ke {r,n}. Substituting Proposition II into (B1), (B2),
t

and (B3), we have
anT (t,7) B T
Ve ~ G0 =a D0, B4
ij ((rt T)) [6, —a,@. DWW, ) +[5, +a,(.0WW )+ YW/ (1), (BS)
‘jf ((;)) [5, —a, (. DYAW (1) + 8, dWT (t) + YO AW/ (1) - (B6)

By Girsanov’s theorem, (B4), (B5), and (B6) are martingale process under Q "
Appendix C
Proof of Proposition 111

From Ito’s lemma and Proposition II, we have

dY(t) = (a— BY(0))dt + o, [Y ()W (1), (C1)
‘j’ ((f T)) 18, —a, (. TIMW (6)+[5, +a, (.M () + YO, (1), (C2)

Define Q= {I 5 (t+u,7)> 0} as the state space and
J(t, UQ¢IV ,I,7) = Iexp [i¢1V ln[IVT (t+ u,r)]}i’(l,f (t+ u,r))dlf(t +u,7),(C3)
Q
as the characteristic function of the state where ‘P[O] denotes the density function. The

characteristic function must satisfy the partial integro-differential equation:
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1 , (§1n —an(t+u,T))2 +(§,r +a, (t+u, 2'))2 +

0=—J X
27 N 2p (8, —a,(t+u, TS, +a, (t+u,7))+Y
1
+5JY YY+J1VYIV[/01YGYY]+Jy(a_ﬂy)_Ju- (C4)

The characteristic function satisfying (C4) is given by
S, T,7) = explA(t,u:, . T,7) + B¢, )Y () +ig, logll) (0)]], (C3)
where

Aty ¢, ,T,7) =

[ [0, —a,@+s.1)) ds+ (5, +a,(t+s,7) ds+
Iy Iy 1
2 2p,, [/ (6, = a,(t+ 5, D5, +a,(t+5,7))ds

~ 2\ (e+ig, oy pyy — Bl +2In| 1- lexi9), 00 ~ A1-exol- w])ﬂ, (C6)
oy ! 2¢
iy, ig,, 1)1 —exp[-au))

8_(5+i¢1p,(7yp1y _,Bxl—exp[—gu])’ (C7)

Bw,) =7

with ¢ = \/ (i ¢, 0y P =P )2 —ig, (i ¢, — 1)0'3 . Note that the expected present value of
1 ; (T,T) under the forward-neutral measure Q" is given by
E!|I1(T,1)|=J(0,T:=i,T.T). (C8)
Hence, we have
E! [max{I? (1, 1) - K0
=E, [(GXP[IH[]VT (T, T)]]_ K)]m[zg(r,r)]zm[K]J

=G, (- m[K}m|Ir 0,1} 7.0)- kG, (- [k} |1l 0,7} 7,0),  (C9)
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where G,,(1;x(0),T,0) = E; [exp[ax(T )]1 bxmgy]. Let FS,,(%x(0),7,0) denote the
Fourier-Stieltjes transform of G, ,(#;x(0),7,0). It is given by
FS,, (vx(0).T.0) = [expliy MG, , (:x(0).T.0) = Eq [expl(a +ivb)x(T)]].(C10)
R

After defining w(a,x(0),T,0)=E, [exdax(T)]], we extend the L evy inversion formula

to obtain the following result:

G. . (3:x(0).T,0) = y(a,x(0),7,0) 1 T Im|y (a + ivb, x(0),T,0) exp[— ivy ] . (CL1)
a, ’ L] - 2 = )

0 \%

where Im(c) denotes the imaginary part of ce C.If x(0)= ln[l (0, T)], we have
w(a,In|I7(0,7)| 7.0) = J(0,T:~ia,T,T). (C12)
Hence, we have
E! [max{I’ (T, - K 0|

_JOT-,T,T) 1 T Im([J (0, ;=i —v, T, T) exp[ivIn[K ]| 5
2 V4

0 %

) KLJ(O, TOIT) 1 Im[J (0,73, T, T) explivIn[K]] va
2 T v

A(0,T;~i —v,T,T) + B(T:~i — v)Y(0)

T e

1O, (0,T)| 1 1T
- 1%

V(,T) |2 =

dv

0
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Im{eXp{A(O, T=v,T,T)+ B(T;-v)Y(0)—iv h{l(o)Vr(O’T)m
1_17 KV,(0.T)

R dv |,
0 v

_1OV,0.0) 5

v 0.1) (i —v) —KD(—), (C13)

where E)(¢,V) is defined by

Im{exp{A(O’T’@V T.T)+ B(T 4, )Y (0) lvm[ KV,(0,T) }H

— 1 1%
() =——— dv.
(¢]V 2 72"([ \ Y
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Table 1.

The TIPS data set starts from January, 2000 to October, 2009.

A: CUSIP number, B: Coupon rate (%), C: Issued date, D: Maturity date,

E: CPI-U of issued date, F: Maturity period.

A B C D E

TIPS1  912810FDS5S  3.625 1998/4/15  2028/4/15 162.5 30
TIPS2  912810FH6  3.875 1999/4/15  2029/4/15 166.2 30
TIPS3  912810FQ6  3.375 2001/10/15 2032/4/15 177.7 30
TIPS4  912810FR4  2.375 2004/7/30  2025/1/15 189.4 20
TIPS5S  912810FS2 2 2006/1/31  2026/1/15 198.3 20
TIPS6  912810PS1  2.375 2007/1/31  2027/1/15 202.4 20
TIPS7  912810PV4 1.75 2008/1/31  2028/1/15 211.1 20
TIPS8  912810PZ5 2.5 2009/1/30  2029/1/15 211.1 20
TIPS9  912828AF7 3 2002/7/15  2012/7/15 180.1 10
TIPS10 912828BD1 1.875 2003/7/15  2013/7/15 183.9 10
TIPS11 912828CP3 2 2004/7/15  2014/7/15 189.4 10
TIPS12 912828CZ1 0.875 2004/10/29 2010/4/15 1909 5

TIPS13 912828DHO 1.625 2005/1/18  2015/1/15 190.7 10
TIPS14 912828EA4 1.875 2005/7/15  2015/7/15 1954 10
TIPS15 912828ET3 2 2006/1/17  2016/1/15 198.3 10
TIPS16 912828FB1  2.375 2006/4/28  2011/4/15 201.5 5

TIPS17 912828FL9 2.5 2006/7/17  2016/7/15 203.5 10
TIPS18 912828GD6 2.375 2007/1/16  2017/1/15 202.4 10
TIPS19 912828GN4 2 2007/4/30  2012/4/15 206.7 5

TIPS20 912828GX2 2.625 2007/7/16  2017/7/15 208.3 10
TIPS21 912828HN3 1.625 2008/1/15 2018/1/15 211.1 10
TIPS22 912828HW3 0.625 2008/4/30 2013/4/15 214.8 5

TIPS23 912828JE1  1.375 2008/7/15  2018/7/15 220.0 10
TIPS24 912828JX9  2.125 2009/1/15  2019/1/15 211.1 10
TIPS25 912828KM1 1.25 2009/4/30  2014/4/15 2132 5

TIPS26 912828LA6  1.875 2009/7/15  2019/7/15 2154 10
TIPS27 9128275W8 4.25 2000/1/18  2010/1/15 168.8 10
TIPS28 9128276R8 3.5 2001/1/16 ~ 2011/1/15 175.1 10
TIPS29 9128277J5  3.375 2002/1/15  2012/1/15 177.1 10
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Table 2.

