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中文摘要 

這篇論文主要是探討抗通膨債券的定價與投資者消費投資組合的最佳化解。在此

篇論文的第一部分，我們在通膨率有隨機波動度下，得到一個美國抗通膨債券(TIPS)

的解析解。在實證上，我們利用美國市場上的二十九支 TIPS 價格，求出在 2000

年一月到 2009 年十月期間，模型的未知參數和通膨利差。實證結果顯示，忽略隱

含選擇權將導致通膨利差的高估。平均來說，高估的部分大概是 0.82%。實證結果

同時顯示，所得出的最小的利差發生在 2009 年一月附近，此時間點為本文探討期

間發生最嚴重的通貨緊縮時點。在此篇論文的第二部分，我們解一個跨期消費投

資組合問題當市場存在通膨風險時。投資人為了對抗通膨風險，會選擇持有抗通

膨債券。本文說明，名目利率和通膨率如何影響最佳化消費財富的比例與跨期替

代彈性有關。消費財富的比例不完全受到實質利率影響，同時也與名目利率和通

膨率有關。最後，利用美國市場資料對模型做一個補正，結果顯示，積極型的投

資者會想要擁有較多的名目債券以賺取通膨風險貼水，而保守型的投資者會持有

較多的通膨債券以規避通膨風險。 

關鍵字: 隨機波動度，美國抗通膨債券，隱含選擇權，通膨風險，指數型債券，

投資組合選擇，跨期替代彈性 
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英文摘要 

The purpose of this thesis is to price the inflation indexed securities and solve for an 

inter-temporal portfolio consumption choice problem under inflation. In the first part of 

this thesis, a diffusion model for inflation rates with stochastic volatility is proposed, 

and closed-form solutions are derived for treasury inflation protected securities (TIPS). 

Empirically, our model with 29 TIPS, treasury constant maturity rates and reference 

CPI numbers in the U.S. market was used to derive the unknown parameters and 

spreads during January 2000 to October 2009. Empirical results show that an 

over-estimated spread is induced by ignoring the embedded option in TIPS. The average 

difference between the distorted estimate and actual value is about 0.82%. The 

minimum spread occurred around Jan. 2009 while the CPI-U decreased drastically. In 

the second part of this thesis, we solve for an inter-temporal portfolio consumption 

choice problem under inflation. The inclusion of the inflation-indexed bonds in the 

investor’s portfolio provides an opportunity to perfectly hedge against the inflation risk, 

while the hedging demand of the nominal bonds would be crowded out in proportion to 

the demand of the indexed bonds. The direction in which the interest rate and the 

inflation rate affect the optimal consumption-wealth ratio relies on the elasticity of 

inter-temporal substitution of the investor. The consumption wealth ratio is not 

completely determined by the real interest rate, it also depends on the nominal levels of 
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the interest rate and the inflation rate. The capital market is calibrated to U.S. stock, 

bond, and inflation data. The optimal weights show that aggressive investors hold more 

nominal bonds to earn the inflation risk premium, and conservative ones concentrate on 

indexed bonds to hedge against the inflation risk. 

Key words: Stochastic volatility, TIPS, Embedded option, Inflation Risk, Indexed  

Bond, Dynamic Portfolio Choice, Elasticity of Inter-temporal Substitution 
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Chapter 1 

Treasury Inflation Protected Securities Pricing  

under the Heath- Jarrow-Morton model with Stochastic Volatility 

1.1  Introduction 

Since January 1997, the treasury inflation protected securities, or TIPS, created by the 

U.S. treasury to help investors manage inflation risk, have been issued regularly. 

Principals of TIPS are adjusted periodically to keep pace with the rate of inflation, 

measured by the consumer price index for all urban consumers (CPI-U). Investors 

receive semi-annual coupon payments based on a fixed semi-annual coupon rate applied 

to the inflation-adjusted principal. At maturity, if inflation has increased the value of the 

principal, investors receive the higher value. If deflation has decreased the value, 

investors still receive the original face amount of the security. The redemption valuation 

at maturity is recognized as an embedded option in TIPS. 

Fischer (1975) first analyzed the demand for index bonds. Unlike traditional 

treasury bonds, investors in TIPS are guaranteed by the government a specific rate of 

return and a specific purchasing power of the principal above inflation. According to the 

estimates of the treasury department, the outstanding volume of TIPS has risen from 

about $15 billion in 1997 to about $413 billion by late 2006, and trading of TIPS among 

primary securities dealers has risen from a daily average of $1 billion in early 1998 to 
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approximately $8 billion by late 2006 due to their built-in inflation protection. 

Yields calculated from prices of TIPS are usually denoted as approximations of 

inflation-adjusted or real interest rates. That information, together with yields on 

traditional, nominal-treasury securities, is often used to provide implicit indications of 

general agreement of medium-term to long-term expectations of inflation by the bond 

market. However, the fact that the long-term inflation expectation from the survey has 

almost always been higher than that computed from the spread between nominal and 

TIPS yields (called term premium) suggests that measure is distorted. As a measure of 

expected inflation, the spread between nominal- and indexed-treasuries could be 

distorted by inflation uncertainty, risk aversion, and the probability of deflation. 

Like Melino and Turnbull (1990), Frachot (1995), or Bakshi and Cao, we propose 

a much more general and flexible pricing model for TIPS with embedded options which 

allows for consideration of stochastic volatility and correlations among inflation rates, 

nominal forward rates, real forward rates, and volatility variants. This aids in more 

accurately capturing the distribution properties of inflation. However, due to the long 

maturity property of TIPS, fitting the current term structure is an important 

consideration for practitioners. Jarrow and Yildirim (2003) applied the term structure 

model introduced by Heath, Jarrow, and Morton (HJM) (1992) to both nominal and real 

rates. Options embedded in TIPS also have long maturity and are very different from 
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ordinary options. Unlike an ordinary option, whose value always increases with 

maturity, the relation between the TIPS-embedded option and maturity is much more 

complex. The relationship depends on the term structures of real and nominal forward 

rates and the reference CPI-U on the issue date. This article provides the theoretical and 

empirical basis of TIPS for pricing in the stochastic volatility framework. 

The remainder of this article is as follows: Section 2 describes the model and its 

assumptions. Section 3 introduces the general valuation framework and presents 

closed-form solutions of TIPS. Section 4 investigates the properties of TIPS and 

embedded options using numerical examples. Section 5 reports the empirical analysis 

based on the U.S. market data. Conclusions are given in Section 6. 

1.2  Model 

The HJM model was applied to TIPS in order to fit best the current term structure, 

which is the first-order requirement for practitioners while pricing high 

interest-rate-sensitive derivatives. As presented in Duffie, Pan, and Singleton (2000), 

we assumed that, at time t , the data-generating processes of the inflation index,  

with its stochastic variance component, , the nominal-

),(tI

)(tY T -maturity forward rate, 

, and the real ),( TtFn T -maturity forward rate, , are calculated as follows: ),( TtFr

        )()()()()(
)(

)(
tdWtYtdWtdWdtt

tI

tdI
IrIrnInI   ,            (1) 
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)()())(()( tdWtYdttYtdY YYY   ,                (2) 

                 )(),(),(),( tdWTtdtTtTtdF nnnn   ,                 (3) 

)(),(),(),( tdWTtdtTtTtdF rrrr   ,                 (4) 

where , , , and  describe standard Brownian motions with 

covariance: 

)(tWI )(tWY

dWCov I

)(tWn )(tWr

dtdW IYY ),( , dtdWdW nrrnCov ),( , , 

, 

0),( nI dWdWCov

0) ,I dWdW(Cov r ,( 0) ndWYdWCov , and . Structural 

parameters

0) rdW,( YdWCov

 , Y , and Y  represent the long-run mean, the speed of adjustment, and 

the volatility of the stochastic variance component, respectively. The time t , price of a 

nominal (real) zero-coupon bond maturing at timeT , in dollars (CPI-U units), is given 

by Eq. (5). 

 
T

t kk dsstFTtV ),(exp),( ,  rnk , .                (5) 

The nominal (real) money market account is defined as 

 
T

t kk dssrTtB )(exp),( ,  rnk , ,                   (6) 

where  is the spot rate and )(trk ),()( ttFtr kk  . The instantaneous covariance 

rate--between inflation rates and nominal (real) rates--is given by  nrIrInn Tt  ),(  

(  nrInr t IrT  ,( ) ) in this model. 

1.3  Pricing TIPS 

If true processes are given by Eqs. (1)-(4), the processes under the risk-neutral measure, 
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Q , defined by ( , , , ) are given by Eqs. (7)-(10), )(* tWI )(* tWY )(* tWn )(* tWr

 dtttYttt
tI

tdI
IrIrnInI )()()()()(

)(

)(    

)()()()( *** tdWtYtdWtdW IrIrnIn   ,                  (7) 

  )()()()( * tdWtYdttYtdY YYYY   ,                  (8) 

         )(),()(),(),(),( * tdWTtdttTtTtTtdF nnnnnn   ,             (9) 

  )(),()(),(),(),( * tdWTtdttTtTtTtdF rrrrrr   ,             (10) 

 rnIk ,,where )(tk  is the market price of  for )(tWk   and Y  is the volatility 

risk premium. After adopting the assumption that )(tYY   (Bates (1996)), Eq. (8) 

can be rewritten as 

)()())(()( * tdWtYdttYtdY YY  ,                (11) 

where   Y . A proposition is presented that states the necessary and sufficient 

conditions for bond price evolution to guarantee that arbitrage does not exist. 

Proposition I: Arbitrage free term structures 

( , ) / (0, )n nV t T B t , , and  are Q -martingale if 

and only if 

( ) ( , ) / (0, )r nI t V t T B t ( ) (0, ) / (0, )r nI t B t B t





   )(),(),(),( tduutTtTt n

T

t nnn                   (12) 





   IrnrInr

T

t rrr tduutTtTt  )(),(),(),(            (13) 

)()()()()()()( ttYtttrtrt IrIrnInrnI               (14) 
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Proof: See Appendix A. 