Values of the estimated parameters and their standard errors (in parentheses).

P, 0.011(0.00)
q, 0.014(0.00)
a 0.0005

’B 6.02

5, 0.01

Py -0.512

b 0.019(0.51)
q, 0.010(1.97)
A 0.126
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Table 3.

The average prices and percentages of options embedded in TIPS of various maturity

periods.

Maturity period 30 20 10 5
Embedded option price  14.45 16.54 6.24 343
Percentage 11.87 18.22 6.28 3.44
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Fig. 1. Common nominal and real term structures.

These nominal and real term structures are similar to those observed during December
1982. The nominal term structure is set at f, (0,¢) = a +bt +ct’, wherea = 0.085,
b=0.002, and ¢ =-0.00004. The spread between nominal and real yields is denoted

as s(t) . After specifying s(¢) =1.5%, the real term structure was obtained by

fr(Oat) =f,,(0,t)—s(t),
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Fig. 2. Coupon rates of TIPS.

This figure shows the coupon rate specified at the start of the contract according to Eq.

(29) in the circumstance of Fig. 1.
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Fig. 3. Embedded options in TIPS.

Unlike ordinary options, the price of the embedded option does not always increase as
the maturity times increases. The embedded option may consist of a portion of the TIPS
value--up to 3.5%--if the coupon rate is determined according to Eq. (29) while issuing

TIPS at the start. The circumstance is specified as that in Fig. 1.
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Fig. 4. Over-estimated spreads between nominal and real rates induced by

ignoring embedded options in TIPS.

If the actual spread between nominal and real rates is s(¢) =1.5% (dashed line), the

over-estimated spread can reach 1.95% using the TIPS with a 5-year maturity period
(line). This value is nearly 1.3 times higher than the actual value. The shorter the

maturity period the larger is the distorted estimation.
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Fig. 5. The percentages of options embedded in TIPS of different index

ratio, /(0)/1(z,).

The value of option embedded in the TIPS can reach nearly 19% of the TIPS value if
the index ratio is smaller than 1 (line), while that embedded in the TIPS can reach only

4.48% of the TIPS value if the index ratio 1s bigger than 1 (dotted line).
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Fig. 6. Monthly CPI1-U numbers from Dec. 1999 to Nov. 2009.
The CPI-U is mostly increasing during Dec. 1999-Jul. 2008 and Dec. 2008-Nov. 2009,

and mostly decreasing during Jul. 2008-Dec. 2008.
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Fig. 7. The time-series graph of actual spread (considering embedded option)

versus the distorted estimates (without considering embedded option).

The average difference between the distorted estimate and actual value is about 0.82%.

The minimum spread occurred around Jan. 2009 while the CPI-U decreased drastically.
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Fig. 8. The estimated price of option embedded in each TIPS
TIPS7 is the most expensive one since it is a long maturity bond with a larger CPI-U of

issue date, while TIPS12 is the cheapest one since it is the shortest maturity bond with a

smaller CPI-U of issue date.
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Chapter 2

Optimal Portfolio-Consumption Choice under Stochastic
Inflation with Nominal and Indexed Bonds

2.1 Introduction

How the inflation risk affects the investor’s portfolio choice and consumption plan has
long been a hot issue in both financial and economic fields. Since the change of nominal
price level would affect the future purchasing power of the investor, taking the inflation
risk into account is important when the non-myopic investor makes her intertemporal
decision. In fact, all uncertain changes in the investment opportunity set would affect
the investor’s intertemporal behavior and the recognition of the intertemporal changes
in the investment opportunity makes the investor’s financial behavior quite different to
what has been suggested in the static mean-variance analysis because the uncertain
changes in the investment opportunity set would introduce an additional intertemporal
hedging demand of risky assets. Efforts have been made in various aspects. For example,
Kim and Omberg (1996) and Wachter (2001) show that under stochastic mean-reverting
risk premium of stocks the investor with a longer investment horizon should hold more
stocks, while Brennan and Xia (2000) solve a bond/stock mix portfolio problem under
stochastic interest rate and show that the zero-coupon bond is the corresponding
security to hedge against the interest rate risk. This finding fits with the popular

institutional recommendation that conservative investors should hold more bonds in
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their portfolio since long-term bond could provide certain payoff at the end of the

investor’s investment horizon.

Intertemporal portfolio choice problem under inflation risk has been surveyed by

Campbell and Viceira (2001), Brennan and Xia (2002) and Munk, Segrensen and Vinther

(2004). Campbell and Viceira (2001) establish a discrete-time model with a two-factor

term structure of nominal interest rate. The time variation of nominal interest rate is

driven by the processes of real interest rate and inflation rate. They solve the problem

with a log-linear approximation and show that in a world with inflation risk, a long-term

nominal bond is no longer a safe asset for a risk-averse investor. When the bonds

available in the investor’s investment opportunity set are inflation-indexed, an infinitely

risk-averse investor with zero elasticity of intertemporal substitution would hold a

portfolio composed of only indexed bonds to form a portfolio equivalent to the indexed

perpetuity in order to finance a riskless real consumption stream. When bonds available

are only nominal zeros, the investor would short long-term nominal bonds to reduce her

exposure to inflation risk.

Brennan and Xia (2002) provide an exact solution to a continuous-time problem

similar to Campbell and Viceira (2001). Brennan and Xia (2002) show that without the

explicit inclusion of indexed bonds, the infinitely risk-averse investor would hold a
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portfolio of two nominal bonds with different maturities which perfectly mimics a

hypothetical indexed bond. Both works of Campbell and Viceira (2001) and Brennan

and Xia (2002) tell us that a long-term risk-averse investor prefers the indexed bond or a

perfect substitution of indexed bond in order to hedge against the inflation risk.

The inflation-indexed bond is a financial instrument with long history since the

first known inflation-indexed bond was issued by the State of Massachusetts in 1780.

The indexed-bond helps the developing countries to raise long-term capital when they

experience high inflation. Even in the industrialized countries with low and stable

expected inflation, the issuance of the indexed-bond would play an important role in

completing the financial markets. The indexed-bond helps the long-term investor who

aims to a certain purchasing power in the future to hedge against the inflation risk and

therefore is though to be a useful instrument for pension management. The two major

issuers in the indexed-bond market are the governments of the United States and the

United Kingdom. The United Kingdom has begun to issue the inflation-indexed Gilts

since 1981 while the U.S. Treasury has been issuing the Treasury Inflation Protected

Securities (TIPS) since January 1997. In the present, the U.S. Treasury is the largest

issuer in the global indexed-bond market. There is over $515 billion of TIPS

outstanding (around 11% of the marketable Treasuries outstanding) in 2008, over two

times the amount in 2004 and the daily trading volume has grown from $2 billion to $9
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billion during the years of 2002-2008. Other main issuers of the indexed-bond include

Canada, Japan, as well as some countries in the euro area like French, Italy, Greece and

Germany. The total amount of the indexed-bond outstanding in the global market has

grown over $1,000 billion by the year of 2006.

In this paper, we would like to solve an intertemporal portfolio choice problem

with interim consumption for an infinitely lived investor under uncertain inflation. We

try to find out the optimal consumption plan and the optimal portfolio rule for stocks,

nominal bonds as well as inflation-indexed bonds. In contrast with Campbell and

Viceira (2001) and Brennan and Xia (2002), we assume that the nominal interest rate

rather than the real interest rate is directly given to the investor. In Campbell and

Viceira (2001) and Brennan and Xia (2002), they assume that the real interest rate and

the expected inflation rate to be described as two Ornstein-Uhlenbeck process

respectively. The nominal interest rate is therefore a two-factor process driven by the

two state variables of real interest rate and expected inflation rate. However, since the

investors could trade the financial assets and consumption goods only in nominal term,

it is plausible to argue the investor cannot directly observe the real interest rate and the

expected interest rate. In this paper, we assume that the directly observable variable is

the instantaneous nominal interest rate and the instantaneous price level of commodity

while the expected inflation rate is unobservable. In reality, the investor could infer the
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expected inflation rate according to the realized changes of the nominal price level in

the past. We employ the nonlinear filtering technique introduced by Lipster and

Shiryayev (1977) to model this estimation problem. The setting in this paper is more

similar to Munk, Serensen and Vinther (2004). They also adopt a one-factor term

structure of nominal interest rate with inflation and, as an immediate result, lead to a

two-factor real interest rate model. However, there are still some distinguishing

differences. First, their problem is defined on the terminal wealth not on the interim

consumptions. Second, they assume that there are only nominal bonds to be traded so

that the inflation risk is never perfectly hedged. Our model, in contrast, would solve the

problem for portfolio choice with both nominal and inflation-indexed bonds as well as

the interim consumption decision under inflation. Besides, they ignore the fact that the

expected inflation rate is still unobservable. We provide a more realistic assumption that

the nominal interest rate is the observable state variable while the inflation rate is indeed

unobservable and the investor must infer the value of the expected inflation from the

past. In this paper we would show that with the inclusion of the indexed bond in the

investor’s investment opportunity, the demand of the indexed bonds would crowd out

the holdings of nominal bonds proportionally. The estimation risk of the estimated

inflation rate would also give rise to an additional hedging demand of the bond

portfolio.
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For the representation of the investor’s intertemporal utility, we follow the work of

Chacko and Viceira (2005) to use the stochastic differential utility (SDU) proposed by

Duftie and Epstein (1992). The stochastic differential utility is a generalization of the

conventional time-additive power utility. Unlike the power utility, SDU allows the level

of the investor’s risk aversion and the attitude toward intertemporal substitution of

consumption to be represented by two distinct parameters. It is more suitable to employ

the SDU to disentangle these two factors when solving a portfolio choice problem

incorporating with the intertemporal consumption decision. We would show that the

portfolio choice depends on the investor’s risk aversion while the consumption plan is

affected by the elasticity of intertemporal substitution. We also show that the elasticity

of intertemporal substitution decides the directions in which the interest rate and the

inflation rate affect the investor’s consumption.

Lastly, the capital market is calibrated to U.S. stock, bond, and inflation data. We

allow investors to hold equities, indexed bonds and nominal bonds simultaneously. The

optimal weights show that aggressive investors hold more nominal bonds to earn the

inflation risk premium, and conservative ones concentrate on indexed bonds to hedge

against the inflation risk.

2.2 The Economy
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2.2.1 The Dynamics of Price Level and Expected Inflation

Let P denote the nominal price level per unit of the consumption good at time ¢ and

we assume that it follows a diffusion process:

% = dt+0,dZ, (1)

where 7, is the expected inflation rate at time ¢ and dZ, is the increment of a
standard Brownian motion representing the shock to the instantaneous unexpected
inflation. In line with Brennan and Xia (2002), we assume that the expected inflation

rate 7, is also stochastic and follows an Ornstein-Uhlenbeck process:
drn, =z —x)dt+o0,dZ +0o,dZ, )

We argue that 7, is unobservable to the investor and is not necessarily perfectly
correlated to the instantaneous price level. In Equation (2), dZ, represents the
remaining part of innovation that is uncorrelated to the innovation of the price level.
According to Liptser and Shiryayev (1977), if at time ¢=0the distribution of 7, is

conditionally Gaussian, i.e. Prob(fz0 < a|Po) 0N (72'0,\)(0)) , the conditional distribution

of 7, would also be Gaussian N (ﬂt,v(t)>. The conditional mean 7, = E(ﬁt F’ ) is
the optimal estimator of 7, where F,P is the o-field generated by {F; :SSZ} and

the conditional variance v(l‘) could be viewed as the estimation error. The investor

would then substitute the estimator 7, for the unobservable 7, in Equation (1):
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d

?tZﬂ'tdl‘-FO'dep 3)
where
dr, =€(77—ﬂt)dt+(al+®}d2p @)
O-P
d 2
DO _ i)+ 02 +07 (0'1 +%t)] (5)
p

The estimator of the expected inflation rate is perfectly correlated to the instantaneous

change of the price level. As shown in Liptser and Shiryayev (1977), the common

innovation to these two variables:

dz =i(dpf —ﬁdtj (6)

is observable and Z, would be a standard Brownian motion. In fact, de is decided
by the unexpected excess inflation relative to its current estimated value 7,. As to the
conditional variancev(z), it could be explicitly solved from the Riccati equation in
Equation (5) and it could be shown that in the steady state the value of v(¢) would

approach a constant

v=limv(t) = o \/[uij +[ﬁ] —(ui] (7)
o g, o, o,

By Equation (7), the estimation error v would not vanish as ¢ — o unlesso, =0, i.e.