From Eqs. (7) and (9)-(11), and Proposition I, the following equations are derived 

under the risk-neutral measure, : Q

  )()()()()()(
)(

)( *** tdWtYtdWtdWdttrtr
tI

tdI
IrIrnInrn   ,        (15) 

  )()()()( * tdWtYdttYtdY YY  ,               (16) 

             )(),()(
),(

),( * tdWTtadttr
TtV

TtdV
nnn

n

n  ,                     (17)

   dtTtatr
TtV

TtdV
rIrnrInr

r

r ),()(
),(

),(
   )(),( * tdWTta rr ,      (18) 

where  for 
T

t kk duutTta ),(),(   rnk , . Let , , and  

denote the forward prices of 

),( tV T
n ),( tI T

V )(tI T
r

),( tnV , ),()( tVtI r , and  with respect to 

 as defined by 

),0( t)( BtI r

),( TtVn ),() TtVn,(tVn),(tV T
n  , ),( TtVI nV ),() tVr (t),( ItT   , and 

 )(tI T
r ),(),0()( TtVtBtI nr , where T . Other forward prices are defined in a 

similar manner. Next,  is determined under which , , and  

are martingale. 

TQ ),( tV T
n ),( tI T

V )(tI T
r

Proposition II: Martingales under measure  TQ

( , ) / ( , )n nV t V t T , ( ) ( , ) / ( , )r nI t V t V t T , and  are martingale under 

 defined by { , , , }, where , 

, , and . 

( ) (0, ) / ( , )r nI t B t V t T

)(tT
n )(tW T

r

ds  r
T

r WtW *)(

TQ

)()( * tWtW Y
T

Y 

)(tW T
I )(tW T

Y


t

nn
T

n atWtW
0

* )()(

W

T )

)()( * tWtW I
T

I 


t

nnr dsTsa
0

),(s,( t)(

Proof: See Appendix B. 
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Let  and  denote the conditional-expectation operators at time Q
tE T

tE t  under 

the risk-neutral measure  and the forward-neutral measure , respectively. Kijima 

and Muromachi (2001) demonstrated that, if the relative price of a risky asset  is a 

martingale under the risk-neutral measureQ , and its forward price is also a martingale 

under the forward-neutral measure, , then 

Q
TQ

)(tS

TQ


















),(

)(
),0()0(

),0(

)(
00 TTV

TC
ETVC

TB

TC
E

n

T
n

n

Q               (19) 

where  is the time )(tC t  price of a European derivative maturing at time T  written 

on . )t(S

Consider a European call option issued against the inflation index with a strike 

price of K  index units and maturity dateT . Because the index is denominated in units 

of dollars per CPI-U, each unit of the option was assumed to be written on one CPI-U 

unit. Therefore, the time T  payoff to the option, in dollars, is equivalent to 

. The present value of this option can be formulated as  ) 0,(max KTI

 







 0,)(max

),0(

1
),( 0 KTI

TB
EKTC

n

Q  .                 (20) 

Instead of solving Eq. (20) under the risk-neutral measure, it was solved by 

transforming into the forward-neutral measure. Because 1),( TTVr , Eq. (20) can be 

written as: 
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 







 0,)(max

),0(

1
0 KTI

TB
E

n

Q  







 0,),()(max

),0(

1
0 KTTVTI

TB
E r

n

Q .  (21) 

Combining Proposition I and Proposition II, and Eq. (19), yields 

  
























 0,

),(

),()(
max),0(0,),()(max

),0(

1
00 K

TTV

TTVTI
ETVKTTVTI

TB
E

n

rT
nr

n

Q . (22) 

Proposition III is provided for deriving the formula of . ),( KTC

Proposition III. 

The present value of m  under the forward-neutral 

measure, , is given by 

ax ( ) ( , ) / ( , ) ,0r nI T V T T V T T K

TQ


















 0,
),(

),()(
max0 K

TTV

TTVTI
E

n

rT  )(
),0(

),0()0(
vi

TV

TVI

n

r  )( vK  ,     (23) 

where )(
VI

  is defined by 

 )(
VI

 
 






























0

),0(

),0()0(
ln)0();(),,;,0(expIm

1

2

1
dv

v

TKV

TVI
ivYTBTTTA

n

r
II VV




. 

Proof: See Appendix C. 

Combining Eqs. (20)-(22) with Proposition III, generates Eq. (24). 

( , )C T K )(),0()0( viTVI r  )(),0( vTKVn  .            (24) 

Pricing TIPS is performed in much the same way as for a conventional bond with the 

addition of mechanisms for inflation adjustment and redemption valuation at maturity. 

The present value (in dollars) of a TIPS coupon-bearing bond issued at time ( ), 0t 0
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Cwith a coupon payment of , the face value of , and the maturity of F T , is given by 

0 0
1 0 0

( ) ( )
(0) ,1

(0, ) ( ) (0,n

C F

B t ) ( )

n
Q Qi n

TIPS
i n i n

I t I t
B E E Max

B t I t I t

   
 


   

    
 ,        (25) 

where  is the i -th coupon payment date and it Tnt  . The value for redemption at 

maturity is the larger of either the original issue par value or the cumulative 

inflation-adjusted par value. When investors are concerned about the chance of deflation, 

the embedded option of TIPS at redemption may be very valuable. Eq. (25) can be 

written in another form: 

 









 



n

i in

iQ
TIPS tB

tI
E

tI

C
B

1
0

0 ),0(

)(

)(
)0( )

),0(

0),()(

)(
0

0
0

TFV
tB

tIT
E

tI

F

nn

Q 






 
,0(n

IMax
. (26) 

In which  ),0()(0 ini
Q tBtIE  ),0(), ii tt()(0 inri

Q tBVtIE ))0( itVI ,0(r . After 

replacing K  in Eq. (20) with , Eq. (27) is generated, )( 0tI


0 )

)
 



n

i
irnTIPS tI

I
tCVTFVB

1 (

0(
),0(),0()0(  

)(
)(

)0(
),0(

0

vi
tI

I
TFVr  )(),0 vTFV  (n .             (27) 

by incorporating Eq. (24). After defining )(1)( xx  , Eq. (27) can be written as 

1 0 0

(0)

( )

I I
T

I t

(0)
(0) (0, ) (0, )

( )

n

TIPS r i r
i

B CV t FV
I t

   

)(
)(

)0(
),0(

0

vi
tI

I
TFVr  )() vTFV ,0(n  .               (28) 

If we ignore the embedded option in TIPS, the final two terms in Eq. (28) will also 

be ignored; subsequently, the price of TIPS can be completely determined by the term 

structure of real forward rates. However, the existence of the embedded option at 
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redemption makes it possible for nominal forward rates and stochastic volatility to play 

an important role in determining the price of TIPS. 

Given the market prices of TIPS, using the pricing formula of TIPS without the 

embedded option at redemption may result in under estimation of the real interest rate. 

This approach may induce over estimation of the spread between nominal and real 

interest rates. If the over-estimated spread is treated as a measure of future inflation 

rates, an over-estimated future inflation rate will result. Historically, the market has 

generated an over-estimated future inflation rate from the yield spread between treasury 

bonds and TIPS. 

If issuing TIPS at the face value in the beginning ( 00 t ), the coupon rate, , can 

be determined by 

c









n

i
ir

n

tV

IITCTV
c

1

),0(

)0())0(,(),0(1
.                    (29) 

1.4  Numerical examples 

According to Jarrow and Yildirim (2003), we specify 

  )(exp1),( tTq
q

p
Tta k

k

k
k  ,  rnk , .             (30) 

Based on our empirical estimation, we let 0.011np  , 0.014nq  , , and 

. Although the treasury yield curve has exhibited different shapes during the 

past several decades, Fig. 1 provides the common shape of the nominal term structure 

0.011rp 

0.013q r
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(similar to that observed during December 1982). The nominal term structure is set to 

be , where2),0( ctbtatfn  085.0a , 002.0b  and 00004.0 c . 

For simplicity, the spread between nominal and real yields is assumed to be 

deterministic, and is denoted as . After specifying )(ts ( ) 1.5%s t  , the real term 

structure can be obtained by )(ts),0( tfn),0( tfr  . Next, we set , , 

, 

00 t 1F

, 0In  , 0Ir  , -0.512IY  , and Y 0.01, , (0) 0.03 0.0005 Y 6.02 

0.110nr 

( )s t 

 to investigate selected properties of TIPS and embedded options through 

numerical examples. 

Fig. 2 depicts the relationship between the coupon rate of TIPS and the maturity 

according to the circumstance depicted in Fig. 1. In addition, Fig. 3 shows that the 

relationship between the embedded option price and the maturity, depending on both the 

nominal and real term structures, is not monotonously ascending. The embedded option 

may consist of a portion of the TIPS value. Its percentage can reach nearly 3.5% if the 

coupon rate is determined according to Eq. (29) while issuing TIPS at the start. 

Fig. 4 shows that an over-estimated spread between nominal and real rates is 

induced by ignoring the embedded option in TIPS. If the actual spread between nominal 

and real rates is , the spread can be over estimated by 1.95% using TIPS 

with a 5-year maturity. The value is almost 1.3 times higher than the actual value. The 

shorter is the maturity period the larger is the distorted estimation. 

1.5%
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The embedded option may consist of a portion of the TIPS value, and its 

percentage may depend on the index ratio, . We set coupon rate to be 4%. 

We vary the index ratio, and present the results in Fig. 5. The smaller is the index ratio, 

the larger is the percentage of option embedded in TIPS. The value of option embedded 

in the TIPS can reach nearly 19% of the TIPS value if the index ratio is smaller than 1, 

while that embedded in the TIPS can reach only 4.48% of the TIPS value if the index 

ratio is bigger than 1. 

0(0) / ( )I I t

1.5  Empirical analysis 

We organize this section into two parts: firstly, the data used in our empirical 

investigations are described. Secondly, the empirical results are shown.  

1.5.1  Data description 

The data used in our empirical investigation are daily market data from January 17, 

2000 to October 23, 2009. There are three different data sets: nominal constant maturity 

treasury rate data, TIPS data and CPI-U data. 

(i) Nominal constant maturity treasury rate data: 

We obtain treasury constant maturity rates on all available U.S. treasury securities. A 

treasury constant maturity rate is defined to be the par yield of a government treasury 

security with a specified maturity. These rates are read from the yield curve at fixed 

maturities, currently 1, 3, and 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years.  
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(ii) TIPS data:     

We obtain daily price on all available U.S. treasury inflation protected securities. 

We choose 29 TIPS reported in Table 1; TIPS1, TIPS2 and TIPS3 are 30-year 

bonds and TIPS4, TIPS5, TIPS6, TIPS7 and TIPS8 are 20-year bonds, while 

TIPS12, TIPS16, TIPS19, TIPS22, TIPS25 are 5-year bonds and the remaining 

ones are 10-year bonds. The time period January 17, 2000-October 23, 2009 gives a 

total 2425 daily observations. We collect almost all of TIPS in the U.S. market 

during the period of January 17, 2000-October 23, 2009. These twenty-nine TIPS 

with their CUSIP numbers, coupon rates, issue dates, maturity dates, CPI-U of issue 

dates and maturity periods are reported in Table 1. 

(iii) CPI-U data: 

Historical reference CPI numbers and daily index ratios are both from the treasury 

direct website. Fig. 6 shows monthly CPI-U numbers from December 1999 to 

November 2009. The CPI-U is mostly increasing during December 1999-July 

2008 and December 2008-November 2009 and mostly decreasing during July 

2008-December 2008. 

1.5.2  Empirical result 

Predicting all the unknowns in Eq. (28) simultaneously is the usual method. But this 

method may result in time-consuming calculations and unstable solutions. Instead we 
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use a simpler method to predict the unknowns. This procedure is described as follows. 

(i) Stripping the nominal zero-coupon bond prices 

The bootstrap method is used to derive nominal zero rates from the treasury constant 

maturity rates. A common assumption is that the zero curve is linear between the 

points determined using the bootstrap method. The nominal zero-coupon bond prices 

are derived by using the zero rates. 

(ii) Estimating the volatility parameters of the nominal forward rates 

   Given the nominal zero-coupon bond prices, we assume the volatility parameters of  

the nominal forward rates ( , )n t T  is as follows. 

( , ) exp[ ( )]n n nt T p q T t    ,                                      (31) 

where  and  are constants. np nq

Using Eq. (17), we have the following formula, 

2 2

2

( , ) (exp[ ( )] 1)
var( )

( , )
n n n

n n

V t T p q T t

V t T q

   
  , 

We run a nonlinear least square regression to estimate the parameters . The 

estimated parameters, = 0.011, =0.014, and their stan

parentheses) are reported in Table 2.   

(iii) Estimating

one day.                (32) 

( , )n np q

dard errors (in np nq

 ,  , Y , IY  

We use historical volatility to predict the volatility of  at time . The 

historical volatility is obtained using 10 years historical data prior to each 

( ) / ( )dI t I t  t
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observation date in the data series. For simplicity, we suppose 
Ir and 

In  are both 

equal to zero, and use formula as follow. 

( )
var( ) ( )

I t
Y t


  ,

1
  .           

( )I t 12
                      (33)       

Then  will b genera

      

e ted for each t . According to Eq. (11), ( )dY t  is a ( )Y t

l dinorma stribution with mean ( ( ))Y t dt   and variance )dt . 

Therefore,  

2
Y (Y t

 Y dt  is a n d

ard deviation 1. We use the formu

( ) ( ( )) / YdY t Y t dt    ormal istributio n 

0 and stan la as follows to predict 

( )t n with mea

d  ,  and 

Y . 

2 2

2

1 1

, ,

( ) ( )
min 1

1 1Y

n n

t t

N t N t

n n  

 

  
  
   

   
  
  

  






,  

where

       

( ) ( ( ))
( )

( )Y

dY t Y t
N t

Y t

 

  




,
1

12
  .                      (34) 

Thus, the values 0.0005  , 6.02   and Y  0.01are generated. The estimated 

parameters are reported in Table 2. The coefficient IY , which captures the 

correlation between volatility shocks and the underlying inflation index evolution, 

are estimated by the formula  

( ) 1
( , ( )),

I t
Corr Y t


   . 

( ) 12I t
                               (35) 

The estimated coefficient

      

IY , reported in Table 2, is equal to -0.512. 

(iv) Estimating nr , the volatility parameters of the real forward rates and the 
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spreads between nominal and real yields 

The next step is to estimate the remaining unknowns and the spreads between 

nominal and real yields. We assume the volatility parameter of the real forward 

rates ( , )r t T  is as follows. 

( , xp[ ( )]r r rt q T t) eT p    ,                                      (36) 

where  and are cons  rp rq  tants. For simplicity, the spread between nominal and

real yields is assumed to be deterministic at each trading day t, and is denoted 

as ( )s t . Then, the real term structure can be obtained 

by ( , ) ( ),n( , )rF t T

 day

F t T s t T t   . We use all TIPS to estimate the spreads at each 

trad erences between the market values , ( )TIPS j



. We scribe the diffing  de B t  and 

the theoretical values for each TIPS, j, at each trading day t as [ ( ),j s t ]  ,  

, ,
10,( )

( )
[ ( ), ] ( ) [ ( , ) ( , )]

jn

j TIPS j j r i j j r j
ij

I t
s t B t C V t t F V t T      

I t 

0,

( )
( , ) ( ) ( , ) ( )

( )j r j j n j j
j

I t
F V t T i v F V t T v

I t
       ,             (37) 

{ , , }r r nrp q  . 

Therefore, we can describe the problem on these TIPS as follows, 

29

( )
min [ ( ), ]j

s t
s t           for each trading day t.            

1j

        (38) 

It was apparent that the remaining unknowns, rp , rq  and nr  depend on the 

d daily real term structure. Thus, we use an iterative metho to derive these 
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approximate values. Firstly, we guess initial values ,0rp , ,0rq and ,0nr  for rp , 

rq  and nr . Then we put these initial values into Eq 8)  find optim l 

eads  numerical methods. Therefore, the estimated values ,1r

. (3  and  the a

spr by p , ,1rq and 

,1nr are generated by using these spreads and formulae as follows. 

2 2
,1 ,1(exp[ ( )] 1)( , )

) r rr
p q T tV t T   

   ,                 
2
,1)r rT q

var(
( ,V t

      (39) 

,1

( , )( , )
,

( , ) ( , )
nr

r n

V t TV t T

V t T V t T

 
  

 
, nr Corr one day.                       (40) 

If ,1 ,0r rq q  ,1nr ,0,1r rp p ,0  tolerance, tolerance and nr   tolerance, 

let ,1r rp p ,1rq  and rq ,1nr nr   an l e d recalculate. To t to 310eranc is se,   

in lc We  recursion whenthi ulation. stop this , , 1r k r kp p   tolera  s ca nce,

, , 1r k r kq q   tolerance and , , 1nr k nr k    tolerance fo  estimated 

.0193 , 0.rq 

and nr

r k. The

, and their standard errors (in parentheses) 

some 

values rp 

0.

0

126

01

  able 2.  

Fig. 7 is the time-series graph of sprea

 are reported in T

ds during the  of Jan  

a

 

e 

period uary 17,

2000-October 23, 2009 (line). The estimated maximum value of spread is 2.16%,  

nd the minimum value is -5%. The minimum spread occurred around Jan. 2009  

while the CPI-U decreased drastically. Fig. 7 shows that an over-estimated spread 

between nominal and real rates is induced by ignoring the embedded option in 

TIPS during the period of January 17, 2000-October 23, 2009 (dashed line). Th
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. 

(v) T

n embedded in each TIPS is shown in Fig. 8. TIPS7 is 

average difference between the distorted estimate and actual value is about 0.82%

he embedded option prices 

The estimated price of optio

the most expensive one since it is a long maturity bond with a larger CPI-U of 

issue date, while TIPS12 is the cheapest one since it is the shortest maturity bond 

with a smaller CPI-U of issue date. The CPI-U of issue date of TIPS7 is 211.08 

while the CPI-U of issue date of TIPS12 is 190.9. The average prices of options 

embedded in TIPS of various maturity periods are shown in Table 3. The shorter is 

the maturity period, the cheaper is the embedded option price. Since the 30-year 

TIPS were issued much earlier than 20-year ones, the average CPI-U of the issue 

date of 30-year TIPS is smaller than that of 20-year ones. The average CPI-U of 

the issue date of 30-year TIPS is 168.8, while the average CPI-U of the issue date 

of 20-year TIPS is 202.5. It is apparent that the index ratios in 20-year TIPS are 

more likely to be smaller than 1. Therefore, the prices of options embedded in 

20-year TIPS are more expensive than those embedded in 30-year ones. The 

embedded option consists of a portion of the TIPS value. The value of option 

embedded in the 20-year TIPS is about 18% of the TIPS value, while those 

embedded in the 30-year, 10-year and 5-year TIPS are about 12%, 6% and 3% of 

TIPS value, respectively. The percentages of options embedded in TIPS of various 
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1.6 

form solutions for TIPS with stochastic volatility. At redemption, an 

maturity periods are shown in Table 3. The shorter is the maturity period, the 

smaller is the percentage. The percentage of option embedded in the 30-year TIPS 

is smaller than that embedded in the 20-year TIPS since the index ratios in 20-year 

TIPS are more likely to be smaller than 1.  

 Conclusion 

We derived closed-

embedded option existed. Nominal rates and stochastic volatility were introduced into 

the determination of the valuation of TIPS through embedded options. The relationship 

between the embedded option price and the maturity, depending on nominal and real 

term structures and the reference CPI-U on the issue date is not monotonously 

ascending. The embedded option may comprise a portion of the TIPS value, reaching 

nearly 19%. An embedded option mispricing can result in a seriously distorted 

estimation of the nominal-TIPS spread which is often treated as future inflation rates. 

Empirically, our model with 29 TIPS and treasury constant maturity rates was used to 

derive the unknown parameters and daily spread between nominal and real yields during 

January 2000 to October 2009. Empirical results show that an over-estimated spread 

between nominal and real rates is induced by ignoring the embedded option in TIPS. 

The average difference between the distorted estimate and actual value is about 0.82%. 

The value of option embedded in the 20-year TIPS is about 18% of the TIPS value, 
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osition I 

while those embedded in the 30-year, 10-year and 5-year TIPS are about 12%, 6% and 

3% of TIPS value, respectively. The shorter is the maturity period, the smaller is the 

percentage. Since the index ratios in 20-year TIPS are more likely to be smaller than 1, 

the percentage of option embedded in the 30-year TIPS is smaller than that embedded in 

the 20-year TIPS.   