the expected inflation is in fact a constant or is perfectly correlated to the instantaneous
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change of P. With an infinitely-lived investor, we ignore the transient time variation of

v(t) and rewrite Equation (4) as
dﬁtzf(ﬁ—ﬁt)dt+aﬁd2p (8)

where

2 2
0'”50'1+L:O'p 0+ 4 22—y )
O-p O-p O-p
2.2.2 The Bond Market

We assume that the investor could directly observe the nominal interest rate which

could be described as an Ornstein-Uhlenbeck process of Vasicek (1977) type:

dR, = x(R-R,)dt +0,dZ, (10)
Let N (R,,T —t) denote the price of the nominal zero-coupon bond which pays one
money unit when it matures at time 7. N (R,,T —t) would satisfy the following
partial differential equation with the boundary condition N(R,0)=1:

ON 1
N, (R—Rt)+E+ENRRJ§ =RN —A,N,o, (11

where the constant A, represents the risk premium of the interest rate risk, N, is the
first-order partial derivative of N(-) with respect to R and N,, is the second-order
partial derivative. The solution of Equation (11) gives the dynamic of the return of the

nominal zero-coupon bond:
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dN (R, T~1)
N(R,,T 1)

=(R, + 2.b(T —1)o, )dt —b (T —t)o,dZ, (12)

where b(T —1) :K_l[l—exp(—K(T —t))] is a function of the time to maturity 7 —¢.
Since the infinitely-lived investor has to roll over her investment of bonds whenever the
bonds in the portfolio expire, we could assume that investor always sells the expiring
bonds and buys the newly-issued bonds continuously to keep the maturity of the bonds
in her portfolio a constant. Thus, we would take the value of b, (T —t) as a constant b

for a given ¢ such that T—s=z"and b=5h(z"). For this sake, we simplify the

expression of Equation (12):

dN,

= RiPn,, ) 0 o iy (13)

‘
where 77, =40, and o, =boc,.

The return of the inflation-indexed zero-coupon bond is defined as the price of one
unit of consumption good when it matures at time 7 .The indexed bond would
simultaneously bear the risks of interest rate, inflation rate and the nominal price. The
price of the indexed bond, I(R,7,,P,T—t), could be decided by the following partial

differential equation with the boundary condition /(R ,7,,P,0)=F.:

_ 1
Iix(R=R)+1,Pr+ Jﬁﬁ(f—zz)+g—1+%1ma; +%1ppaj +51Maj

! (14)
+14p0 P+ 14,0, +1, P00, =RI- A0, +4,(1,Po,+1.0,)

where o, = E(dXdY ) denotes the covariance of the state variables X and Y. A4,
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represents the measure of the risk premium with respect to the innovation dZ , defined
as Equation (6). Solving Equation (14), we then derive the return of the indexed bond as

the following process:

dl(R,x

t

P,T-
LT (R 4 A (T-0)0, + 1, (0, + (T ~1)5) )
I(R,7,,P,T—t) e (15)

19/ to Lo
—b(T ~t)0,dZ, +(o, +b,(T -1)0, ) dZ,

where b(T—t) has been shown earlier and b,(T—t)=/(" [1—exp(—£(T —t))]. We also
assume that, for an infinitely-lived investor, he would adopt the trading strategy of
substituting the newly-issued bonds for the expiring bonds continuously to keep the
time to maturity of the indexed bond to be a constant z* such that b =b(z") and
b,=b,(r™) would be two constants. If 7z~ equals z°,the time to maturity of the
nominal bond, the values of band b, would be equal. For brevity, we rewrite

Equation (15) to be

dl
Tl =(R +n,)dt—0,dZ, + 0,dZ, (16)

t

where 77, =4,0,,+4,0,,, 0,=ho, and 0,,=0,+b0,.

We define I,/ P as the real bond. By definition, it represents the real price of a
zero coupon bond which pays one unit of consumption at the maturing date. According

to Equation (3), (15) and It6’s lemma, the return of the real bond is
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% =(R -7, + 4,0, + Aoy + Apbyo, +b,0y, —byo 0, ) dt

(17)
~boydZ,+b,c, dZ,

The instantaneous real risk-free interest rate, 7, , is obtained by taking the limit of the

return of the real bond in Equation (17) when T —¢—0:

L=R-m+A0, (18)

t

The real interest rate equals the difference of the nominal interest rate and the inflation
rate plus the risk premium of the nominal price level for consumption goods. Equation
(18) implies that the Fisher equation is not hold unless the risk premium of the price risk

is zero.

2.2.3 The Optimization Problem

We assume that the investor’s preference is represented by the stochastic differential

utility proposed by Duffie and Epstein (1992):

J =E, Utwf(Cs,Js)ds} (19)

and

4 1-(1/p)
1 C
ren=p1-1] a-n [W] N 0)

@ -y)J

f (C,J ) is called the normalized aggregator of the investor’s current consumption and

utility. p is the time preference, y is the measure of the relative risk aversion for the
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investor and ¢ stands for the elasticity of intertemporal substitution of consumption.
The benefit of this utility representation is that it separates the elasticity of intertemporal
substitution from the relative risk aversion. For the widely adopted time-additive power
utility function, the reciprocal of the risk aversion represents the elasticity of
intertemporal substitution as well. Accordingly, an investor who is more risk-averse is
more unwilling to substitute consumption intertemporally while it is not always the case.
Obviously, the stochastic differential utility is a more generalized setting and the
standard time-additive power utility could be viewed as a special case when ¢ =1/y in

Equation (20).

In the financial market, there are three kinds of risky assets to be traded. One is the
stock with nominal price S, following:

ds,

=(R +n,)dt+0,dZ, (21)

‘
and the other two are the zero coupon nominal and indexed bonds as shown in Equation
(13) and (16) respectively. In Equation (21), 77, is the excess return of stock and dZ,
is the unexpected disturbance of stock return. The investor’s problem is to choose her
optimal consumption and the portfolio weights on the three kinds of risky assets to
maximize the utility represented in Equation (19) subjected to the intertemporal budget

constraint:
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aw, =| (xn+R)W,-C

t

P,]dtﬂTrdz 22)

where C, is the instantaneous consumption at time ¢ in terms of real units. x' is the

transpose of the vector of the portfolio weights x

Xg
xX=|xy (23)
x[
n is the vector of excess return
UN
n=| My (24)
m
and
o ¢ 0 0
I' =| Ol apid=y (25)

0 -0, o,

dz
dz=|dz, (26)
dz

The optimal policies for the investor must satisfy the following Bellman equation:

max| f(C,J)+J, W (x"+R)=J, CP+J ic(R—R)+J Pz +.J 0 (Z~7)

x,C

+%(JWWW2xTZx+JRRO'§+JPPP20'§+J 02 )+ Wx' Tpe,o +J,,WPx'Tpes, — (27)

T

+Jy KT pe,s, +J POy +J,4,04, +J,,P0,0, |=0
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In Equation (25), eis(0 1 O)T and eis(0 0 1)T. Besides, Z=Tpl" represents
the variance-covariance matrix of the nominal risky asset returns and I'pe,o, is the

vector of covariance between the risky asset returns and the nominal interest rate (and

so forth for the similar terms) where o (3x3) is the matrix of correlation coefficients:

L pe Po
P=| P L prp (28)
Psp Pre 1

Ps s defined by E(dZ dZ,)= pgdt and others are defined in a similar fashion.