1.7  Appendices 
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Proof of Proposition II 
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By Girsanov’s theorem, (B4), (B5), and (B6) are martingale process under  
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Proof of Proposition III 
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as the characteristic function of the state where    denotes the density function. The 

characteristic function must satisfy the partial integro-differential equation: 
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Table 1. 

The TIPS data set starts from January, 2000 to October, 2009.  

A: CUSIP number, B: Coupon rate (%), C: Issued date, D: Maturity date,  

E: CPI-U of issued date, F: Maturity period. 

      A   B     C     D   E   F 

TIPS1 912810FD5 3.625 1998/4/15 2028/4/15 162.5 30 

TIPS2 912810FH6 3.875 1999/4/15 2029/4/15 166.2 30 

TIPS3 912810FQ6 3.375 2001/10/15 2032/4/15 177.7 30 

TIPS4 912810FR4 2.375 2004/7/30 2025/1/15 189.4 20 

TIPS5 912810FS2 2 2006/1/31 2026/1/15 198.3 20 

TIPS6 912810PS1 2.375 2007/1/31 2027/1/15 202.4 20 

TIPS7 912810PV4 1.75 2008/1/31 2028/1/15 211.1 20 

TIPS8 912810PZ5 2.5 2009/1/30 2029/1/15 211.1 20 

TIPS9 912828AF7 3 2002/7/15 2012/7/15 180.1 10 

TIPS10 912828BD1 1.875 2003/7/15 2013/7/15 183.9 10 

TIPS11 912828CP3 2 2004/7/15 2014/7/15 189.4 10 

TIPS12 912828CZ1 0.875 2004/10/29 2010/4/15 190.9 5 

TIPS13 912828DH0 1.625 2005/1/18 2015/1/15 190.7 10 

TIPS14 912828EA4 1.875 2005/7/15 2015/7/15 195.4 10 

TIPS15 912828ET3 2 2006/1/17 2016/1/15 198.3 10 

TIPS16 912828FB1 2.375 2006/4/28 2011/4/15 201.5 5 

TIPS17 912828FL9 2.5 2006/7/17 2016/7/15 203.5 10 

TIPS18 912828GD6 2.375 2007/1/16 2017/1/15 202.4 10 

TIPS19 912828GN4 2 2007/4/30 2012/4/15 206.7 5 

TIPS20 912828GX2 2.625 2007/7/16 2017/7/15 208.3 10 

TIPS21 912828HN3 1.625 2008/1/15 2018/1/15 211.1 10 

TIPS22 912828HW3 0.625 2008/4/30 2013/4/15 214.8 5 

TIPS23 912828JE1 1.375 2008/7/15 2018/7/15 220.0 10 

TIPS24 912828JX9 2.125 2009/1/15 2019/1/15 211.1 10 

TIPS25 912828KM1 1.25 2009/4/30 2014/4/15 213.2 5 

TIPS26 912828LA6 1.875 2009/7/15 2019/7/15 215.4 10 

TIPS27 9128275W8 4.25 2000/1/18 2010/1/15 168.8 10 

TIPS28 9128276R8 3.5 2001/1/16 2011/1/15 175.1 10 

TIPS29 9128277J5 3.375 2002/1/15 2012/1/15 177.1 10 
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Table 2. 

Values of the estimated parameters and their standard errors (in parentheses). 

0.011(0.00) 
np  

0.014(0.00) 
nq  

  0.0005  

6.02    

0.01  
Y  

-0.512 
IY  

0.019(0.51) 
rp  

0.010(1.97) 
rq  

0.126 
nr  
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Table 3. 

The average prices and percentages of options embedded in TIPS of various maturity 

periods. 

Maturity period 30 20 10 5 

Embedded option price 14.45 16.54 6.24 3.43 

Percentage 11.87 18.22 6.28 3.44 
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Fig. 1. Common nominal and real term structures. 

These nominal and real term structures are similar to those observed during December 

1982. The nominal term structure is set at , where , 

, and 

2),0( ctbtatfn  085.0a

002.0b 00004.0c

( )s t 

. The spread between nominal and real yields is denoted 

as . After specifying , the real term structure was obtained by )(ts 1.5%

)(),0(),0( tstftf nr  . 
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Fig. 2. Coupon rates of TIPS. 

This figure shows the coupon rate specified at the start of the contract according to Eq. 

(29) in the circumstance of Fig. 1. 
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Fig. 3. Embedded options in TIPS. 

Unlike ordinary options, the price of the embedded option does not always increase as 

the maturity times increases. The embedded option may consist of a portion of the TIPS 

value--up to 3.5%--if the coupon rate is determined according to Eq. (29) while issuing 

TIPS at the start. The circumstance is specified as that in Fig. 1. 
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Fig. 4. Over-estimated spreads between nominal and real rates induced by 

ignoring embedded options in TIPS. 

If the actual spread between nominal and real rates is ( ) 1.5%s t   (dashed line), the 

over-estimated spread can reach 1.95% using the TIPS with a 5-year maturity period 

(line). This value is nearly 1.3 times higher than the actual value. The shorter the 

maturity period the larger is the distorted estimation. 
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Fig. 5. The percentages of options embedded in TIPS of different index 

ratio, . 0(0) / ( )I I t

The value of option embedded in the TIPS can reach nearly 19% of the TIPS value if 

the index ratio is smaller than 1 (line), while that embedded in the TIPS can reach only 

4.48% of the TIPS value if the index ratio is bigger than 1 (dotted line). 
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Fig. 6. Monthly CPI-U numbers from Dec. 1999 to Nov. 2009. 

The CPI-U is mostly increasing during Dec. 1999-Jul. 2008 and Dec. 2008-Nov. 2009, 

and mostly decreasing during Jul. 2008-Dec. 2008. 
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Fig. 7. The time-series graph of actual spread (considering embedded option) 

versus the distorted estimates (without considering embedded option). 

The average difference between the distorted estimate and actual value is about 0.82%. 

The minimum spread occurred around Jan. 2009 while the CPI-U decreased drastically.  
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Fig. 8. The estimated price of option embedded in each TIPS 

TIPS7 is the most expensive one since it is a long maturity bond with a larger CPI-U of 

issue date, while TIPS12 is the cheapest one since it is the shortest maturity bond with a 

smaller CPI-U of issue date. 
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Chapter 2 

Optimal Portfolio-Consumption Choice under Stochastic 

Inflation with Nominal and Indexed Bonds 

2.1  Introduction 

How the inflation risk affects the investor’s portfolio choice and consumption plan has 

long been a hot issue in both financial and economic fields. Since the change of nominal 

price level would affect the future purchasing power of the investor, taking the inflation 

risk into account is important when the non-myopic investor makes her intertemporal 

decision. In fact, all uncertain changes in the investment opportunity set would affect 

the investor’s intertemporal behavior and the recognition of the intertemporal changes 

in the investment opportunity makes the investor’s financial behavior quite different to 

what has been suggested in the static mean-variance analysis because the uncertain 

changes in the investment opportunity set would introduce an additional intertemporal 

hedging demand of risky assets. Efforts have been made in various aspects. For example, 

Kim and Omberg (1996) and Wachter (2001) show that under stochastic mean-reverting 

risk premium of stocks the investor with a longer investment horizon should hold more 

stocks, while Brennan and Xia (2000) solve a bond/stock mix portfolio problem under 

stochastic interest rate and show that the zero-coupon bond is the corresponding 

security to hedge against the interest rate risk. This finding fits with the popular 

institutional recommendation that conservative investors should hold more bonds in 
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their portfolio since long-term bond could provide certain payoff at the end of the 

investor’s investment horizon. 

Intertemporal portfolio choice problem under inflation risk has been surveyed by 

Campbell and Viceira (2001), Brennan and Xia (2002) and Munk, Sørensen and Vinther 

(2004). Campbell and Viceira (2001) establish a discrete-time model with a two-factor 

term structure of nominal interest rate. The time variation of nominal interest rate is 

driven by the processes of real interest rate and inflation rate. They solve the problem 

with a log-linear approximation and show that in a world with inflation risk, a long-term 

nominal bond is no longer a safe asset for a risk-averse investor. When the bonds 

available in the investor’s investment opportunity set are inflation-indexed, an infinitely 

risk-averse investor with zero elasticity of intertemporal substitution would hold a 

portfolio composed of only indexed bonds to form a portfolio equivalent to the indexed 

perpetuity in order to finance a riskless real consumption stream. When bonds available 

are only nominal zeros, the investor would short long-term nominal bonds to reduce her 

exposure to inflation risk.  

Brennan and Xia (2002) provide an exact solution to a continuous-time problem 

similar to Campbell and Viceira (2001). Brennan and Xia (2002) show that without the 

explicit inclusion of indexed bonds, the infinitely risk-averse investor would hold a 
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portfolio of two nominal bonds with different maturities which perfectly mimics a 

hypothetical indexed bond. Both works of Campbell and Viceira (2001) and Brennan 

and Xia (2002) tell us that a long-term risk-averse investor prefers the indexed bond or a 

perfect substitution of indexed bond in order to hedge against the inflation risk. 

The inflation-indexed bond is a financial instrument with long history since the 

first known inflation-indexed bond was issued by the State of Massachusetts in 1780.  

The indexed-bond helps the developing countries to raise long-term capital when they 

experience high inflation. Even in the industrialized countries with low and stable 

expected inflation, the issuance of the indexed-bond would play an important role in 

completing the financial markets. The indexed-bond helps the long-term investor who 

aims to a certain purchasing power in the future to hedge against the inflation risk and 

therefore is though to be a useful instrument for pension management. The two major 

issuers in the indexed-bond market are the governments of the United States and the 

United Kingdom. The United Kingdom has begun to issue the inflation-indexed Gilts 

since 1981 while the U.S. Treasury has been issuing the Treasury Inflation Protected 

Securities (TIPS) since January 1997. In the present, the U.S. Treasury is the largest 

issuer in the global indexed-bond market. There is over $515 billion of TIPS 

outstanding (around 11% of the marketable Treasuries outstanding) in 2008, over two 

times the amount in 2004 and the daily trading volume has grown from $2 billion to $9 
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billion during the years of 2002-2008. Other main issuers of the indexed-bond include 

Canada, Japan, as well as some countries in the euro area like French, Italy, Greece and 

Germany. The total amount of the indexed-bond outstanding in the global market has 

grown over $1,000 billion by the year of 2006.  

In this paper, we would like to solve an intertemporal portfolio choice problem 

with interim consumption for an infinitely lived investor under uncertain inflation. We 

try to find out the optimal consumption plan and the optimal portfolio rule for stocks, 

nominal bonds as well as inflation-indexed bonds. In contrast with Campbell and 

Viceira (2001) and Brennan and Xia (2002), we assume that the nominal interest rate 

rather than the real interest rate is directly given to the investor. In Campbell and 

Viceira (2001) and Brennan and Xia (2002), they assume that the real interest rate and 

the expected inflation rate to be described as two Ornstein-Uhlenbeck process 

respectively. The nominal interest rate is therefore a two-factor process driven by the 

two state variables of real interest rate and expected inflation rate. However, since the 

investors could trade the financial assets and consumption goods only in nominal term, 

it is plausible to argue the investor cannot directly observe the real interest rate and the 

expected interest rate. In this paper, we assume that the directly observable variable is 

the instantaneous nominal interest rate and the instantaneous price level of commodity 

while the expected inflation rate is unobservable. In reality, the investor could infer the 
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expected inflation rate according to the realized changes of the nominal price level in 

the past. We employ the nonlinear filtering technique introduced by Lipster and 

Shiryayev (1977) to model this estimation problem. The setting in this paper is more 

similar to Munk, Sørensen and Vinther (2004). They also adopt a one-factor term 

structure of nominal interest rate with inflation and, as an immediate result, lead to a 

two-factor real interest rate model. However, there are still some distinguishing 

differences. First, their problem is defined on the terminal wealth not on the interim 

consumptions. Second, they assume that there are only nominal bonds to be traded so 

that the inflation risk is never perfectly hedged. Our model, in contrast, would solve the 

problem for portfolio choice with both nominal and inflation-indexed bonds as well as 

the interim consumption decision under inflation. Besides, they ignore the fact that the 

expected inflation rate is still unobservable. We provide a more realistic assumption that 

the nominal interest rate is the observable state variable while the inflation rate is indeed 

unobservable and the investor must infer the value of the expected inflation from the 

past. In this paper we would show that with the inclusion of the indexed bond in the 

investor’s investment opportunity, the demand of the indexed bonds would crowd out 

the holdings of nominal bonds proportionally. The estimation risk of the estimated 

inflation rate would also give rise to an additional hedging demand of the bond 

portfolio. 
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For the representation of the investor’s intertemporal utility, we follow the work of 

Chacko and Viceira (2005) to use the stochastic differential utility (SDU) proposed by 

Duffie and Epstein (1992). The stochastic differential utility is a generalization of the 

conventional time-additive power utility. Unlike the power utility, SDU allows the level 

of the investor’s risk aversion and the attitude toward intertemporal substitution of 

consumption to be represented by two distinct parameters. It is more suitable to employ 

the SDU to disentangle these two factors when solving a portfolio choice problem 

incorporating with the intertemporal consumption decision. We would show that the 

portfolio choice depends on the investor’s risk aversion while the consumption plan is 

affected by the elasticity of intertemporal substitution. We also show that the elasticity 

of intertemporal substitution decides the directions in which the interest rate and the 

inflation rate affect the investor’s consumption.  

Lastly, the capital market is calibrated to U.S. stock, bond, and inflation data. We 

allow investors to hold equities, indexed bonds and nominal bonds simultaneously. The 

optimal weights show that aggressive investors hold more nominal bonds to earn the 

inflation risk premium, and conservative ones concentrate on indexed bonds to hedge 

against the inflation risk.   

2.2  The Economy 
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2.2.1  The Dynamics of Price Level and Expected Inflation 

Let tP  denote the nominal price level per unit of the consumption good at time  and 

we assume that it follows a diffusion process: 

t

 1
t

t p
t

dP
dt dZ

P
    (1) 

where t

t

 is the expected inflation rate at time t  and  is the increment of a 

standard Brownian motion representing the shock to the instantaneous unexpected 

inflation. In line with Brennan and Xia (2002), we assume that the expected inflation 

rate 

1dZ

  is also stochastic and follows an Ornstein-Uhlenbeck process: 

 1 1 2 2( )t td dt dZ dZ          (2) 

We argue that t  is unobservable to the investor and is not necessarily perfectly 

correlated to the instantaneous price level. In Equation (2),  represents the 

remaining part of innovation that is uncorrelated to the innovation of the price level. 

According to Liptser and Shiryayev (1977), if at time 

2dZ

0t  the distribution of 0  is 

conditionally Gaussian, i.e.     0 0 0Prob , 0a P N v  �  , the conditional distribution 

of t  would also be Gaussian   ,tN v t . The conditional mean  P
tEt t  F  is 

the optimal estimator of t  where P
tF  is the  -field generated by  :sP s  t  and 

the conditional variance  could be viewed as the estimation error. The investor 

would then substitute the estimator 

v t 

t  for the unobservable t  in Equation (1): 



 

 

44 

 t
t p

t

dP
dt dZ

P
   p  (3) 

where 

   1

( )
t t

p

v t
d dt   


 

     
 

 pdZ  (4) 

 

2

2 2
1 2 1

( ) ( )
2 ( )

p

dv t v t
v t

dt
  


 

     
 

   (5) 

The estimator of the expected inflation rate is perfectly correlated to the instantaneous 

change of the price level. As shown in Liptser and Shiryayev (1977), the common 

innovation to these two variables: 

 
1 t

p
p t

dP
dZ dt

P





 
 

t


  (6) 

is observable and pZ  would be a standard Brownian motion. In fact,  is decided 

by the unexpected excess inflation relative to its current estimated value

pdZ

t . As to the 

conditional variance , it could be explicitly solved from the Riccati equation in 

Equation (5) and it could be shown that in the steady state the value of  would 

approach a constant 

( )v t

( )v t

 

2 2

2 1 2 1lim ( ) p
t

p p p

v v t
  
  

                             

   (7) 

By Equation (7), the estimation error  would not vanish as  unlessv t   2 0  , i.e. 

the expected inflation is in fact a constant or is perfectly correlated to the instantaneous 
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change of tP . With an infinitely-lived investor, we ignore the transient time variation of 

 and rewrite Equation (4) as  ( )v t

  t td dt       pdZ  (8) 

where 

2 2

1 2
1 p

p p p

v


   
  

                      

                (9) 

2.2.2  The Bond Market 

We assume that the investor could directly observe the nominal interest rate which 

could be described as an Ornstein-Uhlenbeck process of Vasicek (1977) type: 

  t tdR R R dt dZ   R R



 (10) 

Let  denote the price of the nominal zero-coupon bond which pays one 

money unit when it matures at time T . 

 ,TtN R t

 ,tN R T t  would satisfy the following 

partial differential equation with the boundary condition ( , 0) 1N R  : 

                 21

2R t RR R t R

N
N R R N R N N

t
  R R 

    


             (11) 

where the constant R  represents the risk premium of the interest rate risk,  is the 

first-order partial derivative of 

RN

( )N   with respect to  and  is the second-order 

partial derivative. The solution of Equation (11) gives the dynamic of the return of the 

nominal zero-coupon bond: 

R RRN
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 
   1 1

,
( ) ( )

,
t

t R R R
t

dN R T t
R b T t dt b T t dZ

N R T t
  


    

 R

]

 (12) 

where  is a function of the time to maturity T t1
1( ) [1 exp ( )b T t T t       . 

Since the infinitely-lived investor has to roll over her investment of bonds whenever the 

bonds in the portfolio expire, we could assume that investor always sells the expiring 

bonds and buys the newly-issued bonds continuously to keep the maturity of the bonds 

in her portfolio a constant. Thus, we would take the value of  1b T t  as a constant  

for a given 

b

  such that T t    and 1( )b b  . For this sake, we simplify the 

expression of Equation (12): 

  t
t N N

t

dN
R dt d

N
    RZ  (13) 

where N R N    and N Rb  .  

The return of the inflation-indexed zero-coupon bond is defined as the price of one 

unit of consumption good when it matures at time T .The indexed bond would 

simultaneously bear the risks of interest rate, inflation rate and the nominal price. The 

price of the indexed bond, ( , , , )t t tI R P T t  , could be decided by the following partial 

differential equation with the boundary condition ( , ,0)t TI R P,t t P  :  

   

 

2 21 1 1

2 2 2R P RR R PP p

RP RP R R P p t R R R p P p

I
I R R I P I I I I

t

I P I I P R I I I P I

2
  

     

      

        


       


      


 (14) 

where  denotes the covariance of the state variables  and Y .  EXY dXdY   X p  
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represents the measure of the risk premium with respect to the innovation  defined 

as Equation (6). Solving Equation (14), we then derive the return of the indexed bond as 

the following process: 

pdZ

 

 
   

 

1 2

1 2

, , ,
( ) ( ( ) )

, , ,

( ) ( )

t t t
t R R p p

t t t

R R p p

dI R P T t
R b T t b T t

I R P T t

b T t dZ b T t dZ






   



  


     



    

)

dt
 (15) 

 ))twhere  has been shown earlier and 1(b T t 1
2( ) 1 exp( (b T t T    . We also 

assume that, for an infinitely-lived investor, he would adopt the trading strategy of 

substituting the newly-issued bonds for the expiring bonds continuously to keep the 

time to maturity of the indexed bond to be a constant    such that 1 1b b ( )   and 

2 2b b ( )  would be two constants. If   equals   ,the time to maturity of the 

nominal bond, the values of b and  would be equal. For brevity, we rewrite 

Equation (15) to be 

1b

   1 2
t

t I I R I
t

dI
R dt dZ d

I
      pZ  (16) 

where 1 2I R I p I      , 1 1I b R   and 2 2I p b     .  