The first-order conditions for the Bellman equation are:

C* o ﬂ(ﬂ (JWP)_w ‘:(1 a y)J:I(l—}’(/’)/I—V (29)
¥ = ~Jy >'n Jrﬂylrpezo-le + =il Z‘IFpepp +ﬂ2’ll“pe3aﬁ (30)
Sy Sy Sy Sy

Equation (29) gives the optimal real consumption plan once the value function is given

and Equation (30) shows that the optimal portfolio weights are composed of four terms.

The first term in the right-hand side is the demand due to the excess returns of the risky

assets and is often called the speculative or myopic demand. The remaining three terms

represent the hedging demands against the risks of interest rate, nominal price level of

consumption goods and the expected inflation rate respectively.

2.3 Results
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2.3.1 The Approximate Solution with Log-Linearization

The partial differential equation after we substitute Equation (29) and (30) back into (27)
is complicated to solve. However, by conjecture, it could be verified that the solution of

J would have the following form:

G-nia-p) (W, /P,)H

J(W..R.P.z,)=H(R.z,)] - (31)
H (R, 7r) is the solution of the following partial differential equation:
1) 1 T HR = —
p E—ﬂ(p+((p—1)(x 7]+R)+7K(R—R)—((D— (7[—7[)
2 2

A N_H(H_j p B | ey U =20, ) Hy, |

2 1-¢p \H H 24t l-0 W H H

1
—5( —2)((/)—1)0'}2, 7(¢ D X Zx—(y— 1) xl“pezaR (32)

H H
—(y -1 Hﬁ xTFpe3U” +(7_1)((0_1)XTFP€30_P +(7/_1)7RO-RP
Jrre Y, s,
l-¢ H H H

As mentioned in Chacko and Viceira (2005), the nonlinear partial differential equation

c,0,=0

presented above would have no exact analytical solution in general. In line with Chacko
and Viceira (2005), we employ the method of log-linear approximation to find an
approximate analytical solution to investigate more insights of the solution to our
problem. In the first place, we substitute Equation (31) into Equation (29) and find that

the envelope condition would be expressed as
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w H(R,m,)

t

Sy . (33)

Denoting (¢, —w,)=log(PC,/W,) and using the first-order Taylor expansion of
t t =t t p

exp(c, —w,) around its unconditional mean E(c, —w,)=c—w, the envelope condition

could be rewritten as

S’ % =exp(c, —w,) = exp(c —w) +exp(c —w)[c, —w, — (c —w)] (34)
=hy—h log H

where i =exp(c—w) and h, =h(1+@log—logh). Substituting the approximate

result in Equation (34) for S°H ! in Equation (33), it is easy to see that the solution of

H would take the form of H(R,z,)=exp(d,—aR +a,7,). The undetermined

coefficients would then be solved as following:

—1-p

o b (35)
_l-9

2= r e (36)

1 1 y-1
a, :Z{ho —Bo+(p-Dx'n +5 i/—(p (afoﬁ +aio’ —2a1a20'R,,)
+(y —Dx'Tp(a,0,e, —a,o e, —(1—(p)0 e,)—akxkR+a,l7T (37)

(DG +(r-Dayo,0, ++ (y 2)(1-g)o + 1122 24") Zx}

2.3.2 The Optimal Policies

Up to now, we have derived the approximate solution for the value function of the

investor. It would then be an immediate result to show the optimal policy for the
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investor:

Proposition 1 The approximate analytical solution for the investor’s value function is

1

(38)

[ R
1—

AS!

J(W,R,P, ﬂt)zexp{y_ (ao—alRt+a27zt)}(t—’

and the optimal consumption and portfolio policies implied by the value function are

£e,
W,

= p? exp(—a, +a,R, —a,r,) 39)

and

w=Lsips (1 —l]l_iz-‘rpezaR + (1 —1]1&2_11"/)%0'”
¥ y)1-¢ y)1-¢ 40)

4{1 —lJ Z"quap
4

Proof.  Substituting the approximate solution of H(R,7,) derived in last section into
Equation (31) we immediately get the solution of the value function. The optimal

policies stem from the value function and Equation (29), (30).m

In Proposition 1, we find that the consumption-wealth ratio PC /W, is an
exponentially affine function of the interest rate R and the (estimated) inflation rate
7,. The exact relationship between the consumption-wealth ratio and the two state
variables is decided by the value of ¢, the elasticity of intertemporal substitution.
According to Equation (35) and (36), when ¢ =1, the values of @ and a, are both
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identical to zero and hence the consumption-wealth ratio turn out to be a constant over
time. A constant consumption-wealth ratio makes c¢,—w, exactly identical to its

unconditional mean. This implies that the solution of ¢ =1 1is an exact solution.

When ¢ <1, @ and a, are positive. The consumption-wealth ratio would rise
as R rises or 7, falls. However, when ¢ >1, the consumption-wealth ratio would
fall as R rises or 7, falls. As R increases or 7, decreases, the investor’s income
or the purchasing power would be higher and the investor could consume more. This is
the positive income effect. However, an increase in R or a decrease in 7, would
induce an incentive to cut the current consumption since consumption in the future
becomes less expensive under this circumstance; this is the negative substitution effect
of current consumption. The relative importance of intertemporal substitution and
income effects would affect the investor’s attitude toward her consumption plan. We
could conclude that when ¢ <1, the income effect dominate such that the investor’s
current consumption rises relative to her wealth. However, when ¢ > 1, the substitution

effect dominates and the investor cuts her current consumption relative to wealth.