 We define  as the real bond. By definition, it represents the real price of a 

zero coupon bond which pays one unit of consumption at the maturing date. According 

to Equation (3), (15) and Itô’s lemma, the return of the real bond is 

/tI Pt
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 1 2 1 2

1 2

( / )

/
t t

t t p p R R P RP p
t t

R R P

d I P
R b b b b

I P

b dZ b dZ





         

 

      

 

dt  (17) 

The instantaneous real risk-free interest rate, , is obtained by taking the limit of the 

return of the real bond in Equation (17) when 

tr

0T t  : 

 t t t pr R p      (18) 

The real interest rate equals the difference of the nominal interest rate and the inflation 

rate plus the risk premium of the nominal price level for consumption goods. Equation 

(18) implies that the Fisher equation is not hold unless the risk premium of the price risk 

is zero. 

2.2.3  The Optimization Problem 

We assume that the investor’s preference is represented by the stochastic differential 

utility proposed by Duffie and Epstein (1992): 

  E ,t t s st
J f C J ds

      (19) 

and  

    
 

1 (1/ )1

1/(1 )

1
, 1 1

(1 )

C
f C J J

J



 
 



 1
                 

 (20) 

 , f C J  is called the normalized aggregator of the investor’s current consumption and 

utility.   is the time preference,   is the measure of the relative risk aversion for the 
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investor and   stands for the elasticity of intertemporal substitution of consumption. 

The benefit of this utility representation is that it separates the elasticity of intertemporal 

substitution from the relative risk aversion. For the widely adopted time-additive power 

utility function, the reciprocal of the risk aversion represents the elasticity of 

intertemporal substitution as well. Accordingly, an investor who is more risk-averse is 

more unwilling to substitute consumption intertemporally while it is not always the case. 

Obviously, the stochastic differential utility is a more generalized setting and the 

standard time-additive power utility could be viewed as a special case when 1/   in 

Equation (20). 

In the financial market, there are three kinds of risky assets to be traded. One is the 

stock with nominal price  following:  tS

                         t
t s s s

t

dS
R dt dZ

S
                          (21) 

and the other two are the zero coupon nominal and indexed bonds as shown in Equation 

(13) and (16) respectively. In Equation (21), s  is the excess return of stock and sdZ  

is the unexpected disturbance of stock return. The investor’s problem is to choose her 

optimal consumption and the portfolio weights on the three kinds of risky assets to 

maximize the utility represented in Equation (19) subjected to the intertemporal budget 

constraint: 
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T  (22)  T dZt t t t tdW x R W C P dt x      

where  is the instantaneous consumption at time  in terms of real units. tC t Tx  is the 

transpose of the vector of the portfolio weights x   

 
S

N

I

x

x x

x

 
 
 
 


  (23) 

  is the vector of excess return 

 
S

N

I


 



 
 
 
 




0 


 (24) 

and  

  (25) 

1 2

0 0

0

0

s

N

I I



 

 
  
  

 dZ
s

R

p

dZ

dZ

dZ

 


 
 
 


  (26) 

The optimal policies for the investor must satisfy the following Bellman equation: 

       

 

T

,

2 T 2 2 2 2 T T
2 3

T
3

max ,

1

2

0

p
R

W W R P
x C

WW RR R PP WR WP p

W RP RP R R P p

f C J J W x R J CP J R R J P J

J W x x J J P J J Wx e J WPx e

J Wx e J P J J P



 

     

    

      

     

        

        

     



 (27) 
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In Equation (25), is   and is  . Besides, 2e T
0 1 0 3e T

0 0 1 T 

2e

represents 

the variance-covariance matrix of the nominal risky asset returns and R   is the 

vector of covariance between the risky asset returns and the nominal interest rate (and 

so forth for the similar terms) where  (3 3 ) is the matrix of correlation coefficients: 

  (28) 

1

1

1

SR SP

SR RP

SP RP

 
  

 

 
 
 
 




SR  is defined by ( )s R SRE dZ dZ dt  and others are defined in a similar fashion.  

 The first-order conditions for the Bellman equation are: 

     (1 ) /1
1WC J P J

 
       (29) 

 1 1 1 1
2 3

W WR WP W
R p

WW WW WW WW

J J J P J
3x e e

J W J W J W J W
 e              

            (30) 

Equation (29) gives the optimal real consumption plan once the value function is given 

and Equation (30) shows that the optimal portfolio weights are composed of four terms. 

The first term in the right-hand side is the demand due to the excess returns of the risky 

assets and is often called the speculative or myopic demand. The remaining three terms 

represent the hedging demands against the risks of interest rate, nominal price level of 

consumption goods and the expected inflation rate respectively.  

2.3  Results 
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2.3.1  The Approximate Solution with Log-Linearization 

The partial differential equation after we substitute Equation (29) and (30) back into (27) 

is complicated to solve. However, by conjecture, it could be verified that the solution of 

 would have the following form: J

      1( 1) /(1 ) /
, , , ,

1
t t

t t t t t t

W P
J W R P H R


 

 



 

    
 (31) 

 ,H R   is the solution of the following partial differential equation: 

 

 

   

  

T

22
2 2

2 T T
2

T T
3 3

1
( 1) ( 1)

1 2 1 2

2 1 2 1

1 ( 1)
2 1 ( 1)

2 2

( 1) ( 1)( 1) ( 1)

R

R RR
R

R
P R

R
P

HH
x R R R

H H H

H HH H

H H H H

H
x x x e

H
H H

x e x e
H

 

 





        

    
 

      

       

         

                          


       

        



 (32) 

2
( 1) 0

1

RP

RR
R p

H

H H HH

H H H H
  

 



     


                

As mentioned in Chacko and Viceira (2005), the nonlinear partial differential equation 

presented above would have no exact analytical solution in general. In line with Chacko 

and Viceira (2005), we employ the method of log-linear approximation to find an 

approximate analytical solution to investigate more insights of the solution to our 

problem. In the first place, we substitute Equation (31) into Equation (29) and find that 

the envelope condition would be expressed as  
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1

( , )
t t

t t

PC

W H R


t
  (33) 

Denoting  and using the first-order Taylor expansion of 

 around its unconditional mean 

  log( / )t t t t tc w PC W 

)twexp( tc  E( )t tc w c w   , the envelope condition 

could be rewritten as   

 
 

0 1

1
exp exp( ) exp( )[ ( )]

log

t t t tc w c w c w c w c w
H

h h H

         

 
 (34) 

where 1 exp( )h c w 0 1 1(1 log log )h h h and     . Substituting the approximate 

result in Equation (34) for  in Equation (33), it is easy to see that the solution of 1H 

H  would take the form of   0 1 2, exp( )t t t tH R a a R a    . The undetermined 

coefficients would then be solved as following: 

 1
1

1
a

h








 (35) 

 2
1

1
a

h





 (36) 

 

 T 2 2 2 2
0 0 1 2 1 2

1

1 2 2 3 3 1 2

2 T
1 2

1 1 1
( 1) 2

2 1

( 1) ( (1 ) )

1 (1
( 1) ( 1) ( 2)(1 )

2 2

R R

T
R p

RP p p

a h x a a a a
h

x a e a e e a R a

a a x

 





     


       

        

 
       

       

          



)
x

 (37) 

2.3.2  The Optimal Policies 

Up to now, we have derived the approximate solution for the value function of the 

investor. It would then be an immediate result to show the optimal policy for the 
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investor: 

Proposition 1 The approximate analytical solution for the investor’s value function is 

      1
0 1 2

/1
, , , exp

1 1
t t

t t t t t t

W P
J W R P a a R a


 

 


 

     
 (38) 

and the optimal consumption and portfolio policies implied by the value function  are 

 0 1 2exp( )t t
t

t

PC
a a R a

W


t      (39) 

and 

 

1 11 2
2 3

1
3

1 1 1
1 1

1 1

1
1

R

p

a a 1x e e

e

    
    

 


  


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 (40) 

( , )t tH RProof.   Substituting the approximate solution of  derived in last section into 

Equation (31) we immediately get the solution of the value function. The optimal 

policies stem from the value function and Equation (29), (30).■ 

In Proposition 1, we find that the consumption-wealth ratio /t t tPC W  is an 

exponentially affine function of the interest rate  and the (estimated) inflation rate tR

t . The exact relationship between the consumption-wealth ratio and the two state 

variables is decided by the value of  , the elasticity of intertemporal substitution. 

According to Equation (35) and (36), when 1  , the values of  and  are both 1a 2a
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t tc w

identical to zero and hence the consumption-wealth ratio turn out to be a constant over 

time. A constant consumption-wealth ratio makes   exactly identical to its 

unconditional mean. This implies that the solution of 1   is an exact solution.  

When 1 

t

,  and  are positive. The consumption-wealth ratio would rise 

as  rises or 

1a 2a

tR   falls. However, when 1  , the consumption-wealth ratio would 

fall as  rises or tR t  falls. As  increases or tR t  decreases, the investor’s income 

or the purchasing power would be higher and the investor could consume more. This is 

the positive income effect. However, an increase in  or a decrease in tR t  would 

induce an incentive to cut the current consumption since consumption in the future 

becomes less expensive under this circumstance; this is the negative substitution effect 

of current consumption. The relative importance of intertemporal substitution and 

income effects would affect the investor’s attitude toward her consumption plan. We 

could conclude that when 1  , the income effect dominate such that the investor’s 

current consumption rises relative to her wealth. However, when 1  , the substitution 

effect dominates and the investor cuts her current consumption relative to wealth.  

Furthermore, contrary to other related works which assume a directly observable 

real interest rate and conclude with a consumption-wealth ratio that is perfectly 

explained by the real interest rate level, our result in Equation (39) implies that the 
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t

consumption-wealth ratio is not completely determined by the real interest rate which is 

approximately referred to as the difference of tR  . The consumption-wealth ratio 

derived in our model is decided by 1 2ta R a t , which is not a multiple of tR t  unless 

 or equivalently . In the case of 1a a 2    1   and    , given the level of the 

real interest rate tR t  unchanged, the consumption-wealth ratio would be higher 

with a higher nominal level of the interest rate  and the inflation rate tR t . In our 

model  and  represent the degree of mean-reverting of the nominal interest rate and 

the inflation rate respectively. When

 

  

1

, any deviations to the average level of the 

nominal interest rate would have a stronger persistency than that of the inflation rate. 

The investor would think that the nominal interest rate keeps in the abnormally high 

level longer than the inflation rate does and, as a result, a higher real interest rate 

follows. On the other hand, when    and    ,  increasing the nominal levels of 

 and tR t  while the real interest rate tR t  unchanged would result in an decrease in 

the consumption-wealth ratio since in this case the high inflation rate persists longer 

than the nominal interest rate, which means that there is a lower real interest rate in the 

following future. This finding implies that the consumption-wealth ratio is not purely 

decided by the real interest rate. We show that the nominal levels of the nominal 

variables and the relative persistency of the disturbance to the interest rate and inflation 

rate would also affect the investor’s optimal consumption plan.  
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As to the optimal portfolio weights on the risky assets, we investigate Equation (40) 

in more details. By Equation (25), (28), (35) and (36), we substitute the full expressions 

of , , 1a 2a   and  for the corresponding items in Equation (40), we find that 

Proposition 2 The optimal portfolio weight on the risky assets is composed of four 

terms:  
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

 

 (41)  

The term 1x  is the speculative (or myopic) demand, 2x  is the hedging demand against 

the unexpected innovation of interest rate and 3x  , 4x  are to hedge against the 

innovation of the inflation rate and the instantaneous nominal price level. 

Equation (41) shows that the investor’s portfolio choice is represented by a 

weighted average of the speculative demand and the hedging demands. It is obviously 

that the portfolio policy depends only on the risk aversion but does not depend on the 

elasticity of intertemporal substitution explicitly. The elasticity of intertemporal 

substitution only affects the optimal portfolio implicitly by the unconditional mean of 
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log consumption-wealth ratio through the coefficient . For an infinitely risk-averse 

investor (

1h

   ), the speculative demand would vanish and the optimal portfolio for 

the investor is composed of the mix of nominal and indexed zero coupon bonds. This 

meets the common advice that the more conservative investor should put more weights 

on bonds; documented as the asset allocation puzzle in Canner, Mankiw and Weil 

(1997). The absolute magnitude of hedging demand of bonds is deceasing with  and 

, the degree of mean-reverting process of interest rate  and inflation rate 



 tR t  

respectively. For large and , any adverse disturbances that damage the future 

investment opportunity would not persist for long and the incentive to hold assets for 

the hedging purpose would mitigate.  

 

Observing 2x , we find that the interest rate risk could be perfectly hedged by 

holding a long position of the nominal zero coupon bond since the return of the nominal 

bond is perfectly negatively correlated to the instantaneous nominal interest rate. 

Regarding the demand of 3x  and 4x , which are in need to hedge against the inflation 

and price risk, there are long positions of the inflation-indexed bonds while  short 

positions of the nominal bonds.  

As mentioned earlier, the nominal bonds account for the demand to hedge against 

the interest rate risk. However, in a world with inflation, the nominal bonds which pay 
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certain monetary payoffs in the future are no longer a safe asset in real term since the 

real purchasing power is uncertain. The holding of nominal bonds under inflation would 

expose the long term investor to the inflation risk. According to Equation (16), the 

return of the inflation-indexed bond is positively related to the inflation. This implies 

that the real purchasing power would be compensated by the return of the indexed bond 

when the inflation rises. The indexed bonds thus provide an opportunity to hedge 

against the inflation risk. On the other hand, the return of the indexed bond is also 

negatively related to the instantaneous nominal interest rate in part and this means that 

the indexed bond also provide a channel to hedge against the interest rate risk. As a 

result, the risk-averse investor shorts parts of her holdings of the nominal zero-coupon 

bond and turn to the indexed bond which is a relatively safe asset under inflation.  

The short positions of nominal bond in 3x  and 4x  are proportional to the long 

positions of indexed bond and the proportion is decided by . When , i.e. 

with identical time to maturity for both the nominal and indexed bond, the investor 

shorts the nominal bond by the amounts identical to which she invests in the indexed 

bond. The need of the indexed bonds would crowd out the need of nominal bonds. This 

also implies that the demand of indexed bonds could be financed by selling the 

corresponding amount of nominal bonds. Together with 

1 /b b 1b b

2x , 3x  and 4x , the sign of the 

net position of nominal bonds would depend on the values of , , ,  b 1b     and 
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p . 

In 3x  we also find that the estimation risk v  affects the optimal portfolio 

through   since 1 / pv    . This implies that the hedging demand against the 

risk of the expected inflation could be divided into two parts. One part is to hedge 

against the uncertainty that could be perfectly explained by the nominal price level and 

the other part is to hedge against the estimation risk with respect to the residual 

unobserved innovations in the nominal world. As what we have shown in equation (7), 

when the expected inflation is not perfectly correlated to the nominal price ( 2 0  ), the 

estimation risk never vanishes. The result here shows that the estimation risk would 

induce an additional hedging demand of bonds which cannot be perfectly eliminated by 

learning about the expected inflation through the historical dynamics of the nominal 

price level tP . 

2.3.3  Dynamics of Nominal and Real Consumptions 

In this subsection, we derive the nominal and real consumption dynamics respectively. 

By Equation (22), (33), (34) and the solution of ( , )t tH R  , the intertemporal budget 

constraint could be rewritten as 

 T T
0 1 0 1 2( )t

t t t
t

dW
x R h h a a R a dt x

W
         dZ  (42) 

where we use the approximate consumption-wealth ratio to substitute for its exact 
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expression. According to Equation (39), (42) and Itô’s lemma we obtain the following 

proposition:  

Proposition 3  

(i) The dynamics of the nominal consumption t tPC  could be expressed as following: 

 T( )
( , ) dZt t

NC t t NC
t t

d PC
R dt

PC
     (43) 

where 

 T
0( , ) ( ) (1 )NC t t t tR R x           

3

 (44) 

and  

 T
1 2 2NC Rx a e a e      (45) 

 is the investor’s subjective time preference and 0 is a collection of the 

variance-covariance terms in our model. 

(ii) The dynamics of real consumption is: tC

 T( , ) dZt
C t t C

t

dC
R dt

C
     (46) 

where  

 T
1( , ) ( )C t t t tR R x            (47) 

1 represents a collection of the variance-covariance terms and  

 T
1 2 2 3C R 3px a e a e e         (48) 
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The expressions of 0  and 1  are complicated and are omitted for brevity. Proposition 

3 shows that the elasticity of intertemporal substitution decides the sensitivity of the 

expected nominal and real consumption growth with respect to the nominal interest rate, 

estimated inflation and the excess returns of the portfolio. The coefficient of risk 

aversion has no explicit effect on consumption growth. In contrast, the coefficient of 

risk aversion decides the portfolio rule while the elasticity of substitution has no effect 

on portfolio choice. This is why we argue that we should separate the elasticity of 

substitution from the measure of risk aversion when solving a problem involving the 

portfolio and consumption choice simultaneously.  

It is clear that the expected real consumption growth is decided by the difference 

of tR t

t t

, which could be viewed approximately as the real interest rate and the 

expected real consumption growth is therefore positively related to the real interest rate. 

However, the nominal consumption growth is not a function of the real interest rate 

R  . By equation (44) and (47), the growth rate of nominal consumption is 

approximate the sum of the growth of real consumption and the estimated inflation 

since the nominal expenditure on consumption varies according to not only the change 

of real consumption units but also the change of nominal prices to purchase the 

consumption goods. The expected nominal consumption growth NC  is positively 

related to the nominal interest rate  for all levels of tR  . However, the sign of t  in 
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NC  is positive when 1   while negative when 1  . By equation (47), any 

changes in the expected inflation rate would affect the real consumption growth since 

the real interest rate changes as well. For a more inelastic investor who is less willing to 

substitute her future consumptions for the current consumptions, she would react to the 

change of real interest rate which stands for the relative price of the future consumptions 

to a smaller extent. When 1  , the change of nominal price level would exceed the 

change of the investor’s real consumption and thus dominate the change of the nominal 

consumption. In a special case of 1  , the change of real consumptions would cancel 

out the change of nominal price and as a result the expected nominal consumption 

growth is insulated from the expected inflation rate t . 

2.4  Model Calibration 

In the following two subsections we will first estimate the parameters of the 

term-structure model using data in U.S. nominal interest rates, equities, and CPI index. 

Subsequently, we will use these parameters to predict the portfolio weights with 

different coefficients of relative risk aversion. 

2.4.1  Calibration of model parameters 

A Kalman filtering approach is adopted to estimate the parameters involved in the 

model. The specific approach is based on expressing the model in state space form and 
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then using the Kalman filter to obtain the relevant log-likelihood function to be 

maximized. The system is estimated using monthly U.S. data, which span the period 

from January 1961 until September 2008. The total number of observation time points 

is thus 573. The zero-coupon bond yields for the period January 1961 until September 

1996 are downloaded from John Y. Campbell’s website. The yields for the period from 

October 1996 until September 2008 are adopted from WRDS website. All zero-coupon 

yields are sampled at the end of the relevant months. We take data on equities from the 

Indices files on the CRSP tapes, using the value-weighted return, including dividends, 

on the NYSE, AMEX, and NASDAQ markets. The CPI index data are adopted from the 

website of The Bureau of Labor Statistics and The Bureau of Economic Analysis. 

Table 1 and Table 2 report the parameter notations and calibrated values used in 

the numerical study. As appears from Table 1, the stock index volatility is estimated to 

be 23.9%, and the excess return of stock, S , is estimated to be 4.87%. The stock index 

volatility is slightly higher than the reported historical estimates on the volatility of 

20.2%, and the excess return of stock is smaller than the reported historical estimates on 

the average excess return of 9.1%, suggested by the Ibbotson Associates 1926-2000 

historical returns data on stock (see, e.g., Brealey & Myers, 2003, chap. 7, Table 7-1). 

The standard deviation of unexpected inflation, P , is about 117 basis points, which 

compares with 300 basis points for the standard deviation of innovations in expected 
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inflation,  .  

The nominal interest rate mean reversion parameter, , is estimated to be 0.0594, 

while the volatility parameter, R  is estimated to be 1.6%. This implies that one-year 

nominal bond has a volatility of 1.55%. This figure is reported in Table 2. Since 

one-year nominal bond has the excess return of 0.51% and ten-year nominal bond has 

2.10%, we can see that the excess return is increasing with bond maturity. Since 

nominal bond are subject to inflation risk, we find that the excess return of nominal 

bond is slightly higher than that of indexed bond. The estimated excess returns of bonds 

are all reported in Table 2.  