Furthermore, contrary to other related works which assume a directly observable
real interest rate and conclude with a consumption-wealth ratio that is perfectly

explained by the real interest rate level, our result in Equation (39) implies that the
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consumption-wealth ratio is not completely determined by the real interest rate which is
approximately referred to as the difference of R —7,. The consumption-wealth ratio
derived in our model is decided by @R —a,7,, which is not a multiple of R —7, unless
a, =a, or equivalently x=/. In the case of ¢ <1 and x </, given the level of the
real interest rate R —7, unchanged, the consumption-wealth ratio would be higher
with a higher nominal level of the interest rate R and the inflation rate 7,. In our
model x and /¢ represent the degree of mean-reverting of the nominal interest rate and
the inflation rate respectively. Whenx </, any deviations to the average level of the
nominal interest rate would have a stronger persistency than that of the inflation rate.
The investor would think that the nominal interest rate keeps in the abnormally high
level longer than the inflation rate does and, as a result, a higher real interest rate
follows. On the other hand, when ¢ <1 and x>/, increasing the nominal levels of
R and 7, while the real interest rate R, —7z, unchanged would result in an decrease in
the consumption-wealth ratio since in this case the high inflation rate persists longer
than the nominal interest rate, which means that there is a lower real interest rate in the
following future. This finding implies that the consumption-wealth ratio is not purely
decided by the real interest rate. We show that the nominal levels of the nominal
variables and the relative persistency of the disturbance to the interest rate and inflation

rate would also affect the investor’s optimal consumption plan.
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As to the optimal portfolio weights on the risky assets, we investigate Equation (40)

in more details. By Equation (25), (28), (35) and (36), we substitute the full expressions

of a, a,, p and T for the corresponding items in Equation (40), we find that

Proposition 2 The optimal portfolio weight on the risky assets is composed of four

terms:

4 +K)
X, n, 0
xl x2
41
: . 1 (41)
O
+(1——jL b, /b +(1——]—P —b, /b
/2 (hl+£)0-12 | V)0, 1
x3 Xy

The term X, is the speculative (or myopic) demand, X, is the hedging demand against

the unexpected innovation of interest rate and X, , X, are to hedge against the

innovation of the inflation rate and the instantaneous nominal price level.

Equation (41) shows that the investor’s portfolio choice is represented by a

weighted average of the speculative demand and the hedging demands. It is obviously

that the portfolio policy depends only on the risk aversion but does not depend on the

elasticity of intertemporal substitution explicitly. The elasticity of intertemporal

substitution only affects the optimal portfolio implicitly by the unconditional mean of
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log consumption-wealth ratio through the coefficient /4 . For an infinitely risk-averse
investor ( — o), the speculative demand would vanish and the optimal portfolio for
the investor is composed of the mix of nominal and indexed zero coupon bonds. This
meets the common advice that the more conservative investor should put more weights
on bonds; documented as the asset allocation puzzle in Canner, Mankiw and Weil
(1997). The absolute magnitude of hedging demand of bonds is deceasing with x and
¢, the degree of mean-reverting process of interest rate R and inflation rate 7,
respectively. For large x and /, any adverse disturbances that damage the future
investment opportunity would not persist for long and the incentive to hold assets for

the hedging purpose would mitigate.

Observing x,, we find that the interest rate risk could be perfectly hedged by
holding a long position of the nominal zero coupon bond since the return of the nominal
bond is perfectly negatively correlated to the instantaneous nominal interest rate.
Regarding the demand ofx; and Xx,, which are in need to hedge against the inflation
and price risk, there are long positions of the inflation-indexed bonds while short

positions of the nominal bonds.

As mentioned earlier, the nominal bonds account for the demand to hedge against

the interest rate risk. However, in a world with inflation, the nominal bonds which pay
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certain monetary payoffs in the future are no longer a safe asset in real term since the
real purchasing power is uncertain. The holding of nominal bonds under inflation would
expose the long term investor to the inflation risk. According to Equation (16), the
return of the inflation-indexed bond is positively related to the inflation. This implies
that the real purchasing power would be compensated by the return of the indexed bond
when the inflation rises. The indexed bonds thus provide an opportunity to hedge
against the inflation risk. On the other hand, the return of the indexed bond is also
negatively related to the instantaneous nominal interest rate in part and this means that
the indexed bond also provide a channel to hedge against the interest rate risk. As a
result, the risk-averse investor shorts parts of her holdings of the nominal zero-coupon

bond and turn to the indexed bond which is a relatively safe asset under inflation.

The short positions of nominal bond inXx; and X, are proportional to the long
positions of indexed bond and the proportion is decided by b /b. When b=0,, i.e.
with identical time to maturity for both the nominal and indexed bond, the investor
shorts the nominal bond by the amounts identical to which she invests in the indexed
bond. The need of the indexed bonds would crowd out the need of nominal bonds. This
also implies that the demand of indexed bonds could be financed by selling the
corresponding amount of nominal bonds. Together with Xx,, Xx; and X,, the sign of the

net position of nominal bonds would depend on the values of b, b, x, ¢ o, and
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In x; we also find that the estimation risk v affects the optimal portfolio
through o, since o, =0,+v/ 0,. This implies that the hedging demand against the
risk of the expected inflation could be divided into two parts. One part is to hedge
against the uncertainty that could be perfectly explained by the nominal price level and
the other part is to hedge against the estimation risk with respect to the residual
unobserved innovations in the nominal world. As what we have shown in equation (7),
when the expected inflation is not perfectly correlated to the nominal price (o, =0), the
estimation risk never vanishes. The result here shows that the estimation risk would
induce an additional hedging demand of bonds which cannot be perfectly eliminated by
learning about the expected inflation through the historical dynamics of the nominal

price level P.
2.3.3 Dynamics of Nominal and Real Consumptions

In this subsection, we derive the nominal and real consumption dynamics respectively.
By Equation (22), (33), (34) and the solution of H(R,7,), the intertemporal budget

constraint could be rewritten as

dV;V’ :[xTn+Rt —hy+h(ay—aR, +a27z't)]dt+xTrdZ (42)

where we use the approximate consumption-wealth ratio to substitute for its exact
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expression. According to Equation (39), (42) and 1t6’s lemma we obtain the following

proposition:

Proposition 3

(i) The dynamics of the nominal consumption PC, could be expressed as following:

% = y(R,7)dt +o,.dZ (43)
where
Hye (R, )= @R, = B+x"m)+(1-p)7, +4, (44)
and
oy =I'x+a0.e,—a,0.e, (45)

B is the investor’s subjective time preference and @ is a collection of the

variance-covariance terms in our model.

(ii) The dynamics of real consumption C, is:

% = u.(R,m)dt+ol.dZ (46)

t

where
(R 7) = (R — 7, = f+x'm)+4, (47)
@ represents a collection of the variance-covariance terms and

_ T
o.=I"x+ao0ze,—-a,0,6,-0,¢ (48)
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The expressions of ¢§, and ¢ are complicated and are omitted for brevity. Proposition
3 shows that the elasticity of intertemporal substitution decides the sensitivity of the
expected nominal and real consumption growth with respect to the nominal interest rate,
estimated inflation and the excess returns of the portfolio. The coefficient of risk
aversion has no explicit effect on consumption growth. In contrast, the coefficient of
risk aversion decides the portfolio rule while the elasticity of substitution has no effect
on portfolio choice. This is why we argue that we should separate the elasticity of
substitution from the measure of risk aversion when solving a problem involving the

portfolio and consumption choice simultaneously.