The correlation between innovations in the stock return and in the price index is 

-0.0657, which is consistent with the empirical findings of Munk, Sørensen and Vinther 

(2004) for the period 1951 to 2003. 

2.4.2  Optimal portfolio strategy  

Table 3-6 explores the empirical properties of the portfolio solution (41) using the 

parameters estimated in section 4.1 for period 1961-2008. We allow investors to hold 

equities, indexed bonds, and nominal bonds simultaneously. We compute optimal 

portfolio rules for investors with different coefficients of relative risk aversion of 0.75, 1, 

2, 5, 10, and 50000(effectively almost infinite). The hedging demands are shown in 
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parentheses. We present results only for elasticity of intertemporal substitution equal to 

0.5, since this coefficient has only a negligible effect on portfolio allocation.  

The parameters in Table 3 report the optimal portfolio solutions when the assets 

available to investors are equities, one-year nominal bonds, and one-year indexed bonds. 

The portfolio share of bonds exceeds that of equities, because bonds are much less risky 

than equities. Investors with low risk aversion hold more nominal bonds, seeking to 

earn more inflation risk premium. The risk-averse investors short parts of her holdings 

of the nominal bonds and turn to the indexed bonds which are relatively safe assets 

under inflation. As risk aversion increases, the myopic component of risky asset 

demand disappears but the hedging component does not. 

The parameters estimated in Table 4 report the solutions when the assets available 

to investors are equities, ten-year nominal bonds, and ten-year indexed bonds. The 

portfolio weights of bond in Table 4 are all much smaller than that in Table 3, which 

means investors like the short maturity bonds more. Investors buy more equities in 

Table 4 since they reduce the portfolio weights of bonds. 

The parameters in Table 5 report the solutions when the assets available to 

investors are equities, one-year nominal bonds, and ten-year indexed bonds.  

Risk-tolerant investors hold more one-year nominal bond to earn the inflation risk 

premium, but are subject to inflation risk. More conservative investors concentrate their 
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portfolios on ten-year indexed bonds, with short positions in the nominal bonds in order 

to hedge against the inflation risk. The portfolio weights on indexed bonds are much 

less than that in Table 3, since investors like short maturity indexed bonds more.   

2.5  Conclusions 

We have derived the optimal intertemporal portfolio-consumption choice of the investor 

with the stochastic differential utility under inflation. The optimal portfolio rule depends 

on the coefficient of risk aversion while the consumption plan relies on the elasticity of 

intertemporal substitution. In contrast with other related works which adopt the 

one-factor real interest model and lead to a two-factor nominal interest rate under 

uncertain inflation, we think that the real interest rate is an unobservable state variable 

and we adopt a one-factor nominal interest rate which is observable to the investor and 

hence a two-factor real interest rate. We also argue that the expected inflation is never 

observable to the investor. The investor could only infer the value of expected inflation 

from the realized data of nominal price and suffers from the estimation risk to some 

extent.  

With the inclusion of indexed bonds in the portfolio set, we mainly find that the 

risk of nominal interest rate is perfectly hedged by the holdings of nominal bonds while 

the inflation and price risks is hedged by the holdings of indexed bonds. The demand of 
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nominal bonds is crowded out proportionally to the demand of indexed bonds. When 

the maturities of the nominal and indexed bonds are identical, the demand of the 

indexed bond is perfectly financed by shorting the corresponding amounts of the 

nominal bond. The estimation risk of inflation also partly accounts for the hedging 

demand of bonds. 

As to the consumption, we find that the consumption-wealth ratio is obtained as an 

exponentially affine function of the nominal interest rate and expected inflation rate. 

The level of the elasticity of intertemporal substitution decides the direction in which 

the nominal interest rate and the expected inflation affect the consumption-wealth ratio. 

When the elasticity of intertemporal substitution is greater than one, the substitution 

effect dominates. The consumption-wealth ratio falls as the nominal interest rate rises or 

the inflation falls. The income effect would dominate when the elasticity of 

intertemporal substitution is less than one. In this case the consumption-wealth ratio 

rises as the nominal interest rate rises or the expected inflation falls.  

It is also noted that the consumption-wealth ratio is not perfectly decided by the 

difference of the nominal interest rate and the inflation, say the real interest rate. The 

consumption-wealth ratio varies with the absolute levels of the nominal interest rate and 

the expected inflation rate given the real interest rate unchanged. The effects of the 
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nominal variables on the consumption-wealth ratio depend on the relative persistency of 

the disturbance of the nominal interest rate and the expected inflation rate.  

The expected growth rates of real and nominal consumption are also derived. We 

show that the expected real consumption growth is a function of the real interest rate, i.e. 

the difference of the nominal interest rate and the expected inflation. The expected 

nominal consumption growth is approximate the sum of the real consumption growth 

and the expected inflation rate. The expected nominal consumption growth is positively 

related to the nominal interest rate while the sign of the expected inflation in the 

nominal consumption growth would rely on the investor’s elasticity of intertemporal 

substitution. In a special case that the elasticity of intertemporal substitution equals one, 

the expected nominal consumption growth would be irrelevant to the expected inflation. 

     Lastly, the capital market is calibrated to U.S. stock, bond, and inflation data. We 

allow investors to hold equities, indexed bonds, and nominal bonds simultaneously. The 

optimal weights show that aggressive investors hold more nominal bonds to earn the 

inflation risk premium, and conservative ones concentrate on indexed bonds to hedge 

against the inflation risk.  
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Table 1 

Estimates of Model Parameters 

Maximum likelihood parameter estimates for the joint process of equity return, price 

index, expected inflation, and nominal interest rate estimated by implementing Kalman 

filter using monthly yields of zero-coupon bond, CPI data, and CRSP value-weighted 

equity returns for the period from January 1961 until September 2008. 

Parameter                             Estimate 

Equity return process: ( )t
t S S S

t

dS
R dt dZ

S
     

S                                  0.0487 

S                                 0.239 

Price index process: t
t P

t

dP
dt dZ

P
   P

P

 

                                 0.0117 

Expected inflation Process: ( )t td l dt dZ P       

                                 0.05 l

                                  0.047 

                                 0.03 

Nominal interest rate process: ( )t tdR R R dt dZ    R R



 

                                  0.0594   

R                                   0.1423 
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R                                  0.016 

Correlations: SR                                -0.1346 

SP                                -0.0657 

RP                                -0.1190 
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Table 2 

Estimates of Model Parameters 

The parameters for the process of nominal bonds, and indexed bonds with maturities of 

one and ten years are reported in this table.  

Nominal bond process:                  Indexed bond process: 

( )t
t N N

t

dN
R dt d

N
    RZ               1 2( )t

t I I R I
t

dI
R dt dZ d

I
      PZ  

1-Year nominal bond :                  1-Year indexed bond :  

N             0.0051                I                0.0039      

N             0.0155                1I               0.0155     

                                    2I               0.0409 

10-Year nominal bond :                 10-Year indexed bond :  

N             0.021                 I                0.0130     

N             0.0698                1I                0.0698      

                                    2I               0.2477 
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Table 3 

Optimal portfolio strategy 

This table reports the optimal strategy for investors with different values of the risk 

aversion parameter when the assets available to investors are equities, one-year nominal 

bonds, and one-year indexed bonds. The hedging demand is shown in parentheses. We 

assume that φ=0.5. 

Relative risk 

aversion 

Equity 1-Year nominal bond 1-Year indexed bond 

0.75 19.3 197.2  (7.2) 88.1  (-12.9) 

1 14.4 142.5  (0) 75.8  (0) 

2      7.2 60.4  (-10.8) 57.3  (19.4) 

5     2.8  11.2  (-17.2) 46.3  (31.1) 

10      1.4 -5.2  (-19.4) 42.6  (35.0) 

50000      0.0 -21.6  (-21.6) 38.9  (38.9) 
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Table 4 

Optimal portfolio strategy 

This table reports the optimal strategy for investors with different values of the risk 

aversion parameter when the assets available to investors are equities, ten-year nominal 

bonds, and ten-year indexed bonds. The hedging demand is shown in parentheses. We 

assume that φ=0.5.  

Relative risk 

aversion 

Equity 10-Year nominal bond 10-Year indexed bond 

0.75 20.3 49.9  (2.2)  16.3  (-2.8) 

1 15.2 35.7  (0) 14.4  (0) 

2     7.6 14.5  (-3.3) 11.5  (4.3) 

5     3.0 1.7  (-5.4) 9.7  (6.9) 

10   1.5 -2.5  (-6.0) 9.2  (7.7) 

50000   0.0 -6.7  (-6.7) 8.6  (8.6) 
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Table 5 

Optimal portfolio strategy 

This table reports the optimal strategy for investors with different values of the risk 

aversion parameter when the assets available to investors are equities, one-year nominal 

bonds, and ten-year indexed bonds. The hedging demand is shown in parentheses. We 

assume that φ=0.5. 

Relative risk 

aversion 

Equity 1-Year nominal bond 10-Year indexed bond 

0.75 17.5 202.5  (16.3)   18.8  (-2.8) 

1 13.1 139.6  (0) 16.3  (0) 

2     6.5 45.3  (-24.5) 12.4  (4.3) 

5     2.6 -11.3  (-39.2) 10.1  (6.9) 

10     1.3 -30.1  (-44.1) 9.3  (7.7) 

50000     0.0 -49.0  (-49.0) 8.6  (8.6) 
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Table 6 

Optimal portfolio strategy 

This table reports the optimal strategy for investors with different values of the risk 

aversion parameter when the assets available to investors are equities, ten-year nominal 

bonds, and one-year indexed bonds. The hedging demand is shown in parentheses. We 

assume that φ=0.5. 

Relative risk 

aversion 

Equity 10-Year nominal bond 1-Year indexed bond 

0.75 20.4 20.6  (1.1)  67.9  (-12.9) 

1 15.3 14.6  (0) 60.7  (0) 

2     7.6 5.5  (-1.7) 49.8  (19.4) 

5     3.0  0.1  (-2.8) 43.2  (31.1) 

10     1.5 -1.6  (-3.1) 41.0  (35.0) 

50000     0.0 -3.5  (-3.5) 38.9  (38.9) 
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