It is clear that the expected real consumption growth is decided by the difference
of R —7,, which could be viewed approximately as the real interest rate and the
expected real consumption growth is therefore positively related to the real interest rate.
However, the nominal consumption growth is not a function of the real interest rate
R —7,. By equation (44) and (47), the growth rate of nominal consumption is
approximate the sum of the growth of real consumption and the estimated inflation
since the nominal expenditure on consumption varies according to not only the change
of real consumption units but also the change of nominal prices to purchase the
consumption goods. The expected nominal consumption growth /4, is positively

related to the nominal interest rate R, for all levels of ¢ . However, the sign of 7, in
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Mye 1s positive when ¢ <1 while negative when ¢ >1. By equation (47), any

changes in the expected inflation rate would affect the real consumption growth since

the real interest rate changes as well. For a more inelastic investor who is less willing to

substitute her future consumptions for the current consumptions, she would react to the

change of real interest rate which stands for the relative price of the future consumptions

to a smaller extent. When ¢ <1, the change of nominal price level would exceed the

change of the investor’s real consumption and thus dominate the change of the nominal

consumption. In a special case of ¢ =1, the change of real consumptions would cancel

out the change of nominal price and as a result the expected nominal consumption

growth is insulated from the expected inflation rate 7,.

2.4 Model Calibration

In the following two subsections we will first estimate the parameters of the

term-structure model using data in U.S. nominal interest rates, equities, and CPI index.

Subsequently, we will use these parameters to predict the portfolio weights with

different coefficients of relative risk aversion.

2.4.1 Calibration of model parameters

A Kalman filtering approach is adopted to estimate the parameters involved in the

model. The specific approach is based on expressing the model in state space form and
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then using the Kalman filter to obtain the relevant log-likelihood function to be

maximized. The system is estimated using monthly U.S. data, which span the period

from January 1961 until September 2008. The total number of observation time points

is thus 573. The zero-coupon bond yields for the period January 1961 until September

1996 are downloaded from John Y. Campbell’s website. The yields for the period from

October 1996 until September 2008 are adopted from WRDS website. All zero-coupon

yields are sampled at the end of the relevant months. We take data on equities from the

Indices files on the CRSP tapes, using the value-weighted return, including dividends,

on the NYSE, AMEX, and NASDAQ markets. The CPI index data are adopted from the

website of The Bureau of Labor Statistics and The Bureau of Economic Analysis.

Table 1 and Table 2 report the parameter notations and calibrated values used in

the numerical study. As appears from Table 1, the stock index volatility is estimated to

be 23.9%, and the excess return of stock, 77y, is estimated to be 4.87%. The stock index

volatility is slightly higher than the reported historical estimates on the volatility of

20.2%, and the excess return of stock is smaller than the reported historical estimates on

the average excess return of 9.1%, suggested by the Ibbotson Associates 1926-2000

historical returns data on stock (see, e.g., Brealey & Myers, 2003, chap. 7, Table 7-1).

The standard deviation of unexpected inflation, o, is about 117 basis points, which

compares with 300 basis points for the standard deviation of innovations in expected
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inflation, ©,.

The nominal interest rate mean reversion parameter, x , is estimated to be 0.0594,

while the volatility parameter, o, is estimated to be 1.6%. This implies that one-year

nominal bond has a volatility of 1.55%. This figure is reported in Table 2. Since

one-year nominal bond has the excess return of 0.51% and ten-year nominal bond has

2.10%, we can see that the excess return is increasing with bond maturity. Since

nominal bond are subject to inflation risk, we find that the excess return of nominal

bond is slightly higher than that of indexed bond. The estimated excess returns of bonds

are all reported in Table 2.

The correlation between innovations in the stock return and in the price index is

-0.0657, which is consistent with the empirical findings of Munk, Serensen and Vinther

(2004) for the period 1951 to 2003.

2.4.2 Optimal portfolio strategy

Table 3-6 explores the empirical properties of the portfolio solution (41) using the

parameters estimated in section 4.1 for period 1961-2008. We allow investors to hold

equities, indexed bonds, and nominal bonds simultaneously. We compute optimal

portfolio rules for investors with different coefficients of relative risk aversion of 0.75, 1,

2, 5, 10, and 50000(effectively almost infinite). The hedging demands are shown in
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parentheses. We present results only for elasticity of intertemporal substitution equal to

0.5, since this coefficient has only a negligible effect on portfolio allocation.

The parameters in Table 3 report the optimal portfolio solutions when the assets

available to investors are equities, one-year nominal bonds, and one-year indexed bonds.

The portfolio share of bonds exceeds that of equities, because bonds are much less risky

than equities. Investors with low risk aversion hold more nominal bonds, seeking to

earn more inflation risk premium. The risk-averse investors short parts of her holdings

of the nominal bonds and turn to the indexed bonds which are relatively safe assets

under inflation. As risk aversion increases, the myopic component of risky asset

demand disappears but the hedging component does not.

The parameters estimated in Table 4 report the solutions when the assets available

to investors are equities, ten-year nominal bonds, and ten-year indexed bonds. The

portfolio weights of bond in Table 4 are all much smaller than that in Table 3, which

means investors like the short maturity bonds more. Investors buy more equities in

Table 4 since they reduce the portfolio weights of bonds.

The parameters in Table 5 report the solutions when the assets available to

investors are equities, one-year nominal bonds, and ten-year indexed bonds.

Risk-tolerant investors hold more one-year nominal bond to earn the inflation risk

premium, but are subject to inflation risk. More conservative investors concentrate their
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portfolios on ten-year indexed bonds, with short positions in the nominal bonds in order

to hedge against the inflation risk. The portfolio weights on indexed bonds are much

less than that in Table 3, since investors like short maturity indexed bonds more.

2.5 Conclusions

We have derived the optimal intertemporal portfolio-consumption choice of the investor

with the stochastic differential utility under inflation. The optimal portfolio rule depends

on the coefficient of risk aversion while the consumption plan relies on the elasticity of

intertemporal substitution. In contrast with other related works which adopt the

one-factor real interest model and lead to a two-factor nominal interest rate under

uncertain inflation, we think that the real interest rate is an unobservable state variable

and we adopt a one-factor nominal interest rate which is observable to the investor and

hence a two-factor real interest rate. We also argue that the expected inflation is never

observable to the investor. The investor could only infer the value of expected inflation

from the realized data of nominal price and suffers from the estimation risk to some

extent.

With the inclusion of indexed bonds in the portfolio set, we mainly find that the

risk of nominal interest rate is perfectly hedged by the holdings of nominal bonds while

the inflation and price risks is hedged by the holdings of indexed bonds. The demand of
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nominal bonds is crowded out proportionally to the demand of indexed bonds. When

the maturities of the nominal and indexed bonds are identical, the demand of the

indexed bond is perfectly financed by shorting the corresponding amounts of the

nominal bond. The estimation risk of inflation also partly accounts for the hedging

demand of bonds.

As to the consumption, we find that the consumption-wealth ratio is obtained as an

exponentially affine function of the nominal interest rate and expected inflation rate.

The level of the elasticity of intertemporal substitution decides the direction in which

the nominal interest rate and the expected inflation affect the consumption-wealth ratio.

When the elasticity of intertemporal substitution is greater than one, the substitution

effect dominates. The consumption-wealth ratio falls as the nominal interest rate rises or

the inflation falls. The income effect would dominate when the elasticity of

intertemporal substitution is less than one. In this case the consumption-wealth ratio

rises as the nominal interest rate rises or the expected inflation falls.

It is also noted that the consumption-wealth ratio is not perfectly decided by the

difference of the nominal interest rate and the inflation, say the real interest rate. The

consumption-wealth ratio varies with the absolute levels of the nominal interest rate and

the expected inflation rate given the real interest rate unchanged. The effects of the
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nominal variables on the consumption-wealth ratio depend on the relative persistency of

the disturbance of the nominal interest rate and the expected inflation rate.

The expected growth rates of real and nominal consumption are also derived. We

show that the expected real consumption growth is a function of the real interest rate, i.e.

the difference of the nominal interest rate and the expected inflation. The expected

nominal consumption growth is approximate the sum of the real consumption growth

and the expected inflation rate. The expected nominal consumption growth is positively

related to the nominal interest rate while the sign of the expected inflation in the

nominal consumption growth would rely on the investor’s elasticity of intertemporal

substitution. In a special case that the elasticity of intertemporal substitution equals one,

the expected nominal consumption growth would be irrelevant to the expected inflation.

Lastly, the capital market is calibrated to U.S. stock, bond, and inflation data. We

allow investors to hold equities, indexed bonds, and nominal bonds simultaneously. The

optimal weights show that aggressive investors hold more nominal bonds to earn the

inflation risk premium, and conservative ones concentrate on indexed bonds to hedge

against the inflation risk.
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Table 1

Estimates of Model Parameters

Maximum likelihood parameter estimates for the joint process of equity return, price

index, expected inflation, and nominal interest rate estimated by implementing Kalman

filter using monthly yields of zero-coupon bond, CPI data, and CRSP value-weighted

equity returns for the period from January 1961 until September 2008.

Parameter Estimate

: das
Equity return process: ?’ =(R +ny)dt+o4dZ;

t

g 0.0487
Oy 0.239
o dP,
Price index process: 5" rdt+o,dZ,
lof 0.0117

Expected inflation Process: drx, =/(7—7x,)dt+0,dZ,

[ 0.05
T 0.047
o, 0.03

Nominal interest rate process: dR =&(R—R)dt+0,dZ,

K 0.0594

=

0.1423
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Og 0.016

Correlations: pgp, -0.1346
Psp -0.0657
Prp -0.1190
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Table 2

Estimates of Model Parameters

The parameters for the process of nominal bonds, and indexed bonds with maturities of

one and ten years are reported in this table.

Nominal bond process:

a]’i]\ft =(R +ny)dt-o,dZ,

t

Indexed bond process:

% =R +m,)dt —0,dZy +0,dZ,

t

1-Year nominal bond :

My 0.0051

oy 0.0155

10-Year nominal bond :

Ty 0.021

o 0.0698

1-Year indexed bond :

m, 0.0039
o, 0.0155
1| 0.0409

10-Year indexed bond :

m, 0.0130
o 0.0698
o), 0.2477
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Table 3

Optimal portfolio strategy

This table reports the optimal strategy for investors with different values of the risk

aversion parameter when the assets available to investors are equities, one-year nominal

bonds, and one-year indexed bonds. The hedging demand is shown in parentheses. We

assume that p=0.5.

Relative risk Equity 1-Year nominal bond 1-Year indexed bond
aversion

0.75 19.3 197.2} 5(Y.2) 88.1 (-12.9)

1 14.4 1425540} 75.8 (0)

2 7.2 60.4 (-10.8) 57.3 (19.4)

5 2.8 HIE2R2=1T .2) 46.3 (31.1)

10 1.4 -5.2 (-19.4) 42.6 (35.0)

50000 0.0 -21.6  (-21.6) 38.9 (38.9)
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Table 4

Optimal portfolio strategy

This table reports the optimal strategy for investors with different values of the risk

aversion parameter when the assets available to investors are equities, ten-year nominal

bonds, and ten-year indexed bonds. The hedging demand is shown in parentheses. We

assume that p=0.5.

Relative risk Equity 10-Year nominal bond  10-Year indexed bond
aversion

0.75 20.3 499 (2.2) 16.3 (-2.8)

1 15.2 35.7 (0) 144 (0)

2 7.6 14.5 (-3.3) 11.5 (4.3)

5 3.0 [ REESAy 9.7 (6.9)

10 1.5 -2.5 (-6.0) 92 (7.7)

50000 0.0 -6.7 (-6.7) 8.6 (8.6)
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Table 5

Optimal portfolio strategy

This table reports the optimal strategy for investors with different values of the risk

aversion parameter when the assets available to investors are equities, one-year nominal

bonds, and ten-year indexed bonds. The hedging demand is shown in parentheses. We

assume that p=0.5.

Relative risk Equity 1-Year nominal bond 10-Year indexed bond
aversion

0.75 17.5 202(5 1(16,3) 18.8 (-2.8)

1 13.1 139.6 (0) 16.3 (0)

2 6.5 453 (-24.5) 12.4 (4.3)

5 2.6 -11.3 (-39.2) 10.1 (6.9)

10 1.3 -30.1 (-44.1) 93 (7.7)

50000 0.0 -49.0 (-49.0) 8.6 (8.6)
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Table 6
Optimal portfolio strategy
This table reports the optimal strategy for investors with different values of the risk
aversion parameter when the assets available to investors are equities, ten-year nominal
bonds, and one-year indexed bonds. The hedging demand is shown in parentheses. We

assume that p=0.5.

Relative risk Equity 10-Year nominal bond  1-Year indexed bond
aversion

0.75 20.4 20.6 (1.1) 67.9 (-12.9)

1 15.3 14.6 (0) 60.7 (0)

2 7.6 BL5 1.1 49.8 (19.4)

5 3.0 0.1 (-2.8) 432 (31.1)

10 1.5 -1.6 (-3.1) 41.0 (35.0)

50000 0.0 -3.5 (-3.5) 38.9 (38.9)
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